WO2007135259A1 - Roue a rayons - Google Patents

Roue a rayons Download PDF

Info

Publication number
WO2007135259A1
WO2007135259A1 PCT/FR2007/000767 FR2007000767W WO2007135259A1 WO 2007135259 A1 WO2007135259 A1 WO 2007135259A1 FR 2007000767 W FR2007000767 W FR 2007000767W WO 2007135259 A1 WO2007135259 A1 WO 2007135259A1
Authority
WO
WIPO (PCT)
Prior art keywords
spoke
spokes
hub
rim
wheel according
Prior art date
Application number
PCT/FR2007/000767
Other languages
English (en)
Inventor
Jean-Pierre Mercat
Olivier Mouzin
Original Assignee
Salomon S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37714625&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007135259(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Salomon S.A. filed Critical Salomon S.A.
Priority to EP07731412.8A priority Critical patent/EP2021190B2/fr
Priority to US12/300,585 priority patent/US8162407B2/en
Publication of WO2007135259A1 publication Critical patent/WO2007135259A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B1/00Spoked wheels; Spokes thereof
    • B60B1/06Wheels with compression spokes
    • B60B1/14Attaching spokes to rim or hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B1/00Spoked wheels; Spokes thereof
    • B60B1/003Spoked wheels; Spokes thereof specially adapted for bicycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B1/00Spoked wheels; Spokes thereof
    • B60B1/02Wheels with wire or other tension spokes
    • B60B1/0253Wheels with wire or other tension spokes the spoke being hollow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B1/00Spoked wheels; Spokes thereof
    • B60B1/02Wheels with wire or other tension spokes
    • B60B1/0261Wheels with wire or other tension spokes characterised by spoke form
    • B60B1/0284Wheels with wire or other tension spokes characterised by spoke form the spoke being threaded at both ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B1/00Spoked wheels; Spokes thereof
    • B60B1/02Wheels with wire or other tension spokes
    • B60B1/04Attaching spokes to rim or hub
    • B60B1/041Attaching spokes to rim or hub of bicycle wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B1/00Spoked wheels; Spokes thereof
    • B60B1/02Wheels with wire or other tension spokes
    • B60B1/04Attaching spokes to rim or hub
    • B60B1/042Attaching spokes to hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B1/00Spoked wheels; Spokes thereof
    • B60B1/02Wheels with wire or other tension spokes
    • B60B1/04Attaching spokes to rim or hub
    • B60B1/043Attaching spokes to rim
    • B60B1/044Attaching spokes to rim by the use of spoke nipples
    • B60B1/045Attaching spokes to rim by the use of spoke nipples characterised by their specific shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B1/00Spoked wheels; Spokes thereof
    • B60B1/02Wheels with wire or other tension spokes
    • B60B1/04Attaching spokes to rim or hub
    • B60B1/043Attaching spokes to rim
    • B60B1/048Attaching spokes to rim by the use of screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B21/00Rims
    • B60B21/02Rims characterised by transverse section
    • B60B21/025Rims characterised by transverse section the transverse section being hollow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B21/00Rims
    • B60B21/06Rims characterised by means for attaching spokes, i.e. spoke seats
    • B60B21/062Rims characterised by means for attaching spokes, i.e. spoke seats for bicycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B21/00Rims
    • B60B21/06Rims characterised by means for attaching spokes, i.e. spoke seats
    • B60B21/064Rims characterised by means for attaching spokes, i.e. spoke seats characterised by shape of spoke mounting holes, e.g. elliptical or triangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0005Hubs with ball bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/02Hubs adapted to be rotatably arranged on axle
    • B60B27/023Hubs adapted to be rotatably arranged on axle specially adapted for bicycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49481Wheel making
    • Y10T29/49492Land wheel
    • Y10T29/49513Compression, e.g., nontension, spoke type wheel making
    • Y10T29/49515Joining spokes to rim and hub

