WO2007138889A1 - 内視鏡および内視鏡システム - Google Patents

内視鏡および内視鏡システム Download PDF

Info

Publication number
WO2007138889A1
WO2007138889A1 PCT/JP2007/060223 JP2007060223W WO2007138889A1 WO 2007138889 A1 WO2007138889 A1 WO 2007138889A1 JP 2007060223 W JP2007060223 W JP 2007060223W WO 2007138889 A1 WO2007138889 A1 WO 2007138889A1
Authority
WO
WIPO (PCT)
Prior art keywords
observation
endoscope
balloon
magnification
contact
Prior art date
Application number
PCT/JP2007/060223
Other languages
English (en)
French (fr)
Inventor
Hironobu Ichimura
Hideyasu Takato
Azusa Noguchi
Kiyoshi Miyake
Nobuyuki Doguchi
Kazuhiro Gono
Original Assignee
Olympus Medical Systems Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Medical Systems Corp. filed Critical Olympus Medical Systems Corp.
Priority to EP07743658A priority Critical patent/EP2022387B1/en
Priority to CN200780019259.9A priority patent/CN101453936B/zh
Publication of WO2007138889A1 publication Critical patent/WO2007138889A1/ja
Priority to US12/323,065 priority patent/US20090082626A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • G02B23/2438Zoom objectives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00082Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/0125Endoscope within endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6886Monitoring or controlling distance between sensor and tissue
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2446Optical details of the image relay
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device

