WO2007135990A1 - 露光方法及び装置、メンテナンス方法、並びにデバイス製造方法 - Google Patents

露光方法及び装置、メンテナンス方法、並びにデバイス製造方法 Download PDF

Info

Publication number
WO2007135990A1
WO2007135990A1 PCT/JP2007/060228 JP2007060228W WO2007135990A1 WO 2007135990 A1 WO2007135990 A1 WO 2007135990A1 JP 2007060228 W JP2007060228 W JP 2007060228W WO 2007135990 A1 WO2007135990 A1 WO 2007135990A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid
exposure
cleaning
stage
Prior art date
Application number
PCT/JP2007/060228
Other languages
English (en)
French (fr)
Inventor
Katsushi Nakano
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to EP07743663A priority Critical patent/EP2037486A4/en
Priority to CN200780011033.4A priority patent/CN101410948B/zh
Publication of WO2007135990A1 publication Critical patent/WO2007135990A1/ja
Priority to US12/289,148 priority patent/US8514366B2/en
Priority to US13/943,207 priority patent/US20130301019A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning

Definitions

  • the present invention relates to an exposure technique for exposing a substrate with an exposure beam through a liquid, a maintenance technique for an exposure apparatus that uses this exposure technique, and a device manufacturing technique that uses the exposure technique.
  • Microdevices such as semiconductor devices and liquid crystal display devices transfer a pattern formed on a mask such as a reticle onto a substrate such as a wafer coated with a resist (photosensitive material). Manufactured by photolithography.
  • the step 'and' repeat type reduction projection type exposure apparatus so-called stepper
  • An exposure apparatus such as a 'scanning reduction projection type exposure apparatus (a so-called scanning' stepper) is used.
  • an exposure apparatus using an immersion method has been developed as a method of substantially shortening the exposure wavelength and increasing the depth of focus compared to the air (see, for example, Patent Document 1). ).
  • this immersion method exposure is performed in a state where an immersion region is formed by filling a space between the lower surface of the projection optical system and the substrate surface with a liquid such as water or an organic solvent.
  • a liquid such as water or an organic solvent.
  • the present invention provides a first exposure technique, a maintenance technique, and a device manufacturing technique that can reduce the amount of foreign matter mixed in a liquid when exposure is performed by a liquid immersion method.
  • the second object of the present invention is to perform exposure by a liquid immersion method, so that an exposure technique, a maintenance technique, and a foreign substance adhering to a member (for example, a substrate stage) in contact with the liquid can be efficiently removed. It is to provide device manufacturing technology.
  • an exposure method for exposing a substrate (P) with exposure light via an optical member (2) and a liquid (1) the movable member contacting the liquid ( PH) is placed opposite the optical member, and the movable liquid member is moved relative to the cleaning liquid immersion area (AR2) formed between the optical member and the movable member.
  • An exposure method including cleaning is provided.
  • an exposure apparatus that exposes a substrate (P) with exposure light via a liquid (1), and a substrate stage (PH or the like) that holds the substrate (P) ), A liquid immersion mechanism (such as 10) that supplies liquid onto the substrate (P) to form the immersion area (AR2), and the substrate stage is cleaned during the period without exposing the substrate.
  • An exposure apparatus (EX) provided with a control device (such as CONT) for moving the immersion area and the substrate stage relative to each other is provided.
  • a control device such as CONT
  • a movable member such as PH that is in contact with the liquid, a liquid immersion mechanism (such as 10) that forms an immersion area (AR2) of the cleaning liquid between the optical member and the movable member, and the movable member is cleaned
  • an exposure apparatus including a control device (such as CONT) that relatively moves the liquid immersion area and the movable member is provided.
  • an immersion area (AR2) is formed on a substrate (P) held on a substrate stage (PH or the like), and the liquid in the immersion area is irradiated with exposure light.
  • a maintenance method is provided that includes cleaning the at least one of the liquid immersion member and the substrate stage by relatively moving the liquid immersion region and the substrate stage during the period without exposing the substrate. Is done.
  • an exposure apparatus maintenance method for exposing a substrate (P) with exposure light via an optical member (2) and a liquid (1), and contacting the liquid Arranging the movable member (PH etc.) opposite the optical member, and moving the cleaning liquid immersion area (AR2) formed between the optical member and the movable member relative to the movable member,
  • a maintenance method is provided that includes cleaning the movable member.
  • an exposure method for exposing a substrate (P), the optical path space of exposure light (EL) on the substrate held on the substrate stage (PH, etc.) Is filled with the liquid (1), the substrate is exposed through the liquid with the exposure light (EL) (S1), and the ultrasonic wave is emitted onto the substrate stage (PST) during the period when the substrate is not exposed.
  • An exposure method including supplying a cleaning liquid (1 A) vibrated in (1) (S2) is provided.
  • an exposure method for exposing a plurality of areas on the substrate (P) with exposure light via the liquid (1) the movable body holding the substrate ( PH) is moved along the first path (60A), and each of the multiple areas is exposed via liquid (Sl, SSI), and the movable body holding the dummy substrate is different from the first path.
  • an exposure method including cleaning the movable body with a liquid or a cleaning liquid (S2, SS2) is provided.
  • an exposure apparatus for exposing the substrate (P), wherein the optical path space of the exposure light is set on the substrate held on the substrate stage (PH, etc.).
  • Immersion mechanism such as 10) filled with liquid, ultrasonic vibrator (1 12, 122) provided near the liquid supply port of the immersion mechanism, and the substrate stage during the period when the substrate is not exposed
  • An exposure device ( ⁇ ') is provided that includes a control device (CONT) that controls the ultrasonic transducers (112, 122) so as to supply cleaning liquid that is vibrated by ultrasonic waves generated by the ultrasonic transducers. Is done.
  • an exposure apparatus for exposing a substrate, the first liquid supplying liquid to the optical path space of exposure light on the substrate held by the substrate stage.
  • a liquid immersion mechanism including a supply mechanism (10); a second liquid supply mechanism (12) that is provided on the substrate stage side and supplies a cleaning liquid; and an ultrasonic vibrator that vibrates the cleaning liquid with ultrasonic waves.
  • An exposure apparatus ( ⁇ ⁇ ′) is provided that includes a control device (CONT) that controls an ultrasonic transducer so as to supply a cleaning liquid (1A) that is vibrated by sound waves.
  • CONT control device
  • an exposure apparatus that exposes a substrate ( ⁇ ) through a liquid (1), wherein exposure light is exposed on a substrate held on a substrate stage (eg, a candy).
  • An immersion mechanism (such as 10) that fills the optical path space with a liquid, and an apparatus that supplies cleaning liquid to at least one of the liquid supply port and the recovery port of the liquid immersion mechanism during a period when the substrate is not exposed (12)
  • An exposure apparatus ( ⁇ ′) is provided.
  • an exposure apparatus that exposes the substrate ( ⁇ ) with exposure light through the optical member (2) and the liquid (1), and is opposed to the optical member.
  • Moveable member ( ⁇ Etc.) and a vibrator (117) provided on the movable member, and a member (such as 30) in contact with the liquid (1) is washed with a cleaning liquid (1 or 1A) that is vibrated by the vibrator.
  • the substrate is exposed using the exposure method or the exposure apparatus ( ⁇ , ⁇ ') of the present invention (204), and the exposed substrate is developed (204 ) And processing the developed substrate (205).
  • the present invention for example, by moving the substrate stage with respect to the liquid immersion region, it is possible to remove foreign substances adhering to the substrate stage and the ridge or the liquid immersion member. Therefore, after that, when the substrate is exposed by the immersion method, the amount of foreign matter mixed in the liquid is reduced, and the exposure can be performed with high accuracy.
  • FIG. 1 is a schematic block diagram that shows one example of an embodiment of an exposure apparatus of the present invention.
  • FIG. 2 is a perspective view showing a flow path forming member 30 in FIG.
  • FIG. 3 is a plan view showing the arrangement of liquid supply ports and recovery ports in FIG. 1.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view showing a suction mechanism and a suction mechanism of the substrate holder ⁇ in FIG. 1.
  • FIG. 6 is an enlarged view of the main part of FIG.
  • FIG. 7 ( ⁇ ) is a plan view showing the substrate stage PST (substrate holder ⁇ ) and the dummy substrate CP on the substrate stage PST in FIG. 1, showing the movement path of the immersion area, and (B) is the immersion stage. Indicates an alternate path of travel for the region.
  • FIG. 8 (A) is a plan view showing the substrate stage PST and the measurement stage MST in FIG. 1, and (B) is a state in which the substrate holder PH on the measurement stage MST and the measurement table MTB of the measurement stage MST are in close contact with each other.
  • FIG. [Fig. 9] (A) is a plan view showing that the immersion area AR2 moves relative to the measurement table MTB from the substrate holder PH.
  • (B) shows the immersion area AR2 relative to the measurement table MTB. It is a top view which shows a mode that it moves.
  • FIG. 10 is a schematic block diagram that shows an exposure apparatus according to a second embodiment of the present invention.
  • FIG. 11 is a perspective view showing a flow path forming member 30 in FIG.
  • FIG. 12 is a cross-sectional view showing a suction mechanism and a suction mechanism of the substrate holder PH in FIG.
  • FIG. 13 is an enlarged view of a main part of FIG.
  • FIG. 14 (A) and (B) are diagrams showing an example of a difference in moving speed of the substrate stage during exposure and cleaning.
  • FIG. 15 is a flowchart showing a specific example of the exposure method according to the first embodiment of the present invention.
  • FIG. 16 is a flowchart showing a specific example of the exposure method according to the second embodiment of the present invention.
  • FIG. 17 is a flowchart showing an example of a microdevice manufacturing process.
  • FIG. 1 is a schematic block diagram showing an exposure apparatus EX according to the first embodiment of the present invention.
  • the exposure apparatus EX is a mask stage RST that supports a mask M on which a transfer pattern is formed. And a substrate stage PST that supports the substrate P to be exposed, an illumination optical system IL that illuminates the mask M supported by the mask stage RST with the exposure light EL, and a pattern image of the mask M that is illuminated with the exposure light EL.
  • the projection optical system PL that projects the projection area AR1 on the substrate P supported by the substrate stage PST, the alignment mark for alignment, etc. are formed, and the overall operation of the exposure stage EX and the exposure stage EX is integrated.
  • a control device CONT for controlling and a liquid immersion mechanism for applying the liquid immersion method are provided.
  • the liquid immersion mechanism of this example includes a liquid supply mechanism 10 that supplies liquid 1 on the substrate P and the measurement stage MST, and a liquid recovery mechanism 20 that recovers the liquid 1 supplied on the substrate P and measurement stage MST. And including
  • the exposure apparatus EX includes a projection area AR1 of the projection optical system PL by the liquid 1 supplied from the liquid supply mechanism 10 while at least transferring the pattern image of the mask M onto the substrate P.
  • An immersion region AR2 is formed (locally) in a partial region on P, or a partial region on substrate P and its surrounding region.
  • the exposure apparatus EX includes an optical element (for example, a lens or a plane parallel plate having a substantially flat bottom surface) 2 at the end of the image plane side of the projection optical system PL, and a substrate disposed on the image plane side.
  • the pattern of the mask M is transferred and exposed to the substrate P.
  • the exposure apparatus EX a scanning exposure apparatus (so-called scanning) that exposes a pattern formed on the mask M onto the substrate P while moving the mask M and the substrate P synchronously in a predetermined scanning direction.
  • scanning a scanning exposure apparatus
  • the Z axis is taken in parallel to the optical axis AX of the projection optical system PL
  • the X axis is taken along the scanning direction along the direction of synchronous movement (scanning direction) of the mask M and the substrate P in a plane perpendicular to the Z axis.
  • substrate includes, for example, a substrate in which a photosensitive material (hereinafter referred to as a resist) is coated on a substrate such as a semiconductor wafer such as a silicon wafer, and a protective film (topcoat film) separately from the photosensitive film.
  • a photosensitive material hereinafter referred to as a resist
  • topcoat film a protective film separately from the photosensitive film.
  • membranes such as these, is also included.
  • the mask includes a reticle on which a device pattern to be reduced and projected on a substrate is formed.
  • a predetermined pattern is formed on a transparent plate member such as a glass plate using a light shielding film such as chromium.
  • This transmission type mask is not limited to a binary mask in which a pattern is formed by a light shielding film, and also includes, for example, a phase shift mask such as a noise tone type or a spatial frequency modulation type.
  • the substrate ⁇ in this example is obtained by applying a resist (photoresist), which is a photosensitive material, to a predetermined thickness (for example, about 200 nm) on a disk-shaped semiconductor wafer having a diameter of about 200 mm to 300 mm, for example. .
  • the illumination optical system IL illuminates the mask M supported by the mask stage RST with the exposure light EL, and optically equalizes the illuminance of a light beam emitted from an exposure light source (not shown). It has a condenser lens that collects the exposure light EL from the integrator, the optical integrator, a relay lens system, and a variable field stop that sets the illumination area on the mask M by the exposure light EL in a slit shape.
  • the predetermined illumination area on the mask M is Illuminated with exposure light EL having a uniform illuminance distribution by illumination optical system IL.
  • the exposure light EL emitted from the illumination optical system IL includes, for example, a mercury lamp force emitted ultraviolet ray (i-line etc.), far ultraviolet light (DUV light) such as KrF excimer laser light (wavelength 248 nm), or Vacuum ultraviolet light (VUV light) such as ArF excimer laser light (wavelength 193 nm), F laser light (wavelength 157 nm), etc.
  • a mercury lamp force emitted ultraviolet ray i-line etc.
  • DUV light far ultraviolet light
  • VUV light Vacuum ultraviolet light
  • ArF excimer laser light wavelength 193 nm
  • F laser light wavelength 157 nm
  • Etc. are used.
  • ArF excimer laser light is used as the exposure light EL.
  • the mask stage RST supports the mask M and is two-dimensionally in a plane perpendicular to the optical axis AX of the projection optical system PL on the mask base (not shown), that is, in the XY plane. It can be moved and rotated slightly in the ⁇ Z direction.
  • the mask stage RST is driven by a mask stage driving device RSTD such as a linear motor.
  • the mask stage drive device RSTD is controlled by the controller CONT.
  • a reflective mirror 55A is provided on the mask stage RST, and a laser interferometer 56A is provided at a position facing the reflective mirror 55A.
  • the laser interferometer 56A constitutes a laser interferometer system having three or more measurement axes.
  • Reflector 55A may include not only a plane mirror but also a corner cube (retroreflector). Instead of reflector 55A, for example, a reflection formed by mirroring the end surface (side surface) of mask stage RST. You can use the surface!
  • the projection optical system PL projects and exposes the pattern of the mask M onto the substrate ⁇ at a predetermined projection magnification ⁇ ( ⁇ is a reduced magnification such as 1 ⁇ 4, 1 ⁇ ⁇ ⁇ 5, etc.).
  • the optical system PL is composed of a plurality of optical elements including the optical element 2 provided at the terminal portion (on the image plane side), and these optical elements are supported by the lens barrel PK.
  • the projection optical system PL is not limited to a reduction system, and may be either a unity magnification system or an enlargement system.
  • the optical element 2 at the tip of the projection optical system PL is detachably attached to the lens barrel PK, and the liquid 1 in the liquid immersion area AR2 comes into contact with the optical element 2.
  • the projection optical system PL is mounted on a lens barrel surface supported by three columns via an anti-vibration mechanism. As disclosed in Kaikai 2006Z038952, the projection optical system PU is arranged against a main frame member (not shown) arranged above the projection optical system PL, or a base member on which the mask stage RST is arranged. Can be supported by hanging!
  • pure water is used for the liquid 1.
  • Pure water can transmit not only ArF excimer laser light but also far ultraviolet light (DUV light) such as emission lines emitted from mercury lamps and KrF excimer laser light.
  • the optical element 2 is made of meteorite (CaF). ⁇
  • the optical element 2 may be quartz having high affinity with water.
  • the resist of the substrate P is a liquid repellent resist that repels the liquid 1 as an example.
  • a protective top coat may be applied on the resist as necessary.
  • the property of repelling liquid 1 is called liquid repellency.
  • liquid repellency means water repellency.
  • a substrate holder PH that holds the substrate P by, for example, vacuum suction is fixed to the upper part of the substrate stage PST.
  • the substrate stage PST supports and moves the Z stage portion that controls the position (focus position) of the substrate holder PH (substrate P) in the Z direction and the tilt angle in the ⁇ X and ⁇ Y directions.
  • the XY stage is mounted on a guide surface (surface substantially parallel to the image plane of the projection optical system PL) parallel to the XY plane on the base 54 via, for example, an air bearing (gas bearing). It is placed.
  • the substrate stage PST (Z stage and XY stage) is driven by a substrate stage drive device PSTD such as a linear motor.
  • the substrate stage driving device PSTD is controlled by the control device CONT.
  • the substrate holder is formed on a table movable in the ⁇ , ⁇ X and ⁇ Y directions, and collectively referred to as the substrate holder PH. Also, configure the table and substrate holder separately, and fix the substrate holder to the table, for example, by vacuum suction.
  • the Z stage section may include only an actuator that drives the substrate holder PH (tape glue) in the ⁇ , ⁇ X and ⁇ Y directions.
  • the substrate holder PH on the substrate stage PST is provided with a reflecting mirror 55B, and a laser interferometer 56B is provided at a position facing the reflecting mirror 55B.
  • Reflector 55B is actually a figure 8 As shown in (A), X-axis reflecting mirror 55BX and Y-axis reflecting mirror 55BY are used, and laser interferometer 56B is also made up of X-axis laser interferometer 56BX and Y-axis laser interferometer 56BY. It is made.
  • the position and rotation angle of the substrate holder PH (substrate P) on the substrate stage PST in the two-dimensional direction are measured in real time by the laser interferometer 56B, and the measurement result is output to the control device CONT.
  • the controller CONT moves or positions the substrate P supported by the substrate stage PST by driving the substrate stage driving device PSTD based on the measurement result.
  • the laser interferometer 56B can measure the position of the substrate stage PST in the Z-axis direction and the rotation information in the ⁇ X and ⁇ Y directions. For example, refer to JP 2001-510577 (corresponding international Published 1999Z28790 pamphlet).
  • a reflecting surface formed by mirror processing the side surface of the substrate stage PST or the substrate holder PH may be used.
  • an annular flat plate portion 97 is provided so as to surround the substrate P.
  • the upper surface of the plate portion 97 is a flat surface having almost the same height as the surface of the substrate P held by the substrate holder PH.
  • this flat surface is liquid repellent.
  • the resist of the substrate P is liquid repellent, and the surface of the liquid 1 Due to the tension, the liquid 1 hardly flows into the gap. Even when the vicinity of the periphery of the substrate P is exposed, the liquid 1 can be held between the plate portion 97 and the projection optical system PL.
  • the liquid 1 flowing into the gap between the plate portion 97 and the substrate P can be discharged out of the substrate holder PH by the suction device 50 shown in FIG. 5 (details will be described later). Therefore, the resist (or top coat) of the substrate P does not necessarily have to be liquid repellent.
  • the plate portion 97 is provided on the substrate holder PH! /, But the upper surface of the substrate holder PH surrounding the substrate P may be made liquid-repellent to form a flat surface.
  • the liquid supply mechanism 10 in FIG. 1 supplies a predetermined liquid 1 onto the substrate P, and includes a first liquid supply unit 11 and a second liquid supply unit 12 capable of delivering the liquid 1, 1.
  • First and second supply pipes 11A and 12A each having one end connected to each of the second liquid supply parts 11 and 12, I have.
  • Each of the first and second liquid supply units 11 and 12 includes a tank for storing the liquid 1, a filter unit, a pressure pump, and the like. It should be noted that at least a part of the liquid supply mechanism 10 need not include all of the tank, filter unit, pressure pump, etc., for example, with equipment such as a factory where the exposure apparatus EX is installed. May be.
  • the liquid recovery mechanism 20 recovers the liquid 1 supplied on the substrate P, and has a liquid recovery unit 21 that can recover the liquid 1 and one end connected to the liquid recovery unit 21.
  • the collection pipe 2 2 (the first to fourth collection pipes 22 8, 22 B, 22 C, and 22 D forces in FIG. 2 are also provided).
  • a valve 24 (the first to fourth valves 24A, 24B, 24C, and 24D force in FIG. 2 are also provided) is provided in the middle of the recovery pipe 22 (22A to 22D).
  • the liquid recovery unit 21 includes, for example, a vacuum system (a suction device) such as a vacuum pump, and a tank for storing the recovered liquid 1. Note that the liquid collection mechanism 20 does not need to be equipped with everything such as a vacuum system and a tank, and at least a part of them is replaced with equipment such as a factory where the exposure apparatus EX is installed. Moyo.
  • a flow path forming member (a liquid immersion member) 30 is disposed in the vicinity of the optical element 2 at the end of the projection optical system PL.
  • the flow path forming member 30 is an annular member provided so as to surround the optical element 2 above the substrate P (substrate stage PST). In a state where the projection area AR1 of the projection optical system PL is on the substrate P, the flow path forming member 30 is arranged so as to face the surface of the substrate P.
  • the first supply port 13 and the second supply port 14 See Figure 3)! / Further, the flow path forming member 30 has supply flow paths 82 (82A, 82B) therein.
  • the flow path forming member 30 includes four recovery ports 23A to 23D (see FIG. 3) provided above the substrate P (substrate stage PST) and arranged to face the surface of the substrate P.
  • FIG. 2 is a schematic perspective view of the flow path forming member 30.
  • the flow path forming member 30 is an annular member provided so as to surround the optical element 2 at the terminal end of the projection optical system PL, and includes a first member 31 and a first member 31.
  • a second member 32 disposed above the second member 32 and a third member 33 disposed above the second member 32.
  • Each of the first to third members 31 to 33 is a plate-like member, and a hole portion 31 in which the projection optical system PL (optical element 2) can be disposed at the center thereof.
  • a to 33A is a schematic perspective view of the flow path forming member 30.
  • the flow path forming member 30 is an annular member provided so as to surround the optical element 2 at the terminal end of the projection optical system PL, and includes a first member 31 and a first member 31.
  • a second member 32 disposed above the second member 32 and a third member 33 disposed above the second member 32.
  • Each of the first to third members 31 to 33 is a
  • FIG. 3 is a perspective view showing the first member 31 arranged at the lowest stage among the first to third members 31 to 33 of FIG.
  • the first member 31 is formed on the ⁇ X direction side of the projection optical system PL.
  • Each of the first supply port 13 and the second supply port 14 is a through-hole penetrating the first member 31 and is formed in a substantially circular arc shape in plan view.
  • the first member 31 is formed on the —X direction, —Y direction, + X direction, and + Y direction sides of the projection optical system PL, and each of the first recovery ports 23A collects the liquid 1 on the substrate P.
  • a second recovery port 23B, a third recovery port 23C, and a fourth recovery port 23D are provided.
  • Each of the first to fourth recovery ports 23A to 23D is also a through-hole penetrating the first member 31, and is formed in a substantially arc shape in plan view, and is substantially equidistant along the periphery of the projection optical system PL. And provided outside the supply ports 13 and 14 with respect to the projection optical system PL.
  • the gap between the supply ports 13 and 14 and the substrate P and the gap between the recovery ports 23A to 23D and the substrate P are substantially the same. That is, the height positions of the supply ports 13 and 14 and the height positions of the recovery ports 23A to 23D are provided at substantially the same height.
  • the flow path forming member 30 has a recovery flow path 84 (84A, 84B, 84C, 84D) communicated with the recovery ports 23A to 23D (see FIG. 3) therein.
  • the recovery channels 84B and 84D (not shown) are channels for communicating the recovery ports 23B and 23D in the non-scanning direction in FIG. 3 with the recovery tubes 22B and 22D in FIG.
  • the other ends of the recovery channels 84A to 84D communicate with the liquid recovery unit 21 via the recovery pipes 22A to 22D in FIG.
  • the flow path forming member 30 constitutes a part of each of the liquid supply mechanism 10 and the liquid recovery mechanism 20.
  • the flow path forming member 30 is a part of the liquid immersion mechanism of this example.
  • a part of the liquid immersion mechanism for example, at least the flow path forming member 30 may be suspended and supported by a main frame (including the lens barrel surface plate) holding the projection optical system PL. It may be provided on a separate frame member.
  • the flow path forming member 30 may be suspended and supported integrally with the projection optical system PL, or suspended independently of the projection optical system PL.
  • the flow path forming member 30 may be provided on the supported measurement frame. In the latter case, the projection optical system PL need not be suspended and supported.
  • the first to fourth valves 24A to 24D provided in the first to fourth recovery pipes 22A to 22D open and close the flow paths of the first to fourth recovery pipes 22A to 22D, respectively.
  • the operation is controlled by the control device CONT. While the flow path of the recovery pipe 22 (22A to 22D) is open, the liquid recovery mechanism 20 can suck and recover the liquid 1 with the recovery port 23 (23A to 23D) force, and the valve 24 (24A to 24D) D Thus, when the flow path of the recovery pipe 22 (22A to 22D) is closed, the suction and recovery of the liquid 1 through the recovery port 23 (23A to 23D) is stopped.
  • the liquid supply operations of the first and second liquid supply units 11 and 12 are controlled by the control device CONT.
  • the control device CONT can independently control the amount of liquid supplied per unit time to the substrate P by the first and second liquid supply units 11 and 12.
  • the liquid 1 delivered from the first and second liquid supply units 11 and 12 passes through the supply pipes 11A and 12A and the supply flow paths 82A and 82B of the flow path forming member 30, and the flow path forming member 30 (first
  • the material is supplied onto the substrate P from supply ports 13, 14 (see FIG. 3) provided on the lower surface of the member 31) so as to face the substrate P.
  • the liquid recovery operation of the liquid recovery unit 21 is controlled by the control device CONT.
  • the control device CONT can control the amount of liquid recovered by the liquid recovery unit 21 per unit time.
  • the liquid 1 on the substrate P recovered from the recovery port 23 provided on the lower surface of the flow path forming member 30 (first member 31) so as to face the substrate P is the recovery flow path 84 of the flow path forming member 30.
  • the liquid is recovered by the liquid recovery unit 21 through the recovery pipe 22.
  • the trap surface 70 is lyophilic.
  • the liquid 1 flowing out of the recovery port 23 is captured by the trap surface 70.
  • FIG. 3 shows the first and second supply ports 13, 14 and the first to fourth recovery ports 23A to 23D formed in the flow path forming member 30 of FIG. 2, and the projection area AR1 of the projection optical system PL. It is also a plan view showing the positional relationship.
  • the projection area AR1 of the projection optical system PL is set to a rectangular shape whose longitudinal direction is the Y direction (non-scanning direction).
  • the immersion area AR2 filled with the liquid 1 is formed inside a substantially circular area substantially surrounded by the four recovery ports 23A to 23D so as to include the projection area AR1, and on the substrate P during scanning exposure. Partly (or so as to include part on the substrate P).
  • first and second supply ports 13 and 14 are formed in a substantially arc-shaped slit shape on both sides of the projection area AR1 with respect to the scanning direction (X direction).
  • the length of the supply ports 13 and 14 in the Y direction is at least longer than the length of the projection area AR1 in the Y direction.
  • the liquid supply mechanism 10 can supply the liquid 1 from the two supply ports 13 and 14 simultaneously on both sides of the projection area AR1.
  • the first to fourth recovery ports 23A to 23D are formed in an arcuate slit shape so as to surround the supply ports 13 and 14 and the projection area AR1.
  • collection ports 23A and 23C are arranged on both sides of the projection area AR1 in the X direction (scanning direction), and collection ports 23B and 23D are in the Y direction. It is arranged on both sides of the projection area AR1 with respect to (non-scanning direction).
  • the lengths of the recovery ports 23A and 23C in the Y direction are longer than the lengths of the supply ports 13 and 14 in the Y direction.
  • Each of the recovery ports 23B and 23D is formed to have almost the same length as the recovery ports 23A and 23C.
  • the recovery ports 23A to 23D communicate with the liquid recovery unit 21 of FIG. 1 through recovery pipes 22A to 22D of FIG.
  • the number of collection ports 23 is not limited to four, and any number or one can be provided as long as they are arranged so as to surround the projection area AR1 and the supply ports 13 and 14.
  • the flow path forming member 30 used in the above embodiment is not limited to the above-described structure.
  • European Patent Application Publication No. 1420298, International Publication No. 2004Z055803, International Publication No. 2004Z057589 No. Pamphlet K International Publication No. 2004,057590 pamphlet, International Publication No. 2005Z029559 pamphlet (corresponding US patent application publication No. 2006Z0231206) can also be used.
  • the liquid supply ports 13 and 14 and the recovery ports 23A to 23D are different from the force supply port 13 and 14 and the recovery ports 23A to 23D provided in the same flow path forming member 30. It may be provided. Further, as disclosed in, for example, International Publication No.
  • a second recovery port (nozzle) for liquid recovery may be provided outside the flow path forming member 30.
  • the supply ports 13 and 14 may not be arranged so as to face the substrate P.
  • the lower surface of the flow path forming member 30 is set to be substantially the same height (Z position) as the lower end surface (exit surface) of the projection optical system PL.
  • the lower surface of the flow path forming member 30 is projected. Image from lower end surface of optical system PL It may be set on the surface side (substrate side). In this case, a part (lower end portion) of the flow path forming member 30 may be provided so as to be buried under the projection optical system PL (optical element 2) so as not to block the exposure light EL.
  • the substrate holder PH of this example is provided with a suction mechanism for discharging the liquid flowing into the back side of the substrate P to the outside.
  • the substrate P to be exposed to which the resist on the substrate holder PH is applied is substantially the same shape as the substrate P by a wafer loader system (not shown) if necessary. It is configured so that it can be replaced with a dummy substrate CP.
  • the exposure apparatus of this example performs a process of cleaning the upper part of the substrate stage PST, in this example, the upper surface of the substrate holder PH (plate part 97) during the period when the exposure of the substrate P is not performed.
  • a dummy substrate CP is placed on the substrate holder PH in place of the substrate P in order to prevent liquid from flowing into a vacuum suction hole or the like on the inner surface of the substrate holder PH.
  • the dummy substrate CP can also be referred to as a lid substrate or lid weno for covering the inner surface of the substrate holder PH, or a cover member.
  • the dummy substrate CP is easy to become familiar with the liquid 1, which is also a silicon substrate, for example!
  • the substrate is made of a lyophilic substrate.
  • a liquid repellent treatment for repelling liquid 1 is applied to the upper surface portion CPa excluding the end portion (side surface and upper surface peripheral portion) CPc of the substrate.
  • the end portion CPc of the dummy substrate CP is lyophilic, and the inner top surface portion CPa and the back surface portion are lyophobic.
  • the liquid repellent treatment include a coating treatment in which a liquid repellent material is applied to form a liquid repellent coat.
  • Examples of the material having liquid repellency include a synthetic compound such as a fluorine compound, a silicon compound, or polyethylene.
  • the liquid repellent coating may be a single layer film or a film having a multi-layer force. Note that the entire surface (surface) of the dummy substrate CP that contacts the liquid 1 may be liquid repellent.
  • a plurality of lyophilic widths of, for example, about 1 mm are provided at predetermined intervals in the region where the liquid repellent coating is applied on the upper surface portion CPa of the dummy substrate CP.
  • the groove portion C Pn may be formed. Since the substrate itself of the dummy substrate CP is lyophilic, in order to form the lyophilic groove portion CPn, after applying the liquid repellent coating to the upper surface portion CPa, the groove portion is mechanically formed on the upper surface portion CPa. What is necessary is just to form. These grooves CPn are being cleaned of the substrate holder PH. It is used to capture particles that are fine foreign matter mixed in the liquid 1.
  • the dummy substrate CP may be made of a liquid repellent material.
  • FIG. 5 is a side sectional view of the substrate holder PH in a state where the dummy substrate CP is sucked and held
  • FIG. 6 is an enlarged view of a main part of FIG.
  • the substrate holder PH is composed of a base material PHB and a holding portion PH1 formed on the base material PHB to suck and hold the dummy substrate CP (or the substrate P to be exposed, the same applies hereinafter). It is equipped with.
  • the holding portion PH1 is formed on the base material PHB, and supports the back surface CPb of the dummy substrate CP.
  • the top surface 46A is flat and has a large number of small conical support portions 46 and the base material PHB.
  • a back surface of the CP is provided with a circumferential wall portion (rim portion) 42 that faces the CPb and is provided so as to surround a large number of support portions 46.
  • the holding portion PH1 is disposed in a recess 97a formed in the substrate holder PH and accommodating the dummy substrate CP.
  • the large number of support portions 46 each function as a convex support pin that supports the dummy substrate CP on the back surface, and are arranged at predetermined pitches in the X and Y directions inside the circumferential peripheral wall portion 42.
  • an elevator port (not shown) for raising and lowering the dummy substrate CP.
  • the peripheral wall 42 is formed in a substantially annular shape according to the shape of the dummy substrate CP (or substrate P), and the flat upper surface 42A of the peripheral wall 42 is the peripheral region (edge) of the back surface CPb of the dummy substrate CP. Region).
  • the upper surface 46A of the support portion 46 is formed to have the same height force as the upper surface 42A of the peripheral wall portion 42 and slightly higher than the upper surface 42A.
  • a first space VP1 surrounded by the dummy substrate CP, the peripheral wall portion 42, and the base material PHB is formed on the back surface CPb side of the dummy substrate CP held by the holding portion PH1.
  • a large number of suction ports 41 are formed in valleys between a large number of support portions 46 on the base material PHB inside the peripheral wall portion 42.
  • the suction port 41 is for sucking and holding the dummy substrate CP.
  • a number of suction ports 41 are each connected to a vacuum system 40 including a vacuum pump via a flow path 45.
  • the holding portion PH1 including the support portion 46, the peripheral wall portion 42, the suction port 41, and the flow path 45 constitutes a so-called pin chuck mechanism for sucking and holding the dummy substrate CP (or substrate P).
  • the concave portion 97a of the substrate holder PH is formed with an inner surface that is connected to the plate portion 97 and faces the side surface of the dummy substrate CP that is sucked and held by the holding portion PH1.
  • a predetermined gap A is formed between the side surface of the dummy substrate CP held by the holding portion PH1 and the inner side surface (or plate portion 97) of the recess 97a provided around the dummy substrate CP.
  • the gap A is, for example, about 0.1 to 1. Omm.
  • a recess 97b is formed along the outer side surface of the first peripheral wall portion 42 on the bottom surface of the recess 97a of the substrate holder PH.
  • a gap B is formed between the inner surface of the recess 97b and the outer surface of the peripheral wall portion 42 along the outer surface.
  • gap B is set to about 1. Omm, for example.
  • the outer diameter of the annular peripheral wall portion 42 is formed smaller than the outer diameter of the dummy substrate CP (or substrate P), and the edge region of the dummy substrate CP overhangs a predetermined amount outside the peripheral wall portion 42. is doing.
  • the overhang portion HI is about 1.5 mm as an example.
  • the inner diameter of the inner surface of the recess 97b is smaller than the outer diameter of the dummy substrate CP, and the bottom surface of the recess 97a is formed slightly lower than the upper surface 42A of the peripheral wall 42 by the gap G.
  • the In this example, the gap G is set to 1 to: LOOO / z m.
  • the second space VP2 of the gap B is formed outside the peripheral wall portion 42 on the back surface side of the dummy substrate CP held by the holding portion PH1, and the second space VP2 is formed between the recess 97a and the dummy substrate CP. It communicates with the outside air of the substrate holder PH via a gap G and a gap A between the two.
  • each is provided with a collection port 51 having a substantially circular plan view.
  • Each recovery port 51 is connected to a suction device 50 including a vacuum system via a flow path 52.
  • the suction device 50 connected to the second space VP2 via the recovery port 51 and the vacuum system 40 for making the first space VP1 negative pressure are independent of each other.
  • the control device CONT can individually control the operations of the suction device 50 and the vacuum system 40, and performs the liquid suction operation by the suction device 50 and the gas suction operation by the first vacuum system 40 independently. Can do.
  • the substrate holder PH is subjected to a liquid repellent treatment, and the substrate holder PH has liquid repellency with respect to the liquid 1.
  • the upper surface 42A and the outer surface of the peripheral wall portion 42 of the holding portion PH1 and the upper surface 46A of the support portion 46 have liquid repellency.
  • the inner surface and the bottom surface of the plate portion 97 and the concave portion 97a also have liquid repellency.
  • the inner surface of the recess 97b also has liquid repellency.
  • the liquid repellency treatment of the substrate holder PH include a treatment of coating a liquid repellent material such as a fluorine-based resin material or an acrylic resin material.
  • the plate portion 97 is used as a ring-shaped exchangeable plate member, and the surface of the plate member is subjected to a liquid repellent treatment, and the plate member is connected to the support portion 46. It may be supported by a similar member and held by bottom side force vacuum suction. Thus, for example, when dirt that cannot be removed by a cleaning process described later is attached, only the plate member can be replaced as needed.
  • the substrate P that is the target of force exposure in which the dummy substrate CP is held in the substrate holder PH can be similarly held in the substrate holder PH.
  • the height (position in the Z direction) of the plate portion 97 is set so that the surface of the substrate P and the surface of the plate portion 97 are substantially flush with each other!
  • the measurement stage MST is a rectangular plate that is elongated in the Y direction and is driven in the X direction (scanning direction).
  • the leveling unit is placed on the stage 181 via an air bearing, for example.
  • Table 188 and measurements placed on this leveling table 188 It has a measurement table MTB as a unit.
  • the measurement table MTB is mounted on the leveling table 188 via an air bearing.
  • the measurement table MTB can be integrated with the leveling table 188.
  • the X stage portion 181 is placed on the base 54 so as to be movable in the X direction via an air bearing.
  • FIG. 8A is a plan view showing the substrate stage PST and the measurement stage MST in FIG. 1.
  • the base 54 is sandwiched in the Y direction (non-scanning direction).
  • X-axis stators 186 and 187 each having a plurality of permanent magnets arranged in a predetermined arrangement in the X direction on the inner surface in parallel to the X-axis are installed, and movements including coils are respectively placed between the stators 186 and 187.
  • a Y-axis slider 180 is arranged so as to be movable in the X direction substantially parallel to the Y-axis via the elements 182 and 183.
  • a substrate stage PST is arranged along the Y-axis slider 180 so as to be movable in the Y direction.
  • the substrate stage PST is moved from the mover in the substrate stage PST and the stator (not shown) on the Y-axis slider 180.
  • a Y-axis linear motor that drives in the Y direction is configured, and a pair of X-axis linear motors that drive the substrate stage PST in the X direction are configured from the movers 182 and 183 and the corresponding stators 186 and 187, respectively. ing.
  • These X-axis and Y-axis linear motor isotropic forces constitute the substrate stage drive unit PSTD in Figure 1.
  • the stage 181 of the measurement stage MST is arranged so as to be movable in the X direction via movers 184 and 185 each including a coil between the stators 186 and 187, and the movers 184 and 185 are movable.
  • the corresponding stators 186 and 187 and the force each constitute a pair of X-axis linear motors that drive the measurement stage MST in the X direction.
  • This X-axis linear motor and the like are shown in FIG. 1 as a measurement stage driving device TSTD.
  • FIG. 8 (A) the magnetic field uniform in the Z direction so as to face the inner surface in sequence so as to be stacked in the Z direction, almost parallel to the Y axis at the end of the X direction in FIG.
  • a stator 167 having a U-shaped cross-section in which a plurality of permanent magnets are arranged, and a plate-like stator 171 including a coil wound (arranged) substantially along the X axis; Is fixed, and the mover 166A includes coils wound (arranged) along the Y axis at two locations apart in the Y direction of the measurement table MTB so that they are placed in the lower stator 167.
  • movable table 170 having a U-shaped cross section in which a plurality of permanent magnets are arranged in a predetermined arrangement in the Y direction on the measurement table MTB so that the upper stator 171 is sandwiched in the Z direction is fixed.
  • the lower stator 167, the movers 166A and 166B, and the force also drive the measurement table MTB in the X direction and ⁇ Z direction with respect to the X stage 181 respectively.
  • X-axis voice coil motors 168A and 168B (see FIG. 1)
  • a Y-axis linear motor 169 that drives the measurement table MTB in the Y direction with respect to the X stage 181 is configured from the upper stator 171 and the mover 170.
  • the X-axis reflecting mirror 55CX and the Y-axis reflecting mirror 55CY are fixed in the X direction and + Y direction on the measurement table MTB, respectively, and the X axis so as to face the reflecting mirror 55CX in the X direction.
  • the laser interferometer 56C is installed. Reflector mirrors 55CX and 55CY are represented by reflector mirror 55C in FIG.
  • the laser interferometer 56C is a multi-axis laser interferometer, and the laser interferometer 56C always measures the position in the X direction of the measurement table MTB, the rotation angle in the 0Z direction, and the like.
  • a reflective surface formed by mirroring the side surface of the measurement stage MST may be used.
  • the laser interferometer 56BY for position measurement in the Y direction is shared by the substrate stage PST and the measurement stage MST. That is, the optical axes of the two laser interferometers 56BX and 56C on the X axis are parallel to the X axis through the center of the projection area AR1 of the projection optical system PL (in this example, the optical axis AX in FIG. 1).
  • the optical axis of the Y-axis laser interferometer 56BY passes through the center of the projection area of the projection optical system PL (optical axis AX) and is parallel to the Y axis.
  • the laser beam of the laser interferometer 56BY is irradiated onto the reflecting mirror 55BY of the substrate stage PST, and laser interference A total of 56BY measures the position of the substrate stage PST (substrate P) in the Y direction.
  • the laser beam of the laser interferometer 56BY is The MTB reflector 55CY is irradiated and the position of the measurement table MTB in the Y direction is measured by the laser interferometer 56BY.
  • the position of the substrate stage PST and measurement table MTB can always be measured with high accuracy based on the center of the projection area of the projection optical system PL, and the number of highly accurate and expensive laser interferometers can be reduced. Manufacturing costs can be reduced.
  • Y-axis linear motor for substrate stage PST and Y-axis for measurement table MTB Optical linear encoders (not shown) are arranged along the linear motor 169, and the laser beam of the laser interferometer 56BY is applied to the reflector 55BY or 55CY. During this period, the substrate stage PST Alternatively, the Y-direction position of the measurement table MTB is measured by the linear encoder described above.
  • the two-dimensional position and rotation angle of the measurement table MTB are measured by the laser interferometer 56C and the laser interferometer 56BY (or linear encoder) of Fig. 8 (A), and the measurement results are controlled. Output to device CONT.
  • the control device CONT drives or positions the measurement table MTB in the measurement stage MST by driving the measurement stage drive device TSTD, the linear motor 169, and the voice coil motors 168A and 168B based on the measurement result.
  • the leveling table 188 includes three Z-axis actuators each capable of controlling the position in the Z direction by, for example, an air cylinder or a voice coil motor method, and the upper surface of the measurement table MTB is the projection optical system PL.
  • the leveling table 188 controls the position of the measurement table MTB in the Z direction, the 0 X direction, and the 0 Y direction so that the image plane is focused.
  • an autofocus sensor (not shown) for measuring the position of the test surface such as the upper surface of the substrate P in the projection area AR1 and in the vicinity thereof is provided in the vicinity of the flow path forming member 30.
  • the control device CONT controls the operation of the leveling table 188.
  • an actuator for maintaining the positions of the leveling table 188 in the X direction, the Y direction, and the ⁇ Z direction with respect to the stage portion 181 at predetermined positions is also provided.
  • the autofocus sensor detects the tilt information (rotation angle) in the ⁇ X and ⁇ Y directions by measuring the position information in the Z direction of the test surface at each of the plurality of measurement points.
  • at least a part of the plurality of measurement points may be set in the immersion area LR2 (or the projection area AR1), or all of the measurement points may be set outside the immersion area LR2.
  • the laser interferometers 56B and 56C can measure the position information of the test surface in the Z-axis, 0 X and 0 Y directions
  • the position information in the Z direction is measured during the exposure operation of the substrate P. It is not necessary to provide an autofocus sensor so that it can be used. At least during exposure operation, use the measurement results of the laser interferometers 55B and 55C, Z-axis, 0 and 0 ⁇ directions Even if you control the position of the surface to be tested.
  • the measurement table MTB of this example includes measuring instruments (measuring members) for performing various measurements related to exposure.
  • the measurement table MTB is composed of a measurement table body 159 to which the slider of the linear motor 169 and the reflector 55C are fixed, and a light-transmitting material card having a low expansion coefficient such as quartz glass.
  • Plate 101 made of the following. On the surface of the plate 101, a chrome film is formed over almost the entire surface, and in some places for measuring instruments, JP-A-5-21314 (corresponding to US Pat. No. 5,243,195), etc.
  • a fiducial mark area FM in which a plurality of disclosed fiducial marks are formed is provided.
  • the reference mark area FM on the plate 101 includes a pair of reference marks FM1 and FM2 for the mask alignment sensor 90 in FIG. 1 and the projection optical system PL.
  • a reference mark FM3 for the alignment sensor ALG for the substrate disposed on the side surface of the substrate is formed.
  • the baseline is the distance (positional relationship) between the projection position of the projection area AR1 of the projection optical system PL and the detection position of the alignment sensor ALG. The amount can be measured.
  • the immersion area AR2 is formed on the plate 101.
  • the alignment sensor 90 is used to detect the positional relationship between the mask M mark and the reference marks FM1 and FM2, and the alignment sensor ALG is used to detect the positional information of the alignment mark and reference mark FM3 on the substrate P. Used.
  • the alignment sensors 90 and ALG in this example each detect a mark by an image processing method, but other methods such as a method of detecting diffracted light that also generates a mark force by coherent beam irradiation may be used.
  • Various measurement opening patterns are formed in the measurement area on the plate 101.
  • the measurement aperture pattern include an aerial image measurement aperture pattern (e.g., slit-shaped aperture pattern), illumination unevenness measurement pinhole aperture pattern, illuminance measurement aperture pattern, and wavefront aberration measurement aperture pattern.
  • an aerial image measurement aperture pattern e.g., slit-shaped aperture pattern
  • illumination unevenness measurement pinhole aperture pattern e.g., illuminance measurement aperture pattern
  • wavefront aberration measurement aperture pattern e.g., wavefront aberration measurement aperture pattern.
  • a measuring instrument including a corresponding measuring optical system and a photoelectric sensor is arranged in the measurement table main body 159 on the bottom surface side of these opening patterns.
  • An example of the measuring instrument is disclosed in, for example, Japanese Patent Laid-Open No. 57-117238 (corresponding US Pat. No. 4 , 465, 368) and the like, and projected by the projection optical system PL disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-14005 (corresponding US Patent Application Publication No. 2002Z0041377).
  • An aerial image measuring instrument for measuring the light intensity of the aerial image (projected image) of the pattern for example, an illuminance monitor disclosed in Japanese Patent Application Laid-Open No. 11 16816 (corresponding US Patent Application Publication No. 2002Z0061469), and It is a wavefront aberration measuring instrument disclosed in International Publication No. 99Z60361 pamphlet (corresponding to European Patent No. 1,079, 223).
  • the exposure light EL corresponding to the immersion exposure in which the substrate P is exposed by the exposure light EL through the projection optical system PL and the liquid 1.
  • the exposure light EL is received through the projection optical system PL and the liquid 1.
  • a liquid repellent coat is applied to the surface of the plate 101.
  • at least one of the plurality of measuring instruments and the reference mark are provided as measurement members on the measurement table MTB.
  • the types of measurement members and the Z or number are limited to this. Absent.
  • a transmittance measuring instrument that measures the transmittance of the projection optical system PL, and Z or the liquid immersion mechanism 8 described above, for example, the flow path forming member 30 (or the optical element 2) are observed.
  • a measuring instrument may be provided. Further, only a part of the above-described measuring instrument may be provided on the measurement stage MST, and the rest may be provided outside the measurement stage MST. Further, a member different from the measurement member, for example, a cleaning member for cleaning the flow path forming member 30, the optical element 2, etc. may be mounted on the measurement stage MST. Furthermore, the measurement member, the cleaning member, and the like need not be provided on the measurement stage MST. In this case, for example, when the substrate P is exchanged, the measurement stage MST is arranged to face the projection optical system PL by exchanging with the substrate stage PST in order to maintain the liquid immersion area AR2.
  • a plurality of shot areas are set on the substrate P.
  • the control device CONT in this example monitors the output of the laser interferometer 56B while monitoring the output of the laser interferometer 56B so that the substrate P advances along a predetermined path with respect to the optical axis AX (projection area AR1) of the projection optical system PL.
  • the exposure apparatus EX during scanning exposure by the exposure apparatus EX, a part of the pattern image of the mask M is projected onto the rectangular projection area AR1 by the projection optical system PL, and the mask M moves in the X direction at a speed V in the X direction.
  • the substrate P moves in the X direction at a speed of
  • the scanning exposure process for each shot area is sequentially performed.
  • the control device CONT drives the liquid supply mechanism 10 to perform a liquid supply operation on the substrate surface.
  • the liquid 1 delivered from each of the first and second liquid supply units 11 and 12 of the liquid supply mechanism 10 flows through the supply pipes 11A and 12A, and then is supplied to the flow path forming member 30. It is supplied onto the substrate through the channels 82 ⁇ and 82 ⁇ .
  • the liquid 1 supplied on the substrate ⁇ flows under the projection optical system PL in accordance with the movement of the substrate ⁇ .
  • the liquid 1 moves in the + X direction, which is the same direction as the substrate P, at approximately the same speed as the substrate P.
  • the exposure light EL that has been emitted from the illumination optical system IL and passed through the mask M is irradiated onto the image plane side of the projection optical system PL, whereby the pattern of the mask M is projected onto the projection optical system PL and the immersion area AR2.
  • the substrate P is exposed through the liquid 1.
  • the control device C ONT supplies the liquid 1 onto the substrate P by the liquid supply mechanism 10 when the exposure light EL is irradiated on the image plane side of the projection optical system PL, that is, during the exposure operation of the substrate P. I do.
  • the liquid immersion area AR2 is formed satisfactorily by continuing the supply of the liquid 1 by the liquid supply mechanism 10 during the exposure operation.
  • the control device CONT detects the liquid 1 on the substrate P by the liquid recovery mechanism 20 when the exposure light EL is irradiated on the image plane side of the projection optical system PL, that is, during the exposure operation of the substrate P. Collect.
  • the liquid recovery mechanism 20 continuously recovers the liquid 1 so that the liquid immersion area AR2 Expansion can be suppressed.
  • the liquid supply mechanism 10 simultaneously supplies the liquid 1 onto the substrate P with both side forces of the projection area AR 1 from the supply ports 13 and 14.
  • the supply port 13, 14 The liquid 1 supplied onto the substrate P is between the lower end surface of the optical element 2 at the end of the projection optical system PL and the substrate P, the lower surface of the flow path forming member 30 (first member 31), and the substrate P.
  • the immersion area AR2 is formed in a range wider than at least the projection area AR1.
  • the control device CONT supplies the liquid supply of the first and second liquid supply units 11 and 12 of the liquid supply mechanism 10.
  • the liquid supply amount per unit time supplied from the front of the projection area AR1 may be set larger than the liquid supply amount supplied on the opposite side in the scanning direction by controlling the operation.
  • the amount of liquid that moves in the + X direction side with respect to the projection area AR1 increases, and there is a possibility that a large amount flows out of the substrate P.
  • the liquid 1 moving in the + X direction side is captured by the trap surface 70 provided on the lower surface of the + X side of the flow path forming member 30, it does not flow out or scatter around the substrate P. Convenience can be suppressed.
  • the recovery operation of the liquid 1 by the liquid recovery mechanism 20 is not performed.
  • the flow path of the recovery tube 22 is opened to recover the liquid 1 on the substrate P. May be.
  • the liquid recovery mechanism 20 performs only during a part period (at least part of the stepping period) until the start of exposure of the next shot area.
  • the liquid 1 on the substrate P may be collected.
  • the control device CONT continues the supply of the liquid 1 by the liquid supply mechanism 10 during the exposure of the substrate P.
  • the vibration of the liquid 1 (so-called water hammer phenomenon) that can be satisfactorily filled with the liquid 1 can be satisfactorily filled between the projection optical system PL and the substrate P with the liquid 1. Occurrence can be prevented.
  • the control device CONT moves the measurement stage MST to a position facing the optical element 2 of the projection optical system PL, and forms an immersion area AR2 on the measurement stage MST.
  • the substrate stage PST and the measurement stage MST are moved close to each other, and the other stage is placed opposite to the optical element 2 by exchanging with one stage.
  • the control device CONT is installed in the measurement stage MST with the immersion area AR2 formed on the measurement stage MST.
  • exposure measurement for example, baseline measurement
  • WO 2005Z074014 corresponding Europe (Patent Application Publication No. 1713113), International Publication No. 2006Z013806, etc.
  • the substrate P in FIG. 1 and the liquid 1 in the immersion area AR2 come into contact with each other, some components of the substrate P may be eluted into the liquid 1.
  • the chemically amplified resist is a base resin, a photoacid generator (PAG) contained in the base resin, And an amine-based substance called Quenchia.
  • PAG photoacid generator
  • Quenchia an amine-based substance
  • the base material of the substrate P itself for example, a silicon substrate
  • the liquid 1 some components (silicon or the like) of the base material are contained in the liquid 1 depending on the substances constituting the base material. May elute.
  • the liquid 1 in contact with the substrate P may contain a minute foreign matter such as an impurity generated from the substrate P or a particle having a resist residual force. Liquid 1 may also contain minute foreign matter such as dust and impurities in the atmosphere. Therefore, the liquid 1 recovered by the liquid recovery mechanism 20 may contain foreign matters such as various impurities. Therefore, the liquid recovery mechanism 20 discharges the recovered liquid 1 to the outside. In addition, after at least a part of the collected liquid 1 is cleaned by the internal processing apparatus, the cleaned liquid 1 may be returned to the liquid supply mechanism 10.
  • the exposure apparatus EX of the present example does not perform the exposure of the substrate P, for example, during the period from the exposure of the substrate of one lot to the start of the exposure of the substrate of the next lot, etc.
  • the cleaning process of the substrate stage PST (substrate holder PH) and the measurement stage MST is executed as follows (step S2 shown in FIG. 15).
  • the dummy substrate CP is sucked and held on the substrate holder PH.
  • the liquid 1 is supplied from the liquid supply mechanism 10 (liquid supply units 11 and 12) onto the dummy substrate CP, and the liquid is supplied onto the dummy substrate CP.
  • the immersion area AR2 is formed, and the substrate stage PST and the measurement stage MST are moved along a predetermined path with respect to the immersion area AR2 (flow path forming member 30), and the upper surface of the substrate holder PH on the substrate stage PST and Measurement stage MST measurement table Clean the top surface of MTB.
  • the liquid 1 in the liquid immersion area AR2 is recovered by the liquid recovery mechanism 20 (liquid recovery unit 21) by an amount substantially equal to the supply amount per unit time of the liquid 1 by the liquid supply units 11 and 12.
  • the foreign matter remaining on the substrate holder PH and the measurement table MTB while maintaining the size of the liquid immersion area AR2 in a desired state is mixed into the liquid 1 and recovered by the liquid recovery unit 21.
  • the mask stage MST is stationary during the cleaning process. That is, the cleaning process is common to the exposure process and the point that the substrate stage PST is moved relative to the immersion area AR2, but the exposure stage EL light is not irradiated and the mask stage MST is It differs from the exposure process in that it is stationary!
  • FIGS. 7A and 7B show an example of the movement path (movement locus) of the substrate stage PST relative to the liquid immersion area AR2 during the cleaning of the substrate stage PST.
  • the liquid immersion area AR2 moves relative to the entire surface of the dummy substrate CP along the path 60A on the substrate holder PH of the substrate stage PST in the same manner as in normal scanning exposure.
  • the substrate stage PST moves.
  • the immersion area AR2 is stationary and the substrate 7 (A) and 7 (B), the immersion area AR2 is shown moving on the substrate stage PST for convenience of explanation.
  • the alignment sensor ALG uses, for example, the Enhanst and Global Alignment (EGA) disclosed in Japanese Patent Application Laid-Open No. 61-44429 (corresponding to US Pat. No. 4,780,617).
  • ESA Enhanst and Global Alignment
  • the movement path of the substrate stage PST may be set.
  • the alignment stage AST may be moved at a high speed so that the alignment sensor ALG moves above the substrate P along the path 60B.
  • the substrate stage PST when the substrate stage PST is moved at high speed relative to the liquid immersion area AR2 or moved in a long distance in one direction, foreign matter tends to remain on the substrate stage PST (plate portion 97 of the substrate holder PH).
  • the immersion area AR2 when moving the immersion area AR2 between the substrate stage PST and the measurement stage MST, the immersion area AR2 continues on the substrate holder PH along the path 60C (see Fig. 7) at high speed and continuously in the X direction.
  • the substrate stage PST may be moved relative to the immersion area AR2 so that the immersion area AR2 moves on the substrate holder PH along the path 60C.
  • a path that does not move on the substrate stage PST during normal exposure that is, a path that differs at least in part from the movement path of the immersion area AR2 on the substrate stage PST during exposure.
  • the substrate stage PST may be moved so that the immersion area AR2 moves relatively.
  • resist peeling or the like is likely to occur at the edge portion of the substrate P to be exposed, and foreign matter on the substrate stage PST (substrate holder PH) tends to adhere near the edge of the substrate P.
  • a part of the immersion area AR moves outside the substrate P and moves, so that foreign matter accumulates on the upper surface of the substrate stage PST (plate part 97).
  • the movement path of the substrate stage PST in cleaning may be determined so that the liquid immersion area AR2 moves along the edge of the Mie substrate CP.
  • Figure 7 (B) shows such a travel path 60D.
  • the movement path 60D circulates outside the periphery of the dummy substrate CP.
  • the foreign matter adhering to the vicinity of the edge of the substrate P in the substrate stage PST (substrate holder PH) is effectively removed.
  • movement paths 60A, 60B and Z or 60C as shown in FIG.
  • the movement path of the immersion area AR2 in the cleaning process completely includes the movement path of the immersion area AR2 in the exposure process, and more effective cleaning can be expected.
  • the substrate stage PST is moved so that the liquid immersion area AR2 is formed in the area that does not come into contact with the liquid 1 in normal operation.
  • a route may be determined.
  • the movement path of the substrate stage PST may be determined so that the immersion area AR2 moves relatively only in the area that does not come into contact with the liquid 1, and the immersion area on the substrate stage PST in normal operation.
  • the movement path of the substrate stage PST may be determined so that the immersion area AR2 moves relative to a larger area than the movement range of AR2.
  • the liquid 1 is also sucked by the suction device 50 on the substrate holder PH side.
  • the dummy substrate CP in this example is lyophilic at the end CPc. Therefore, when the immersion area AR2 crosses the boundary between the dummy substrate CP and the plate portion 97 of the substrate holder PH, the dummy substrate CP Liquid 1 mixed with foreign matter flows into the recesses 97a and 97b from the end CPc. Then, since the inflowing liquid 1 is sucked into the suction device 50 from the recovery port 51 and discharged from the substrate holder PH, minute foreign matters such as particles mixed in the liquid 1 are simultaneously discharged.
  • a part of the partition mixed in the liquid 1 from the plate portion 97 is captured by the groove CPn.
  • the suction device 50 may be omitted.
  • the end portion CPc of the dummy substrate CP is also made liquid-repellent, the inflow of the liquid 1 into the recess 97a can be suppressed, so that the suction device 50 need not be provided.
  • the control device CONT cleans the measurement stage MST (steps shown in Fig. 15). S3).
  • the controller CONT brings the measurement table MTB of the measurement stage MST into close contact (or close proximity) to the substrate holder PH on the substrate stage PST.
  • the control device CONT moves the substrate stage PST and the measurement table MTB (measurement stage MST) simultaneously in the + X direction with respect to the immersion area AR2, and the control device CONT in FIG. As shown in B), move immersion area AR2 from substrate stage PST to measurement table MTB.
  • the foreign substance adhering to the measurement table MTB can be cleaned by moving the measurement stage MST so that the immersion area AR 2 moves relative to the entire upper surface of the measurement table MTB. it can .
  • the movement path of the measurement stage MST may be determined so that AR2 moves relatively.
  • A1 By performing the cleaning process of this example as described above, it is possible to remove foreign matter adhering to the substrate holder PH on the substrate stage PST and perform maintenance of the exposure apparatus for immersion exposure. . Therefore, when the dummy substrate CP on the substrate holder PH is subsequently replaced with the substrate P to be exposed and exposed by the immersion method, the amount of foreign matter mixed in the liquid 1 in the immersion area AR2 is reduced. , Defects in the transferred pattern are reduced. Therefore, the yield of manufactured semiconductor devices and the like is improved.
  • A2 In the cleaning process, in this example, the same liquid 1 used during exposure is used as the cleaning liquid supplied to form the immersion area AR2. Therefore, there is an advantage that no new equipment is required. Further, there is no need to clean the flow path such as the flow path forming member 30, and the exposure operation can be started immediately after the cleaning operation.
  • the cleaning liquid for example, an organic solvent such as thinner, or a mixed liquid of these organic solvents and liquid 1 used during exposure may be used. Thereby, the cleaning effect can be enhanced. In the latter case, the organic solvent and the exposure liquid 1 may be supplied to the immersion area AR2 via different flow paths.
  • A3 The substrate stage PST (substrate holder PH) of this example is for holding the substrate P by suction.
  • the holding part PHI is included, and the dummy substrate CP is sucked and held on the holding part PH1 in the cleaning process, so that the cleaning liquid is accidentally sucked into the vacuum system 40 of the holding part PH1. Can be prevented. Also, the holding part PH1 (supporting part 46, etc.) will not get wet with the cleaning liquid.
  • the upper surface portion CPa of the dummy substrate CP is liquid repellent, and in the case where a plurality of lyophilic groove portions CPn are formed on the upper surface portion, a minute size such as a partition is formed in the groove portion CPn. As a result, it is possible to clean the substrate holder PH more efficiently. For this reason, the dummy substrate CP may be replaced with another unused dummy substrate during the cleaning process.
  • an unexposed substrate or the like may be held without applying a resist on the holding portion PH1, for example.
  • the liquid immersion area AR2 and the substrate stage PST may be moved relative to each other so that the liquid immersion area AR2 moves only on the dummy substrate CP (a substrate coated with resist). ,.
  • the flow path forming member 30 can be cleaned.
  • the substrate stage PST substrate holder PH
  • the immersion area AR2 is moved only by the dummy substrate CP.
  • the flow path forming member 30 can be cleaned without contaminating the stage PST (substrate holder PH).
  • the object to be cleaned is not limited to the flow path forming member 30, and other liquid contact members (for example, the optical element 2, etc.) in contact with the liquid 1 in the liquid immersion area AR 2 may be cleaned.
  • the exposure apparatus EX ′ according to the second embodiment of the present invention will be described with reference to FIGS.
  • the same or equivalent components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
  • the liquid supply mechanism 10 supplies the liquid 1 onto the substrate P and the measurement stage MST during the exposure process, and in the cleaning process, Supply cleaning solution 1A on substrate P and measurement stage MST.
  • the exposure apparatus EX ′ of the second embodiment includes a stage side liquid supply mechanism 118 (see FIG. 12) that sprays the cleaning liquid 1B from the substrate stage PST side to the liquid supply port of the liquid supply mechanism 10.
  • the liquid supply mechanism 10 ′ supplies the predetermined liquid 1 or cleaning liquid 1A onto the substrate P.
  • the liquid supply mechanism 10 ′ includes a first liquid supply unit 11 and a second liquid supply unit 12 capable of delivering the liquid 1, and a third liquid capable of delivering a predetermined solvent (for example, thinner or ⁇ -ptyllactone).
  • a predetermined solvent for example, thinner or ⁇ -ptyllactone
  • the second supply pipe 12A in which the supply pipes are combined, the nozzles 11B and 11C for individually opening and closing the supply pipes from the first and third liquid supply parts 11 and 111, and the second and fourth liquid supply parts Valves 12B and 12C that individually open and close the supply pipes from 12 and 121 are provided.
  • Each of the first and second liquid supply units 11 and 12 and the third and fourth liquid supply units 111 and 121 includes a tank for storing the liquid 1 and the solvent, a filter unit, and a pressure pump. Controlled by control unit CONT. The opening / closing operation of the valves 11B to 12C is also controlled by the control device CONT. Note that a part of the liquid supply mechanism 10 ′ may be substituted by equipment such as a factory where the exposure apparatus EX is installed.
  • the exposure apparatus EX When exposing the substrate P by the immersion method, the exposure apparatus EX 'opens the valves 11B and 12B, closes the valves 11C and 12C, and the liquid supply units 11 and 12 in the immersion area AR2.
  • Supply liquid 1 from
  • the opening and closing amounts of the nozzles 11B and 12B and the valves 11C and 12C are controlled to mix the liquid 1 and its predetermined solvent in a predetermined ratio.
  • the liquid 1 is water and the solvent is thinner, a mixed liquid of liquid 1 and thinner can be used as the cleaning liquid 1A.
  • the solvent is ⁇ -butyl lactone
  • the solvent itself may be used as the cleaning liquid 1A.
  • the controller CONT sets the mixing ratio of liquid 1 and its solvent.
  • the liquid recovery mechanism 20 recovers the liquid 1 or the cleaning liquid 1A supplied onto the substrate P (or the cleaning liquid 1B from the stage side liquid supply mechanism 118 in FIG. 12 described later).
  • the control device CONT uses the liquid per unit time for the substrate P or the like by the first and second liquid supply units 11, 12 and the third and fourth liquid supply units 111, 121 ( Liquid 1 or cleaning liquid 1A)
  • the supply amount can be controlled independently.
  • Liquid 1 or cleaning liquid 1A delivered from liquid supply units 11 and 111 or liquid supply units 12 and 121 is supplied Supply port 13 provided on the lower surface of the flow path forming member 30 (first member 31) so as to face the substrate P through the pipes 11A, 12A and the supply flow paths 82A, 82B of the flow path forming member 30. , 14 (see Fig. 3).
  • the liquid recovery operation of the liquid recovery unit 21 is controlled by the control device CONT.
  • the control device C ONT can control the recovery amount of the liquid 1 or the cleaning liquid 1A per unit time by the liquid recovery unit 21.
  • the liquid is recovered by the liquid recovery unit 21 through the recovery flow path 84 and the recovery pipe 22.
  • the flow path forming member 30 is the same as that used in the first embodiment described with reference to FIG.
  • FIG. 11 is a cross-sectional view of the flow path forming member 30 used in the present embodiment, taken along line AA in FIG.
  • piezoelectric ceramics barium titanate-based or lead zirconate titanate-based (such as a so-called PZT)) or a portion of the supply channels 82A and 82B facing the supply ports 13 and 14, respectively.
  • Ultrasonic transducers 112 and 122 such as a flight transducer (magnetostrictive transducer) are provided.
  • the ultrasonic vibrators 112 and 122 are connected to the supply ports 13 and 122 as required under the control of the control device CONT in FIG.
  • supersonic waves S2 and S1 of about 100kHz to lMHz are generated. This can improve the cleaning effect when cleaning is performed using the cleaning liquid 1A.
  • the ultrasonic transducers 112 and 122 are provided in the flow path forming member 30, that is, in the middle of the liquid 1 supply flow path.
  • the same substrate holder PH as in the first embodiment is used.
  • a lyophilic substrate such as a silicon substrate, that is easily compatible with the cleaning liquid 1A is used as the dummy substrate CP.
  • the dummy substrate CP is obtained by applying a liquid repellent treatment for repelling the cleaning liquid A1 to the upper surface portion CPa excluding the end portions (the peripheral portions of the side surface and the upper surface) CPc. That is, the same dummy substrate CP as in the first embodiment is also used in this embodiment.
  • FIGS. 12 and 13 show the suction mechanism and suction mechanism of the substrate holder PH used in the second embodiment.
  • the cleaning liquid 1A is transferred from the second space VP2 to the first surface on the back surface of the dummy substrate CP.
  • the malfunction of the vacuum system 40 that does not flow into 1 space VP1 is prevented.
  • At least a part of the substrate holder PH is subjected to a liquid repellency treatment, and the substrate holder PH has liquid repellency with respect to the liquid 1 and the cleaning liquid 1A.
  • a nozzle portion 113 for ejecting (supplying) the cleaning liquid 1B is embedded in the base material PHB of the substrate holder PH above the plate portion 97, and the nozzle portion 113 is connected to the substrate holder PH.
  • 10 is connected to a fifth liquid supply unit 116 for supplying a solvent similar to the third liquid supply unit 111 in FIG. 10 (for example, a predetermined concentration of thinner or ⁇ -ptyllactone).
  • a valve 115 is provided in the pipe 114.
  • the ultrasonic transducer 117 is disposed at the ejection port of the nozzle unit 113.
  • the ultrasonic wave S3 of about 100kHz to lMHz can be generated.
  • the operations of the fifth liquid supply unit 11 6, the ultrasonic transducer 117, and the valve 115 are also controlled by the control device CONT in FIG. 10, and the nozzle unit 113, the pipe 114, the valve 115, the ultrasonic transducer 117, and the fifth liquid A stage side liquid supply mechanism 118 is configured from the supply unit 116.
  • the solvent from the fifth liquid supply unit 116 is sprayed to the liquid supply ports 13 and 14 of the liquid supply mechanism 10 in FIG.
  • the foreign matter adhering to the supply ports 13 and 14 can be cleaned.
  • the supplied cleaning liquid 1B can be recovered to the liquid recovery mechanism 20 of FIG. 10 from the recovery ports 23A to 23D.
  • the ultrasonic vibrator 117 by operating the ultrasonic vibrator 117 during this cleaning, the supply ports 13 and 14 can be ultrasonically cleaned, and the cleaning effect can be enhanced.
  • other portions of the flow path forming member 30 for example, the recovery port
  • the optical element 2 may be washed.
  • the exposure apparatus EX ′ according to the second embodiment also includes the same measurement stage as the measurement stage shown in FIGS. 8 and 9, but the description thereof is referred to the description of the first embodiment.
  • immersion exposure of the substrate P is performed in the same manner as in the first embodiment (step SS1 in FIG. 16).
  • the exposure apparatus EX ′ performs a substrate stage PST as follows in a period during which the exposure of the substrate P is not performed, for example, until the exposure of the substrate of one lot ends and the exposure of the substrate of the next lot begins. (Substrate holder PH) and measurement stage MST cleaning process is executed. In the cleaning process, first, the dummy substrate CP is sucked and held on the substrate holder PH. Then, with the exposure light EL irradiation stopped, as shown in FIG. 11, the cleaning liquid 1A is supplied onto the dummy substrate CP from the liquid supply units 11, 111, 12, 121 of the liquid supply mechanism 10 ′ of FIG.
  • the liquid immersion area AR2 is formed on the dummy substrate CP, and the substrate stage PST and the measurement stage MST are moved along the predetermined path with respect to the liquid immersion area AR2 (flow path forming member 30).
  • the top surface of the substrate holder PH on the PST and the measurement table MST measurement table The top surface of the MTB is cleaned (steps SS2 and SS3 in Fig. 16).
  • the liquid recovery mechanism 20 uses the liquid recovery mechanism 20 (liquid recovery unit 21) as much as the amount of cleaning liquid 1A supplied by the liquid supply units 11, 111, 12, 121 per unit time. Collect 1 A.
  • the ultrasonic vibrators 112 and 122 of FIG. 11 may be driven to output ultrasonic waves into the cleaning liquid 1A.
  • the Z stage portion of the substrate stage PST in Fig. 10 is driven to drive the substrate holder.
  • the PH may be vibrated with a small amplitude in the Z direction. This may improve the effect of removing foreign substances from the upper part of the substrate holder PH.
  • the exposure light EL may be irradiated when cleaning is performed using the cleaning liquid 1A in FIG. Since the exposure light EL in this example is ultraviolet pulse light, it has a light cleaning action to decompose organic substances. Therefore, by adding light cleaning action by exposure light EL, The cleaning efficiency may be improved.
  • the measurement table MTB may be vibrated in the Z direction, or light cleaning with exposure light EL may be used in combination.
  • the cleaning solution 1B is sprayed upward from the nozzle unit 113, and the cleaning solution 1B is transferred to the liquid collection mechanism 20 in FIG.
  • the cleaning effect can be enhanced by operating the ultrasonic vibrator 117 of FIG. 13 and using ultrasonic cleaning together.
  • the foreign matter adhering to the substrate holder PH on the substrate stage PST or the bottom surface of the flow path forming member 30 such as the supply ports 13, 14 is used as a solvent. It can be easily removed by a solvent. Therefore, after that, when the dummy substrate CP on the substrate holder PH is replaced with the substrate P to be exposed and exposed by the immersion method, the amount of foreign matter mixed in the liquid 1 in the immersion area AR2 is reduced and the transfer is performed. Pattern defects are reduced. Therefore, the yield of manufactured semiconductor devices and the like is improved.
  • the substrate stage PST (substrate holder PH) has a holding portion PH1 for sucking and holding the substrate P, and in the cleaning process, the dummy substrate CP is placed on the holding portion PH1.
  • the cleaning liquid 1A can be prevented from being accidentally sucked into the vacuum system 40 of the holding part PH1. Also, the holding part PH1 is not wetted with the cleaning liquid 1A.
  • the part excluding the edge part (end part CPc) on the upper surface of the dummy substrate CP is liquid repellent.
  • the cleaning liquid 1A that has flowed to the back side of the dummy substrate CP through the edge portion is collected from the substrate holder PH side. Therefore, the entire surface of the substrate holder PH can be cleaned more efficiently.
  • an unexposed substrate on which no resist is applied may be held on the holding portion PH1.
  • the liquid immersion area AR2 and the substrate stage PST are relatively moved so that the liquid immersion area AR2 moves only on the dummy substrate CP (the substrate on which the resist is applied).
  • the flow path forming member 30 can be cleaned.
  • the substrate stage PST substrate holder PH
  • the substrate stage PST is moved by moving the liquid immersion area AR2 only with the dummy substrate CP.
  • the object to be cleaned is not limited to the flow path forming member 30, and other liquid contact members (for example, the optical element 2) that come into contact with the liquid 1 in the liquid immersion area AR2 may be cleaned.
  • the cleaning effect can be enhanced by performing optical cleaning by irradiating the exposure stage EL to the substrate stage PST or the measurement stage MST side directly through the projection optical system PL.
  • Light cleaning can also be used in the first embodiment.
  • the cleaning effect can be enhanced by vibrating the upper surface of the substrate stage PST (and / or the measurement stage MST) in the optical axis direction of the projection optical system PL.
  • the cleaning effect can also be enhanced by adding ultrasonic cleaning in which the cleaning liquid 1A or 1B is vibrated ultrasonically in the cleaning step.
  • ultrasonic cleaning may be performed by the ultrasonic vibrators 112 and 122 in a state where the same liquid 1 as that at the time of exposure is supplied to the liquid immersion area AR2.
  • ultrasonic cleaning may be performed by the ultrasonic vibrator 117 in the state where the same liquid 1 as that used during exposure is used as the cleaning liquid 1B. In these cases, a solvent is not mixed in the cleaning liquid, but a high cleaning effect can be obtained by ultrasonic cleaning.
  • the immersion area AR2 By moving the measurement stage MST, the upper surface of the measurement table MTB is also cleaned. Therefore, it is possible to reduce the amount of foreign matter mixed into the liquid 1 in the immersion area AR2 when measuring the imaging characteristics of the projection optical system PL or when measuring the baseline amount. Even if the immersion area AR2 is moved onto the substrate stage PST after the measurement operation by the measurement stage MST and the substrate P is exposed, it is included in the liquid 1 of the immersion area AR2 formed on the substrate P. Foreign matter can be reduced.
  • the second embodiment supplies a cleaning liquid to the liquid immersion area AR2 by the third and fourth liquid supply section 111, 121, although the cleaning liquid is supplied from the fifth liquid supply section 116, the third and Instead of supplying the solvent by the fourth liquid supply units 111 and 121, only the liquid 1 used for the immersion exposure may be supplied to the immersion area AR2, and the cleaning liquid may be supplied only from the fifth liquid supply unit 116. .
  • the liquid supply mechanism 118 is provided on the substrate stage PST.
  • the liquid supply mechanism 118 may be provided on another movable member (movable body) different from the substrate stage PST, for example, the measurement stage MST. Good.
  • a part of the liquid supply mechanism 118 (for example, the fifth liquid supply unit 116) may be replaced by another liquid supply mechanism (111, etc.).
  • the member (112, 121, 117) for vibrating the cleaning liquids 1A, IB (or liquid 1) is not limited to the ultrasonic vibrator, and other members may be used.
  • the cleaning process of the first and second embodiments may be performed during a period when the exposure process using the exposure apparatuses EX and EX ′ of FIG. 1 is completed, for example, at night.
  • the curved line ⁇ J1 in Fig. 14 (A) indicates the substrate stay in Fig. 1 in the most recent exposure process (during scanning exposure).
  • Fig. 14B shows an example of changes in the movement speed VPX of the PST in the X direction (scanning direction).
  • the solid line curve J3 in Fig. 14 (B) indicates the Y direction (non-scanning direction) of the substrate stage PST corresponding to the movement speed VPX. Direction)) of movement speed VPY (movement speed during step movement).
  • the dummy substrate CP in FIG. 5 is loaded on the substrate stage PST in FIG. 1 or FIG.
  • Liquid 1 is supplied from the liquid supply mechanism 10 onto the plate portion 97 to form the immersion area AR2, and is indicated by the dotted curve 2 in FIG. 14 (A) and the dotted curve 4 in FIG. 14 (B).
  • the substrate stage PST is moved in the X direction and Y direction at a higher speed than in the most recent exposure with respect to the immersion area AR2.
  • the maximum values of the moving speeds VPX and VPY in the cleaning process are approximately V PX2 and VPY2 (see curves ⁇ J2, J4), and these speeds are approximately twice the maximum values VPX1 and VPY1 during exposure.
  • the maximum value VPX1 of the movement speed in the scanning direction of the substrate stage PST is within a predetermined range in order to maintain the synchronization accuracy between the mask stage RST and the substrate stage PST and stably drive at a predetermined speed. Set to within.
  • the maximum values VPX2 and VPY2 of the movement speed of the substrate stage PST at the time of cleaning can be easily increased to near the limit of the specifications of the exposure apparatus.
  • the liquid 1 such as the upper surface of the substrate stage PST, the bottom surface of the flow path forming member 30, the liquid supply port, and the liquid recovery port is transferred to
  • foreign matter adhering to at least a part of the contacting part (wetted part) can be removed more reliably.
  • the liquid recovery mechanism 20 of FIG. 1 as an example, the foreign matter can be recovered in the liquid recovery portion 21 in a state where the foreign matter is mixed in the liquid.
  • the substrate stage PST is driven at a higher speed than during exposure.
  • the substrate stage PST may be driven in the X direction and the Z or Y direction at a higher acceleration than during exposure. Even in this case, there is a case where the foreign matter adhering to the wetted part can be more reliably removed.
  • the substrate stage PST may be irregularly moved in the X direction and the Y direction with respect to the immersion area AR2.
  • the measurement stage MST may be driven by increasing the speed and Z or acceleration compared to the exposure time.
  • the dummy substrate CP of FIG. 5 is loaded on the substrate stage PST of FIG. 1 (and FIG. 11), and the liquid 1 is supplied from the liquid supply mechanism 10 onto the dummy substrate CP.
  • the immersion area AR2 is formed, and the substrate stage PST is driven in the Z direction as indicated by the arrow HZ in FIG. 4, and the dummy substrate CP (substrate holder PH) is moved in the Z direction with respect to the immersion area AR2. It may be vibrated.
  • the Z direction movement stroke ⁇ Z2 of the substrate stage PST in the cleaning process is set to the Z direction movement stroke ⁇ ⁇ 1 of the substrate stage PST (substrate P) for autofocus during the most recent exposure.
  • the cleaning process instead of widening the movement stroke ⁇ 2 in this way, or along with the operation to widen the movement stroke, the movement speed and Z or acceleration of the substrate stage PST in the Z direction are made larger than those during exposure. May be. Even in this case, the foreign matter adhering to the wetted part may be more reliably removed.
  • the tilt angle around the X and Y axes of the substrate holder PH changes faster than during exposure. The leveling operation to be performed may be executed.
  • the measurement stage MST instead of the substrate stage PST, the measurement stage MST may be arranged facing the optical element 2 and the measurement table MTB may be moved in the Z direction.
  • the first mode in which the normal exposure operation is performed is added to the control program of the control device CONT in Figs.
  • the second mode in which the substrate stage PST is driven in the X direction and the Y direction (direction perpendicular to the optical axis of the exposure light EL) so that the speed and Z or acceleration are larger than in the first mode, and in the above cleaning process, The travel stroke and Z or speed will be larger than in the first mode.
  • a third mode for driving the substrate stage PST in the Z direction (a direction parallel to the optical axis of the exposure light EL) may be provided.
  • the measurement table ⁇ of the measurement stage MST and the substrate stage PST are brought into contact with each other almost in the X direction, and the boundary between the measurement table ⁇ and the substrate stage PST is formed.
  • the substrate stage PST and the measurement table ⁇ may be oscillated in the ⁇ direction with opposite phases while the immersion area AR2 is formed so as to include. That is, the movement of the substrate stage PST in the -Y direction and the measurement table MTB in the + Y direction as indicated by solid arrows HP1, HM1, and the substrate stage as indicated by dotted arrows HP2, HM2.
  • the operation of moving PST in the + Y direction and moving the measurement table MTB in the Y direction may be alternately repeated. Even in this case, there is a case where the foreign matter adhering to the wetted part (here, including the upper surface of the measurement table MTB) can be more reliably removed.
  • the cleaning process of each of the above embodiments is performed to perform maintenance of the liquid supply mechanism 10 (10 ′) and the liquid recovery mechanism 20 of the exposure apparatuses EX and EX ′ shown in FIGS. It's okay.
  • the maintenance may be performed periodically, for example.
  • a particle counter (not shown) that counts the number of particles (foreign matter) in the liquid recovered from the liquid immersion area AR2 is provided in the liquid recovery unit 21 of FIGS. If the count value of the particle counter per unit flow (the amount of foreign matter) exceeds a predetermined tolerance level, maintenance may be performed.
  • the substrate stage is provided via the flow path forming member 30 in addition to the liquid supply mechanism 10 (10 ') in FIGS.
  • Liquid 1 is supplied onto the PST (eg, covered with a dummy substrate CP) or the measurement stage MST to form the immersion area AR2, and in this state, the substrate stage PST or the measurement stage MST is moved in the X direction, Y Move or vibrate in the direction and Z or Z direction.
  • the liquid 1 in the liquid immersion area AR2 is recovered by the liquid recovery mechanism 20 via the flow path forming member 30.
  • the liquid recovery mechanism 20 As a result, foreign matter adhering to at least a part of the wetted part is removed, and in the subsequent exposure process, the foreign matter in the immersion area AR2 is reduced, resulting in high accuracy. Can be exposed.
  • the movement stroke, speed, And at least one of the accelerations may be increased.
  • the measurement stage MST As shown in Fig. 9 (A), the substrate stage PST and the measurement table MTB are almost in contact with each other, and the immersion stage AR2 is formed so as to include the boundary portion.
  • the measurement table MTB may be vibrated in the opposite phase.
  • the cleaning of the measurement stage MST is performed after the cleaning of the substrate stage PST.
  • the measurement stage MST may be cleaned, and then the substrate stage PST may be cleaned.
  • the substrate stage PST and the measurement stage MST are not sequentially cleaned.
  • the substrate stage PST and the measurement stage MST are brought into close contact (or close). In this state, the substrate stage PST and the measurement stage MST may be cleaned.
  • the force of performing both the substrate stage PST and the measurement stage MST in a single cleaning process Yo ...
  • the substrate stage PST (and Z or measurement stage MST) is driven to make the substrate stage PST (and Z or measurement stage MST) and the liquid immersion area AR2 relative to each other.
  • the immersion region AR2 may be moved on the stationary substrate stage PST (and Z or measurement stage MST) by moving the flow path forming member 30.
  • the position information of the mask stage RST, the substrate stage PST, and the measurement stage MST is measured using the interferometer system (56A to 56C). You may use the encoder system which detects the scale (diffraction grating) provided in each stage.
  • a hybrid system that has both an interferometer system and an encoder system, and use the measurement results of the interferometer system to perform calibration of the measurement results of the encoder system.
  • the position of the stage may be controlled.
  • the substrate holder PH may be formed integrally with the substrate stage PST, or the substrate holder PH and the substrate stage PST are separately configured, and the substrate holder PH is formed by, for example, vacuum suction. It may be fixed to the substrate stage PST.
  • the present invention can also be applied to an exposure apparatus (an exposure apparatus that does not include the measurement stage MST) in which various measuring instruments (measuring members) are mounted on the substrate stage PST.
  • various measuring instruments may be mounted on the measurement stage MST or the substrate stage PST, and the rest may be provided on the outside or on another member.
  • the cleaning liquid supplied from the liquid supply mechanisms 10, 10 ′ (liquid supply units 11, 12) is used as the liquid recovery mechanism 20 (liquid recovery unit 21). And collected by suction device 50. Accordingly, the substrate stage PST and the measurement stage MST upper force can also prevent foreign matter removed together with the liquid 1 from remaining in another place.
  • water pure water
  • a liquid other than water may be used.
  • the light source of the exposure light EL is F laser (wavelength 157nm
  • the liquid 1 may be a fluorinated fluid such as fluorinated oil or perfluorinated polyether (PFPE).
  • PFPE perfluorinated polyether
  • the liquid 1 is stable to the resist applied to the projection optical system PL or the substrate P surface that is transparent to the exposure light EL and has a refractive index as high as possible (for example, It is also possible to use (cedar oil).
  • a liquid having a higher refractive index than that of quartz or fluorite (a refractive index of about 1.6 to 1.8) may be used.
  • the optical element 2 may be formed of a material having a refractive index higher than that of quartz or fluorite (for example, 1.6 or more).
  • a microdevice such as a semiconductor device includes a step 201 for performing a function / performance design of the microdevice, a step 202 for manufacturing a mask (retinal) based on the design step, Step 203 of manufacturing a substrate which is a base material of the device, a step of exposing the mask pattern onto the substrate by the exposure apparatus EX, EX ′ of the above-described embodiment, a step of developing the exposed substrate, heating of the developed substrate ( Substrate processing step 204 including curing and etching processes, device assembly step (including processing processes such as dicing process, bonding process, and packaging process) 205, and inspection step 2 Manufactured through 06 etc.
  • the types of the exposure apparatuses EX and EX ' are not limited to the exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on the substrate P, but the exposure apparatus for manufacturing a liquid crystal display element or display, It can be widely applied to thin film magnetic heads, micromachines, MEMS, DNA chips, imaging devices (CCD), or exposure equipment for manufacturing reticles or masks.
  • the substrate P in each of the above embodiments is not limited to a semiconductor wafer for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic wafer for a thin film magnetic head, or a mask used in an exposure apparatus. Reticle masters (synthetic quartz, silicon wafers) or film members are used. Further, the shape of the substrate P is not limited to a circle but may be other shapes such as a rectangle. In each of the above embodiments, force using a mask on which a transfer pattern is formed. Instead of this mask, exposure is performed as disclosed in, for example, US Pat. No. 6,778,257. Based on the electronic data of the power pattern V, you can also use an electronic mask that forms a transmissive or reflective pattern.
  • This electronic mask is also called a variable shaping mask (active mask or image generator), and includes, for example, DMD (Digital Micro-mirror Device) which is a kind of non-light emitting image display element (spatial light modulator). .
  • the DMD has a plurality of reflecting elements (micromirrors) that are driven based on predetermined electronic data, and the plurality of reflecting elements are arranged in a two-dimensional matrix on the surface of the DMD and driven in element units. Reflect and deflect exposure light. The angle of the reflecting surface of each reflecting element is adjusted.
  • the operation of the DMD can be controlled by the control device CONT.
  • the control device CONT drives the DMD reflecting element based on the electronic data (pattern information) corresponding to the pattern to be formed on the substrate P, and patterns the exposure light irradiated by the illumination system IL with the reflecting element.
  • mask replacement work and mask alignment on the mask stage can be performed when the pattern is changed. Since it becomes unnecessary, the exposure operation can be performed more efficiently.
  • the substrate may be moved only in the X-axis and Y-axis directions by the substrate stage without providing a mask stage. Note that the exposure apparatus using DMD is the above-mentioned US patent.
  • a step-and-scan type scanning exposure apparatus that performs scanning exposure of the pattern of the mask M by synchronously moving the mask M and the substrate P is used.
  • it can also be applied to a step-and-repeat projection exposure apparatus (stepper) in which the pattern of mask M is exposed at once with mask M and substrate P stationary, and substrate P is sequentially moved stepwise. it can.
  • the exposure apparatus of the present invention and the exposure apparatus to which the exposure method and the maintenance method of the present invention are applied do not necessarily have to have a projection optical system. It suffices to provide an optical member that guides the exposure light from the light source power to the substrate as long as the present invention can be carried out.
  • an illumination optical system and a light source may be provided separately from the exposure apparatus.
  • the mask stage and the Z or substrate stage can be omitted depending on the exposure method as described above and the embodiment of the present invention.
  • the present invention is disclosed in, for example, JP-A-10-163099, JP-A-10-214783 (corresponding US Pat. Nos. 6,341,007, 6,400,441, 6,549,269 and 6,590, 634), JP 2000-505958 (corresponding US Pat. No. 5,969,441) or US Pat. No. 6,208,407, etc.
  • the present invention can also be applied to a multi-stage type exposure apparatus equipped with a substrate stage. In this case, cleaning is performed for each of the plurality of substrate stages.
  • the disclosure of the above-mentioned US patent is incorporated as part of the description of the text.
  • the projection optical system of each embodiment described above has a force that fills the optical path space on the image plane side of the optical element at the tip with a liquid, for example, as disclosed in International Publication No. 2004Z019128, It is also possible to employ a projection optical system in which the optical path space on the mask side of the tip optical element is filled with liquid.
  • the present invention can also be applied to an immersion type exposure apparatus in which an immersion area between the projection optical system and the substrate is held by an air curtain around the projection area.
  • the present invention provides a line 'and' spacer on the substrate P by forming interference fringes on the substrate P as disclosed in, for example, WO 2001Z035168.
  • the present invention can also be applied to an exposure apparatus that forms a source pattern. Also in this case, the exposure light is irradiated to the substrate P through the liquid between the optical member and the substrate P.
  • the liquid supply unit and the Z or liquid recovery unit do not need to be provided in the exposure apparatus.
  • facilities such as a factory in which the exposure apparatus is installed may be substituted.
  • the structure necessary for immersion exposure is not limited to the above-described structure.
  • the immersion mechanism of the immersion exposure apparatus and its accessories are part of the description of the text, using the disclosure of the above-mentioned U.S. patents or U.S. patent publications to the extent permitted by the laws of the designated country or selected country. And
  • a liquid having a higher refractive index with respect to exposure light than water for example, a refractive index of about 1.6 to 1.8 may be used.
  • a liquid having a refractive index higher than that of pure water for example, 1.5 or more
  • isopropanol having a refractive index of about 1.50 for example, isopropanol having a refractive index of about 1.50, glycerol (glycerin) having a refractive index of about 1.61, etc.
  • liquids having C—H or O—H bonds predetermined liquids (organic solvents) such as hexane, heptane, decane, etc., or decalin (Decalin: Decahydronaphthalene) having a refractive index of about 1.60.
  • Liquid 1 may be a mixture of any two or more of these liquids, or it may be a mixture of at least one of these liquids in pure water (mixed). Further, the liquid 1, H + in the pure water, Cs +, K +, Cl _, SO 2_, base or acid such as PO 2_
  • Liquid 1 includes projection optical system PL that has a small light absorption coefficient and low temperature dependence, and a photosensitive material (or topcoat film or antireflection film, etc.) applied to the surface of Z or substrate P. It is preferable that it is stable against A supercritical fluid can be used as the liquid 1. Further, the substrate P can be provided with a top coat film for protecting the photosensitive material or the base material from the liquid. [0138] Further, instead of calcium fluoride (fluorite), the optical element (terminal optical element) 2 of the projection optical system PL is replaced by, for example, quartz (silica), barium fluoride, strontium fluoride, or lithium lithium.
  • a single crystal material of a fluorinated compound such as sodium fluoride, or a material having a refractive index higher than that of quartz or fluorite eg, 1.6 or more.
  • a material having a refractive index higher than that of quartz or fluorite eg. 1.6 or more
  • the material having a refractive index of 1.6 or more include sapphire, germanium dioxide, etc. disclosed in International Publication No. 2005Z059617, or disclosed in International Publication No. 2005/059618, Potassium chloride (refractive index is about 1.75) can be used.
  • the terminal optical in addition to the optical path on the image plane side of the terminal optical element, the terminal optical
  • the optical path on the object plane side of the element may be filled with liquid.
  • a thin film having lyophilicity and Z or a dissolution preventing function may be formed on a part (including at least a contact surface with the liquid) or the entire surface of the terminal optical element. Quartz has a high affinity for liquids and does not require a dissolution preventing film, but fluorite preferably forms at least a dissolution preventing film.
  • a DFB semiconductor laser using an ArF excimer laser as a light source of exposure light EL is used as a light source of exposure light EL.
  • a harmonic generator that outputs pulsed light having a wavelength of 193 nm may be used, including a solid-state laser light source such as a fiber laser, an optical amplification unit having a fiber amplifier, and a wavelength conversion unit.
  • the projection area is rectangular, but other shapes such as an arc, trapezoid, parallelogram, or rhombus may be used.
  • two mask patterns are formed on the basis of a projection optical system.
  • the present invention can also be applied to an exposure apparatus that combines on a plate and performs double exposure of one shot area on the substrate almost simultaneously by one scanning exposure.
  • the present invention is not limited to the above-described embodiment, and can have various configurations without departing from the gist of the present invention.
  • the exposure apparatuses EX and EX 'of the present embodiment are included in the scope of claims of the present application.
  • various subsystems including each component are manufactured by assembling so as to maintain a predetermined mechanical accuracy, electrical accuracy, and optical accuracy.
  • various optical systems are adjusted to achieve optical accuracy
  • various mechanical systems are adjusted to achieve mechanical accuracy
  • various electrical systems Adjustments are made to achieve electrical accuracy.
  • Various subsystem powers The assembly process to the exposure equipment includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. It is desirable to manufacture the exposure apparatus in a clean room where the temperature and cleanliness are controlled.
  • the exposure method and the device manufacturing method of the present invention the amount of foreign matter in the liquid in the liquid immersion area is reduced, so that the yield of manufactured devices is improved. Therefore, the present invention will contribute significantly to the development of precision equipment industry including Japan's semiconductor industry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 露光方法は、投影光学系PLの像面側で移動する基板ステージPST上の基板ホルダPHに基板Pを保持し、液体供給機構10から供給される液体1を用いて投影光学系PLの像面側に液浸領域AR2を形成し、露光光ELで投影光学系PLと液浸領域AR2とを介して基板Pを露光する。基板Pの露光を行わない期間中に、液浸領域AR2と基板ステージPSTとを相対移動して基板ホルダPH上部を洗浄するとともに、液浸領域AR2と計測ステージMSTとを相対移動して、計測ステージMST上部を洗浄する。洗浄時に液浸領域AR2を形成する液体として洗浄液を用い得る。液浸法で露光を行う際に、液体中への異物の混入を抑制して高解像度の液浸露光を高いスループットで実行することができる。

Description

明 細 書
露光方法及び装置、メンテナンス方法、並びにデバイス製造方法 技術分野
[0001] 本発明は、液体を介して露光ビームで基板を露光する露光技術、この露光技術を 用いる露光装置のメンテナンス技術、及びその露光技術を用いるデバイス製造技術 に関する。
背景技術
[0002] 半導体デバイス及び液晶表示デバイス等のマイクロデバイス (電子デバイス)は、レ チクル等のマスク上に形成されたパターンをレジスト (感光材料)が塗布されたウェハ 等の基板上に転写する、所謂フォトリソグラフィの手法により製造される。このフォトリソ グラフイエ程にぉ 、て、マスク上のパターンを投影光学系を介して基板上に転写する ために、ステップ 'アンド'リピート方式の縮小投影型の露光装置 (いわゆるステッパー )、及びステップ'アンド'スキャン方式の縮小投影型の露光装置 (いわゆるスキヤニン グ 'ステッパー)等の露光装置が使用されている。
[0003] この種の露光装置では、半導体デバイス等の高集積ィ匕によるパターンの微細化に 伴って、年々より高い解像度 (解像力)が要求されるのに応えるために、露光光の短 波長化及び投影光学系の開口数 (NA)の増大 (大 NA化)が行われて来た。しかる に、露光光の短波長化及び大 NA化は、投影光学系の解像度を向上させる反面、焦 点深度の狭小化を招くため、このままでは焦点深度が狭くなり過ぎて、露光動作時の フォーカスマージンが不足する恐れがある。
[0004] そこで、実質的に露光波長を短くして、かつ空気中に比べて焦点深度を広くする方 法として、液浸法を利用した露光装置が開発されている (例えば、特許文献 1参照)。 この液浸法は、投影光学系の下面と基板表面との間を水又は有機溶媒等の液体で 満たして液浸領域を形成した状態で露光を行う。これによつて液体中での露光光の 波長が空気中の lZn倍 (nは液体の屈折率で、例えば 1. 2〜1. 6程度)になることを 利用して解像度を向上できるとともに、焦点深度を約 n倍に拡大することができる。 特許文献 1:国際公開第 99Z49504号パンフレット 発明の開示
発明が解決しょうとする課題
[0005] 上記の如く液浸法を用いて露光処理を行う場合、露光対象の基板を保持して移動 する基板ステージ上に微細な異物が付着して 、ると、液浸領域に対して基板ステー ジ上を移動する際にその異物が液体中に混入する恐れがある。そのように液体中に 混入した異物が基板上に付着すると、転写されるパターンに形状不良等の欠陥が生 じる恐れがある。
[0006] 本発明は斯かる事情に鑑み、液浸法で露光を行う際に、液体中に混入する異物の 量を減少できる露光技術、メンテナンス技術、及びデバイス製造技術を提供すること を第 1の目的とする。本発明の第 2の目的は、液浸法で露光を行うために、液体が接 触する部材 (例えば、基板ステージ等)に付着した異物を効率的に除去できる露光技 術、メンテナンス技術、及びデバイス製造技術を提供することである。
課題を解決するための手段
[0007] 本発明の第 1の態様に従えば、基板 (P)を露光する露光方法であって:基板ステー ジ (PHなど)に保持された基板 (P)上に液浸領域 (AR2)を形成し、露光光でその液 浸領域の液体を介してその基板を露光することと、その基板の露光を行わない期間 中に、その液浸領域とその基板ステージとを相対移動して、その基板ステージを洗浄 することを含む露光方法が提供される。
[0008] 本発明の第 2の態様に従えば、光学部材 (2)及び液体(1)を介して露光光で基板 ( P)を露光する露光方法であって、液体と接触する可動部材 (PHなど)を光学部材と 対向して配置することと、光学部材と可動部材との間に形成される洗浄用液体の液 浸領域 (AR2)と可動部材とを相対移動して、可動部材を洗浄することを含む露光方 法が提供される。
[0009] 本発明の第 3の態様に従えば、液体(1)を介して露光光で基板 (P)を露光する露 光装置であって、基板 (P)を保持する基板ステージ (PHなど)と、基板 (P)上に液体 を供給して液浸領域 (AR2)を形成する液浸機構( 10など)と、その基板の露光を行 わな 、期間中に基板ステージを洗浄するために、液浸領域と基板ステージを相対移 動する制御装置 (CONTなど)とを備えた露光装置 (EX)が提供される。 [0010] 本発明の第 4の態様に従えば、光学部材 (2)及び液体(1)を介して露光光で基板( P)を露光する露光装置であって、光学部材と対向して配置されかつ液体と接触する 可動部材 (PHなど)と、光学部材と可動部材との間に洗浄用液体の液浸領域 (AR2 )を形成する液浸機構(10など)と、可動部材を洗浄するために、液浸領域と可動部 材とを相対移動する制御装置 (CONTなど)と、を備える露光装置 (EX)が提供され る。
[0011] 本発明の第 5の態様に従えば、基板ステージ (PHなど)に保持された基板 (P)上に 液浸領域 (AR2)を形成し、露光光でその液浸領域の液体を介してその基板を露光 する露光装置のメンテナンス方法であって、その液浸領域への液体の供給及び回収 の少なくとも一方を行う液浸部材(30)に対向して基板ステージを配置することと、そ の基板の露光を行わな 、期間中に、その液浸領域とその基板ステージとを相対移動 して、その液浸部材及びその基板ステージの少なくとも一方を洗浄することを含むメ ンテナンス方法が提供される。
[0012] 本発明の第 6の態様に従えば、光学部材 (2)及び液体(1)を介して露光光で基板( P)を露光する露光装置のメンテナンス方法であって、液体と接触する可動部材 (PH など)を光学部材と対向して配置することと、光学部材と可動部材との間に形成される 洗浄用液体の液浸領域 (AR2)と可動部材とを相対移動して、可動部材を洗浄する こととを含むメンテナンス方法が提供される。
[0013] 本発明の第 7の態様に従えば、基板 (P)を露光する露光方法であって、基板ステ ージ (PHなど)に保持される基板上で露光光 (EL)の光路空間を液体(1)で満たす とことと、露光光 (EL)で液体を介して基板を露光すること(S1)と、基板の露光を行わ ない期間中に、基板ステージ (PST)上に超音波で振動した洗浄用の液体( 1 A)を 供給すること (S2)を含む露光方法が提供される。
[0014] 本発明の第 8の態様に従えば、基板 (P)を露光する露光方法であって、基板ステ ージに保持される基板上で露光光 (EL)の光路空間を液浸機構(10など)によって 液体で満たすことと、露光光で液体を介して基板を露光すること (SS1)と、基板の露 光を行わない期間中に、液浸機構の液体の供給口(13, 14)及び回収口(23A— 2 3D)の少なくとも一方に洗浄用の液体(1A)を供給すること(SS2)を含む露光方法 が提供される。
[0015] 本発明の第 9の態様に従えば、液体(1)を介して露光光で基板 (P)上の複数の領 域を露光する露光方法であって、基板を保持した可動体 (PH)を第 1経路 (60A)で 移動しながら、複数の領域のそれぞれを液体を介して露光すること (Sl、 SSI)と、ダ ミー基板を保持した可動体を、第 1経路とは異なる第 2経路 (60B、 60C、 60D)で移 動すること〖こよって、可動体を液体又は洗浄液で洗浄する(S2、 SS2)ことを含む露 光方法が提供される。
[0016] 本発明の第 10の態様に従えば、基板 (P)を露光する露光装置 (EX)であって、基 板ステージ (PHなど)に保持される基板上で露光光の光路空間を液体で満たす液 浸機構 (10など)と、液浸機構の液体の供給口の近傍に設けられた超音波振動子(1 12, 122)と、基板の露光を行わない期間中に、基板ステージ上に超音波振動子に よる超音波で振動した洗浄用の液体を供給するように超音波振動子(112, 122)を 制御する制御装置 (CONT)とを備える露光装置 (ΕΧ' )が提供される。
[0017] 本発明の第 11の態様に従えば、基板を露光する露光装置 (ΕΧ' )であって、基板 ステージに保持される基板上で露光光の光路空間に液体を供給する第 1液体供給 機構(10)を含む液浸機構と、基板ステージ側に設けられ、洗浄用の液体を供給する 第 2液体供給機構 ( 12)と、洗浄用の液体を超音波で振動させる超音波振動子(117 )と、基板の露光を行わない期間中に、液浸機構の液体の供給口(13, 14)及び回 収ロ(23A—23D)の少なくとも一方に超音波振動子(117)による超音波で振動し た洗浄用の液体(1A)を供給するように超音波振動子を制御する制御装置 (CONT )とを備える露光装置 (ΕΧ' )が提供される。
[0018] 本発明の第 12の態様に従えば、液体(1)を介して基板 (Ρ)を露光する露光装置で あって、基板ステージ (ΡΗなど)に保持される基板上で露光光の光路空間を液体で 満たす液浸機構 (10など)と、基板の露光を行わない期間中に、液浸機構の前記液 体の供給口及び回収口の少なくとも一方に洗浄用の液体を供給する装置(12)とを 備える露光装置 (ΕΧ' )が提供される。
[0019] 本発明の第 13の態様に従えば、光学部材 (2)及び液体(1)を介して露光光で基 板 (Ρ)を露光する露光装置であって、光学部材と対向して配置される可動部材 (ΡΗ など)と、可動部材に設けられる振動子(117)を有し、液体(1)と接触する部材 (30な ど)を、振動子によって振動される洗浄用の液体(1又は 1A)で洗浄する洗浄装置(1 18など)と、を備える露光装置 (ΕΧ' )が提供される。
[0020] 本発明の第 14の態様に従えば、本発明の露光方法又は露光装置 (ΕΧ, ΕΧ' )を 用いて基板を露光すること(204)と、露光した基板を現像すること(204)と、現像した 基板を加工すること (205)とを含むデバイス製造方法が提供される。
[0021] なお、以上の本発明の所定要素に付した括弧付き符号は、本発明の一実施形態 を示す図面中の部材に対応しているが、各符号は本発明を分力り易くするために本 発明の要素を例示したに過ぎず、本発明をその実施形態の構成に限定するもので はない。
発明の効果
[0022] 本発明によれば、例えばその液浸領域に対してその基板ステージを移動すること で、その基板ステージ及び Ζ又は液浸部材に付着して 、る異物を除去することがで きる。従って、その後、基板を液浸法で露光する際に、液体中に混入する異物の量 が減少し、高精度に露光を行うことができる。
図面の簡単な説明
[0023] [図 1]本発明の露光装置の実施形態の一例を示す概略構成図である。
[図 2]図 1中の流路形成部材 30を示す斜視図である。
[図 3]図 1中の液体の供給口及び回収口の配置を示す平面図である。
[図 4]図 2の IV— IV線から見た断面図である。
[図 5]図 1中の基板ホルダ ΡΗの吸着機構及び吸引機構を示す断面図である。
[図 6]図 5の要部の拡大図である。
[図 7] (Α)は図 1の基板ステージ PST (基板ホルダ ΡΗ)及びその上のダミー基板 CP を示す平面図であり、液浸領域の移動経路を示しており、(B)は液浸領域の別の移 動経路を示す。
[図 8] (A)は図 1の基板ステージ PST及び計測ステージ MSTを示す平面図、(B)は 計測ステージ MST上の基板ホルダ PHと計測ステージ MSTの計測テーブル MTBと を密着させた状態を示す平面図である。 [図 9] (A)は液浸領域 AR2が基板ホルダ PH上カゝら計測テーブル MTB上に相対移 動する様子を示す平面図、(B)は液浸領域 AR2が計測テーブル MTB上を相対移 動する様子を示す平面図である。
[図 10]本発明の第 2実施形態に従う露光装置を示す概略構成図である。
[図 11]図 10中の流路形成部材 30を示す斜視図である。
[図 12]図 10中の基板ホルダ PHの吸着機構及び吸引機構を示す断面図である。
[図 13]図 12の要部拡大図である。
[図 14] (A)及び (B)は露光時及び洗浄時の基板ステージの移動速度の相違の一例 を示す図である。
[図 15]本発明の第 1実施形態に従う露光方法の具体例を示すフローチャートである。
[図 16]本発明の第 2実施形態に従う露光方法の具体例を示すフローチャートである。
[図 17]マイクロデバイスの製造工程の一例を示すフローチャートである。
発明を実施するための最良の形態
[0024] <第 1実施形態 >
以下、本発明の好ましい実施形態を図面を参照して説明する。
図 1は本発明の第 1実施形態に従う露光装置 EXを示す概略構成図であり、図 1〖こ おいて、露光装置 EXは、転写用のパターンが形成されたマスク Mを支持するマスク ステージ RSTと、露光対象の基板 Pを支持する基板ステージ PSTと、マスクステージ RSTに支持されているマスク Mを露光光 ELで照明する照明光学系 ILと、露光光 EL で照明されたマスク Mのパターン像を基板ステージ PSTに支持されている基板 P上 の投影領域 AR1に投影する投影光学系 PLと、ァライメント用の基準マーク等が形成 されて 、る計測ステージ MSTと、露光装置 EX全体の動作を統括制御する制御装置 CONTと、液浸法の適用のための液浸機構とを備えている。本例の液浸機構は、基 板 P上及び計測ステージ MST上に液体 1を供給する液体供給機構 10と、基板 P上 及び計測ステージ MST上に供給された液体 1を回収する液体回収機構 20とを含む
[0025] 露光装置 EXは、少なくともマスク Mのパターン像を基板 P上に転写している間、液 体供給機構 10から供給した液体 1により投影光学系 PLの投影領域 AR1を含む基板 P上の一部の領域、又は基板 P上の一部の領域とその周囲の領域に(局所的に)液 浸領域 AR2を形成する。具体的には、露光装置 EXは、投影光学系 PLの像面側終 端部の光学素子 (例えば底面がほぼ平坦なレンズ又は平行平面板等) 2と、その像 面側に配置された基板 P表面との間に液体 1を満たす局所液浸方式を採用し、マス ク Mを通過した露光光 ELで、投影光学系 PL及び投影光学系 PLと基板 Pとの間の 液体 1を介して基板 Pを露光することによって、マスク Mのパターンを基板 Pに転写露 光する。
[0026] 本例では、露光装置 EXとして、マスク Mと基板 Pとを所定の走査方向に同期移動し つつマスク Mに形成されたパターンを基板 Pに露光する走査型露光装置 (所謂スキ ャユング'ステッパー)を使用する場合を例にして説明する。以下、投影光学系 PLの 光軸 AXに平行に Z軸を取り、 Z軸に垂直な平面内でマスク Mと基板 Pとの同期移動 方向(走査方向)に沿って X軸を、その走査方向に垂直な方向(非走査方向)に沿つ て Y軸を取って説明する。また、 X軸、 Y軸、及び Z軸周りの回転 (傾斜)方向をそれぞ れ、 0 X、 0 Y、及び θ Ζ方向とする。本文中で「基板」は、例えばシリコンウェハのよ うな半導体ウェハ等の基材上に感光材 (以下適宜レジストという)を塗布したものを含 み、感光膜とは別に保護膜 (トップコート膜)などの各種の膜を塗布したものも含む。 マスクは基板上に縮小投影されるデバイスパターンが形成されたレチクルを含み、例 えばガラス板等の透明板部材上にクロム等の遮光膜を用いて所定のパターンが形成 されたものである。この透過型マスクは、遮光膜でパターンが形成されるバイナリーマ スクに限られず、例えばノヽーフトーン型、あるいは空間周波数変調型などの位相シフ トマスクも含む。なお、本例の基板 Ρは、例えば直径が 200mmから 300mm程度の 円板状の半導体ウェハ上に感光性材料であるレジスト (フォトレジスト)を所定の厚さ( 例えば 200nm程度)で塗布したである。
[0027] 先ず、照明光学系 ILは、マスクステージ RSTに支持されているマスク Mを露光光 E Lで照明するものであり、不図示の露光用光源から射出された光束の照度を均一化 するオプティカルインテグレータ、オプティカルインテグレータからの露光光 ELを集 光するコンデンサレンズ、リレーレンズ系、露光光 ELによるマスク M上の照明領域を スリット状に設定する可変視野絞り等を有している。マスク M上の所定の照明領域は 照明光学系 ILにより均一な照度分布の露光光 ELで照明される。照明光学系 ILから 射出される露光光 ELとしては、例えば水銀ランプ力 射出される紫外域の輝線 (i線 等)、 KrFエキシマレーザ光(波長 248nm)等の遠紫外光(DUV光)、又は ArFェキ シマレーザ光(波長 193nm)、 F レーザ光(波長 157nm)等の真空紫外光 (VUV光
2
)などが用いられる。本例においては、露光光 ELとして、 ArFエキシマレーザ光が用 いられる。
[0028] また、マスクステージ RSTは、マスク Mを支持するものであって、不図示のマスクべ ース上の投影光学系 PLの光軸 AXに垂直な平面内、すなわち XY平面内で 2次元移 動可能及び θ Z方向に微小回転可能である。マスクステージ RSTは、例えばリニア モータ等のマスクステージ駆動装置 RSTDにより駆動される。マスクステージ駆動装 置 RSTDは制御装置 CONTにより制御される。マスクステージ RST上には反射鏡 5 5Aが設けられ、反射鏡 55Aに対向する位置にはレーザ干渉計 56Aが設けられて 、 る。実際には、レーザ干渉計 56Aは、 3軸以上の測長軸を有するレーザ干渉計シス テムを構成している。マスクステージ RST (マスク M)の 2次元方向の位置、及び回転 角はレーザ干渉計 56Aによりリアルタイムで計測され、計測結果は制御装置 CONT に出力される。制御装置 CONTはその計測結果に基づ 、てマスクステージ駆動装 置 RSTDを駆動することでマスクステージ RSTに支持されているマスク Mの移動又 は位置決めを行う。なお、反射鏡 55Aは平面鏡のみでなくコーナーキューブ (レトロリ フレクタ)を含むものとしてもよいし、反射鏡 55Aの代わりに、例えばマスクステージ R STの端面 (側面)を鏡面加工して形成される反射面を用いてもよ!ヽ。
[0029] 投影光学系 PLは、マスク Mのパターンを所定の投影倍率 β ( βは例えば 1Ζ4, 1 Ζ5等の縮小倍率)で基板 Ρ上に投影露光するものであって、基板 Ρ側 (投影光学系 PLの像面側)の終端部に設けられた光学素子 2を含む複数の光学素子から構成さ れており、これら光学素子は鏡筒 PKにより支持されている。なお、投影光学系 PLは 縮小系のみならず、等倍系及び拡大系のいずれでもよい。また、投影光学系 PLの 先端部の光学素子 2は鏡筒 PKに対して着脱 (交換)可能に設けられており、光学素 子 2には液浸領域 AR2の液体 1が接触する。図示していないが、投影光学系 PLは、 防振機構を介して 3本の支柱で支持される鏡筒定盤に搭載されるが、例えば国際公 開第 2006Z038952号パンフレットに開示されているように、投影光学系 PLの上方 に配置される不図示のメインフレーム部材、ある 、はマスクステージ RSTが配置され るベース部材などに対して投影光学系 PUを吊り下げ支持しても良!、。
[0030] 本例において、液体 1には純水が用いられる。純水は ArFエキシマレーザ光のみな らず、例えば水銀ランプ力 射出される輝線及び KrFエキシマレーザ光等の遠紫外 光 (DUV光)も透過可能である。光学素子 2は螢石 (CaF )から形成されている。螢
2
石は水との親和性が高いので、光学素子 2の液体接触面 2aのほぼ全面に液体 1を 密着させることができる。なお、光学素子 2は水との親和性が高い石英であってもよい
[0031] また、基板 Pのレジストは、一例として液体 1をはじく撥液性のレジストである。なお、 前述のように必要に応じてレジストの上に保護用のトップコートを塗布してもよい。本 例では、液体 1をはじく性質を撥液性と呼ぶ。液体 1が純水の場合には、撥液性とは 撥水性を意味する。
また、基板ステージ PSTの上部には、基板 Pを例えば真空吸着で保持する基板ホ ルダ PHが固定されている。そして、基板ステージ PSTは、基板ホルダ PH (基板 P) の Z方向の位置(フォーカス位置)及び Θ X, Θ Y方向の傾斜角を制御する Zステージ 部と、この Zステージ部を支持して移動する XYステージ部とを備えている。そして、こ の XYステージ部がベース 54上の XY平面に平行なガイド面(投影光学系 PLの像面 と実質的に平行な面)上に、例えばエアべリング (気体軸受け)を介して載置されてい る。基板ステージ PST(Zステージ部及び XYステージ部)はリニアモータ等の基板ス テージ駆動装置 PSTDにより駆動される。基板ステージ駆動装置 PSTDは制御装置 CONTにより制御される。本例では、 Ζ、 θ X及び θ Y方向に可動なテーブルに基板 ホルダを形成しており、まとめて基板ホルダ PHと呼んでいる。なお、テーブルと基板 ホルダとを別々に構成し、例えば真空吸着などによって基板ホルダをテーブルに固 定してもょ 、。また、 Zステージ部は基板ホルダ PH (テープノレ)を Ζ、 θ X及び θ Y方 向に駆動するァクチユエータのみを含むものとしてもよ 、。
[0032] 基板ステージ PST上の基板ホルダ PHには反射鏡 55Bが設けられ、反射鏡 55Bに 対向する位置にはレーザ干渉計 56Bが設けられている。反射鏡 55Bは、実際には図 8 (A)に示すように、 X軸の反射鏡 55BX及び Y軸の反射鏡 55BYから構成され、レ 一ザ干渉計 56Bも X軸のレーザ干渉計 56BX及び Y軸のレーザ干渉計 56BYから構 成されている。図 1に戻り、基板ステージ PST上の基板ホルダ PH (基板 P)の 2次元 方向の位置及び回転角は、レーザ干渉計 56Bによりリアルタイムで計測され、計測結 果は制御装置 CONTに出力される。制御装置 CONTはその計測結果に基づいて 基板ステージ駆動装置 PSTDを駆動することで基板ステージ PSTに支持されている 基板 Pの移動又は位置決めを行う。なお、レーザ干渉計 56Bは基板ステージ PSTの Z軸方向の位置、及び Θ X、 Θ Y方向の回転情報をも計測可能としてよぐその詳細 は、例えば特表 2001— 510577号公報 (対応する国際公開第 1999Z28790号パ ンフレット)に開示されている。さらに、反射鏡 55Bの代わりに、例えば基板ステージ P ST又は基板ホルダ PHの側面などを鏡面加工して形成される反射面を用いてもょ ヽ
[0033] また、基板ホルダ PH上には、基板 Pを囲むように環状で平面のプレート部 97が設 けられている。プレート部 97の上面は、基板ホルダ PHに保持された基板 Pの表面と ほぼ同じ高さの平坦面である。本例では、この平坦面が撥液性となっている。ここで、 基板 pのエッジとプレート部 97との間には 0. l〜lmm程度の隙間がある力 本例に おいては、基板 Pのレジストは撥液性であり、液体 1には表面張力があるため、その隙 間に液体 1が流れ込むことはほとんどなぐ基板 Pの周縁近傍を露光する場合にも、 プレート部 97と投影光学系 PLとの間に液体 1を保持することができる。なお、本例で は、プレート部 97と基板 Pとの隙間に流れ込んだ液体 1は、図 5に示す吸引装置 50 によって基板ホルダ PHの外部に排出することができる(詳細後述)。したがって、基 板 Pのレジスト (又はトップコート)は必ずしも撥液性でなくてもよい。また、本例では基 板ホルダ PHにプレート部 97を設けて!/、るが、基板 Pを囲む基板ホルダ PHの上面を 撥液化処理して平坦面を形成してもよ ヽ。
[0034] [液体の供給及び回収機構の説明]
次に、図 1の液体供給機構 10は、所定の液体 1を基板 P上に供給するものであって 、液体 1を送出可能な第 1液体供給部 11及び第 2液体供給部 12と、第 1、第 2液体 供給部 11, 12のそれぞれにその一端部を接続する第 1、第 2供給管 11A, 12Aとを 備えている。第 1、第 2液体供給部 11, 12のそれぞれは、液体 1を収容するタンク、フ ィルタ部、及び加圧ポンプ等を備えている。なお、液体供給機構 10が、タンク、フィル タ部、加圧ポンプなどのすベてを備えている必要はなぐそれらの少なくとも一部を、 例えば露光装置 EXが設置される工場などの設備で代用してもよい。
[0035] 液体回収機構 20は、基板 P上に供給された液体 1を回収するものであって、液体 1 を回収可能な液体回収部 21と、液体回収部 21にその一端部が接続された回収管 2 2 (図2の第1〜第4回収管22八, 22B, 22C, 22D力もなる。)とを備えている。回収 管 22 (22A〜22D)の途中にはバルブ 24 (図 2の第 1〜第 4バルブ 24A, 24B, 24C , 24D力もなる。)が設けられている。液体回収部 21は例えば真空ポンプ等の真空 系(吸引装置)、及び回収した液体 1を収容するタンク等を備えている。なお、液体回 収機構 20が、真空系、タンクなどのすベてを備えている必要はなぐそれらの少なくと も一部を、例えば露光装置 EXが設置される工場などの設備で代用してもよ 、。
[0036] 投影光学系 PLの終端部の光学素子 2の近傍には流路形成部材 (液浸部材) 30が 配置されている。流路形成部材 30は、基板 P (基板ステージ PST)の上方において 光学素子 2の周りを囲むように設けられた環状部材である。投影光学系 PLの投影領 域 AR1が基板 P上にある状態で、流路形成部材 30は、その基板 Pの表面に対向す るように配置された第 1供給口 13と第 2供給口 14 (図 3参照)とを備えて!/、る。また、 流路形成部材 30は、その内部に供給流路 82 (82A, 82B)を有している。供給流路 82Aの一端部は第 1供給口 13に接続し、他端部は第 1供給管 11Aを介して第 1液 体供給部 11に接続している。供給流路 82Bの一端部は第 2供給口 14に接続し、他 端部は第 2供給管 12Aを介して第 2液体供給部 12に接続している。更に、流路形成 部材 30は、基板 P (基板ステージ PST)の上方に設けられ、その基板 P表面に対向 するように配置された 4つの回収口 23A〜23D (図 3参照)を備えて 、る。
[0037] 図 2は、流路形成部材 30の概略斜視図である。図 2に示すように、流路形成部材 3 0は投影光学系 PLの終端部の光学素子 2の周りを囲むように設けられた環状部材で あって、第 1部材 31と、第 1部材 31の上部に配置される第 2部材 32と、第 2部材 32の 上部に配置される第 3部材 33とを備えている。第 1〜第 3部材 31〜33のそれぞれは 板状部材であってその中央部に投影光学系 PL (光学素子 2)を配置可能な穴部 31 A〜33Aを有している。
[0038] 図 3は、図 2の第 1〜第 3部材 31〜33のうち最下段に配置される第 1部材 31を示す 透視図である。図 3において、第 1部材 31は、投影光学系 PLの— X方向側に形成さ れ、基板 P上に液体 1を供給する第 1供給口 13と、投影光学系 PLの +X方向側に形 成され、基板 P上に液体 1を供給する第 2供給口 14とを備えている。第 1供給口 13及 び第 2供給口 14のそれぞれは第 1部材 31を貫通する貫通穴であって、平面視略円 弧状に形成されている。更に、第 1部材 31は、投影光学系 PLの— X方向、— Y方向 、 +X方向、及び +Y方向側に形成され、それぞれ基板 P上の液体 1を回収する第 1 回収口 23A、第 2回収口 23B、第 3回収口 23C、及び第 4回収口 23Dを備えて!/、る 。第 1〜第 4回収口 23A〜23Dのそれぞれも第 1部材 31を貫通する貫通穴であって 、平面視略円弧状に形成されており、投影光学系 PLの周囲に沿って略等間隔に、 かつ供給口 13, 14より投影光学系 PLに対して外側に設けられている。供給口 13, 1 4の基板 Pとのギャップと、回収口 23A〜23Dの基板 Pとのギャップとは、ほぼ同じに 設けられている。つまり、供給口 13, 14の高さ位置と、回収口 23A〜23Dの高さ位 置とはほぼ同じ高さに設けられている。
[0039] 図 1に戻り、流路形成部材 30は、その内部に回収口 23A〜23D (図 3参照)に連通 した回収流路 84 (84A, 84B, 84C, 84D)を有している。なお、回収流路 84B, 84 D (不図示)は、図 3の非走査方向の回収口 23B, 23Dと図 2の回収管 22B, 22Dと を連通させるための流路である。回収流路 84A〜84Dの他端部は図 2の回収管 22 A〜22Dを介して液体回収部 21にそれぞれ連通している。本例において、流路形 成部材 30は液体供給機構 10及び液体回収機構 20のそれぞれの一部を構成してい る。すなわち、流路形成部材 30は本例の液浸機構の一部である。なお、液浸機構の 一部、例えば少なくとも流路形成部材 30は、投影光学系 PLを保持するメインフレー ム(前述の鏡筒定盤を含む)に吊り下げ支持されてもよいし、メインフレームとは別の フレーム部材に設けてもよい。あるいは、前述の如く投影光学系 PLが吊り下げ支持 される場合は、投影光学系 PLと一体に流路形成部材 30を吊り下げ支持してもよいし 、投影光学系 PLとは独立に吊り下げ支持される計測フレームに流路形成部材 30を 設けてもよい。後者の場合、投影光学系 PLを吊り下げ支持していなくてもよい。 [0040] 第 1〜第 4回収管 22A〜22Dに設けられた第 1〜第 4バルブ 24A〜24Dは、第 1 〜第 4回収管 22A〜22Dの流路のそれぞれを開閉するものであって、その動作は制 御装置 CONTに制御される。回収管 22 (22A〜22D)の流路が開放されている間、 液体回収機構 20は回収口 23 (23A〜23D)力も液体 1を吸引回収可能であり、バル ブ 24 (24A〜24D)〖こより回収管 22 (22A〜22D)の流路が閉塞されると、回収口 2 3 (23A〜23D)を介した液体 1の吸引回収が停止される。
[0041] 図 1において、第 1及び第 2液体供給部 11, 12の液体供給動作は制御装置 CON Tにより制御される。制御装置 CONTは、第 1及び第 2液体供給部 11, 12による基 板 P上に対する単位時間当たりの液体供給量をそれぞれ独立して制御可能である。 第 1及び第 2液体供給部 11, 12から送出された液体 1は、供給管 11A, 12A、及び 流路形成部材 30の供給流路 82A, 82Bを介して、流路形成部材 30 (第 1部材 31) の下面に基板 Pと対向するように設けられた供給口 13, 14 (図 3参照)より基板 P上に 供給される。
[0042] また、液体回収部 21の液体回収動作は制御装置 CONTにより制御される。制御装 置 CONTは、液体回収部 21による単位時間当たりの液体回収量を制御可能である 。流路形成部材 30 (第 1部材 31)の下面に、基板 Pと対向するように設けられた回収 口 23から回収された基板 P上の液体 1は、流路形成部材 30の回収流路 84及び回収 管 22を介して液体回収部 21に回収される。流路形成部材 30のうち回収口 23より投 影光学系 PLに対して外側の下面 (基板 P側を向く面)には、液体 1を捕捉する所定長 さの液体トラップ面 (傾斜面) 70が形成されている。トラップ面 70は親液処理を施され ている。回収口 23の外側に流出した液体 1は、トラップ面 70で捕捉される。
[0043] 図 3は、図 2の流路形成部材 30に形成された第 1及び第 2供給口 13, 14及び第 1 〜第 4回収口 23A〜23Dと、投影光学系 PLの投影領域 AR1との位置関係を示す 平面図でもある。図 3において、投影光学系 PLの投影領域 AR1は Y方向(非走査方 向)を長手方向とする矩形状に設定されている。液体 1が満たされた液浸領域 AR2 は、投影領域 AR1を含むように実質的に 4つの回収口 23A〜23Dで囲まれたほぼ 円形の領域の内側に形成され、且つ走査露光時には基板 P上の一部に(又は基板 P 上の一部を含むように)局所的に形成される。 [0044] また、第 1及び第 2供給口 13, 14は走査方向 (X方向)に関して投影領域 AR1を挟 むようにその両側に略円弧状のスリット状に形成されている。供給口 13, 14の Y方向 における長さは、少なくとも投影領域 AR1の Y方向における長さより長くなつている。 液体供給機構 10は、 2つの供給口 13, 14より、投影領域 AR1の両側で液体 1を同 時に供給可能である。
[0045] また、第 1〜第 4回収口 23A〜23Dは、供給口 13, 14及び投影領域 AR1を取り囲 むように円弧状のスリット状に形成されて 、る。複数 (4つ)の回収口 23A〜23Dのう ち、回収口 23A及び 23Cが X方向(走査方向)に関して投影領域 AR1を挟んでその 両側に配置されており、回収口 23B及び 23Dが Y方向(非走査方向)に関して投影 領域 AR1を挟んでその両側に配置されている。回収口 23A, 23Cの Y方向における 長さは、供給口 13, 14の Y方向における長さより長くなつている。回収口 23B, 23D のそれぞれも回収口 23A, 23Cとほぼ同じ長さに形成されている。回収口 23A〜23 Dはそれぞれ図 2の回収管 22A〜22Dを介して図 1の液体回収部 21に連通してい る。なお、本例において、回収口 23の数は 4つに限られず、投影領域 AR1及び供給 口 13, 14を取り囲むように配置されていれば、任意の複数あるいは 1つ設けることが できる。
[0046] なお、上記実施形態で用いた流路形成部材 30は、上述の構造に限られず、例え ば、欧州特許出願公開第 1420298号明細書、国際公開第 2004Z055803号パン フレット、国際公開第 2004Z057589号パンフレツ K国際公開第 2004,057590 号パンフレット、国際公開第 2005Z029559号パンフレット (対応米国特許出願公 開第 2006Z0231206号)に記載されているものも用いることができる。また、本例で は液体の供給口 13, 14と回収口 23A〜23Dとは同じ流路形成部材 30に設けられ ている力 供給口 13, 14と回収口 23A〜23Dとは別の部材に設けてもよい。さらに、 例えば国際公開第 2005Z122218号パンフレットに開示されているように、流路形 成部材 30の外側に液体回収用の第 2の回収口(ノズル)を設けてもよい。また、供給 口 13, 14は基板 Pと対向するように配置されていなくてもよい。さらに、流路形成部 材 30はその下面が投影光学系 PLの下端面 (射出面)とほぼ同じ高さ (Z位置)に設 定されているが、例えば流路形成部材 30の下面を投影光学系 PLの下端面よりも像 面側 (基板側)に設定してもよい。この場合、流路形成部材 30の一部(下端部)を、露 光光 ELを遮らな ヽように投影光学系 PL (光学素子 2)の下側まで潜り込ませて設け てもよい。
[0047] [基板ホルダ PH内の液体の吸引機構の説明]
図 1において、本例の基板ホルダ PHには、基板 Pの裏面側に流入した液体を外部 に排出する吸引機構が設けられている。また、本例の露光装置 EXにおいては、基板 ホルダ PH上のレジストが塗布された露光対象の基板 Pを、必要に応じて不図示のゥ ェハローダ系によって、基板 Pと実質的に同じ形状の基板であるダミー基板 CPと交 換できるように構成されている。後述のように本例の露光装置は、基板 Pの露光を行 わない期間中に、基板ステージ PSTの上部、本例では基板ホルダ PH (プレート部 9 7)の上面等を洗浄する工程を実行するが、その際に、基板ホルダ PHの内面の真空 吸着用の穴等に液体が流入するのを防止するために、基板ホルダ PH上に基板 Pの 代わりにダミー基板 CPを載置する。このため、ダミー基板 CPは、基板ホルダ PHの内 面を覆うための蓋基板又は蓋ウエノ、、あるいはカバー部材とも呼ぶことができる。
[0048] ダミー基板 CPは、一例として例えばシリコン基板等力もなる液体 1になじみ易!、親 液性の基板よりなり、例えば図 5に示すように、その基板の端部 (側面及び上面の周 縁部) CPcを除く上面部 CPaに液体 1をはじくための撥液処理を施したものである。 言い換えると、ダミー基板 CPの端部 CPcは親液性であり、その内側の上面部 CPa及 び裏面部が撥液性である。撥液処理としては、例えば撥液性を有する材料を塗布し て撥液コートを形成するコーティング処理が挙げられる。撥液性を有する材料として は、例えばフッ素系化合物、シリコン化合物、又はポリエチレン等の合成樹脂が挙げ られる。また、撥液コートは単層膜であってもよいし、複数層力もなる膜であってもよい 。なお、液体 1と接触するダミー基板 CPの一面 (表面)を全て撥液性としてもよい。
[0049] また、一例として、図 6の拡大図で示すように、ダミー基板 CPの上面部 CPaの撥液 コートが施された領域に所定間隔で複数の親液性の幅が例えば lmm程度の溝部 C Pnを形成してもよい。ダミー基板 CPの基板自体は親液性であるため、親液性の溝部 CPnを形成するためには、上面部 CPaに撥液コートを施した後で、その上面部 CPa に機械的に溝部を形成すればよい。それらの溝部 CPnは、基板ホルダ PHの洗浄中 に液体 1中に混入して 、る微細な異物であるパーティクルを捕捉するために使用され る。なお、ダミー基板 CPを撥液性の材料で構成してもよい。
[0050] 以下、図 5及び図 6を参照して図 1中の基板ホルダ PHの構成について詳細に説明 する。図 5はダミー基板 CPを吸着保持した状態の基板ホルダ PHの側断面図、図 6 は図 5の要部拡大図である。
図 5に示すように、基板ホルダ PHは、基材 PHBと、この基材 PHBに形成されて、ダ ミー基板 CP (又は露光対象の基板 P、以下同様。)を吸着保持する保持部 PH1とを 備えている。保持部 PH1は、基材 PHB上に形成されて、ダミー基板 CPの裏面 CPb を支持する、上面 46Aが平坦な小さい円錐状の多数の支持部 46と、基材 PHB上に 形成され、ダミー基板 CPの裏面 CPbに対向し、多数の支持部 46を囲むように設けら れた円周状の周壁部(リム部) 42とを備えている。保持部 PH1は、基板ホルダ PHに 形成されてダミー基板 CPが収納される凹部 97a内に配置されている。
[0051] 多数の支持部 46はそれぞれダミー基板 CPを裏面力 支持する凸状の支持ピンと して作用するとともに、円周状の周壁部 42の内側に X方向、 Y方向に所定ピッチで配 列されている。保持部 PH1の中央部には、ダミー基板 CPを昇降させるための昇降口 ッド (不図示)も設けられている。また、周壁部 42は、ダミー基板 CP (又は基板 P)の 形状に応じて略円環状に形成されており、周壁部 42の平坦な上面 42Aはダミー基 板 CPの裏面 CPbの周縁領域 (エッジ領域)に対向するように設けられている。本例に おいては、支持部 46の上面 46Aは、周壁部 42の上面 42Aと同じ高さ力、上面 42A よりも僅かに高く形成されている。そして、保持部 PH1に保持されたダミー基板 CPの 裏面 CPb側には、ダミー基板 CPと周壁部 42と基材 PHBとで囲まれた第 1空間 VP1 が形成される。
[0052] 図 5において、周壁部 42の内側の基材 PHB上の多数の支持部 46の間の谷部に は多数の吸引口 41が形成されている。吸引口 41はダミー基板 CPを吸着保持するた めのものである。多数の吸引口 41はそれぞれ流路 45を介して真空ポンプを含む真 空系 40に接続されている。支持部 46、周壁部 42、吸引口 41、及び流路 45を含む 保持部 PH1は、ダミー基板 CP (又は基板 P)を吸着保持するための所謂ピンチャック 機構を構成している。図 1の制御装置 CONTは、真空系 40を駆動し、第 1空間 VP1 内部のガス (空気)を吸引してこの第 1空間 VP1を負圧にすることによって、ダミー基 板 CPの裏面 CPbを多数の支持部 46の上面 46Aに吸着保持する。
[0053] 図 6に示すように、基板ホルダ PHの凹部 97aには、プレート部 97と接続し、保持部 PH1に吸着保持されたダミー基板 CPの側面と対向する内側面が形成されて ヽる。 そして、保持部 PH1に保持されたダミー基板 CPの側面と、そのダミー基板 CPの周 囲に設けられた凹部 97aの内側面 (又はプレート部 97)との間には、所定のギャップ Aが形成されている。本例においては、ギャップ Aは例えば 0. 1〜1. Omm程度であ る。
[0054] また、図 6に示すように、基板ホルダ PHの凹部 97aの底面には、第 1周壁部 42の 外側面に沿って凹部 97bが形成されている。凹部 97bの内側面と周壁部 42の外側 面との間には、その外側面に沿ってギャップ Bが形成されている。本例において、ギ ヤップ Bは例えば 1. Omm程度に設定されている。そして、環状の周壁部 42の外径 はダミー基板 CP (又は基板 P)の外径よりも小さく形成されており、ダミー基板 CPのェ ッジ領域は、周壁部 42の外側に所定量オーバーハングしている。本例においては、 オーバーハング部 HIは、一例として約 1. 5mmである。
[0055] また、凹部 97bの内側面の内径は、ダミー基板 CPの外径よりも小さく形成され、凹 部 97aの底面は、周壁部 42の上面 42Aよりも僅かにギャップ Gだけ低く形成されてい る。本例においては、ギャップ Gは 1〜: LOOO /z mに設定されている。この結果、保持 部 PH1に保持されたダミー基板 CPの裏面側の周壁部 42の外側には、ギャップ Bの 第 2空間 VP2が形成され、この第 2空間 VP2は、凹部 97aとダミー基板 CPとの間の ギャップ G及びギャップ Aを介して基板ホルダ PHの外気に連通している。
[0056] また、図 6に示すように、基板ホルダ PHのダミー基板 CPの裏面に対向する凹部 97 bの底面において、周壁部 42の外側面に沿った所定の複数位置(一例として 7箇所) にそれぞれ平面視がほぼ円形の回収口 51が設けられている。回収口 51はそれぞれ 、流路 52を介して真空系を含む吸引装置 50に接続されている。吸引装置 50で回収 口 51を介して第 2空間 VP2を負圧にする吸引を行うことで、ダミー基板 CPとプレート 部 97との境界部が液浸領域 AR2を通過する際に、ギャップ A及びギャップ Gを介し て第 2空間 VP2に流入する液体 1を、ダミー基板 CPの底面側力も基板ホルダ PHの 外部に排出することができる。この際に、図 5の真空系 40によって、ダミー基板 CPの 裏面 CPbは図 6の周壁部 42の上面 42Aに密着しているため、液体 1が第 2空間 VP2 力 ダミー基板 CPの裏面の第 1空間 VP1に流入することはなぐ真空系 40の誤作動 等が防止される。
[0057] 第 2空間 VP2に回収口 51を介して接続された吸引装置 50と、第 1空間 VP1を負圧 にするための真空系 40とは互いに独立している。制御装置 CONTは、吸引装置 50 及び真空系 40の動作を個別に制御可能であり、吸引装置 50による液体の吸引動作 と、第 1真空系 40による気体の吸引動作とをそれぞれ独立して行うことができる。
[0058] さらに、基板ホルダ PHの少なくとも一部には撥液ィ匕処理が施されており、基板ホル ダ PHは、液体 1に対して撥液性を備えている。本例においては、基板ホルダ PHの 基材 PHBうち、保持部 PH1の周壁部 42の上面 42A及び外側面、支持部 46の上面 46Aが撥液性を有している。また、プレート部 97、及び凹部 97aの内側面、底面も撥 液性を備えている。また、凹部 97bの内側面も撥液性を有している。基板ホルダ PH の撥液化処理としては、フッ素系榭脂材料又はアクリル系榭脂材料などの撥液性材 料を被覆する処理が挙げられる。
[0059] なお、図 5の基板ホルダ PHにおいては、プレート部 97をリング状の交換可能なプ レート部材として、このプレート部材の表面に撥液処理を施し、かつそのプレート部材 を支持部 46と同様な部材で支持して、底面側力 真空吸着で保持するようにしても よい。これによつて、例えば、後述の洗浄処理によって除去できない汚れが付着した 場合には、随時そのプレート部材のみを交換することができる。
なお、上述の図 5、図 6の説明においては、基板ホルダ PHにダミー基板 CPが保持 されている力 露光対象である基板 Pも同様にして、基板ホルダ PHに保持することが できる。この場合も、基板 Pの表面とプレート部 97の表面とがほぼ同一平面となるよう に、プレート部 97の高さ(Z方向に位置)が設定されて!、る。
[0060] [計測ステージの説明]
図 1に戻り、計測ステージ MSTは、 Y方向に細長い長方形の板状で X方向(走査 方向)に駆動される テージ部 181と、この上に例えばエアベアリングを介して載置 されたレべリングテーブル 188と、このレべリングテーブル 188上に配置された計測 ユニットとしての計測テーブル MTBとを備えている。一例として、計測テーブル MTB はレベリングテーブル 188上にエアべァリングを介して載置されて 、るが、計測テー ブル MTBをレべリングテーブル 188と一体化することも可能である。 X テージ部 18 1は、ベース 54上にエアベアリングを介して X方向に移動自在に載置されて 、る。
[0061] 図 8 (A)は、図 1中の基板ステージ PST及び計測ステージ MSTを示す平面図であ り、この図 8 (A)において、ベース 54を Y方向(非走査方向)に挟むように、 X軸に平 行にそれぞれ内面に X方向に所定配列で複数の永久磁石が配置された X軸の固定 子 186及び 187が設置され、固定子 186及び 187の間にそれぞれコイルを含む移動 子 182及び 183を介して Y軸にほぼ平行に Y軸スライダ 180が X方向に移動自在に 配置されている。そして、 Y軸スライダ 180に沿って Y方向に移動自在に基板ステー ジ PSTが配置され、基板ステージ PST内の移動子と、 Y軸スライダ 180上の固定子( 不図示)とから基板ステージ PSTを Y方向に駆動する Y軸のリニアモータが構成され 、移動子 182及び 183と対応する固定子 186及び 187とからそれぞれ基板ステージ PSTを X方向に駆動する 1対の X軸のリニアモータが構成されている。これらの X軸、 Y軸のリニアモータ等力 図 1の基板ステージ駆動装置 PSTDを構成している。
[0062] また、計測ステージ MSTの テージ部 181は、固定子 186及び 187の間にそれ ぞれコイルを含む移動子 184及び 185を介して X方向に移動自在に配置され、移動 子 184及び 185と対応する固定子 186及び 187と力もそれぞれ計測ステージ MST を X方向に駆動する 1対の X軸のリニアモータが構成されている。この X軸のリニアモ ータ等が、図 1では計測ステージ駆動装置 TSTDとして表されている。
[0063] 図 8 (A)において、 テージ部 181の— X方向の端部にほぼ Y軸に平行に、 Z方 向に積み重ねるように順次、内面に対向するように Z方向に一様な磁場を発生するた めに複数の永久磁石が配置された断面形状がコの字型の固定子 167と、ほぼ X軸に 沿って卷回 (配列)されたコイルを含む平板状の固定子 171とが固定され、下方の固 定子 167内に配置されるように計測テーブル MTBの Y方向に離れた 2箇所にそれぞ れ Y軸に沿って卷回(配列)されたコイルをそれぞれ含む移動子 166A及び 166Bが 固定され、上方の固定子 171を Z方向に挟むように、計測テーブル MTBに Y方向に 所定配列で複数の永久磁石が配置された断面形状がコの字型の移動子 170が固定 されている。そして、下方の固定子 167と移動子 166A及び 166Bと力もそれぞれ X テージ部 181に対して計測テーブル MTBを X方向及び θ Z方向に駆動する X軸の ボイスコイルモータ 168A及び 168B (図 1参照)が構成され、上方の固定子 171と移 動子 170とから、 X テージ部 181に対して計測テーブル MTBを Y方向に駆動する Y軸のリニアモータ 169が構成されている。
[0064] また、計測テーブル MTB上の X方向及び +Y方向にそれぞれ X軸の反射鏡 55 CX及び Y軸の反射鏡 55CYが固定され、反射鏡 55CXに— X方向に対向するように X軸のレーザ干渉計 56Cが配置されている。反射鏡 55CX, 55CYは、図 1では反射 鏡 55Cで表されている。レーザ干渉計 56Cは複数軸のレーザ干渉計であり、レーザ 干渉計 56Cによって常時、計測テーブル MTBの X方向の位置、及び 0 Z方向の回 転角度等が計測される。なお、反射鏡 55Cの代わりに、例えば計測ステージ MSTの 側面などを鏡面加工して形成される反射面を用いてもょ ヽ。
[0065] 一方、図 8 (A)にお 、て、 Y方向の位置計測用のレーザ干渉計 56BYは、基板ステ ージ PST及び計測ステージ MSTで共用される。すなわち、 X軸の 2つのレーザ干渉 計 56BX及び 56Cの光軸は、投影光学系 PLの投影領域 AR1の中心 (本例では図 1 の光軸 AXと一致)を通り X軸に平行であり、 Y軸のレーザ干渉計 56BYの光軸は、投 影光学系 PLの投影領域の中心 (光軸 AX)を通り Y軸に平行である。そのため、通常 、走査露光を行うために、基板ステージ PSTを投影光学系 PLの下方に移動したとき には、レーザ干渉計 56BYのレーザビームは基板ステージ PSTの反射鏡 55BYに照 射され、レーザ干渉計 56BYによって基板ステージ PST (基板 P)の Y方向の位置が 計測される。そして、例えば投影光学系 PLの結像特性等を計測するために、計測ス テージ MSTの計測テーブル MTBを投影光学系 PLの下方に移動したときには、レ 一ザ干渉計 56BYのレーザビームは計測テーブル MTBの反射鏡 55CYに照射され 、レーザ干渉計 56BYによって計測テーブル MTBの Y方向の位置が計測される。こ れによって、常に投影光学系 PLの投影領域の中心を基準として高精度に基板ステ ージ PST及び計測テーブル MTBの位置を計測できるとともに、高精度で高価なレ 一ザ干渉計の数を減らして、製造コストを低減できる。
[0066] なお、基板ステージ PST用の Y軸のリニアモータ及び計測テーブル MTB用の Y軸 のリニアモータ 169に沿ってそれぞれ光学式等のリニアエンコーダ (不図示)が配置 されており、レーザ干渉計 56BYのレーザビームが反射鏡 55BY又は 55CYに照射 されて ヽな 、期間では、基板ステージ PST又は計測テーブル MTBの Y方向の位置 はそれぞれ上記のリニアエンコーダによって計測される。
[0067] 図 1に戻り、計測テーブル MTBの 2次元方向の位置及び回転角は、レーザ干渉計 56C及び図 8 (A)のレーザ干渉計 56BY (又はリニアエンコーダ)で計測され、計測 結果は制御装置 CONTに出力される。制御装置 CONTはその計測結果に基づい て計測ステージ駆動装置 TSTD、リニアモータ 169、及びボイスコイルモータ 168A, 168Bを駆動することで、計測ステージ MST中の計測テーブル MTBの移動又は位 置決めを行う。
[0068] また、レべリングテーブル 188は、それぞれ例えばエアシリンダ又はボイスコイルモ ータ方式で Z方向の位置を制御可能な 3個の Z軸ァクチユエータを備え、計測テープ ル MTBの上面が投影光学系 PLの像面に合焦されるように、レべリングテーブル 18 8によって計測テーブル MTBの Z方向の位置、 0 X方向、 0 Y方向の角度が制御さ れる。そのために、流路形成部材 30の近傍には、投影領域 AR1内及びその近傍の 基板 Pの上面等の被検面の位置を計測するためのオートフォーカスセンサ(不図示) が設けられ、このオートフォーカスセンサの計測値に基づいて、制御装置 CONTがレ ベリングテーブル 188の動作を制御する。さらに、不図示であるが、 テージ部 181 に対するレべリングテーブル 188の X方向、 Y方向、 θ Z方向の位置を所定位置に維 持するためのァクチユエータも設けられて 、る。
[0069] なお、オートフォーカスセンサはその複数の計測点でそれぞれ被検面の Z方向の 位置情報を計測することで、 Θ X及び Θ Y方向の傾斜情報(回転角)をも検出するも のであるが、この複数の計測点はその少なくとも一部が液浸領域 LR2 (又は投影領 域 AR1)内に設定されてもよいし、あるいはその全てが液浸領域 LR2の外側に設定 されてもよい。さらに、例えばレーザ干渉計 56B, 56Cが被検面の Z軸、 0 X及び 0 Y方向の位置情報を計測可能であるときは、基板 Pの露光動作中にその Z方向の位 置情報が計測可能となるようにオートフォーカスセンサは設けなくてもよぐ少なくとも 露光動作中はレーザ干渉計 55B, 55Cの計測結果を用いて Z軸、 0 及び0 ¥方向 に関する被検面の位置制御を行うようにしてもょ 、。
[0070] 本例の計測テーブル MTBは、露光に関する各種計測を行うための計測器類 (計 測用部材)を備えている。すなわち、計測テーブル MTBは、リニアモータ 169の移動 子等及び反射鏡 55Cが固定される計測テーブル本体 159と、この上面に固定されて 例えば石英ガラス等の低膨張率の光透過性の材料カゝら成るプレート 101とを備えて いる。このプレート 101の表面にはそのほぼ全面に渡ってクロム膜が形成され、所々 に計測器用の領域や、特開平 5— 21314号公報 (対応する米国特許第 5, 243, 19 5号)などに開示される複数の基準マークが形成された基準マーク領域 FMが設けら れている。
[0071] 図 8 (A)に示すように、プレート 101上の基準マーク領域 FMには、図 1のマスク用 のァライメントセンサ 90用の 1対の基準マーク FM1, FM2、及び投影光学系 PLの側 面に配置された基板用のァライメントセンサ ALG用の基準マーク FM3が形成されて いる。これらの基準マークの位置を、対応するァライメントセンサでそれぞれ計測する ことで、投影光学系 PLの投影領域 AR1の投影位置とァライメントセンサ ALGの検出 位置との間隔 (位置関係)であるベースライン量を計測することができる。このベース ライン量の計測時には、プレート 101上に液浸領域 AR2が形成される。なお、ァライ メントセンサ 90はマスク Mのマークと基準マーク FM1、FM2との位置関係の検出に 用いられ、ァライメントセンサ ALGは基板 P上のァライメントマーク及び基準マーク F M3の位置情報の検出に用いられる。本例のァライメントセンサ 90、 ALGはそれぞれ 画像処理方式にてマークの検出を行うが、他の方式、例えばコヒーレントビームの照 射によってマーク力も発生する回折光を検出する方式などでもよい。
[0072] プレート 101上の計測器用の領域には、各種計測用開口パターンが形成されてい る。この計測用開口パターンとしては、例えば空間像計測用開口パターン (例えばス リット状開口パターン)、照明むら計測用ピンホール開口パターン、照度計測用開口 パターン、及び波面収差計測用開口パターンなどがあり、これらの開口パターンの底 面側の計測テーブル本体 159内には、対応する計測用光学系及び光電センサより なる計測器が配置されて 、る。
[0073] その計測器の一例は、例えば特開昭 57— 117238号公報 (対応する米国特許第 4 ,465,368号明細書)などに開示される照度むらセンサ、例えば特開 2002— 14005 号公報 (対応する米国特許出願公開第 2002Z0041377号明細書)などに開示さ れる、投影光学系 PLにより投影されるパターンの空間像 (投影像)の光強度を計測 する空間像計測器、例えば特開平 11 16816号公報 (対応する米国特許出願公 開第 2002Z0061469号明細書)などに開示される照度モニタ、及び例えば国際公 開第 99Z60361号パンフレット (対応する欧州特許第 1, 079, 223号明細書)など に開示される波面収差計測器である。
[0074] なお、本例では、投影光学系 PLと液体 1とを介して露光光 ELにより基板 Pを露光 する液浸露光が行われるのに対応して、露光光 ELを用いる計測に使用される上記 の照度むらセンサ、照度モニタ、空間像計測器、波面収差計測器などでは、投影光 学系 PL及び液体 1を介して露光光 ELを受光することとなる。このため、プレート 101 の表面には撥液コートが施されている。また、本例では上記複数の計測器の少なくと も 1つと基準マークとを計測用部材として計測テーブル MTBに設けるものとしたが、 計測用部材の種類、及び Z又は数などはこれに限られない。計測用部材として、例 えば投影光学系 PLの透過率を計測する透過率計測器、及び Z又は、前述の液浸 機構 8、例えば流路形成部材 30 (ある 、は光学素子 2)などを観察する計測器などを 設けてもよい。さらに、上記計測器はその一部のみを計測ステージ MSTに設け、残り は計測ステージ MSTの外部に設けてもよい。また、計測用部材と異なる部材、例え ば流路形成部材 30、光学素子 2などを清掃する清掃部材などを計測ステージ MST に搭載してもよい。さらに、計測用部材及び清掃部材などを計測ステージ MSTに設 けなくてもよい。この場合、計測ステージ MSTは、例えば基板 Pの交換時などに、前 述の液浸領域 AR2を維持するために、基板ステージ PSTとの交換で投影光学系 PL と対向して配置される。
[0075] [露光工程]
次に本発明に従う露光方法及びメンテナンス方法を図 15のフローチャートを参照し て説明する。図 1において、基板 P上には複数のショット領域が設定されている。本例 の制御装置 CONTは、投影光学系 PLの光軸 AX (投影領域 AR1)に対して基板 P が所定経路に沿って進むように、レーザ干渉計 56Bの出力をモニタしつつ基板ステ ージ PSTを移動し、複数のショット領域を順次ステップ'アンド'スキャン方式で露光 する(図 15に示したステップ Sl)。すなわち、露光装置 EXによる走査露光時には、 投影光学系 PLによる矩形状の投影領域 AR1にマスク Mの一部のパターン像が投影 され、投影光学系 PLに対して、マスク Mが X方向に速度 Vで移動するのに同期して、 基板ステージ PSTを介して基板 Pが X方向に速度 |8 ·ν ( |8は投影倍率)で移動する 。そして、基板 Ρ上の 1つのショット領域への露光終了後に、基板 Ρのステップ移動に よって次のショット領域が走査開始位置に移動し、以下、ステップ'アンド'スキャン方 式で基板 Ρを移動しながら各ショット領域に対する走査露光処理が順次行われる。
[0076] 基板 Ρの露光処理中、制御装置 CONTは液体供給機構 10を駆動し、基板 Ρ上に 対する液体供給動作を行う。液体供給機構 10の第 1、第 2液体供給部 11, 12のそ れぞれから送出された液体 1は、供給管 11A, 12Aを流通した後、流路形成部材 30 内部に形成された供給流路 82Α, 82Βを介して基板 Ρ上に供給される。
基板 Ρ上に供給された液体 1は、基板 Ρの動きに合わせて投影光学系 PLの下を流 れる。例えば、あるショット領域の露光中に基板 Pが +X方向に移動しているときには 、液体 1は基板 Pと同じ方向である +X方向に、ほぼ基板 Pと同じ速度で、投影光学 系 PLの下を流れる。この状態で、照明光学系 ILより射出されマスク Mを通過した露 光光 ELが投影光学系 PLの像面側に照射され、これによりマスク Mのパターンが投 影光学系 PL及び液浸領域 AR2の液体 1を介して基板 Pに露光される。制御装置 C ONTは、露光光 ELが投影光学系 PLの像面側に照射されているときに、すなわち基 板 Pの露光動作中に、液体供給機構 10による基板 P上への液体 1の供給を行う。露 光動作中に液体供給機構 10による液体 1の供給を継続することで液浸領域 AR2は 良好に形成される。一方、制御装置 CONTは、露光光 ELが投影光学系 PLの像面 側に照射されているときに、すなわち基板 Pの露光動作中に、液体回収機構 20によ る基板 P上の液体 1の回収を行う。露光動作中に (露光光 ELが投影光学系 PLの像 面側に照射されているときに)、液体回収機構 20による液体 1の回収を継続的に実 行することで、液浸領域 AR2の拡大などを抑えることができる。
[0077] 本例において、露光動作中、液体供給機構 10は、供給口 13, 14より投影領域 AR 1の両側力も基板 P上への液体 1の供給を同時に行う。これにより、供給口 13, 14か ら基板 P上に供給された液体 1は、投影光学系 PLの終端部の光学素子 2の下端面と 基板 Pとの間、及び流路形成部材 30 (第 1部材 31)の下面と基板 Pとの間に良好に 拡がり、液浸領域 AR2を少なくとも投影領域 AR1より広い範囲で形成する。
[0078] なお、投影領域 AR1の走査方向両側から基板 Pに対して液体 1を供給する際、制 御装置 CONTは、液体供給機構 10の第 1及び第 2液体供給部 11, 12の液体供給 動作を制御し、走査方向に関して、投影領域 AR1の手前から供給する単位時間当 たりの液体供給量を、その反対側で供給する液体供給量よりも多く設定してもよ ヽ。 この場合、例えば基板 Pが +X方向に移動することにより、投影領域 AR1に対して + X方向側に移動する液体量が増し、基板 Pの外側に大量に流出する可能性がある。 ところが、 +X方向側に移動する液体 1は流路形成部材 30の +X側下面に設けられ ているトラップ面 70で捕捉されるため、基板 Pの周囲等に流出したり飛散したりする不 都合を抑制できる。
[0079] なお、露光動作中、液体回収機構 20による液体 1の回収動作を行わずに、露光完 了後、回収管 22の流路を開放し、基板 P上の液体 1を回収するようにしてもよい。一 例として、基板 P上のある 1つのショット領域の露光完了後であって、次のショット領域 の露光開始までの一部の期間 (ステッピング期間の少なくとも一部)においてのみ、 液体回収機構 20により基板 P上の液体 1の回収を行うようにしてもよい。
[0080] 制御装置 CONTは、基板 Pの露光中、液体供給機構 10による液体 1の供給を継続 する。このように液体 1の供給を継続することにより、投影光学系 PLと基板 Pとの間を 液体 1で良好に満たすことができるば力りでなぐ液体 1の振動(所謂ウォーターハン マー現象)の発生を防止することができる。このようにして、基板 Pの全部のショット領 域に液浸法で露光を行うことができる。また、例えば基板 Pの交換中、制御装置 CO NTは、計測ステージ MSTを投影光学系 PLの光学素子 2と対向する位置に移動し、 計測ステージ MST上に液浸領域 AR2を形成する。この場合、基板ステージ PSTと 計測ステージ MSTとを近接させた状態で移動して、一方のステージとの交換で他方 のステージを光学素子 2と対向して配置することで、基板ステージ PSTと計測ステー ジ MSTとの間で液浸領域 AR2を移動する。制御装置 CONTは、計測ステージ MS T上に液浸領域 AR2を形成した状態で計測ステージ MSTに搭載されている少なくと も一つの計測器 (計測部材)を使って、露光に関する計測 (例えば、ベースライン計 測)を実行する。なお、液浸領域 AR2を、基板ステージ PSTと計測ステージ MSTと の間で移動する動作、及び基板 Pの交換中における計測ステージ MSTの計測動作 の詳細は、国際公開第 2005Z074014号パンフレット (対応する欧州特許出願公開 第 1713113号明細書)、国際公開第 2006Z013806号パンフレットなどに開示さ れている。また、基板ステージと計測ステージを備えた露光装置は、例えば特開平 1 1—135400号公報 (対応する国際公開第 1999Z23692号パンフレット)、特開 20 00— 164504号公報 (対応する米国特許第 6,897,963号)に開示されている。指定 国及び選択国の国内法令が許す限りにおいて、米国特許第 6,897,963号の開示を 援用して本文の記載の一部とする。
[0081] [洗浄工程]
上記の如き露光工程において、図 1の基板 Pと液浸領域 AR2の液体 1とが接触す ると、基板 Pの一部の成分が液体 1中に溶出することがある。例えば、基板 Pの感光 性材料として化学増幅型レジストが使われている場合、その化学増幅型レジストは、 ベース榭脂、ベース榭脂中に含まれる光酸発生剤(PAG : Photo Acid Generator)、 及びクェンチヤ一と呼ばれるアミン系物質を含んで構成されて ヽる。そのようなレジス トが液体 1に接触すると、レジストの一部の成分、具体的には PAG及びアミン系物質 等が液体 1中に溶出することがある。また、基板 Pの基材自体 (例えばリシコン基板)と 液体 1とが接触した場合にも、その基材を構成する物質によっては、その基材の一部 の成分 (シリコン等)が液体 1中に溶出する可能性がある。
[0082] このように、基板 Pに接触した液体 1は、基板 Pより発生した不純物やレジスト残滓等 力もなるパーティクルのような微小な異物を含んでいる可能性がある。また液体 1は、 大気中の塵埃や不純物等の微小な異物を含んでいる可能性もある。したがって、液 体回収機構 20により回収される液体 1は、種々の不純物等の異物を含んでいる可能 性がある。そこで、液体回収機構 20は、回収した液体 1を外部に排出している。なお 、回収した液体 1の少なくとも一部を内部の処理装置で清浄にした後、その清浄化さ れた液体 1を液体供給機構 10に戻してもょ 、。
[0083] また、液浸領域 AR2の液体 1に混入したそのようなパーティクル等の微小な異物は 、基板ステージ PSTの上部の基板ホルダ PHの上面、及び Z又は計測ステージ MS T上の計測テーブル MTBの上面に付着して残留する恐れがある。このように残留し た異物は、基板 Pの露光時に、液浸領域 AR2の液体 1に再び混入する恐れがある。 液体 1に混入した異物が基板 P上に付着すると、基板 Pに形成されるパターンに形状 不良等の欠陥が生じる恐れがある。
[0084] そこで、本例の露光装置 EXは、基板 Pの露光を行わな 、期間、例えば 1つのロット の基板の露光が終わって力 次のロットの基板の露光が始まるまでの間等に、以下 のように、基板ステージ PST (基板ホルダ PH)及び計測ステージ MSTの洗浄工程を 実行する(図 15に示したステップ S2)。この洗浄工程において、まず、基板ホルダ P H上に上記のダミー基板 CPを吸着保持する。そして、露光光 ELの照射を停止した 状態で、図 4に示すように、液体供給機構 10 (液体供給部 11, 12)からダミー基板 C P上に液体 1を供給してダミー基板 CP上に液浸領域 AR2を形成し、液浸領域 AR2 ( 流路形成部材 30)に対して基板ステージ PST及び計測ステージ MSTを所定の経路 に沿って移動して、基板ステージ PST上の基板ホルダ PHの上面及び計測ステージ MSTの計測テーブル MTBの上面の洗浄を行う。この際に、一例として液体供給部 11, 12による液体 1の単位時間当たりの供給量とほぼ同じ量だけ液体回収機構 20 ( 液体回収部 21)によって液浸領域 AR2の液体 1を回収する。これによつて、液浸領 域 AR2の大きさを所望状態に維持しつつ基板ホルダ PH及び計測テーブル MTB上 に残留していた異物は液体 1中に混入して、液体回収部 21に回収される。なお、洗 浄工程においてマスクステージ MSTは静止されている。すなわち、洗浄工程は、露 光工程と、液浸領域 AR2に対して基板ステージ PSTを相対移動する点で共通して V、るが、露光光 EL光が未照射であることとマスクステージ MSTが静止して!/、る点で 露光工程と異なる。
[0085] 図 7 (A)、 (B)は、基板ステージ PSTの洗浄中における、液浸領域 AR2に対する 基板ステージ PSTの移動経路 (移動軌跡)の一例を示す。図 7 (A)においては、一 例として、基板ステージ PSTの基板ホルダ PH上を液浸領域 AR2が通常の走査露光 時と同じように、ダミー基板 CPの全面を経路 60Aに沿って相対移動するように、基板 ステージ PSTが移動する。なお、実際には、液浸領域 AR2は静止しており、基板ス テージ PSTが移動するが、図 7 (A)、(B)では、説明の便宜上、液浸領域 AR2が基 板ステージ PST上を移動するように表して 、る。
[0086] また、別の例として、ァライメントセンサ ALGによって、例えば特開昭 61— 44429 号公報 (対応する米国特許第 4,780,617号明細書)に開示されるェンハンスト,グロ 一バル ·ァライメント (EGA)方式でァライメント計測を行う場合 (基板 P上の複数のァ ライメントマークをァライメントセンサ ALGで検出する場合)と同様に、基板ステージ P STの移動経路を設定してもよい。例えば、図 7 (A)に示すように、ァライメントセンサ ALGが、経路 60Bに沿って基板 Pの上方を移動するように、基板ステージ PSTを高 速に移動するようにしてもよい。また、液浸領域 AR2に対して基板ステージ PSTを高 速に移動したり、一方向に長距離移動する場合には、基板ステージ PST (基板ホル ダ PHのプレート部 97)上に異物が残り易い場合がある。例えば、基板ステージ PST と計測ステージ MSTとの間で液浸領域 AR2を移動する場合、液浸領域 AR2が基板 ホルダ PH上を経路 60C (図 7参照)に沿って高速に、且つ X方向に連続的に長距離 移動すると、経路 60Cに沿って基板ホルダ PH上に異物が残留し易い場合がある。 そこで、洗浄工程においては、経路 60Cに沿って液浸領域 AR2が基板ホルダ PH上 を移動するように、液浸領域 AR2に対して基板ステージ PSTを移動してもよい。これ によって、基板ステージ PSTの高速移動時に経路 60C上に残留した異物を洗浄(除 去)することができる。なお、洗浄工程においては、上述の経路 60A〜60Cのすベて に沿って基板ステージ PSTを移動する必要はなぐ必要に応じて、一部の経路のみ に沿って基板ステージ PSTを移動してもよ 、。
[0087] また、通常の露光時には基板ステージ PST上で移動しな 、ような経路、すなわち、 露光時の基板ステージ PST上での液浸領域 AR2の移動経路と少なくとも一部が異 なる経路に沿って液浸領域 AR2が相対移動するように、基板ステージ PSTを移動し てもよい。例えば、露光対象の基板 Pのエッジ部分では、レジストの剥離などが生じや すく、基板 Pのエッジ近傍にぉ 、て基板ステージ PST (基板ホルダ PH)の異物が付 着しやすい。また、基板 Pのエッジ近傍のショット領域の走査露光では、液浸領域 AR はその一部が基板 Pの外側にはみ出して移動するので、基板ステージ PST (プレート 部 97)の上面に異物が堆積する可能性もある。したがって、洗浄工程においては、ダ ミー基板 CPのエッジに沿って液浸領域 AR2が移動するように、洗浄における基板ス テージ PSTの移動経路を決めてもよい。図 7 (B)にそのような移動経路 60Dを示した 。移動経路 60Dは、ダミー基板 CPの周縁の外側を周回している。このような移動経 路 60Dによって、基板ステージ PST (基板ホルダ PH)における基板 Pのエッジ近傍 に付着した異物が有効に除去される。この場合、移動経路 60Dに加えて図 7 (A)に 示したような移動経路 60A、 60B及び Zまたは 60Cをカ卩えてもよい。こうすることによ つて、洗浄工程における液浸領域 AR2の移動経路は露光工程における液浸領域 A R2の移動経路を完全に包含することになり、一層有効な洗浄が期待できる。基板ス テージ PST (基板ホルダ PHのプレート部 97)の表面のうち、通常の動作においては 、液体 1と触れることがな 、領域に液浸領域 AR2が形成されるように基板ステージ PS Tの移動経路を決めてもよい。これによつて、基板ステージ PST上の種々の場所に 付着している異物を洗浄することができる。この場合、液体 1と触れることがない領域 のみ液浸領域 AR2が相対移動するように基板ステージ PSTの移動経路を決定して もよ 、し、通常の動作における基板ステージ PST上での液浸領域 AR2の移動範囲 よりも広 ヽ範囲 (液体 1と触れることがな!ヽ領域を含む)を液浸領域 AR2が相対移動 するように基板ステージ PSTの移動経路を決定してもよ 、。
[0088] これらの洗浄工程において、図 6に示すように、基板ホルダ PH側の吸引装置 50に よる液体 1の吸引も行うものとする。本例のダミー基板 CPは、端部 CPcは親液性であ るため、液浸領域 AR2がダミー基板 CPと基板ホルダ PHのプレート部 97との境界部 を横切るような状態では、ダミー基板 CPの端部 CPcから凹部 97a及び 97bに、異物 が混入した液体 1が流入する。そして、流入した液体 1は回収口 51から吸引装置 50 に吸引されて基板ホルダ PHカゝら排出されるため、液体 1に混入したパーティクル等 の微小な異物も同時に排出される。さらに、ダミー基板 CPの上面部 CPに親液性の 溝部 CPnが形成されて 、る場合には、プレート部 97から液体 1中に混入したパーテ イタル等の一部はその溝部 CPnに捕捉される。なお、吸引装置 50を省いてもよい。 例えば、ダミー基板 CPの端部 CPcも撥液性にした場合には、凹部 97aへの液体 1の 流入を抑えることができるので、吸引装置 50を設けなくても良い。
[0089] 次に制御装置 CONTは、計測ステージ MSTの洗浄を行う(図 15に示したステップ S3)。計測ステージ MSTを洗浄する場合には、制御装置 CONTは、図 8 (B)に示す ように、基板ステージ PST上の基板ホルダ PHに対して計測ステージ MSTの計測テ 一ブル MTBを密着 (または近接)させる。次に、制御装置 CONTは、図 9 (A)に示す ように、基板ステージ PST及び計測テーブル MTB (計測ステージ MST)を同時に液 浸領域 AR2に対して +X方向に移動して、図 9 (B)に示すように、液浸領域 AR2を 基板ステージ PSTから計測テーブル MTBに移動する。この後、例えば液浸領域 AR 2が計測テーブル MTBの上面の全面を相対移動するように、計測ステージ MSTを 移動することで、計測テーブル MTB上に付着して ヽる異物の洗浄も行うことができる 。なお、本例では計測テーブル MTBの上面の全面を液浸領域 AR2が相対移動す るように計測ステージ MSTの移動経路を決定するものとした力 計測テーブル MTB の上面の一部のみを液浸領域 AR2が相対移動するように計測ステージ MSTの移動 経路を決定してもよい。
[0090] 第 1実施形態の露光装置 EX'の動作及び利点並びに変形形態を以下に要約する 。 A1 :上述のように本例の洗浄工程を行うことによって、基板ステージ PST上の基板 ホルダ PHに付着している異物を除去して、液浸露光用の露光装置のメンテナンスを 実行することができる。従って、その後、基板ホルダ PH上のダミー基板 CPを露光対 象の基板 Pに交換して液浸法で露光する際に、液浸領域 AR2の液体 1中に混入す る異物の量が減少し、転写されるパターンの欠陥が低減する。従って、製造される半 導体デバイス等の歩留まりが向上する。
[0091] A2:その洗浄工程にぉ 、て、本例では液浸領域 AR2を形成するために供給され る洗浄用の液体として露光時と同じ液体 1を用いている。従って、特に新たな設備を 必要としない利点がある。また、流路形成部材 30などの流路の洗浄が不要であり、 洗浄動作の直後に露光動作を開始できる。ただし、その洗浄用の液体として、例え ばシンナー等の有機溶剤、又はこれらの有機溶剤と露光時に用いる液体 1との混合 液等を使用してもよい。これによつて、洗浄効果を高めることができる。後者の場合、 有機溶剤と露光用の液体 1とを異なる流路を介して液浸領域 AR2に供給するよう〖こ してちよい。
[0092] A3:本例の基板ステージ PST (基板ホルダ PH)は、基板 Pを吸着保持するための 保持部 PHIを有し、その洗浄工程において、その保持部 PH1上にダミー基板 CPを 吸着保持して ヽるため、洗浄用の液体が保持部 PH 1の真空系 40に誤って吸引され ることを防止できる。また、保持部 PH1 (支持部 46など)が洗浄用の液体で濡れること もない。 A4 :また、ダミー基板 CPの上面部 CPaは撥液性であり、かつその上面部に 複数の親液性の溝部 CPnが形成されて 、る場合には、その溝部 CPnにパーテイク ル等の微小な異物を捕捉できるため、基板ホルダ PHの洗浄をより効率的に行うこと ができる。このため、ダミー基板 CPは洗浄工程中に他の未使用のダミー基板と交換 してちよい。
[0093] なお、洗浄工程では、保持部 PH1上に例えばレジストを塗布してな 、未露光の基 板等を保持してもよい。また、洗浄工程において、ダミー基板 CP (レジストが塗布され て 、な 、基板)上のみで液浸領域 AR2が動くように、液浸領域 AR2と基板ステージ PSTとを相対的に移動してもよ 、。清浄なダミー基板 CP上のみで液浸領域 AR2を 移動することによって、流路形成部材 30 (特に液体 1と接触する下面)の洗浄を行うこ とができる。特に、基板ステージ PST (基板ホルダ PH)が汚れておらず、流路形成部 材 30だけが汚れて ヽる場合には、液浸領域 AR2をダミー基板 CPのみで移動させる こと〖こよって、基板ステージ PST (基板ホルダ PH)を汚染することなぐ流路形成部材 30の洗浄を実行することができる。この場合、洗浄対象は流路形成部材 30に限られ るものでなぐ液浸領域 AR2の液体 1と接触する他の接液部材 (例えば、光学素子 2 など)を洗浄することとしもよ 、。
[0094] <第 2実施形態 >
本発明の第 2実施形態に従う露光装置 EX'にっき図 10〜13を参照して説明する 。以下の説明において、第 1実施形態と同一又は同等の構成部分については同一 の符号を付し、その説明を簡略若しくは省略する。図 10に示した第 2実施形態の露 光装置 EX'では、液体供給機構 10が露光工程にぉ ヽて液体 1を基板 P上及び計測 ステージ MST上に供給し、洗浄工程にお 、ては洗浄液 1Aを基板 P上及び計測ステ ージ MST上供給する。第 2実施形態の露光装置 EX'は、基板ステージ PST側から 液体供給機構 10の液体の供給口に洗浄液 1Bを吹き付けるステージ側液体供給機 構 118 (図 12参照)を備えている。 [0095] 液体供給機構 10'は、所定の液体 1又は洗浄液 1Aを基板 P上に供給する。液体供 給機構 10'は、液体 1を送出可能な第 1液体供給部 11及び第 2液体供給部 12と、所 定の溶剤(例えばシンナー又は γ —プチルラクトン等)を送出可能な第 3液体供給部 111及び第 4液体供給部 121と、第 1及び第 3液体供給部 11, 111からの供給管が 合成された第 1供給管 11Aと、第 2及び第 4液体供給部 12, 121からの供給管が合 成された第 2供給管 12Aと、第 1及び第 3液体供給部 11, 111からの供給管を個別 に開閉するノ レブ 11B及び 11Cと、第 2及び第 4液体供給部 12, 121からの供給管 を個別に開閉するバルブ 12B及び 12Cとを備えている。第 1、第 2液体供給部 11, 1 2及び第 3、第 4液体供給部 111, 121のそれぞれは、液体 1及び溶剤を収容するタ ンク、フィルタ部、及び加圧ポンプ等を備えており、制御装置 CONTによって制御さ れている。バルブ 11B〜12Cの開閉動作も制御装置 CONTに制御される。なお、液 体供給機構 10'はその一部を、例えば露光装置 EX,が設置される工場などの設備 で代用してもよい。
[0096] 露光装置 EX'は、基板 Pを液浸法で露光する際には、バルブ 11B, 12Bを開き、バ ルブ 11C, 12Cを閉じて、液浸領域 AR2には液体供給部 11及び 12からの液体 1を 供給する。一方、後述の基板ステージ PST又は計測ステージ MST等の洗浄時には 、ノ レブ 11B, 12B及びバルブ 11C, 12Cの開閉量を制御して、液体 1とその所定 の溶剤とを所定割合で混合した洗浄液 1A (洗浄用の液体)を液浸領域 AR2に供給 する。なお、その液体 1が水で、その溶剤がシンナーである場合には、洗浄液 1 Aとし ては液体 1とシンナーとの混合液を使用できる。一方、その溶剤が γ —ブチルラクト ンの場合には、洗浄液 1Aとしてはその溶剤そのものを使用してもよい。液体 1とその 溶剤との混合比は、制御装置 CONTが設定する。
[0097] 液体回収機構 20は、基板 P上に供給された液体 1又は洗浄液 1A (若しくは後述の 図 12のステージ側液体供給機構 118からの洗浄液 1B)を回収する。
[0098] 制御装置 CONTは、第 1実施形態と同様に、第 1及び第 2液体供給部 11, 12及び 第 3及び第 4液体供給部 111, 121による基板 P等に対する単位時間当たりの液体( 液体 1又は洗浄液 1A)供給量をそれぞれ独立して制御可能である。液体供給部 11 及び 111又は液体供給部 12及び 121から送出された液体 1又は洗浄液 1Aは、供給 管 11A, 12A、及び流路形成部材 30の供給流路 82A, 82Bを介して、流路形成部 材 30 (第 1部材 31)の下面に基板 Pと対向するように設けられた供給口 13, 14 (図 3 参照)より基板 P上に供給される。
[0099] 液体回収部 21の液体回収動作は制御装置 CONTにより制御される。制御装置 C ONTは、液体回収部 21による単位時間当たりの液体 1又は洗浄液 1Aの回収量を 制御可能である。流路形成部材 30 (第 1部材 31)の下面に基板 Pと対向するように設 けられた回収口 23から回収された基板 P上の液体 1又は洗浄液 1A等は、流路形成 部材 30の回収流路 84及び回収管 22を介して液体回収部 21に回収される。流路形 成部材 30は、図 3を参照して説明した第 1実施形態で用いたものと同様である。
[0100] 図 11は、本実施形態で用いる流路形成部材 30の図 2の AA線に沿う断面図である 。図 11に示すように、供給流路 82A及び 82Bの供給口 13及び 14に対向する部分 にそれぞれ、例えば圧電セラミックス (チタン酸バリウム系又はチタン酸ジルコン酸鉛 系( 、わゆる PZT)等)又はフ ライト振動子 (磁歪振動子)等の超音波振動子 112及 び 122が設けられている。洗浄工程中で液浸領域 AR2に洗浄液 1Aが供給されてい る期間中に、超音波振動子 112及び 122は、図 10の制御装置 CONTの制御のもと で必要に応じて、供給口 13及び 14に向けて、例えば 100kHz〜lMHz程度の超音 波 S2及び S1を発生する。これによつて、洗浄液 1Aを用いて洗浄を行う際の洗浄効 果を向上できる。なお、本実施形態では超音波振動子 112、 122を流路形成部材 3 0、すなわち液体 1の供給流路の途中に設けるものとした力 これに限らず他の位置 に設けてもよい。
[0101] 本実施形態でも、第 1実施形態と同様の基板ホルダ PHを用いているが、ダミー基 板 CPとして、洗浄液 1Aになじみ易い親液性の基板、例えば、シリコン基板が使用さ れている。さらに、ダミー基板 CPはその端部 (側面及び上面の周縁部) CPcを除く上 面部 CPaに洗浄液 A1をはじくための撥液ィ匕処理を施したものである。すなわち、本 実施形態でも第 1実施形態と同一のダミー基板 CPが用いられる。
[0102] 図 12及び図 13に第 2実施形態で用いた基板ホルダ PHの吸着機構及び吸引機構 を示す。吸引装置 50で回収口 51を介して第 2空間 VP2を負圧にする吸引を行うこと で、ダミー基板 CPとプレート部 97との境界部が液浸領域 AR2を通過する際に、ギヤ ップ A及びギャップ Gを介して第 2空間 VP2に流入する洗浄液 1Aを、ダミー基板 CP の底面側力も基板ホルダ PHの外部に排出することができる。この際に、図 12の真空 系 40によって、ダミー基板 CPの裏面 CPbは図 13の周壁部 42の上面 42Aに密着し ているため、洗浄液 1Aが第 2空間 VP2からダミー基板 CPの裏面の第 1空間 VP1に 流入することはなぐ真空系 40の誤作動等が防止される。基板ホルダ PHの少なくと も一部には撥液化処理が施されており、基板ホルダ PHは、液体 1及び洗浄液 1Aに 対して撥液性を備えている。
[0103] 図 13において、基板ホルダ PHの基材 PHB内にプレート部 97の上方に洗浄液 1B を噴き出す (供給する)ためのノズル部 113が埋め込まれ、ノズル部 113が基板ホル ダ PHに連結された可撓性を持つ配管 114を介して、図 10の第 3液体供給部 111と 同様の溶剤 (例えば所定濃度のシンナー又は γ —プチルラクトン等)を供給する第 5 液体供給部 116に接続され、配管 114にバルブ 115が設けられている。さらに、ノズ ル部 113内の噴き出し口に対向する部分に、図 12の超音波振動子 112と同様の超 音波振動子 117が固定され、超音波振動子 117は、ノズル部 113の噴き出し口に向 けて 100kHz〜lMHz程度の超音波 S3を発生することができる。第 5液体供給部 11 6、超音波振動子 117、及びバルブ 115の動作も図 10の制御装置 CONTによって 制御され、ノズル部 113、配管 114、バルブ 115、超音波振動子 117、及び第 5液体 供給部 116からステージ側液体供給機構 118が構成されて 、る。
[0104] 第 2実施形態では、洗浄工程中に、第 5液体供給部 116からの溶剤をノズル部 113 力も洗浄液 1Bとして図 3の液体供給機構 10の液体の供給口 13, 14に吹き付けるこ とによって、供給口 13, 14に付着した異物の清掃を行うことができる。この際に、供 給された洗浄液 1Bは回収口 23A〜23Dから図 10の液体回収機構 20に回収するこ とができる。また、この洗浄の際に、超音波振動子 117を動作させることによって、供 給口 13, 14を超音波洗浄することができ、洗浄効果を高めることができる。なお、供 給口だけでなく流路形成部材 30の他の箇所 (例えば、回収口など)、あるいは光学 素子 2などを洗浄してもよ ヽ。
[0105] [露光工程]
以下に、第 2実施形態に従う露光装置 EX'を用いた露光方法を図 16のフローチヤ ートを参照して説明する。なお、第 2実施形態に従う露光装置 EX'も図 8及び 9に示 した計測ステージと同じ計測ステージを備えるが、その説明は第 1実施形態の説明を 参照されたい。最初に露光装置 EX'を用いて、第 1実施形態と同様にして基板 Pの 液浸露光を行う(図 16のステップ SS1)。
[0106] [第 1の洗浄工程]
露光装置 EX'は、基板 Pの露光を行わない期間、例えば 1つのロットの基板の露光 が終わって力も次のロットの基板の露光が始まるまでの間等に、以下のように、基板 ステージ PST (基板ホルダ PH)及び計測ステージ MSTの洗浄工程を実行する。洗 浄工程において、まず、基板ホルダ PH上に上記のダミー基板 CPを吸着保持する。 そして、露光光 ELの照射を停止した状態で、図 10の液体供給機構 10'の液体供給 部 11, 111, 12, 121から、図 11に示すように、ダミー基板 CP上に洗浄液 1Aを供 給してダミー基板 CP上に液浸領域 AR2を形成し、液浸領域 AR2 (流路形成部材 30 )に対して基板ステージ PST及び計測ステージ MSTを所定の経路に沿って移動し て、基板ステージ PST上の基板ホルダ PHの上面及び計測ステージ MSTの計測テ 一ブル MTBの上面の洗浄を行う(図 16のステップ SS2, SS3)。この際に、一例とし て液体供給部 11, 111, 12, 121による洗浄液 1Aの単位時間当たりの供給量とほ ぼ同じ量だけ液体回収機構 20 (液体回収部 21)によって液浸領域 AR2の洗浄液 1 Aを回収する。これによつて、液浸領域 AR2の大きさを所望状態に維持しつつ、基板 ホルダ PH及び計測テーブル MTB上に残留して 、た異物は洗浄液 1A中に混入し て、液体回収部 21に回収される。この際に、洗浄効果を高めたい場合には、図 11の 超音波振動子 112, 122を駆動して洗浄液 1A内に超音波を出力してもよい。
[0107] また、洗浄効果を高める別の方法として、洗浄液 1Aを用いて基板ホルダ PHの洗 浄を行っているときに、図 10の基板ステージ PSTの Zステージ部を駆動して、基板ホ ルダ PHを Z方向に微小振幅で振動させてもよい。これによつて、基板ホルダ PHの上 部からの異物の剥離効果が向上する場合がある。また、洗浄効果を高めるさらに別 の方法として、図 11において、洗浄液 1Aを用いて洗浄を行っているときに、露光光 ELを照射してもよい。本例の露光光 ELは紫外パルス光であるため、有機物等を分 解する光洗浄作用がある。そこで、露光光 ELによる光洗浄作用が加わることによって 、洗浄効率が向上する場合がある。なお、計測ステージ MSTの洗浄においても計測 テーブル MTBを Z方向に振動させてもよいし、露光光 ELによる光洗浄を併用しても よい。
[0108] [第 2の洗浄工程]
次に、図 3の液体供給口 13, 14 (供給ノズル)の洗浄を行う方法を説明する。供給 口 13, 14 (供給ノズル)の洗浄のために、液体供給機構 10による液体 1又は洗浄液 1Aの供給動作を停止した状態で、図 13に示すように、基板ホルダ PHに設けられた ステージ側液体供給機構 118のノズル部 113を、流路形成部材 30の液体の供給口 13の下方に基板ステージを移動することにより移動させて、 2点鎖線で示すように、ノ ズル部 113から洗浄液 1Bを流路形成部材 30側に吹き付けるようにする。続いて、ノ ズル部 113を図 3の供給口 14の下方に基板ステージを移動することにより移動させ ながら、ノズル部 113から上方に洗浄液 1Bを吹き付け、洗浄液 1Bを図 10の液体回 収機構 20によって回収することによって、供給口 13, 14及び回収口 23A〜23Dの 近傍に付着していた異物を除去することができる(図 16のステップ SS2)。この際に、 図 13の超音波振動子 117を作動させて超音波洗浄を併用することによって、洗浄効 果を高めることができる。
[0109] 第 2実施形態の露光装置 EX'の動作及び利点をまとめると以下のようになる。
B1:上述の洗浄液 1A又は 1Bを用いる洗浄工程を行うことによって、基板ステージ PST上の基板ホルダ PH上又は供給口 13, 14等の流路形成部材 30の底面に付着 している異物を溶剤に溶力して容易に除去することができる。従って、その後、基板 ホルダ PH上のダミー基板 CPを露光対象の基板 Pに交換して液浸法で露光する際 に、液浸領域 AR2の液体 1中に混入する異物の量が減少し、転写されるパターンの 欠陥が低減する。従って、製造される半導体デバイス等の歩留まりが向上する。
[0110] B2 :第 2実施形態では、基板ステージ PST (基板ホルダ PH)は、基板 Pを吸着保持 するための保持部 PH1を有し、その洗浄工程において、その保持部 PH1上にダミー 基板 CPを吸着保持しているため、洗浄液 1Aが保持部 PH1の真空系 40に誤って吸 引されることを防止できる。また、保持部 PH1が洗浄液 1Aで濡れることもない。
B3 :ダミー基板 CPの上面のエッジ部分 (端部 CPc)を除く部分は撥液性であり、そ の洗浄工程にお!、て、そのエッジ部分を伝ってダミー基板 CPの裏面側に流れた洗 浄液 1Aを基板ホルダ PH側から回収している。従って、基板ホルダ PHの全面の洗 浄をより効率的に行うことができる。
[0111] 第 1実施形態と同様に、洗浄工程では、保持部 PH1上に例えばレジストを塗布して ない未露光の基板等を保持してもよい。また、洗浄工程において、ダミー基板 CP (レ ジストが塗布されて 、な 、基板)上のみで液浸領域 AR2が動くように、液浸領域 AR 2と基板ステージ PSTとを相対的に移動してもよ ヽ。清浄なダミー基板 CP上のみで 液浸領域 AR2を移動することによって、流路形成部材 30 (特に液体 1と接触する下 面)の洗浄を行うことができる。特に、基板ステージ PST (基板ホルダ PH)が汚れて おらず、流路形成部材 30だけが汚れている場合には、液浸領域 AR2をダミー基板 CPのみで移動させること〖こよって、基板ステージ PST (基板ホルダ PH)を汚染するこ となぐ流路形成部材 30の洗浄を実行することができる。この場合、洗浄対象は流路 形成部材 30に限られるものでなく、液浸領域 AR2の液体 1と接触する他の接液部材 (例えば、光学素子 2など)を洗浄することとしもよい。
B4 :洗浄工程において、投影光学系 PLを介して、又は直接に露光光 ELを基板ス テージ PST又は計測ステージ MST側に照射する光洗浄も行うことによって、洗浄効 果を高めることができる。光洗浄は第 1実施形態においても用いることができる。
[0112] B5 :第 1の洗浄工程において、基板ステージ PST (及び/又は計測ステージ MST )の上面を投影光学系 PLの光軸方向に振動させることによって、洗浄効果を高める ことができる。
B6 :洗浄工程において、洗浄液 1 A又は 1Bを超音波で振動させる超音波洗浄を加 えることによつても、洗浄効果を高めることができる。図 11において、液浸領域 AR2 に露光時と同じ液体 1を供給した状態で、超音波振動子 112, 122によって超音波 洗浄を行ってもよい。同様に、図 13において、洗浄液 1Bとして露光時と同じ液体 1を 使用した状態で、超音波振動子 117によって超音波洗浄を行ってもよい。これらの場 合には、洗浄用の液体には溶剤は混入していないが、超音波洗浄によって、高い洗 浄効果が得られる。
[0113] B7 (A5):さらに、第 1及び第 2実施形態の洗浄工程では、液浸領域 AR2に対して 計測ステージ MSTも移動することによって、計測テーブル MTBの上面も洗浄して ヽ る。従って、投影光学系 PLの結像特性の計測時やベースライン量の計測時等にお ける液浸領域 AR2の液体 1への異物の混入量を低減できる。また、計測ステージ M STによる計測動作の後に液浸領域 AR2を基板ステージ PST上に移動して、基板 P の露光を行っても、基板 P上に形成される液浸領域 AR2の液体 1に含まれる異物を 低減することができる。
[0114] B8 :上記の洗浄工程においては、液体供給機構 10 (液体供給部 11, 111, 12, 1 21)力 供給されたその洗浄用の液体を液体回収機構 20 (液体回収部 21)及び吸 引装置 50で回収している。従って、基板ステージ PST及び計測ステージ MST上か ら洗浄液 1A又は 1Bとともに除去された異物が別の場所に残留することを防止できる
[0115] 第 2実施形態においては、第 3及び第 4液体供給部 111, 121により液浸領域 AR2 に洗浄液を供給するとともに、第 5液体供給部 116からも洗浄液を供給したが、第3 及び第 4液体供給部 111, 121による溶剤の供給は行わずに、液浸領域 AR2には 液浸露光に用いる液体 1だけを供給し、第 5液体供給部 116だけから洗浄液を供給 してもよい。あるいは、第 2実施形態において、第 5液体供給部 116から洗浄液を供 給することを行わなくてもよい。前者の場合、液浸領域 AR2に供給される液体 1の流 路を洗浄液 (溶剤)が通ることがなくなるので、その流路の洗浄が不要となって洗浄動 作の直後に露光動作を開始できる。また、第 2実施形態では、基板ステージ PSTに 液体供給機構 118を設けるものとしたが、液体供給機構 118を基板ステージ PSTと 異なる他の可動部材 (可動体)、例えば計測ステージ MSTに設けてもよい。さらに、 液体供給機構 118はその一部 (例えば、第 5液体供給部 116など)を他の液体供給 機構(111など)で代用してもよい。また、洗浄液 1A、 IB (又は液体 1)を振動させる 部材(112、 121、 117)は超音波振動子に限られるものでなく他の部材を用いてもよ い。
[0116] なお、第 1及び第 2実施形態の洗浄工程は、図 1の露光装置 EX、 EX'を用いた露 光工程が終了している期間、例えば夜間等に実行してもよい。この場合、図 14 (A) の実線の曲^ J1は、その直近の露光工程 (走査露光時)における図 1の基板ステー ジ PSTの X方向(走査方向)の移動速度 VPXの変化の一例を示し、図 14 (B)の実線 の曲^ J3は、その移動速度 VPXに対応する基板ステージ PSTの Y方向(非走査方 向)の移動速度 VPY (ステップ移動時の移動速度)の変化の一例を示すものとする。 図 14 (A)及び (B)は、基板 P上の Y方向に配列された複数のショット領域に走査方 向を反転しながら、順次マスク Mのパターンの像を露光する場合の移動速度の変化 の一例を示している。曲謝 1及び J2において、露光工程における移動速度 VPX及 び VPYの最大値はほぼ VPX1及び VPY1である。
[0117] これに対して、上記の夜間等に実行される洗浄工程においては、図 1または図 10 の基板ステージ PST上に図 5のダミー基板 CPをロードして、そのダミー基板 CP及び Z又はプレート部 97上に液体供給機構 10から液体 1を供給して液浸領域 AR2を形 成し、図 14 (A)の点線の曲謝 2及び図 14 (B)の点線の曲謝 4で示すように、その 液浸領域 AR2に対して基板ステージ PSTをその直近の露光時よりも高速に X方向、 Y方向に移動させる。洗浄工程における移動速度 VPX及び VPYの最大値はほぼ V PX2及び VPY2であり(曲^ J2, J4参照)、これらの速度は露光時の最大値 VPX1及 び VPY1のほぼ 2倍である。この場合、露光工程においては、マスクステージ RSTと 基板ステージ PSTとの同期精度を維持し、かつ所定速度で安定に駆動するために、 基板ステージ PSTの走査方向の移動速度の最大値 VPX1は所定範囲内に設定さ れる。しかしながら、洗浄工程では、マスクステージ RSTは静止させた状態で、基板 ステージ PSTのみを駆動すればよぐかつ基板ステージ PSTの走査方向の移動速 度が曲^ J2で示すように変動しても問題はない。従って、洗浄時の基板ステージ PS Tの移動速度の最大値 VPX2及び VPY2は、露光装置の仕様の限界付近まで容易 に高めることができる。このように洗浄工程で基板ステージ PSTを露光時よりも高速 に駆動することによって、基板ステージ PSTの上面並びに流路形成部材 30の底面、 液体の供給口、及び液体の回収口等の液体 1に接する部分 (接液部)の少なくとも一 部に付着している異物をより確実に除去できる場合がある。この際に、一例として図 1 の液体回収機構 20を動作させることで、その異物を液体中に混入した状態で液体回 収部 21に回収することができる。
[0118] なお、洗浄工程において、そのように基板ステージ PSTを露光時よりも高速に駆動 する代わりに、又はその高速に移動する動作とともに、基板ステージ PSTを露光時よ りも大きい加速度で X方向及び Z又は Y方向に駆動してもよい。これによつても、その 接液部に付着している異物をより確実に除去できる場合がある。さらに、洗浄工程に おいて、液浸領域 AR2に対して基板ステージ PSTを X方向、 Y方向に不規則に移動 してもよい。また、計測ステージ MSTの洗浄においても同様に露光時よりも速度及び Z又は加速度を大きくして計測ステージ MSTを駆動してもよい。
[0119] また、その洗浄工程において、図 1 (及び図 11)の基板ステージ PST上に図 5のダミ 一基板 CPをロードして、そのダミー基板 CP上に液体供給機構 10から液体 1を供給 して液浸領域 AR2を形成し、図 4の矢印 HZで示すように基板ステージ PSTを Z方向 に駆動して、その液浸領域 AR2に対してダミー基板 CP (基板ホルダ PH)を Z方向に 振動させてもよい。この場合、その直近の露光時におけるオートフォーカスのための 基板ステージ PST (基板 P)の Z方向の移動ストローク Δ Ζ1に対して、洗浄工程にお ける基板ステージ PSTの Z方向の移動ストローク Δ Z2を例えば数倍に広くしてもよい 。これによつても、その接液部に付着している異物をより確実に除去できる場合がある 。なお、洗浄工程において、そのように移動ストローク Δ Ζ2を広くする代わりに、又は その移動ストロークを広くする動作とともに、その基板ステージ PSTの Z方向の移動 速度及び Z又は加速度を露光時よりも大きくしてもよい。これによつても、その接液部 に付着している異物をより確実に除去できる場合がある。さらに、基板ステージ PST を介して基板ホルダ PHを Z方向に振動させる動作とともに、又はその動作とは独立 に、基板ホルダ PHの X軸、 Y軸の周りの傾斜角を露光時よりも高速に変化させるレべ リング動作を実行してもよい。また、基板ステージ PSTの代わりに計測ステージ MST を光学素子 2と対向して配置し、計測テーブル MTBを Z方向に移動することとしても よい。
[0120] また、上記の動作を切り換えて容易に実行できるように、図 1及び図 11の制御装置 CONTの制御プログラムに、通常の露光動作を行う第 1モード、上記の洗浄工程で、 その第 1モード時よりも速度及び Z又は加速度が大きくなるように基板ステージ PST を X方向、 Y方向(露光光 ELの光軸に垂直な方向)に駆動する第 2モード、及び上記 の洗浄工程で、その第 1モード時よりも移動ストローク及び Z又は速度が大きくなるよ うに基板ステージ PSTを Z方向(露光光 ELの光軸に平行な方向)に駆動する第 3モ ードを設けておいてもよい。上記の洗浄工程で、その第 2モード又は第 3モードで露 光装置 ΕΧ,ΕΧ'を駆動することによって、その接液部に付着している異物をより確実 に除去できる場合がある。
[0121] また、図 9 (Α)に示すように、計測ステージ MSTの計測テーブル ΜΤΒと基板ステ ージ PSTとをほぼ X方向に接触させて、計測テーブル ΜΤΒと基板ステージ PSTとの 境界部を含むように液浸領域 AR2を形成した状態で、基板ステージ PSTと計測テー ブル ΜΤΒとを逆位相で Υ方向に振動させてもよい。即ち、実線の矢印 HP 1, HM1 で示すように、基板ステージ PSTを—Y方向に、計測テーブル MTBを +Y方向に移 動する動作と、点線の矢印 HP2, HM2で示すように、基板ステージ PSTを +Y方向 に、計測テーブル MTBを Y方向に移動する動作とを交互に繰り返してもよい。こ れによっても、その接液部(ここでは、計測テーブル MTBの上面を含む。 )に付着し て 、る異物をより確実に除去できる場合がある。
[0122] なお、上記の各実施形態の洗浄工程は、図 1及び図 11の露光装置 EX, EX'の液 体供給機構 10 (10' )及び液体回収機構 20のメンテナンスを行うために実行してもよ い。そのメンテナンスは例えば定期的に行うようにしてもよい。その他に、図 1及び図 1 1の液体回収部 21に液浸領域 AR2から回収された液体中のパーティクル (異物)の 数を計数するパーティクルカウンタ (不図示)を設けておき、回収される液体の単位流 量当たりのパーティクルカウンタの計数値 (異物の量)が所定の許容レベルを超えた ときにそのメンテナンスを行うようにしてもょ 、。
[0123] そのメンテナンスのための洗浄工程では、上記の各実施形態の洗浄工程と同様に 、図 1及び 11の液体供給機構 10 (10' )カゝら流路形成部材 30を介して基板ステージ PST (例えばダミー基板 CPで覆われて 、る)又は計測ステージ MST上に液体 1を供 給して液浸領域 AR2を形成し、この状態で基板ステージ PST又は計測ステージ MS Tを X方向、 Y方向、及び Z又は Z方向に移動又は振動させる。そして、必要に応じ て、流路形成部材 30を介して液体回収機構 20によってその液浸領域 AR2内の液 体 1を回収する。これによつて、接液部の少なくとも一部に付着している異物が除去さ れるため、その後の露光工程において、液浸領域 AR2内の異物が減少し、高精度 に露光を行うことができる。
[0124] また、このメンテナンスのための洗浄工程においても、図 4及び図 14 (A)、 (B)に示 すように、直近の露光工程の動作よりも基板ステージ PSTの移動ストローク、速度、 及び加速度の少なくとも一つを大きくしてもよい。これは、計測ステージ MSTについ ても同様である。さら〖こ、図 9 (A)に示すように、基板ステージ PSTと計測テーブル M TBとをほぼ接触させて、その境界部を含むように液浸領域 AR2を形成した状態で、 基板ステージ PSTと計測テーブル MTBとを逆位相で振動させてもよい。
[0125] なお、上述の実施形態においては、基板ステージ PSTの洗浄を実行した後に、計 測ステージ MSTの洗浄を実行して 、るが、基板ステージ PST上にダミー基板 CPを 載せている間に、計測ステージ MSTの洗浄を実行し、その後に基板ステージ PST の洗浄を実行してもよい。
[0126] また、基板ステージ PSTの洗浄と計測ステージ MSTの洗浄を順番に行わずに、例 えば、図 8に示したように、基板ステージ PSTと計測ステージ MSTとを密着 (又は近 接)させた状態で、基板ステージ PSTと計測ステージ MSTの洗浄を実行するようにし てもよい。また、上述の各実施形態においては、一度の洗浄工程において、基板ス テージ PSTと計測ステージ MSTの両方を行っている力 一度の洗浄工程において、 V、ずれか一方のステージの洗浄を行うだけでもよ 、。
[0127] また、上述の各実施形態においては、基板ステージ PST (及び Z又は計測ステー ジ MST)を動力して、基板ステージ PST (及び Z又は計測ステージ MST)と液浸領 域 AR2とを相対的に移動しているが、流路形成部材 30を可動にして、静止した基板 ステージ PST (及び Z又は計測ステージ MST)上で液浸領域 AR2を動かしてもよ ヽ 。また、上述の各実施形態では干渉計システム(56A〜56C)を用いてマスクステー ジ RST、基板ステージ PST、及び計測ステージ MSTの各位置情報を計測するもの としたが、これに限らず、例えば各ステージに設けられるスケール(回折格子)を検出 するエンコーダシステムを用いてもよい。この場合、干渉計システムとエンコーダシス テムの両方を備えるノ、イブリツドシステムとし、干渉計システムの計測結果を用いてェ ンコーダシステムの計測結果の較性 (キャリブレーション)を行うことが好まし 、。また、 干渉計システムとェンコーダシステムとを切り替えて用いる、あるいはその両方を用い て、ステージの位置制御を行うようにしてもよい。
[0128] また、上述の実施形態では基板ホルダ PHを基板ステージ PSTと一体に形成しても よいし、基板ホルダ PHと基板ステージ PSTとを別々に構成し、例えば真空吸着など によって基板ホルダ PHを基板ステージ PSTに固定することとしてもよい。なお、本発 明は、各種計測器類 (計測用部材)を基板ステージ PSTに搭載した露光装置 (計測 ステージ MSTを備えていない露光装置)にも適用することができる。また、各種計測 器類はその一部のみが計測ステージ MSTまたは基板ステージ PSTに搭載され、残 りは外部ある 、は別の部材に設けるようにしてもょ 、。
[0129] 上述の各実施形態の洗浄工程においては、液体供給機構 10、 10' (液体供給部 1 1, 12)から供給されたその洗浄用の液体を液体回収機構 20 (液体回収部 21)及び 吸引装置 50で回収している。従って、基板ステージ PST及び計測ステージ MST上 力も液体 1とともに除去された異物が別の場所に残留することを防止できる。
[0130] なお、上記各実施形態では、液浸法に用いる液体 1として水(純水)を用いているが 、水以外の液体を用いてもよい。例えば、露光光 ELの光源が Fレーザ (波長 157nm
2
)である場合、液体 1は、例えばフッ素系オイル又は過フッ化ポリエーテル (PFPE)等 のフッ素系流体であってもよい。また、液体 1としては、その他にも、露光光 ELに対す る透過性があってできるだけ屈折率が高ぐ投影光学系 PLや基板 P表面に塗布され ているレジストに対して安定なもの(例えばセダー油)を用いることも可能である。また 、液体 1としては、石英や蛍石よりも屈折率が高いもの(屈折率が 1. 6〜1. 8程度)を 使用してもよい。更に、石英や蛍石よりも屈折率が高い (例えば 1. 6以上)材料で光 学素子 2を形成してもよい。
[0131] また、半導体デバイス等のマイクロデバイスは、図 17に示すように、マイクロデバイ スの機能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチタ ル)を製作するステップ 202、デバイスの基材である基板を製造するステップ 203、前 述した実施形態の露光装置 EX, EX'によりマスクのパターンを基板に露光する工程 、露光した基板を現像する工程、現像した基板の加熱 (キュア)及びエッチング工程 などを含む基板処理ステップ 204、デバイス組み立てステップ (ダイシング工程、ボン デイング工程、パッケージ工程などの加工プロセスを含む) 205、及び検査ステップ 2 06等を経て製造される。
[0132] 露光装置 EX、 EX'の種類としては、基板 Pに半導体素子パターンを露光する半導 体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造 用の露光装置や、薄膜磁気ヘッド、マイクロマシン、 MEMS, DNAチップ、撮像素 子 (CCD)あるいはレチクル又はマスクなどを製造するための露光装置などにも広く 適用できる。
[0133] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミック ウェハ、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリ コンウェハ)、またはフィルム部材等が適用される。また、基板 Pの形状は円形のみな らず、矩形など他の形状でもよい。なお、上述の各実施形態においては、転写用の パターンが形成されたマスクを用いた力 このマスクに代えて、例えば米国特許第 6, 778, 257号公報に開示されているように、露光すべきパターンの電子データに基づ V、て透過パターンまたは反射パターンを形成する電子マスクを用いてもょ 、。この電 子マスクは、可変成形マスク(アクティブマスクあるいはイメージジェネレータ)とも呼ば れ、例えば非発光型画像表示素子 (空間光変調器)の一種である DMD (Digital Mic ro-mirror Device)などを含むものである。 DMDは、所定の電子データに基づいて駆 動する複数の反射素子 (微小ミラー)を有し、複数の反射素子は、 DMDの表面に 2 次元マトリックス状に配列され、かつ素子単位で駆動されて露光光を反射、偏向する 。各反射素子はその反射面の角度が調整される。 DMDの動作は、制御装置 CONT により制御され得る。制御装置 CONTは、基板 P上に形成すべきパターンに応じた 電子データ (パターン情報)に基づいて DMDの反射素子を駆動し、照明系 ILにより 照射される露光光を反射素子でパターン化する。 DMDを使用することにより、パター ンが形成されたマスク(レチクル)を用いて露光する場合に比べて、パターンが変更さ れたときに、マスクの交換作業及びマスクステージにおけるマスクの位置合わせ操作 が不要になるため、露光動作を一層効率よく行うことができる。なお、電子マスクを用 いる露光装置では、マスクステージを設けず、基板ステージによって基板を X軸及び Y軸方向に移動するだけでもよい。なお、 DMDを用いた露光装置は、上記米国特 許のほかに、例えば特開平 8— 313842号公報、特開 2004— 304135号公報に開 示されている。指定国または選択国の法令が許す範囲において米国特許第 6,778, 257号公報の開示を援用して本文の記載の一部とする。
[0134] また、露光装置 EX、 EX'としては、マスク Mと基板 Pとを同期移動してマスク Mのパ ターンを走査露光するステップ ·アンド'スキャン方式の走査型露光装置 (スキヤニン ダステッパ)の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括 露光し、基板 Pを順次ステップ移動させるステップ'アンド'リピート方式の投影露光装 置 (ステツパ)にも適用することができる。また、本発明の露光装置、並びに本発明の 露光方法及びメンテナンス方法が適用される露光装置は、必ずしも投影光学系を備 えていなくてもよい。光源力ゝらの露光光を基板に導く光学部材を、本発明を実行でき る範囲で備えていれば足りる。また、照明光学系や光源もまた露光装置と別に設けて も良い。また、マスクステージ及び Zまたは基板ステージを前述のような露光方式及 び本発明の態様に応じて省略することもできる。また、本発明は、例えば特開平 10— 163099号公報、特開平 10— 214783号公報(対応する米国特許第 6, 341, 007 、 6, 400, 441、 6, 549, 269及び 6, 590, 634号明細書)、特表 2000— 505958 号公報 (対応する米国特許第 5, 969, 441号明細書)あるいは米国特許第 6, 208, 407号明細書などに開示されているような複数の基板ステージを備えたマルチステ ージ型の露光装置にも適用できる。この場合、複数の基板ステージのそれぞれに対 して洗浄が実施される。マルチステージ型の露光装置に関して、指定国及び選択国 の国内法令が許す限りにおいて、上記米国特許の開示を援用して本文の記載の一 部とする。
[0135] また、上述の各実施形態の投影光学系は、先端の光学素子の像面側の光路空間 を液体で満たしている力 例えば国際公開第 2004Z019128号パンフレットに開示 されて 、るように、先端の光学素子のマスク側の光路空間も液体で満たす投影光学 系を採用することもできる。また、本発明は、投影光学系と基板との間の液浸領域を その周囲のエアーカーテンで保持する液浸型の露光装置にも適用することができる 。また、本発明は、例えば国際公開第 2001Z035168号パンフレットに開示されて いるように、干渉縞を基板 P上に形成することによって、基板 P上にライン 'アンド'スぺ ースパターンを形成する露光装置にも適用できる。この場合も、光学部材と基板 Pと の間の液体を介して基板 Pに露光光が照射される。
[0136] 上述の各実施形態において、液体供給部及び Z又は液体回収部が露光装置に設 けられている必要はなぐ例えば露光装置が設置される工場等の設備を代用してもよ い。また、液浸露光に必要な構造は、上述の構造に限られず、例えば、欧州特許公 開第 1420298号公報、国際公開第 2004Z055803号パンフレット、国際公開第 2 004Z057590号パンフレット、国際公開第 2005,029559号パンフレット(対応米 国特許公開第 2006Z0231206号)、国際公開第 2004,086468号パンフレツ卜( 対応米国特許公開第 2005Z0280791号)、特開 2004— 289126号公報(対応米 国特許第 6,952,253号)などに記載されているものを用いることができる。液浸露光 装置の液浸機構及びその付属機器にっ 、て、指定国または選択国の法令が許す範 囲において上記の米国特許又は米国特許公開などの開示を援用して本文の記載の 一部とする。
[0137] 上記各実施形態では、液浸法に用いる液体 1として、水よりも露光光に対する屈折 率が高い液体、例えば屈折率が 1. 6〜1. 8程度のものを使用してもよい。ここで、純 水よりも屈折率が高い(例えば 1. 5以上)の液体 1としては、例えば、屈折率が約 1. 5 0のイソプロパノール、屈折率が約 1. 61のグリセロール(グリセリン)といった C—H結 合あるいは O— H結合を持つ所定液体、へキサン、ヘプタン、デカン等の所定液体( 有機溶剤)、あるいは屈折率が約 1. 60のデカリン (Decalin: Decahydronaphthalene) などが挙げられる。また、液体 1は、これら液体のうち任意の 2種類以上の液体を混合 したものでもよいし、純水にこれら液体の少なくとも 1つを添カ卩(混合)したものでもよ い。さらに、液体 1は、純水に H+、 Cs+、 K+、 Cl_、 SO 2_、 PO 2_等の塩基又は酸
4 4
を添カ卩(混合)したものでもよ 、し、純水に A1酸ィ匕物等の微粒子を添カ卩(混合)したも のでもよい。なお、液体 1としては、光の吸収係数が小さぐ温度依存性が少なぐ投 影光学系 PL、及び Z又は基板 Pの表面に塗布されている感光材 (又はトップコート 膜あるいは反射防止膜など)に対して安定なものであることが好ましい。液体 1として 、超臨界流体を用いることも可能である。また、基板 Pには、液体から感光材ゃ基材 を保護するトップコート膜などを設けることができる。 [0138] また、投影光学系 PLの光学素子 (終端光学素子) 2を、フッ化カルシウム (蛍石)に 代えて、例えば石英(シリカ)、あるいは、フッ化バリウム、フッ化ストロンチウム、フツイ匕 リチウム、及びフッ化ナトリウム等のフッ化化合物の単結晶材料で形成してもよ 、し、 石英や蛍石よりも屈折率が高い(例えば 1. 6以上)材料で形成してもよい。屈折率が 1. 6以上の材料としては、例えば、国際公開第 2005Z059617号パンフレットに開 示される、サファイア、二酸ィ匕ゲルマニウム等、あるいは、国際公開第 2005/0596 18号パンフレットに開示される、塩化カリウム (屈折率は約 1. 75)等を用いることがで きる。
[0139] 液浸法を用いる場合、例えば、国際公開第 2004Z019128号パンフレット(対応 米国特許公開第 2005Z0248856号)に開示されているように、終端光学素子の像 面側の光路に加えて、終端光学素子の物体面側の光路も液体で満たすようにしても よい。さらに、終端光学素子の表面の一部 (少なくとも液体との接触面を含む)又は全 部に、親液性及び Z又は溶解防止機能を有する薄膜を形成してもよい。なお、石英 は液体との親和性が高ぐかつ溶解防止膜も不要であるが、蛍石は少なくとも溶解防 止膜を形成することが好まし 、。
[0140] 上記各実施形態では、露光光 ELの光源として ArFエキシマレーザを用いた力 例 えば、国際公開第 1999Z46835号パンフレット (対応米国特許第 7,023,610号)に 開示されているように、 DFB半導体レーザ又はファイバーレーザなどの固体レーザ 光源、ファイバーアンプなどを有する光増幅部、及び波長変換部などを含み、波長 1 93nmのパルス光を出力する高調波発生装置を用いてもよい。さらに、上記各実施 形態では、投影領域 (露光領域)が矩形状であるものとしたが、他の形状、例えば円 弧状、台形状、平行四辺形状、あるいは菱形状などでもよい。
[0141] さらに、例えば特表 2004— 519850号公報(対応する米国特許第 6, 611, 316号 明細書)に開示されているように、 2つのマスクのパターンを、投影光学系を介して基 板上で合成し、 1回の走査露光によって基板上の 1つのショット領域をほぼ同時に二 重露光する露光装置にも本発明を適用することができる。このように本発明は上述の 実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。
[0142] 以上のように、本願実施形態の露光装置 EX、 EX'は、本願請求の範囲に挙げられ た各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的 精度を保つように、組み立てることで製造される。これら各種精度を確保するために、 この組み立ての前後には、各種光学系については光学的精度を達成するための調 整、各種機械系については機械的精度を達成するための調整、各種電気系につい ては電気的精度を達成するための調整が行われる。各種サブシステム力 露光装置 への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接 続、気圧回路の配管接続等が含まれる。この各種サブシステム力 露光装置への組 み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない 。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ 、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度及び クリーン度等が管理されたクリーンルームで行うことが望ましい。
[0143] 本願明細書に掲げた種々の米国特許及び米国特許出願公開については、特に援 用表示をしたもの以外についても、指定国または選択国の法令が許す範囲において それらの開示を援用して本文の一部とする。
産業上の利用可能性
[0144] 本発明の露光方法及びデバイス製造方法によれば、液浸領域の液体中の異物の 量が減少するため、製造されるデバイスの歩留りが向上する。それゆえ、本発明は、 我国の半導体産業を含む精密機器産業の発展に著しく貢献するであろう。

Claims

請求の範囲
[1] 基板を露光する露光方法であって:
基板ステージに保持された前記基板上に液浸領域を形成し、露光光で前記液浸 領域の液体を介して前記基板を露光することと;
前記基板の露光を行わな!/ヽ期間中に、前記液浸領域と前記基板ステージとを相対 移動して、前記基板ステージを洗浄することを含むことを特徴とする露光方法。
[2] 前記液浸領域を所定の洗浄用の液体を用いて形成することを特徴とする請求項 1 に記載の露光方法。
[3] 前記基板ステージは、前記基板を保持する保持部と、前記保持部の周囲に配置さ れ、前記保持部で保持された基板の表面とほぼ平行な平坦面とを有し、前記洗浄時 、前記平坦面上に前記液浸領域の少なくとも一部を形成した状態で、前記液浸領域 と前記基板ステージとを相対移動することを特徴とする請求項 1又は 2に記載の露光 方法。
[4] 前記洗浄時、前記保持部は平板状のダミー基板を保持することを特徴とする請求 項 3に記載の露光方法。
[5] 前記洗浄時、前記基板ステージの前記基板を保持する保持部はその周囲の平坦 面と上面がほぼ平行となるダミー基板で覆われることを特徴とする請求項 1又は 2に 記載の露光方法。
[6] 前記液浸領域の少なくとも一部が実質的に前記ダミー基板上のみで移動するよう に前記液浸領域と前記基板ステージとを相対移動することを特徴とする請求項 5に 記載の露光方法。
[7] 前記ダミー基板の少なくとも上面は撥液性であり、かつ前記上面に複数の親液性 の溝部が形成されて 、ることを特徴とする請求項 4から 6の 、ずれか一項に記載の露 光方法。
[8] 前記洗浄時、前記基板ステージ上での前記液浸領域の移動範囲の少なくとも一部 が前記露光時と異なるように前記液浸領域と前記基板ステージとを相対的に移動す ることを特徴とする請求項 1から 7のいずれか一項に記載の露光方法。
[9] 前記液浸領域と前記基板ステージとを、前記露光光の光軸に垂直な方向の速度 及び加速度の少なくとも一方力 前記基板の露光時よりも大きくなるように相対的に 移動することを特徴とする請求項 1から 8のいずれか一項に記載の露光方法。
[10] 前記液浸領域と前記基板ステージとを、前記露光光の光軸に平行な方向の速度 及びストロークの少なくとも一方力 S、前記基板の露光時よりも大きくなるように相対的 に移動することを特徴とする請求項 1から 9のいずれか一項に記載の露光方法。
[11] 前記基板ステージと独立に移動可能な計測ステージ上に前記液浸領域を形成し、 前記液浸領域と前記計測ステージとを相対移動して、前記計測ステージを洗浄する ことを含むことを特徴とする請求項 1から 10のいずれか一項に記載の露光方法。
[12] 前記基板ステージ及び前記計測ステージを洗浄するために、
前記基板ステージと前記計測ステージとを近接させて、前記基板ステージと前記計 測ステージとの境界部に前記液浸領域を形成し、
前記基板ステージと前記計測ステージとを境界線に沿った方向に逆位相で相対的 に振動させることを特徴とする請求項 11に記載の露光方法。
[13] 前記洗浄時、前記基板の露光を行うときの前記基板ステージの移動の軌跡以外の 軌跡に沿って、前記液浸領域に対して前記基板ステージを移動することを含むことを 特徴とする請求項 1から 12のいずれか一項に記載の露光方法。
[14] 前記洗浄時、前記基板のァライメント時又は前記基板の露光前後に前記基板ステ ージを移動するときの軌跡に沿って前記基板ステージを移動することを含むことを特 徴とする請求項 13に記載の露光方法。
[15] 前記洗浄時、前記液浸領域の液体を回収することを含むことを特徴とする請求項 1 力も 14のいずれか一項に記載の露光方法。
[16] 前記露光光は、光学部材及び前記液体を介して前記基板に照射され、
前記基板と前記光学部材との間の前記露光光の光路空間が液体で満たされて、前 記基板ステージ上に前記露光光の照射領域を含む局所的な液浸領域が形成される ことを特徴とする請求項 1から 15のいずれか一項に記載の露光方法。
[17] 前記液浸領域への液体の供給及び回収の少なくとも一方を行うための液浸部材が 使用され、
前記基板ステージの洗浄時に前記液浸部材の洗浄をも行うことを特徴とする請求 項 16に記載の露光方法。
[18] 前記基板の露光を行わな 、期間中に、前記液浸領域に洗浄用液体を供給すること を特徴とする請求項 1から 17のいずれか一項に記載の露光方法。
[19] 前記洗浄用液体が、前記露光時に形成される液浸領域の液体に所定の溶剤を混 入してなる洗浄用の液体、又は前記液体と異なる液体であることを特徴とする請求項
18に記載の露光方法。
[20] 前記洗浄用液体は、前記液体を供給する液体供給機構を介して前記液浸領域に 供給されることを特徴とする請求項 18又は 19に記載の露光方法。
[21] 前記洗浄時、前記基板ステージの前記基板を保持する保持部をダミー基板で覆う とともに、前記基板ステージ側で液体を回収することを特徴とする請求項 1から 20の
V、ずれか一項に記載の露光方法。
[22] 前記基板ステージで前記ダミー基板とその周囲の平坦面とのギャップを介して流入 する液体を回収することを特徴とする請求項 21に記載の露光方法。
[23] 前記ダミー基板はその上面が撥液性かつ前記平坦面とほぼ面一であることを特徴と する請求項 21又は 22に記載の露光方法。
[24] 前記洗浄時、前記露光光を前記基板ステージ側に照射することを含むことを特徴と する請求項 1から 23のいずれか一項に記載の露光方法。
[25] 前記洗浄時、前記基板ステージを前記露光光の光軸と平行な方向に振動させるこ とを含むことを特徴とする請求項 1から 24のいずれか一項に記載の露光方法。
[26] 前記洗浄時、前記液浸領域の液体を超音波で振動させることを含むことを特徴とす る請求項 1から 25のいずれか一項に記載の露光方法。
[27] 光学部材及び液体を介して露光光で基板を露光する露光方法であって:
前記液体と接触する可動部材を前記光学部材と対向して配置することと; 前記光学部材と前記可動部材との間に形成される洗浄用液体の液浸領域と前記 可動部材とを相対移動して、前記可動部材を洗浄することとを含む露光方法。
[28] 前記洗浄用液体は、前記露光時に前記光学部材と前記基板との間に形成される 液浸領域の液体と同一であることを特徴とする請求項 27に記載の露光方法。
[29] 前記可動部材は、前記基板を保持する基板ステージ、及び Z又は前記基板ステー ジと独立に移動可能な計測ステージを含むことを特徴とする請求項 27又は 28に記 載の露光方法。
[30] 前記洗浄動作と前記露光動作とで前記可動部材の移動軌跡の少なくとも一部を異 ならせることを特徴とする請求項 27から 29のいずれか一項に記載の露光方法。
[31] 液体を介して露光光で基板を露光する露光装置であって:
前記基板を保持する基板ステージと;
前記基板上に液体を供給して液浸領域を形成する液浸機構と;
前記基板の露光を行わな 、期間中に前記基板ステージを洗浄するために、前記 液浸領域と前記基板ステージとを相対移動する制御装置とを備える露光装置。
[32] 前記基板ステージは、前記基板を保持する保持部と、前記保持部の周囲に配置さ れ、前記保持部で保持された基板の表面とほぼ平行な平坦面とを有し、
前記制御装置は、前記平坦面上に前記液浸領域の少なくとも一部を形成した状態 で、前記液浸領域と前記基板ステージとを相対移動することを特徴とする請求項 31 に記載の露光装置。
[33] 前記洗浄時、前記保持部を平板状のダミー基板で覆うことを特徴とする請求項 32 に記載の露光装置。
[34] 前記ダミー基板の少なくとも上面は撥液性であり、かつ前記上面に複数の親液性 の溝部が形成されていることを特徴とする請求項 33に記載の露光装置。
[35] 前記制御装置は、
前記基板の露光を行う第 1モードと、
前記液浸領域と前記基板ステージとを、前記露光光の光軸に垂直な方向の速度 及び加速度の少なくとも一方力 前記第 1モード時よりも大きくなるように相対的に移 動する第 2モードとを有することを特徴とする請求項 31から 34のいずれか一項に記 載の露光装置。
[36] 前記制御装置は、
前記液浸領域と前記基板ステージとを、前記露光光の光軸に平行な方向の速度 及びストロークの少なくとも一方力 S、前記第 iモード時よりも大きくなるように相対的に 移動する第 3モードを有することを特徴とする請求項 35に記載の露光装置。
[37] 前記基板ステージと独立に移動する計測ステージを備え、
前記制御装置は、前記基板の露光を行わない期間中に、前記計測ステージ上に 液浸領域を形成し、前記液浸領域と前記計測ステージとを相対移動して、前記計測 ステージの洗浄を実行することを特徴とする請求項 31から 36のいずれか一項に記 載の露光装置。
[38] 前記制御装置は、前記基板ステージ及び前記計測ステージを洗浄するために、 前記基板ステージと前記計測ステージとを近接させて、前記基板ステージと前記計 測ステージとの境界部に前記液浸領域を形成し、前記基板ステージと前記計測ステ 一ジとを境界線に沿った方向に逆位相で相対的に振動させることを特徴とする請求 項 37に記載の露光装置。
[39] 前記液浸機構は、前記液体を供給する液体供給機構と、前記供給された液体を回 収する液体回収機構とを含むことを特徴とする請求項 31から 38の 、ずれか一項に 記載の露光装置。
[40] 前記液浸機構は、前記液浸領域への液体の供給及び回収の少なくとも一方を行う ための液浸部材を含み、
前記基板ステージの洗浄時に前記液浸部材の洗浄をも行うことを特徴とする請求 項 39に記載の露光装置。
[41] 前記液浸機構が、前記液体を供給する第 1液体供給機構と、所定の溶剤を含む洗 浄用の液体を供給する第 2液体供給機構とを有し、
前記洗浄時、前記第 2液体供給機構は前記基板ステージ上に前記洗浄用の液体 を供給することを特徴とする請求項 31から 40のいずれか一項に記載の露光装置。
[42] 前記第 2液体供給機構は、前記第 1液体供給機構から供給される液体に前記所定 の溶剤を混入する混入機構を有し、
前記洗浄用の液体は、前記露光時に形成される液浸領域の液体に前記所定の溶 剤が混入されたものであることを特徴とする請求項 41に記載の露光装置。
[43] 前記基板ステージは、前記基板を保持する保持部を有し、
前記洗浄時に、前記保持部を覆うための平板状のダミー基板を前記基板と交換可 能に備えたことを特徴とする請求項 31から 42のいずれか一項に記載の露光装置。
[44] 前記洗浄時、前記基板ステージは前記基板を保持する保持部がダミー基板で覆わ れ、
前記基板ステージに少なくとも一部が設けられ、前記ダミー基板とその周囲の平坦面 とのギャップを介して流入する液体を回収する回収部を備えることを特徴とする請求 項 31から 43のいずれか一項に記載の露光装置。
[45] 前記ダミー基板はその上面が撥液性かつ前記平坦面とほぼ面一であることを特徴 とする請求項 43又は 44に記載の露光装置。
[46] 前記制御装置は、前記洗浄動作中に、前記露光光を発光させることを特徴とする 請求項 31から 45のいずれか一項に記載の露光装置。
[47] 前記基板ステージは、前記基板を保持する保持部と、前記保持部の周囲に設けら れる平坦面とを有するとともに、前記露光光の光軸と平行な方向に可動なテーブル を含み、
前記制御装置は、前記洗浄動作中に、前記テーブルを前記光軸と平行な方向に 振動させることを特徴とする請求項 31から 46のいずれか一項に記載の露光装置。
[48] 前記洗浄時に前記液浸領域の液体を超音波で振動させる振動子を有することを特 徴とする請求項 31から 47のいずれか一項に記載の露光装置。
[49] 光学部材及び液体を介して露光光で基板を露光する露光装置であって:
前記光学部材と対向して配置されかつ前記液体と接触する可動部材と; 前記光学部材と前記可動部材との間に洗浄用液体の液浸領域を形成する液浸機 構と;
前記可動部材を洗浄するために、前記液浸領域と前記可動部材とを相対移動する 制御装置と、を備える露光装置。
[50] 前記洗浄用液体は、前記露光時に前記光学部材と前記基板との間に形成される 液浸領域の液体と同一であることを特徴とする請求項 49に記載の露光装置。
[51] 前記可動部材は、前記基板を保持する基板ステージ、及び Z又は前記基板ステー ジと独立に移動可能な計測ステージを含むことを特徴とする請求項 49又は 50に記 載の露光装置。
[52] 前記基板ステージの洗浄時、前記基板ステージは前記基板を保持する保持部で力 バー部材を保持することを特徴とする請求項 51に記載の露光装置。
[53] 前記制御装置は、前記洗浄動作と前記露光動作とで前記可動部材の移動軌跡の 少なくとも一部を異ならせることを特徴とする請求項 49から 52のいずれか一項に記 載の露光装置。
[54] 前記制御装置は、前記基板の露光を行わな!/、期間中に前記洗浄動作を実行する ことを特徴とする請求項 49から 53のいずれか一項に記載の露光装置。
[55] 基板ステージに保持された基板上に液浸領域を形成し、露光光で前記液浸領域 の液体を介して前記基板を露光する露光装置のメンテナンス方法であって: 前記液浸領域への液体の供給及び回収の少なくとも一方を行う液浸部材に対向し て前記基板ステージを配置することと;
前記基板の露光を行わな!/ヽ期間中に、前記液浸領域と前記基板ステージとを相対 移動して、前記液浸部材及び前記基板ステージの少なくとも一方を洗浄することを含 むメンテナンス方法。
[56] 前記基板ステージは、前記基板を保持する保持部と、前記保持部の周囲に配置さ れ、前記保持部で保持された基板の表面とほぼ平行な平坦面とを有し、
前記洗浄時、前記平坦面上に前記液浸領域の少なくとも一部を形成した状態で、 前記液浸領域と前記基板ステージとを相対移動することを特徴とする請求項 55に記 載のメンテナンス方法。
[57] 前記洗浄時、前記保持部は平板状のダミー基板を保持することを特徴とする請求 項 56に記載のメンテナンス方法。
[58] 前記洗浄時、前記液浸領域と前記基板ステージとを、前記露光光の光軸に垂直な 方向の速度及び加速度の少なくとも一方が、前記基板の露光時よりも大きくなるよう に相対的に移動することを特徴とする請求項 55から 57のいずれか一項に記載のメン テナンス方法。
[59] 前記洗浄時、前記液浸領域と前記基板ステージとを、前記露光光の光軸に平行な 方向の速度及びストロークの少なくとも一方が、前記基板の露光時よりも大きくなるよ うに相対的に移動することを特徴とする請求項 55から 58のいずれか一項に記載のメ ンテナンス方法。
[60] 前記露光装置は、前記基板ステージと独立に移動可能な計測ステージを備え、 前記計測ステージ上に前記液浸領域を形成し、前記液浸領域と前記計測ステージ とを相対移動して、前記計測ステージを洗浄することを含むことを特徴とする請求項 5 5から 59のいずれか一項に記載のメンテナンス方法。
[61] 前記基板ステージ及び前記計測ステージを洗浄するために、
前記基板ステージと前記計測ステージとを近接させて、前記基板ステージと前記計 測ステージとの境界部に前記液浸領域を形成し、
前記基板ステージと前記計測ステージとを境界線に沿った方向に逆位相で相対的 に振動させることを特徴とする請求項 60に記載のメンテナンス方法。
[62] 前記露光装置は、前記液浸領域の液体を回収する液体回収機構を備え
前記洗浄時、前記液浸領域の液体を回収することを含むことを特徴とする請求項 5 5から 61のいずれか一項に記載のメンテナンス方法。
[63] 前記基板の露光を行わな 、期間中に、前記液浸領域に洗浄用液体を供給すること を特徴とする請求項 55から 62のいずれか一項に記載のメンテナンス方法。
[64] 前記洗浄用液体が、前記露光時に形成される液浸領域の液体に所定の溶剤を混 入してなる洗浄用の液体、又は前記液体と異なる液体であることを特徴とする請求項 63に記載のメンテナンス方法。
[65] 光学部材及び液体を介して露光光で基板を露光する露光装置のメンテナンス方法 であって:
前記液体と接触する可動部材を前記光学部材と対向して配置することと; 前記光学部材と前記可動部材との間に形成される洗浄用液体の液浸領域と前記 可動部材とを相対移動して、前記可動部材を洗浄することとを含むメンテナンス方法
[66] 前記洗浄用液体は、前記露光時に前記光学部材と前記基板との間に形成される 液浸領域の液体と同一であることを特徴とする請求項 65に記載のメンテナンス方法
[67] 前記可動部材は、前記基板を保持する基板ステージ、及び Z又は前記基板ステー ジと独立に移動可能な計測ステージを含むことを特徴とする請求項 65又は 66に記 載のメンテナンス方法。
[68] 前記基板ステージの洗浄時、前記基板ステージの前記基板を保持する保持部を力 バー部材で覆うことを特徴とする請求項 67に記載のメンテナンス方法。
[69] 前記洗浄動作と前記露光動作とで前記可動部材の移動軌跡の少なくとも一部を異 ならせることを特徴とする請求項 65から 68のいずれか一項に記載のメンテナンス方 法。
[70] 前記基板の露光を行わな ヽ期間中に前記洗浄動作を実行することを特徴とする請 求項 65から 69のいずれか一項に記載のメンテナンス方法。
[71] 基板を露光する露光方法であって:
基板ステージに保持される基板上で露光光の光路空間を液体で満たすことと; 前記露光光で前記液体を介して前記基板を露光することと;
前記基板の露光を行わな 、期間中に、前記基板ステージ上に超音波で振動した 洗浄用の液体を供給することを含む露光方法。
[72] 基板を露光する露光方法であって:
基板ステージに保持される基板上で露光光の光路空間を液浸機構によって液体で 満たすことと;
前記露光光で前記液体を介して前記基板を露光することと;
前記基板の露光を行わな!/、期間中に、前記液浸機構の前記液体の供給口及び回 収口の少なくとも一方に洗浄用の液体を供給することを含む露光方法。
[73] 前記洗浄用の液体は超音波で振動されることを特徴とする請求項 72に記載の露 光方法。
[74] 前記洗浄用の液体による前記基板ステージの洗浄時、前記基板ステージを移動す ることを特徴とする請求項 72又は 73に記載の露光方法。
[75] 液体を介して露光光で基板上の複数の領域を露光する露光方法であって:
前記基板を保持した可動体を第 1経路で移動しながら、前記複数の領域のそれぞ れを前記液体を介して露光することと;
ダミー基板を保持した可動体を、前記第 1経路とは異なる第 2経路で移動すること によって、前記可動体を前記液体又は洗浄液で洗浄することを含む露光方法。
[76] 前記第 2経路は、前記露光時に前記液体が接触する前記可動体上の領域が前記 液体又は洗浄液で洗浄されるように決定されることを特徴とする請求項 75に記載の 露光方法。
[77] 前記第 2経路は、前記第 1経路の少なくとも一部を包含する経路であることを特徴と する請求項 75または 76に記載の露光方法。
[78] 前記可動体を前記液体又は洗浄液で洗浄するときに、前記露光光がダミー基板に 照射されな 、ことを特徴とする請求項 75から 77の 、ずれか一項に記載の露光方法
[79] 前記液体または洗浄液は、前記基板の全面積よりも小さく且つ前記基板上の一つ の領域よりも大きい領域内に実質的に維持されることを特徴とする請求項 75から 78 の!、ずれか一項に記載の露光方法。
[80] 請求項 1〜30、及び請求項 71〜79のいずれか一項に記載の露光方法を用いて 基板を露光することと;
露光した基板を現像することと;
現像した基板を加工することを含むデバイス製造方法。
[81] 基板を露光する露光装置であって:
基板ステージに保持される基板上で露光光の光路空間を液体で満たす液浸機構 と;
前記液浸機構の前記液体の供給口の近傍に設けられた超音波振動子と; 前記基板の露光を行わな 、期間中に、前記基板ステージ上に前記超音波振動子 による超音波で振動した洗浄用の液体を供給するように前記超音波振動子を制御す る制御装置と;を備える露光装置。
[82] 基板を露光する露光装置であって:
基板ステージに保持される基板上で露光光の光路空間に液体を供給する第 1液体 供給機構を含む液浸機構と;
前記基板ステージ側に設けられ、洗浄用の液体を供給する第 2液体供給機構と; 前記洗浄用の液体を超音波で振動させる超音波振動子と;
前記基板の露光を行わな!/、期間中に、前記液浸機構の前記液体の供給口及び回 収口の少なくとも一方に前記超音波振動子による超音波で振動した洗浄用の液体を 供給するように前記超音波振動子を制御する制御装置と;を備える露光装置。
[83] 液体を介して基板を露光する露光装置であって:
基板ステージに保持される基板上で露光光の光路空間を液体で満たす液浸機構 と;
前記基板の露光を行わな!/、期間中に、前記液浸機構の前記液体の供給口及び回 収口の少なくとも一方に洗浄用の液体を供給する装置と;を備える露光装置。
[84] 前記洗浄用の液体を超音波で振動する超音波振動子を備えることを特徴とする請 求項 83に記載の露光装置。
[85] 前記洗浄用の液体による前記基板ステージの洗浄時、前記基板ステージを移動す る制御装置を備えることを特徴とする請求項 83又は 84に記載の露光装置。
[86] 光学部材及び液体を介して露光光で基板を露光する露光装置であって:
前記光学部材と対向して配置される可動部材と;
前記可動部材に設けられる振動子を有し、前記液体と接触する部材を、前記振動 子によって振動される洗浄用の液体で洗浄する洗浄装置と、を備える露光装置。
[87] 前記洗浄用の液体は前記液体を含むことを特徴とする請求項 86に記載の露光装置
[88] 前記液体の液浸領域の形成に用いられる液浸部材を備え、前記液体と接触する部 材は少なくとも前記液浸部材を含むことを特徴とする請求項 86又は 87に記載の露 光装置。
[89] 請求項 31〜54、及び請求項 81〜88のいずれか一項に記載の露光装置を用いて 基板を露光することと;
露光した基板を現像することと;
現像した基板を加工することを含むデバイス製造方法。
PCT/JP2007/060228 2006-05-18 2007-05-18 露光方法及び装置、メンテナンス方法、並びにデバイス製造方法 WO2007135990A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07743663A EP2037486A4 (en) 2006-05-18 2007-05-18 EXPOSURE METHOD AND DEVICE, MAINTENANCE METHOD AND COMPONENT MANUFACTURING METHOD
CN200780011033.4A CN101410948B (zh) 2006-05-18 2007-05-18 曝光方法及装置、维护方法、以及组件制造方法
US12/289,148 US8514366B2 (en) 2006-05-18 2008-10-21 Exposure method and apparatus, maintenance method and device manufacturing method
US13/943,207 US20130301019A1 (en) 2006-05-18 2013-07-16 Exposure method and apparatus, maintenance method and device manufacturing method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-139614 2006-05-18
JP2006139614 2006-05-18
JP2006-140957 2006-05-19
JP2006140957 2006-05-19
JP2007-103343 2007-04-10
JP2007103343 2007-04-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/289,148 Continuation US8514366B2 (en) 2006-05-18 2008-10-21 Exposure method and apparatus, maintenance method and device manufacturing method

Publications (1)

Publication Number Publication Date
WO2007135990A1 true WO2007135990A1 (ja) 2007-11-29

Family

ID=38723302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060228 WO2007135990A1 (ja) 2006-05-18 2007-05-18 露光方法及び装置、メンテナンス方法、並びにデバイス製造方法

Country Status (8)

Country Link
US (2) US8514366B2 (ja)
EP (1) EP2037486A4 (ja)
JP (2) JP5217239B2 (ja)
KR (1) KR20090018024A (ja)
CN (2) CN101410948B (ja)
SG (1) SG175671A1 (ja)
TW (1) TW200805000A (ja)
WO (1) WO2007135990A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182110A (ja) * 2008-01-30 2009-08-13 Nikon Corp 露光装置、露光方法、及びデバイス製造方法
US20100103392A1 (en) * 2008-10-24 2010-04-29 Nec Electronics Corporation Immersion exposure device cleaning method, dummy wafer, and immersion exposure device
US7916269B2 (en) 2007-07-24 2011-03-29 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
WO2012018051A1 (ja) * 2010-08-04 2012-02-09 株式会社ニコン クリーニング方法、デバイス製造方法、クリーニング基板、液浸部材、液浸露光装置、及びダミー基板
US8163467B2 (en) * 2008-06-09 2012-04-24 Canon Kabushiki Kaisha Dummy light-exposed substrate, method of manufacturing the same, immersion exposure apparatus, and device manufacturing method
US8243255B2 (en) 2007-12-20 2012-08-14 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
JP2012178585A (ja) * 2005-12-06 2012-09-13 Nikon Corp 露光方法、露光装置、及びデバイス製造方法
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8587762B2 (en) 2007-09-27 2013-11-19 Asml Netherlands B.V. Methods relating to immersion lithography and an immersion lithographic apparatus
US8638421B2 (en) 2007-09-27 2014-01-28 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a lithographic apparatus
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9019466B2 (en) 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
US9289802B2 (en) 2007-12-18 2016-03-22 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a surface of an immersion lithographic apparatus
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7969548B2 (en) * 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
EP2043134A4 (en) * 2006-06-30 2012-01-25 Nikon Corp MAINTENANCE METHOD, EXPOSURE METHOD, AND DEVICE AND DEVICE MANUFACTURING METHOD
JPWO2010050240A1 (ja) * 2008-10-31 2012-03-29 株式会社ニコン 露光装置、露光方法、及びデバイス製造方法
NL2004540A (en) 2009-05-14 2010-11-18 Asml Netherlands Bv Lithographic apparatus and a method of operating the apparatus.
JP2010278299A (ja) * 2009-05-29 2010-12-09 Nikon Corp 露光装置、露光方法、及びデバイス製造方法
NL2005167A (en) 2009-10-02 2011-04-05 Asml Netherlands Bv Lithographic apparatus and a method of operating the apparatus.
NL2005610A (en) 2009-12-02 2011-06-06 Asml Netherlands Bv Lithographic apparatus and surface cleaning method.
KR101683411B1 (ko) * 2009-12-18 2016-12-06 가부시키가이샤 니콘 기판 처리 장치의 메인터넌스 방법 및 안전 장치
KR20130083901A (ko) * 2010-07-20 2013-07-23 가부시키가이샤 니콘 노광 방법, 노광 장치 및 세정 방법
US20120188521A1 (en) * 2010-12-27 2012-07-26 Nikon Corporation Cleaning method, liquid immersion member, immersion exposure apparatus, device fabricating method, program and storage medium
NL2008183A (en) * 2011-02-25 2012-08-28 Asml Netherlands Bv A lithographic apparatus, a method of controlling the apparatus and a device manufacturing method.
US20130057837A1 (en) * 2011-04-06 2013-03-07 Nikon Corporation Exposure apparatus, exposure method, device-manufacturing method, program, and recording medium
TWI503553B (zh) * 2011-10-19 2015-10-11 Johnstech Int Corp 用於微電路測試器的導電開爾文接觸件
KR102071873B1 (ko) * 2012-12-27 2020-02-03 삼성디스플레이 주식회사 용매 제거장치 및 이를 포함하는 포토리소그래피 장치
KR101573450B1 (ko) * 2014-07-17 2015-12-11 주식회사 아이에스시 테스트용 소켓
CN106716255B (zh) 2014-08-07 2019-06-14 Asml荷兰有限公司 光刻设备和制造器件的方法
WO2017084797A1 (en) * 2015-11-20 2017-05-26 Asml Netherlands B.V. Lithographic apparatus and method of operating a lithographic apparatus
ES2937063T3 (es) 2018-07-13 2023-03-23 Hewlett Packard Development Co Suministro de líquido de impresión
CN111655496A (zh) 2018-07-13 2020-09-11 惠普发展公司,有限责任合伙企业 打印液体供应
EP4155086A1 (en) 2018-07-13 2023-03-29 Hewlett-Packard Development Company, L.P. Print liquid supply
WO2020094388A1 (en) * 2018-11-09 2020-05-14 Asml Holding N.V. Apparatus for and method cleaning a support inside a lithography apparatus

Citations (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117238A (en) 1981-01-14 1982-07-21 Nippon Kogaku Kk <Nikon> Exposing and baking device for manufacturing integrated circuit with illuminometer
JPS6144429A (ja) 1984-08-09 1986-03-04 Nippon Kogaku Kk <Nikon> 位置合わせ方法、及び位置合せ装置
US4780617A (en) 1984-08-09 1988-10-25 Nippon Kogaku K.K. Method for successive alignment of chip patterns on a substrate
JPH0521314A (ja) 1991-07-10 1993-01-29 Nikon Corp 投影露光装置
US5243195A (en) 1991-04-25 1993-09-07 Nikon Corporation Projection exposure apparatus having an off-axis alignment system and method of alignment therefor
JPH08313842A (ja) 1995-05-15 1996-11-29 Nikon Corp 照明光学系および該光学系を備えた露光装置
JPH10163099A (ja) 1996-11-28 1998-06-19 Nikon Corp 露光方法及び露光装置
JPH10214783A (ja) 1996-11-28 1998-08-11 Nikon Corp 投影露光装置及び投影露光方法
JPH1116816A (ja) 1997-06-25 1999-01-22 Nikon Corp 投影露光装置、該装置を用いた露光方法、及び該装置を用いた回路デバイスの製造方法
JPH1123692A (ja) 1997-06-30 1999-01-29 Sekisui Chem Co Ltd 地中探査用アンテナ
JPH1128790A (ja) 1997-07-09 1999-02-02 Asahi Chem Ind Co Ltd 紫外線遮蔽用熱可塑性樹脂板
JPH11135400A (ja) 1997-10-31 1999-05-21 Nikon Corp 露光装置
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
US5969441A (en) 1996-12-24 1999-10-19 Asm Lithography Bv Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
WO1999060361A1 (fr) 1998-05-19 1999-11-25 Nikon Corporation Instrument et procede de mesure d'aberrations, appareil et procede de sensibilisation par projection incorporant cet instrument, et procede de fabrication de dispositifs associe
JP2000164504A (ja) 1998-11-30 2000-06-16 Nikon Corp ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
JP2001510577A (ja) 1997-12-02 2001-07-31 エイエスエム リトグラフィー ベスローテン フエンノートシャップ 干渉計システムおよびそのようなシステムを含むリソグラフィー装置
JP2002014005A (ja) 2000-04-25 2002-01-18 Nikon Corp 空間像計測方法、結像特性計測方法、空間像計測装置及び露光装置
US6341007B1 (en) 1996-11-28 2002-01-22 Nikon Corporation Exposure apparatus and method
US20020041377A1 (en) 2000-04-25 2002-04-11 Nikon Corporation Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
US20040019128A1 (en) 2002-07-25 2004-01-29 Ai Kondo Curable white ink
WO2004019128A2 (en) 2002-08-23 2004-03-04 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US20040086468A1 (en) 2002-10-30 2004-05-06 Isp Investments Inc. Delivery system for a tooth whitener
EP1420298A2 (en) 2002-11-12 2004-05-19 ASML Netherlands B.V. Immersion lithographic apparatus and device manufacturing method
WO2004055803A1 (en) 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
WO2004057590A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
WO2004057589A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
JP2004289126A (ja) 2002-11-12 2004-10-14 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2004304135A (ja) 2003-04-01 2004-10-28 Nikon Corp 露光装置、露光方法及びマイクロデバイスの製造方法
US20050059618A1 (en) 2001-11-08 2005-03-17 Karsten Eulenberg Men protein, gst2, rab-rp1, csp, f-box protein lilina/fbl7, abc50, coronin, sec61 alpha, or vhappa1-1, or homologous proteins involved in the regulation of energy homeostasis
US20050059617A1 (en) 2001-09-17 2005-03-17 Takeshi Imanishi Novel anitsense oligonucleotide derivatives against to hepatitis c virus
JP2005079222A (ja) * 2003-08-29 2005-03-24 Nikon Corp 光学部品の洗浄機構を搭載した液浸投影露光装置及び液浸光学部品洗浄方法
WO2005029559A1 (ja) 2003-09-19 2005-03-31 Nikon Corporation 露光装置及びデバイス製造方法
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
US20050122218A1 (en) 2003-12-06 2005-06-09 Goggin Christopher M. Ranging and warning device using emitted and reflected wave energy
WO2005074014A1 (ja) 2004-02-02 2005-08-11 Nikon Corporation ステージ駆動方法及びステージ装置、露光装置、並びにデバイス製造方法
JP2005277363A (ja) * 2003-05-23 2005-10-06 Nikon Corp 露光装置及びデバイス製造方法
WO2005122218A1 (ja) * 2004-06-09 2005-12-22 Nikon Corporation 露光装置及びデバイス製造方法
US20050280791A1 (en) 2003-02-26 2005-12-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
WO2005124833A1 (ja) * 2004-06-21 2005-12-29 Nikon Corporation 露光装置及びその部材の洗浄方法、露光装置のメンテナンス方法、メンテナンス機器、並びにデバイス製造方法
JP2006013806A (ja) 2004-06-24 2006-01-12 Maspro Denkoh Corp 信号処理装置及びcatv用ヘッドエンド装置
JP2006032750A (ja) * 2004-07-20 2006-02-02 Canon Inc 液浸型投影露光装置、及びデバイス製造方法
JP2006073951A (ja) * 2004-09-06 2006-03-16 Toshiba Corp 液浸光学装置及び洗浄方法
US7023610B2 (en) 1998-03-11 2006-04-04 Nikon Corporation Ultraviolet laser apparatus and exposure apparatus using same
WO2006046562A1 (ja) * 2004-10-26 2006-05-04 Nikon Corporation 基板処理方法、露光装置及びデバイス製造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559582A (en) * 1992-08-28 1996-09-24 Nikon Corporation Exposure apparatus
KR101101737B1 (ko) * 2002-12-10 2012-01-05 가부시키가이샤 니콘 노광장치 및 노광방법, 디바이스 제조방법
SG10201803122UA (en) 2003-04-11 2018-06-28 Nikon Corp Immersion lithography apparatus and device manufacturing method
TWI474380B (zh) 2003-05-23 2015-02-21 尼康股份有限公司 A method of manufacturing an exposure apparatus and an element
EP2261741A3 (en) 2003-06-11 2011-05-25 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101940892B1 (ko) * 2003-06-13 2019-01-21 가부시키가이샤 니콘 노광 방법, 기판 스테이지, 노광 장치, 및 디바이스 제조 방법
US7370659B2 (en) * 2003-08-06 2008-05-13 Micron Technology, Inc. Photolithographic stepper and/or scanner machines including cleaning devices and methods of cleaning photolithographic stepper and/or scanner machines
JP4335213B2 (ja) 2003-10-08 2009-09-30 株式会社蔵王ニコン 基板搬送装置、露光装置、デバイス製造方法
EP1697798A2 (en) 2003-12-15 2006-09-06 Carl Zeiss SMT AG Projection objective having a high aperture and a planar end surface
WO2005059645A2 (en) 2003-12-19 2005-06-30 Carl Zeiss Smt Ag Microlithography projection objective with crystal elements
US7557900B2 (en) * 2004-02-10 2009-07-07 Nikon Corporation Exposure apparatus, device manufacturing method, maintenance method, and exposure method
US7898642B2 (en) 2004-04-14 2011-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7616383B2 (en) 2004-05-18 2009-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101264936B1 (ko) * 2004-06-04 2013-05-15 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
US7463330B2 (en) 2004-07-07 2008-12-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4534651B2 (ja) * 2004-08-03 2010-09-01 株式会社ニコン 露光装置、デバイス製造方法及び液体回収方法
CN105204296B (zh) 2004-08-03 2018-07-17 株式会社尼康 曝光装置的控制方法、曝光装置及元件制造方法
US7224427B2 (en) 2004-08-03 2007-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Megasonic immersion lithography exposure apparatus and method
US7701550B2 (en) * 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN101052916B (zh) 2004-09-30 2010-05-12 株式会社尼康 投影光学设备和曝光装置
SG157357A1 (en) * 2004-11-01 2009-12-29 Nikon Corp Exposure apparatus and device fabricating method
US7362412B2 (en) 2004-11-18 2008-04-22 International Business Machines Corporation Method and apparatus for cleaning a semiconductor substrate in an immersion lithography system
US7732123B2 (en) 2004-11-23 2010-06-08 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion photolithography with megasonic rinse
KR101339887B1 (ko) 2004-12-06 2013-12-10 가부시키가이샤 니콘 메인터넌스 방법, 메인터넌스 기기, 노광 장치, 및디바이스 제조 방법
JP4752473B2 (ja) 2004-12-09 2011-08-17 株式会社ニコン 露光装置、露光方法及びデバイス製造方法
US7880860B2 (en) 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060250588A1 (en) 2005-05-03 2006-11-09 Stefan Brandl Immersion exposure tool cleaning system and method
WO2006122578A1 (en) 2005-05-17 2006-11-23 Freescale Semiconductor, Inc. Contaminant removal apparatus and method therefor
US7986395B2 (en) 2005-10-24 2011-07-26 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography apparatus and methods
US8125610B2 (en) 2005-12-02 2012-02-28 ASML Metherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
US8564759B2 (en) 2006-06-29 2013-10-22 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and method for immersion lithography

Patent Citations (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117238A (en) 1981-01-14 1982-07-21 Nippon Kogaku Kk <Nikon> Exposing and baking device for manufacturing integrated circuit with illuminometer
US4465368A (en) 1981-01-14 1984-08-14 Nippon Kogaku K.K. Exposure apparatus for production of integrated circuit
US4780617A (en) 1984-08-09 1988-10-25 Nippon Kogaku K.K. Method for successive alignment of chip patterns on a substrate
JPS6144429A (ja) 1984-08-09 1986-03-04 Nippon Kogaku Kk <Nikon> 位置合わせ方法、及び位置合せ装置
US5243195A (en) 1991-04-25 1993-09-07 Nikon Corporation Projection exposure apparatus having an off-axis alignment system and method of alignment therefor
JPH0521314A (ja) 1991-07-10 1993-01-29 Nikon Corp 投影露光装置
JPH08313842A (ja) 1995-05-15 1996-11-29 Nikon Corp 照明光学系および該光学系を備えた露光装置
JPH10163099A (ja) 1996-11-28 1998-06-19 Nikon Corp 露光方法及び露光装置
JPH10214783A (ja) 1996-11-28 1998-08-11 Nikon Corp 投影露光装置及び投影露光方法
US6590634B1 (en) 1996-11-28 2003-07-08 Nikon Corporation Exposure apparatus and method
US6549269B1 (en) 1996-11-28 2003-04-15 Nikon Corporation Exposure apparatus and an exposure method
US6400441B1 (en) 1996-11-28 2002-06-04 Nikon Corporation Projection exposure apparatus and method
US6341007B1 (en) 1996-11-28 2002-01-22 Nikon Corporation Exposure apparatus and method
JP2000505958A (ja) 1996-12-24 2000-05-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 2個の物品ホルダを有する二次元バランス位置決め装置及びこの位置決め装置を有するリソグラフ装置
US5969441A (en) 1996-12-24 1999-10-19 Asm Lithography Bv Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
JPH1116816A (ja) 1997-06-25 1999-01-22 Nikon Corp 投影露光装置、該装置を用いた露光方法、及び該装置を用いた回路デバイスの製造方法
US20020061469A1 (en) 1997-06-25 2002-05-23 Nikon Corporation Projection apparatus, method of manufacturing the apparatus,method of exposure using the apparatus, and method of manufacturing circuit devices by using the apparatus
JPH1123692A (ja) 1997-06-30 1999-01-29 Sekisui Chem Co Ltd 地中探査用アンテナ
JPH1128790A (ja) 1997-07-09 1999-02-02 Asahi Chem Ind Co Ltd 紫外線遮蔽用熱可塑性樹脂板
JPH11135400A (ja) 1997-10-31 1999-05-21 Nikon Corp 露光装置
JP2001510577A (ja) 1997-12-02 2001-07-31 エイエスエム リトグラフィー ベスローテン フエンノートシャップ 干渉計システムおよびそのようなシステムを含むリソグラフィー装置
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
US7023610B2 (en) 1998-03-11 2006-04-04 Nikon Corporation Ultraviolet laser apparatus and exposure apparatus using same
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
WO1999060361A1 (fr) 1998-05-19 1999-11-25 Nikon Corporation Instrument et procede de mesure d'aberrations, appareil et procede de sensibilisation par projection incorporant cet instrument, et procede de fabrication de dispositifs associe
EP1079223A1 (en) 1998-05-19 2001-02-28 Nikon Corporation Aberration measuring instrument and measuring method, projection exposure apparatus provided with the instrument and device-manufacturing method using the measuring method, and exposure method
JP2000164504A (ja) 1998-11-30 2000-06-16 Nikon Corp ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
US20020041377A1 (en) 2000-04-25 2002-04-11 Nikon Corporation Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
JP2002014005A (ja) 2000-04-25 2002-01-18 Nikon Corp 空間像計測方法、結像特性計測方法、空間像計測装置及び露光装置
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
JP2004519850A (ja) 2001-02-27 2004-07-02 エイエスエムエル ユーエス, インコーポレイテッド デュアルレチクルイメージを露光する方法および装置
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
US20050059617A1 (en) 2001-09-17 2005-03-17 Takeshi Imanishi Novel anitsense oligonucleotide derivatives against to hepatitis c virus
US20050059618A1 (en) 2001-11-08 2005-03-17 Karsten Eulenberg Men protein, gst2, rab-rp1, csp, f-box protein lilina/fbl7, abc50, coronin, sec61 alpha, or vhappa1-1, or homologous proteins involved in the regulation of energy homeostasis
US20040019128A1 (en) 2002-07-25 2004-01-29 Ai Kondo Curable white ink
WO2004019128A2 (en) 2002-08-23 2004-03-04 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US20050248856A1 (en) 2002-08-23 2005-11-10 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US20040086468A1 (en) 2002-10-30 2004-05-06 Isp Investments Inc. Delivery system for a tooth whitener
JP2004289126A (ja) 2002-11-12 2004-10-14 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
EP1420298A2 (en) 2002-11-12 2004-05-19 ASML Netherlands B.V. Immersion lithographic apparatus and device manufacturing method
US6952253B2 (en) 2002-11-12 2005-10-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2004055803A1 (en) 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
WO2004057590A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
WO2004057589A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
US20050280791A1 (en) 2003-02-26 2005-12-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2004304135A (ja) 2003-04-01 2004-10-28 Nikon Corp 露光装置、露光方法及びマイクロデバイスの製造方法
JP2005277363A (ja) * 2003-05-23 2005-10-06 Nikon Corp 露光装置及びデバイス製造方法
JP2005079222A (ja) * 2003-08-29 2005-03-24 Nikon Corp 光学部品の洗浄機構を搭載した液浸投影露光装置及び液浸光学部品洗浄方法
WO2005029559A1 (ja) 2003-09-19 2005-03-31 Nikon Corporation 露光装置及びデバイス製造方法
US20060231206A1 (en) 2003-09-19 2006-10-19 Nikon Corporation Exposure apparatus and device manufacturing method
US20050122218A1 (en) 2003-12-06 2005-06-09 Goggin Christopher M. Ranging and warning device using emitted and reflected wave energy
WO2005074014A1 (ja) 2004-02-02 2005-08-11 Nikon Corporation ステージ駆動方法及びステージ装置、露光装置、並びにデバイス製造方法
EP1713113A1 (en) 2004-02-02 2006-10-18 Nikon Corporation Stage drive method and stage drive apparatus, exposure apparatus, and device producing method
WO2005122218A1 (ja) * 2004-06-09 2005-12-22 Nikon Corporation 露光装置及びデバイス製造方法
WO2005124833A1 (ja) * 2004-06-21 2005-12-29 Nikon Corporation 露光装置及びその部材の洗浄方法、露光装置のメンテナンス方法、メンテナンス機器、並びにデバイス製造方法
JP2006013806A (ja) 2004-06-24 2006-01-12 Maspro Denkoh Corp 信号処理装置及びcatv用ヘッドエンド装置
JP2006032750A (ja) * 2004-07-20 2006-02-02 Canon Inc 液浸型投影露光装置、及びデバイス製造方法
JP2006073951A (ja) * 2004-09-06 2006-03-16 Toshiba Corp 液浸光学装置及び洗浄方法
WO2006046562A1 (ja) * 2004-10-26 2006-05-04 Nikon Corporation 基板処理方法、露光装置及びデバイス製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2037486A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10509326B2 (en) 2004-12-20 2019-12-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9703210B2 (en) 2004-12-20 2017-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
JP2012178585A (ja) * 2005-12-06 2012-09-13 Nikon Corp 露光方法、露光装置、及びデバイス製造方法
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7916269B2 (en) 2007-07-24 2011-03-29 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US9599908B2 (en) 2007-07-24 2017-03-21 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US9158206B2 (en) 2007-07-24 2015-10-13 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US9019466B2 (en) 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
US8587762B2 (en) 2007-09-27 2013-11-19 Asml Netherlands B.V. Methods relating to immersion lithography and an immersion lithographic apparatus
US8638421B2 (en) 2007-09-27 2014-01-28 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a lithographic apparatus
US9289802B2 (en) 2007-12-18 2016-03-22 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a surface of an immersion lithographic apparatus
US8243255B2 (en) 2007-12-20 2012-08-14 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US9036128B2 (en) 2007-12-20 2015-05-19 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US9405205B2 (en) 2007-12-20 2016-08-02 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US9785061B2 (en) 2007-12-20 2017-10-10 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009182110A (ja) * 2008-01-30 2009-08-13 Nikon Corp 露光装置、露光方法、及びデバイス製造方法
US8163467B2 (en) * 2008-06-09 2012-04-24 Canon Kabushiki Kaisha Dummy light-exposed substrate, method of manufacturing the same, immersion exposure apparatus, and device manufacturing method
JP2010103363A (ja) * 2008-10-24 2010-05-06 Nec Electronics Corp 液浸露光装置の洗浄方法、ダミーウェハ、及び液浸露光装置
US20100103392A1 (en) * 2008-10-24 2010-04-29 Nec Electronics Corporation Immersion exposure device cleaning method, dummy wafer, and immersion exposure device
WO2012018051A1 (ja) * 2010-08-04 2012-02-09 株式会社ニコン クリーニング方法、デバイス製造方法、クリーニング基板、液浸部材、液浸露光装置、及びダミー基板

Also Published As

Publication number Publication date
JP2008283156A (ja) 2008-11-20
SG175671A1 (en) 2011-11-28
JP2012164992A (ja) 2012-08-30
CN102298274A (zh) 2011-12-28
CN101410948B (zh) 2011-10-26
TW200805000A (en) 2008-01-16
US20090066922A1 (en) 2009-03-12
JP5217239B2 (ja) 2013-06-19
KR20090018024A (ko) 2009-02-19
CN101410948A (zh) 2009-04-15
US20130301019A1 (en) 2013-11-14
EP2037486A4 (en) 2012-01-11
EP2037486A1 (en) 2009-03-18
US8514366B2 (en) 2013-08-20

Similar Documents

Publication Publication Date Title
JP5217239B2 (ja) 露光方法及び装置、メンテナンス方法、並びにデバイス製造方法
JP5019170B2 (ja) メンテナンス方法、露光方法及び装置、並びにデバイス製造方法
JP5245825B2 (ja) メンテナンス方法、露光方法及び装置、並びにデバイス製造方法
EP1670039B1 (en) Exposure apparatus and device producing method
KR101506100B1 (ko) 노광 장치, 노광 방법 및 디바이스 제조 방법
JP2018049295A (ja) 露光装置及びデバイス製造方法
WO2007066758A1 (ja) 基板保持装置、露光装置、露光方法、及びデバイス製造方法
US20120204913A1 (en) Exposure apparatus, device production method, cleaning apparatus, cleaning method, and exposure method
JP2008160102A (ja) 露光装置、露光方法及びデバイス製造方法
JP2008160101A (ja) 液浸露光装置及び露光方法、並びにデバイス製造方法
JP2014503113A (ja) 液浸部材及びクリーニング方法
JP2006310588A (ja) 基板保持装置及び露光装置、並びにデバイス製造方法
WO2011046174A1 (ja) 露光装置、露光方法、メンテナンス方法、及びデバイス製造方法
JP2011029326A (ja) 露光装置、メンテナンス方法、及びデバイス製造方法
JP2007311671A (ja) 露光方法及び装置、並びにデバイス製造方法
JP2011018743A (ja) 露光装置、クリーニング方法、及びデバイス製造方法
JP2011071253A (ja) 露光装置、クリーニング方法、及びデバイス製造方法
JP2011108735A (ja) 洗浄部材、露光装置、洗浄方法、及びデバイス製造方法
JP2013045924A (ja) 露光装置、クリーニング方法、デバイス製造方法、プログラム、及び記録媒体
JP2006093291A (ja) 露光装置及びデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743663

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780011033.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087024125

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007743663

Country of ref document: EP