Definitions

  • the invention relates to a spoke for a spoke wheel, in particular a cycle wheel.
  • the invention also relates to a spoke wheel having at least one such radius, and a rolling machine, in particular a cycle, equipped with at least one such wheel.
  • the wheel has existed since the dawn of time.
  • the first wheels were full.
  • the patent application CH 91759 describes such a method of construction.
  • the invention of the spoked wheel with tensioned wires dates back to the year 1866, it is attributed to Eugene Meyer. This invention has made it possible to build wheels by considerably reducing the section of the spokes, resulting in a very significant weight gain. Also it became possible to increase the diameter of the wheels, and therefore increase their development as was the case with large steel bis whose crankset was in direct contact with the drive wheel. Thereafter, the terms tension / tension radii will be used indifferently for a positive tension of the spokes.
  • a current spoke wheel comprises a peripheral rim which is intended to receive a tire, a central hub and spokes connecting the rim and the hub.
  • the number of spokes is variable according to the type of wheels, it generally varies between twelve and forty.
  • the spokes are distributed in two plies which connect the rim to one end of the hub.
  • the rays of each of the plies form an angle with the median plane of the rim, which is commonly called the umbrella angle.
  • the spokes structurally connect the rim and the hub, which gives the wheel good rigidity and good resistance to effort.
  • the external loads to which a wheel is subjected during its use can be decomposed into a radial force directed along the median plane of the rim, a lateral force directed perpendicularly to this plane, a motor force or, conversely, a braking force tangential to the circle of the wheel which corresponds to the transmission of a torque between the hub and the rim.
  • the spoke tension must be sufficient so that no spoke will relax during normal use of the wheel. Indeed, if a spoke momentarily relaxes, it becomes non-existent with regard to the rim and other rays, and thus the wheel loses its rigidity locally.
  • the rim, hub and spokes must be considered as a structure in which there is a balance of forces.
  • the tension of each of the spokes is taken up by the hub, the rim and the other spokes.
  • a force applied on the hub or on the rim has repercussions on all the spokes.
  • For a rear wheel it is also necessary to take into consideration the different level of tension in the spokes located on the side of the freewheel and the radii located on the opposite side to the freewheel because of the difference in the opening of the umbrella between the two plies. .
  • the spoke tension may be different. When building a spoke wheel, the spokes are stretched sufficiently so that they do not relax in normal use.
  • a wheel must be able to withstand the following loads without any radius will relax at least 1500 Newtons of radial force for a rear wheel, 1200 Newtons for a front wheel, at least 200 Newtons of effort lateral, at least 150 Newtons.m (Newtons per meter) of engine torque for the rear wheel, at least 300 Newtons.m of braking torque for a front wheel with hub braking system, and 150 Newtons.m for a wheel rear of the same type.
  • a radius is usually considered to be constantly stretched is the following.
  • a ray has a very small section compared to its length. If the voltage becomes negative, that is, if the beam stress becomes a compression, the ray immediately flames. A spoked wheel tension gives good results, but it has despite all the disadvantages.
  • the tension of the spokes induces compressive stresses in the body of the rim. It is estimated that for a 36-spoke road bike wheel, each of the spokes being stretched to 1000 Newtons, the resulting compression force at the rim body is 5730 Newtons, which induces a compression stress of 88 MPa, which represents for a common material of rim (alu 6106 for example) already 40% of the intrinsic resistance potential of material (220 MPa). In other words, this induced compression already considerably weakens the rim.
  • EP 1316442 proposes starting from a predefined rim to the opposite (see Figure 5 of this patent), which is difficult to implement.
  • the spoke wheel according to the invention which comprises a peripheral rim, a central hub and individual connecting spokes between the rim and the hub, the spokes being stretched, in that it comprises means for adjusting at least a portion of the spokes, in that the spokes are stretched to an initial tension Ti corresponding to a normal tension value Tn minus a value R corresponding to a compression force that can be supported by each spoke.
  • Figures 1 to 2 show diagrams of voltage variation in the spokes according to different loading modes of a conventional wheel.
  • Figures 3 and 3A are views similar to Figures 1 and 2 for a wheel according to the invention.
  • Figure 4 is a perspective view of a rear wheel according to a non-limiting mode of implementation of the invention.
  • Figure 5 is a partial sectional view of a spoke according to a first embodiment of the invention.
  • Figure 6 illustrates the attachment of the spoke of Figure 5 to the rim.
  • Figure 7 shows the attachment of the spoke of Figure 5 to the hub.
  • Figure 8 shows the hub seen from the opposite side to the freewheel.
  • Figures 9 to 13 illustrate various embodiments relative to the attachment of spokes to the hub.
  • Figure 14 is a perspective view of a front wheel according to another embodiment of the invention.
  • Figure 15 illustrates the attachment of spokes to the hub.
  • Figure 16 shows in perspective the ring which retains the spoke attachment heads at the hub.
  • Figure 17 illustrates the attachment of spokes to the rim.
  • Figure 18 relates to an attachment variant spokes hub.
  • Figure 19 shows for this embodiment the attachment of the spoke to the rim.
  • Figure 20 is a partial sectional view which illustrates another embodiment of the invention.
  • Figure 21 shows another method of attachment of a spoke to the rim.
  • Figure 22 illustrates another method of attachment of the spoke to the hub.
  • the wheel 16 shown in Figure 4 is a rear wheel.
  • this wheel comprises a peripheral rim 17, a central hub 18 and spokes 26, 27 connecting the rim and the hub.
  • the rim 17 is of any suitable type, in particular it has a hollow box structure with a channel 11a for receiving a tire at its periphery, two side walls 17b joined by one or more bridges 17c (see FIG. 6).
  • the rays 26, 27 have an elongate body which defines for each radius a longitudinal direction and two attachment ends respectively 26a, 26b; 27a, 27b by which they are hooked on one side to the hub and the other to the rim.
  • the hub 18 has two axial ends 22 and 23, one end, in this case the end 23 carries a transmission freewheel whose body can be seen in Figure 4 in the background.
  • the spokes 26, 27 are distributed here in two plies, the spokes of each of the plies being hooked at one end 22, 23 of the hub.
  • One of the plies is composed of spokes 26 hooked at the end 22 opposite to the freewheel.
  • the other layer of spokes is composed of spokes 27 hooked to the end 23 of the hub located on the side of the freewheel.
  • the ply of the rays 27 is flatter than the ply of the rays 26, because its rays form an umbrella angle with the median radial plane of the rim which is smaller than the angle formed by the rays 26 and the median radial plane. This is known in the state of the art.
  • FIG. 4 represents radii 27 on the freewheel side which are crossed, and radii 26 opposite to the free wheel which are radial.
  • the section of the rim could be asymmetrical.
  • the rim 17 is in equilibrium with the hub 18 because of the binding constraints that pass through the spokes 26, 27 of the two plies.
  • the balance is radial and axial, that is to say that the components of the radial and axial forces that the rays exert on the rim or the hub have a zero resultant.
  • the spokes 27 of the web on the side of the freewheel are more constrained than the rays 26 of the other web, so that the axial balance of the rim is reached.
  • At least the spokes 26, opposite side freewheel are provided to withstand a compressive stress and lowers the general level of tension of the spokes at least opposite side freewheel.
  • Figures 1 to 2 show diagrams of voltage variation in the spokes according to different loading modes of the wheel, respectively radial and lateral for a spoke wheel in traditional tension.
  • FIG. 1 gives the diagrams of the variation of tension T as a function of the angle of rotation A that has been found in a radius situated on the side of the freewheel (curve 1) and a radius located on the opposite side to the freewheel (curve 2) in a normal wheel.
  • the horizontal lines 3 and 4 correspond to the initial tension of the spokes in the absence of external load namely respectively 1700 N and 692 N.
  • the radial load of 1500 Newtons has been adjusted according to the initial tension of the spokes for that tension
  • the minimum of a radius on the opposite side of the freewheel passes through a minimum zero value that is encountered at 0 and 360 degrees (see curve 2). It can be seen that this tension is minimal at the moment when the radius is oriented in the direction of the bearing surface. On either side of this position, a gradual variation of voltage is observed in a range of 35 degrees. The rest of the time the tension in the radius is relatively constant.
  • Figure 2 illustrates the voltage variants in the spokes of a conventional wheel for lateral loading.
  • the voltage variation is maximum in the load application area, and there is a gradual change in voltage within a range of 90 degrees on either side of the load application area. If we change the sign of the applied lateral load, the risk of a relaxation of a radius is very weak, because the relaxation will then affect the free-wheeling sheet which is initially much more tensioned (1700 N instead of 692 N for the spokes of the opposite web freewheel.
  • the measurements (not shown in the present application) also show that the torque loading affects the crossed spokes, depending on whether or not they are oriented in the direction of the force to be transmitted to the rim.
  • the spokes are designed to take up a compressive force so as to reduce the initial tension of each spoke and reduce the disadvantages associated with too tight radii.
  • each radius is provided so as not to flare under a significant compressive force (> 150 N for example), and has at each end bilateral connections that allow to transmit both a compression force and traction without play. .
  • FIGS. 3 and 3A represent the diagrams of variation of tension in the spokes according to respectively radial and lateral loading modes for a wheel according to the invention.
  • the same references affected by an index a are used for the curves illustrating the voltage variations of the freewheel and freewheel side spokes.
  • the radii concerned are the radii 26 situated on the opposite side to the freewheel, because of their voltage initially less higher than that of the spokes 27 located freewheel side.
  • the initial tension levels are preferably adjusted so that the stress in these spokes 27 remains a tensile stress in the allowable external load range for the wheel.
  • the wheel can be constructed in such a way that the spokes 26, 27 of the two plies are all able to withstand momentarily compressive stress without expansion or buckling, and not only the radii 26 located opposite side freewheel.
  • a wheel such as wheel 16 has been constructed with radii 26 initially stretched to 325 Newtons, and spokes 27 stretched initially to 800 Newtons (Ti value), these radii 27 support a compression load R of at least 367 N (ie 692 N - 325 N).
  • conventional wheels of this type are stretched at 1700 Newtons (curve 3) on the freewheel side, and 692 Newtons (curve 4) on the opposite side (see Figure 1).
  • the invention thus makes it possible to reduce by almost two the tension forces on the spokes, hence a significant increase in the service life, and a significant reduction in geometry problems (jumping, sailing, etc.).
  • the structure of the spokes 27 located on the opposite side to the freewheel makes them able to withstand without buckling a compressive stress R of at least 150 Newtons, exerted between the two ends of the radius in the longitudinal direction defined by the radius body.
  • a compressive stress R of at least 150 Newtons
  • the compression stress value that can be supported by the spokes 27 may be different. In the example described above but without limitation, a value of 367 N is necessary and in the example described later in connection with Figure 5 the spoke can withstand a load greater than 400 N without buckling.
  • the spokes also have a tensioning device, preferably a micrometric device located between the two attachment ends to adjust their initial power up.
  • the most common device is of the screw / nut type. A particularity of this tensioning device is that the screw and the nut are never forced against each other, unlike an assembly device. The screw or nut can always be rotated relative to each other to add or remove tension in the spoke.
  • FIG. 5 shows the structure of a spoke 26 according to a first construction mode.
  • the radius shown comprises an elongate body extended at each of its ends by a fastening head, 31 and 32.
  • the structure of the spoke 26 allows it to withstand a stress in tension and also a stress in compression. In particular it is designed to withstand a tensile stress greater than that of a conventional radius (2800 N), and it has a buckling resistance greater than 150 Newtons and in this case greater than 400 N.
  • the body of the spoke is formed by a hollow cylindrical tube of revolution. It is also possible to provide a radius of solid cylindrical shape, the advantage of a tubular radius being its ratio buckling strength / weight.
  • the tube is made of any suitable metallic or composite material.
  • the tube is made of carbon fibers embedded in a resin matrix. Any suitable resin is suitable, for example an epoxy resin or polyester.
  • a tube is produced by extrusion of pultruded carbon fibers from which portions are then cut to the desired length.
  • Carbon has a high modulus of elasticity and low density compared to a metal alloy such as stainless steel or an aluminum or magnesium alloy. In its composite form (very high flexural modulus), it is very rigid in traction / compression and therefore bending and is also very light, which gives it good resistance to buckling.
  • the tube that forms the body has a diameter of 4 millimeters, and a wall thickness of between 5/10 and 1 millimeter.
  • a traditional stainless steel radius has a wire diameter of less than or equal to 2 millimeters (generally between 1.2 and 2.3 mm in diameter).
  • the body section here is circular, it is not limiting and other forms of section may also be suitable.
  • Such a beam-shaped beam has a flexural stiffness much greater than that of a normal full radius equivalent section.
  • the compressive stress that can be experienced by a straight beam before flaming is a function of the conditions of embedding of its ends, the Young's modulus of the material of the beam, the minimum quadratic moment of the section of the beam, and the length of the beam between the points of application of the effort.
  • E denotes the Young's modulus of the material of the beam in megapascals
  • L is the length of the beam between its fulcrum and the point of application of the compressive force.
  • the values are even lower (of the order of 7 N).
  • Such a carbon tubular radius is much lighter than a steel radius while admitting a compressive load of the order of eight times higher.
  • the type of snap connection at the ends of the spoke also plays an important role, since it is likely to influence in a ratio of one to four.
  • the body 30 of the spoke is extended by an attachment head 31, 32.
  • the heads 31 and 32 are formed by two end inserts in the extension of the body.
  • the ends of the body 30 are fitted into the ends 31, 32 and assembled without play by any appropriate means, in particular by gluing, pinning, screwing or any other technique.
  • the method of assembly by fitting and gluing gives good tensile strength and compression of the connection between the body and its end caps.
  • the large diameter of the radius body makes it possible to produce a bond-resistant assembly because of the large circumference of the tube and therefore of the large bonding surface of equivalent cross-section.
  • the beam structure allows it to withstand a compressive stress of 400 N, thus at least 150 Newtons. This permissible compressive load can be further increased by embedding the ends of the spoke in the rim and the hub.
  • the end pieces are designed to be hooked on one side to the rim and the other to the hub.
  • a device for tensioning the spoke preferably a micrometer device.
  • the head 31 has an enlarged section 31a which is intended to be recessed and retained within a housing 33 machined in the body of the hub 18 and which has a thread 31b above this expanded section.
  • the other attachment head 32 has a threaded end 32a which is intended to be screwed into a housing 34 of the rim.
  • the housing 34 has a chimney shape which is threaded on the inside, as described for example in the patent application EP 818 328. Its resting voltage is adjusted using the head 32 which is screwed more or less deeply into the housing 34 of the rim thus modulating the initial tension of the spoke.
  • this device comprises on the side of the head 31 a counter nut 35 adapted to cooperate with the thread 31b, and the side of the head 32 a locknut 36 adapted to cooperate with the thread 32a.
  • These two lock nuts 35, 36 are screwed on the outside of the end pieces 31 and 32, they are clamped on one side against the hub and on the other side against the rim. Thus, they ensure a neutralization of the connection clearance that could exist. between them, the head 31 of the spoke 26 and its housing 33, or between the threaded head 32 and its housing 34.
  • the assembly is operated in the following manner, the spoke 26 is assembled to the hub with the aid of the head 31, its tension is adjusted using the head 32, then the possible operating clearances are neutralized at the using the nuts 35 and 36, which are respectively tight against the hub and the rim.
  • These locknuts also improve the conditions of installation of the ends of the spoke and contribute to raising its compressive load before buckling.
  • the spoke 26 can thus support indifferently a load in tension or a compressive load without expansion or buckling, and ensure a permanent connection between the hub and the rim under a lower tension.
  • the rays 27 of the other ply are also less tight and in this case almost half as much. Nevertheless, as the ply of rays 27 is flatter than the ply of rays 26, rays 27 are subjected to a positive voltage throughout their charging cycle (see FIG. 3). As they are not compressed, these spokes 27 may therefore have a traditional structure, for example they may be constructed in accordance with what is described in the patent application EP 896 886. Any other method of construction may also be suitable.
  • the rigidity of the wheel is not modified by this reduction of the spoke tension. Indeed, at all times of their respective loading cycle, all the spokes establish a mechanical connection between the rim and the hub even less tense rays because of their bilateral connection. At no time does one of them escape or relax, provided that the external loads remain in a range of acceptable value.
  • This reduction in tension of at least a portion of the spokes makes it possible to reduce the drawbacks of a wheel with tense spokes and in particular allows: a sharp decrease in compression of the rim, a decrease in the reduction of the development of the rim an increase in the resistance of the rim a decrease in the polygonal effect a decrease in the effect of sail induces an increase in the resistance to the tired
  • Figure 9 relates to a construction variant.
  • the spokes 46 which are able to withstand a compressive stress, are hooked to the hub 48 via a nozzle 47 which forms an enlarged head 47a.
  • the body of the spoke 46 is fitted and stuck in the endpiece 47.
  • the spokes 46 are hooked to the hub 48 on the wall of a lateral bulb 49 which has orifices 50 of frustoconical shape in which the spokes 46 are threaded, so that the enlarged head 47a is retained inside the bulb 49 by an inner rim 50a of the orifice 50.
  • a frustoconical ring 51 is engaged in the bulb, under the enlarged heads of the spokes 46.
  • a compression spring 52 bearing on a washer 53, resting on the outer ring , force-fitted, the bearing 54 exerts a prestress on the ring 51 in the longitudinal direction L.
  • the spring 52 exerts a prestress on the ring 51 in the direction L of engagement of its frustoconical surface under the enlarged heads of the spokes 46.
  • the ring 51 holds the enlarged heads in abutment against the rim 50a of the opening of the orifices 50.
  • the attachment connection between the spokes 46 and the hub is made bidirectional by this ring 51.
  • a compressive stress exerted on the hub by one of the spokes 46 is not likely to move the ring 51, given the taper angle of its frustoconical surface, and the bias exerted by the spring .
  • the ring 51 neutralizes the play of spokes at their connection with the hub.
  • the radius 56 ends on the side of the hub 58 by a nozzle 57 provided with an enlarged head 57a.
  • the enlarged heads 57a are retained in a bulb 60 which has notches 60a open opening outwardly of the hub.
  • the spokes 56 can thus be put in place by a simple engagement in these notches 60a, without the need to put them on.
  • the notches are closed by a bell 61 which is screwed onto the bulb 60.
  • a frustoconical ring 62 is engaged in the bulb under the enlarged heads 57a, and this frustoconical ring is constrained by an elastic washer 63, according to the longitudinal direction L, which is itself constrained by the bell 61.
  • This embodiment allows easier assembly and disassembly of the spokes 56.
  • the ring 62 could be made of an elastically deformable material such as elastomer so that the screwing of the bell 61 in the bulb 60 comes to compress longitudinally the elastomer ring 62, which causes its radial expansion and guarantees the plating of the head 57 in the bulb 60. What is important is that the ring 62 keeps each head 57a in abutment against the bulb 60 and that it resists any compressive stress that a spoke could transmit him in the range of admissible value. According to the example of FIG. 11, the enlarged heads 67a of the spokes 66 are retained in the open slots 74 of the bulb 69 of the hub 68.
  • the notches are closed by a bell 71 which is screwed onto the end of the bulb 69, and which prestressed with the aid of an elastic washer 72 a frustoconical ring 73.
  • the frustoconical ring maintains the enlarged heads 67a against a return 74a of the opening of the notches 74, which ensures a bidirectional connection between them the radius and the hub, with neutralization of the mechanical linkage play.
  • the bulb has machined recesses 75 towards the axis A of the hub in which the enlarged heads 67a are housed momentarily to allow the screwing or unscrewing of the other end of the spoke.
  • the radius body is rigid, it must indeed be able to translate it along its axis during screwing or unscrewing of the tensioning device.
  • the bulb 79 of the hub 78 is machined with openings 80 in the form of buttonhole.
  • the enlarged head 77a of a spoke 76 is attached to the bulb 79 by introduction into the wide portion of the buttonhole and is retained in the narrow portion.
  • a frustoconical ring 83 preloaded by a spring washer 84 and a screwed bell 85 keeps the enlarged heads 77a resting against the opening of the buttonholes, thus ensuring a bidirectional connection between the spoke and the hub with neutralization of the mechanical play at this end. level.
  • FIG. 14 represents in perspective a front wheel whose spokes 86 and 87 of the two plies are arranged symmetrically between the rim 90 and the hub 91.
  • the spokes 86 and 87 of the two plies are arranged radially, which is a usual way of building a front wheel.
  • the spokes 86 and 87 have a structure that makes them suitable for being stressed in tension as well as in compression.
  • the spokes 86 and 87 are initially tensioned with a voltage level lower than that of a traditional traction wheel wheel.
  • the spoke tension varies between 700 and 1400 Newtons for a traditional wheel.
  • Figures 15, 16 and 17 illustrate with reference to a ray 87 a particular mode of construction and attachment of spokes designed for example for a front wheel.
  • the beam 87 has a tabular body, for example made of carbon fibers embedded in a resin matrix. Each of the ends of the body is glued into a tip, respectively 92 and 93 by which the spoke is hooked to the hub 91 and the rim 90.
  • the tip 92 has an enlarged head 92a which is retained in an orifice 95 of the body of the hub 91.
  • the enlarged heads 92a are held in abutment against the orifices 95 by means of a ring 96.
  • the outer surface of the ring is chamfered on either side of a circular groove 96a in which the tip of each enlarged head 92a is housed once the ring is in place.
  • the dimensions of the ring are determined for such engagement to occur in forcing slightly on the ring. Thus, once the ring is in place, it is stably held in this position.
  • the ring is constructed with a certain elasticity to allow its engagement in force, deforming slightly between two successive enlarged heads 92a. Also, the ring is constructed to withstand a compressive force that an enlarged head 92a could transmit to it because of a compressive stress of the radius resulting from an external load.
  • the ring is made of a plastic or composite material, such as acetal resin or an aluminum alloy or spring steel. Other materials might also be suitable.
  • the ferrule connection tip 93 has a threaded end 94, and is intended to be screwed into one of the chimney-shaped rim holes, such as the ferrule 32 which has been described with reference to FIG. 5.
  • the mechanical backlash is neutralized here by techniques similar to those used to increase the friction in the tensioning devices of the spokes and prevent inadvertent loosening.
  • additives such as glue 94 or any other equivalent product deposited on the threads of the thread in order to fill the space between the facing faces of the threads, such as, for example, polyamide as known under the trademark Tuflock. , or Nylock. This space will preferably be filled on the opposite side to the traction force.
  • the spokes 86 are hooked to the rim and the hub in the same way as what is described with respect to a spoke 87.
  • the assembly of the wheel is carried out as follows.
  • the spokes are put in place at the hub 91, then their tension is adjusted by screwing more or less the threaded ends 93 in the orifices of the rim. Once the initial tension adjustment is performed, it proceeds to the establishment of the ring 96 in the bulb of the hub under the enlarged heads 92a real estate heads widened relative to the hub.
  • Figures 18 and 19 illustrate a construction variant.
  • the body of the hub 101 has radial branches 103, each branch has a central recess in which the end 107a of a spoke 107 is fitted and assembled by any appropriate means, in particular by gluing.
  • the spoke 107 is hooked to the hub directly, without intermediate hooking tip.
  • the end 107a of the beam here forms the attachment head of the spoke to the hub.
  • the adhesive or the equivalent means of assembly ensures a neutralization of the bonding game at this level.
  • the hub can be in this case made in two or three independent parts. This mode of attachment, however, does not allow a rotation of the spoke that took place previously during the voltage adjustment.
  • Figure 19 shows a mode of attachment of the spoke to the rim that respects this constraint.
  • the end of the spoke 107 is extended by a nozzle 108 which is assembled by any appropriate means, in particular by fitting and gluing.
  • the tip end 108 has a central recess that is threaded to receive a tension adjusting screw 109.
  • the screw 109 is accessible from outside the rim through an orifice 110 made in the upper deck of the rim 111. Its head is retained at the lower deck, possibly it is supported by an eyelet crimped into the wall of the bridge. It forms a fastening head of the ray.
  • the head of the screw 109 has any suitable means for coupling with a clamping tool.
  • the tension of the spoke 107 is adjusted by screwing more or less the screw 109 in the end piece 108 with the aid of such a tool.
  • a form of coupling with a tool for example of square, hexagonal or Torx type, which allows the use of a key to retain the end of the radius to avoid any stress in twisting resulting from friction between the screw and the tip.
  • the end of the end piece 108 is threaded on the outside, and a counter-nut 113 is pressed against the rim bearing on this thread.
  • the spoke 107 is assembled to the hub and the rim by bidirectional links, and with neutralization of the mechanical play of connection, which allows each of the spokes to support without relaxation or buckling a cycle of tensile stresses and compression.
  • Figure 20 relates to a construction variant where the radius 116 comprises a central core 117 provided to be urged in tension, and a tabular outer sheath 118 through which the core 117 and provided to work in compression.
  • the central core 117 is constructed for example as a conventional metal spoke, it comprises a tapered body 117a, a catch head 117b which is retained in the hub body 120, a threaded end 117c on which a spoke nut 119 is screwed.
  • the nut 119 passes through the lower deck of the rim 123, the nut head is retained by the lower deck and is accessible from outside the rim by drilling the upper deck.
  • the head of the nut 119 forms the attachment head of the spoke to the rim.
  • the sheath 118 is a tubular element with a first end fitted into a branch 125 of the body of the hub 120. Its other end is fitted into a tip 126 which is extended by a threaded end. A threaded socket 127 is screwed onto the latter threaded end. The top of the sleeve 127 is provided to abut against the lower bridge of the rim 123 at the periphery of the hole through which the nut 119 passes.
  • the core 117 and the sheath 118 establish a bidirectional connection of each of the ends of the spoke with the rim or the hub.
  • these elements are able to transmit a compressive stress between the hub and the rim without expansion or buckling of the radius.
  • the sheath 118 is permanently subjected to a compressive stress, the joints of its ends are optional, a simple support may also be suitable.
  • Figure 21 shows a construction variant.
  • the body of the beam 136 which is a tabular body, is extended at its end by a catching portion 137 joined to the body 136 by any appropriate means and for example by gluing.
  • the end of the attachment portion 137 is threaded, to allow its assembly to the rim 140 with a nut 138, or any other suitable fastening means.
  • the nut forms the attachment head from the end of the spoke to the rim.
  • An elastically deformable pad 142 is placed in abutment between the end of the tubular body of the spoke 136 and the rim 140. This pad is traversed by the hooking portion 137. The pad 142 is compressed when the spoke is tensioned. by means of the nut 138. On the other hand, its material is sufficiently stiff to withstand, without deformation, a compressive stress in the admissible range of loading of the radius in compression. Thus, the tension of the spoke can be adjusted, and the spoke is capable of withstanding without relaxation or buckling a pulling stress cycle and compressive stress with neutralization of the bonding game.
  • the pad may be replaced by one or more Belleville washers or a helical compression spring.
  • Fig. 22 shows the end of a spoke 146 embedded in a tip 148.
  • the tip 148 has a lateral extension 149 which is intended to be assembled by means of a nut to a radial disc 150 of a hub body 152.
  • the endpiece with its lateral extension forms the attachment head of the spoke to the hub.
  • Such a mode of connection between the spoke and the hub is compatible with the invention because it provides a connection without play in traction and compression between the spoke and the hub provided that the tip is mounted without play against the disc.
  • connection with a radial disk which would be produced by means of a traditional bent radius end would not fulfill the purpose sought by the invention. Indeed, in any connection of this type, there is even a small clearance that gives the spoke a relaxation phase during the passage of a stress in tension to a stress in compression.
  • other construction variants could be adopted.
  • tips with the attachment heads could be fitted inside the spoke body instead of being pressed on the outside.
  • the radius does not necessarily have a constant section in the longitudinal direction and may have a section of variable shape in this longitudinal direction, for example a larger section in the central zone so as to better withstand buckling.
  • the invention also covers a rolling machine, in particular a cycle which would be equipped with a wheel at least in accordance with what has just been described;
  • a cycle comprises a frame, two wheels and a transmission system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

L'invention concerne une roue à rayons comprenant une jante périphérique (17), un moyeu central (18) et des rayons (26, 27) de liaison individuels entre la jante et le moyeu, les rayons étant tendus. La roue est caractérisée en ce qu'elle comporte des moyens de réglage de tension d'au moins une partie des rayons (26), en ce que ces rayons sont tendus à une tension initiale Ti correspondant à une valeur de tension normale Tn diminuée d'une valeur correspondant à un effort de compression R pouvant être supporté par chaque rayon (26). Pour une roue arrière les rayons (26) supportant les efforts de compression sont ceux situés côté opposé roue libre.

Description

Roue à rayons
L'invention concerne un rayon pour une roue à rayons, notamment une roue de cycle. L'invention concerne également une roue à rayons ayant au moins un tel rayon, ainsi qu'un engin de roulage, notamment un cycle, équipé d'au moins une telle roue.
La roue existe depuis la nuit des temps. Les premières roues étaient pleines. Une première amélioration-a consisté à construire des roues à bâtons qui étaient plus légères. Ces bâtons étaient sollicités en compression et flexion par une jante. Puis la roue a été cerclée par un anneau métallique et les bâtons ont été précontraints en compression. La demande de brevet CH 91759 décrit un tel mode de construction.
L'invention de la roue à rayons à fils en tension remonte vers l'année 1866, elle est attribuée à Eugène Meyer. Cette invention a permis de construire des roues en diminuant considérablement la section des rayons, d'où un gain de poids très important. Egalement il est devenu possible d'augmenter le diamètre des roues, et donc d'augmenter leur développement comme cela a été le cas avec les grands bis en acier dont le pédalier était en prise directe sur la roue motrice. Par la suite les termes rayons en traction / en tension seront utilisés indifféremment pour une tension positive des rayons.
De façon classique une roue à rayons actuelle comprend une jante périphérique qui est prévue pour recevoir un pneumatique, un moyeu central et des rayons de liaison entre la jante et le moyeu. Le nombre des rayons est variable selon le type de roues, il varie généralement entre douze et quarante. En règle générale les rayons sont répartis selon deux nappes qui relient la jante à une extrémité du moyeu. Les rayons de chacune des nappes forment un angle avec le plan médian de la jante qu'on a coutume d'appeler l'angle de parapluie.
Les rayons relient structurellement la jante et le moyeu, ce qui permet de donner à la roue une bonne rigidité et une bonne résistance aux efforts. Les charges externes auxquelles une roue est soumise lors de son utilisation peuvent être décomposées en un effort radial dirigé selon le plan médian de la jante, un effort latéral dirigé perpendiculairement à ce plan, un effort moteur ou inversement un effort de freinage tangent au cercle de la roue qui correspond à la transmission d'un couple entre le moyeu et la jante.
H existe actuellement d'autres constructions de roues que les roues à rayons en tension. On connaît par exemple les roues pleines ou des roues dites à bâtons qui sont réalisées en matériau composite et qui sont utilisées principalement pour leurs propriétés aérodynamiques. Les demandes de brevet WO 2004/033231 et FR 2701899 décrivent de telles roues. D existe aussi des roues moulées réalisées en alliage léger (aluminium, magnésium ou titane). De telles roues sont par exemple connues des demandes de brevet EP 1016552 et WO 2004/108515.
Toutefois parmi ces différents modes de construction d'une roue, c'est encore la roue à rayons en tension qui donne le meilleur compromis entre la légèreté et la résistance pourvu qu'elle soit bien construite et bien ajustée. On estime couramment que plus les rayons sont tendus, plus la roue est rigide. Cependant cette estimation est erronée car une tension excessive des rayons d'une roue la rend en fait plus souple et de plus la fragilise. En effet si les rayons sont trop tendus, le risque de flambage de la jante sous l'effort de compression de la jante induit par les rayons devient important. Un autre problème lié à une tension excessive des rayons est la variation de diamètre de la roue entre avant et après sa mise sous tension. Contrairement au préjugé courant qu'il est nécessaire de tendre les rayons de la roue au maximum, un des problèmes des roues à rayons en tension réside donc dans l'application d'une tension correcte, et pas excessive.
En règle générale on estime que la tension des rayons doit être suffisante pour qu'aucun rayon ne se détende au cours d'une utilisation normale de la roue. En effet, si un rayon se détend momentanément, il devient inexistant au regard de la jante et des autres rayons, et de ce fait la roue perd localement sa rigidité.
Il faut considérer la jante, le moyeu et les rayons comme une structure dans laquelle existe un équilibre de forces. La tension de chacun des rayons est reprise par le moyeu, la jante et les autres rayons. Un effort appliqué sur le moyeu ou sur la jante se répercute sur l'ensemble des rayons. Pour une roue arrière il faut aussi prendre en considération le niveau de tension différent dans les rayons situés du côté de la roue libre et les rayons situés du côté opposé à la roue libre du fait de la différence d'ouverture de parapluie entre les deux nappes. Enfin selon l'orientation des rayons dans la nappe, selon que le rayonnage est radial ou croisé notamment, la tension des rayons peut être différente. Lorsqu'on construit une roue à rayons, on tend les rayons suffisamment afin que ceux-ci ne se détendent pas en utilisation normale.
Ainsi, on estime généralement qu'une roue doit pouvoir supporter les charges suivantes sans qu'aucun rayon ne se détende au moins 1500 Newtons d'effort radial pour une roue arrière, 1200 Newtons pour une roue avant, au moins 200 Newtons d'effort latéral, au moins 150 Newtons.m (Newtons par mètre) de couple moteur pour la roue arrière, au moins 300 Newtons.m de couple de freinage pour une roue avant avec système de freinage au moyeu, et 150 Newtons.m pour une roue arrière de même type.
Ces chiffres sont donnés à titre indicatif seulement et ne sont pas limitatifs. En effet ils dépendent de la pratique exercée et aussi de la corpulence du cycliste.
Une autre raison pour laquelle on considère usuellement qu'un rayon doit être constamment tendu est la suivante. Un rayon présente une section très faible comparativement à sa longueur. Si la tension devient négative, c'est-à-dire si la contrainte du rayon devient une compression, le rayon flambe immédiatement. Une roue à rayons en tension donne de bons résultats, mais elle présente malgré tous quelques inconvénients.
En premier lieu la tension des rayons induit des contraintes de compression dans le corps de la jante. On estime que pour une roue de vélo de route à 36 rayons, chacun des rayons étant tendu à 1000 Newtons, l'effort de compression résultant au niveau du corps de la jante est de 5730 Newtons, ce qui induit une contrainte de compression de 88 MPa, qui représente pour un matériau usuel de jante (alu 6106 par exemple) déjà 40% du potentiel de résistance intrinsèque de matériau (220 MPa). Autrement dit cette compression induite affaiblit déjà considérablement la jante.
Par ailleurs, pour une jante de 622 mm de diamètre, cet effort de compression conduit à une réduction de la développée de la jante pouvant atteindre 2,5mm, -ce qui, naturellement peut avoir une incidence sur la liaison entre la jante et le pneu et peut conduire à des déjantages intempestifs et des accidents.
En second lieu, la tension des rayons s'exerce de façon locale sur la jante. Chaque rayon induit par sa tension un effort de cisaillement local au niveau de sa zone d'accrochage ainsi qu'un moment de flexion variable entre chaque trou de rayon. Le moment de flexion conduit à une déformation polygonale de la jante, appelée couramment "saut", avec un voile local au niveau de chaque zone d'accrochage de rayon.
Les demandes de brevet EP 1316442 et FR 1019285 prévoyant un rayonnage appairé illustrent ces deux phénomènes auxquels elles tentent d'apporter une solution. Au passage on peut souligner que le fait d'accrocher les rayons par paires au niveau de la jante, comme décrit dans le EP 1316442, atténue bien l'effet de voile local, mais accentue l'effet polygonal.
Pour résoudre ce problème le EP 1316442 propose de partir d'une jante prédéformée à l'opposé (cf. figure 5 de ce brevet), ce qui est délicat à mettre en œuvre.
Enfin, on a remarqué que la durée de vie d'une roue, c'est-à-dire de chacun de ses composants est sensiblement inversement proportionnelle à la tension des rayons. Au cours de la rotation de la roue chaque rayon est soumis à un cycle de chargement et déchargement et chaque rayon soumet localement la jante à un tel cycle de chargement et déchargement. Ces cycles répétés finissent par endommager le rayon ou la jante et ceci d'autant plus rapidement que la tension dans le rayon est élevée. De ce fait les roues actuelles à rayons tendus n'ont pas une durée de vie optimale. Compte-tenu de cet état de la technique, il existe un besoin pour une construction de roue conciliant rigidité, résistance, et durée de vie optimale.
H existe également un besoin pour une roue dont les caractéristiques géométriques (voile, saut, développé) restent les plus stables possibles.
Ces buts et d'autres buts qui apparaîtront au cours de la description qui va suivre sont résolus par le nouveau concept de roue selon l'invention.
Notamment ce ou ces buts sont atteints dans la roue à rayons selon l'invention qui comprend une jante périphérique, un moyeu central et des rayons de liaison individuels entre la jante et le moyeu, les rayons étant tendus, par le fait qu'elle comporte des moyens de réglage d'au moins une partie des rayons, en ce que les rayons sont tendus à une tension initiale Ti correspondant à une valeur de tension normale Tn diminuée d'une valeur R correspondant à un effort de compression pouvant être supporté par chaque rayon. De ce fait et contrairement au préjugé courant les rayons travaillent alternativement en traction, compression et ont de ce fait besoin d'être beaucoup moins tendus. Les caractéristiques géométriques et la durée de vie de la roue en sont fortement améliorées.
De toute façon l'invention sera mieux comprise en se référant à la description ci- dessous et aux dessins schématiques qui sont annexés et dans lesquels :
Les figures 1 à 2 représentent des diagrammes de variation de tension dans les rayons selon différents modes de chargement d'une roue traditionnelle.
Les figures 3 et 3A sont des vues similaires aux figures 1 et 2 pour une roue selon l'invention.
La figure 4 est une vue en perspective d'une roue arrière selon un mode non limitatif de mise en œuvre de l'invention.
La figure 5 est une vue en section partielle d'un rayon selon un premier mode de mise en oeuvre de l'invention.
La figure 6 illustre l'accrochage du rayon de la figure 5 à la jante.
La figure 7 montre l'accrochage du rayon de la figure 5 au moyeu.
La figure 8 montre le moyeu vu du côté opposé à la roue libre.
Les figures 9 à 13 illustrent diverses variantes de réalisation relativement à l'accrochage des rayons au moyeu.
La figure 14 est une vue en perspective d'une roue avant selon un autre mode de mise en oeuvre de l'invention.
La figure 15 illustre l'accrochage des rayons au moyeu.
La figure 16 montre en perspective la bague qui retient les têtes d'accrochage de rayons au niveau du moyeu.
La figure 17 illustre l'accrochage des rayons à la jante.
La figure 18 est relative à une variante d'accrochage des rayons au moyeu.
La figure 19 montre pour ce mode d'exécution l'accrochage du rayon à la jante.
La figure 20 est une vue en section partielle qui illustre un autre mode de mise en oeuvre de l'invention.
La figure 21 montre un autre mode d'accrochage d'un rayon à la jante.
La figure 22 illustre un autre mode d'accrochage du rayon au moyeu.
La roue 16 représentée en figure 4 est une roue arrière. De façon classique cette roue comprend une jante périphérique 17, un moyeu central 18 et des rayons 26, 27 de liaison entre la jante et le moyeu. La jante 17 est de tout type approprié, notamment elle présente une structure creuse en caisson avec un canal lia de réception d'un pneu à sa périphérie, deux parois latérales 17b réunies par un ou plusieurs ponts 17c (cf. figure 6). Les rayons 26, 27 ont un corps longiligne qui définit pour chaque rayon une direction longitudinale et deux extrémités d'accrochage respectivement 26a, 26b ; 27a, 27b par lesquelles ils sont accrochés d'un côté au moyeu et de l'autre à la jante.
Le moyeu 18 possède deux extrémités axiales 22 et 23, l'une des extrémités, en l'occurrence l'extrémité 23 porte une roue libre de transmission dont le corps se devine dans la figure 4 à l'arrière plan. Les rayons 26, 27 sont répartis ici en deux nappes, les rayons de chacune des nappes étant accrochés à une extrémité 22, 23 du moyeu. L'une des nappes est composée de rayons 26 accrochés à l'extrémité 22 opposée à la roue libre. L'autre nappe de rayons est composée de rayons 27 accrochés à l'extrémité 23 du moyeu située du côté de la roue libre. A cause de la présence du corps de roue libre, la nappe des rayons 27 est plus aplatie que la nappe des rayons 26, car ses rayons forment un angle de parapluie avec le plan radial médian de la jante qui est plus petit que l'angle formé par les rayons 26 et le plan radial médian. Ceci est connu dans l'état de l'art.
La figure 4 représente des rayons 27 côté roue libre qui sont croisés, et des rayons 26 côté opposé à la roue libre qui sont radiaux. Ceci n'est pas limitatif et tout autre mode de rayonnage peut convenir, notamment un mode de rayonnage croisé pour les deux nappes, ou un mode de rayonnage radial du côté de la roue libre et un mode de rayonnage croisé du côté opposé. Egalement la section de la jante pourrait être asymétrique.
La jante 17 est en équilibre par rapport au moyeu 18 du fait des contraintes de liaison qui transitent par les rayons 26, 27 des deux nappes. L'équilibre est radial et axial, c'est-à-dire que les composantes des efforts radiaux et axiaux que les rayons exercent sur la jante ou le moyeu ont une résultante nulle. Compte tenu de la différence d'angles de parapluie, les rayons 27 de la nappe du côté de la roue libre sont davantage contraints que les rayons 26 de l'autre nappe, pour que l'équilibre axial de la jante soit atteint.
Selon une particularité de l'invention, au moins les rayons 26, côté opposé roue libre sont prévus de façon à résister à une contrainte de compression et on abaisse le niveau général de tension des rayons au moins côté opposé roue libre.
En effet, les figures 1 à 2 représentent des diagrammes de variation de tension dans les rayons selon différents modes de chargement de la roue, respectivement radiaux et latéraux pour une roue à rayons en tension traditionnelle.
Le chargement radial est le type d'effort prépondérant sur une roue. Des tests de charge radiale ont été faits sur une roue arrière à vingt rayons chargée radialement à 1500 Newtons. La tension T d'un rayon a été mesurée tout au long de la révolution du rayon autour du moyeu. La figure 1 donne les diagrammes de la variation de tension T en fonction de l'angle de rotation A que l'on a relevée dans un rayon situé du côté de la roue libre (courbe 1) et un rayon situé du côté opposé à la roue libre (courbe 2) dans une roue normale. Dans cette figure, les droites horizontales 3 et 4 correspondent à la tension initiale des rayons en l'absence de charge externe à savoir respectivement 1700 N et 692 N. La charge radiale de 1500 Newtons a été ajustée en fonction de la tension initiale des rayons pour que la tension minimale d'un rayon situé du côté opposé à la roue libre passe par une valeur minimale nulle que l'on rencontre à 0 et 360 degrés (cf. courbe 2). On peut constater que cette tension est minimale au moment où le rayon est orienté dans la direction de la surface d'appui. De part et d'autre de cette position on observe une variation progressive de tension dans une plage de 35 degrés. Le reste du temps la tension dans le rayon est relativement constante.
Naturellement le diagramme et les valeurs indiquées n'ont pas de valeur limitative, ils sont donnés seulement pour illustrer le problème à la base de l'invention.
La figure 2 illustre les variantes de tension dans les rayons d'une roue traditionnelle pour un chargement latéral.
Le chargement latéral d'une roue se produit lorsque le cycliste se met en danseuse ou lorsque le vélo est incliné en courbe. Sur un banc de test on a contraint la roue précédente avec une charge latérale de 244 Newtons exercée sur la jante et orientée du côté de la roue libre vers le côté opposé. La tension d'un rayon a été mesurée tout au long de la révolution du rayon autour de la roue. La courbe 7 représente .les variations de tension d'un rayon côté "roue libre", la courbe 8, celle d'un rayon "opposé roue libre". On constate dans la zone d'application de l'effort une augmentation de tension des rayons situés du côté de la roue libre (courbe 7 de la figure 2), et une détente des rayons situés du côté opposé (courbe 8). La variation de tension est maximale dans la zone d'application de la charge, et il y a une variation progressive de tension dans une plage de 90 degrés de part et d'autre de la zone d'application de la charge. Si on change le signe de la charge latérale appliquée, le risque de détente d'un rayon est très faible, car la détente affectera alors la nappe roue libre qui est initialement beaucoup plus tendue (1700 N au lieu de 692 N pour les rayons de la nappe opposé roue libre.
Par ailleurs les mesures (non représentées dans la présente demande) montrent également que le chargement en couple affecte les rayons croisés, selon qu'ils sont orientés ou non dans le sens de l'effort à transmettre à la jante.
Pour une roue arrière, les rayons dits tracteurs se retendent lors de la transmission du couple et les rayons dits non tracteurs se détendent.
Lors de l'utilisation du cycle, ces trois modes de chargement de la roue se combinent et se cumulent. Les diagrammes montrent que pour chaque rayon, la tension de celui-ci varie autour de la tension initiale. Or c'est ce cycle de chargement répété qui vient endommager le rayon par fatigue. La tenue en fatigue d'une éprouvette sollicitée en traction alternée est fonction de la contrainte maximum ainsi que de l'amplitude de chargement.
La durée de vie d'un rayon sollicité uniquement en traction est donc réduite en fonction de l'amplitude et aussi de la contrainte maximum qui croît avec la tension initiale des rayons.
Toute augmentation de la tension initiale d'un rayon réduit donc la durée de vie de celui-ci. Une modélisation, montre que la réduction de la tension des rayons côté roue libre de 1300 - 970 = 330 N représente une chute de tension des rayons côté opposé roue libre de seulement 620 - 462 = 158 N et multiplie par 10 la durée de vie de la roue.
On voit donc que contrairement au préjugé actuel de l'homme du métier, réduire la tension des rayons permettrait d'améliorer considérablement l'endurance non seulement des rayons, mais aussi de la jante et du moyeu qui subissent exactement les mêmes cycles de chargement que le rayon.
Cette constatation amène le concept selon l'invention qu'une roue pour être endurante ne doit, contrairement aux idées reçues, pas être trop tendue, mais doit quand même l'être suffisamment pour éviter des détentes en utilisation normale.
Selon l'invention, les rayons sont conçus de façon à reprendre un effort de compression de façon à diminuer d'autant la tension initiale de chaque rayon et de réduire les inconvénients liés aux rayons trop tendus.
En pratique chaque rayon est prévu de façon à ne pas flamber sous un effort de compression significatif (> 150 N par exemple), et comporte à chaque extrémité des liaisons bilatérales qui permettent de transmettre à la fois un effort de compression et de traction sans jeu.
Par ailleurs la roue est tendue à des valeurs de tension initiales inférieures à celles d'une roue traditionnelle et notamment à une tension initiale correspondant à une valeur Ti traditionnelle diminuée de l'effort de compression R auquel le rayon résiste sans flambage. Les figures 3 et 3 A représentent les diagrammes de variation de tension dans les rayons selon des modes de chargement respectivement radial et latéral pour une roue selon l'invention. Les mêmes références affectées d'un indice a sont utilisées pour les courbes illustrant les variations de tension des rayons côté roue libre et opposé roue libre.
Si on compare les figures 1 et 2, et 3 et 3A, cela signifie qu'on abaisse les courbes le long de l'axe des ordonnées. En l'absence de charge externe, les rayons sont contraints en traction mais à un niveau inférieur à celui de l'état de la technique courant. En pratique la tension initiale Ti des rayons côté roue libre est à 800 N (cf. droite 3a), soit quasiment la moitié par rapport à une roue classique (cf. droite 3 - figures 1 et 2), et celle des rayons côté opposé roue libre est de 325 N (cf. courbe 4a), soit plus de la moitié par rapport aux figures 1 et 2 (droite 4). Sous l'effet d'une charge externe élevée, notamment une charge radiale, ou d'une somme de charges externes (cf. courbes 2a et 8a), la contrainte d'une partie au moins des rayons à savoir ceux situés côté opposé roue libre, change de signe momentanément, c'est-à-dire qu'elle devient une contrainte de compression (2b, 8b). On s'arrange pour que de la structure des rayons en question soit apte à supporter un cycle de contraintes de traction et de compression sans détente ni flambage pour qu'à aucun moment de son cycle de chargement un rayon ne se dérobe dans son rôle de liaison entre la jante et le moyeu.
Selon un mode de réalisation, pour la roue 16 de la figure 4, les rayons concernés sont les rayons 26 situés du côté opposé à la roue libre, à cause de leur tension initialement moins élevée que celle des rayons 27 situés côté roue libre. Globalement on considère que pour une roue arrière les rayons 26 situés de ce côté sont sensiblement deux fois moins tendus que les rayons 27 de l'autre nappe. Ces rayons 27 étant davantage tendus que les rayons 26, on ajuste de préférence les niveaux de tension initiale pour que la contrainte dans ces rayons 27 reste une contrainte de traction dans la plage de charge externe admissible pour la roue. Toutefois, ceci n'est pas limitatif, et on peut construire la roue de telle façon que les rayons 26, 27 des deux nappes soient tous aptes à supporter de façon momentanée une contrainte de compression sans détente ni flambage, et pas seulement les rayons 26 situés côté opposé roue libre.
H en est de même pour une roue qui comporte des nappes de rayons asymétriques du fait de la présence d'un disque de freinage au niveau du moyeu.
Une roue avec deux nappes de rayons symétriques sera décrite ultérieurement.
A titre d'illustration non limitative, selon le concept inventif, on a construit une roue telle que la roue 16, avec des rayons 26 initialement tendus à 325 Newtons, et des rayons 27 tendus initialement à 800 Newtons (valeur Ti), ces rayons 27 supportent une charge de compression R d'au moins 367 N (i.e. 692 N - 325 N). En comparaison, les roues traditionnelles de ce genre sont tendues à 1700 Newtons (courbe 3) du côté de la roue libre, et 692 Newtons (courbe 4) du côté opposé (cf. figure 1).
Dans le cas présent, l'invention permet donc de réduire quasiment par deux les efforts de tension sur les rayons, d'où une augmentation significative de la durée de vie, et réduction significative des problèmes de géométrie (saut, voile etc).
Selon un mode de réalisation, la structure des rayons 27 situés du côté opposé à la roue libre les rend apte à supporter sans flambage une contrainte de compression R d'au moins 150 Newtons, exercée entre les deux extrémités du rayon selon la direction longitudinale définie par le corps de rayon. Bien entendu, la valeur de contrainte de compression pouvant être supportée par les rayons 27 peut être différente. Dans l'exemple décrit précédemment mais non limitativement, une valeur de 367 N est nécessaire et dans l'exemple décrit ultérieurement en liaison avec la figure 5 le rayon peut supporter une charge supérieure à 400 N sans flambage.
Les rayons ont par ailleurs un dispositif de mise en tension, de préférence un dispositif micrométrique situé entre les deux extrémités d'accrochage afin d'ajuster leur mise sous tension initiale. Le dispositif le plus courant est du type vis/écrou. Une particularité de ce dispositif de mise en tension est que la vis et l'écrou ne sont jamais serrés à force l'un contre l'autre, contrairement à un dispositif d'assemblage. La vis ou l'écrou peuvent toujours être tournés l'un relativement à l'autre pour ajouter ou enlever de la tension dans le rayon.
Egalement la liaison d'accrochage entre les extrémités de rayon, la jante et le moyeu est une liaison bilatérale c'est-à-dire apte à travailler en traction comme en compression, avec un dispositif additionnel de neutralisation du jeu de liaison qui est apte à supporter au moins la contrainte de compression qu'on a fixée pour la structure du rayon. La figure 5 représente la structure d'un rayon 26 selon un premier mode de construction. Le rayon représenté comprend un corps 30 longiligne prolongé à chacune de ses extrémités par une tête d'accrochage, 31 et 32.
La structure du rayon 26 lui permet de supporter une sollicitation en traction et aussi une sollicitation en compression. Notamment il est prévu pour supporter une sollicitation en traction supérieure à celle d'un rayon conventionnel (2800 N), et il présente une résistance au flambage supérieure à 150 Newtons et en l'occurrence supérieure à 400 N. Selon le mode de réalisation illustré, le corps 30 du rayon est formé par un tube cylindrique creux de révolution. On peut également prévoir un rayon de forme cylindrique plein, l'avantage d'un rayon tubulaire étant son rapport résistance au flambage / poids. Le tube est réalisé en tout matériau approprié métallique ou composite. De façon avantageuse le tube est réalisé en fibres de carbone noyées dans une matrice de résine. Toute résine appropriée convient, par exemple une résine époxy ou polyester. Par exemple on réalise un tube par extrusion de fibres de carbone pultrudées dont on découpe ensuite des portions à la longueur voulue. Le carbone a un module d'élasticité élevé et une densité faible comparé à un alliage métallique comme un acier inoxydable ou un alliage d'aluminium ou de magnésium. Sous sa forme composite (module de flexion très élevé), il est très rigide en traction / compression et donc flexion et est par ailleurs très léger, ce qui lui assure une bonne résistance au flambage.
Pour améliorer la résistance du rayon au flambage la section du corps 30 a des dimensions importantes comparées à celles d'un rayon traditionnel. A titre indicatif, le tube qui forme le corps a un diamètre de 4 millimètres, et une épaisseur de paroi comprise entre 5/10 et 1 millimètre. Comparativement, un rayon traditionnel en inox a un diamètre de fil inférieur ou égal à 2 millimètres (en général diamètre compris entre 1,2 et 2,3 mm). La section du corps est ici circulaire, ce n'est pas limitatif et d'autres formes de section peuvent aussi convenir. Un tel rayon en forme de poutre creuse a une rigidité en flexion bien supérieure à celle d'un rayon plein normal à section équivalente.
En résistance des matériaux, l'effort de compression que peut subir une poutre droite avant de flamber est fonction des conditions d'encastrement de ses extrémités, du module d'Young du matériau de la poutre, du moment quadratique minimum de la section de la poutre, et de la longueur de la poutre entre les points d'application de l'effort.
L'effort de compression maximum admissible est donné par la relation suivante :
F=π2 EI / (KL)2 (formule d'Euler) où K est un coefficient qui est fonction des conditions d'encastrement des extrémités,
K=0,5 pour une poutre ayant ses deux extrémités encastrées,
K=I pour une poutre ayant ses deux extrémités montées avec une liaison du type à rotule,
K=2 pour une poutre ayant une extrémité encastrée et une extrémité libre,
K=4 pour une poutre ayant ses deux extrémités libres,
E désigne le module d'Young du matériau de la poutre en MégaPascals, I est le moment quadratique de la section de la poutre en mm4, par exemple I=a4/12 pour une poutre de section carrée de côté a (mm),
L est la longueur de la poutre entre son point d'appui et le point d'application de l'effort de compression.
A titre de comparaison, selon la relation énoncée plus haut, un rayon de l'art antérieur ayant un diamètre de 2 millimètres en inox (E=I 95 GigaPascals) et une longueur de 280 mm présente une résistance au flambage de 22 N dans le cas où ses extrémités sont montées avec une liaison du type à rotule, ce qui est plus proche de la réalité. Pour un rayon plat, les valeurs sont encore plus faibles (de l'ordre de 7 N).
Un rayon tubulaire en carbone pultrudé (E=I 15GPa) de 4 mm de diamètre, et de 280 mm de longueur présente dans les mêmes conditions une résistance au flambage de 715 N si ses extrémités sont encastrées, et 179 N dans le cas où ses extrémités présentent une liaison du type à rotule. Un tel rayon tubulaire en carbone est bien plus léger qu'un rayon en acier tout en admettant une charge de compression de l'ordre de huit fois supérieure. Le type de liaison d'accrochage aux extrémités du rayon joue également un rôle important, puisqu'il est susceptible d'influer dans un rapport de un à quatre.
Vers chacune de ses extrémités le corps 30 du rayon est prolongé par une tête d'accrochage 31, 32. Selon le mode de réalisation représenté, les têtes 31 et 32 sont formées par deux embouts rapportés dans le prolongement du corps. Les extrémités du corps 30 sont emmanchées dans les embouts 31, 32 et assemblées sans jeu par tout moyen approprié, notamment par collage, par goupillage, vissage ou toute autre technique. Le mode d'assemblage par emmanchement et collage donne une bonne résistance en traction et en compression de la liaison entre le corps et ses embouts. Aussi, le diamètre important du corps de rayon permet de réaliser un assemblage résistant par collage du fait de la circonférence importante du tube et donc de la surface de collage importante à section équivalente.
Dans l'exemple décrit, la structure du rayon lui permet de supporter une contrainte de compression de 400 N, donc d'au moins 150 Newtons. Cette charge de compression admissible peut encore être augmentée par un encastrement des extrémités du rayon dans la jante et le moyeu.
Les embouts sont prévus pour être accrochés d'un côté à la jante et de l'autre au moyeu. De plus, sur la longueur du rayon, il existe un dispositif de mise en tension du rayon, de préférence un dispositif micrométrique.
Selon le mode de réalisation illustré, la tête 31 présente une section élargie 31a qui est prévue pour être encastrée et retenue à l'intérieur d'un logement 33 usiné dans le corps du moyeu 18 et qui comporte un filetage 31b au-dessus de cette section élargie.
L'autre tête d'accrochage 32 a une extrémité filetée 32a qui est prévue pour être vissée dans un logement 34 de la jante. Le logement 34 a une forme de cheminée qui est taraudée sur l'intérieur, ainsi que cela est décrit par exemple dans la demande de brevet EP 818 328. Sa tension de repos est réglée à l'aide de la tête 32 qui est vissée plus ou moins profondément dans le logement 34 de la jante modulant ainsi la tension initiale du rayon.
Naturellement, tout autre moyen de liaison approprié pourrait également convenir.
Pour permettre aux rayons de passer de la traction à la compression sans dérobade par détente ou flambage, il est prévu un dispositif de neutralisation des jeux mécaniques de liaison entre les embouts, la jante et le moyeu. Selon le mode de réalisation illustrée, ce dispositif comprend du côté de la tête 31 un contre-écrou 35 apte à coopérer avec le filetage 31b, et du côté de la tête 32 un contre-écrou 36 apte à coopérer avec le filetage 32a. Ces deux contre-écrous 35, 36 sont vissés sur l'extérieur des embouts 31 et 32, ils sont serrés d'un côté contre le moyeu et de l'autre contre la jante Ainsi ils assurent une neutralisation du jeu de liaison qui pourrait exister entre eux, la tête 31 du rayon 26 et son logement 33, ou entre la tête filetée 32 et son logement 34.
L'assemblage est opéré de la façon suivante, le rayon 26 est assemblé au moyeu à l'aide de la tête 31, sa tension est ajustée à l'aide de la tête 32, puis les jeux de fonctionnement éventuels sont neutralisés à l'aide des écrous 35 et 36, qui sont serrés respectivement contre le moyeu et la jante. Ces contre-écrous améliorent également les conditions d'encastrement des extrémités du rayon et contribuent à élever sa charge de compression admissible avant flambage.
Le rayon 26 peut ainsi supporter indifféremment une charge en traction ou une charge en compression sans détente ni flambage, et assurer une liaison permanente entre le moyeu et la jante sous une tension moins élevée.
Comme les rayons 26 sont moins tendus, les rayons 27 de l'autre nappe (côté roue libre) sont également moins tendus et en l'occurrence pratiquement deux fois moins. Néanmoins comme la nappe de rayons 27 est plus aplatie que la nappe de rayons 26, les rayons 27 sont soumis à une tension positive tout au long de leur cycle de chargement (cf. figure 3). Comme ils ne sont pas comprimés, ces rayons 27 peuvent donc présenter une structure traditionnelle, par exemple ils peuvent être construits conformément à ce qui est décrit dans la demande de brevet EP 896 886. Tout autre mode de construction peut également convenir.
Comme la jante est moins sollicitée par la tension des rayons, les contraintes auxquelles elle est soumise sont plus faibles. La durée de vie de la roue est de ce fait prolongée. La même remarque est valable pour le moyeu.
La rigidité de la roue n'est pas modifiée par cette diminution de la tension des rayons. En effet, à tout moment de leur cycle de chargement respectif, tous les rayons établissent une liaison mécanique entre la jante et le moyeu même les rayons moins tendus du fait de leur liaison bilatérale. A aucun moment l'un d'eux ne se dérobe ou se détend, pourvu que les charges externes restent dans une plage de valeur admissible. Cette diminution de tension d'au moins une partie des rayons permet de diminuer les inconvénients d'une roue à rayons tendus et permet notamment : une diminution forte de compression de la jante, une diminution de la réduction du développée de la jante une augmentation de la résistance de la jante une diminution de l'effet polygonal une diminution de l'effet de voile induit une augmentation de la résistance à la fatigue
La figure 9 est relative à une variante de construction. Selon cette variante, les rayons 46, qui sont aptes à supporter une contrainte de compression, sont accrochés au moyeu 48 par l'intermédiaire d'un embout 47 qui forme une tête élargie 47a. Comme dans le cas précédent, par exemple, le corps du rayon 46 est emmanché et collé dans l'embout 47.
Les rayons 46 sont accrochés au moyeu 48 sur la paroi d'un bulbe latéral 49 qui présente des orifices 50 de forme tronconique dans lesquelles les rayons 46 sont enfilés, de telle façon que la tête élargie 47a soit retenue à l'intérieur du bulbe 49 par un rebord intérieur 50a de l'orifice 50. Une bague tronconique 51 est engagée dans le bulbe, sous les têtes élargies des rayons 46. De préférence, un ressort de compression 52 prenant appui sur une rondelle 53, en appui sur la bague extérieure, emmanchée à force, du roulement 54 exerce une précontrainte sur la bague 51 selon la direction longitudinale L. Le ressort 52 exerce une précontrainte sur la bague 51 dans la direction L d'engagement de sa surface tronconique sous les têtes élargies des rayons 46. Ainsi, la bague 51 maintient les têtes élargies en appui contre le rebord 50a de l'ouverture des orifices 50. La liaison d'accrochage entre les rayons 46 et le moyeu est rendue bidirectionnelle par cette bague 51. En outre, une sollicitation en compression exercée sur le moyeu par l'un des rayons 46 n'est pas susceptible de déplacer la bague 51, compte tenu de l'angle de conicité de sa surface tronconique, et de la sollicitation exercée par le ressort. La bague 51 neutralise le jeu des rayons à leur liaison avec le moyeu.
Selon la variante de la figure 10, le rayon 56 se termine du côté du moyeu 58 par un embout 57 muni d'une tête élargie 57a. Les têtes élargies 57a sont retenues dans un bulbe 60 qui a des encoches 60a ouvertes débouchant vers l'extérieur du moyeu. Les rayons 56 peuvent ainsi être mis en place par un simple engagement dans ces encoches 60a, sans qu'il soit nécessaire de les enfiler. Les encoches sont refermées par une cloche 61 qui est vissée sur le bulbe 60. Comme dans le cas précédent, une bague tronconique 62 est engagée dans le bulbe sous les têtes élargies 57a, et cette bague tronconique est contrainte par une rondelle élastique 63, selon la direction longitudinale L, qui est elle-même en contrainte par la cloche 61. Ce mode de réalisation permet un montage et un démontage plus facile des rayons 56.
En variante, on pourrait réaliser la bague 62 dans un matériau élastiquement déformable tel que élastomère de façon que le vissage de la cloche 61 dans le bulbe 60, vienne comprimer longitudinalement la bague élastomère 62, ce qui provoque son expansion radiale et garantit le plaquage des têtes 57 dans le bulbe 60. Ce qui est important est que la bague 62 maintienne chaque tête 57a en appui contre le bulbe 60 et qu'elle résiste à toute sollicitation de compression qu'un rayon pourrait lui transmettre dans la plage de valeur admissible. Selon l'exemple de la figure 11 , les têtes élargies 67a des rayons 66 sont retenues dans les encoches ouvertes 74 du bulbe 69 de moyeu 68. Les encoches sont refermées par une cloche 71 qui est vissée sur l'extrémité du bulbe 69, et qui précontraint à l'aide d'une rondelle élastique 72 une bague tronconique 73. Comme précédemment, la bague tronconique maintient les têtes élargies 67a contre un retour 74a de l'ouverture des encoches 74, ce qui assure une liaison bidirectionnelle entre eux le rayon et le moyeu, avec neutralisation du jeu mécanique de liaison. En regard de chacune des encoches, le bulbe a des évidements usinés 75 en direction de l'axe A du moyeu dans lesquelles les têtes élargies 67a se logent momentanément pour permettre le vissage ou dévissage de l'autre extrémité du rayon. Le corps de rayon étant rigide, il faut en effet pouvoir le translater le long de son axe lors d'un vissage ou d'un dévissage du dispositif de mise en tension.
Selon le mode de réalisation des figures 12 et 13, le bulbe 79 du moyeu 78 est usiné avec des ouvertures 80 en forme de boutonnière. La tête élargie 77a d'un rayon 76 est accrochée au bulbe 79 par introduction dans la partie large de la boutonnière et elle est retenue dans la partie étroite. Comme précédemment, une bague tronconique 83 précontrainte par une rondelle élastique 84 et une cloche vissée 85 maintient les têtes élargies 77a en appui contre l'ouverture des boutonnières, assurant ainsi une liaison bidirectionnelle entre le rayon et le moyeu avec neutralisation du jeu mécanique à ce niveau.
La figure 14 représente en perspective une roue avant dont les rayons 86 et 87 des deux nappes sont disposés de façon symétrique entre la jante 90 et le moyeu 91. Les rayons 86 et 87 des deux nappes sont agencés de façon radiale, ce qui est un mode usuel de construction d'une roue avant. Toutefois ce n'est pas limitatif, et d'autres modes de rayonnage peuvent également convenir. Selon le mode de réalisation illustré, les rayons 86 et 87 ont une structure qui les rend apte à être sollicités en traction ainsi qu'en compression. Les rayons 86 et 87 sont tendus initialement avec un niveau de tension inférieur à celui d'une roue à rayons en traction traditionnelle. A titre indicatif, on a construit une roue avant de ce type avec une tension de rayons de 400 Newtons. Par comparaison, la tension des rayons varie entre 700 et 1400 Newtons pour une roue traditionnelle.
Les figures 15, 16 et 17 illustrent en référence à un rayon 87 un mode particulier de construction et d'accrochage des rayons conçu par exemple pour une roue avant. Comme précédemment, le rayon 87 a un corps tabulaire, par exemple réalisé en fibres de carbone noyées dans une matrice de résine. Chacune des extrémités du corps est collée dans un embout, respectivement 92 et 93 par lequel le rayon est accroché au moyeu 91 et à la jante 90.
L'embout 92 a une tête élargie 92a qui est retenue dans un orifice 95 du corps du moyeu 91. Les têtes élargies 92a sont maintenues en appui contre les orifices 95 à l'aide d'une bague 96. La surface extérieure de la bague est chanfreinée de part et d'autre d'une gorge circulaire 96a dans lequel la pointe de chaque tête élargie 92a se loge une fois que la bague est en place. Les dimensions de la bague sont déterminées pour qu'un tel engagement se produise en forçant légèrement sur la bague. Ainsi, une fois que la bague est en place, elle est maintenue de façon stable dans cette position.
La bague est construite avec une certaine élasticité pour permettre son engagement en force, en se déformant légèrement entre deux têtes élargies 92a successives. Egalement, la bague est construite de façon à résister à un effort de compression qu'une tête élargie 92a pourrait lui transmettre du fait d'une sollicitation en compression du rayon résultant d'une charge externe.
Par exemple, la bague est réalisée en une matière plastique ou composite, telle que résine acétal ou un alliage d'aluminium ou d'acier à ressort. D'autres matériaux pourraient également convenir.
L'embout 93 de liaison avec la jante a une extrémité filetée 94, et il est prévu pour être vissé dans un des orifices de la jante en forme de cheminée, comme l'embout 32 qui a été décrit relativement la figure 5.
Le jeu mécanique de liaison est neutralisé ici par des techniques similaires à celles utilisées pour augmenter le frottement dans les dispositifs de mise en tension des rayons et empêcher un desserrage intempestif. Par exemple on peut utiliser des additifs tels que de la colle 94 ou tout autre produit équivalent déposé sur les filets du filetage afin de combler l'espace entre les faces en regard des filets comme par exemple du polyamide tel que connu sous la dénomination commerciale Tuflock, ou Nylock. Cet espace sera de préférence comblé du côté opposé à l'effort de traction. On peut aussi déformer localement une zone filetée ainsi que cela est décrit dans la demande de brevet EP 1101631. Ces dispositifs doivent avoir une résistance suffisante pour s'opposer à une contrainte de compression transmise par le corps du rayon dans la plage admissible. D'autres techniques peuvent également convenir. Les rayons 86 sont accrochés à la jante et au moyeu de la même façon que ce qui vient être décrit relativement à un rayon 87.
L'assemblage de la roue est réalisé de la façon suivante. Les rayons sont mis en place au niveau du moyeu 91, puis leur tension est ajustée en vissant plus ou moins les embouts filetés 93 dans les orifices de la jante. Une fois que le réglage de tension initiale est effectué, on procède à la mise en place de la bague 96 dans le bulbe du moyeu sous les têtes élargies 92a pour immobilier les têtes élargies relativement au moyeu.
Les figures 18 et 19 illustrent une variante de construction. Selon cette variante, le corps du moyeu 101 a des branches radiales 103, chaque branche a un évidement central dans lequel l'extrémité 107a d'un rayon 107 est emmanchée et assemblée par tout moyen approprié, notamment par collage. Ainsi, le rayon 107 est accroché au moyeu directement, sans embout d'accrochage intermédiaire. L'extrémité 107a du rayon forme ici la tête d'accrochage du rayon au moyeu. La colle ou le moyen équivalent d'assemblage assure une neutralisation du jeu de liaison à ce niveau. Le moyeu peut être dans ce cas réalisé en deux ou trois parties indépendantes. Ce mode d'accrochage, toutefois, ne permet pas une rotation du rayon qui avait lieu précédemment lors du réglage de tension. La figure 19 montre un mode d'accrochage du rayon à la jante qui respecte cette contrainte. L'extrémité du rayon 107 est prolongée par un embout 108 qui est assemblé par tout moyen approprié, notamment par emmanchement et collage. L'extrémité de l'embout 108 a un évidement central qui est taraudé, de façon à recevoir une vis 109 de réglage de tension. La vis 109 est accessible depuis l'extérieur de la jante par un orifice 110 réalisé dans le pont supérieur de la jante 111. Sa tête est retenue au niveau du pont inférieur, éventuellement elle est soutenue par un oeillet serti dans la paroi du pont. Elle forme une tête d'accrochage du rayon. La tête de la vis 109 présente tout moyen approprié permettant l'accouplement avec un outil de serrage. Ainsi, la tension du rayon 107 est ajustée en vissant plus ou moins la vis 109 dans l'embout 108 à l'aide d'un tel outil. De préférence, on prévoit sur la périphérie de l'embout 108 une forme d'accouplement avec un outil, par exemple de forme carrée, hexagonale ou de type Torx, qui permet à l'aide d'une clef de retenir l'extrémité du rayon pour éviter toute sollicitation en vrillage résultant du frottement entre la vis et l'embout.
Pour neutraliser le jeu mécanique de liaison entre le rayon et la jante, l'extrémité de l'embout 108 est filetée sur l'extérieur, et un contre-écrou 113 est serré contre la jante en prenant appui sur ce filetage. Ainsi, le rayon 107 est assemblé au moyeu et à la jante par des liaisons bidirectionnelles, et avec neutralisation du jeu mécanique de liaison, qui permet à chacun des rayons de supporter sans détente ni flambage un cycle de sollicitations de traction et de compression.
La figure 20 est relative à une variante de construction où le rayon 116 comprend une âme centrale 117 prévue pour être sollicitée en traction, et une gaine extérieure 118 tabulaire traversée par l'âme 117 et prévue pour travailler en compression. L'âme centrale 117 est construite par exemple comme un rayon métallique traditionnel, elle comprend un corps effilé 117a, une tête d'accrochage 117b qui est retenue dans le corps de moyeu 120, une extrémité filetée 117c sur laquelle un écrou de rayons 119 est vissé. L'écrou 119 traverse le pont inférieur de la jante 123, la tête d'écrou est retenue par le pont inférieur et elle est accessible depuis l'extérieur de la jante par un perçage du pont supérieur. La tête de l'écrou 119 forme la tête d'accrochage du rayon à la jante.
La gaine 118 est un élément tubulaire avec une première extrémité emmanchée dans une branche 125 du corps du moyeu 120. Son autre extrémité est emmanchée dans un embout 126 qui est prolongé par une extrémité filetée. Une douille 127 taraudée est vissée sur cette dernière extrémité filetée. Le sommet de la douille 127 est prévu pour venir en appui contre le pont inférieur de la jante 123, à la périphérie du trou que traverse l'écrou 119.
Comme dans le cas précédent, il est possible de prévoir à la périphérie de l'embout 126 et de la douille 127 une forme permettant l'accouplement avec un outil de maintien ou de serrage. L'écrou 119 et la douille 127 sont ajustés de façon que les jeux mécaniques de liaison soient inexistants, et que la sollicitation résiduelle que ces éléments exercent sur la jante soit au repos une sollicitation de traction, c'est-à-dire que la précontrainte de traction de l'âme 117 soit supérieure à la précontrainte de compression de la gaine 118.
Ainsi, l'âme 117 et la gaine 118 établissent une liaison bidirectionnelle de chacune des extrémités du rayon avec la jante ou le moyeu. En outre, sous l'effet d'une charge externe, ces éléments sont aptes à transmettre une sollicitation de compression entre le moyeu et la jante sans détente ou flambage du rayon. La gaine 118 étant soumise en permanence à une sollicitation de compression, les emmanchements de ses extrémités sont facultatifs, un appui simple peut aussi convenir.
La figure 21 montre une variante de construction. Le corps du rayon 136, qui est un corps tabulaire, est prolongé à son extrémité par une portion d'accrochage 137 assemblée au corps 136 par tout moyen approprié et par exemple par collage. L'extrémité de la portion d'accrochage 137 est filetée, pour permettre son assemblage à la jante 140 avec un écrou 138, ou tout autre moyen d'accrochage approprié. L'écrou forme la tête d'accrochage de l'extrémité du rayon à la jante.
Un tampon 142 élastiquement déformable est placé en butée entre l'extrémité du corps tabulaire du rayon 136 et la jante 140. Ce tampon est traversé par la portion d'accrochage 137. Le tampon 142 est comprimé lors de la mise en tension du rayon 136 au moyen de l'écrou 138. Par contre, sa matière est suffisamment raide pour supporter sans déformation une sollicitation de compression dans la plage admissible de chargement du rayon en compression. Ainsi, la tension du rayon peut être ajustée, et le rayon est susceptible de supporter sans détente ni flambage un cycle de sollicitation de traction et de sollicitation de compression avec neutralisation du jeu de liaison. Le tampon peut être remplacé par une ou plusieurs rondelles Belleville ou un ressort de compression hélicoïdal.
Les modes de réalisation décrits précédemment se rapportent à des rayons droits, dont les extrémités d'accrochage se trouvent dans l'alignement du corps. Ce mode de construction est préféré pour une meilleure transmission des sollicitations de compression. Néanmoins il n'est pas limitatif. Pour illustrer cela, la figure 22 montre l'extrémité d'un rayon 146 encastrée dans un embout 148. L'embout 148 présente une extension latérale 149 qui est prévue pour être assemblée à l'aide d'un écrou à un disque radial 150 d'un corps de moyeu 152. L'embout avec son extension latérale forme la tête d'accrochage du rayon au moyeu. Un tel mode de liaison entre le rayon et le moyeu est compatible avec l'invention car il assure une liaison sans jeu en traction et compression entre le rayon et le moyeu pourvu que l'embout soit monté sans jeu contre le disque. Par contre, une liaison avec un disque radial qui serait réalisée au moyen d'une extrémité coudée traditionnelle de rayon ne répondrait pas au but recherché par l'invention. En effet, dans toute liaison de ce type, il existe un jeu même minime qui donne au rayon une phase de détente lors du passage d'une sollicitation en traction à une sollicitation en compression. Naturellement, d'autres variantes de construction pourraient être adoptées. En particulier, on pourrait construire une roue avec une nappe de rayons ayant deux groupes de rayons, un premier groupe de rayons traditionnels, et un second groupe de rayons qui sont aptes à supporter une contrainte de traction, les rayons des deux groupes étant répartis de façon cyclique sur la jante, par exemple un rayon sur deux ou sur trois.
Egalement, il va de soi que les modes de réalisation décrits en relation avec la construction d'une roue arrière peuvent être appliqués également à une roue avant, et inversement. On pourrait également intervertir les modes d'accrochage du rayon à la jante et au moyeu.
Aussi les embouts avec les têtes d'accrochage pourraient être emmanchés à l'intérieur du corps de rayon au lieu d'être emmanchés sur l'extérieur.
Dans le cadre de rayons composites, notamment, on peut par exemple prévoir un collage du rayon au niveau de la jante (composite ou non) et le réglage au niveau du moyeu. Dans ce cas le réglage de rayons peut être général, c'est-à-dire collectif aux rayons, et non pas individuel. Dans le cas de rayons croisés, on peut également prévoir une liaison des rayons au niveau de leur croisement de façon à repousser les limites de flambage.
Le rayon n'a pas forcément une section constante en direction longitudinale et peut avoir une section de forme variable selon cette direction longitudinale, par exemple une section plus importante dans la zone médiane de façon à mieux résister au flambage.
Enfin, l'invention couvre également un engin de roulage, notamment un cycle qui serait équipé d'une roue au moins conforme à ce qui vient d'être décrit; De façon classique un cycle comprend un cadre, deux roues et un système de transmission.

Claims

REVENDICATIONS
1- Roue à rayons comprenant une jante périphérique (17, 90, 111, 123, 140), un moyeu central (18, 48, 58, 68, 78, 91, 101, 120, 152) et des rayons (26, 27, 46, 56, 66, 76, 86, 87, 107, 116, 136, 146) de liaison individuels entre la jante et le moyeu, les rayons étant tendus, caractérisée en ce qu'elle comporte des moyens de réglage de tension d'au moins une partie des rayons (26, 46, 56, 66, 76, 86, 87, 107, 116, 136, 146), en ce que ces rayons sont tendus à une tension initiale Ti correspondant à une valeur de tension normale Tn diminuée d'une valeur correspondant à un effort de compression R pouvant être supporté par chaque rayon (26, 46, 56, 66, 76, 86, 87, 107, 116, 136, 146).
2- Roue à rayons selon la revendication 1, caractérisée en ce que pour une roue arrière les rayons (26) supportant les efforts de compression sont ceux situés côté opposé roue libre.
3- Roue à rayons selon la revendication 1 à 2, caractérisée en ce que les contraintes de compression pouvant être supportées par au moins une partie des rayons (26, 46, 56, 66, 76, 86, 87, 107, 116, 136, 146) est d'au moins 150 N.
4- Roue à rayons selon l'une des revendications 1 à 3, caractérisée en ce que les deux nappes de rayons ne sont pas symétriques, l'une d'elle ayant un angle de parapluie inférieur à l'autre et par le fait que les rayons (26, 46, 56, 66, 76, 86, 87, 107, 117, 136, 146) sont les rayons de la nappe ayant l'angle de parapluie le plus grand.
5- Roue à rayons selon l'une des revendications 1 à 4, caractérisée en ce que les moyens de réglage des rayons sont disposés côté jante.
6- Roue à rayons selon l'une des revendications 1 à 4, caractérisée en ce que les moyens de réglage des rayons sont disposés côté moyeu.
7- Roue à rayons selon la revendication 6, caractérisée en ce que les moyens de réglage des rayons côté moyeu sont collectifs.
8- Roue à rayons selon l'une des revendications 1 à 7, caractérisée en ce qu'elle comporte un dispositif de neutralisation du jeu de liaison (35, 36, 94, 113, 127, 142) à au moins une extrémité de chaque rayon supportant un effort de compression.
9- Roue à rayons selon l'une des revendications 1 à 8, caractérisée en ce que chaque rayon (26, 46, 56, 66, 76, 86, 87, 107, 116, 136, 146) supportant un effort de compression comprend un corps (30) définissant une direction longitudinale, deux têtes d'accrochage (31, 32) dans le prolongement du corps prévues pour être accrochées l'une au moyeu, l'autre à la jante, et en ce que la structure du corps (30) est apte à supporter sans flambage une charge de compression R appliquée entre ses deux têtes d'accrochage (31,32, 47a, 57a, 67a, 77a, 93, 92a, 107a, 109, 117b, 119, 138, 148) selon la direction longitudinale du rayon.
10- Roue à rayons selon la revendication 9, caractérisée en ce que le rayon comprend au moins un dispositif (32a, 93, 117c) de mise en tension du corps entre ses deux têtes d'accrochage (31, 32). 11- Roue selon l'une des revendications 9 ou 10, caractérisée par le fait que les têtes d'accrochage (31, 32, 47a, 57a, 67a, 77a, 93, 92a, 109, 117b, 119, 138, 148) sont formées par deux embouts rapportés et assemblés aux extrémités du corps de rayon (30).
12- Roue selon l'une des revendications 9 à 11, caractérisée par le fait qu'une tête d'accrochage (31) comprend une tête élargie (31a, 47a, 57a, 67a, 77a, 92a, 117b).
13- Roue selon l'une des revendications 9 à 12, caractérisée par le fait qu'une tête d'accrochage (32) comprend une extrémité filetée (32a, 93, 117c).
14- Roue selon l'une des revendications 9 à 13, caractérisée par le fait qu'elle comprend un dispositif de neutralisation du jeu de liaison (35, 36, 94, 113, 127, 142) à l'une au moins des extrémités d'un rayon.
15- Roue selon la revendication 14, caractérisée par le fait que le dispositif de neutralisation du jeu de liaison est un contre-écrou (35, 36, 113, 127) vissé sur une extrémité du rayon.
16- Roue selon la revendication 13, caractérisée par le fait que le dispositif de neutralisation du jeu de liaison est un tampon (142) élastiquement déformable placé en butée à l'extrémité du corps tabulaire du rayon (136) et traversé par une portion d'accrochage (137) à l'extrémité du rayon sur laquelle est vissé un écrou (138) qui forme la tête d'accrochage.
17- Roue selon la revendication 13, caractérisée par le fait que le dispositif de neutralisation du jeu de liaison est de la colle (94) déposé sur le dispositif de mise en tension du rayon (93) ou l'extrémité (107a) du rayon (107).
18- Roue à rayons selon l'une des revendications 1 à 17 où les deux nappes de rayons ne sont pas symétriques, l'une d'elle ayant un angle de parapluie inférieure à l'autre, caractérisée par le fait que les rayons (26, 46, 56, 66, 76, 86, 87, 107, 117) sont les rayons de la nappe ayant l'angle de parapluie le plus grand.
19- Roue selon la revendication 14, caractérisée par le fait que le dispositif de neutralisation des jeux de liaison comprend une bague (51, 62, 83, 96) logée à l'intérieur du corps de moyeu et en appui contre les têtes d'accrochage des rayons.
20- Roue selon la revendication 19, caractérisée par le fait que la bague (51, 62, 83) est tronconique et qu'elle est précontrainte par un dispositif élastique (52, 63, 84).
21- Roue selon la revendication 19, caractérisée par le fait que la surface extérieure de la bague (96) est chanfreinée de part et d'autre d'une gorge circulaire (96a) dans laquelle la pointe de chaque tête élargie 92a se loge une fois que la bague est en place.
22- Rayon pour roue selon l'une quelconque des revendications 1 à 21, caractérisé en ce qu'il comprend un corps (30) définissant une direction longitudinale, deux têtes d'accrochage (31, 32) dans le prolongement du corps prévues pour être accrochées l'une au moyeu, l'autre à la jante, et en ce que la structure du corps (30) est apte à supporter sans flambage une charge de compression (R) appliquée entre ses deux têtes d'accrochage (31, 32, 47a, 57a, 67a, 77a, 93, 92a, 107a, 109, 117b, 119, 138, 148) selon la direction longitudinale. 23- Rayon selon la revendication 22, caractérisé en ce que la charge de compression R est d'au moins 150 Newtons.
24- Rayon selon l'une des revendications 22 à 23, caractérisé en ce que son corps (30) est formé par un tube.
25- Rayon selon l'une des revendications 22 à 23, caractérisé en ce que le corps tabulaire (30) est en fibres de carbone.
26- Rayon selon la revendication 22, caractérisé en ce qu'il comprend une âme (117) ayant une tête d'accrochage (117b) et une extrémité filetée (117c) avec un écrou (119), une gaine extérieure (118) tubulaire traversée par l'âme (117).
27- Engin de roulage comprenant un cadre, deux roues et un système de transmission, caractérisé par le fait qu'une au moins de ses roues est conforme à l'une des revendications 1 à 26 précédentes.
PCT/FR2007/000767 2006-05-12 2007-05-04 Roue a rayons WO2007135259A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07731412.8A EP2021190B2 (fr) 2006-05-12 2007-05-04 Roue a rayons
US12/300,585 US8162407B2 (en) 2006-05-12 2007-05-04 Spoked wheel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0604237 2006-05-12
FR0604237A FR2900869B1 (fr) 2006-05-12 2006-05-12 Roue a rayons

Publications (1)

Publication Number Publication Date
WO2007135259A1 true WO2007135259A1 (fr) 2007-11-29

Family

ID=37714625

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/FR2007/000770 WO2007135260A1 (fr) 2006-05-12 2007-05-04 Roue à rayons
PCT/FR2007/000767 WO2007135259A1 (fr) 2006-05-12 2007-05-04 Roue a rayons

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/000770 WO2007135260A1 (fr) 2006-05-12 2007-05-04 Roue à rayons

Country Status (7)

Country Link
US (2) US8215720B2 (fr)
EP (4) EP2311649B1 (fr)
CN (1) CN101472747B (fr)
DE (2) DE202007019514U1 (fr)
ES (1) ES2443156T3 (fr)
FR (1) FR2900869B1 (fr)
WO (2) WO2007135260A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8215720B2 (en) 2006-05-12 2012-07-10 Salomon S.A.S. Spoke wheel assembled without tension or compression

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2905084B1 (fr) 2006-08-25 2008-10-31 Salomon Sa Rayon pour une roue a rayons, son procede de fabrication et roue comprenant au moins un tel rayon
FR2929882B1 (fr) * 2008-04-15 2012-12-14 Salomon Sa Rayon pour une roue a rayons,roue et procede correspondants
US7988240B2 (en) * 2008-09-26 2011-08-02 Timothy Lubecki Bicycle wheel having flexible spokes
FR2942744B1 (fr) * 2009-03-06 2011-05-27 Salomon Sas Rayon pour une roue de cycle
CN101670749A (zh) * 2009-09-29 2010-03-17 昆山亨利金属科技有限公司 一种使用无内胎轮胎的轮圈及其与辐条的连接结构及其制造方法
FR2952853B1 (fr) * 2009-11-25 2012-01-13 Corima Roue composite, notamment pour un cycle, et procede de fabrication d'une telle roue
US8608252B2 (en) * 2010-12-26 2013-12-17 Yi-Chuan Ling Spoke of a bicycle wheel
US8967731B2 (en) * 2011-02-23 2015-03-03 Shimano Inc. Spoke attachment structure
TWM411353U (en) * 2011-03-16 2011-09-11 Kunshan Henry Metal Tech Co Improved structure for wheel rim
US20130169026A1 (en) * 2012-01-04 2013-07-04 Mu-Rong Li Bicycle rim structure
FR2989630B1 (fr) * 2012-04-20 2016-05-06 Michel Debien Roues de velo a rendement eleve
FR2989934B1 (fr) * 2012-04-27 2014-06-06 Mavic Sas Rayon pour roue de cycle et roue de cycle comportant un tel rayon
US9636943B2 (en) 2012-06-04 2017-05-02 Spinergy Inc. Wheel with high strength flexible spokes
US8985708B2 (en) 2012-06-04 2015-03-24 Spinergy Inc. Wheel with high strength flexible spokes
US9682596B2 (en) 2012-06-04 2017-06-20 Spinergy Inc. Wheel with high strength flexible spokes
US8985707B1 (en) 2012-06-04 2015-03-24 Spinergy Inc. Wheel with flexible wide-body spokes
US9108461B2 (en) * 2012-06-27 2015-08-18 Cayucos Cowboys, Llc Bicycle wheel with unitary side construction
US20140062167A1 (en) * 2012-08-30 2014-03-06 Mu-Rong Li Wheel rim structure
TW201511984A (zh) * 2013-09-26 2015-04-01 Gigantex Composite Technologies Co Ltd 具有高強度輻條編織方式的輪圈
USD798791S1 (en) 2016-01-06 2017-10-03 Spinergy Inc. Spoke
JP1608343S (fr) * 2017-05-24 2018-07-09
IT201700067931A1 (it) * 2017-06-19 2018-12-19 Alpina Raggi Spa Nipplo per ruote a raggi, particolarmente per motocicli
US10773544B2 (en) * 2018-03-22 2020-09-15 Kuo-Ching Chang Bicycle rear wheel hub
US11396206B2 (en) * 2020-01-05 2022-07-26 Sheng 1 First Co., Ltd. Bicycle wheel
WO2021211883A1 (fr) * 2020-04-16 2021-10-21 Keir Manufacturing, Inc. Systèmes et procédés pour des ensembles roues et données d'application associées à des rayons
BE1029375B1 (nl) * 2021-10-11 2022-11-30 Sapim Spaaknippel, in het bijzonder voor een fietswiel
CN114161752A (zh) * 2021-12-01 2022-03-11 纤镀复材科技(厦门)有限公司 一种自行车碳纤维轮圈的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB144541A (en) * 1919-10-16 1920-06-17 Hubert Harry Patrick Improvements relating to the driving or power transmitting mechanism of motor cyclesand like vehicles
DE20017074U1 (de) * 2000-10-05 2002-02-14 Alex Machine Industrial Co., Ltd., Shan-Shang, Tainan Haltevorrichtung um Speichen zwischen einer Radfelge und einer Nabe eines Fahrrades gespannt zu halten
EP1216849A2 (fr) * 2000-12-19 2002-06-26 Jiri Krampera Roue à rayons pour bicyclette
EP1283112A2 (fr) * 2001-08-09 2003-02-12 Campagnolo S.R.L. Roue à rayons pour une bicyclette et méthode de sa fabrication
WO2003018331A1 (fr) * 2001-08-28 2003-03-06 F.I.R. Srl Structure de rayons aerodynamique pour roue de vehicule, et procede de fabrication de cette structure
EP1375195A2 (fr) * 2002-06-25 2004-01-02 Shimano Inc. Jante de roue de véhicule

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US478394A (en) * 1892-07-05 Bicycle-wheel
GB191518058A (en) 1915-12-28 1916-05-18 Harold Wade Improved Vehicle Wheel and Method of Making the same.
GB159118A (en) 1920-07-03 1921-02-24 Arthur James Adams Improvements in or relating to vehicle wheels
CH91759A (de) 1921-02-11 1921-11-16 Gustav Hippe Felgennachspannvorrichtung bei Wagenrädern.
US1457808A (en) * 1921-02-17 1923-06-05 Fulton Co Manufacture of spokes
US1433435A (en) * 1921-07-15 1922-10-24 Charles B Van Horn Wheel
US1763413A (en) * 1927-06-21 1930-06-10 Alva N Wilcox Wheel
US2439926A (en) * 1944-08-17 1948-04-20 Bendix Aviat Corp Wheel
FR1019285A (fr) 1950-04-05 1953-01-20 Perfectionnements aux jantes et roues de cycles et autres véhicules
US2994560A (en) * 1958-07-07 1961-08-01 Sun Metal Products Inc Bicycle wheel
DE3223026A1 (de) 1982-06-19 1983-12-22 Herbert 4973 Vlotho Wulbrandt Einstueckig aus kunststoff gefertigtes laufrad fuer ein zweirad
DE3225565A1 (de) * 1982-07-08 1984-01-12 Adolf Dipl.-Ing. 5788 Winterberg Voß Speichenrad aus kunststoff fuer fahrzeuge und verfahren und vorrichtung zu dessen herstellung
JPS615201U (ja) * 1984-06-18 1986-01-13 三菱レイヨン株式会社 複合スポ−ク
US5110190A (en) 1990-03-16 1992-05-05 Johnson Harold M High modulus multifilament spokes and method
US5350221A (en) * 1991-07-11 1994-09-27 Edo Sports Inc. Fiber reinforced spoke for wheels of bicycles, wheelchairs and the like, and method of making same
FR2701899B1 (fr) 1993-02-24 1995-05-05 Mavic Sa Jante et roue pour cycle et leur procédé de fabrication.
US5647643A (en) 1995-03-01 1997-07-15 Noble; Ryun Bates Wheel hub
JP3069284B2 (ja) * 1996-01-26 2000-07-24 株式会社シマノ 自転車用ハブ
FR2750913B1 (fr) 1996-07-12 1998-10-09 Mavic Sa Procede de percage d'une jante a rayon, jante percee selon le procede, insert adapte pour equiper la jante, et roue notamment de cycle
US6145938A (en) 1996-10-11 2000-11-14 Dietrich; Rolf Cycle, tensioned spoked wheel assembly and hub therefor
FR2762267B1 (fr) * 1997-04-16 1999-06-04 Mavic Sa Ame d'un rayon pour roue a rayons, rayon et roue de bicyclette
US5915796A (en) 1997-04-29 1999-06-29 Dymanic Composites Inc. Composite fiber spoke vehicular wheel and method of making the same
US6086161A (en) * 1997-06-18 2000-07-11 Nimble Bicycle Company High performance broad application wheel
FR2767285B1 (fr) 1997-08-13 1999-10-15 Mavic Sa Rayon pour roue de cycle, roue de cycle et procedes de fabrication
US6158819A (en) * 1997-11-13 2000-12-12 Shimano Inc. Bicycle wheel
JP2000022172A (ja) * 1998-06-30 2000-01-21 Matsushita Electric Ind Co Ltd 変換装置及びその製造方法
US6196638B1 (en) 1998-12-29 2001-03-06 Shimano Inc. Bicycle wheel
EP1169182B1 (fr) * 1999-04-09 2003-07-16 DT Swiss AG Ecrou de rayon, notamment pour bicyclettes et similaires
FR2801248B1 (fr) 1999-11-18 2002-02-08 Mavic Sa Organe d'accrochage de l'extremite d'un rayon a une jante ou un moyeu
TW481111U (en) * 2001-03-30 2002-03-21 Alex Machine Ind Co Ltd Wheel set for bicycle
US20020149257A1 (en) * 2001-04-14 2002-10-17 Miansian James K. Spoke and hub assembly
CA2465119A1 (fr) 2001-11-29 2003-06-05 Compositech, Inc. Jante composite de bicyclette a surfaces de freinage sans joint
US6588853B2 (en) 2001-11-29 2003-07-08 Shimano Inc. Bicycle rim
DE10213521A1 (de) * 2002-03-26 2003-10-09 Dt Swiss Ag Biel Rad, Felgen, Felgenöse und Speichennippel, insbesondere für ein Fahrrad
DE60335886D1 (de) 2002-10-04 2011-03-10 Compositech Inc FAHRRADRAD MIT AERODYNAMISCHER OBERFLuCHE
US20040195908A1 (en) * 2003-04-03 2004-10-07 Main Bernard Denis Tubular spoked wheel
FR2855456B1 (fr) 2003-05-28 2006-11-03 Mavic Sa Velo prevu pour la pratique du cyclisme et roue a utiliser sur un tel velo
FR2855491B1 (fr) 2003-05-28 2006-11-03 Mavic Sa Dispositif de fixation en porte-a-faux d'une roue de velo sur un cadre
US6886892B2 (en) * 2003-08-01 2005-05-03 Tien Hsin Industries Co., Ltd Combination of bicycle spokes and rims
DE20313846U1 (de) * 2003-09-05 2003-12-04 L.F. International Vuelta Italy S.R.L., Osteria Grande Befestigungseinrichtung für eine Speiche an einem Einspurfahrzeuglaufrad
JP2005319962A (ja) 2004-05-11 2005-11-17 Shimano Inc 自転車用リム
FR2881682B1 (fr) 2005-02-08 2007-04-27 Salomon Sa Jante de roue et son procede de fabrication
US7374251B2 (en) * 2005-10-20 2008-05-20 Shimano Inc. Connection of Spokes to hub and rim in bicycle wheel
FR2900869B1 (fr) 2006-05-12 2009-03-13 Salomon Sa Roue a rayons

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB144541A (en) * 1919-10-16 1920-06-17 Hubert Harry Patrick Improvements relating to the driving or power transmitting mechanism of motor cyclesand like vehicles
DE20017074U1 (de) * 2000-10-05 2002-02-14 Alex Machine Industrial Co., Ltd., Shan-Shang, Tainan Haltevorrichtung um Speichen zwischen einer Radfelge und einer Nabe eines Fahrrades gespannt zu halten
EP1216849A2 (fr) * 2000-12-19 2002-06-26 Jiri Krampera Roue à rayons pour bicyclette
EP1283112A2 (fr) * 2001-08-09 2003-02-12 Campagnolo S.R.L. Roue à rayons pour une bicyclette et méthode de sa fabrication
WO2003018331A1 (fr) * 2001-08-28 2003-03-06 F.I.R. Srl Structure de rayons aerodynamique pour roue de vehicule, et procede de fabrication de cette structure
EP1375195A2 (fr) * 2002-06-25 2004-01-02 Shimano Inc. Jante de roue de véhicule

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8215720B2 (en) 2006-05-12 2012-07-10 Salomon S.A.S. Spoke wheel assembled without tension or compression

Also Published As

Publication number Publication date
US20090184565A1 (en) 2009-07-23
FR2900869B1 (fr) 2009-03-13
ES2443156T3 (es) 2014-02-18
DE202007019514U1 (de) 2013-06-05
US20090160243A1 (en) 2009-06-25
EP2021190B2 (fr) 2016-12-14
CN101472747B (zh) 2010-12-08
EP2021189B1 (fr) 2014-03-05
EP2311649A3 (fr) 2011-08-03
US8162407B2 (en) 2012-04-24
EP2311649B1 (fr) 2013-10-23
EP2021190A1 (fr) 2009-02-11
CN101472747A (zh) 2009-07-01
WO2007135260A1 (fr) 2007-11-29
US8215720B2 (en) 2012-07-10
DE202007019264U1 (de) 2011-12-05
EP2193930A1 (fr) 2010-06-09
EP2021189A1 (fr) 2009-02-11
EP2021190B1 (fr) 2014-05-14
FR2900869A1 (fr) 2007-11-16
EP2193930B1 (fr) 2013-04-03
EP2311649A2 (fr) 2011-04-20

Similar Documents

Publication Publication Date Title
EP2021190B2 (fr) Roue a rayons
EP1764233B1 (fr) Procédé de fabrication d'une roue à rayons en tension et roue à rayons en tension
EP1800897B1 (fr) Roue comprenant une jante, un moyeu, et un dispositif de raccordement de la jante au moyeu
EP2504176B1 (fr) Roue composite, notamment pour un cycle, et procede de fabrication d'une telle roue
EP1764234A1 (fr) Procédé de fabrication d'une roue en matière composite et roue fabriquée selon le procédé
EP0394438A1 (fr) Suspension pour roue de motocycle
EP2265445B1 (fr) Rayon pour une roue a rayons, roue et procede correspondants
FR2762267A1 (fr) Ame d'un rayon pour roue a rayons, rayon et roue de bicyclette
FR2942744A1 (fr) Rayon pour une roue de cycle
FR2765934A1 (fr) Ensemble amortisseur dynamique utilisant la masse d'un volant, notamment pour vehicule automobile
FR2983823A1 (fr) Guidon pour un vehicule
FR2965753A1 (fr) Roue pour cycle et methode d'assemblage d'une telle roue
FR2909925A1 (fr) Roue arriere de cycle
EP1796797A1 (fr) Roue de patin avec moyeu recyclable avec roulement a billes
EP1188948A1 (fr) Articulation élastique d'amortisseur et amortisseur muni d'une telle articulation élastique
FR2957299A1 (fr) Jante pour roue de cycle a elements de fixation des rayons par glissiere, rayon de roue de cycle et roue correspondants
FR2765936A1 (fr) Ensemble amortisseur dynamique et ensemble formant volant comportant un tel ensemble amortisseur
EP1798058A2 (fr) Moyeu de roue et roue munie du moyeu
FR2935927A1 (fr) Roue a rayon demontable en materiau composite
FR2922978A1 (fr) Serre cable anti-torsion
FR2778624A1 (fr) Assemblage d'un pivot de fourche de bicyclette et d'une tete de fourche, procede de realisation de l'assemblage, et fourche le comportant
FR3058326A1 (fr) Dispositif d'extremite inferieure d'un baton de sport
FR2932861A1 (fr) Agencement de spires de ressort helicoidal a raideurs multiples et suspension de vehicule equipee d'un tel agencement.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07731412

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007731412

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12300585

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE