WO2007135832A1 - 超電導薄膜材料およびその製造方法 - Google Patents

超電導薄膜材料およびその製造方法 Download PDF

Info

Publication number
WO2007135832A1
WO2007135832A1 PCT/JP2007/058657 JP2007058657W WO2007135832A1 WO 2007135832 A1 WO2007135832 A1 WO 2007135832A1 JP 2007058657 W JP2007058657 W JP 2007058657W WO 2007135832 A1 WO2007135832 A1 WO 2007135832A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
superconducting
thin film
film material
superconducting thin
Prior art date
Application number
PCT/JP2007/058657
Other languages
English (en)
French (fr)
Inventor
Shuji Hahakura
Kazuya Ohmatsu
Munetsugu Ueyama
Katsuya Hasegawa
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to EP07742092.5A priority Critical patent/EP2031606B1/en
Priority to CA 2650894 priority patent/CA2650894A1/en
Priority to US12/299,141 priority patent/US7858558B2/en
Priority to MX2008014370A priority patent/MX2008014370A/es
Priority to KR1020087030836A priority patent/KR101110936B1/ko
Priority to AU2007252693A priority patent/AU2007252693A1/en
Priority to CN200780018363.6A priority patent/CN101449341B/zh
Publication of WO2007135832A1 publication Critical patent/WO2007135832A1/ja
Priority to NO20085230A priority patent/NO20085230L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • H10N60/203Permanent superconducting devices comprising high-Tc ceramic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0324Processes for depositing or forming copper oxide superconductor layers from a solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0521Processes for depositing or forming copper oxide superconductor layers by pulsed laser deposition, e.g. laser sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/80Material per se process of making same
    • Y10S505/812Stock
    • Y10S505/813Wire, tape, or film
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a superconducting thin film material and a method for manufacturing the same, and more specifically to a superconducting thin film material in which a superconducting film is formed on a substrate and a method for manufacturing the same.
  • PVD physical vapor deposition
  • PLD pulsed laser deposition
  • TFA-MOD trifluoroacetate-metal organic deposition
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-38632
  • Patent Document 1 JP 2005-38632 A
  • the above-mentioned problems of the TFA-MOD method can be solved by adopting a fluorine-free MOD method that does not use a fluorine-based organometallic salt solution.
  • the fluorine-free MOD method has a problem in that it is not easy to nucleate a superconducting film from a substrate or an intermediate layer formed on the substrate.
  • an object of the present invention is to achieve excellent characteristics such as high, J, high, and 1 and to realize cost reduction.
  • a superconducting thin film material according to the present invention includes a substrate and a superconducting film formed on the substrate.
  • the superconducting film includes a physical vapor deposition layer formed by a physical vapor deposition method and an organometallic deposition layer formed on the physical vapor deposition layer by an organic metal deposition method.
  • a superconducting film having a sufficient thickness while ensuring high surface smoothness and orientation over the conducting film It is important to form a superconducting film having a sufficient thickness while ensuring high surface smoothness and orientation over the conducting film.
  • the inventor has studied in detail a superconducting thin film material that can realize this at a low cost and a manufacturing method thereof.
  • a physical vapor deposition film as a highly oriented superconducting film close to the composition of the target is formed by physical vapor deposition (PVD), and then a superconducting film is formed by metalorganic deposition (MOD) on it.
  • PVD physical vapor deposition
  • MOD metalorganic deposition
  • a superconducting film with high orientation and high surface smoothness by forming an organic metal deposition layer Has been found to be formed at low cost. According to this manufacturing method, high J and high I etc.
  • orientation refers to the degree to which the crystal orientations of crystal grains are aligned.
  • Surface smoothness refers to the flatness of the film surface.
  • the superconducting thin film material further includes an intermediate layer between the substrate and the superconducting film.
  • an intermediate layer between the substrate and the superconducting film By interposing an intermediate layer between the substrate and the superconducting film, the orientation of the superconducting film can be improved.
  • the diffusion and reaction of atoms between the substrate and the superconducting film can be suppressed.
  • the characteristics of the superconducting thin film material can be improved and the range of substrate selection can be expanded.
  • the superconducting film is formed on both main surfaces of the substrate.
  • the thickness of the superconducting film increases, it becomes difficult to suppress internal defects such as voids if the surface smoothness is ensured, and thus it is necessary to strictly control the film forming conditions.
  • the thickness of the superconducting film on each main surface is reduced to ensure the desired I for the entire superconducting thin film material.
  • the superconducting film is formed by laminating a plurality of structures having a combination force of a physical vapor deposition layer and an organometallic deposition layer.
  • the physical vapor deposition layer formed by the PVD method ensures surface smoothness as the film thickness increases. It becomes difficult to keep.
  • the metal organic deposition layer formed by MOD becomes difficult to suppress internal defects such as voids as the film thickness increases.
  • surface smoothness can be improved by first forming a physical vapor deposition layer and then forming an organometallic deposition layer on the physical vapor deposition layer.
  • the thickness of the organic metal deposition layer is limited to the extent that it is easy to suppress internal defects such as voids, and a physical vapor deposition layer is formed again on the superconducting film with improved surface smoothness.
  • the thickness of the superconducting film can be increased, and the surface smoothness of the superconducting film is improved again.
  • by stacking a plurality of structures composed of a combination of a physical vapor deposition layer and an organometallic deposition layer it is possible to ensure sufficient surface smoothness while easily suppressing internal defects such as voids.
  • Superconducting film is formed and desired I, J
  • Superconducting thin film materials that can ensure superconducting properties such as C C can be provided.
  • the thickness of the organometallic deposition layer is 1 ⁇ m or less.
  • internal defects such as voids tend to occur as the film thickness increases. If the metal organic deposition layer is 1 m or less, the generation of internal defects such as voids can be suppressed relatively easily.
  • the physical vapor deposition layer preferably has a thickness of 2 m or less.
  • the physical vapor deposition layer formed by the PVD method becomes difficult to ensure surface smoothness as the film thickness increases. If the physical vapor deposition layer is 2 m or less, good surface smoothness can be secured relatively easily.
  • the physical vapor deposition method is selected from the group consisting of a pulsed laser vapor deposition method, a sputtering method, and an electron beam method.
  • the pulse laser vapor deposition method, the sputtering method, and the electron beam method are suitable for forming a superconducting film with high orientation, and are suitable for forming the physical vapor deposition film of the present invention. .
  • the organometallic deposition method is a fluorine-free organometallic deposition method that does not use an organometallic salt solution containing fluorine.
  • the fluorine-free organometallic deposition method is different from the TFA—MOD method, which is a typical deposition method of the organometallic deposition (MOD) method.
  • This is not a deposition method in which the crystal of the superconducting film grows while fluorine is released from the superconducting film during the film formation process, so that the production rate of the superconducting film can be increased and the production efficiency can be improved.
  • the fluorine-free organometallic deposition method refers to an organometallic deposition method that does not use an organometallic salt solution containing fluorine.
  • a method for manufacturing a superconducting thin film material according to the present invention includes a substrate preparing step of preparing a substrate and a superconducting film forming step of forming a superconducting film on the substrate.
  • the superconducting film forming step includes a physical vapor deposition step for forming a physical vapor deposition layer by a physical vapor deposition method, and an organometallic deposition step for forming an organometallic deposition layer on the physical vapor deposition layer by an organic metal deposition method. .
  • an intermediate layer is formed between the substrate and the superconducting film after the substrate preparation step and before the superconducting film forming step.
  • the method further includes a process.
  • a physical vapor deposition layer is formed on both main surfaces of the substrate, and in the metal organic deposition step, on both main surfaces of the substrate.
  • An organometallic deposition layer is formed on the physical vapor deposition layer at.
  • the physical vapor deposition step and the organic metal deposition step are alternately performed a plurality of times.
  • an organometallic deposition layer having a thickness of 1 ⁇ m or less is formed.
  • production of internal defects, such as a void, in an organic metal deposit layer can be suppressed comparatively easily.
  • a physical vapor deposition layer having a thickness of 2 m or less is formed in the physical vapor deposition step.
  • the physical vapor deposition method is any one of vapor deposition methods selected from the group consisting of a pulse laser vapor deposition method, a sputtering method, and an electron beam method.
  • the pulse laser vapor deposition method, the sputtering method, and the electron beam method are suitable for forming a superconducting film having high orientation, and the physical properties in the method for producing the superconducting thin film material of the present invention. It is suitable for forming a deposited film.
  • the organometallic deposition method is a fluorine-free organometallic deposition method that does not use an organometallic salt solution containing fluorine.
  • the TFA-MOD method which is a typical deposition method of the metal organic deposition (MOD) method
  • the growth rate of the superconducting film crystal can be increased and the production efficiency can be improved.
  • it is not necessary to make the above-described release of fluorine proceed uniformly it can contribute to the improvement of production efficiency.
  • hydrogen fluoride which requires handling, is not generated during the film formation process, so there is no need for hydrogen fluoride processing costs.
  • the process can be carried out using a neutral solution, when applied to the superconducting thin film material of the present invention, the organic metal deposition is performed without damaging the previously formed physical vapor deposition film. A layer can be formed. As a result, it is possible to further improve the properties of the superconducting thin film material of the present invention while suppressing the manufacturing cost.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a superconducting thin film material according to a first embodiment.
  • FIG. 2 is a diagram showing an outline of a production process in the method for producing a superconducting thin film material of Embodiment 1.
  • FIG. 3 is a diagram showing details of an organic metal deposition step in the manufacturing process of FIG.
  • FIG. 4 is a schematic cross sectional view for illustrating the method for manufacturing the superconducting thin film material of the first embodiment.
  • FIG. 5 is a schematic cross-sectional view for illustrating the method for manufacturing the superconducting thin film material of the first embodiment.
  • FIG. 6 is a schematic cross-sectional view for illustrating the method for manufacturing the superconducting thin film material of the first embodiment.
  • FIG. 7 is a schematic cross-sectional view showing a configuration of a superconducting thin film material in a second embodiment.
  • FIG. 8 is a schematic sectional view for illustrating the method for manufacturing the superconducting thin film material of the second embodiment.
  • FIG. 9 is a schematic cross-sectional view for illustrating the method for manufacturing the superconducting thin film material of Embodiment 2.
  • FIG. 10 is a schematic cross-sectional view showing a configuration of a superconducting thin film material in a third embodiment.
  • FIG. 11 is a diagram showing an outline of a production process in the method for producing a superconducting thin film material of Embodiment 3.
  • FIG. 12 is a schematic cross sectional view for illustrating the method for manufacturing the superconducting thin film material of the third embodiment.
  • FIG. 13 is a schematic cross sectional view for illustrating the method for manufacturing the superconducting thin film material of the third embodiment.
  • FIG. 14 is a schematic cross sectional view for illustrating the method for manufacturing the superconducting thin film material of the third embodiment.
  • FIG. 15 is a graph showing the relationship between MOD film thickness and I in the superconducting thin film material of Example 1.
  • FIG. 16 is a (103) pole figure of the MOD layer in the superconducting thin film material of Example 1.
  • FIG. 17 is an AFM photograph of the surface of the MOD layer in the superconducting thin film material of Example 1.
  • FIG. 18 is an SEM photograph of a cross section in the thickness direction of the produced superconducting thin film material.
  • FIG. 19 is an SEM photograph of a cross section in the thickness direction of the produced superconducting thin film material.
  • FIG. 20 is an SEM photograph of a cross section in the thickness direction of the produced superconducting thin film material.
  • FIG. 21 is a SEM photograph of a cross section in the thickness direction of the produced superconducting thin film material.
  • superconducting thin film material 1 of Embodiment 1 is formed on metal alignment substrate 10 as a substrate, intermediate layer 20 formed on metal alignment substrate 10, and intermediate layer 20.
  • Oxide superconducting film 30 as a superconducting film formed, and an Ag (silver) stable layer 40 as a stabilizing layer formed on the oxide superconducting film 30 to protect the oxide superconducting film 30 And prepare.
  • a rare earth oxide superconducting material such as HoBCO (holmium-based high-temperature superconducting material; HoBa Cu 2 O 3) can be selected. So
  • the oxide superconducting film 30 includes a physical vapor deposition HoBCO layer 31 as a physical vapor deposition layer formed by physical vapor deposition, and an organic metal deposition layer formed on the physical vapor deposition HoBCO layer 31 by a metal organic deposition method.
  • the metal alignment substrate 10 for example, a Ni (nickel) alignment substrate, a Ni alloy-based alignment substrate, or the like can be selected.
  • the intermediate layer 20 is formed of, for example, CeO
  • a layer including the second CeO layer 23 formed on the SZ layer 22 can be formed. Also cheap
  • the constant layer is not limited to the Ag stable layer 40 described above.
  • a Cu stable layer having a Cu (copper) force may be used instead of the Ag stable layer 40.
  • a substrate preparation step is performed. Specifically, a metal orientation substrate 10 such as a tape-like substrate made of an oriented nickel alloy cover is prepared. Next, as shown in FIG. 2, an intermediate layer forming step for forming the intermediate layer 20 on the metal alignment substrate 10 is performed. Specifically, referring to FIGS. 2 and 4, the first CeO layer 21, Y on the metal alignment substrate 10
  • the first CeO layer forming step so as to sequentially form the SZ layer 22 and the second CeO layer 23, Y
  • the SZ layer forming step and the second CeO layer forming step are sequentially performed. This first CeO
  • the 2 layer formation process, YSZ layer formation process and second CeO layer formation process are, Force that can be implemented by any physical vapor deposition method.
  • a superconducting film forming step of forming an oxide superconducting film 30 on the intermediate layer 20 is performed.
  • a physical vapor deposition step of forming a physical vapor deposition HoBCO layer 31 on the intermediate layer 20 by physical vapor deposition is performed.
  • the vapor deposition methods in which the pulse laser vapor deposition (PLD) method, the sputtering method, and the group force including the electron beam method force are selected.
  • PLD pulse laser vapor deposition
  • the composition of the physical vapor deposition HoBCO layer 31 constituting the oxide superconducting film 30 can be made close to the composition of the target, and high orientation can be secured.
  • an organometallic deposition step is performed in which an organometallic deposition HoBCO layer 32 is formed on the physically deposited HoBCO layer 31 by an organometallic deposition method.
  • Ho: Ba: Cu 1: 2: 3
  • a solution such as a naphthenic acid-based solution is applied to the surface of the physical vapor deposition HoBCO layer 31 with a fluorine-free solution.
  • a coating method of the organometallic salt solution in the fluorine-free solution coating step a dip method, a die coat method, or the like can be selected.
  • a temporary firing step is performed in which solvent components and the like are removed from the applied organometallic salt solution.
  • the organic metal salt coated is heated by heating the metal orientation substrate 10 coated with the organometallic salt solution in a temperature range of 400 ° C to 600 ° C, for example, 500 ° C air.
  • the solution is pyrolyzed.
  • CO carbon dioxide
  • the main firing step is performed after the provisional firing step described above is performed. Specifically, a metal coating coated with an organic metal salt solution in a mixed atmosphere of Ar (argon) and O (oxygen) at a temperature range of 600 ° C to 800 ° C, for example, 750 ° C.
  • Ar argon
  • O oxygen
  • a metal organic deposition HoB CO layer 32 which is a desired metal organic deposition layer, is formed.
  • an Ag stabilizing layer forming step in which an Ag stable layer 40 as a stable layer is formed is performed.
  • the Ag stable layer 40 can be formed, for example, by vapor deposition. By performing the above steps, superconducting thin film material 1 of Embodiment 1 is manufactured.
  • the superconducting thin film material 1 and the manufacturing method thereof according to the first embodiment high JC and high are obtained by taking advantage of both the PLD method and the fluorine-free MOD method while complementing the respective disadvantages. It is possible to provide a superconducting thin film material 1 capable of achieving both excellent characteristics such as IC and the realization of low cost.
  • the thickness of the organometallic deposited HoBCO layer 32 is preferably 1 ⁇ m or less.
  • the metal-organic-deposited HoBCO layer 32 formed by the MOD method is liable to generate internal defects such as voids as the film thickness increases. If the metal-organic deposited Ho BCO layer 32 is 1 ⁇ m or less, the generation of internal defects such as voids can be suppressed relatively easily.
  • the physical vapor deposition HoBCO layer 31 preferably has a thickness of 2 ⁇ m or less.
  • the physical vapor deposition HoBCO layer 31 formed by the PLD method it becomes difficult to ensure surface smoothness as the film thickness increases. If the physical vapor deposition HoBCO layer 31 is 2 m or less, good surface smoothness can be secured relatively easily.
  • the superconducting thin film according to the second embodiment which is one embodiment of the present invention.
  • the structure of the material will be described.
  • superconducting thin film material 1 of Embodiment 2 and superconducting thin film material 1 of Embodiment 1 described above have basically the same configuration.
  • the intermediate layer 20, the oxide superconducting film 30, and the Ag stabilizing layer 40 are formed on both main surfaces of the metal orientation substrate 10. This is different from the superconducting thin film material 1 of Form 1.
  • the oxide superconducting film 30 increases in thickness, it becomes difficult to suppress internal defects such as voids if surface smoothness is ensured, and thus it is necessary to strictly control the film forming conditions.
  • the oxide superconducting film 30 is formed on both main surfaces 10A of the metal alignment substrate 10 to secure a desired I.
  • the manufacturing method of the superconducting thin film material of the second embodiment and the manufacturing method of the superconducting thin film material of the first embodiment described with reference to Figs. 1 to 6 have basically the same configuration. Yes.
  • the intermediate layer 20, the oxide superconducting film 30, and the Ag are formed in the intermediate layer forming process, the superconducting film forming process, and the Ag stable layer forming process, respectively.
  • the stability layer 40 is formed on both main surfaces 10A of the metal alignment substrate 10.
  • the first CeO layer 21, the YSZ layer 22, and the second CeO layer are formed on both main surfaces 10A of the metal alignment substrate 10.
  • An intermediate layer 20 consisting of layer 23 is formed. Next, in the superconducting film formation process,
  • oxide superconducting films 30 are formed on both intermediate layers 20, respectively. Further, in the Ag stable layer forming step, the Ag stabilizing layer 40 is formed on each of the oxide superconducting films 30 to complete the superconducting thin film material 1 of Embodiment 2 shown in FIG.
  • the intermediate layer forming step, the superconducting film forming step, and the Ag stable layer forming step the intermediate layer 20 and the oxide superconducting film 30 on both main surfaces 10A of the metal alignment substrate 10 are used.
  • the Ag stable layer 40 may be formed on one side or both at the same time.
  • the physical vapor deposition HoBCO layer 31 is simultaneously formed on both main surfaces 10A by physical vapor deposition, for example, both side forces of the metal alignment substrate 10 can also be formed by laser vapor deposition.
  • the metal alignment substrate 10 on which the physical vapor-deposited HoBCO layer 31 is formed for example, by a dip method. It can be formed by dipping in an organometallic salt solution.
  • superconducting thin film material 1 of Embodiment 3 and superconducting thin film material 1 of Embodiment 1 described above have basically the same configuration.
  • the oxide superconducting film 30 is configured by stacking a plurality of stacked structures 30B each having an organic metal deposited HoBCO layer 32 formed on a physical vapor deposited HoBCO layer 31.
  • FIG. 10 shows the case where the stacked structure 30B is stacked in two stages, but the stacked structure 30B is stacked in three or more stages so that the oxide superconducting film 30 has a desired film thickness. Moyo.
  • the physical vapor deposition HoBCO layer 31 formed by the PVD method has difficulty in ensuring the surface smoothness as the film thickness increases.
  • the organic metal deposited HoBCO layer 32 formed by the MOD method becomes difficult to suppress internal defects such as voids as the film thickness increases.
  • the surface smoothness can be improved by first forming the physical vapor deposition HoBCO layer 31 and then forming the organometallic deposition HoBCO layer 32 on the physical vapor deposition HoBCO layer 31.
  • the thickness of the organometallic deposited HoBCO layer 32 is kept to the extent that it is easy to suppress internal defects such as voids, and the physical vapor deposition HoBCO layer 31 is formed again on the superconducting film with improved surface smoothness.
  • the surface smoothness of the oxide superconducting film 30 is improved again. Up.
  • the oxide superconducting film 30 having a sufficient thickness can be formed. As a result, the superconducting thin film material 1 that can ensure the desired superconducting properties such as I and J can be easily obtained.
  • the manufacturing method of the superconducting thin film material of Embodiment 3 and the manufacturing method of the superconducting thin film material of Embodiment 1 described based on Figs. 1 to 6 basically have the same configuration. Yes.
  • the third embodiment is different from the first embodiment in that the physical vapor deposition process and the organometallic deposition process are alternately performed a plurality of times in the superconducting film forming process. ing.
  • an intermediate layer 20 comprising a first CeO layer 21, a YSZ layer 22, and a second CeO layer 23 on a metal alignment substrate 10.
  • a laminated structure 30B in which an organic metal deposited HoBCO layer 32 is formed on a physical vapor deposited HoBCO layer 31 is formed on the intermediate layer 20.
  • the physical vapor deposition HoBCO layer 31 and the organic metal deposition HoBCO layer 32 are formed in the same manner as in the first embodiment.
  • a laminated structure 30B is further formed on the laminated structure 30B. This laminated structure 30B is repeatedly formed until the oxide superconducting film 30 has a desired film thickness. Then, the Ag stabilizing layer 40 is formed on the oxide superconducting film 30, and the superconducting thin film material 1 of Embodiment 3 shown in FIG. 10 is completed.
  • the thickness of each organometallic deposited HoBCO layer 32 is preferably 1 ⁇ m or less. If each organometallic deposited HoBCO layer 32 is 1 m or less, the occurrence of internal defects such as voids can be suppressed relatively easily. In Embodiment 3, the thickness of each physical vapor deposition HoBCO layer 31 is preferably 2 m or less. If each physical vapor deposition HoBCO layer 31 is 2 m or less, good surface smoothness can be maintained relatively easily.
  • the superconducting thin film material 1 in Embodiments 1 to 3 of the present invention described above is, for example, a tape-shaped wire, but may be a sheet or a hollow or solid cylindrical shape. A little.
  • Example 1 of the present invention will be described below.
  • the superconducting thin film material of the present invention was actually produced and tested to evaluate its characteristics.
  • the test procedure is as follows.
  • the sample was prepared by the manufacturing method shown in Fig. 2. Specifically, an intermediate layer (CeO layer, ZYSZ layer, ZCeO layer; thickness of 0.3 mm each) on a Ni alloy oriented metal tape with a thickness of 100 / ⁇ ⁇ and a width of 10 mm.
  • an intermediate layer (CeO layer, ZYSZ layer, ZCeO layer; thickness of 0.3 mm each) on a Ni alloy oriented metal tape with a thickness of 100 / ⁇ ⁇ and a width of 10 mm.
  • the horizontal axis represents the film thickness (MOD film thickness) of the organometallic deposited HoBCO layer formed on the physical vapor deposition HoBCO layer, and the vertical axis represents the critical current (I).
  • MOD film thickness the film thickness of the organometallic deposited HoBCO layer formed on the physical vapor deposition HoBCO layer
  • I critical current
  • the dip method is a method of adhering an organometallic salt solution on a Ni alloy oriented metal tape by immersing the Ni alloy oriented metal tape in an organometallic salt solution in the MOD method.
  • the die coating method is the same as the MOD method, in which an organometallic salt solution that also supplies a solution tank force is applied onto the Ni alloy oriented metal tape, thereby forming an organometallic salt on the Ni alloy oriented metal tape. This is a method of attaching a solution.
  • the results for the die-coating method are indicated by hollow diamonds, and the results for the dip method are indicated by solid squares. Referring to FIG. 15, the superconducting thin film of Example 1 Explain the relationship between MOD film thickness and I in film materials.
  • the MOD film thickness is up to about 1 ⁇ m, I is about 35 to 80 AZcm width regardless of the MOD layer formation method. Therefore, the MOD film thickness is: L m c
  • the half width of the peak corresponding to the (103) plane of the MOD layer is 6.5 to 6.9 degrees. This shows that the MOD layer in the superconducting thin film material of Example 1 has good in-plane orientation. Further, referring to FIG. 17, the crystal grain size of the surface of the MOD layer in the superconducting thin film material of Example 1 is 0.5 to m. From the above, it can be seen that high-quality crystal growth is realized in the MOD layer in the superconducting thin film material of the present invention.
  • a continuous reeling method is used, using a continuous coating and baking apparatus capable of continuously applying and baking the organometallic salt solution in the organic metal deposition step.
  • a long wire was prototyped by winding the superconducting thin film material of the present invention. As a result, a long wire having the same characteristics as described above could be produced. Therefore, according to the superconducting thin film material of the present invention, excellent superconducting properties, for example, high J
  • Example 2 of the present invention will be described below.
  • the superconducting thin film material of the present invention was actually fabricated, and an experiment was conducted to investigate the relationship between the formation state of the MOD layer and I.
  • the experimental procedure is as follows.
  • an intermediate layer similar to that of Example 1 was formed on an oriented Ni alloy tape having a width of 3 cm and a thickness of 100 ⁇ m by the PLD method, and a HoBCO having a thickness of 1. was formed on the intermediate layer by the PLD method.
  • a layer physical vapor deposition HoBCO layer
  • a HoBCO layer organometallic deposition HoBCO layer
  • a superconducting thin film material of the present invention was produced by forming an Ag stable layer having a thickness of 10 m on the organometallic deposited HoBCO layer.
  • a cross section in the thickness direction of the superconducting thin film material was observed with a scanning electron microscope (SEM).
  • 18 to 21 show the measured I value and MOD film thickness.
  • the organometallic deposited HoBC O layer 32 formed on the physical vapor deposited HoBCO layer 31 was 0.3 m
  • the organometallic deposited HoBCO layer 32 was dense. Also, the measured I is
  • the thickness of the C39AZcm width and the thickness of the metal-organic-deposited HoBCO layer 32 is 1 ⁇ m or less, the superconducting characteristics are clearly reduced. Furthermore, as shown in FIG. 21, when the thickness of the organometallic deposited HoBCO layer 32 is 3. O / zm, many voids and heterogeneous phases are clearly observed in the organometallic deposited HoBCO layer 32. The measured I was lAZcm width, and the superconducting properties were significantly degraded.
  • the greatest merit of the fluorine-free MOD method is that a large area membrane is easy.
  • an intermediate layer, a superconducting film, and an Ag stabilizing layer are formed on a wide-oriented Ni alloy tape, and the MOD layer has a thickness of 1 ⁇ m or less, resulting in a large area with good superconducting characteristics. It was possible to produce a superconducting thin film material.
  • Example 3 of the present invention will be described below.
  • a superconducting thin film material as an embodiment of the present invention comprising a superconducting film in which an organic metal deposition layer is formed on a physical vapor deposition layer, and physical vapor deposition
  • a superconducting thin film material as a comparative example provided with a superconducting film formed only of layers was fabricated, and a test for comparing the superconducting characteristics was performed.
  • a superconducting thin film material similar to that of Example 1 was manufactured by the manufacturing method shown in FIG.
  • the thickness of the physical vapor deposition HoBCO layer was 0.8 ⁇ m
  • a superconducting film was formed by depositing an organometallic deposition HoBCO layer of 1 ⁇ m or less on the physical vapor deposition HoBCO layer.
  • a superconducting thin film material was produced in which only the superconducting film was different from the superconducting thin film material of the example.
  • the superconducting film was composed only of the physical vapor deposition HoBCO layer.
  • the superconducting thin film material thus produced was subjected to a test for measuring I and J under conditions of a temperature of 77K and a magnetic field of 0 mm.
  • the horizontal axis is the thickness of the superconducting film, and the vertical axis is I.
  • the square points represent the measured values for the example, and the circular points represent the measured values for the comparative example.
  • the film thickness is approximately proportional to the increase in film thickness up to about m. I is above
  • the surface smoothness deteriorates as the film thickness increases.
  • the superconducting thin film material of the example of the present invention provided with the superconducting film in which the metal-organic stack was formed on the physical vapor deposition layer, even when the film thickness force m was exceeded, it was almost proportional to the increase in film thickness. I is rising. And at most, I
  • the physical vapor deposition layer is 2 / zm or less in order to suppress the deterioration of the surface smoothness of the physical vapor deposition layer.
  • L m or less is considered to be more preferable.
  • Example 4 of the present invention will be described below.
  • a superconducting thin film material according to the present invention in which a superconducting film is formed on both main surfaces of a Ni alloy substrate is fabricated.
  • a superconducting thin film material was manufactured by the manufacturing method shown in FIG.
  • the superconducting film has a physical vapor deposition HoBCO layer with a thickness of 0.4 m and an organic metal deposition HoBCO layer with a thickness of 0.4 m on the intermediate layer formed on both main surfaces of the Ni alloy substrate. Formed. Then, I of the superconducting thin film material was measured under the same conditions as in Example 3.
  • the desired I is secured by forming superconducting films on both main surfaces of the Ni alloy substrate.
  • Example 5 of the present invention will be described below.
  • a prototype was produced in which the superconducting thin film material of the present invention was formed into a wide wire shape. Specifically, the superconducting thin film material of the present invention was produced in the same manner as in Example 1 using a 5 cm wide Ni alloy tape as a base plate. J of the superconducting thin film material was measured under the same conditions as in Example 3.
  • the superconducting thin film material and the method for producing the same of the present invention can be applied particularly advantageously to a superconducting thin film material in which a superconducting film is formed on a substrate and a method for producing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

 高いJCおよび高いIC等の優れた特性と、低コスト化の実現とを両立することが可能な超電導薄膜材料(1)は、金属配向基板(10)と、金属配向基板(10)上に形成された酸化物超電導膜(30)とを備え、酸化物超電導膜(30)は、物理蒸着法により形成された物理蒸着HoBCO層(31)と、物理蒸着HoBCO層(31)上に有機金属堆積法により形成された有機金属堆積HoBCO層(32)とを含んでいる。

Description

明 細 書
超電導薄膜材料およびその製造方法
技術分野
[0001] 本発明は超電導薄膜材料およびその製造方法に関し、より特定的には、基板上に 超電導膜が形成された超電導薄膜材料およびその製造方法に関する。
背景技術
[0002] 近年、金属基板上に、パルスレーザー蒸着(PLD ; Pulsed Laser Deposition) 法などの物理蒸着(PVD ; Physical Vapor Deposition)法や、 TFA— MOD (Tr ifluoroacetate - Metal Organic Deposition)法などの有機金属堆積(MOD; Metal Organic Deposition)法により超電導膜を形成した超電導テープ線材な どの超電導薄膜材料の開発が進められている。たとえば、金属テープ上に PLD法な どを用いて酸化物超電導層を形成する際、金属テープの搬送速度、および金属テ 一プと酸ィ匕物作成用のターゲットとの距離を所定の値とすることにより、大きな臨界電 流密度 CF )
Cを有する酸化物超電導線材を効率的に生産する方法が提案されて!ヽる( 特開 2005— 38632号公報 (特許文献 1) )。
特許文献 1:特開 2005 - 38632号公報
発明の開示
発明が解決しょうとする課題
[0003] PVD法、特に PLD法を採用して超電導膜を形成した場合、当該超電導膜の組成 は、ターゲットの糸且成に近ぐ高い J
Cおよび高い臨界電流 (I
C )を有する超電導薄膜材 料が得られるという利点がある。しかし、 PVD法を採用した場合、減圧下での成膜が 必要となる。そのため、効率的な大量生産を実施することが困難で、製造コストが上 昇する。また、 PVD法を採用して超電導膜を形成する場合、膜厚が厚くなると当該膜 の表面の平滑性が低下するという問題点もある。
[0004] 一方、 MOD法を採用して超電導膜を形成した場合、生産設備の簡略化が比較的 容易である。そのため、 PVD法を採用する場合に比べて、装置コストの低減が比較 的容易であり、安価な超電導薄膜材料を生産可能であるという利点がある。また、 M OD法により形成された超電導膜は、表面平滑性に優れて!/ヽると!/ヽぅ利点も有して ヽ る。しかし、たとえば TFA— MOD法においては、成膜過程で超電導膜内からフッ素 が離脱しつつ、超電導膜の結晶が成長するため、超電導膜の結晶の成長速度が遅 ぐ生産効率の向上は必ずしも容易ではない。また、前述のフッ素の離脱を均一に進 行させる必要があるため、たとえば幅の広い超電導薄膜材料を製造することは困難 であり、生産効率の向上が阻害される。さらに、 TFA— MOD法においては、そのプ ロセス中に、取扱に注意を要するフッ化水素が生成するため、フッ化水素の処理コス トが必要となり、超電導薄膜材料の生産コスト上昇の原因となる。
[0005] これに対し、フッ素系の有機金属塩溶液を使用しない無フッ素系 MOD法を採用す ることで、上述の TFA— MOD法の問題点を解消することができる。し力し、無フッ素 系 MOD法においては、基板や基板上に形成された中間層からの超電導膜の核成 長が容易ではな 、と 、う問題点を有して 、る。
[0006] 以上のように、従来、超電導薄膜材料にお!、て、高 、Jおよび高!、1等の優れた特
C C
性と、低コストィ匕の実現とを両立することは困難であった。
[0007] そこで、本発明の目的は、高 、Jおよび高 、1等の優れた特性と、低コスト化の実
C C
現とを両立することが可能な超電導薄膜材料およびその製造方法を提供することで ある。
課題を解決するための手段
[0008] 本発明に従った超電導薄膜材料は、基板と、基板上に形成された超電導膜とを備 えている。そして、超電導膜は、物理蒸着法により形成された物理蒸着層と、物理蒸 着層上に有機金属堆積法により形成された有機金属堆積層とを含んでいる。
[0009] 高い Jおよび高い I等の優れた特性を超電導薄膜材料に付与するためには、超電
C C
導膜にぉ ヽて高 ヽ表面平滑性および配向性を確保しつつ、十分な膜厚の超電導膜 を形成することが重要である。本発明者は、これを低コストで実現可能な超電導薄膜 材料およびその製造方法について詳細に検討を行なった。その結果、まず、物理蒸 着法 (PVD法)によりターゲットの組成に近ぐ配向性の高い超電導膜としての物理 蒸着膜を形成し、その上に有機金属堆積法 (MOD法)により超電導膜としての有機 金属堆積層を形成することにより、配向性が高ぐかつ表面平滑性の高い超電導膜 を低コストで形成できることを見出した。この製造方法よれば、高い Jおよび高い I等
C C
の優れた特性を有し、かつ低コストな超電導薄膜材料を製造することができる。すな わち、前述のように PVD法のみで超電導膜を形成した場合、超電導膜が厚くなると 表面平滑性が低下する傾向にあるが、超電導膜全体を PVD法により形成するので はなぐ表面平滑性に優れた MOD法と組み合わせることにより、超電導膜の表面平 滑性が向上する。また、物理蒸着層を種膜として有機金属堆積層を形成すれば、有 機金属堆積層の核成長が容易となる。このように、本発明の超電導薄膜材料によれ ば、 PVD法および MOD法のそれぞれの欠点を補完しつつ、両者の利点を生かすこ とにより、高い J
Cおよび高い I
C等の優れた特性と、低コストィ匕の実現とを両立し得る超 電導薄膜材料を提供することが可能となる。
[0010] ここで、配向性とは結晶粒の結晶方位が揃って 、る程度を!、う。また、表面平滑性 とは膜の表面の平坦性をいう。
[0011] 上記超電導薄膜材料において好ましくは、基板と超電導膜との間に、さらに中間層 を備えている。基板と超電導膜との間に中間層を介在させることにより、超電導膜の 配向性の向上が可能である。また、基板と超電導膜との間の原子の拡散および反応 を抑制することができる。その結果、超電導薄膜材料の特性を向上させるとともに基 板の選択の幅を広げることができる。
[0012] 上記超電導薄膜材料において好ましくは、超電導膜は、基板の両方の主面上に形 成されている。超電導膜は、膜厚が大きくなるにしたがって、表面平滑性の確保ゃボ イドなどの内部欠陥の抑制が困難になるため、成膜条件の厳密な制御が必要となる 。これに対し、基板の両方の主面上に超電導膜を形成することにより、超電導薄膜材 料全体で所望の Iを確保するために必要な、各主面上の超電導膜の膜厚を薄くする
C
ことができる。その結果、各主面上の超電導膜における表面平滑性の確保ゃボイド などの内部欠陥の抑制が容易になるとともに、両方の主面上の超電導膜により十分 な I
Cを確保することが可能となる。
[0013] 上記超電導薄膜材料において好ましくは、超電導膜においては、物理蒸着層と、 有機金属堆積層との組み合わせ力もなる構造が複数積層されている。前述のように 、 PVD法により形成された物理蒸着層は、膜厚が厚くなるに従って表面平滑性を確 保することが困難となる。また、 MODにより形成された有機金属堆積層は、膜厚が厚 くなるに従ってボイドなどの内部欠陥の抑制が困難になる。これに対して、まず物理 蒸着層を形成した後、物理蒸着層上に有機金属堆積層を形成することにより表面平 滑性を向上させることができる。さらに、有機金属堆積層の膜厚をボイドなどの内部 欠陥の抑制が容易な程度にとどめ、表面平滑性の向上した超電導膜上に再度物理 蒸着層を形成し、当該物理蒸着層上に、さらに有機金属堆積層を形成することで、 超電導膜の膜厚を厚くできるとともに、再度超電導膜の表面平滑性が向上する。この ように、物理蒸着層と有機金属堆積層との組み合わせからなる構造が複数積層され ることにより、表面平滑性の確保ゃボイドなどの内部欠陥の抑制を容易にしつつ、十 分な膜厚の超電導膜を形成し、所望の I、J
C Cなどの超電導特性が確保可能な超電導 薄膜材料を提供することができる。
[0014] 上記超電導薄膜材料において好ましくは、有機金属堆積層の厚みは 1 μ m以下で ある。 MOD法により形成された有機金属堆積層は、膜厚が厚くなるに従ってボイドな どの内部欠陥が発生しやすくなる。有機金属堆積層が 1 m以下であれば、比較的 容易にボイドなどの内部欠陥の発生を抑制することができる。
[0015] 上記超電導薄膜材料において好ましくは、物理蒸着層の厚みは 2 m以下である 。 PVD法により形成された物理蒸着層は、膜厚が厚くなるに従って表面平滑性を確 保することが困難となる。物理蒸着層が 2 m以下であれば、比較的容易に良好な 表面平滑性を確保することができる。
[0016] 上記超電導薄膜材料において好ましくは、上述の物理蒸着法は、パルスレーザー 蒸着法、スパッタ法および電子ビーム法からなる群から選択される!ヽずれかの蒸着法 である。
[0017] 物理蒸着(PVD)法の中でも、パルスレーザー蒸着法、スパッタ法および電子ビー ム法は配向性の高い超電導膜の形成に適しており、本発明の物理蒸着膜の形成に 好適である。
[0018] 上記超電導薄膜材料において好ましくは、有機金属堆積法は、フッ素を含む有機 金属塩溶液を使用しない無フッ素系有機金属堆積法である。無フッ素系有機金属堆 積法は、有機金属堆積 (MOD)法の代表的堆積法である TFA— MOD法とは異なり 、成膜過程で超電導膜内からフッ素が離脱しつつ、超電導膜の結晶が成長する堆 積法ではないため、超電導膜の結晶の成長速度が速ぐ生産効率の向上が可能で ある。また、前述のフッ素の離脱を均一に進行させる必要もないため、たとえば幅の 広い超電導薄膜材料を製造することも容易となり、生産効率の向上にも寄与すること ができる。さらに、成膜プロセス中に、取扱に注意を要するフッ化水素が生成すること もないため、フッ化水素の処理コストが不要である。また、中性の溶液を用いて当該 プロセスを実施することが可能であるため、本発明の超電導薄膜材料に適用した場 合、先に形成された物理蒸着層に損傷を与えることなく有機金属堆積層を形成する ことができる。その結果、製造コストを抑制しつつ、本発明の超電導薄膜材料の特性 を一層向上させることができる。
[0019] ここで、無フッ素系有機金属堆積法とは、フッ素を含む有機金属塩溶液を使用しな い有機金属堆積法をいう。また、当該有機金属堆積法に使用する溶液としては、たと えば金属ァセチルァセトナト系の溶液 (Ho: Ba: Cu = 1: 2: 3)、ナフテン酸系の溶液 等が挙げられる。
[0020] 本発明に従った超電導薄膜材料の製造方法は、基板を準備する基板準備工程と 、基板上に超電導膜を形成する超電導膜形成工程とを備えている。そして、超電導 膜形成工程は、物理蒸着法により物理蒸着層を形成する物理蒸着工程と、物理蒸 着層上に有機金属堆積法により有機金属堆積層を形成する有機金属堆積工程とを 含んでいる。
[0021] 本発明の超電導薄膜材料の製造方法によれば、上述のように、 PVD法および MO D法のそれぞれの欠点を補完しつつ、両者の利点を生かすことにより、高い Jおよび
C
高い I
C等の優れた特性と、低コストィ匕の実現とを両立することが可能な超電導薄膜材 料を製造することができる。
[0022] 本発明の超電導薄膜材料の製造方法において好ましくは、基板準備工程よりも後 であって超電導膜形成工程よりも前に、基板と超電導膜との間に中間層を形成する 中間層形成工程をさらに備えている。
[0023] これにより、基板と超電導膜との間に中間層を介在させることで、超電導膜の配向 性の向上が可能であり、また、基板と超電導膜との間の原子の拡散および反応を抑 ff¾することができる。
[0024] 本発明の超電導薄膜材料の製造方法において好ましくは、物理蒸着工程では、基 板の両方の主面上に物理蒸着層が形成され、有機金属堆積工程では、基板の両方 の主面上における物理蒸着層上に有機金属堆積層が形成される。
[0025] これにより、各主面上の超電導膜の膜厚を薄くすることで表面平滑性の確保やボイ ドなどの内部欠陥の抑制が容易になるとともに、両方の主面上の超電導膜により十 分な I
Cを確保することが可能となる。
[0026] 本発明の超電導薄膜材料の製造方法において好ましくは、物理蒸着工程と有機金 属堆積工程とは、交互に複数回実施される。
[0027] これにより、物理蒸着層と有機金属堆積層との組み合わせからなる構造が複数積 層されること〖こよって、表面平滑性の確保ゃボイドなどの内部欠陥の抑制を容易にし つつ、十分な膜厚の超電導膜を形成することが可能となる。その結果、所望の I、 J
C C
などの超電導特性が確保可能な超電導薄膜材料を容易に製造することができる。
[0028] 本発明の超電導薄膜材料の製造方法において好ましくは、有機金属堆積工程で は、厚み 1 μ m以下の有機金属堆積層が形成される。これにより、比較的容易に有機 金属堆積層におけるボイドなどの内部欠陥の発生を抑制することができる。
[0029] 本発明の超電導薄膜材料の製造方法において好ましくは、物理蒸着工程では、厚 み 2 m以下の物理蒸着層が形成される。これにより、比較的容易に良好な物理蒸 着層の表面平滑性を確保することができる。
[0030] 本発明の超電導薄膜材料の製造方法において好ましくは、上述の物理蒸着法は、 パルスレーザー蒸着法、スパッタ法および電子ビーム法からなる群から選択される ヽ ずれかの蒸着法である。
[0031] 物理蒸着(PVD)法の中でも、パルスレーザー蒸着法、スパッタ法および電子ビー ム法は配向性の高い超電導膜の形成に適しており、本発明の超電導薄膜材料の製 造方法における物理蒸着膜の形成に好適である。
[0032] 本発明の超電導薄膜材料の製造方法において好ましくは、上述の有機金属堆積 法は、フッ素を含む有機金属塩溶液を使用しない無フッ素系有機金属堆積法である [0033] これにより、有機金属堆積 (MOD)法の代表的堆積法である TFA— MOD法と異 なり、超電導膜の結晶の成長速度が速ぐ生産効率の向上が可能である。また、前述 のフッ素の離脱を均一に進行させる必要もないため、生産効率の向上に寄与するこ とができる。さらに、成膜プロセス中に、取扱に注意を要するフッ化水素が生成するこ ともないため、フッ化水素の処理コストが不要である。また、中性の溶液を用いて当該 プロセスを実施することが可能であるため、本発明の超電導薄膜材料に適用した場 合、先に形成された物理蒸着膜に損傷を与えることなく有機金属堆積層を形成する ことができる。その結果、製造コストを抑制しつつ、本発明の超電導薄膜材料の特性 を一層向上させることが可能となる。
発明の効果
[0034] 以上の説明から明らかなように、本発明の超電導薄膜材料およびその製造方法に よれば、高い J
Cおよび高い I
C等の優れた特性と、低コスト化の実現とを両立することが 可能な超電導薄膜材料およびその製造方法を提供することができる。
図面の簡単な説明
[0035] [図 1]実施の形態 1の超電導薄膜材料の構成を示す概略断面図である。
[図 2]実施の形態 1の超電導薄膜材料の製造方法における製造工程の概略を示す 図である。
[図 3]図 2の製造工程のうち、有機金属堆積工程の詳細を示す図である。
[図 4]実施の形態 1の超電導薄膜材料の製造方法を説明するための概略断面図であ る。
[図 5]実施の形態 1の超電導薄膜材料の製造方法を説明するための概略断面図であ る。
[図 6]実施の形態 1の超電導薄膜材料の製造方法を説明するための概略断面図であ る。
[図 7]実施の形態 2における超電導薄膜材料の構成を示す概略断面図である。
[図 8]実施の形態 2の超電導薄膜材料の製造方法を説明するための概略断面図であ る。
[図 9]実施の形態 2の超電導薄膜材料の製造方法を説明するための概略断面図であ る。
[図 10]実施の形態 3における超電導薄膜材料の構成を示す概略断面図である。
[図 11]実施の形態 3の超電導薄膜材料の製造方法における製造工程の概略を示す 図である。
[図 12]実施の形態 3の超電導薄膜材料の製造方法を説明するための概略断面図で ある。
[図 13]実施の形態 3の超電導薄膜材料の製造方法を説明するための概略断面図で ある。
[図 14]実施の形態 3の超電導薄膜材料の製造方法を説明するための概略断面図で ある。
[図 15]実施例 1の超電導薄膜材料における MOD膜厚と Iとの関係を示す図である。
C
[図 16]実施例 1の超電導薄膜材料における MOD層の(103)極点図である。
[図 17]実施例 1の超電導薄膜材料における MOD層の表面の AFM写真である。
[図 18]作製された超電導薄膜材料の厚み方向における断面の SEM写真である。
[図 19]作製された超電導薄膜材料の厚み方向における断面の SEM写真である。
[図 20]作製された超電導薄膜材料の厚み方向における断面の SEM写真である。
[図 21]作製された超電導薄膜材料の厚み方向における断面の SEM写真である。
[図 22]本発明の実施例および本発明の範囲外である比較例の超電導薄膜材料にお ける、超電導膜の膜厚と I
Cとの関係を示す図である。
符号の説明
[0036] 1 超電導薄膜材料、 10 金属配向基板、 10A 主面、 20 中間層、 21 第 1の Ce O層、 22 YSZ層、 23 第 2の CeO層、 30 酸化物超電導膜、 30A 超電導膜表
2 2
面、 30B 積層構造、 31 物理蒸着 HoBCO層、 31A 物理蒸着 HoBCO層表面、 32 有機金属堆積 HoBCO層、 32A 有機金属堆積 HoBCO層表面、 40 Ag安定 化層。
発明を実施するための最良の形態
[0037] 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面におい て同一または相当する部分には同一の参照番号を付しその説明は繰り返さない。 [0038] (実施の形態 1)
図 1を参照して、本発明の一実施の形態である実施の形態 1の超電導薄膜材料の 構成について説明する。
[0039] 図 1を参照して、実施の形態 1の超電導薄膜材料 1は、基板としての金属配向基板 10と、金属配向基板 10上に形成された中間層 20と、中間層 20上に形成された超電 導膜としての酸化物超電導膜 30と、酸化物超電導膜 30を保護するために酸化物超 電導膜 30上に形成された安定化層としての Ag (銀)安定ィ匕層 40とを備えて ヽる。酸 化物超電導膜 30の材質としては、たとえば HoBCO (ホルミウム系高温超電導材料; HoBa Cu O )などのレア ·アース系酸化物超電導材料を選択することができる。そ
2 3 X
して、酸化物超電導膜 30は、物理蒸着法により形成された物理蒸着層としての物理 蒸着 HoBCO層 31と、物理蒸着 HoBCO層 31上に有機金属堆積法により形成され た有機金属堆積層としての有機金属堆積 HoBCO層 32とを含んで ヽる。
[0040] また、金属配向基板 10としては、たとえば Ni (ニッケル)配向基板、 Ni合金系の配 向基板などを選択することができる。さらに、中間層 20は、たとえば CeO
2 (セリア)お よび YSZ (イットリア安定ィ匕ジルコユア)の少なくとも一方を含んだ層とすることができ 、具体的には第 1の CeO層 21と、第 1の CeO層 21上に形成された YSZ層 22と、 Y
2 2
SZ層 22上に形成された第 2の CeO層 23とを含んだ層とすることができる。また、安
2
定ィ匕層は上述の Ag安定ィ匕層 40に限られず、たとえば Ag安定ィ匕層 40に代えて Cu ( 銅)力もなる Cu安定ィ匕層を用いてもょ 、。
[0041] 次に、図 1〜図 6を参照して、実施の形態 1の超電導薄膜材料の製造方法につい て説明する。
[0042] 図 2を参照して、まず、基板準備工程が実施される。具体的には、配向性ニッケル 合金カゝらなるテープ状基板などの金属配向基板 10が準備される。次に、図 2に示す ように、金属配向基板 10上に中間層 20を形成する中間層形成工程が実施される。 具体的には、図 2および図 4を参照して、金属配向基板 10上に第 1の CeO層 21、 Y
2
SZ層 22および第 2の CeO層 23を順次形成するように、第 1の CeO層形成工程、 Y
2 2
SZ層形成工程および第 2の CeO層形成工程が順次実施される。この第 1の CeO
2 2 層形成工程、 YSZ層形成工程および第 2の CeO層形成工程は、たとえば PLD法な どの物理蒸着法により実施することができる力 MOD法により実施してもよい。
[0043] 次に、図 2に示すように、中間層 20上に酸化物超電導膜 30を形成する超電導膜形 成工程が実施される。具体的には、図 2および図 5に示すように、まず中間層 20上に 物理蒸着法により物理蒸着 HoBCO層 31を形成する物理蒸着工程が実施される。こ の物理蒸着工程は、パルスレーザー蒸着(PLD)法、スパッタ法および電子ビーム法 力もなる群力も選択されるいずれかの蒸着法を用いることが好ましい。特に、 PLD法 を採用することにより、酸化物超電導膜 30を構成する物理蒸着 HoBCO層 31の組 成をターゲットの組成に近くすることができ、かつ高い配向性を確保可能であるため、 超電導薄膜材料 1の J I の
Cおよび C 向上に寄与することができる。
[0044] さら〖こ、図 2および図 6に示すように、物理蒸着 HoBCO層 31上に有機金属堆積法 により有機金属堆積 HoBCO層 32を形成する有機金属堆積工程が実施される。この 有機金属堆積工程では、まず、図 3に示すように、無フッ素系の Ho (ホルミウム)、 Ba (バリウム)および Cu (銅)の有機金属塩溶液、たとえば金属ァセチルァセトナト系の 溶液 (Ho: Ba: Cu = 1: 2: 3)、あるいはナフテン酸系の溶液などの溶液を物理蒸着 HoBCO層 31の表面に塗布する無フッ素系溶液塗布工程が実施される。この無フッ 素系溶液塗布工程における有機金属塩溶液の塗布方法としてはディップ法、ダイコ ート法などを選択することができる。
[0045] 次に、図 3に示すように、塗布された有機金属塩溶液から溶媒成分等が除去される 仮焼成工程が実施される。具体的には、 400°C以上 600°C以下の温度域、たとえば 500°Cの空気中で有機金属塩溶液が塗布された金属配向基板 10が加熱されること により、塗布された有機金属塩溶液が熱分解される。このとき、 CO (二酸化炭素)、
2
H O (水)が離脱することにより塗布された有機金属塩溶液から溶媒成分等が除去さ
2
れる。さらに、図 3に示すように、上述の仮焼成工程が実施された後、本焼成工程が 実施される。具体的には、 600°C以上 800°C以下の温度域、たとえば 750°Cの Ar( アルゴン)および O (酸素)の混合雰囲気中で有機金属塩溶液が塗布された金属配
2
向基板 10が加熱されることにより、所望の有機金属堆積層である有機金属堆積 HoB CO層 32が形成される。
[0046] ここで、図 5および図 6を参照して、前述のように物理蒸着により形成された物理蒸 着 HoBCO層 31においては、膜厚が厚くなるにしたがって、物理蒸着 HoBCO層 31 の表面である物理蒸着 HoBCO層表面 31Aの表面平滑性が低下する傾向にある。 これに対し、以上のようにして表面平滑性に優れた有機金属堆積 HoBCO層 32が物 理蒸着 HoBCO層 31上〖こ形成されることにより、表面平滑性の高! ヽ有機金属堆積 H oBCO層 32の表面である有機金属堆積 HoBCO層表面 32Aが酸ィ匕物超電導膜 30 の表面である超電導膜表面 30Aとなる。その結果、表面平滑性に優れた酸化物超 電導膜 30が形成され、超電導薄膜材料 1の I 、 Jなどが向上する。また、ターゲット
C C
の組成に近ぐ配向性の高い物理蒸着 HoBCO層 31を種膜として有機金属堆積ェ 程を実施することにより、有機金属堆積 HoBCO層 32の核成長が容易となる。
[0047] さらに、図 2に示すように、安定ィ匕層としての Ag安定ィ匕層 40が形成される Ag安定 化層形成工程が実施される。 Ag安定ィ匕層 40の形成は、たとえば蒸着法により実施 することができる。以上の工程が実施されることにより、実施の形態 1の超電導薄膜材 料 1が製造される。
[0048] 本実施の形態 1の超電導薄膜材料 1およびその製造方法によれば、 PLD法および 無フッ素系 MOD法のそれぞれの欠点を補完しつつ、両者の利点を生かすことにより 、高い J Cおよび高い I C等の優れた特性と、低コストィ匕の実現とを両立することが可能 な超電導薄膜材料 1を提供することができる。
[0049] また、本実施の形態 1において、有機金属堆積 HoBCO層 32の厚みは 1 μ m以下 であることが好ましい。 MOD法により形成された有機金属堆積 HoBCO層 32は、膜 厚が厚くなるに従ってボイドなどの内部欠陥が発生しやすくなる。有機金属堆積 Ho BCO層 32が 1 μ m以下であれば、比較的容易にボイドなどの内部欠陥の発生を抑 ff¾することができる。
[0050] また、本実施の形態 1において、物理蒸着 HoBCO層 31の厚みは 2 μ m以下であ ることが好ましい。 PLD法により形成される物理蒸着 HoBCO層 31は、膜厚が厚くな るに従って表面平滑性を確保することが困難となる。物理蒸着 HoBCO層 31が 2 m以下であれば、比較的容易に良好な表面平滑性を確保することができる。
[0051] (実施の形態 2)
次に、図 7を参照して、本発明の一実施の形態である実施の形態 2の超電導薄膜 材料の構成を説明する。
[0052] 図 7を参照して、実施の形態 2の超電導薄膜材料 1と、上述した実施の形態 1の超 電導薄膜材料 1とは基本的に同様の構成を有している。しかし、実施の形態 2の超電 導薄膜材料 1では、中間層 20、酸化物超電導膜 30および Ag安定化層 40が金属配 向基板 10の両方の主面上に形成されている点で実施の形態 1の超電導薄膜材料 1 とは異なっている。酸化物超電導膜 30は、膜厚が大きくなるにしたがって、表面平滑 性の確保ゃボイドなどの内部欠陥の抑制が困難になるため、成膜条件の厳密な制 御が必要となる。これに対し、本実施の形態 2においては、金属配向基板 10の両方 の主面 10A上に酸化物超電導膜 30を形成することにより、所望の Iを確保するため
C
に必要な各主面 10A上の酸ィ匕物超電導膜 30の膜厚を薄くすることができる。その結 果、各主面 10A上の酸ィ匕物超電導膜 30における表面平滑性の確保ゃボイドなどの 内部欠陥の抑制が容易となり、かつ両方の主面 10A上の酸ィ匕物超電導膜 30により 十分な I
Cを確保することが可能となっている。
[0053] 次に、図 7〜図 9を参照して、実施の形態 2の超電導薄膜材料の製造方法につい て説明する。
[0054] 実施の形態 2の超電導薄膜材料の製造方法と、図 1〜図 6に基づいて説明した実 施の形態 1の超電導薄膜材料の製造方法とは基本的に同様の構成を有している。し かし、図 2を参照して、実施の形態 2では、中間層形成工程、超電導膜形成工程およ び Ag安定ィ匕層形成工程において、それぞれ中間層 20、酸化物超電導膜 30、 Ag安 定ィ匕層 40が金属配向基板 10の両方の主面 10A上に形成される点で実施の形態 1 とは異なっている。具体的には、中間層形成工程において、図 8に示すように、金属 配向基板 10の両方の主面 10A上に第 1の CeO層 21、 YSZ層 22および第 2の CeO
2
層 23からなる中間層 20が形成される。次に、超電導膜形成工程において、図 9に
2
示すように、両方の中間層 20上にそれぞれ酸化物超電導膜 30が形成される。さらに 、 Ag安定ィ匕層形成工程において、両方の酸ィ匕物超電導膜 30上にそれぞれ Ag安定 化層 40が形成されて、図 7に示す実施の形態 2の超電導薄膜材料 1が完成する。
[0055] なお、中間層形成工程、超電導膜形成工程および Ag安定ィ匕層形成工程において は、金属配向基板 10の両方の主面 10A上における中間層 20、酸化物超電導膜 30 、 Ag安定ィ匕層 40は一方側ずつ形成されてもよいし、両方同時に形成されてもよい。 物理蒸着法により物理蒸着 HoBCO層 31を両方の主面 10A上に同時に形成する場 合、たとえば金属配向基板 10の両側力もレーザ蒸着法により形成することができる。 また、無フッ素系有機金属堆積法により有機金属堆積 HoBCO層 32を両方の物理 蒸着 HoBCO層 31上に同時に形成する場合、たとえばディップ法により、物理蒸着 HoBCO層 31が形成された金属配向基板 10を有機金属塩溶液中に浸漬して形成 することができる。
[0056] (実施の形態 3)
次に、図 10を参照して、本発明の一実施の形態である実施の形態 3の超電導薄膜 材料の構成を説明する。
[0057] 図 10を参照して、実施の形態 3の超電導薄膜材料 1と、上述した実施の形態 1の超 電導薄膜材料 1とは基本的に同様の構成を有している。しかし、実施の形態 3の超電 導薄膜材料 1では、酸ィ匕物超電導膜 30において、物理蒸着 HoBCO層 31と、有機 金属堆積 HoBCO層 32との組み合わせ力 なる構造が複数積層されている点で、実 施の形態 1の超電導薄膜材料 1とは異なっている。具体的には、物理蒸着 HoBCO 層 31上に有機金属堆積 HoBCO層 32が形成された積層構造 30Bが複数積み重ね られて酸ィ匕物超電導膜 30が構成されている。図 10では、積層構造 30Bが 2段に積 み重ねられた場合を示しているが、酸ィ匕物超電導膜 30が所望の膜厚となるように、 積層構造 30Bは 3段以上積み重ねられてもよ 、。
[0058] 前述のように、 PVD法により形成された物理蒸着 HoBCO層 31は、膜厚が厚くなる に従って表面平滑性を確保することが困難となる。また、 MOD法により形成された有 機金属堆積 HoBCO層 32は、膜厚が厚くなるに従ってボイドなどの内部欠陥の抑制 が困難になる。これに対して、まず物理蒸着 HoBCO層 31を形成した後、物理蒸着 HoBCO層 31上に有機金属堆積 HoBCO層 32を形成することにより表面平滑性を 向上させることができる。さらに、有機金属堆積 HoBCO層 32の膜厚をボイドなどの 内部欠陥の抑制が容易な程度にとどめ、表面平滑性の向上した超電導膜上に再度 物理蒸着 HoBCO層 31を形成し、当該物理蒸着 HoBCO層 31上に、さらに有機金 属堆積 HoBCO層 32を形成することで、再度酸化物超電導膜 30の表面平滑性が向 上する。このように、物理蒸着 HoBCO層 31と有機金属堆積 HoBCO層 32との組み 合わせカゝらなる構造が複数積層されることにより、表面平滑性の確保ゃボイドなどの 内部欠陥の抑制を容易にしつつ、十分な膜厚の酸化物超電導膜 30が形成できる。 その結果、所望の I、Jなどの超電導特性が確保可能な超電導薄膜材料 1を容易に
C C
得ることができる。
[0059] 次に、図 11〜図 14を参照して、実施の形態 3の超電導薄膜材料の製造方法につ いて説明する。
[0060] 実施の形態 3の超電導薄膜材料の製造方法と、図 1〜図 6に基づいて説明した実 施の形態 1の超電導薄膜材料の製造方法とは基本的に同様の構成を有している。し かし、図 11を参照して、実施の形態 3では、超電導膜形成工程において、物理蒸着 工程と有機金属堆積工程とが交互に複数回実施される点で実施の形態 1とは異なつ ている。具体的には、超電導膜形成工程において、図 12に示すように、金属配向基 板 10上に第 1の CeO層 21、 YSZ層 22および第 2の CeO層 23からなる中間層 20
2 2
が形成される。次に、図 13に示すように、中間層 20上に、物理蒸着 HoBCO層 31上 に有機金属堆積 HoBCO層 32が形成された積層構造 30Bが形成される。物理蒸着 HoBCO層 31および有機金属堆積 HoBCO層 32の形成方法は、実施の形態 1と同 様である。さらに、図 14に示すように、積層構造 30B上にさらに積層構造 30Bが形成 される。この積層構造 30Bは、酸化物超電導膜 30が所望の膜厚となるまで繰り返し て形成される。そして、酸化物超電導膜 30上に Ag安定化層 40が形成されて、図 10 に示す実施の形態 3の超電導薄膜材料 1が完成する。
[0061] なお、実施の形態 3において、各有機金属堆積 HoBCO層 32の厚みは 1 μ m以下 であることが好ましい。各有機金属堆積 HoBCO層 32が 1 m以下であれば、比較 的容易にボイドなどの内部欠陥の発生を抑制することができる。また、実施の形態 3 において、各物理蒸着 HoBCO層 31の厚みは 2 m以下であることが好ましい。各 物理蒸着 HoBCO層 31が 2 m以下であれば、比較的容易に良好な表面平滑性を ½保することができる。
[0062] 上述した、本発明の実施の形態 1〜3における超電導薄膜材料 1は、たとえばテー プ状線材であるが、シート状であってもよいし、中空または中実の円筒形状であって ちょい。
[0063] (実施例 1)
以下、本発明の実施例 1について説明する。本発明の超電導薄膜材料を実際に作 製し、その特性を評価する試験を行なった。試験の手順は以下のとおりである。
[0064] まず、試験の対象となる試料の作製方法にっ 、て説明する。試料は図 2に示す製 造方法により作製した。具体的には、厚み 100 /ζ πι、幅 10mmの Ni合金系配向金属 テープ上に三層構造の中間層(CeO層 ZYSZ層 ZCeO層;厚みはそれぞれ 0. 3
2 2
^ m, 1. O ^ m, 0. 1 /z m)を形成し、中 f¾層上【こ PLD法【こより膜厚 1. の物理 蒸着 HoBCO層を形成した。さらに、物理蒸着 HoBCO層上に無フッ素系 MOD法に より膜厚 0. 2 m〜3. 0 mの有機金属堆積 HoBCO層をェピタキシャル成長させ た。そして、有機金属堆積 HoBCO層上に膜厚 10 mの Ag安定ィ匕層を形成し、幅 1 Omm、長さ lmの線材を作製した。この線材から幅 10mm、長さ 10cmの短尺試料を 採取し、有機金属堆積 HoBCO層の膜厚 (MOD膜厚)と Iとの関係を調査する試験
C
を行なった。また、有機金属堆積 HoBCO層の極点図を、 X線回折を利用して作成し 、面内配向性を調査する試験を行なった。さらに、 Ag安定ィ匕層を形成する前の有機 金属堆積 HoBCO層の表面を原子間力顕微鏡(Atomic Force Microscope ; A FM)を用いて観察した。
[0065] 次に、図 15を参照して、試験結果について説明する。図 15において、横軸は物理 蒸着 HoBCO層上に形成された有機金属堆積 HoBCO層の膜厚 (MOD膜厚)を示 しており、縦軸は臨界電流 (I )を示している。なお、本実施例 1では有機金属堆積 H
C
oBCO層(MOD層)をダイコート法により形成した場合と、ディップ法により形成した 場合とについて実験を行なった。ここで、ディップ法とは、 MOD法において、 Ni合金 系配向金属テープを有機金属塩溶液中に浸漬することにより、 Ni合金系配向金属 テープ上に有機金属塩溶液を付着させる方法である。また、ダイコート法とは、 MOD 法にぉ 、て、 Ni合金系配向金属テープ上に溶液タンク力も供給した有機金属塩溶 液を塗工することにより、 Ni合金系配向金属テープ上に有機金属塩溶液を付着させ る方法である。図 15では、ダイコート法の場合の結果を中抜きの菱形、ディップ法の 場合の結果を中実の正方形で示している。図 15を参照して、本実施例 1の超電導薄 膜材料における MOD膜厚と Iとの関係を説明する。
C
[0066] 図 15を参照して、 MOD膜厚が 1 μ m程度までであれば、 MOD層の形成方法にか かわらず Iは 35〜80AZcm幅程度となっている。したがって、 MOD膜厚が: L m c
程度までの範囲であれば、良好な特性を有する MOD層を形成可能であることが分 かる。
[0067] 次に、図 16および図 17を参照して、実施例 1の超電導薄膜材料における MOD層 の結晶成長について説明する。
[0068] 図 16を参照して、 MOD層の(103)面に対応するピークの半値幅は 6. 5〜6. 9度 となっている。このことから、実施例 1の超電導薄膜材料における MOD層は、良好な 面内配向性を有していることが分かる。さらに、図 17を参照して、実施例 1の超電導 薄膜材料における MOD層の表面の結晶粒径は 0. 5〜: mとなっている。以上より 、本発明の超電導薄膜材料における MOD層においては、良質な結晶成長が実現さ れていることが分かる。
[0069] さらに、上述の製造方法と同様の製造方法において、有機金属堆積工程における 有機金属塩溶液の塗布および焼成を連続的に実施可能な連続塗布焼成装置を用 い、連続リール巻き取り方式で本発明の超電導薄膜材料を巻き取ることにより、長尺 線材の試作を実施した。その結果、上述と同様の特性を有する長尺線材を作製する ことができた。このことから、本発明の超電導薄膜材料によれば、上述のように優れた 超電導特性、たとえば高い J
C、高い I
Cを有する長尺の超電導線材を提供することがで きることが分力つた。
[0070] (実施例 2)
以下、本発明の実施例 2について説明する。本発明の超電導薄膜材料を実際に作 製し、 MOD層の形成状態と Iとの関係を調査する実験を行なった。実験の手順は以
C
下のとおりである。
[0071] まず、幅 3cm、厚さ 100 μ mの配向性 Ni合金テープ上に PLD法により実施例 1と 同様の中間層を形成し、当該中間層上に PLD法により厚さ 1. の HoBCO層( 物理蒸着 HoBCO層)を形成した。さらに、当該物理蒸着 HoBCO層上に無フッ素系 MOD法により厚さ 0. 3〜3. 0 mの HoBCO層(有機金属堆積 HoBCO層)を形成 した。そして、当該有機金属堆積 HoBCO層上に厚さ 10 mの Ag安定ィ匕層を形成 することにより、本発明の超電導薄膜材料を作製した。
[0072] 作製された超電導薄膜材料に対して Iの測定を実施するとともに、走査型電子顕
c
微鏡(Scanning Electron Microscope ; SEM)により、当該超電導薄膜材料の 厚み方向における断面を観察した。
[0073] 次に、図 18〜図 21を参照して、有機金属堆積 HoBCO層の形成状態と Iとの関係
C
を説明する。なお、図 18〜図 21には、測定された Iの値および MOD膜厚が付記さ
c
れている。
[0074] 図 18に示すように、物理蒸着 HoBCO層 31上に形成された有機金属堆積 HoBC O層 32の厚みを 0. 3 mとした場合、有機金属堆積 HoBCO層 32は緻密であった。 また、測定された Iは
C 81AZcm幅であり (Jは
C 2. 5MAZcm2)、優れた超電導特性 が得られた。さらに、図 19に示すように、有機金属堆積 HoBCO層 32の厚みを 0. 9 mとした場合、有機金属堆積 HoBCO層 32には、わずかなボイドおよび異相が観 察されるが、測定された Iは
c 74AZcm幅であり、優れた超電導特性が得られた。
[0075] 一方、図 20に示すように、有機金属堆積 HoBCO層 32の厚みを 1. 8 mとした場 合、有機金属堆積 HoBCO層 32にはボイドおよび異相が明確に観察される。また、 測定された Iは
C 39AZcm幅であり、有機金属堆積 HoBCO層 32の厚みが 1 μ m以 下である上述の図 18および図 19の場合に比べて、超電導特性が明確に低下して ヽ る。さらに、図 21に示すように、有機金属堆積 HoBCO層 32の厚みを 3. O /z mとした 場合、有機金属堆積 HoBCO層 32には多くのボイドおよび異相が明確に観察される 。そして、測定された Iは lAZcm幅となっており、超電導特性が著しく低下した。
C
[0076] 無フッ素系 MOD法の最大のメリットは大面積膜ィ匕が容易なことである。上述のよう に、幅広配向 Ni合金テープ上に中間層、超電導膜および Ag安定化層を形成し、か つ MOD層の厚みを 1 μ m以下とすることで、良好な超電導特性を有する大面積の 超電導薄膜材料を作製できることが分力つた。
[0077] (実施例 3)
以下、本発明の実施例 3について説明する。物理蒸着層上に有機金属堆積層が 形成された超電導膜を備えた本発明の実施例としての超電導薄膜材料と、物理蒸着 層のみで形成された超電導膜を備えた比較例としての超電導薄膜材料とを作製し、 超電導特性を比較する試験を行なった。
[0078] まず、本発明の実施例として、実施例 1の場合と同様に図 2に示す製造方法により 、実施例 1と同様の超電導薄膜材料を作製した。ここで、物理蒸着 HoBCO層の厚み は 0. 8 μ mとし、当該物理蒸着 HoBCO層上に 1 μ m以下の有機金属堆積 HoBCO 層を堆積することにより、超電導膜を形成した。一方、比較例として、実施例の超電 導薄膜材料に対して超電導膜のみが異なる超電導薄膜材料を作製した。比較例で は、前述のように超電導膜を物理蒸着 HoBCO層のみで構成した。
[0079] このようにして作製された超電導薄膜材料に対して、温度 77K、磁場 0Τの条件の 下で、 Iおよび Jを測定する試験を行なった。
C C
[0080] 次に、図 22を参照して、本発明の実施例および本発明の範囲外である比較例の 超電導薄膜材料における、超電導膜の膜厚と Iとの
C 関係を説明する。なお、図 22〖こ おいて、横軸は超電導膜の膜厚、縦軸は I
Cを示している。また、四角形の点は実施 例に関する測定値、円形の点は比較例に関する測定値を表して 、る。
[0081] 図 22を参照して、超電導膜を物理蒸着 HoBCO層のみで構成した比較例の超電 導薄膜材料では、膜厚が: m程度までであれば膜厚の増加にほぼ比例して Iが上
C
昇している。しかし、膜厚が厚くなると膜厚の増加に対する I
Cの上昇が小さくなる傾向 にあり、膜厚が 2 m以上では、 Iの上昇が明確に小さくなつている。これは、前述の
C
ように、 PLD法を用いて超電導膜を形成した場合、膜厚が厚くなるに従って、表面平 滑性が悪ィ匕したためであると考えられる。これに対し、物理蒸着層上に有機金属堆 積層が形成された超電導膜を備えた本発明の実施例の超電導薄膜材料では、膜厚 力 mを超えても膜厚の増加にほぼ比例して Iが上昇している。そして、最大で、 I
C C
は 196AZcm幅、 Jは 1. 5MAZcm2となった。以上より、本発明の超電導薄膜材
C
料によれば、超電導膜を物理蒸着層のみで形成した超電導薄膜材料に比べて、超 電導膜の膜厚を厚くすることにより、効率よく I
Cを向上させることが可能であることが分 かる。
[0082] なお、上述の比較例に関する試験結果より、本発明の超電導薄膜材料においても 、物理蒸着層の表面平滑性の悪ィ匕を抑制するためには、物理蒸着層は 2 /z m以下 が好ましぐ: L m以下がより好ましいと考えられる。
[0083] (実施例 4)
以下、本発明の実施例 4について説明する。 Ni合金基板の両方の主面上に超電 導膜が形成された本発明の超電導薄膜材料を作製し、 I
Cを調査する試験を行なった
[0084] まず、本発明の実施例として、実施例 1の場合と同様に、図 2に示す製造方法によ り超電導薄膜材料を作製した。ただし、超電導膜は Ni合金基板の両方の主面上に 形成された中間層上にそれぞれ物理蒸着 HoBCO層を 0. 4 mの厚みで、有機金 属堆積 HoBCO層を 0. 4 mの厚みで形成した。そして、実施例 3と同様の条件の 下で当該超電導薄膜材料の Iを測定した。
C
[0085] その結果、本実施例の超電導薄膜材料にお!ヽて、 Ni合金基板の一方の面側で I
C
は 82AZcm幅、他方の面側で Iは 109AZcm幅であった。したがって、両方の面を
c
合わせると、本実施例の超電導薄膜材料の Iは
C 191AZcm幅であった。本実施例 のように Ni合金基板の両方の主面上に超電導膜を形成することで、所望の Iを確保
C
するために必要な各主面上の超電導膜を薄くすることが可能となり、各主面上の超 電導膜における表面平滑性の確保ゃボイドなどの内部欠陥の抑制が容易になる。そ して、上記試験結果より、両方の主面上の超電導膜により十分な I
Cを確保することが 可能であることが分かる。
[0086] (実施例 5)
以下、本発明の実施例 5について説明する。本発明の超電導薄膜材料を幅の広い 線材の形状に作製する試作を行なった。具体的には、幅 5cmの Ni合金テープを基 板として、実施例 1と同様の方法で本発明の超電導薄膜材料を作製した。そして、実 施例 3と同様の条件の下で当該超電導薄膜材料の Jを測定した。
c
[0087] その結果、当該超電導薄膜材料の 5cm幅全域にお!、て 1. 4MAZcm2士 14%の 均一な J
C分布が得られていることが分力つた。また、本実施例においては、有機金属 堆積 HoBCO層の形成は、ダイコート法を採用して実施した。すなわち、ダイコート法 において、幅の広いダイを使用することにより、本発明の超電導薄膜材料の幅広化を 達成可能であることが確認された。 [0088] 今回開示された実施の形態および実施例はすべての点で例示であって、制限的な ものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求 の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更 が含まれることが意図される。
産業上の利用可能性
[0089] 本発明の超電導薄膜材料およびその製造方法は、基板上に超電導膜が形成され た超電導薄膜材料およびその製造方法に特に有利に適用され得る。

Claims

請求の範囲
[1] 基板 (10)と、
前記基板(10)上に形成された超電導膜 (30)とを備え、
前記超電導膜 (30)は、
物理蒸着法により形成された物理蒸着層(31)と、
前記物理蒸着層上に有機金属堆積法により形成された有機金属堆積層 (32)とを 含んでいる、超電導薄膜材料(1)。
[2] 前記基板 (10)と前記超電導膜 (30)との間に、さらに中間層(20)を備えた、請求 の範囲第 1項に記載の超電導薄膜材料(1)。
[3] 前記超電導膜 (30)は、前記基板(10)の両方の主面上に形成されている、請求の 範囲第 1項に記載の超電導薄膜材料 (1)。
[4] 前記超電導膜 (30)においては、前記物理蒸着層(31)と、前記有機金属堆積層 (
32)との組み合わせ力もなる構造が複数積層されている、請求の範囲第 1項に記載 の超電導薄膜材料 (1)。
[5] 前記有機金属堆積層 (32)の厚みは 1 μ m以下である、請求の範囲第 1項に記載 の超電導薄膜材料 (1)。
[6] 前記物理蒸着層(31)の厚みは 2 m以下である、請求の範囲第 1項に記載の超 電導薄膜材料 (1)。
[7] 前記有機金属堆積法は、フッ素を含む有機金属塩溶液を使用しない無フッ素系有 機金属堆積法である、請求の範囲第 1項に記載の超電導薄膜材料 (1)。
[8] 基板(10)を準備する基板準備工程と、
前記基板(10)上に超電導膜 (30)を形成する超電導膜形成工程とを備え、 前記超電導膜形成工程は、
物理蒸着法により物理蒸着層(31)を形成する物理蒸着工程と、
前記物理蒸着層(31)上に有機金属堆積法により有機金属堆積層 (32)を形成す る有機金属堆積工程とを含んで 、る、超電導薄膜材料の製造方法。
PCT/JP2007/058657 2006-05-19 2007-04-20 超電導薄膜材料およびその製造方法 WO2007135832A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP07742092.5A EP2031606B1 (en) 2006-05-19 2007-04-20 Superconducting thin film material and method for producing the same
CA 2650894 CA2650894A1 (en) 2006-05-19 2007-04-20 Superconducting thin film material and method for manufacturing the same
US12/299,141 US7858558B2 (en) 2006-05-19 2007-04-20 Superconducting thin film material and method of manufacturing the same
MX2008014370A MX2008014370A (es) 2006-05-19 2007-04-20 Material de pelicula delgada superconductora y metodo para producirlo.
KR1020087030836A KR101110936B1 (ko) 2006-05-19 2007-04-20 초전도 박막 재료 및 그 제조 방법
AU2007252693A AU2007252693A1 (en) 2006-05-19 2007-04-20 Superconducting thin film material and method of manufacturing the same
CN200780018363.6A CN101449341B (zh) 2006-05-19 2007-04-20 超导薄膜材料及其制造方法
NO20085230A NO20085230L (no) 2006-05-19 2008-12-12 Superledende tynnfilmmateriale og fremgangsmate for fremstilling av superledende tynnfilmmateriale

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006140172A JP4690246B2 (ja) 2006-05-19 2006-05-19 超電導薄膜材料およびその製造方法
JP2006-140172 2006-05-19

Publications (1)

Publication Number Publication Date
WO2007135832A1 true WO2007135832A1 (ja) 2007-11-29

Family

ID=38723145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058657 WO2007135832A1 (ja) 2006-05-19 2007-04-20 超電導薄膜材料およびその製造方法

Country Status (12)

Country Link
US (1) US7858558B2 (ja)
EP (1) EP2031606B1 (ja)
JP (1) JP4690246B2 (ja)
KR (1) KR101110936B1 (ja)
CN (1) CN101449341B (ja)
AU (1) AU2007252693A1 (ja)
CA (1) CA2650894A1 (ja)
MX (1) MX2008014370A (ja)
NO (1) NO20085230L (ja)
RU (1) RU2384907C1 (ja)
TW (1) TW200807451A (ja)
WO (1) WO2007135832A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220467A (ja) * 2006-02-16 2007-08-30 Sumitomo Electric Ind Ltd 超電導薄膜材料の製造方法、超電導機器、および超電導薄膜材料
EP2120471A1 (en) 2007-02-28 2009-11-18 NTT DoCoMo, Inc. Base station device and communication control method
JP2010165502A (ja) * 2009-01-14 2010-07-29 Sumitomo Electric Ind Ltd Re123超電導薄膜テープ線材の製造方法およびre123超電導薄膜テープ線材
JP2011113662A (ja) * 2009-11-24 2011-06-09 Sumitomo Electric Ind Ltd 薄膜超電導線材用金属基材、その製造方法および薄膜超電導線材の製造方法
CN101916619B (zh) * 2010-07-09 2011-09-07 北京工业大学 一种纳米颗粒掺杂的rebco薄膜及其制备方法
JP5838596B2 (ja) 2011-05-30 2016-01-06 住友電気工業株式会社 超電導薄膜材料およびその製造方法
CN103282975B (zh) 2011-11-15 2016-03-23 古河电气工业株式会社 超导线材用基板、超导线材用基板的制造方法以及超导线材
JP5804926B2 (ja) * 2011-12-12 2015-11-04 古河電気工業株式会社 超電導薄膜
EP2805336B1 (en) * 2012-01-17 2018-05-23 Sunam Co., Ltd. Superconducting wire and method of forming the same
CN106205783A (zh) 2012-06-11 2016-12-07 株式会社藤仓 氧化物超导电线材以及超导电线圈
JP6422342B2 (ja) * 2012-11-02 2018-11-14 古河電気工業株式会社 酸化物超電導薄膜
JP6244142B2 (ja) * 2013-09-04 2017-12-06 東洋鋼鈑株式会社 超電導線材用基板及びその製造方法、並びに超電導線材
WO2015133505A1 (ja) * 2014-03-07 2015-09-11 住友電気工業株式会社 酸化物超電導薄膜線材とその製造方法
JP2016054050A (ja) * 2014-09-03 2016-04-14 住友電気工業株式会社 超電導線材
RU2629136C2 (ru) * 2015-11-25 2017-08-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ получения высокотемпературной сверхпроводящей пленки на кварцевой подложке
KR101837828B1 (ko) * 2016-04-28 2018-03-12 연세대학교 산학협력단 열전 재료, 이의 제조 방법 및 열전 소자
WO2018150457A1 (ja) * 2017-02-14 2018-08-23 住友電気工業株式会社 超電導線材及び超電導コイル
JP6859805B2 (ja) 2017-03-30 2021-04-14 Tdk株式会社 積層体、熱電変換素子
US10804010B2 (en) * 2017-05-12 2020-10-13 American Superconductor Corporation High temperature superconducting wires having increased engineering current densities
CN108630357A (zh) * 2018-03-30 2018-10-09 上海交通大学 一种利用有机溶液浸泡提高高温超导带材性能的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075079A (ja) * 2000-08-29 2002-03-15 Sumitomo Electric Ind Ltd 高温超電導厚膜部材およびその製造方法
JP2005038632A (ja) 2003-07-16 2005-02-10 Sumitomo Electric Ind Ltd 酸化物超電導線材の製造方法
JP2005093205A (ja) * 2003-09-17 2005-04-07 Sumitomo Electric Ind Ltd 超電導体およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185317A (en) * 1988-02-19 1993-02-09 Northwestern University Method of forming superconducting Tl-Ba-Ca-Cu-O films
US5296460A (en) * 1988-02-19 1994-03-22 Northwestern University CVD method for forming Bi -containing oxide superconducting films
DE68909395T2 (de) * 1989-02-10 1994-02-17 Toshiba Kawasaki Kk Verfahren zur Ablagerung eines dünnen Oxydfilms.
US5032568A (en) * 1989-09-01 1991-07-16 Regents Of The University Of Minnesota Deposition of superconducting thick films by spray inductively coupled plasma method
SU1829818A1 (ru) 1991-05-20 1995-07-09 Московский институт электронной техники Способ получения высокотемпературных сверхпроводящих пленок
JPH07206437A (ja) 1994-01-13 1995-08-08 Toray Ind Inc 超電導体およびその製造方法
US5883050A (en) * 1996-10-30 1999-03-16 The University Of Kansas Hg-based superconducting cuprate films
NZ502030A (en) * 1997-06-18 2002-12-20 Massachusetts Inst Technology Controlled conversion of metal oxyfluorides into superconducting oxides
US6974501B1 (en) * 1999-11-18 2005-12-13 American Superconductor Corporation Multi-layer articles and methods of making same
US6673387B1 (en) * 2000-07-14 2004-01-06 American Superconductor Corporation Control of oxide layer reaction rates
CN100367525C (zh) * 2001-07-31 2008-02-06 美国超导体公司 用于制造超导体材料的方法、系统和反应器
US6794339B2 (en) * 2001-09-12 2004-09-21 Brookhaven Science Associates Synthesis of YBa2CU3O7 using sub-atmospheric processing
JP4203606B2 (ja) * 2002-11-08 2009-01-07 財団法人国際超電導産業技術研究センター 酸化物超電導厚膜用組成物及び厚膜テープ状酸化物超電導体
JP2007220467A (ja) * 2006-02-16 2007-08-30 Sumitomo Electric Ind Ltd 超電導薄膜材料の製造方法、超電導機器、および超電導薄膜材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075079A (ja) * 2000-08-29 2002-03-15 Sumitomo Electric Ind Ltd 高温超電導厚膜部材およびその製造方法
JP2005038632A (ja) 2003-07-16 2005-02-10 Sumitomo Electric Ind Ltd 酸化物超電導線材の製造方法
JP2005093205A (ja) * 2003-09-17 2005-04-07 Sumitomo Electric Ind Ltd 超電導体およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2031606A4

Also Published As

Publication number Publication date
CA2650894A1 (en) 2007-11-29
JP2007311234A (ja) 2007-11-29
EP2031606B1 (en) 2015-11-18
MX2008014370A (es) 2008-11-27
RU2384907C1 (ru) 2010-03-20
JP4690246B2 (ja) 2011-06-01
CN101449341B (zh) 2014-07-09
KR20090029216A (ko) 2009-03-20
KR101110936B1 (ko) 2012-02-24
TW200807451A (en) 2008-02-01
US7858558B2 (en) 2010-12-28
EP2031606A1 (en) 2009-03-04
CN101449341A (zh) 2009-06-03
EP2031606A4 (en) 2012-11-28
AU2007252693A1 (en) 2007-11-29
NO20085230L (no) 2008-12-12
US20090137400A1 (en) 2009-05-28

Similar Documents

Publication Publication Date Title
WO2007135832A1 (ja) 超電導薄膜材料およびその製造方法
US6150034A (en) Buffer layers on rolled nickel or copper as superconductor substrates
Engel et al. An all chemical solution deposition approach for the growth of highly textured CeO2 cap layers on La2Zr2O7-buffered long lengths of biaxially textured Ni–W substrates for YBCO-coated conductors
US6468591B1 (en) Method for making MgO buffer layers on rolled nickel or copper as superconductor substrates
JP5838596B2 (ja) 超電導薄膜材料およびその製造方法
JP2007532775A (ja) 超伝導体被覆テープのための二軸配向フィルム堆積
JP5513154B2 (ja) 酸化物超電導線材及び酸化物超電導線材の製造方法
WO2007080876A1 (ja) 希土類系テープ状酸化物超電導体
JP5799081B2 (ja) 単層コーティングによる酸化物厚膜
JP6201128B2 (ja) 配向基板、配向膜基板の製造方法、スパッタリング装置及びマルチチャンバー装置
JP6497713B2 (ja) 配向基板、配向膜基板の製造方法、スパッタリング装置及びマルチチャンバー装置
Jin et al. Biaxial texturing of Cu sheets and fabrication of ZrO2 buffer layer for YBCO HTS films
WO2007094147A1 (ja) 超電導薄膜材料の製造方法、超電導機器、および超電導薄膜材料
WO2004100182A1 (ja) 希土類系酸化物超電導体及びその製造方法
JP2012022882A (ja) 酸化物超電導導体用基材及びその製造方法と酸化物超電導導体及びその製造方法
JP2009295579A (ja) 被覆された導体のための、形状を変化させた基板の製造方法及び上記基板を使用する被覆された導体
JP2012212571A (ja) 酸化物超電導導体
JP2005113220A (ja) 多結晶薄膜及びその製造方法、酸化物超電導導体
JP2012049086A (ja) 酸化物超電導薄膜線材、酸化物超電導薄膜線材用金属基板およびその製造方法
JP2009501414A (ja) 超伝導材料の改善及び超伝導材料に関連する改善
JP6497712B2 (ja) 配向基板、配向膜基板の製造方法、スパッタリング装置及びマルチチャンバー装置
JP2004362785A (ja) 酸化物超電導導体およびその製造方法
JP2005005089A (ja) 酸化物薄膜の製造方法
JP2005038632A (ja) 酸化物超電導線材の製造方法
JPH03261605A (ja) 酸化物超電導膜の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018363.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742092

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2650894

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12299141

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 572503

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/014370

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007252693

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020087030836

Country of ref document: KR

Ref document number: 2007742092

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008150370

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2007252693

Country of ref document: AU

Date of ref document: 20070420

Kind code of ref document: A