Definitions

  • the present invention relates to an endoscope and an endoscope system capable of observing a subject by bringing an observation unit into contact with or away from the subject.
  • Japanese Patent Application Laid-Open No. 2004-350940 has been disclosed as an endoscope having an observation probe capable of observing a subject at a high magnification by bringing the distal end of an observation part into contact with or away from the subject. ing.
  • This endoscope is provided with a normal observation portion having a normal magnification at the insertion tip portion and a high-magnification observation probe having a high magnification that can be projected and retracted from the tip surface of the insertion portion.
  • the lesion site can be magnified or magnified with the high-magnification observation probe.
  • the endoscope (probe body) disclosed in Japanese Patent Application Laid-Open No. 2004-350940 described above has a thin tip for insertion into a treatment instrument insertion hole of another endoscope body for observation. It is a diameter. Therefore, when the tip is strongly brought into contact with the body wall, a local force is likely to be applied because the contact area is small.
  • the position of the end face of the high-magnification observation probe needs to be positioned at a predetermined position within the observation depth on the near side of the normal observation unit.
  • the high-magnification observation probe since the high-magnification observation probe is held in a state where it is simply pushed out, it is difficult to position the high-magnification observation probe in the observation optical axis direction.
  • the diameter of the tip of the high-magnification observation probe is small, there is a possibility that the grip force is small during the magnified observation with respect to the body wall and the position is displaced in the direction perpendicular to the observation optical axis.
  • the present invention has been made to solve the above-described problem, and even if the tip of the observation probe is thin, the tip can be easily positioned and can be stably observed.
  • An object is to provide an endoscope and an endoscope system.
  • the endoscope of the present invention includes an insertion portion that can be inserted into a subject, a contact portion that is provided at a distal end portion of the insertion portion and that can contact the subject, and a contact area of the contact portion. And an observing means for observing the subject that is provided at the tip and is in contact with or separated from the object by a predetermined distance.
  • FIG. 1 is a diagram showing an overall configuration of an endoscope observation apparatus according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the distal end of an endoscope insertion portion in the endoscope observation apparatus of FIG. This figure shows a state where the high-magnification observation probe is housed in the forceps channel.
  • FIG. 3 Enlargement including the imaging unit in the state where the high-magnification observation probe in Fig. 2 is protruded and the abutting balloon is inflated and brought into contact with the biological mucous membrane of the observation site to observe the region of interest It is sectional drawing.
  • FIG. 4 Magnification including illumination optical system in which the high-magnification observation probe in Fig. 2 is projected and the butting probe is inflated and brought into contact with the biological mucous membrane of the observation site to observe the region of interest It is sectional drawing.
  • FIG. 5 is an enlarged cross-sectional view of a normal observation probe showing a zoom mechanism portion arranged at the distal end of the endoscope insertion portion in FIG.
  • FIG. 6 is a view on arrow A in FIG. This figure shows the arrangement of the objective lens window, the illumination lens window, and the observation probe observation window at the distal end of the endoscope insertion portion.
  • FIG. 7A is a view showing a state where a high-magnification observation probe is still stored at the distal end of the endoscope insertion portion in FIG.
  • FIG. 7B is a view showing a state where the high-power observation probe protrudes from the distal end force of the endoscope insertion portion.
  • FIG. 7C is a diagram showing a state where the abutting balloon at the tip of the high-magnification observation probe is inflated
  • FIG. 7D is a diagram showing a state in which the inflated butting balloon is about to come into contact with the region of interest of the observation region.
  • FIG. 8 is a cross-sectional view of the high-magnification observation probe of FIG. 2 in the state shown in FIG. 7D.
  • FIG. 9 is a view on arrow B in FIG.
  • FIG. 10 is a view corresponding to the view taken in the direction of the arrow B in FIG. 8 in the inflated state of the modified example of the butting balloon of the high magnification observation probe in FIG.
  • FIG. 11 is a side view of a modified example of the butting balloon of FIG.
  • FIG. 12 is a side view showing an expanded state of another modified example of the butting balloon of the high-magnification observation probe of FIG. 3.
  • FIG. 13 is a cross-sectional view of a high-magnification observation probe according to a second embodiment of the present invention.
  • FIG. 14 is a view on arrow C in FIG.
  • FIG. 15 is a cross-sectional view of an observation probe of a high-magnification observation probe according to a third embodiment of the present invention.
  • FIG. 16 is a view on arrow D in FIG.
  • FIG. 17 is a cross-sectional view of a high-magnification observation probe according to a fourth embodiment of the present invention.
  • FIG. 18 is a view on arrow E in FIG.
  • FIG. 19 is a cross-sectional view of a high magnification observation probe according to a fifth embodiment of the present invention.
  • FIG. 20 is a view on arrow F in FIG.
  • the endoscope observation apparatus 1 includes an endoscope 2, a high-magnification observation probe 3, a light source device 4A, a video processor 5A,
  • the monitor 6 includes an air supply device 66, a video processor 5B, and a recording device 7.
  • the endoscope 2 is a first endoscope and has an insertion portion 10 that can be inserted into a body cavity that is a subject.
  • the high-magnification observation probe 3 is a second endoscope capable of optical high-magnification observation, and is passed through a forceps channel (also referred to as a treatment instrument channel) 23 of the endoscope 2 so as to be able to advance and retreat.
  • the high magnification observation probe 3 incorporates a high magnification imaging unit 39 which is a high magnification observation means.
  • the light source device 4A supplies illumination light to the light guide of the endoscope 2.
  • the video processor 5A performs signal processing for the imaging unit 27 for normal observation built in the endoscope 2.
  • the monitor 6 displays the video signal output from the video processor 5A.
  • the air supply device 66 is a fluid supply unit that supplies air to the abutment balloon of the high-magnification observation probe 3 and is an increase unit.
  • Video processor 5B is a high magnification observation pro Signal processing is performed for the image pickup unit 39 provided in the probe 3.
  • the recording device 7 records the video signal output to the monitor 6.
  • the light source device 4B described in FIG. 1 applies illumination light to the light guide 47 of the high-magnification observation probe 3B (see FIG. 13) in the endoscope observation device according to the second embodiment described later. It is a light source device for supply. Since the high-magnification observation probe 3 in this embodiment does not have a built-in illumination light source, the light source device 4B is unnecessary.
  • the endoscope 2 includes an elongated insertion portion 10 having flexibility, an operation portion 11 provided at the rear end of the insertion portion 10, and a side portion of the operation portion 11 that extends. Universal code 12.
  • the insertion unit 10 incorporates an image pickup unit 27 that is a normal observation means having a normal magnification that can be changed.
  • a connector 13 provided at the base end of the universal cord 12 is detachably connected to the light source device 4A.
  • the light source device 4A includes a lamp 14 that generates white light.
  • the white light from the lamp 14 is condensed by the lens and enters the light guide 15 of the light guide base portion protruding from the connector 13. This white light is transmitted by the light guide 15 and emitted from the distal end surface of the insertion portion 10 via the illumination lens 16 (see FIGS. 4 and 6), and illuminates the observation site 17 such as the affected area.
  • the insertion portion 10 includes a hard distal end portion 18, a bendable bending portion 19 provided at the rear end of the distal end portion 18, and a length extending from the rear end of the bending portion 19 to the front end of the operation portion 11. And a flexible portion 20 of the scale.
  • the bending portion 19 can be bent in any direction in the vertical and horizontal directions by operating a bending knob (not shown) provided in the operation portion 11.
  • a distal end body 26 constituting the distal end portion 18 of the insertion portion 10 is provided with an illumination window 24 and an observation window (imaging window) 25.
  • the tip of the light guide 15 and the illumination lens 16 constituting the illumination optical system are disposed on the tip of the light guide 15.
  • the observation window (imaging window) 25 is provided adjacent to the illumination window 24.
  • a zoom type normal observation objective lens system 28 having an observation optical axis Ol is held by a lens frame. It is arranged in the state.
  • the objective lens system 28 has a built-in zoom lens 28a!
  • An imaging unit 27 (FIG. 2) is configured by disposing, for example, a CCD 30 that is a charge coupled device as a solid-state imaging device at an imaging position behind the objective lens system 28.
  • the CCD 30 is a normal observation imaging unit that photoelectrically converts the formed optical image.
  • Protective glass 29 and optical filter are arranged in front of CCD30.
  • a treatment instrument insertion port 21 is provided in the vicinity of the front end of the operation unit 11, and the treatment instrument or the high-magnification observation probe 3 can be inserted.
  • the treatment instrument insertion port 21 communicates with a forceps channel 23 (see FIG. 2), a part of which is constituted by a flexible tube 49 provided along the longitudinal direction of the insertion portion 10 therein.
  • the tip body 26 is formed with a channel hole communicating with the flexible tube 49 forming the forceps channel 23.
  • the distal end portion 35 of the high-magnification observation probe 3 passed through the forceps channel 23 is in a state where it can protrude and retract from the distal end opening portion 23 a of the forceps channel 23.
  • a high-magnification imaging unit 39 is built in the distal end portion 35 of the high-magnification observation probe 3.
  • the observation optical axis of the observation window at the tip 35 is 02.
  • a bending piece constituting the forefront of the bending portion 19 is fixed to the rear end of the distal end portion body 26.
  • the outside of the bending piece is water-tightly covered with an exterior member 32 having a bendable rubber tube and the like.
  • the front end surface 33a of the distal end cover 33 of the distal end portion 18 of the insertion portion 10 is formed by a plane orthogonal to the optical axis Ol, and the observation window 25, the illumination window 24, and the forceps channel 23 are formed on the front end surface 33a.
  • the tip opening portion 23a is arranged.
  • the optical axis Ol of the observation window 25 and the observation window 02 of the distal end portion 35 on the distal end opening 23a of the forceps channel 23 are arranged on a straight line L0.
  • the two lighting windows 24 are arranged to face each other across the straight line L0. Therefore, the illumination light can efficiently illuminate both subjects of the imaging unit 27 and the imaging unit 39.
  • the distal end portion 35 of the high magnification observation probe 3 is projected through the distal end opening 23a of the forceps channel 23 as shown in FIGS.
  • a front end surface 45b of an abutting balloon 45 in an inflated state which will be described later, is brought into contact with the surface of a region of interest 17a that is desired to be observed locally at a high magnification in the observation region 17 that is a subject such as a biological mucous membrane.
  • high-magnification observation of the histological microstructure of the region of interest 17a can be performed through the observation window of the distal end portion 35.
  • the tip of the signal cable 31 is connected to the CCD 30 of the imaging unit 27 shown in FIG.
  • the rear end side of the signal cable 31 is connected to a connector receiver on the side of the connector 13, and is detachably connected to the video processor 5A via a signal cable 22 connected to the connector receiver.
  • the video processor 5A includes a CCD drive circuit 61 and a video processing circuit 62.
  • the CCD drive circuit 61 generates a CCD drive signal that drives the CCD 30.
  • the video processing circuit 62 performs signal processing on the imaging signal output from the CCD 30 by applying the CCD drive signal, and generates a video signal.
  • the video signal generated by the video processing circuit 62 is output to the monitor 6 and displayed as a normal observation endoscope image in the normal observation image display area 63 of the monitor 6.
  • the tip of the signal cable 43 is connected to the CCD 42 on the high magnification imaging unit 39 side.
  • the rear end side of the signal cable 43 is detachably connected to the video processor 5B through a signal cable 68 extended from the connector portion 65, for example.
  • the video processor 5B includes a CCD drive circuit and a video processing circuit.
  • the video signal corresponding to the image signal captured by the CCD 42 and output from the video processor 5B is input to the video processing circuit 62 of the video processor 5A.
  • the video processing circuits of the video processors 5A and 5B perform signal processing to generate, for example, an RGB color signal that is a video signal corresponding to the imaging signal of the CCD 42 under illumination of white light.
  • the processed video signal is output to the video processing circuit 62.
  • the video processor 5A receives the high-magnification observation video signal output from the video processor 5B, and outputs it to the monitor 6 via a mixer (mixer) not shown in the figure. Is done.
  • the high magnification (enlarged) observation image obtained by the high magnification observation probe 3 is displayed in a high magnification observation image display area 64 adjacent to the endoscope normal observation image display area 63 of the monitor 6.
  • the imaging unit 27 built in the endoscope 2 can be scaled as described above, and a zoom drive mechanism 50 is arranged on the side of the imaging unit 27 as shown in FIG. .
  • the zoom drive mechanism 50 performs zooming by driving the zoom lens 28a of the objective lens system 28 forward and backward.
  • the zoom drive mechanism 50 includes a wire 52, a support member 51, a lens frame 55, and a connecting member 53.
  • the wire 52 is arranged in parallel with the observation optical axis Ol.
  • the support member 51 is composed of a tube member or the like, and supports the wire 52 so as to be able to advance and retract.
  • the lens frame 55 holds the zoom lens 28a.
  • the connecting member 53 is screwed and fixed to the lens frame 55 and is bonded and fixed to the wire 52.
  • a zoom operation dial (not shown) provided on the operation unit 11 is rotated. Then, the wire 52 moves forward and backward with the rotation operation, and the zoom lens 28a moves forward and backward along the observation optical axis Ol via the connecting member 53, so that zooming can be performed.
  • the distal end portion 35 of the high-magnification observation probe 3 is formed of a thin cylindrical body 36 that is hard and has a light shielding property as shown in FIGS.
  • a flexible sheath (soft tube) 37 is watertightly fixed to the rear end of the cylindrical body 36 to form a flexible insertion portion that can be passed through the forceps channel 23.
  • a high-magnification imaging unit 39 that is an observation means capable of high-magnification observation is disposed.
  • the high-magnification imaging unit 39 is fixed to an imaging position behind the high-magnification objective lens system 40, the optical filter 41, and the lens system 40 that are attached to a lens frame provided in the center of the cylindrical body 36.
  • a solid-state image sensor CCD42 a solid-state image sensor.
  • the observation magnification of the high-magnification imaging unit 39 is, for example, a monitor magnification of about 200 to: LOOO times, and can observe tissue cells, line tubes, and the like.
  • the observation range is 700 m X 700 m or less, and the observation resolution is 5 ⁇ m or less.
  • An abutting balloon 45 made of a bag-like membrane member that is confidential, stretchable, and expandable is attached to the outer peripheral portion of the cylindrical body 36.
  • the base portion of the butting balloon 45 is wound and sealed to the cylindrical body 36 by the thread winding portion 38, and the rear end portion is bonded and fixed to the soft sheath 37.
  • An air supply hole 46 a of an air supply pipe 46 is located on the inner periphery of the abutting balloon 45, which is an increasing means arranged through the inner periphery of the observation probe 3.
  • the air supplied from the air supply device 66 can be supplied to the air supply pipe 46 via the connecting pipe 69.
  • the balloon 45 is a contact portion with the subject in the expanded state.
  • the distal end portion 35 of the observation probe 3 is connected to the distal end portion 18 of the insertion portion 10. It is in a state where it does not protrude from the front end face 33a.
  • the abutting balloon 45 is in a contracted state 45S as shown in FIG. 2, is in close contact with the outer periphery of the cylindrical body 36, and is held in a state where there is a gap in the forceps channel.
  • the tip 35 is protruded outward from the forceps channel 23, and then air is supplied to the abutting balloon 45 to inflate the abutting abutting balloon 45S.
  • the operator when performing high-magnification observation, the operator operates the observation probe 3 disposed in the forceps channel 23 of the insertion portion 10 of the endoscope 2 to move it forward. Then, as shown in FIG. 7B, the front end portion 35 is projected forward from the front end surface 33a of the front end cover 33. Thereafter, air is supplied from the air supply device 66, and the butting balloon 45 is inflated as shown in FIG. 7C.
  • the observation probe 3 is slightly retracted. Then, as shown in FIG. 7D and FIG. 3, the rear surface portion 45d of the inflated butting balloon 45 comes into contact with the front end surface 33a of the distal end portion 18. In this state, the front surface portion 45b that is the contact surface of the abutment balloon 45 is brought into contact with the region of interest 17a around the observation region 17. Then, the observation window portion on the front surface of the objective lens system 26 of the imaging unit 39 is in close contact with the region of interest 17a, and high-magnification observation by the imaging unit 39 becomes possible.
  • the length ⁇ 1 between the front surface 45b and the rear surface 45 of the inflated butting balloon 45 is equal to the depth of field on the near-field observation side of the imaging unit 27 on the endoscope 2 side. Is set. Therefore, the distance between the subject and the observation window can be stably maintained even when the endoscope 2 is in the zoom enlarged state and the depth of field is narrow. It is possible to observe easily even in the zoom state of the normal observation optical system.
  • the front surface portion 45b and the rear surface portion 45d may have a shape close to a flat surface, in particular, a shape that contacts the observation site 17 with a large area of the front surface portion 45b. desirable. Furthermore, it is desirable that the outer peripheral portion 45a has a shape close to a cylindrical shape. Further, it is desirable that the front surface 45b be a non-slip surface.
  • the front surface portion 45b of the butted balloon 45 in the inflated state has a shape close to a flat surface
  • the front surface portion 4 Reduce the local load on the contact area by increasing the contact area with 5b Can do.
  • the front surface portion 45b is formed of a material that is difficult to slip as will be described later, it is possible to prevent the position of the distal end portion 35 from being observed.
  • the objective lens system on the endoscope 2 side is formed by making the outer peripheral portion 45a of the abutment balloon 45 into a cylindrical shape. 28 fields of vision can be reduced from being kicked.
  • the illumination light emitted from the illumination lens 16 for illuminating the field of view of the objective lens system 28 as shown in FIG. It enters the part 17a and is reflected. Then, the image of the region of interest 17a is captured via the high-magnification objective lens system 40 at the tip 35 of the observation probe 3. Therefore, the butting balloon 45 is preferably formed of a transparent material or a translucent material so that the illumination light from the illumination window 24 on the endoscope 2 side reaches the region of interest 17a.
  • the range of the diameter DO of the front surface 45b of the abutment balloon 45 is less slippery and other It is better to arrange a material with less extensibility than the part by two-color molding, or to increase the thickness. Similarly, a material with less stretchability may be disposed on the rear surface portion 45d side, or the thickness may be increased. In addition, in order to make it slip as described above, the front surface portion 45b may be slightly uneven. Also, the central part of the outer periphery of the cylindrical part is less stretchable along the circumferential direction than other parts, and the material should be arranged by two-color molding or thickened!
  • a small stretchable portion 45be extending in the radial direction may be provided by two-color molding in the circumferential direction of the front surface portion 45b as in the butting balloon of the modification shown in FIG. Further, in order to maintain the cylindrical shape of the abutting balloon in an inflated state, a small stretchable part 45ce may be arranged along the outer peripheral portion of the abutting lane 45 as shown in the modification of FIG. .
  • the endoscope 2 When performing normal observation and high-magnification observation of the observation site 17 of the biological mucous membrane, the endoscope 2 is inserted into the body cavity, and the normal observation imaging unit 27 provided at the distal end portion 18 of the endoscope 2 is used. Observe observation site 17 such as mucous membrane. If there is a region of interest 17a where histological microstructure is desired to be observed, the region of interest 17a is stained, and then a tube (not shown) for the pigment application means is inserted. After pulling out from the mouth 21, the observation probe 3 is inserted into the forceps channel 23 from the insertion hole 21 as shown in FIG.
  • the deflated butting balloon 45AS is inflated as described above, so that the endoscope 2 in the normal observation state Originally, the front face 45b of the butting balloon 45A is pressed (contacted) around the region of interest 17a as shown in FIG.
  • the observation window 28 provided on the distal end surface of the high-magnification observation probe 3 located in the center of the abutting balloon 45 as described above in a state where the region of interest 17a is captured within the observation range by the endoscope 2 Can be positioned without shaking by bringing it into contact with the surface of the region of interest 17a. In other words, it is easy to set the observation state as shown in FIG.
  • the illumination light from the light source device 4A is emitted from the illumination lens 16.
  • the illumination light enters the inside of the mucosal surface contacted by the distal end surface of the observation probe 3 and is scattered by the internal tissue or the like to illuminate the site of interest 17a.
  • an optical image of the region of interest 17a is formed on the CCD 42 arranged at the imaging position of the high-magnification objective lens system 40 in a state where the tip surface is pressed.
  • the front portion 45b of the abutting balloon 45 abuts on the periphery of the region of interest 17a, and the observation window 28 of the distal end portion 35 of the observation probe 3 is pressed against the region of interest 17a. Accordingly, it is possible to prevent the distal end portion 35 of the observation probe 3 from becoming unstable and changing its position. That is, it is possible to form an optical image on the CCD 42 in a state in which the observation probe 3 is held in an unblurred state and focused on the region of interest 17a near the observation window end face.
  • the image formed on the CCD 42 is photoelectrically converted by the CCD 42, converted into a video signal by a video processing circuit in the video processor 5B, and is adjacent to the endoscopic image on the monitor 6 to be a high magnification observation image. Is displayed. Accordingly, the operator can easily diagnose the region of interest 17a by observing the high-magnification observation image.
  • the front surface portion 45b of the inflated butting balloon 45 disposed at the tip of the high-magnification observation probe 3 is provided at the time of high-magnification observation. Since it is in contact with the periphery of the interested part 17a, it absorbs the play due to the clearance between the forceps channel 23 and the observation probe 3, and the observation window of the tip part 35 is kept in a state in which there is no shaking with respect to the interested part 17a. can do.
  • the optical image in a state of being focused on the region of interest 17a near the observation window on the front surface of the objective lens system 40 by reliably bringing the front surface 45b of the abutting balloon 45 into contact with the periphery of the region of interest 17a. Can be imaged on the CCD42. Further, the front part 45b wider than the abutting balloon 45 comes into contact with the periphery of the region of interest 17a. Therefore, even if the distal end portion 35 of the high-magnification observation probe 3 has a small diameter, the distal end portion 35 can be prevented from being embedded in the region of interest 17a.
  • the length ⁇ 1 of the abutment balloon 45 corresponds to the observation distance (depth of field) on the near point side that enables clear observation with the endoscope 2, so that the high-power observation state force When switching to the observation of the mirror 2, it is not necessary to move the distance between the distal end portion of the endoscope 2 and the living tissue, and the observation can be performed smoothly.
  • the high magnification observation probe 3 ⁇ ⁇ which is the second endoscope of the present embodiment incorporates a light guide 47 which is illumination means around the imaging unit 39 inside the probe as shown in FIG.
  • Other configurations include a high-magnification imaging unit 39 at the front end 35 mm as in the high-magnification observation probe 3 applied to the first embodiment.
  • a possible butting balloon 45 is mounted.
  • the differences from the high magnification observation probe 3 will be described.
  • the high-magnification observation probe 3B includes a light guide base protruding from the connector portion 65, and the light guide base is detachably connected to the light source device 4B.
  • White light from the lamp 67 inside the light source device 4B enters the light guide 47 from the light guide base via the lens.
  • illumination light is transmitted to the tip of the tip 35B by the light guide 47.
  • the illumination light is emitted from an illumination window 47a disposed around the objective lens 40.
  • the abutting balloon 45 abuts in the vicinity of the region of interest 17a, and the tip surface of the tip is in contact with the region of interest 17a, so that the illumination light is directed toward the inner side of the mucosal surface. Irradiated and scattered by internal tissues.
  • the tissue image illuminated by the illumination light is captured by the high-magnification object lens system 40 and formed on the image plane of the CCD 42.
  • the optical image of the region of interest 17a is photoelectrically converted into an electrical signal by the CCD 42, and the electrical signal is generated as a video signal by the video processor 5B.
  • the endoscope 2 is independent from the endoscope 2 at the time of high magnification observation. Accordingly, the light guide 47 provided around the high-magnification objective lens system 40 can illuminate the area to be imaged on the CCD 42, and the region of interest 17a can be appropriately illuminated.
  • the illumination means independent for the endoscope 2 and the high magnification observation probe 3B are provided, normal observation and high magnification observation can be observed with a sufficient amount of light.
  • the high magnification observation probe 3C which is the second endoscope of the present embodiment, is mounted on the outer periphery of the cylindrical body 36 constituting the high magnification observation probe 3 in the first embodiment.
  • the material of the butting balloon to be worn is different. That is, the butting balloon 45C attached to the cylinder 36 of the high-magnification observation probe 3C according to the present embodiment is a cylindrical member made of, for example, foamed synthetic rubber, which can be inflated and compressed rather than a bag-like film member. Therefore, in this embodiment, a supply device for supplying air for inflating the butting balloon 45C is unnecessary.
  • the high-magnification imaging unit 39 is built in the tip 35C in the same manner as the high-magnification observation probe 3 applied to the first embodiment. Hereinafter, a different part from the high magnification observation probe 3 will be described.
  • the abutment balloon 45C applied to the high-magnification observation probe 3C of the present embodiment is inserted into the forceps channel 23 of the endoscope 2, it is compressed by the inner periphery of the channel (45CS ).
  • the abutting balloon 45C is in an expanded state as shown in FIG. 15 when the tip 35C is projected outward from the channel.
  • the front surface portion of the inflated butting balloon 45C is brought into contact with the periphery of the region of interest 17a in the observation portion 17, and the high magnification observation probe 3 applied to the first embodiment is used.
  • observation with the high-magnification imaging unit 39 can be performed.
  • the air supply device 66 is not required, and the system configuration is simplified.
  • the shape of the inflated butting balloon 45C is stable, and the contact with the observation part 17 can be reliably performed.
  • the high-magnification observation probe 3D which is the second endoscope of the present embodiment, is mounted on the outer periphery of the cylindrical body 36 constituting the high-magnification observation probe 3 in the first embodiment.
  • the shape of the butting balloon to be worn is different. That is, the butting balloon 45D attached to the outer periphery of the cylindrical body 36 of the high-magnification observation probe 3D of this embodiment is formed of an inflatable / compressible synthetic rubber having an air chamber 71 or the like.
  • the abutting balloon 45D does not require a supply device for supplying air for inflating the abutting balloon.
  • the high-magnification imaging unit 39 is built in the distal end portion 35D as in the high-magnification observation probe 3 applied to the first embodiment. In the following, the differences from the high magnification observation probe 3 will be described.
  • the abutment balloon 45D applied to the high-magnification observation probe 3D of the present embodiment is empty by the inner periphery of the channel 2 when inserted into the forceps channel 23 of the endoscope 2.
  • the air chamber 71 is stored in a compressed state (45DS).
  • the abutment balloon 45D has a state in which the air chamber 71 is inflated and the cylinder is inflated as shown in FIG. Become.
  • the front portion of the inflated butting balloon 45D is brought into contact with the periphery of the region of interest 17a in the observation portion 17, and the high magnification observation probe 3 applied to the first embodiment is used.
  • observation with the high-magnification imaging unit 39 can be performed.
  • the air supply device 66 is not required, and the system configuration is simplified.
  • the shape of the inflated butting balloon 45D is stable, and the contact with the observation portion 17 can be reliably performed.
  • the high magnification observation probe 3E which is the second endoscope of the present embodiment, is mounted on the outer periphery of the cylindrical body 36 constituting the high magnification observation probe 3 in the first embodiment.
  • the shape of the butting balloon to be worn is different. That is, the abutment balloon 45E attached to the outer periphery of the cylindrical body 36 of the high-magnification observation probe 3E of the present embodiment is a bag-like membrane member that is inflatable and inflatable like the abutment balloon 45. However, the shape of the front portion of the butting balloon 45E in the inflated state is different.
  • the high-magnification imaging unit 39 is built in the tip 35E in the same manner as the high-magnification observation probe 3 applied to the first embodiment. Hereinafter, a different part from the high magnification observation probe 3 will be described.
  • the abutment balloon 45E applied to the high-magnification observation probe 3E of the present embodiment is not supplied with air in a state where it is inserted into the forceps channel 23 of the endoscope 2, and the tip 35E
  • the cylinder 36 is held in a contracted state (45ES) in a shape in close contact with the outer periphery of the cylinder 36.
  • 45ES contracted state
  • the tip 35E is protruded outward from the channel, and then the air supplied from the air supply device 66 enters the abutment balloon 45E through the air supply hole 46a,
  • the contact balloon 45E is inflated, and the balloon inflated state shown in FIG. 19 is obtained.
  • the front side of the inflated butting balloon 45E is the front side of the objective lens system 40.
  • the balloon front part 45Eb protrudes from the observation window by a predetermined dimension ⁇ 2.
  • the balloon front portion 45Eb of the butting balloon 45E is brought into contact with the region of interest 17a of the observation region 17.
  • the region of interest 17a and the observation window in front of the objective lens system 40 are separated from each other by the predetermined dimension ⁇ 2.
  • the dimension ⁇ 2 is set to a distance within the depth of field (observable depth) when the high-magnification imaging unit 39 is observed. Therefore, a focus state can be obtained in a contact state with the region of interest 17a of the butting balloon 45 ⁇ .
  • the protruding forward portion 45Eb of the lane is made of a material that is difficult to slip, and is difficult to slip with respect to the observation portion 17. For this reason, the tip 35E of the high-magnification observation probe 3E can be more reliably held without being shaken.
  • the distance ⁇ 1 between the end of the balloon front portion 45Eb and the rear end face 45Ed of the butting balloon 45E is the imaging unit for normal observation on the endoscope 2 side as in the case of the high magnification observation probe 3. It is set in accordance with 27 near field depth of field (observation depth). Therefore, when switching to high-magnification observation state force with the high-magnification observation probe 3 and observation with the endoscope 2, the distance between the distal end portion of the endoscope 2 and the living tissue need not be moved, and the observation should be performed smoothly. Can do.
  • the inflated butting balloon 45 ⁇ is brought into contact with the observation site 17 In the state, it is possible to hold the tip portion 35 mm more reliably without shaking.
  • the region of interest 17a and the observation window on the front surface of the objective lens system 40 can always be separated from each other by a predetermined distance ⁇ 2, so that a stable high magnification observation image can be obtained. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

 内視鏡は挿入部と、当接部と、増大手段と、観察手段とを具備している。挿入部は、被検体に挿入可能な挿入部である。当接部は、挿入部の先端部に設けられる。先端部に設けられた当接部は、被検体に接触可能である。増大手段は、当接部の当接面積を増大させる。観察手段は、先端部に設けられて増大手段によって増大した当接部の被検体の観察、もしくは増大した当接部によって所定距離離間された被検体の観察を行う。

Description

明 細 書
内視鏡および内視鏡システム
技術分野
[0001] 本発明は、観察部を被検体に当接もしくは離間させて、該被検体を観察することが 可能な内視鏡、および、内視鏡システムに関する。
背景技術
[0002] 従来、観察部先端を被検体に当接もしくは離間させて、該被検体を高倍率で観察 することが可能な観察プローブを有する内視鏡として特開 2004— 350940号公報 が開示されている。この内視鏡には、挿入先端部に通常の倍率を有する通常観察部 と挿入部先端面より出没可能な高倍率の高倍率観察プローブとが併設されて 、る。 この内視鏡によれば、例えば、上記通常観察部により観察を行うことによって病変部 位を探した後、病変部位を上記高倍率観察プローブにより拡大観察、または、拡大 撮影を行うことができる。
[0003] しかしながら、上述した特開 2004— 350940号公報に開示の内視鏡(プローブ本 体)は、別の内視鏡本体の処置具挿入孔に挿入して観察するために先端部が細い 径になっている。したがって、体壁に該先端部を強く当接させた場合、当接面積が小 さいために局所的な力が加わりやすい。また、上記高倍率観察プローブの先端端面 の位置は、上記通常観察部の近距離側観測深度内に所定の位置に位置決めする 必要がある。しかし、前記内視鏡では上記高倍率観察プローブが単に押し出された 状態で保持されることから上記高倍率観察プローブの観測光軸方向の位置決めが 困難であった。さらにまた、高倍率観察プローブ先端部の径が小さいことから上記体 壁に対する拡大観察中にグリップ力が小さぐ観察光軸直交方向に位置ずれする可 能性もあった。
[0004] 本発明は、上述の問題を解決するためになされたものであり、観察プローブの先端 部が細い状態であったとしても上記先端部の位置決めが容易で安定した観察が可 能である内視鏡、及び内視鏡システムを提供することを目的とする。
発明の開示 課題を解決するための手段
[0005] 本発明の内視鏡は、被検体に挿入可能な挿入部と、前記挿入部の先端部に設け られ、被検体に接触可能な当接部と、前記当接部の当接面積を増大させる増大手 段と、前記先端部に設けられ、前記当接部によって当接もしくは所定距離離間された 被検体を観察する観察手段とを具備して ヽる。
図面の簡単な説明
[0006] [図 1]本発明の第一の実施の形態の内視鏡観察装置の全体構成を示す図である。
[図 2]図 1の内視鏡観察装置における内視鏡挿入部先端の拡大断面図である。この 図は、高倍率観察プローブが鉗子チャンネル内に収納されている状態を示す。
[図 3]図 2の高倍率観察プローブを突出させ、突き当てバルーンを膨張させた状態で 観察部位の生体粘膜に当接させ、関心部位を観察して 、る状態での撮像ユニットを 含む拡大断面図である。
[図 4]図 2の高倍率観察プローブを突出させ、突き当てプローブを膨張させた状態で 観察部位の生体粘膜に当接させ、関心部位を観察している状態での照明光学系を 含む拡大断面図である。
[図 5]図 2の内視鏡挿入部先端に配されるズーム機構部を示した通常観察プローブ の拡大断面図である。
[図 6]図 2の A矢視図である。この図は、内視鏡挿入部先端の対物レンズ窓と照明レ ンズ窓および観察プローブ観察窓の配置を示す。
[図 7A]図 2の内視鏡挿入部先端に高倍率観察プローブがまだ収納状態にあるときを 示す図。
[図 7B]高倍率観察プローブが内視鏡挿入部先端力 突出した状態を示す図。
[図 7C]高倍率観察プローブの先端部の突き当てバルーンが膨張した状態を示す図
[図 7D]膨張した突き当てバルーンを観察部位の関心部位に当接させようとしている 状態を示す図。
[図 8]図 2の高倍率観察プローブの図 7Dの状態における断面図である。
[図 9]図 8の B矢視図である。 [図 10]図 3の高倍率観察プローブの突き当てバルーンの変形例の膨張状態における 図 8の B矢視図に相当する図である。
[図 11]図 8の突き当てバルーンの変形例の側面図である。
[図 12]図 3の高倍率観察プローブの突き当てバルーンの他の変形例の膨張状態を 示す側面図である。
[図 13]本発明の第二の実施形態の高倍率観察プローブの断面図である。
[図 14]図 13の C矢視図である。
[図 15]本発明の第三の実施形態の高倍率観察プローブの観察プローブの断面図で ある。
[図 16]図 15の D矢視図である。
[図 17]本発明の第四の実施形態の高倍率観察プローブの断面図である。
[図 18]図 17の E矢視図である
[図 19]本発明の第五の実施形態の高倍率観察プローブの断面図である。
[図 20]図 19の F矢視図である。
発明を実施するための最良の形態
[0007] 以下、図面を参照して本発明の実施の形態について詳細に説明する。
図 1〜図 4に示すように本発明の第一の実施の形態の内視鏡観察装置 1は、内視 鏡 2と、高倍率観察プローブ 3と、光源装置 4Aと、ビデオプロセッサ 5Aと、モニタ 6と 、空気供給装置 66と、ビデオプロセッサ 5Bと、記録装置 7とを有している。
[0008] 内視鏡 2は、第一の内視鏡であって被検体である体腔内に挿入可能な挿入部 10を 有する。高倍率観察プローブ 3は、光学的高倍率観察が可能な第二の内視鏡であつ て、内視鏡 2の鉗子チャンネル (処置具チャンネルともいう) 23に進退可能に揷通さ れる。高倍率観察プローブ 3は、高倍率観察手段である高倍率撮像ユニット 39を内 蔵する。光源装置 4Aは、内視鏡 2のライトガイドに照明光を供給する。ビデオプロセ ッサ 5Aは、内視鏡 2に内蔵される通常観察用の撮像ユニット 27に対する信号処理を 行う。モニタ 6は、ビデオプロセッサ 5Aから出力される映像信号を表示する。空気供 給装置 66は、高倍率観察プローブ 3の突き当てバルーンに空気を供給する流体供 給手段であって、かつ、増大手段である。ビデオプロセッサ 5Bは、高倍率観察プロ ーブ 3に設けられる撮像ユニット 39に対する信号処理を行う。記録装置 7は、モニタ 6 に出力される映像信号を記録する。
[0009] なお、図 1に記載されている光源装置 4Bは、後述する第二の実施形態の内視鏡観 察装置における高倍率観察プローブ 3B (図 13参照)のライトガイド 47に照明光を供 給するための光源装置である。本実施形態における高倍率観察プローブ 3は、内蔵 照明光源を持たな ヽので該光源装置 4Bは不要である。
[0010] 内視鏡 2は、可撓性を有する細長の挿入部 10と、この挿入部 10の後端に設けられ た操作部 11と、この操作部 11の側部カも延出されたユニバーサルコード 12とを有し ている。挿入部 10には、変倍可能な通常倍率の通常観察手段である撮像ユニット 2 7が内蔵されている。ユニバーサルコード 12の基端部に設けたコネクタ 13は、光源装 置 4Aに着脱自在に接続される。
[0011] 光源装置 4Aは、白色光を発生するランプ 14を内蔵する。ランプ 14による白色光は 、レンズにより集光されて、コネクタ 13から突出するライトガイド口金部分のライトガイド 15に入射する。この白色光は、ライトガイド 15により伝送され、挿入部 10の先端面か ら照明レンズ 16 (図 4, 6参照)を経て出射され、患部等の観察部位 17を照明する。
[0012] 挿入部 10は、硬質の先端部 18と、この先端部 18の後端に設けられた湾曲自在の 湾曲部 19と、この湾曲部 19の後端から操作部 11の前端まで伸びる長尺の可撓部 2 0とから構成されている。湾曲部 19は、操作部 11に設けた図示しない湾曲ノブを操 作することにより、上下、左右における任意の方向に湾曲させることができる。
[0013] 挿入部 10の先端部 18を構成する先端部本体 26には照明窓 24、観察窓 (撮像窓) 25が設けられている。照明窓 24内にはライトガイド 15の先端部と、照明光学系を構 成する照明レンズ 16等がライトガイド 15の先端面に配置されている。観察窓 (撮像窓 ) 25は、照明窓 24に隣接して設けられ、観察窓 25内には、観察光軸 Olを有するズ ーム式通常観察用の対物レンズ系 28がレンズ枠で保持された状態で配されている。 対物レンズ系 28にはズームレンズ 28aが内蔵されて!、る。
[0014] 対物レンズ系 28の後方の結像位置に固体撮像素子として、例えば、電荷結合素子 である CCD30を配置して撮像ユニット 27 (図 2)を構成している。 CCD30は、結像さ れた光学像を光電変換する通常観察用撮像手段である。なお、 CCD30の前面には 、保護ガラス 29,光学フィルタが配されている。
[0015] 操作部 11の前端付近には処置具挿入口 21が設けてあり、処置具、或いは高倍率 観察プローブ 3等を挿入することができる。この処置具挿入口 21は、その内部で挿入 部 10の長手方向に沿って設けられた軟性チューブ 49によってその一部が構成され る鉗子チャンネル 23 (図 2参照)に連通している。
[0016] 先端部本体 26には鉗子チャンネル 23を形成する軟性チューブ 49と連通するチヤ ンネル用孔部が形成されて 、る。鉗子チャンネル 23内を揷通された高倍率用観察 プローブ 3の先端部 35は、鉗子チャンネル 23の先端開口部 23aから出没自在な状 態である。なお、高倍率用観察プローブ 3の先端部 35には、高倍率撮像ユニット 39 が内蔵されている。先端部 35の観察窓の観察光軸を 02とする。
[0017] なお、先端部本体 26の後端には湾曲部 19の最先端を構成する湾曲駒が固着され ている。湾曲駒の外側は、湾曲性に富むゴムチューブ等力もなる外装部材 32で水密 的に覆われている。
[0018] 挿入部 10の先端部 18の先端カバー 33の前端面 33aは、光軸 Olと直交する平面 で形成されており、その前端面 33a上に観察窓 25,照明窓 24および鉗子チャンネル 23の先端開口部 23aが配されている。そして、図 6に示すように観察窓 25の光軸 Ol と鉗子チャンネル 23の先端開口部 23a上の先端部 35の観察窓の 02とが直線ライ ン L0上に配置されている。 2つの照明窓 24は、その直線ライン L0を跨いだ状態で 対向して配されている。したがって、照明光は、撮像ユニット 27および撮像ユニット 3 9の双方の被写体をともに効率よく照明することができる。
[0019] 高倍率観察時、高倍率用観察プローブ 3の先端部 35は、鉗子チャンネル 23の先 端開口 23aを経て図 1, 3に示すように突出される。このとき、生体粘膜等の被検体で ある観察部位 17における局所的に高倍率で観察したいと望む関心部位 17aの表面 に、後述する膨張状態の突き当てバルーン 45の前端面 45bを当接させる。すると、 その当接状態において、先端部 35が所定位置に固定されるので、先端部 35の観察 窓を介して関心部位 17aの組織学的微細構造の高倍率観察を行うことができる。
[0020] また、高倍率観察プローブ 3の先端部 35まわりの詳細な構造については、図 2〜図 4を用いて後で説明する。 [0021] 図 2に示す撮像ユニット 27の CCD30には信号ケーブル 31の先端が接続されて!ヽ る。信号ケーブル 31の後端側は、コネクタ 13の側部のコネクタ受けに接続され、この コネクタ受けに接続される信号ケーブル 22を介してビデオプロセッサ 5Aに着脱自在 に接続される。
[0022] ビデオプロセッサ 5Aは、 CCDドライブ回路 61と、映像処理回路 62とを内蔵してい る。 CCDドライブ回路 61は、 CCD30を駆動する CCDドライブ信号を発生する。映像 処理回路 62は、 CCDドライブ信号の印加により CCD30から出力される撮像信号に 対して信号処理を行い、映像信号を生成する。
[0023] 映像処理回路 62により生成された映像信号は、モニタ 6に出力され、モニタ 6の通 常観察画像表示エリア 63に通常観察の内視鏡画像として表示される。
[0024] 高倍率撮像ユニット 39側の CCD42には信号ケーブル 43の先端が接続されて 、る 。信号ケーブル 43の後端側は、例えばコネクタ部 65から延出された信号ケーブル 6 8を経てビデオプロセッサ 5Bに着脱自在に接続される。
[0025] ビデオプロセッサ 5Bは、ビデオプロセッサ 5Aと同様に CCDドライブ回路と映像処 理回路とを内蔵した構成である。ビデオプロセッサ 5Bから出力される、 CCD42で撮 像した撮像信号に対応する映像信号は、ビデオプロセッサ 5Aの映像処理回路 62に 入力される。
[0026] なお、ビデオプロセッサ 5A,5Bの映像処理回路は、白色光の照明のもとでの CCD 42の撮像信号に対応した映像信号である例えば RGB色信号を生成する信号処理 を行い、生成した映像信号を映像処理回路 62に出力する。
[0027] ビデオプロセッサ 5Aには、通常観察映像信号に加えて、ビデオプロセッサ 5Bから 出力される高倍率観察映像信号が入力され、その内部の図示しない混合器 (ミキサ) を介してモニタ 6に出力される。そして、高倍率観察プローブ 3による高倍率 (拡大) 観察画像は、モニタ 6の内視鏡通常観察画像表示エリア 63に隣接した高倍率観察 画像表示エリア 64に表示される。
[0028] 内視鏡 2に内蔵される撮像ユニット 27は、前述したように変倍可能であり、図 5に示 すように撮像ユニット 27の側方にズーム駆動機構 50が配されて 、る。ズーム駆動機 構 50は、対物レンズ系 28のズームレンズ 28aを進退駆動してズーミングを行う。 [0029] ズーム駆動機構 50は、ワイヤ 52と、支持部材 51と、レンズ枠 55と、連結部材 53と を備えて構成されている。ワイヤ 52は、観察光軸 Olと平行に配される。支持部材 51 は管部材等で構成され、ワイヤ 52を進退可能に支持する。レンズ枠 55は、ズームレ ンズ 28aを保持する。連結部材 53は、レンズ枠 55に螺着固定され、かつ、ワイヤ 52 に接着固定される。
[0030] 撮像ユニット 30による通常観察画像のズーミングを行う場合、操作部 11に設けられ るズーム操作ダイヤル(図示せず)を回動操作する。すると、回動操作に伴ってワイヤ 52が進退移動して、連結部材 53を介してズームレンズ 28aが観察光軸 Olに沿って 進退することによりズーミングを行うことができる。
[0031] 高倍率観察プローブ 3の先端部 35は、図 2,図 3に示す硬質で遮光性を有する細 い筒体 36で形成されている。筒体 36の後端には軟性シース (軟性チューブ) 37の先 端が水密的に固定されて、鉗子チャンネル 23に揷通可能なフレキシブルな挿入部を 形成している。
[0032] 筒体 36の中空部には、高倍率観察が可能な観察手段である高倍率撮像ユニット 3 9が配されている。高倍率撮像ユニット 39は、筒体 36の内部の中心部に設けられた レンズ枠に取り付けられた高倍率対物レンズ系 40と、光学フィルタ 41と、レンズ系 40 の後方の結像位置に固定された固体撮像素子である CCD42とで構成される。高倍 率撮像ユニット 39の観察倍率は、例えば、 200〜: LOOO倍程度のモニタ倍率であり、 組織細胞や線管などの観察ができる。なお、観察範囲は、 700 m X 700 m以下 で、観察分解能は 5 μ m以下である。
[0033] 筒体 36の外周部には機密性があり、伸縮性があって膨張可能な袋状膜部材から なる突き当てバルーン 45が装着される。突き当てバルーン 45の根本部は、筒体 36 に糸巻き部 38で卷回密閉され、後端部は軟性シース 37に接着固定される。そして、 突き当てバルーン 45の内周には、観察プローブ 3の内周に揷通して配される増大手 段である空気供給管 46の空気供給穴 46aが位置している。空気供給管 46には、空 気供給装置 66から供給される空気が連結管 69を介して供給可能である。なお、バ ルーン 45は膨張状態で被検体への当接部となる。
[0034] 通常観察状態において、観察プローブ 3の先端部 35は、挿入部 10の先端部 18の 前端面 33aから突出していない状態にある。また、突き当てバルーン 45は図 2に示す ように収縮状態 45Sで、筒体 36の外周に密着して鉗子チャンネル内に隙間のある状 態で保持されている。高倍率観察を行う際には、先端部 35を鉗子チャンネル 23の外 方に突出させた後、突き当てバルーン 45に空気を供給して収縮状態の突き当てバ ルーン 45Sを膨張させる。
[0035] 詳しく説明すると、高倍率観察を行う際、術者は、内視鏡 2の挿入部 10の鉗子チヤ ンネル 23中に配置されている観察プローブ 3を操作して前方に移動させる。そして、 図 7Bに示すように先端部 35を先端カバー 33の前端面 33aより前方に突出させる。 その後、空気供給装置 66より空気を供給し、図 7Cに示すように突き当てバルーン 45 を膨張させる。
[0036] 突き当てバルーン 45を膨張させた後、観察プローブ 3をわずかに引き込む。すると 、図 7D、図 3に示すように膨張状態の突き当てバルーン 45の後面部 45dが先端部 1 8の前端面 33aに当接した状態になる。この状態で突き当てバルーン 45の当接面と なる前面部 45bを観察部位 17の関心部位 17a周辺に当接させる。すると、撮像ュ- ット 39の対物レンズ系 26の前面の観察窓部が関心部位 17aに密着した状態となり、 撮像ユニット 39による高倍率観察が可能となる。
[0037] 膨張状態の突き当てバルーン 45の前面部 45bと後面部 45間の長さ δ 1は、内視 鏡 2側の撮像ユニット 27の近点観測側の被写界深度と同一の距離に設定されている 。したがって、内視鏡 2のズーム拡大状態で、被写界深度が狭い状態でも被写体と観 察窓を安定して距離を保つことができる。通常観察光学系のズーム状態でも容易に 観察することができる。
[0038] なお、突き当てバルーン 45は、膨張状態にあるとき、前面部 45bおよび後面部 45d が平面に近い形状、特に、前面部 45bの広い面積で観察部位 17に当接する形状に なることが望ましい。さらに、外周部 45aは、円筒形状に近い形状になることが望まし い。また、前面部 45bが滑りにくい面になっていることが望ましい。
[0039] このように、膨張状態の突き当てバルーン 45の前面部 45bが平面に近い形状にな つていると、観察プローブ 3の先端部 35を関心部位 17aに当接させたとき、前面部 4 5bによって当接面積が増大することで当接部位に係る局所的な負荷を軽減すること ができる。さらに、前面部 45bが後述するように滑りにくい材料で形成されていれば、 観察状態での先端部 35の位置ずれを防止できる。
[0040] また、高倍率観察可能状態にあるとき、通常観察を合わせて行う必要がある場合に 突き当てバルーン 45の外周部 45aを円筒形状にすることにより、内視鏡 2側の対物 レンズ系 28の視野が蹴られることを少なくすることができる。
[0041] なお、観察プローブ 3の先端部 35による高倍率観察時の照明光は、図 4に示すよう に対物レンズ系 28の視野を照明するための照明レンズ 16から出射された照明光が 関心部位 17aの内部に入り込んで反射される。そして、関心部位 17aの像は、観察プ ローブ 3の先端部 35の高倍率対物レンズ系 40を介して取り込まれることになる。その ため、突き当てバルーン 45は、内視鏡 2側の照明窓 24からの照明光が関心部位 17 aに到達するように透明材料、または、半透明材料で形成されていることが好ましい。
[0042] また、上述のように突き当てバルーン 45に透明材料、又は半透明材料を採用する ことにより、図 13のように高倍率観察プローブ 3Bの内部にライトガイド 47を設けること なく観察が可能となる。したがって、細径の高倍率観察プローブを得ることができ、幅 広い検査に適用が可能となる。
[0043] そして、上述のように膨張状態のときに円筒形状な突き当てノ レーン 45を得るため 、突き当てバルーン 45の例えば、前面部 45bの径 DOの範囲を、滑りにくく、かつ、他 の部分に比較して伸張性の少ない材料を 2色成形で配する、あるいは、厚みを厚く するとよい。同様に、後面部 45d側も伸縮性の少ない材料を配する、又は厚みを厚く するとよい。なお、上述のように滑りに《するため、前面部 45bに微少の凹凸をつけ てもよい。また、円筒部外周の中央部も周方向に沿って他の部分に比較して伸張性 の少な 、材料を 2色成形で配する、或いは厚みを厚くするとよ!/、。
[0044] さらに、図 10に示す変形例の突き当てバルーンのように前面部 45bの周方向に、ラ ジアル方向に伸びる少伸縮性部分 45beを 2色成形で設けてもよい。また、突き当て バルーンの膨張状態での円筒形状を保っために、図 11の変形例に示すように突き 当てノ レーン 45の外周部に沿って少伸縮性部分 45ceを配するようにしてもよい。
[0045] さらに、膨張状態での突き当てバルーンの前面部 45bを平面状、外径を円筒状に することを配慮しない突き当てバルーンの変形例として図 12の側面図に示すような 突き当てバルーン 45Aも考えられる。
[0046] ここで、上述した構成を有する本実施形態の内視鏡観察装置 1による観察動作に ついて説明する。
[0047] 生体粘膜の観察部位 17の通常観察および高倍率観察を行う場合、内視鏡 2を体 腔内に挿入し、内視鏡 2の先端部 18に設けた通常観察用撮像ユニット 27により粘膜 等の観察部位 17を観察する。そして、組織学的微細構造の観察を望むような関心部 位 17aが存在した場合には、関心部位 17aに対して染色する処置を行い、その後、 色素散布手段のチューブ(図示せず)を挿入口 21から引き抜き、続いて、図 1に示す ように挿入口 21から観察プローブ 3を鉗子チャンネル 23内に挿通する。そして、観察 プローブ 3の先端部 35を鉗子チャンネル 23の先端開口 23aから突出させた後、収縮 されている突き当てバルーン 45ASを前述したように膨張させて、内視鏡 2による通 常観察状態のもとで突き当てバルーン 45Aの前面部 45bを前記図 3で示したように 関心部位 17aの周囲に押し付ける(コンタクトする)。
[0048] 内視鏡 2による観察範囲内に関心部位 17aを捕らえた状態において、上述のように 突き当てバルーン 45の中央に位置する高倍率観察プローブ 3の先端面に設けられ ている観察窓 28を関心部位 17aの表面に対して密着させることによって、ぶれること なく位置決めすることができる。つまり、図 3に示すような観察状態に設定することが 容易にできる。
[0049] 高倍率観察状態において、光源装置 4Aからの照明光は、照明レンズ 16から出射 される。その照明光は、観察プローブ 3の先端面がコンタクトした粘膜表面の内部側 に侵入して内部の組織等により散乱されて、関心部位 17aを照明する。そして、先端 面が押し付けられた状態の高倍率対物レンズ系 40の結像位置に配置された CCD4 2に関心部位 17aの光学像が結像される。
[0050] また、突き当てバルーン 45の前面部 45bが関心部位 17aの周囲に当接し、観察プ ローブ 3の先端部 35の観察窓 28が関心部位 17aに押し付けられる。したがって、観 察プローブ 3の先端部 35が不安定になって、その位置が変化することが防止される。 つまり、観察プローブ 3をブレの無い状態に保持して、観察窓端面付近の関心部位 1 7aにフォーカスした状態の光学像を CCD42に結像させることができる。 [0051] CCD42に結像された像は、この CCD42により光電変換され、ビデオプロセッサ 5 B内の映像処理回路により映像信号に変換され、モニタ 6における内視鏡画像に隣 接して高倍率観察画像が表示される。従って、術者は高倍率観察画像を観察するこ とにより、その関心部位 17aを的確に診断することが容易になる。
[0052] このように本実施の形態の内視鏡観察装置 1によれば、高倍率観察時、高倍率観 察プローブ 3の先端に配される膨張状態の突き当てバルーン 45の前面部 45bを関 心部位 17aの周囲に当接させるので、鉗子チャンネル 23と観察プローブ 3のクリアラ ンスによるガタを吸収して、先端部 35の観察窓を、関心部位 17aに対してぶれが無 い状態に保持することができる。
[0053] また、突き当てバルーン 45の前面部 45bを確実に関心部位 17aの周辺に当接させ ることにより、対物レンズ系 40の前面の観察窓付近の関心部位 17aにフォーカスした 状態の光学像を CCD42に結像させることができる。また、突き当てバルーン 45のよ り広い前面部 45bが関心部位 17aの周辺に当接する。したがって、高倍率観察プロ ーブ 3の先端部 35が細径であったとしてもその先端部 35が関心部位 17a内に埋まつ てしまうことが防止できる。さらに、突き当てバルーン 45の長さ δ 1が内視鏡 2による 鮮明に観察可能となる近点側の観察距離 (被写界深度)に対応していることから、高 倍率観察状態力 内視鏡 2の観察に切り換える場合、内視鏡 2の先端部と生体組織 との距離を動かす必要がなく、スムーズに観察することができる。
[0054] また、鉗子チャンネルをもつ通常の内視鏡であれば本実施の形態による高倍率観 察プローブ 3を適用することにより確実な高倍率 (拡大)観察を行うことができる。
[0055] 次に、図 13、図 14を参照して本発明の内視鏡観察装置に適用される第二の実施 形態の高倍率観察プローブについて説明する。
[0056] 本実施形態の第二の内視鏡である高倍率観察プローブ 3Βは、図 13に示すように プローブ内部の撮像ユニット 39の周囲に照明手段であるライトガイド 47を内蔵してい る。その他の構成は、第一の実施形態に適用した高倍率観察プローブ 3と同様に先 端部 35Βに高倍率撮像ユニット 39を内蔵し、先端部の筒体 36の外周に伸縮部材か らなる膨張可能な突き当てバルーン 45が装着されている。以下、高倍率観察プロ一 ブ 3と異なる部分にっ 、て説明する。 [0057] 高倍率観察プローブ 3Bには図 1に示すようにコネクタ部 65から突出するライトガイ ド口金を備え、そのライトガイド口金は光源装置 4Bに着脱自在に接続される。
[0058] 光源装置 4B内部のランプ 67による白色光は、レンズを介してライトガイド口金から ライトガイド 47に入射される。高倍率観察プローブ 3Bによる高倍率観察状態にあると き、ライトガイド 47により、先端部 35Bの先端まで照明光が伝送される。その照明光は 、対物レンズ 40の周囲に配される照明窓 47aより出射される。このとき、突き当てバル ーン 45が関心部位 17aの近傍に当接して、かつ、先端部の先端面が関心部位 17a にコンタクトされていることにより、照明光は、粘膜表面の内部側に向かって照射され 、内部の組織等により散乱される。その照明光によって照らされた組織像が高倍率対 物レンズ系 40で取り込まれ、 CCD42の結像面に結像する。 CCD42により関心部位 17aの光学像は電気信号に光電変換され、その電気信号はビデオプロセッサ 5Bに て映像信号に生成される。
[0059] 本実施の形態の高倍率観察プローブ 3Bを適用した内視鏡観察装置によれば、前 述した第一の実施形態による効果に加えて、高倍率観察時に内視鏡 2とは独立した 、高倍率対物レンズ系 40の周囲に設けたライトガイド 47によって CCD42に結像する 範囲を照明して、関心部位 17aを適切に照明することができる。
[0060] また、本実施の形態では、内視鏡 2と高倍率観察プローブ 3Bとでそれぞれ独立し た照明手段を設けているので、通常観察、高倍率観察とも十分な光量で観察できる
[0061] 次に、図 15、図 16を参照して本発明の内視鏡観察装置に適用される第三の実施 形態の高倍率観察プローブについて説明する。
[0062] 図 15に示すように本実施形態の第二の内視鏡である高倍率観察プローブ 3Cは、 前記第一の実施形態における高倍率観察プローブ 3を構成する筒体 36の外周に装 着される突き当てバルーンの材料が異なっている。即ち、本実施形態の高倍率観察 プローブ 3Cの筒体 36に装着される突き当てバルーン 45Cは袋状膜部材ではなぐ 膨張圧縮可能な、例えば、発砲合成ゴム製等の筒部材である。したがって、本実施 形態においては、突き当てバルーン 45Cを膨張させる空気を供給するための供給装 置は不要である。 その他の構成は、第一の実施形態に適用した高倍率観察プローブ 3と同様に先端 部 35Cに高倍率撮像ユニット 39を内蔵している。以下、高倍率観察プローブ 3と異な る部分について説明する。
[0063] 本実施形態の高倍率観察プローブ 3Cに適用される突き当てバルーン 45Cは、内 視鏡 2の鉗子チャンネル 23に挿入されている状態では、該チャンネル内周により圧 縮された状態 (45CS)で収納されている。そして、高倍率観察のために、先端部 35 Cをチャンネルの外方向に突出させた状態のときには図 15に示すように突き当てバ ルーン 45Cは膨張状態となる。
[0064] つまり、高倍率観察時には膨張状態の突き当てバルーン 45Cの前面部を観察部 位 17の関心部位 17aの周辺に当接させ、第一の実施形態に適用した高倍率観察プ ローブ 3の場合と同様に高倍率撮像ユニット 39による観察を行うことができる。
[0065] このように、本実施形態の高倍率観察プローブ 3Cを適用した場合、前述した第一 の実施形態による効果に加えて、空気供給装置 66を不要にしてシステム構成が簡 単になる。また、膨張状態の突き当てバルーン 45Cの形状が安定しており、観察部 位 17への当接を確実に行うことができる。
[0066] 次に、図 17、図 18を参照して本発明の内視鏡観察装置に適用される第四の実施 形態の高倍率観察プローブについて説明する。
[0067] 図 17に示すように本実施形態の第二の内視鏡である高倍率観察プローブ 3Dは、 前記第一の実施形態における高倍率観察プローブ 3を構成する筒体 36の外周に装 着される突き当てバルーンの形状が異なっている。即ち、本実施形態の高倍率観察 プローブ 3Dの筒体 36の外周に装着される突き当てバルーン 45Dは、空気室 71を 有する膨張圧縮可能な合成ゴム等で形成されている。突き当てバルーン 45Dは、突 き当てバルーン膨張用の空気を供給する供給装置は不要である。その他の構成は、 第一の実施形態に適用した高倍率観察プローブ 3と同様に先端部 35Dに高倍率撮 像ユニット 39を内蔵している。以下、高倍率観察プローブ 3と異なる部分について説 明する。
[0068] 本実施形態の高倍率観察プローブ 3Dに適用される突き当てバルーン 45Dは、内 視鏡 2の鉗子チャンネル 23に挿入されている状態では、該チャンネル内周により空 気室 71が圧縮された状態 (45DS)で収納されている。そして、高倍率観察のために 、先端部 35Dをチャンネル外方向に突出させた状態のときには図 17に示すように突 き当てバルーン 45Dは、空気室 71が膨張して円筒状に膨張した状態となる。
[0069] つまり、高倍率観察時には膨張状態の突き当てバルーン 45Dの前面部を観察部 位 17の関心部位 17aの周辺に当接させ、第一の実施形態に適用した高倍率観察プ ローブ 3の場合と同様に高倍率撮像ユニット 39による観察を行うことができる。
[0070] このように、本実施形態の高倍率観察プローブ 3Dを適用した場合、前述した第一 の実施形態による効果に加えて、空気供給装置 66を不要にして、システム構成が簡 単になる。また、膨張状態の突き当てバルーン 45Dの形状が安定しており、観察部 位 17への当接を確実に行うことができる。
[0071] 次に、図 19、図 20を参照して本発明の内視鏡観察装置に適用される第五の実施 形態の高倍率観察プローブについて説明する。
[0072] 図 19に示すように本実施形態の第二の内視鏡である高倍率観察プローブ 3Eは、 前記第一の実施形態における高倍率観察プローブ 3を構成する筒体 36の外周に装 着される突き当てバルーンの形状が異なっている。即ち、本実施形態の高倍率観察 プローブ 3Eの筒体 36の外周に装着される突き当てバルーン 45Eは、突き当てバル ーン 45と同様に伸縮性があって膨張可能な袋状膜部材であるが、膨張状態での突 き当てバルーン 45Eの前面部の形状が異なっている。その他の構成は、第一の実施 形態に適用した高倍率観察プローブ 3と同様に先端部 35Eに高倍率撮像ユニット 39 を内蔵している。以下、高倍率観察プローブ 3と異なる部分について説明する。
[0073] 本実施形態の高倍率観察プローブ 3Eに適用される突き当てバルーン 45Eは、内 視鏡 2の鉗子チャンネル 23に挿入されている状態では、空気は供給されておらず、 先端部 35Eの筒体 36の外周部に密着した形状の収縮状態 (45ES)に保持されてい る。そして、高倍率観察のために、先端部 35Eをチャンネル外方向に突出した状態 にした後、空気供給装置 66より供給された空気が空気供給穴 46aより突き当てバル ーン 45E内部に入り、突き当てバルーン 45Eが膨張して図 19に示すバルーン膨張 状態となる。
[0074] このとき、膨張状態の突き当てバルーン 45Eの前面側は、対物レンズ系 40の前面 の観察窓よりも所定の寸法 δ 2だけバルーン前方部 45Ebが膨らんだ状態で突出し ている。
[0075] 高倍率観察を行う場合、突き当てバルーン 45Eのバルーン前方部 45Ebは、観察 部位 17の関心部位 17aに当接される。その当接状態で関心部位 17aと対物レンズ 系 40の前面の観察窓とは上記所定の寸法 δ 2だけ離間していることになる。しかし、 その寸法 δ 2は、高倍率撮像ユニット 39の観測時における被写界深度 (観察可能な 深度)内の距離に設定されている。したがって、上記突き当てバルーン 45Εの関心部 位 17aとの当接状態でフォーカス状態が得られる。
[0076] また、突出したノ レーン前方部 45Ebは、滑りにくい材料で形成されており、観察部 位 17に対して滑り難い。このため、高倍率観察プローブ 3Eの先端部 35Eは、ぶれる ことなぐより確実に保持することができる。
[0077] また、この突き当てバルーン 45Eのバルーン前方部 45Ebの端と後端面 45Edとの 間の距離 δ 1も高倍率観察プローブ 3の場合と同様に内視鏡 2側の通常観察用撮像 ユニット 27の近点側被写体界深度 (観察深度)に合わせて設定されている。したがつ て、高倍率観察プローブ 3による高倍率観察状態力 内視鏡 2の観察に切り換える場 合、内視鏡 2の先端部と生体組織との距離を動かす必要がなくスムーズに観察する ことができる。
[0078] このように、本実施形態の高倍率観察プローブ 3Εを適用した場合、前述した第一 の実施形態による効果に加えて、膨張状態の突き当てバルーン 45Εを観察部位 17 に当接させた状態において、先端部 35Εをぶれることなくさらに確実に保持すること ができる。
[0079] また、高倍率観察時、関心部位 17aと対物レンズ系 40の前面の観察窓とを常に所 定距離 δ 2だけ離間させることができるので、安定した高倍率観察画像を得ることが できる。
[0080] この発明は、上記各実施の形態に限ることなぐその他、実施段階ではその要旨を 逸脱しない範囲で種々の変形を実施し得ることが可能である。さらに、上記各実施形 態には、種々の段階の発明が含まれており、開示される複数の構成要件における適 宜な組合せにより種々の発明が抽出され得る。 本出願は、 2006年 5月 31日に日本国に出願された特願 2006— 152598号を優 先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求 の範囲、図面に引用されたものとする。

Claims

請求の範囲
[1] 被検体に挿入可能な挿入部と、
前記挿入部の先端部に設けられ、被検体に接触可能な当接部と、
前記当接部の当接面積を増大させる増大手段と、
前記先端部に設けられ、前記当接部によって当接もしくは所定距離離間された被 検体を観察する観察手段と、
を具備することを特徴とする内視鏡。
[2] 前記観察手段は、対物光学系であることを特徴とする請求項 1に記載の内視鏡。
[3] 前記観察手段は、前記対物光学系によって結像される位置に設けられた固体撮像 素子を具備することを特徴とする請求項 2に記載の内視鏡。
[4] 前記当接部は弾性部材で形成され、前記増大手段は、前記弾性部材を拡張させ ることを特徴とする請求項 1に記載の内視鏡。
[5] 前記当接部は、バルーンによって形成され、前記増大手段は、前記バルーンを膨 張させる流体を供給する流体供給手段であることを特徴とする請求項 4に記載の内 視鏡。
[6] 前記弾性部材の先端部には滑りにくぐかつ、伸縮性の少ない部材を配したことを 特徴とする請求項 4に記載の内視鏡。
[7] 前記弾性部材は、半透明の部材により形成されていることを特徴とする請求項 4に 記載の内視鏡。
[8] 前記内視鏡の前記先端部に前記被検体を照明するための照明手段を設けたこと を特徴とする請求項 2乃至 7のいずれか 1項に記載の内視鏡。
[9] 先端で開口するチャンネルを備えた第一の内視鏡と、
前記チャンネルに挿脱可能な挿入部を有する第二の内視鏡と、
前記第二の内視鏡における前記挿入部の先端部に設けられた増大手段によって 表面積が増大される、被検体に接触可能な当接部を構成する弾性部材と、 を有することを特徴とする内視鏡システム。
[10] 前記弾性部材の前記被検体との当接面の位置を、前記第一の内視鏡の被写界深 度の範囲に設けたことを特徴とする請求項 9に記載の内視鏡システム。
PCT/JP2007/060223 2006-05-31 2007-05-18 内視鏡および内視鏡システム WO2007138889A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07743658A EP2022387B1 (en) 2006-05-31 2007-05-18 Endoscope and endoscope system
CN200780019259.9A CN101453936B (zh) 2006-05-31 2007-05-18 内窥镜及内窥镜系统
US12/323,065 US20090082626A1 (en) 2006-05-31 2008-11-25 Endoscope and endoscope system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-152598 2006-05-31
JP2006152598A JP2007319396A (ja) 2006-05-31 2006-05-31 内視鏡および内視鏡システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/323,065 Continuation US20090082626A1 (en) 2006-05-31 2008-11-25 Endoscope and endoscope system

Publications (1)

Publication Number Publication Date
WO2007138889A1 true WO2007138889A1 (ja) 2007-12-06

Family

ID=38778410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060223 WO2007138889A1 (ja) 2006-05-31 2007-05-18 内視鏡および内視鏡システム

Country Status (5)

Country Link
US (1) US20090082626A1 (ja)
EP (1) EP2022387B1 (ja)
JP (1) JP2007319396A (ja)
CN (1) CN101453936B (ja)
WO (1) WO2007138889A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090318759A1 (en) * 2008-06-18 2009-12-24 Jacobsen Stephen C Transparent Endoscope Head Defining A Focal Length
US9144664B2 (en) 2009-10-01 2015-09-29 Sarcos Lc Method and apparatus for manipulating movement of a micro-catheter
US9259142B2 (en) 2008-07-30 2016-02-16 Sarcos Lc Method and device for incremental wavelength variation to analyze tissue
US9661996B2 (en) 2009-10-01 2017-05-30 Sarcos Lc Needle delivered imaging device
US9717418B2 (en) 2008-11-04 2017-08-01 Sarcos Lc Method and device for wavelength shifted imaging

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8614768B2 (en) * 2002-03-18 2013-12-24 Raytheon Company Miniaturized imaging device including GRIN lens optically coupled to SSID
US20110270034A1 (en) * 2004-02-10 2011-11-03 Mackin Robert A Endotracheal tube with side mounted camera and illuminator
JP4875319B2 (ja) * 2005-06-20 2012-02-15 オリンパスメディカルシステムズ株式会社 内視鏡
US7835074B2 (en) 2007-06-05 2010-11-16 Sterling Lc Mini-scope for multi-directional imaging
JP2009219515A (ja) * 2008-03-13 2009-10-01 Hoya Corp 接触型拡大観察内視鏡の先端部
WO2009155432A2 (en) * 2008-06-18 2009-12-23 Sterling Lc Miniaturized imaging device multiple grin lenses optically coupled to multiple ssids
JP5340089B2 (ja) * 2009-09-08 2013-11-13 富士フイルム株式会社 内視鏡
WO2011041730A2 (en) 2009-10-01 2011-04-07 Jacobsen Stephen C Light diffusion apparatus
JP5752137B2 (ja) 2009-10-15 2015-07-22 インベンティオ エルエルシーInventio Llc 使い捨て可能かつ再使用可能な複雑形状の透明エンドスコープ
US8828028B2 (en) 2009-11-03 2014-09-09 Raytheon Company Suture device and method for closing a planar opening
US20110301414A1 (en) * 2010-06-04 2011-12-08 Robert Hotto Intelligent endoscopy systems and methods
US9833126B2 (en) 2011-04-05 2017-12-05 Visualization Balloons, Llc Balloon access device with features for engaging an endoscope
CN103781394B (zh) * 2011-04-05 2016-09-28 可视化气囊有限责任公司 用于内窥镜的气囊状进入设备
EP2745762A4 (en) * 2011-08-17 2015-01-21 Olympus Medical Systems Corp OPTICAL MEASURING DEVICE AND PROBE FOR THIS
DE102011084920B4 (de) * 2011-10-20 2014-03-20 Digital Endoscopy OEM GmbH Endoskopiesystem, steuersystem und verwendung eines steuersystems bei einem endoskopiesystem
JP5941753B2 (ja) * 2012-05-28 2016-06-29 富士フイルム株式会社 電子内視鏡装置及び撮像モジュール並びに撮影レンズモールド方法
WO2015089414A1 (en) * 2013-12-13 2015-06-18 Visualization Balloons, Llc. Balloon access device with features for engaging an endoscope
EP3110304A4 (en) 2014-02-24 2017-10-18 Visualization Balloons, LLC Gastrointestinal endoscopy with attachable intestine pleating structures
JP5945636B2 (ja) * 2014-04-21 2016-07-05 オリンパス株式会社 拡大観察プローブ
US10078207B2 (en) * 2015-03-18 2018-09-18 Endochoice, Inc. Systems and methods for image magnification using relative movement between an image sensor and a lens assembly
CN113543731B (zh) * 2019-03-01 2024-01-19 泰尔茂株式会社 具有折叠球囊组件的止血装置
CN113303755B (zh) * 2021-05-11 2022-08-19 宋以娟 一种气囊充气式电子阴道镜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289769A (ja) * 1990-04-04 1991-12-19 Olympus Optical Co Ltd 内視鏡装置
JPH0482532A (ja) * 1990-07-25 1992-03-16 Asahi Optical Co Ltd 内視鏡用温度分布測定装置
JPH07222712A (ja) * 1994-02-10 1995-08-22 Olympus Optical Co Ltd 蛍光内視鏡装置
JP2003153849A (ja) * 2001-11-22 2003-05-27 Pentax Corp 汚染防止型内視鏡
JP2005230183A (ja) * 2004-02-18 2005-09-02 Seiko Instruments Inc 医療用具
US20050197530A1 (en) 2003-09-25 2005-09-08 Wallace Daniel T. Balloon visualization for traversing a tissue wall
US20050228452A1 (en) 2004-02-11 2005-10-13 Mourlas Nicholas J Steerable catheters and methods for using them

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5749830A (en) * 1993-12-03 1998-05-12 Olympus Optical Co., Ltd. Fluorescent endoscope apparatus
US5725523A (en) * 1996-03-29 1998-03-10 Mueller; Richard L. Lateral-and posterior-aspect method and apparatus for laser-assisted transmyocardial revascularization and other surgical applications

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289769A (ja) * 1990-04-04 1991-12-19 Olympus Optical Co Ltd 内視鏡装置
US5178130A (en) 1990-04-04 1993-01-12 Olympus Optical Co., Ltd. Parent-and-son type endoscope system for making a synchronized field sequential system illumination
JPH0482532A (ja) * 1990-07-25 1992-03-16 Asahi Optical Co Ltd 内視鏡用温度分布測定装置
JPH07222712A (ja) * 1994-02-10 1995-08-22 Olympus Optical Co Ltd 蛍光内視鏡装置
JP2003153849A (ja) * 2001-11-22 2003-05-27 Pentax Corp 汚染防止型内視鏡
US20050197530A1 (en) 2003-09-25 2005-09-08 Wallace Daniel T. Balloon visualization for traversing a tissue wall
US20050228452A1 (en) 2004-02-11 2005-10-13 Mourlas Nicholas J Steerable catheters and methods for using them
JP2005230183A (ja) * 2004-02-18 2005-09-02 Seiko Instruments Inc 医療用具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2022387A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090318759A1 (en) * 2008-06-18 2009-12-24 Jacobsen Stephen C Transparent Endoscope Head Defining A Focal Length
US8690762B2 (en) * 2008-06-18 2014-04-08 Raytheon Company Transparent endoscope head defining a focal length
US20140371529A1 (en) * 2008-06-18 2014-12-18 Raytheon Company Transparent Endoscope Head Defining a Focal Length
US9521946B2 (en) * 2008-06-18 2016-12-20 Sarcos Lc Transparent endoscope head defining a focal length
US9259142B2 (en) 2008-07-30 2016-02-16 Sarcos Lc Method and device for incremental wavelength variation to analyze tissue
US9717418B2 (en) 2008-11-04 2017-08-01 Sarcos Lc Method and device for wavelength shifted imaging
US9144664B2 (en) 2009-10-01 2015-09-29 Sarcos Lc Method and apparatus for manipulating movement of a micro-catheter
US9661996B2 (en) 2009-10-01 2017-05-30 Sarcos Lc Needle delivered imaging device

Also Published As

Publication number Publication date
US20090082626A1 (en) 2009-03-26
CN101453936A (zh) 2009-06-10
EP2022387B1 (en) 2012-07-04
EP2022387A1 (en) 2009-02-11
CN101453936B (zh) 2011-02-16
EP2022387A4 (en) 2009-06-24
JP2007319396A (ja) 2007-12-13

Similar Documents

Publication Publication Date Title
WO2007138889A1 (ja) 内視鏡および内視鏡システム
JP4875825B2 (ja) 二重スリーブ内視鏡
JP6093849B2 (ja) 内視鏡手術装置
JP2001521806A (ja) ビデオ直腸鏡
WO2005027738A1 (ja) 内視鏡
JP4868945B2 (ja) 内視鏡
JP6130993B2 (ja) 大腸用内視鏡、及び、大腸用内視鏡システム
JP2010104391A (ja) 蛍光観察用プローブ
WO2007091407A1 (ja) 内視鏡
JP5283463B2 (ja) 内視鏡
JP6396949B2 (ja) 大腸用内視鏡システム
WO2021176570A1 (ja) 内視鏡システム、および内視鏡の操作方法
JP4891531B2 (ja) 内視鏡装置
JP4436537B2 (ja) 内視鏡
JP4868870B2 (ja) 内視鏡
JP4406181B2 (ja) 内視鏡装置
JP2001037708A (ja) 内視鏡挿入補助具
JP7271137B2 (ja) 内視鏡
JP4616322B2 (ja) 内視鏡装置
JPS60196718A (ja) 固体撮像素子内蔵の内視鏡
JP2006087520A (ja) 内視鏡
JP2008012213A (ja) 拡大観察用内視鏡
JP4533605B2 (ja) シース
JP2000139820A (ja) 内視鏡
JPH07299024A (ja) カバー式内視鏡

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780019259.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743658

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007743658

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE