WO2007129748A1 - ナノ粒子を分散させた透明な高分子材料及びその製造方法 - Google Patents

ナノ粒子を分散させた透明な高分子材料及びその製造方法 Download PDF

Info

Publication number
WO2007129748A1
WO2007129748A1 PCT/JP2007/059627 JP2007059627W WO2007129748A1 WO 2007129748 A1 WO2007129748 A1 WO 2007129748A1 JP 2007059627 W JP2007059627 W JP 2007059627W WO 2007129748 A1 WO2007129748 A1 WO 2007129748A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic polymer
polymer compound
metal oxide
molecular weight
pmma
Prior art date
Application number
PCT/JP2007/059627
Other languages
English (en)
French (fr)
Other versions
WO2007129748A8 (ja
Inventor
Takashi Sawaguchi
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2008514522A priority Critical patent/JPWO2007129748A1/ja
Publication of WO2007129748A1 publication Critical patent/WO2007129748A1/ja
Publication of WO2007129748A8 publication Critical patent/WO2007129748A8/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • the present invention relates to a transparent polymer material in which nanoparticles are dispersed and a method for producing the same.
  • Metal oxide nanoparticles are often used as inorganic compounds. By adopting nanoparticles, it is possible to increase the refractive index of the entire organic polymer compound, and it is expected that it can be used as a light transmissive material in addition to optical products. In addition, it is expected as a curable composition that can form a cured product that imparts scratch resistance to the upper surface of the base material and is excellent in antistatic properties and antifouling properties. The use to the agent is examined.
  • the transparency of the polymer material may be lowered.
  • the light that hits the material is reflected in the direction of the light source or is deflected to the side, which reduces the apparent transparency. Therefore, it is expected that good results will be achieved by using nano-sized metal oxides.
  • nanoparticulate metal oxides there is an undesirable tendency for the particles to aggregate in the polymer and act as large particles that can scatter or reflect light. It is necessary to prevent light scattering, and at the same time, prevent the aggregation action by nanoparticles (Patent Document 1).
  • Silica fine particles which are metal oxide fine particles having a diameter equal to or smaller than the wavelength of visible light, dispersed in a solvent, and transparent amorphous organic polymer compound dissolved in a solvent (polyolefin resin, polymetathalyl resin, polycarbonate resin, polypropylene oligomer, etc.) Or a resin solution obtained by dissolving a resin composition obtained by mixing the silica fine particles in the process of forming an amorphous organic polymer in a solvent.
  • Patent Document 2 A resin-made window containing 92% by weight of silica fine particles and having a concentration gradient in which the content of the silica fine particles gradually decreases from the surface toward the inner center with respect to the thickness direction of the window (Patent Document 2).
  • the solvent contained in the resin composition is heated to remove the solvent.
  • the outermost layer has a silica concentration of 50 to 92% by weight. It is intended to increase the abundance of finely divided silica particles compared to organic polymer compounds. In such a case, the metal oxides agglomerate and do not agglomerate. Uniform dispersion of metal fine particles has not been achieved (0010 of Patent Document 9 by the present inventors).
  • the present inventors invented an invention that “introduces an organometallic compound in a supercritical carbon dioxide and decomposes the permeated organometallic compound to form an organic-inorganic nanocomposite” (special feature). (Open 2003-2994).
  • the oxide compound aggregated during drying can be redispersed as primary particles in the thermoplastic resin.
  • the dispersion state of nanosilica dispersed in the polymer is a dispersion state of nanosilica that is uniformly dispersed with aggregation (see section “0010” of “2006-63224” published by the present inventors). In this respect, it does not mean a composite composition comprising an organic polymer compound and metal oxide in which metal oxide particles of nanoparticles are uniformly dispersed in the organic polymer compound.
  • a thermoplastic resin and the oxidized compound powder are kneaded in the presence of a supercritical fluid, and the thermoplastic resin is mixed with inorganic fine particles (silica (SiO 2), alumina (A1
  • Patent Document 4 Invented a nano-composite acrylic resin composition to be combined. Even in this case, it is not possible to provide an organic polymer compound in which fine metal oxides consisting of only particles are uniformly dispersed from the beginning when there is no measure for forming secondary particles of inorganic fine particles. It does not propose a fundamental solution.
  • the inventors of the present invention provide a polymer composite material obtained by polymerizing the monomer in a supercritical fluid containing the monomer and a polymerization initiator.
  • the present inventors have sought research to provide an organic polymer compound in which a metal oxide of nanoparticles is uniformly dispersed.
  • the following invention was performed in order to obtain metal oxide nanoparticles.
  • the silicone group is modified by this because the alkyl groups contained therein are hydrophobic.
  • the modified silica composition forms a state excellent in compatibility with the organic polymer compound resin.
  • the affinity with (meth) acrylic, polycarbonate and polystyrene resins can be improved.
  • silica can be uniformly dispersed in the base resin.
  • Silicon alkoxide or a mixture of silicon alkoxide and an organic solvent is mixed with a solution containing a monomer or monomer of a thermoplastic resin, then the monomer is polymerized to obtain a solid, and this solid is heated.
  • Patent Document 6 for obtaining silicon oxide particles by polycondensation of silicon alkoxide in a solid content or silicon hydroxide generated by hydrolysis of silicon alkoxide was completed.
  • the inventors of the present invention are that the conventional nanomatenoorder silica particles are dispersed in a conventional polymer with aggregation, and the dispersed state of the nanosilica is greatly different from the uniform dispersion with aggregation.
  • Patent Document 8 after dissolving the polymer in the organic solvent and mixing the colloidal silica dispersed in the nano-sized organic solvent, the organic solvent is removed from the silica-containing polymer composition. Exclude precipitation separation An invention (Patent Document 9) was obtained to obtain a layered silica-dispersed polymer material having high transparency by obtaining a silica-containing polymer powder and heat-pressing it.
  • a conventional composite composed of an organic polymer compound and metal oxide nanoparticles is a mixture obtained by mixing a uniform mixture of a solvent and metal oxide nanoparticles with an organic polymer compound, or a solvent and metal oxide nanoparticles.
  • a composite composition composed of the organic polymer compound and the metal oxide nanoparticles is formed from the mixture obtained by mixing the uniform mixture composed of the organic polymer compound and the solvent. .
  • By removing the solvent from the composite composition it is possible to obtain the organic polymer compound containing metal oxide nanoparticles, but the metal oxide nanoparticles are uniformly dispersed.
  • metal oxide nanoparticles have become secondary particles and exist even in a secondary aggregated state, which reduces transparency. And with this level of transparency, we are satisfied with the level and many fields.
  • the molecular weight of the organic polymer compound it means the number average molecular weight.
  • Patent Document 1 JP 2005-75723 A
  • Patent Document 2 Japanese Patent No. 3559894 (Japanese Patent Laid-Open No. 11 343349)
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-168910
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-224882
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2003-201114
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2005-97372
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2005-146110
  • Patent Document 8 Japanese Unexamined Patent Application Publication No. 2004-168910
  • Patent Document 9 Japanese Unexamined Patent Publication No. 2006-63224
  • An object of the present invention is to disperse metal oxide nanoparticles as particles in an organic polymer compound and prevent agglomeration due to secondary particles, thereby converting the metal oxide nanoparticles into an organic polymer compound. It is to provide a novel composite that is uniformly dispersed therein.
  • a composite in which the metal oxide nanoparticles are uniformly dispersed in the organic polymer compound and the metal oxide nanoparticles are uniformly dispersed without aggregation is obtained. It is necessary.
  • a dispersion of metal oxide nanoparticles is added to a mixture of a polar solvent and an organic polymer compound, and the metal oxide dispersion is uniformly dispersed in the mixture.
  • a composite composition of an organic polymer compound in which the metal oxide contained in the polar solvent is uniformly dispersed can be obtained.
  • the metal oxide nanoparticles are uniformly dispersed without agglomeration in the state where the metal oxide nanoparticles are uniformly dispersed, (1) there is no contact between the metal oxide nanoparticles and ( 2) It is considered that aggregation does not occur if there is no entanglement where the polymer chains contact each other.
  • the content of the organic polymer compound is such that the weight ratio of the metal oxide nanoparticles to the organic polymer compound and the polar solvent is constant, and the weight of the metal oxide, the weight of the organic polymer compound, and the polar solvent to be added.
  • the target complex can be obtained if the condition of the critical concentration or less derived from the weight relationship is obtained.
  • the critical concentration can be obtained for the concentration of the organic polymer compound in consideration of the molecular weight of the organic polymer compound.
  • (I), (mouth) and (c) are as follows.
  • the critical concentration (C *) determines the weight of a specific amount of metal oxide nanoparticles, and comprises an organic polymer compound containing a specific amount of metal oxide nanoparticles and a polar solvent in which the amount to be added varies.
  • the results obtained by measuring the amount of light transmission for a specific wavelength are divided into a group of light transmission amounts that are high and a group of light transmission amounts that are low. It is defined as the concentration of the one having the highest organic polymer compound content.
  • the critical concentration (C *) is obtained by determining the weight of a specific amount of metal oxide nanoparticles and adding an organic polymer compound to a specific concentration with a polar solvent added thereto. With respect to the composition, the light transmittance and organic wavelength of a specific wavelength obtained by measuring the metal oxide nanoparticles, the organic polymer compound, and the polar solvent composition to be added with a specific amount of the organic polymer compound added. From the relationship of the polymer compound weight concentration, it is determined that the organic polymer compound content of the light transmittance at a specific wavelength when the light transmittance sharply drops from within the group of light transmittance at the specific wavelength, which is high.
  • the molecular weight of the organic polymer compound exceeds the limit molecular weight (Mc), and the content of the organic polymer compound is not more than the critical concentration (C *), and the limit molecular weight (Mc) and the The critical concentration (C *) is determined from a metal oxide nanoparticle, an organic polymer compound, and a polar solvent in which the amount to be added changes when the content of the metal oxide nanoparticles with respect to the organic polymer compound is a specific amount. It is assumed that the composition is a value derived from the light transmittance of the special wavelength of the composition.
  • the molecular weight of the organic polymer compound is not more than the limit molecular weight (Mc), and the limit molecular weight (Mc) is determined based on the metal oxide nanoparticle content relative to the organic polymer compound.
  • Mc limit molecular weight
  • the value is derived from the light transmittance of the composition.
  • a composite composition comprising an organic polymer compound and a metal oxide in which metal oxide nanoparticles are uniformly dispersed in the organic polymer compound can be obtained.
  • This composition is extremely high in transparency compared to the composites that existed conventionally because the metal oxide particles do not cause secondary aggregation. It also has sufficient characteristics for hardness and friction.
  • This uniform composition has a coating state on the surface of plastic in the solution state. It can be used as a surface treatment agent, or it can be used as a material that requires transparency in the form of a sheet or plate, or a component that requires a composition in which metal oxide is uniformly dispersed. be able to.
  • FIG. 2 is a graph showing the relationship between PMMA content and light transmittance when the content of PMMA (molecular weight 4000) at a wavelength of 400 nm is used as a variable.
  • FIG. 5 is a diagram showing the relationship between the PMMA content and the light transmittance when the A content is a variable.
  • FIG. 5 is a diagram showing the relationship between the PMMA content and the light transmittance when the A content is a variable.
  • FIG. 5 is a diagram showing the relationship between the PMMA content and the light transmittance when the A content is a variable.
  • FIG. 6 is a graph showing the relationship between the PMMA content and the light transmittance when the PMMA content is set as a variable.
  • FIG. 6 is a graph showing the relationship between the PMMA content and the light transmittance when the PMMA content is set as a variable.
  • FIG. 5 is a graph showing the relationship between the PMMA content and the light transmission 1 rate when the PMMA content of the potato is used as a variable.
  • Fig.11 PMMA-SiO composite (molecular weight 4000) when transmitted light wavelength is 400nm
  • FIG. 6 is a graph showing the relationship between the PMMA content and the light transmittance when the PMMA content of is used as a variable.
  • FIG. 6 is a graph showing the relationship between the PMMA content and the light transmittance when the PMMA content of is used as a variable.
  • FIG. 6 is a diagram showing a relationship between the PMMA content and the light transmittance when the PMMA content at a wavelength of 400 nm is a variable.
  • FIG. 6 is a diagram showing a relationship between the PMMA content and the light transmittance when the PMMA content at a wavelength of 600 nm is used as a variable.
  • FIG. 6 is a diagram showing a relationship between the PMMA content and the light transmittance when the PMMA content at a wavelength of 800 nm is a variable.
  • FIG. 6 is a graph showing the relationship between the PMMA content at 400 nm and the light transmittance, and the relationship between the light wavelength and the light transmittance.
  • FIG. 3 is a graph showing the relationship between the content of PMMA (molecular weight 50000) at 600 nm and the light transmittance, and the relationship between the light wavelength and the light transmittance.
  • PPMMA-Ti ⁇ composite PMMA (molecular weight 50000) content as a variable
  • FIG. 5 is a diagram showing the relationship between the content of PMMA at 400 nm and the light transmittance.
  • FIG. 5 is a graph showing the relationship between the PMMA content at 600 nm and the light transmittance.
  • FIG. 5 is a graph showing the relationship between the content of PMMA at 800 nm and light transmittance.
  • FIG. 5 is a diagram showing the relationship between the PMMA content at 400 nm and the light transmittance when the abundance is a variable.
  • FIG. 6 is a graph showing the relationship between the content of 600 nm PMMA and the light transmittance when the abundance is a variable.
  • FIG. 6 is a graph showing the relationship between the light transmittance and the content of 800 nm PMMA when the abundance is a variable.
  • 2 2 is a diagram showing a uniform distribution.
  • FIG. 38 is a diagram showing the relationship between the PMMA content and light transmittance when the PMMA content at a wavelength of 400 nm is a variable (SiO molecular weight 50000, PMMA content 10.0 wt%).
  • FIG. 39 is a graph showing the relationship between PMMA content and light transmittance when the PMMA content at a wavelength of 400 nm is a variable (SiO molecular weight 50000, PMMA content 4.0 and 10.0 w)
  • the present invention is an organic polymer compound / metal oxide composite composition comprising an organic polymer compound and metal oxide nanoparticles, wherein the metal oxide nanoparticles are uniformly dispersed as particles. .
  • the present invention comprises an organic polymer compound, metal oxide nanoparticles and a polar solvent, and the metal oxide nanoparticles are uniformly dispersed as particles to form an organic polymer compound / metal oxide composite composition. It is a thing.
  • the metal oxide nanoparticles are an organic polymer compound / metal oxide composite composition in which the metal oxide nanoparticles are uniformly dispersed without aggregation.
  • the metal oxide nanoparticles form primary particles.
  • the metal oxide nanoparticles adsorbed on the organic polymer compound due to the contact and entanglement of the organic polymer compound abruptly cause secondary aggregation (right in Fig. 35). If the solvent is added again when secondary agglomeration occurs, the secondary agglomeration is resolved and a phenomenon of returning to the particulate state can be seen, and the state causing the secondary agglomeration is a reversible state. It is.
  • the critical concentration (C *) can be determined as follows.
  • the content of the organic polymer compound is such that when the weight of the metal oxide nanoparticles relative to the organic polymer compound is constant (generally, the metal oxide nanoparticles to be added are about 50 wt% at maximum by empirical force weight). ), The content of the organic polymer compound in the composite composition composed of the metal oxide nanoparticles, the organic polymer compound, and the polar solvent to be added, and is defined as being below the critical concentration (C *).
  • the critical concentration (C *) is the amount of metal oxide nanoparticles, organic polymer compound, and amount to be added when the content (weight) of metal oxide nanoparticles with respect to the organic polymer compound is constant. This is a value derived by measuring that the light transmittance of the composition composed of a polar solvent in which the light transmittance changes from the light transmittance of the composite composition.
  • the critical concentration (C *) determines the weight of a specific amount of metal oxide nanoparticles, and is composed of an organic polymer compound containing a specific amount of metal oxide nanoparticles and a polar solvent in which the amount to be added varies.
  • the results of measuring the amount of light transmission for a specific wavelength of an object can be divided into a group of light transmission amount that is high and a group of light transmission amount that is low.
  • the organic polymer compound content in the group is the highest, and the concentration is determined.
  • PMMA Polymethyl methacrylate
  • silica sol sol dissolved in the solvent of SiO
  • metal oxide of the metal oxide nanoparticles metal oxide of the metal oxide nanoparticles
  • THF was used as the agent, and hexane was used as the nonpolar solvent.
  • a specific amount of metal oxide nanoparticles (silica sol) is 4.2% by weight of silica sol.
  • Samples are prepared by changing the amount of THF added and changing the content of PMMA (molecular weight 4000). Add non-polar solvent, hexane, reprecipitate organic high molecular weight compound containing silica sol uniformly, collect and dry under reduced pressure to make test piece. In the test piece, the content of PMMA is fixed in the same state as described above.
  • the ratio of silica nanoparticles to PMMA set to 4.2% by weight and the amount of THF added as a variable
  • the light transmittance for each specific wavelength and wavelength is measured and illustrated according to the amount of THF added ( Figure 1).
  • the light transmission at each wavelength is measured using PMMA with different contents as a variable.
  • a complex consisting of PMMA and silica nanoparticles with low concentrations of PMMA (2.0 force and 5.0 wt%) is a complex consisting of PMMA and silica nanoparticles with high concentrations of PMMA (6.0 forces and 8.0 wt%).
  • the light transmittance of the former increases rapidly (over 80% at 400nm) and then gradually increases, while the latter increases gently (about 10% power over 50% at 400nm). After that, it gradually increases, and the transmittance exceeds 80% at a wavelength of about 700 nm.
  • concentration of PMMA there is a large difference in light transmission between 5.0 wt% and 6.0 wt% at 400 nm (Fig. 1).
  • the critical concentration (C *) is the largest of the organic polymer compound contents that change with a high light transmission, and the organic polymer compound content of 5.0 wt%.
  • the critical concentration (C *) is determined for a composition obtained by adding a specific amount of metal oxide nanoparticles and adding an organic polymer compound so that a specific concentration is obtained with a polar solvent added thereto.
  • the critical concentration (C *) determines the weight of a specific amount of metal oxide nanoparticles, the organic polymer compound containing a specific amount of metal oxide nanoparticles, and the amount to be added
  • the composition of a polar solvent with a variable change for the results obtained by measuring the amount of light transmission at a specific wavelength is high when it is divided into a group of light transmission amount that is high and a group of light transmission amount that is low.
  • the concentration of the organic polymer compound in the group with the highest light transmission amount was 5.3 wt% (400 nm), which was the critical concentration (Fig. 3).
  • a weight of a specific amount of metal oxide nanoparticles is determined, and an organic polymer compound is added to a specific concentration with a polar solvent added thereto.
  • Light transmittance at a specific wavelength obtained by measuring the metal oxide nanoparticles, the organic polymer compound, and the polar solvent composition to be added in a state where a specific amount of the organic polymer compound is added.
  • the critical concentration (C *) can be determined as follows.
  • FIG. 36 shows the state of the composition composed of nanoparticles. Yes As shown in the case of MMA as an organic polymer compound and SiO as a metal oxide nanoparticle
  • the limiting molecular weight (Mc) and the critical concentration (C *) are determined when the metal oxide nanoparticle content relative to the organic polymer compound is a specific amount.
  • a composition comprising a molecular compound and a polar solvent in which the amount to be added can be determined as a value derived from the light transmittance of a particular wavelength of the composition.
  • the limiting molecular weight (Mc) is obtained by adding an organic polymer compound having a specific molecular weight added to a specific concentration in a state where a polar solvent is added to a specific amount of metal oxide nanoparticles.
  • a composition comprising a specific molecular weight organic polymer compound having a specific concentration, a metal oxide nanoparticle, an organic high molecular compound and a polar solvent to be added, with the specific molecular weight of the organic polymer compound having a specific molecular weight as a variable.
  • the light transmittance of the specific wavelength of the organic polymer compound is determined as the molecular weight of the organic polymer compound having the lowest light transmittance in the group of the light transmittance of the specific wavelength, which is high, in view of the relationship of the organic polymer compound content, and the critical concentration (C *) can be determined to be the content of the organic polymer compound having the lowest molecular weight and transmittance of the specific molecular weight next to the organic polymer compound having the lowest molecular weight and light transmittance.
  • the specific amount of metal oxide nanoparticles is 4.2% by weight of silica sol.
  • the amount of THF added was changed, the content of PMMA was changed, hexane as a nonpolar solvent was added, and the organic polymer compound containing silica sol uniformly was reprecipitated and recovered. Then, the test piece is prepared by drying under reduced pressure. In the test piece, the content of PMMA is fixed in the same state as described above. With the ratio of silica nanoparticles to PMMA set to 4.2% by weight, and the amount of THF added as a variable, the light transmittance for each specific wavelength and wavelength is measured according to the amount of THF added. Set the concentration to 0.0, 1. 11, 3. 27, 5. 31, 7.
  • Test pieces were prepared in the same manner as described above.
  • PMMA concentration is set to 0.0, 1.11, 3.27, 5.31, 7. 35, 9. 20, 11. 02, 12. 77, 15. 27, 18. 38, 25. 24, 28. 26 , 31.04 Te each wt 0/0 (hang Rere, 400 nm, 600 nm, when showing the case of 800 nm, 8, 9, is shown in Figure 10. remained at high light transmittance this result also It ’ s power.
  • the molecular weight of PMMA is 4000, in this case, it is the result when the molecular weight is 4000. However, if the molecular weight is less than 4000, the light transmittance is higher than that when the molecular weight is 4000. High results. Considering these, the limiting molecular weight (Mc) is when the molecular weight of the organic polymer compound having the lowest light transmittance is 4000.
  • the light transmittance is high until 4.3 wt% and 2.3 wt%, and after this point, the transmittance can drop rapidly.
  • Figure 8 At a wavelength of 600 nm, the light transmittance is high, up to 4.8 wt% and 2.3 wt%, and after this point, the transmittance can drop rapidly (Fig. 9).
  • the wavelength is 800 nm, the light transmittance is high until 4.3 wt% and 2.3 wt%, and after this point, the transmittance can drop rapidly (Fig. 10).
  • the critical concentration (C *) is that the content of the organic polymer compound with the specific molecular weight having the next lowest transmittance after the organic polymer compound with the lowest light transmittance is 400 nm and the molecular weight of PMMA is 50000. 4.3% of the case, it can be relieved.
  • the critical concentration of the organic polymer compound is generated when the molecular weight of the organic polymer compound is small. do not do.
  • the organic polymer compound chain covers the surface of the metal oxide nanoparticles and the state where the primary particles are retained in the organic polymer compound suspension (the lower left figure in FIG. 36), and the metal oxide Since secondary agglomeration by nanoparticles is suppressed, agglomeration does not occur (Fig. 36, lower right figure).
  • An organic polymer compound-metal oxide composite composition in which the molecular weight of the organic polymer compound is not more than the limit molecular weight (Mc).
  • the limiting molecular weight (Mc) is composed of a metal oxide nanoparticle, an organic polymer compound, and a polar solvent in which the amount of added calories changes when the content of the metal oxide nanoparticles with respect to the organic polymer compound is a specific amount.
  • Mc a value derived from the light transmittance of the composition.
  • the limiting molecular weight (Mc) is a composition obtained by adding an organic polymer compound having a specific molecular weight so as to have a specific concentration in a state where a polar solvent is added to a specific amount of metal oxide nanoparticles.
  • the composition comprising a specific molecular weight organic polymer compound having a specific concentration, a metal oxide nanoparticle, an organic polymer compound, and a polar solvent to be added, with the specific molecular weight of the organic polymer compound having a specific molecular weight as a variable.
  • the specific amount of metal oxide nanoparticles is 4.2% by weight of silica sol.
  • the amount of THF added was changed, the content of PMMA was changed, and hexane, which is a nonpolar solvent, was added to uniformly contain silica sol.
  • the high molecular compound is re-precipitated, recovered, and dried under reduced pressure to prepare a test piece. In the test piece, the content of PMMA is fixed in the same state as described above.
  • the ratio of silica nanoparticles to PMMA with a molecular weight of 4000 be 4.2% by weight, and measure the light transmittance for each specific wavelength and wavelength according to the amount of THF added, with the amount of THF added as a variable.
  • PMMA concentration is 0.0, 1. 1 1, 3. 27, 5. 31, 7. 35, 9. 20, 1 1. 02, 12. 77, 15. 27, 18. 38, 25. 24, 28 26, 31. 04
  • Light transmittance and wavelength were measured for each wt%, 400, 60 0, 800, l OOOnm. All the transmittances showed high values exceeding 80% at an initial force of 400 ⁇ m.
  • Test pieces were prepared in the same manner as described above.
  • PMMA concentration is set to 0.0, 1. 1 1, 3. 27, 5. 31, 7. 35, 9. 20, 1 1. 02, 12. 77, 15. 27, 18. 38, 25. 24, 28 . 26, 31.04 Te each wt 0/0 [trick Rere, 400 nm, 600 nm, when showing the case of 800 nm, 8, 9, is shown in Figure 10.
  • Force s Wachikararu which has remained at a high light transmittance results force.
  • the limiting molecular weight (Mc) can be determined when the molecular weight of the organic polymer compound having the lowest light transmittance is 4000.
  • the critical concentration of the organic polymer compound (hereinafter referred to as C *) and the molecular weight Mc (limit molecular weight) of the organic polymer compound can be obtained by experiments (measurement results of ⁇ bsd. C * )
  • the critical concentration (C *) of the organic polymer compound concentration is a concentration at which the organic polymer compounds begin to contact each other.
  • the S 2 is as follows.
  • the polar solvent is generally called a polar solvent. It is a solvent composed of molecules with a dipole moment and is defined as a solvent with a large dielectric constant. Specific examples include water, alcohols, ketones, dimethyl sulfoxide, N, N-dimethylformamide hexamethinorephosphonoreamide, nitromethane, N-methylpyrrolidone, and tetrahydrofuran. Alcohols include methanol, ethanol, propanol, butyl alcohol and the like. Ketones include acetone and methyl butyl ketone.
  • Nonpolar solvents are solvents that do not have a dipole moment. It is possible to list aliphatic hydrocarbons such as hexane, alicyclic hydrocarbons such as cyclohexane, and aromatic hydrocarbons such as benzene.
  • Metal oxide nanoparticles are selected from SiO, Al 2 O, Sb 2 O, TiO, SnO, ZrO, and ZnO forces.
  • metal oxide nanoparticles are single metal oxide nanoparticles.
  • the metal oxide nanoparticles are metal oxide nanoparticle zonole.
  • the particle diameter is preferably 380 nm or less, which is the wavelength of visible light, preferably 10 to 100 nm, and more preferably 10 to 30 nm.
  • metal oxide particles can be used in the form of particles, but are preferably used in the form of a colloid dispersed in a solvent.
  • the force capable of using solvent-dispersed silica particles can be used.
  • Both water and organic solvents are known as dispersion solvents for colloidal silica.
  • use of colloidal silica dispersed in an organic solvent is preferred.
  • the organic solvent include methanol, isopropyl alcohol, n-butanol, ME K, PGME, ethyl acetate, n-hexane, toluene, and DMF.
  • the particle size, particle size distribution, and particle shape of colloidal silica dispersed in an organic solvent that can be used are not particularly limited:! .
  • the particle diameter is 10 to 30 nm.
  • the SiO used in the present invention is an organic dispersion colloid made by Fuso Chemical Co., Ltd.
  • the SiO sol has an average particle size of 15 nm and has not been surface modified.
  • the colloidal silica usable in the present invention can also be produced by a known method.
  • colloidal silica obtained by an acid neutralization method of water glass or colloidal silica produced by a sol-gel method using alkoxysilane can be used (for example, Japanese Patent Application Laid-Open No. 2005-314197, Japanese Patent Application 2004-). (See 91220).
  • the silica particles include silica particles treated with various conventionally known surface modifiers for the purpose of modifying the surface properties.
  • colloidal silica dispersed in an organic solvent that can be preferably used in the present invention include high-purity onoleganol commercially available from Fuso Chemical Industry Co., Ltd. These are well known not only for the colloidal properties but also for the particle size, particle size distribution, particle shape, dispersed organic solvent, concentration (12 to 40% by weight silica) of the dispersed silica, and the type and amount of impurities.
  • the colloid of titania can be produced by a known method. First, an aqueous solution of a titanium compound such as titanium tetrachloride and titanium sulfate such as titanium tetrachloride and a basic material force such as ammonia and caustic soda are obtained, and a titanium hydroxide gel called orthotitanic acid is obtained. Next, the titanium hydroxide gel precipitate is washed with water by decantation using water to separate the titanium hydroxide gel. Furthermore, a transparent viscous liquid can be obtained by allowing hydrogen peroxide to act and decomposing and removing excess hydrogen peroxide.
  • a titanium compound such as titanium tetrachloride and titanium sulfate such as titanium tetrachloride and a basic material force such as ammonia and caustic soda are obtained, and a titanium hydroxide gel called orthotitanic acid is obtained.
  • the titanium hydroxide gel precipitate is washed with water by decantation using water to separate the titanium hydro
  • titaazonosol solution containing titanium hydroxide in a peroxidized state After obtaining a titaazonosol solution containing titanium hydroxide in a peroxidized state, it is obtained by mixing with polyethylene glycol, polypropylene glycol, a polyethylene glycol polypropylene glycol copolymer, and polytetrahydrofuran (JP 2002-190324 A). Issue gazette).
  • the alumina zonole is produced as follows.
  • the mixture of the hydrophilic component and the fine particle alumina a material obtained by mechanically mixing and dispersing the fine particle alumina in the hydrophilic component can be used. It is preferable to use the one obtained by removing the dispersion medium of alumina sol from the mixture.
  • the hydrophilic component is used as a solution of the soluble organic solvent, the organic solvent is also removed from the mixture together with the alumina sol dispersion medium.
  • the alumina zonole in the present invention is a product in which fine-particle alumina is normally stably dispersed in water and / or alcohol as a dispersion medium.
  • dispersion media ketones, esters, and other organic solvents are also used.
  • the average particle size of the fine particle alumina in the alumina sol is usually lxm or less, and preferably 1 to 300111 111 111).
  • Zirconia particles are obtained from UEP (Daiichi Rare Element Chemical Co., Ltd.), PCS (Nippon Denko Co., Ltd.), JS_01, JS_03, JS-04 (Nippon Denko Co., Ltd.), UEP— Particles such as 100 (manufactured by Daiichi Rare Element Chemical Co., Ltd.) are used as nonionic dispersants, preferably phosphoric ester nonionic dispersants having a polyoxyethylene alkyl structure, and methyl acetate acetate as a dispersing aid.
  • Antimony trioxide nanoparticles have a light diffusing effect, and are used by mixing with a methacrylic resin, which is an organic polymer compound (Japanese Patent Laid-Open No. 05-255562).
  • the primary particle size of the particles can usually be 5 nm to: OO nm. Further, although the crystal structure is not particularly limited, a monoclinic system or the like can be used.
  • Zinc oxide particles (Huxitec Co., Ltd., Pazette CK (trade name), primary particle size 20-40 nm), dispersant (Enomoto Kasei Co., Ltd., PLAAD ED211 (trade name)) of high molecular polycarboxylic acid It is obtained by mixing an amidoamine salt and methylethylketone as a dispersion medium (Japanese Patent Laid-Open No. 2005-314648).
  • any thermoplastic resin can be used as the present invention.
  • the organic polymer compound that can be used in the present invention any thermoplastic resin can be used.
  • the polycarbonate resin, polyester resin, polyamide resin, polyacetal resin, polyphenylene ether resin, acrylic-methacrylic resin, polystyrene resin, polyurethane resin, and polyolefin resin are not particularly limited.
  • the target of the products used depends on the molecular weight of these resins. For example, if the molecular weight is about 4000 to 8000, it can be used as a surface treatment agent. When the molecular weight force is 0000 or more, it can be processed into a plate shape or a sheet shape.
  • methacrylic resin compositions include polymers such as acrylic acid, acrylic acid esters, attalinoleamide, acrylonitrile, methacrylic acid, and methacrylic acid esters, and resin modified resins. Copolymers with other monomers such as styrene for quality.
  • Typical polymers of methacrylic acid esters and acrylic acid esters are Typical polymers of methacrylic acid esters and acrylic acid esters.
  • a typical polymethacrylate is polymethyl methacrylate whose ester residue is CH.
  • Polymethyl methacrylate is obtained by radical polymerization of methyl methacrylate by bulk polymerization, solution polymerization, and suspension polymerization. Specifically, ethyl methacrylate, positive butyl methacrylate, isobutyl methacrylate, positive hexyl methacrylate, lauryl methacrylate, methyl acrylate, positive butyl acrylate, isobutyl acrylate, and 2-ethylhexyl acrylate, Copolymer with dimethylaminoethyl methacrylate, tert-butylaminoethyl methacrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, glycidyl methacrylate (2004-22482), and acrylic monomer (methyl acrylate) A methyl methacrylate homopolymer, or a copolymer of 50% by mass or more of methyl methacrylate with other bulle monomers.
  • acrylic acid and methacrylic acid are collectively referred to as (meth) acrylic acid
  • acrylate and methacrylate are collectively referred to as (meth) acrylate.
  • other vinyl monomers copolymerized with methyl methacrylate include, for example, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate.
  • elastomers such as polybutadiene, butadiene / butyl acrylate, and copolymers based on polybutyl acrylate are added to the aforementioned polymers and copolymers.
  • Molding materials Ataripet MD, Ataripet VH, Ataripet MF, Ataripet V, Ataripet IR, Ataripet UT, ST, Ataripet VH-3R (Mitsubishi Rayon), Parapet G, Parapet HR , Parapet GF, Parapet EH, Parapet HR—L (above, Kuraray) Sheet material Atarilite E, Atarilite S, L, Atarilite IR, Atarilite HR (above Mitsubishi Rayon Co., Ltd.) .
  • the polyester is as follows.
  • the polyester resin (A) is a polyester obtained by polycondensation of a dicarboxylic acid compound and a dihydroxy compound, polycondensation of an oxycarboxylic acid compound, or polycondensation of a mixture of these three components.
  • dicarboxylic acid compounds used here are terephthalenolic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenylenoetheretherdicarboxylic acid, diphenylethanedicarboxylic acid, cyclohexanedicarboxylic acid, adipic acid
  • dicarboxylic acids such as sebacic acid and their alkyl, alkoxy or halogen substituted products.
  • These dicarboxylic acid compounds are also esters. It is also possible to use it in the polymerization in the form of a formable derivative, for example a lower alcohol ester such as dimethyl ester. Two or more of these may be used.
  • dihydroxy compounds constituting the polyester resin (A) include ethylene glycol, propylene glycol, butanediol, neopentyl glycol, no, id quinone, resorcin, dihydroxyphenyl, naphthalenediol, Dihydroxy diphenyl ether, cyclohexanediol, 2,2-bis (4-hydroxyphenyl) propane, dihydroxy compounds such as ethoxylated bisphenol A, polyoxyalkylene glycols and their alkyl, alkoxy or halogen substituents 1 type or 2 types or more can be mixed and used.
  • oxycarboxylic acids examples include oxycarboxylic acids such as oxybenzoic acid, oxynaphthoic acid, and diphenyleneoxycarboxylic acid, and their alkyl, alkoxy, or halogen substituents.
  • derivatives capable of forming an ester of these compounds can also be used. In the present invention, one or more of these compounds are used.
  • a polyester having a branched or crosslinked structure in which a trifunctional monomer, that is, trimellitic acid, trimesic acid, pyromellitic acid, pentaerythritol, trimethylolpropane, or the like is used in a small amount may be used.
  • fragrances such as ethylene or propion oxide adducts of dibuccate terephthalic acid, tetrabromoterephthalic acid, tetrachloroterephthalic acid, 1,4 dimethyltetrachlorobenzene, tetrabromobisphenol A, tetrabromobisphenol A
  • a polyester copolymer having a halogen compound using a compound having a halogen compound as a substituent in the group nucleus and an ester-forming group is also be used.
  • polyester elastomer examples include a block copolymer of a hard segment mainly composed of an alkylene terephthalate unit and a soft segment composed of an aliphatic polyester or a polyether.
  • any of the polyester resins produced by polycondensation can be used as the component (A) of the present invention, using the above compound as a monomer component, and used alone or in combination of two or more.
  • polyalkylene terephthalate more preferably polybutylene terephthalate and a copolymer mainly composed thereof.
  • any epoxy group-modified polypropylene resin (B) can be used as long as the epoxy group is covalently bonded to the polypropylene chain.
  • a polymer chain in which a monomer other than a propylene group is copolymerized can be used, and examples thereof include a propylene-ethylene copolymer and a propylene / ethylene / ethylene copolymer. It is also possible to use a mixture of these.
  • Examples of the epoxy group-containing monomer component constituting the epoxy group-modified polypropylene resin (B) include glycidyl acrylate, glycidyl methacrylate, 4,5-epoxybenzyl acrylate, 4,5-epoxybenzyl methacrylate, Forces that can be exemplified by allyl glycidyl ether, methacryl glycidyl ether, butadiene monoepoxide and the like. Particularly, glycidyl acrylate and glycidyl methacrylate are preferably used.
  • the addition amount of the epoxy group-containing monomer is preferably in the range of 0.1 to 15% by weight in all components, and more preferably 0.5 to 10% by weight.
  • the polycarbonate resin is as follows.
  • the polycarbonate resin is a positive carbon dioxide having a viscosity average molecular weight of 10,000 to 100,000, preferably 15,000 to 60,000, derived from divalent phenol, and usually a solution method or a divalent phenol and a carbonate precursor. Manufactured by melting method.
  • divalent phenols include bisphenol A [2, 2 _bis (4-hydroxyphenyl) propane], bis (4-hydroxyphenyl) methane, and bis (4-hydroxyphenyl) ether.
  • Preferred divalent phenols are bis (4-hydroxyphenyl) alkane compounds, especially bisphenol A.
  • Divalent phenol can be used alone or in combination of two or more.
  • the carbonate precursor include carbonyl halide, carbonate or haloformate. Typical examples include phosgene, diphenyl carbonate, dihaloformate of dihydric phenol, and mixtures thereof.
  • a suitable molecular weight regulator, branching agent, catalyst and the like can also be used (Japanese Patent Laid-Open No. 7-216215).
  • the polyolefin resin is as follows.
  • Polyolefin resins are various and are not particularly limited.
  • low-density polyethylene resin high-density polyethylene resin, ethylene and monoolefin having 3 to 10 carbon atoms are used in common.
  • examples thereof include polyethylene resins such as linear low density polyethylene resins obtained by polymerization, polypropylene resins such as unmodified polypropylene resins and modified polypropylene resins, and ethylene / vinyl acetate copolymer resins.
  • These various polyolefin resins may be used alone or in combination of two or more.
  • the polyolefin resin is a polyethylene-based resin, particularly a low-density polyethylene resin and a high-density polyethylene resin, in that it is excellent in processability such as molding and powdering and has low cost. JP 2002-40511).
  • Examples of the polyacetanol resin include an acetal homopolymer and an acetal copolymer mainly composed of oxymethylene units and containing at least one oxyalkylene unit having 2 to 8 carbon atoms in the polymer main chain. .
  • acetal homopolymer a stabilized oxymethylene homopolymer obtained by substituting an unstable hydroxyl group at the terminal with an ester group or an ether group can be used.
  • substantially anhydrous formaldehyde is introduced into an organic solvent containing a basic polymerization catalyst such as an organic amine, an organic or inorganic tin compound, or a metal hydroxide and polymerized, and the polymer is filtered off. After that, it may be produced by heating in the presence of sodium acetate in acetic anhydride to acetylate the terminal.
  • acetal copolymer examples include a substantially anhydrous trioxane or a cyclic oligomer of formaldehyde such as tetraoxane and at least one cyclic ether or cyclic formal as a copolymerization component, such as cyclohexane or benzene.
  • a polymerization catalyst such as boron trifluoride, boron trifluoride hydrate and boron trifluoride is coordinated with an organic compound containing an oxygen atom or a sulfur atom. Examples thereof include those prepared by adding at least one compound selected from the group consisting of compounds, polymerizing, and decomposing and removing unstable terminals.
  • a polymer obtained by bulk polymerization by introducing a premixture of trioxane and a copolymerization component / catalyst into a self-cleaning stirrer without using any solvent.
  • the polymer can be produced by washing the polymer by washing, or by deactivating the catalyst with a deactivator, and then decomposing and removing unstable terminals.
  • a bulk polymerization of trioxane and cyclic ether or cyclic formal in the presence of a polymerization catalyst such as boron trifluoride 'jetyl etherate, followed by addition of a hindered amine compound.
  • the polyacetal can be used in combination with dipentaerythritol or tripentaerythritol. Dipentaerythritol has the chemical formula (HOCH) CCH OC
  • H C (CH OH).
  • pentapentaerythritol used in the present invention is represented by the chemical formula (HOCH) CCH OCH C (CH OH) CH OCH C (CH OH).
  • the amount of dipentaerythritol and / or tripentaerythritol added is polyacetal.
  • the amount of 0.01 to 20 parts by weight is required with respect to 100 parts by weight of the resin, and preferably 0.01 to 5 parts by weight. If the amount is less than 001 parts by weight, sufficient thermal stability cannot be obtained.
  • hindered phenolic compounds those having a molecular weight of 300 or more can be used.
  • Polystyrene is as follows.
  • Styrene resins that maintain the transparency and rigidity of polystyrene and have improved heat resistance Styrene ⁇ -methylstyrene copolymer (SAMS), styrene acrylic acid copolymer (SAA), styrene-methacrylic acid copolymer (SMAA) and heat-resistant styrene-based copolymers such as styrene-maleic anhydride copolymer (SMA) (Japanese Patent Laid-Open No. 2005-248002).
  • SAMS Styrene ⁇ -methylstyrene copolymer
  • SAA styrene acrylic acid copolymer
  • SMAA styrene-methacrylic acid copolymer
  • SMA heat-resistant styrene-based copolymers
  • Polyphenylene ether is as follows.
  • the polyphenylene ether resin of the present invention has a reduced viscosity (77 spZc) measured at 30 ° C. with a chloroform solution having a concentration of 0.5 g / dl of 0.04 to 0.20 dlZg, preferably 0.06. Low molecular weight polyphenylene ether resin of ⁇ 0.20dlZg.
  • the reduced viscosity must be 0.04 dl / g or more from the viewpoint of mechanical strength when used in electronic parts, and 0.20 dl / g or less is required from the viewpoint of workability to electronic parts. It is important.
  • the polyphenylene ether resin of the present invention has a color index (hereinafter abbreviated as C.I) of 1.0 or less, preferably 0.9 to 0. 0 from the viewpoint of electrical characteristics in electronic parts and the like. 1 (Japanese Unexamined Patent Application Publication No. 2005-272631).
  • the polyamide is as follows.
  • polyamide Since polyamide has a property of containing water, a copolymer is used to prevent this.
  • Polyamide and a copolymer such as metatalylate and specific examples include the following. Methyl methacrylate monomethylstyrene monomaleic anhydride copolymer:! To 89 wt%, polyamide resin:! To 89 wt%, maleic anhydride modified ethylene monopropylene copolymer 10 to 40 wt% Thermoplastic resin composition (Japanese Patent Laid-Open No.
  • a thermoplastic resin composition comprising 6 to 15% by weight of the agent (B) and 1 to 5% by weight of at least one copolymer (C) containing polyamide and a polyether IJ (JP 20001-64471)
  • the polyurethane resin includes an organic polyisocyanate, a high molecular weight hydrophilic polyol and / or polyamine (hereinafter referred to as "hydrophilic component"), and a polysiloxane having at least one active hydrogen-containing group in the molecule. And a hydrophilic polyurethane resin obtained by reacting at least one reactive group and a compound having at least one hydrolyzable silyl group in the same molecule (JP-A-2005-239780) .
  • Hexane was used as a nonpolar material.
  • the content of SiO sol relative to PMMA (molecular weight 4000) was 4.2% by weight.
  • PMMA concentration is 2.0 wt%, PMMA concentration is 4.3 wt%, PMMA concentration is 5.0 wt%, PMMA concentration is 6.0 wt%, PMMA concentration is 6.7 wt%, and PMMA concentration is 8.0 wt%.
  • PMMA, SiO sol, and THF blended (added PM) is 2.0 wt%, PMMA concentration is 4.3 wt%, PMMA concentration is 5.0 wt%, PMMA concentration is 6.0 wt%, PMMA concentration is 6.7 wt%, and PMMA concentration is 8.0 wt%.
  • Table 2 shows the breakdown of the amount of MA, the amount of SiO sol used, and the amount of THF used.
  • a dispersion of silica sol is added to a mixture of THF and PMMA, sufficiently stirred, and hexane is added to obtain PMMA containing silica uniformly by reprecipitation. That power S can be.
  • the obtained precipitate was collected by filtration (suction filtration) and dried under reduced pressure to obtain a PMMA composite composition powder in which nanoparticles were dispersed, thereby producing a test piece.
  • the heating condition of the sheet was 190 ° C, and the pressure was 40 to 50 MPa, 10 hours, and 25 MPa for 1 minute.
  • Figure 1 shows the results of measuring the relationship between UV wavelength and UV transmittance with MA content as a variable.
  • the ratio of silica nanoparticles to PMMA is 4.2% by weight, the amount of THF added is a variable, and the light transmittance for each specific wavelength and wavelength is measured and illustrated according to the amount of THF added (Fig. 1). ).
  • the light transmission at each wavelength is measured using PMMA with different contents as a variable.
  • a composite consisting of low concentration PMMA (2.0 force 5. Owt%) PMMA and silica nanoparticles consists of high concentration PMMA (6.0 force, etc. 8. Owt%) PMMA and silica nanoparticles force.
  • the light transmittance of the former increases rapidly (over 80% at 400 nm) and then gradually increases, while the latter increases gently (from 10% to 50% at 400 nm). After that, it gradually increases and the transmittance exceeds 80% at a wavelength of about 700 nm.
  • concentration of PMMA there is a large difference in light transmission between 5.0 wt% and 6.0 wt% at 400 nm (Fig. 1). The largest amount of organic polymer compound content that shifts in a state of high light transmission, the content of organic polymer compound 5. Owt% is the critical concentration (C *) required.
  • the critical concentration (C *) is determined for a composition obtained by adding a specific amount of metal oxide nanoparticles and adding an organic polymer compound so that a specific concentration is obtained with a polar solvent added thereto.
  • the critical concentration (C *) determines the weight of a specific amount of metal oxide nanoparticles, the polarity of the organic polymer compound containing a specific amount of metal oxide nanoparticles and the amount added
  • the results obtained by measuring the amount of light transmission for a specific wavelength are divided into a group of light transmission amounts that are high and a group of light transmission amounts that are low.
  • the concentration of the organic polymer compound with the highest content in the group was set to 5.3 wt% (400 nm), which was the critical concentration (Fig. 3).
  • Fig. 3 shows the light transmittance for PMMA concentration powers of 3wt%, 6.4wt%, 5.3wt%, 4.3wt%, 3.2wt%, 2.2wt%, and 0.00wt%.
  • 0.0 wt% is ⁇
  • 2.2 wt% is mouth
  • 3.2 wt% is%
  • 4.3 wt% is X
  • 5.3 wt% is ⁇
  • 6.4 wt% is ⁇
  • 7.3 wt% is garden It was.
  • Figure 5 shows the relationship between PMMA concentration and UV light transmittance for PMMA (molecular weight 50000) at a wavelength of 600 nm.
  • the transmittance exceeds 80%.
  • the UV transmittance decreases rapidly. It can be seen that there is a critical polymer concentration at which the transmittance decreases rapidly.
  • Figure 6 shows the UV light transmittance when the PMMA concentration changes at a wavelength of 800 nm.
  • the PMMA concentration is 5.3 wt% or less
  • the transmittance exceeds 80%.
  • the UV transmittance decreases rapidly.
  • FIG. 8 shows the relationship between PMMA concentration and light transmittance at 400 nm for PMMA with a molecular weight of 100000.
  • PMMA concentration 2. Decreases rapidly from 83 wt%.
  • the light transmittance changes greatly between 2.83 wt% and 3.79 wt%.
  • Figure 9 shows the UV light transmittance when the PMMA concentration of PMMA (with a molecular weight of 100000) changes at a wavelength of 600 nm. It can be seen that the PMMA concentration drops sharply below 2.80 wt%.
  • Figure 10 shows the UV light transmittance when the PMMA concentration of PMMA (with a molecular weight of 100000) changes at a wavelength of 800 nm. It can be seen that the PMMA concentration drops sharply below 2.80 wt%.
  • a weight of a specific amount of metal oxide nanoparticles was determined, and an organic polymer compound was added to a specific concentration with a polar solvent added thereto.
  • Light transmittance at a specific wavelength obtained by measuring the metal oxide nanoparticles, the organic polymer compound, and the polar solvent composition to be added in a state where a specific amount of the organic polymer compound is added.
  • the critical concentration (C *) can be determined as follows.
  • FIG. 36 shows the state of the composition composed of the compound and metal oxide nanoparticles. Shown as MMA as organic polymer compound and SiO as metal oxide nanoparticles
  • the critical molecular weight (Mc) and the critical concentration (C *) are determined when the metal oxide nanoparticle content relative to the organic polymer compound is a specific amount.
  • the composition composed of a molecular compound and a polar solvent in which the amount to be added was determined to be a value derived from the light transmittance of a special wavelength of the composition.
  • the limiting molecular weight (Mc) is obtained by adding an organic polymer compound having a specific molecular weight added to a specific concentration in a state where a polar solvent is added to a specific amount of metal oxide nanoparticles.
  • a composition comprising a specific molecular weight organic polymer compound having a specific concentration, a metal oxide nanoparticle, an organic high molecular compound and a polar solvent to be added, with the specific molecular weight of the organic polymer compound having a specific molecular weight as a variable.
  • the light transmittance of the specific wavelength of the organic polymer compound is determined as the molecular weight of the organic polymer compound having the lowest light transmittance in the group of the light transmittance of the specific wavelength, which is high, in view of the relationship of the organic polymer compound content, and the critical concentration (C *) was determined to be the content of the organic polymer compound having the lowest molecular weight and transmittance of the specific molecular weight next to the organic polymer compound having the lowest molecular weight and light transmittance.
  • the specific amount of metal oxide nanoparticles is 4.2% by weight of silica sol.
  • the amount of THF added was changed, the content of PMMA was changed, hexane as a nonpolar solvent was added, and the organic polymer compound containing silica sol uniformly was reprecipitated and recovered. Then, the test piece is prepared by drying under reduced pressure. In the test piece, the content of PMMA is fixed in the same state as described above.
  • the light transmittance for each specific wavelength and wavelength is measured according to the amount of THF added.
  • PMMA concentration is set to 0.0, 1. 11, 3. 27, 5. 31, 7. 35, 9. 20, 11. 02, 12. 77, 15. 27, 18. 3 8, 25. 24, 28 26, 31.04
  • Test pieces were prepared in the same manner as described above.
  • PMMA concentration is set to 0.0, 1.11, 3.27, 5.31, 7. 35, 9. 20, 11. 02, 12. 77, 15. 27, 18. 38, 25. 24, 28. 26 , 31.04 Te each wt 0/0 (hang Rere, 400 nm, 600 nm, when showing the case of 800 nm, 8, 9, is shown in Figure 10. as a result force both been at high light transmission It ’ s power.
  • Figure 11 shows the relationship between PMMA concentration and light transmittance of PMMA (with a molecular weight of 4000) at a wavelength of 400 nm. In this case, the light transmittance does not decrease.
  • Figure 12 shows the relationship between the PMMA concentration and light transmittance of PMMA (with a molecular weight of 4000) at a wavelength of 600 nm. In this case, the light transmittance does not decrease.
  • Figure 13 shows the relationship between the PMMA concentration and light transmittance of PMMA (with a molecular weight of 4000) at a wavelength of 800 nm. In this case, the light transmittance does not decrease.
  • the critical concentration (C *) is the molecular weight of PMMA at a wavelength of 400 nm, which is the content of the organic polymer compound with the specific molecular weight of the next lowest transmittance of the organic polymer compound with the lowest light transmittance. If the value is 50000, it is 4.3 wt%.
  • the molecular weight of the organic polymer compound exceeds the limit molecular weight (Mc)
  • the critical concentration (C *) was determined when the molecular weight of PMMA, which has the lowest molecular weight and the specific molecular weight of the transmittance, was next to the organic polymer compound of the transmittance. If a more accurate value is to be obtained, it is possible to obtain a value closer to the actual value by performing an experiment with the molecular weights of 40000 and 50000.
  • the molecular weight of the organic polymer compound is smaller than the organic polymer compound. Does not occur.
  • the organic polymer compound chain coats the surface of the metal oxide nanoparticles and the state in which the primary particles are retained in the organic polymer compound suspension (the lower left figure in FIG. 36), and the metal oxide nanoparticles Since secondary agglomeration by particles is suppressed, agglomeration does not occur (Fig. 36, lower right figure).
  • the limiting molecular weight (Mc) is a polarity in which the amount of metal oxide nanoparticles, organic polymer compound, and added calories changes when the content of metal oxide nanoparticles with respect to the organic polymer compound is a specific amount.
  • Mc limiting molecular weight
  • the molecular weight of PMMA is 4000 molecular weight limit (Mc).
  • Fig. 37 shows the relationship between light wavelength and light transmittance when the PMMA content is a variable (Fig. 37).
  • Figure 38 shows the relationship between PMMA content and light transmittance when the PMMA content at a wavelength of 400 nm is a variable (SiO molecular weight 50000, PMMA content 10. Owt).
  • Figure 39 shows the relationship between PMMA content and light transmittance when the PMMA content at a wavelength of 400 nm is a variable (SiO molecular weight 50000, PMMA content 4.0 and 10.0).
  • a method for obtaining a composite in which nano-sized titania is uniformly dispersed in an organic polymer compound is as follows.
  • Polymethylmetatalate (hereinafter also referred to as PMMA) as an organic polymer compound, titanium oxide (a dispersion of titanium oxide in a solvent (methyl isobutyl ketone: MBK)) as a metal oxide of nanoparticles, and a polar solvent Methyl ethyl ketone (MEK) and hexane as a nonpolar solvent were used.
  • a solvent methyl isobutyl ketone: MBK
  • MEK Methyl ethyl ketone
  • MEK Methyl ethyl ketone
  • PMMA concentration is 1.0 wt%
  • PMMA concentration is 5.0 wt%
  • PMMA amount and TiO amount was used (PMMA concentration to be added, TiO and MEK usage)
  • the PMMA concentration is calculated by the following formula.
  • the measurement results of light transmittance at a PMMA concentration of 1.0% by weight and a PMMA concentration of 5.0% by weight are as shown in FIG.
  • the PMMA concentration of the composite sheet is 1. Owt%, it indicates that the light transmittance exceeds 80% at 700nm or more. It can be seen that the light transmittance with a PMMA concentration of 5.0% by weight is low, and that it starts with the value.
  • TiO concentration is 0.0 wt% 0.93 wt% 1.
  • Figure 18 shows the UV transmittances for 3.03 wt%, 4.18 wt%, 5.02 wt%, 5.86 wt%, 6.95 wt%, and 10.49 wt%.
  • 0 ⁇ 93 wt% is 67%. At 600, it is between 3 and 03% and between 80 and 100%. At 800 nm, it is between 80% and 100% below 4.18.
  • Ti ⁇ concentration is 0 ⁇ 0wt%, 0.61wt%, 1.23wt%
  • the initial transmittance is between 70% and 80% and low
  • 600 nm at 5.29 wt% or less is between 6.84 wt% or less.
  • the light transmittance is between 80 and 100. These can be said to be critical concentrations.
  • TiO concentration 0.0 wt%, 0.62 wt%, 1.23 wt%
  • Figure 27 shows the UV transmissivity for 1.53 wt%, 1.83 wt%, 2.13 wt%, 2.43 wt%, 3.02 wt%, and 3.59 wt%.
  • 0.6 wt% is 70%
  • 600 mm is 1.5 wt% or less
  • 800 nm is 1.8 wt%.
  • the light transmittance is between 80 and 100 for less than%.
  • the results of recording the UV light transmittance at 400 nm, 600 nm and 800 nm are shown in FIGS. 27, 28 and 29.
  • the relationship of the light transmittance to 2 is shown in FIG. 30, FIG. 31, and FIG. 32 for the wavelength forces of S400 nm, 600 nm, and 800 nm.
  • the TiO concentration is 0.93 wt%
  • Ti ⁇ is from 0.61 wt% to 2.42 wt%.
  • the light transmittance is maintained at 70% and then decreases rapidly.
  • the light transmittance decreases at a constant rate exceeding 90%, and then decreases rapidly.
  • the light transmittance remains stable in the range exceeding 95%, and then decreases rapidly.
  • the change in light transmittance was measured according to the change.
  • a method for obtaining a composite in which nano-sized alumina is uniformly dispersed in an organic polymer compound is as follows.
  • PMMA Polymethylmethacrylate
  • alumina a dispersion of alumina in a solvent
  • MEK methylethylketone
  • Hexane nonpolar solvent Hexane
  • the obtained precipitate is collected by filtration (suction filtration) and dried under reduced pressure, whereby a powder of PMMA composite composition in which nanoparticles are uniformly dispersed can be obtained.
  • heat press to conduct a physical property test and evaluate it.
  • TiO concentration is 1. Owt%, 2.01 wt%, 3.01 wt%
  • Owt% is ⁇
  • 2 ⁇ 01wt% is mouth
  • 3 ⁇ 01wt% is ⁇
  • 4.0wt% is ⁇
  • 5 ⁇ 02wt% is ⁇
  • 6.01wt% is country
  • 8.01wt% is ⁇ .
  • 1 ⁇ Owt% is 50%. At 600, 1 Owt% is 78%. At 800 ⁇ m, it is between 80% and 100% below 3.01.
  • Fig. 34 shows the measurement results of UV light transmittance when 130g, 150g, 170g, 190g and 210g were added.
  • the amount of MEK added is 0, ⁇ , when 10 mg, mouth when 3 Og, ⁇ when 50 g, ⁇ when 70 g, X when 90 g, country when 110 g, 130 g ⁇ for 150g, ⁇ for 150g, ⁇ for 170g, ⁇ 0 for 190g, and loro for 210 ⁇ .
  • the light transmittance is 80 to 100 ⁇ / ⁇ when the weight is 90 g or less (10 g, 30 g, 50 g, 70 g, 90 g).
  • the weight is 90 g or less (10 g, 30 g, 50 g, 70 g, 90 g).
  • 800nm Tangle up to f 170g or less (10g, 30g, 50g, 70g, 90g, 110g, 130g, 150g and 170g)
  • Light transmittance f up to 80 or more 100 0 / o is there.
  • the PMMA concentration was changed by adding small amounts of powder with a molecular weight of 50,000), and the light transmittance according to the wavelength was observed.
  • UV light transmittance measurement result is 400nm Above, it is between 65 and 74%, 88 at 600nm. / 0 force, et al. Is contained between 94% and 800nm results in between 94 and 97%.
  • the refractive index of the entire organic polymer compound can be increased by adopting the metal oxide nanoparticles as the organic polymer compound, it can be used as a light transmissive material in addition to optical products. Is expected. In addition, it is expected as a curable composition capable of forming a cured product excellent in antistatic property and antifouling property as well as imparting scratch resistance to the surface of the base material, and since it can also raise the hardness of the material, it can be used as a surface treatment agent. The use of is considered.

Abstract

 有機高分子化合物、金属酸化物ナノ粒子及び極性溶媒からなり、前記金属酸化物ナノ粒子は粒子として均一分散している有機高分子化合物・金属酸化物複合体組成物である。有機高分子化合物の含有量は、前記有機高分子化合物に対する金属酸化物ナノ粒子の重量を一定とした場合に、金属酸化物ナノ粒子、有機高分子化合物及び添加する極性溶媒からなる複合体組成物の有機高分子化合物含有量であり、臨界濃度(C*)以下である。  又、有機高分子化合物の分子量が限界分子量(Mc)以下であり、限界分子量(Mc)は、前記有機高分子化合物に対する金属酸化物ナノ粒子含有量を特定量とした場合に、金属酸化物ナノ粒子、有機高分子化合物及び添加する量が変わる極性溶媒からなる組成物について、組成物の光透過率より導き出される値である。

Description

明 細 書
ナノ粒子を分散させた透明な高分子材料及びその製造方法
技術分野
[0001] 本発明は、ナノ粒子を分散させた透明な高分子材料及びその製造方法に関する。
背景技術
[0002] 有機高分子化合物と無機化合物といった特性が相違する材料からその複合体を製 造することにより、従来の材料では期待できない新たな特性の物質を得ようとする研 究が積極的に進められてきた。
[0003] 無機化合物として、金属酸化物のナノ粒子を用いることがよく行われる。ナノ粒子を 採用することにより有機高分子化合物全体の屈折率を高めることが可能となるので、 光学製品のほか光透過性の材料として用いることができることに期待が寄せられてい る。又、基材表上面に耐擦傷性を付与とともに、帯電防止性および防汚性に優れる 硬化物を形成しうる硬化性組成物として期待され、材料の硬度を挙げることもできるこ とから表面処理剤への利用が検討されている。
金属酸化物粒子がミリ単位などといった大きな平均粒径のものを用いると、ポリマー 材料の透明性が低下するおそれが十分にある。材料に当たる光が光源方向に反射 されたり、側方に逸れたりして、見かけの透明性が低下する。そこで、ナノ粒子の金属 酸化物を用いることにより、よい成果を挙げることに期待がかけられている。しかしな がら、ナノ粒子の金属酸化物を用いると、粒子がポリマー中で凝集し、光を散乱又は 反射しかねない大きな粒子として作用する好ましくない傾向が見られる。光散乱を防 止し、同時にナノ粒子による凝集作用を防止することが必要となる(特許文献 1)。
[0004] この技術分野には以下の発明がある。
溶剤に分散した可視光線波長以下の直径を有する金属酸化物微粒子であるシリカ 微粒子と、溶剤に溶解した透明な非結晶の有機高分子化合物 (ポリオレフイン系榭 脂、ポリメタタリリル樹脂、ポリカーボネート樹脂、ポリプロピレンオリゴマー等)とを混 合することにより、又は、前記シリカ微粒子を非結晶の有機高分子の生成過程で混 合することにより得られる樹脂組成物を溶剤に溶解して得た樹脂溶液を、透明樹脂 板上に塗布し、 18〜25°Cの雰囲気温度でかつ 16〜32kg/m2'時の乾燥速度で乾 燥せしめてなる樹脂製ウィンドウであって、該樹脂製ウィンドウの最表層に 50〜92重 量%のシリカ微粒子を含有し、該ウィンドウの厚さ方向に関して、表面から内部中心 方向に向かって該シリカ微粒子の含有量が漸減する濃度勾配を有する樹脂製ウィン ドウ (特許文献 2)。
この発明は、樹脂組成物中に含まれる溶剤を加熱し溶剤を除去するものであり、最 表層ではシリカ濃度 50〜92重量%となる。有機高分子化合物と対比して微粒子状 のシリカ粒子の存在量を多くすることを意図しており、このような場合にあっては、金 属酸化物の塊状化が起こり、凝集を伴わずに金属微粒子を均一分散させることは達 成していない(本発明者らによる特許文献 9の 0010)。
。本発明者らは「超臨界二酸化炭素中で、ポリマー表面部に有機金属化合物を浸透 させ、該浸透した有機金属化合物を分解して有機—無機ナノコンポジットを形成させ る」発明を行った(特開 2003— 2994号公報)。塊状化される金属微粒子を均一分散 させるために、超臨界流体を利用する発明がある(引用文献 3)。この発明では、前記 金属酸化合物粉体を超臨界流体とし、その状態で混練させるので、乾固時に凝集し た酸化化合物を前記熱可塑性樹脂中に一次粒子として再分散させることができるが 、従来のポリマー中に分散させたナノシリカの分散状態であって、ナノシリカの分散状 態は凝集を伴った均一分散したものであり(本発明者らによる「2006— 63224号公 報」の「0010」項)、この点で、有機高分子化合物中にナノ粒子の金属酸化物粒子が 均一分散している有機高分子化合物及び金属酸化物からなる複合体組成物を意味 するものではない。熱可塑性樹脂と前記酸化化合物粉体とを超臨界流体の存在下 において混練させて、熱可塑性樹脂に無機系微粒子(シリカ(SiO )、アルミナ (A1
2 2
〇)、 Sb〇、チタニア(Ti〇)、 Sn〇、ジルコユア(Zr〇、)、酸化亜鉛(Zn〇)を配
3 2 5 2 2 2
合するナノ複合アクリル樹脂組成物の発明を行った(特許文献 4)。この場合でも無機 系微粒子の二次粒子を形成することの対策がなぐ当初から粒子のみからなる微粒 子状金属酸化物を均一に分散させた有機高分子化合物を提供するものではなぐこ の点で根本的な解決策を提案するものではない。本発明者らは、モノマーと、重合開 始剤とを含む超臨界流体中で、前記モノマーを重合させることによる高分子複合材 料の製造方法(再表 2004— 16659号公報)及びメソポーラス無機ナノ微粒子と、モ ノマーと、重合開始剤とを含む超臨界流体中で、前記モノマーを重合させることによ る、無機ナノ微粒子を含む有機ポリマーの製造方法の発明を行った (特開 2004— 1 68843)。
本発明者らは、当初からナノ粒子の金属酸化物を均一に分散させた有機高分子化 合物を提供することを求めて、研究を積み重ねた。
金属酸化物ナノ粒子を求めるために以下の発明を行った。
樹脂中に存在させるシリカナノ粒子を、シラノール基による改質した改質シリカ組成 物(特許文献 5)では、シリコーン化合物は、含まれるアルキル基が疎水性を示すた め、これによつて改質された改質シリカ組成物は有機高分子化合物樹脂との相溶性 に優れた状態を形成する。結果として (メタ)アクリル系、ポリカーボネート系そしてポリ スチレン系樹脂等との親和性を向上させることができる。母材樹脂との親和性の向上 によりシリカを母材樹脂に均一に分散させることができる。シリコンアルコキシド、また はシリコンアルコキシドと有機溶剤の混合物を、熱可塑性樹脂の単量体または単量 体を含む溶液に混合し、その後単量体を重合させ固形分を得、この固形分を加熱し て、固形分中のシリコンアルコキシド、またはシリコンアルコキシドの加水分解により生 ずるシリコン水酸化物を、重縮合させシリコン酸化物粒子を得る発明(特許文献 6)を 完成させた。
また、硬化性組成物として分散媒に溶解させたコロイダルシリカ及び有機シランィ匕 合物の加水分解性生物を縮合反応させて得られるシリカを含む硬化性組成物では 粒子径が 200nmを超えると透明性が低下することを見いだした(特許文献 7)。これ らのケースでは親和性を増したという点では評価できる力 S、初期の目的という点では 満足できるものではなかった。
本発明者らは、従来のナノメートノレオーダーシリカ粒子は凝集を伴って従来のポリ マー中に分散させたナノシリカの分散状態であってナノシリカの分散状態は凝集を伴 つた均一分散したものとは大きく相違することを反省として (特許文献 8の方法)として 、有機溶媒中にポリマーを溶解させて、ナノサイズの有機溶媒に分散したコロイダル シリカを混合した後、シリカ含有ポリマー組成物から、有機溶媒を除く沈殿分離を行 レ、、シリカ含有ポリマー粉末を得て、これをヒートプレスすることにより、透明性が高い 層状シリカ分散高分子材料を得る発明(特許文献 9)を行った。
従来の有機高分子化合物と金属酸化物ナノ粒子からなる複合体は、溶剤と金属酸 化物ナノ粒子からなる均一混合物を有機高分子化合物と混合して得た混合物、又は 溶剤と金属酸化物ナノ粒子かなる均一混合物と、有機高分子化合物と溶剤からなる 均一混合物を混合して得た混合物から、溶剤を除去した後の有機高分子化合物と 金属酸化物ナノ粒子からなる複合体組成物を形成する。この複合体組成物から溶剤 を除去することにより、有機高分子化合物中に金属酸化物ナノ粒子を含有しているも のを得ることはできるものの、金属酸化物ナノ粒子が均一分散しているものはあるも のの、金属酸化物ナノ粒子は二次粒子化を起こし、 2次凝集した状態でも存在し、こ れが原因で透明性を低下させていることが考えられる。そして、この程度の透明性で は満足してレヽなレ、分野が多レ、。
金属酸化物ナノ粒子を十分に分散させること、二次粒子への凝集を防止し、金属 酸化物ナノ粒子を均一に分散させた有機高分子化合物が必要であるという課題は達 成されていない。
以下に本発明について説明を行うが、有機高分子化合物の分子量に関して、格別 の断りがないときは数平均分子量を意味するものである。
特許文献 1 :特開 2005— 75723号公報
特許文献 2:特許第 3559894号(特開平 11 343349号公報)
特許文献 3 :特開 2004— 168910号公報
特許文献 4:特開 2004— 224882号公報
特許文献 5 :特開 2003— 201114号公報
特許文献 6 :特開 2005— 97372号公報
特許文献 7 :特開 2005— 146110号公報
特許文献 8 :特開 2004— 168910号公報
特許文献 9 :特開 2006— 63224号公報
発明の開示
発明が解決しょうとする課題 [0006] 本発明の課題は、有機高分子化合物中に金属酸化物ナノ粒子を粒子として分散さ せ、二次粒子化することによる凝集を防止して、金属酸化物ナノ粒子を有機高分子 化合物中に均一に分散させた新規な複合体を提供することである。
課題を解決するための手段
[0007] 従来の透明性が高レ、有機高分子化合物と金属酸化物ナノ粒子からなる複合体を 得る方法とは相違する新しレ、方法にっレ、て模索することとした。
課題を解決するうえでは、有機高分子化合物中に金属酸化物ナノ粒子が均一に分 散している状態、金属酸化物ナノ粒子同士が凝集することなく均一分散している状態 の複合体を得ることが必要である。この複合体を得るには、金属酸化物ナノ粒子の分 散液を、極性溶媒と有機高分子化合物からなる混合液中に添加し、金属酸化物分 散液が混合液中に均一に分散するように十分に攪拌混合すると、極性溶媒に含まれ る金属酸化物を均一に分散させた有機高分子化合物の複合体組成物を得ることが できる。
金属酸化物ナノ粒子が均一に分散している状態において金属酸化物ナノ粒子同士 が凝集することなく均一分散しているのであるから、(1)金属酸化物ナノ粒子同士の 接触がないこと及び(2)ポリマー鎖同士の接触がなぐ絡み合いが生じない状態であ れば凝集は起こらないと考えられる。
金属酸化物ナノ粒子同士の接触がないことについては以下の通りである。
(1)有機高分子化合物の含有量は、有機高分子化合物及び極性溶媒に対する金属 酸化物ナノ粒子の重量割合が一定の割合とし、金属酸化物重量、有機高分子化合 物重量及び添加する極性溶媒重量の関係から導き出される臨界濃度以下とする条 件が得られれば、 目的とする複合体を得ることができる。
前記臨界濃度に関しては、以下の方法があり((ィ )及び (口))、又 (ハ)有機高分子 化合物の分子量を考慮して限界分子量を求め、次に (ィ)の方法を行うことにより、有 機高分子化合物について分子量を考慮した有機高分子化合物の濃度について臨 界濃度を求めることができる。 (ィ)、(口)及び (ハ)は以下の通りである。 (ィ)前記臨 界濃度(C*)は、特定量の金属酸化物ナノ粒子重量を定め、特定量の金属酸化物 ナノ粒子を含有する有機高分子化合物及び添加する量が変わる極性溶媒からなる 組成物について、特定波長に対する光透過量を測定して得られる結果について高く 推移する光透過量の群と低く推移する光透過量の群とに分けたときに、高く推移する 光透過量の群中の有機高分子化合物含有量が最も多いものの濃度と定める。
(口)前記臨界濃度 (C*)は、特定量の金属酸化物ナノ粒子重量を定め、これに極性 溶媒を加えた状態で、特定濃度となるように有機高分子化合物を添加して得られる 組成物について、特定量の有機高分子化合物を添加した状態で、金属酸化物ナノ 粒子、有機高分子化合物及び添加する極性溶媒組成物に対して測定して得られる 特定波長の光透過率と有機高分子化合物重量濃度の関係から見て、高く推移する 特定波長の光透過率の郡中から急激に透過率が低下するときの特定波長の光透過 率の有機高分子化合物含有量であると定める。
(ハ)前記有機高分子化合物の分子量が限界分子量 (Mc)を超えて、且つ前記有機 高分子化合物の含有量は臨界濃度 (C*)以下であるとし、前記限界分子量 (Mc)及 び前記臨界濃度 (C*)は、前記有機高分子化合物に対する金属酸化物ナノ粒子含 有量を特定量とした場合に、金属酸化物ナノ粒子、有機高分子化合物及び添加す る量が変わる極性溶媒からなる組成物について、組成物の特波長の光透過率より導 き出される値であるとする。
また、有機高分子化合物の分子量が限界分子量 (Mc)以下であるとし、前記限界 分子量 (Mc)は、前記有機高分子化合物に対する金属酸化物ナノ粒子含有量を特 定量とした場合に、金属酸化物ナノ粒子、有機高分子化合物及び添加する量が変 わる極性溶媒からなる組成物について、組成物の光透過率より導き出される値とする ものである。
発明の効果
本発明によれば、有機高分子化合物中に金属酸化物ナノ粒子が均一分散してレヽ る有機高分子化合物及び金属酸化物からなる複合体組成物を得ることができる。こ の組成物は金属酸化物粒子が二次凝集を起していないことにより透明性が従来から 存在した複合体に比較して極めて高いものである。また、硬度や摩擦に対しても十分 な特性を有している。
この均一組成物は、溶液状態でプラスチックなどの表面にコーティング材などの表 面処理剤として用いることもできるし、シート状に或いは板状にして透明性が必要とさ れる材料、或いは金属酸化物が均一に分散している状態の組成物が必要とする部 材として用いることができる。
図面の簡単な説明
[図 l]PMMA_ SiO複合体(SiOの PMMA含有量 4. 2wt%)について PMMA (
2 2
分子量 4000)の含有量を変数としたときの光波長と光透過率の関係を示す図である
[図 2]波長 400nmにおける PMMA (分子量 4000)の含有量を変数としたときの PM MAの含有量と光透過率の関係を示す図である。
[図 3]PMMA— SiO複合体(PMMA分子量 50000)について PMMAの含有量を
2
変数としたときの光波長と光透過率の関係を示す図である。
[図 4]PMMA— SiO複合体(分子量 50000)について波長 400nmにおける PMM
2
Aの含有量を変数としたときの PMMAの含有量と光透過率の関係を示す図である。
[図 5]PMMA— SiO複合体(分子量 50000)について波長 600nmにおける PMM
2
Aの含有量を変数としたときの PMMAの含有量と光透過率の関係を示す図である。
[図 6]PMMA_ SiO複合体(分子量 50000)について波長 800nmにおける PMM
2
Aの含有量を変数としたときの PMMAの含有量と光透過率の関係を示す図である。
[図 7]PMMA— SiO複合体(分子量 100000)について PMMAの含有量を変数と
2
したときの PMMAの含有量と光透過率の関係を示す図である。
[図 8]PMMA_ SiO複合体(分子量 100000)について透過光の波長 400nmのと
2
きの PMMAの含有量を変数としたときの PMMAの含有量と光透過率の関係を示す 図である。
[図 9]PMMA_ SiO複合体(分子量 100000)について透過光の波長 600nmのと
2
きの PMMAの含有量を変数としたときの PMMAの含有量と光透過率の関係を示す 図である。
[図 10]PMMA— SiO複合体(分子量 100000)について透過光の波長 800nmのと
2
きの PMMAの含有量を変数としたときの PMMAの含有量と光透過 1率の関係を示 す図である。 [図 11]PMMA— SiO複合体(分子量 4000)について透過光の波長 400nmのとき
2
の PMMAの含有量を変数としたときの PMMAの含有量と光透過率の関係を示す 図である。
[図 12]PMMA_ SiO複合体(分子量 4000)について透過光の波長 600nmのとき
2
の PMMAの含有量を変数としたときの PMMAの含有量と光透過率の関係を示す 図である。
[図 13]PMMA_ SiO複合体(分子量 4000)について透過光の波長 800nmのとき
2
の PMMAの含有量を変数としたときの PMMAの含有量と光透過率の関係を示す 図を示す図である。
[図 14]PMMA_ SiO複合体(分子量 4000、 50000、 100000)について透過光の
2
波長 400nmのときの PMMAの含有量を変数としたときの PMMAの含有量と光透 過率の関係を示す図を示す図である。
[図 15]PMMA— SiO複合体(分子量 4000、 50000、 100000)について透過光の
2
波長 600nmのときの PMMAの含有量を変数としたときの PMMAの含有量と光透 過率の関係を示す図を示す図である。
[図 16]PMMA— SiO複合体(分子量 4000、 50000、 100000)について透過光の
2
波長 800nmのときの PMMAの含有量を変数としたときの PMMAの含有量と光透 過率の関係を示す図を示す図である。
園 17]PPMA— Ti〇複合体の溶媒含有量を変数としたときの光波長と光透過率の
2
関係を示す図である。
[図 18]PPMA— Ti〇複合体の PMMA (分子量 50000)の PMMSA含有量を変数
2
としたときの光波長と光透過率の関係を示す図である。
[図 19]PPMA_Ti〇複合体の PMMA (分子量 50000)の含有量を変数としたとき
2
の 400nmにおける PMMAの含有量と光透過率の関係を示光波長と光透過率の関 係を示す図である。
[図 20]PPMA_Ti〇複合体の PMMA (分子量 50000)の含有量を変数としたとき
2
の 600nmにおける PMMA (分子量 50000)の含有量と光透過率の関係を示光波 長と光透過率の関係を示す図である。 [図 21]PPMA— Ti〇複合体の PMMA (分子量 50000)の含有量を変数としたとき
2
の 800nmにおける PMMAの含有量と光透過率の関係を示す図である。
[図 22]PPMA— Ti〇複合体の PMMA (分子量 4000)の含有量を変数としたときの
2
光波長と光透過率の関係を示す図である。
[図 23]PPMA_Ti〇複合体の PMMA (分子量 4000)の含有量を変数としたときの
2
400nmの PMMAの含有量と光透過率の関係を示す図である。
[図 24]PPMA_Ti〇複合体の PMMA (分子量 4000)の含有量を変数としたときの
2
600nmの PMMAの含有量と光透過率の関係を示す図である。
[図 25]PPMA_Ti〇複合体の PMMA (分子量 4000)の含有量を変数としたときの
2
800nmの PMMAの含有量と光透過率の関係を示す図である。
[図 26]PPMA_Ti〇複合体の PMMA (分子量 100000)の含有量を変数としたとき
2
の波長と光透過率の関係を示す図である。
[図 27]PPMA— Ti〇複合体の PMMA (分子量 100000)の 400nmの PMMAの含
2
有量と光透過率の関係を示す図である。
[図 28]PPMA— Ti〇複合体の PMMA (分子量 100000)の 800nmの PMMAの含
2
有量と光透過率の関係を示す図である。
[図 29]PPMA— TiO複合体の PMMA (分子量 1000000)の含有量を変数としたと
2
きの光波長と光透過率の関係を示す図である。
[図 30]PPMA— Ti〇複合体の PMMA (分子量 100000、 500000、 40000)の含
2
有量を変数としたときの 400nmの PMMAの含有量と光透過率の関係を示す図であ る。
[図 31]PPMA— Ti〇複合体の PMMA (分子量 100000、 500000、 40000)の含
2
有量を変数としたときの 600nmの PMMAの含有量と光透過率の関係を示す図であ る。
[図 32]PPMA— Ti〇複合体の PMMA (分子量 100000、 500000、 40000)の含
2
有量を変数としたときの 800nmの PMMAの含有量と光透過率の関係を示す図であ る。
[図 33]PPMA— Al O複合体の PMMAの含有量を変数としたときの光波長と光透 過率の関係を示す図である。
[図 34]PPMA— Al O複合体の PMMAの含有量を変数とするときの波長と光透過
2 3
率の関係を示す図である。
[図 35]本発明の PMMA— Si〇複合体の Si〇が均一に分布することを示す図(PM
2 2
MAの分子量を考慮しなレ、場合)である。
[図 36]本発明の PMMAの分子量を考慮したときの PMMA_Si〇複合体の Si〇が
2 2 均一に分布することを示す図である。
[図 37]PMMA_ SiO複合体(SiOの分子量 50000、 PMMA含有量 10. 0wt%)
2 2
について PMMAの含有量を変数としたときの光波長と光透過率の関係を示す図で ある。
[図 38]波長 400nmにおける PMMAの含有量を変数としたときの PMMAの含有量と 光透過率の関係を示す図(SiOの分子量 50000、 PMMA含有量 10. 0wt%)であ
2
る。
[図 39]波長 400nmにおける PMMAの含有量を変数としたときの PMMAの含有量と 光透過率の関係を示す図(SiOの分子量 50000、 PMMA含有量 4. 0及び 10. 0w
2
t%の場合を示す。)である。
発明を実施するための最良の形態
[0010] 本発明は、有機高分子化合物及び金属酸化物ナノ粒子を含み、前記金属酸化物 ナノ粒子は粒子として均一分散してレ、る有機高分子化合物 ·金属酸化物複合体組成 物である。
又、本発明は、有機高分子化合物、金属酸化物ナノ粒子及び極性溶媒からなり、前 記金属酸化物ナノ粒子は粒子として均一分散してレ、る有機高分子化合物 ·金属酸化 物複合体組成物である。
前記金属酸化物ナノ粒子は金属酸化物ナノ粒子同士が凝集することなく均一分散 してレ、る有機高分子化合物 ·金属酸化物複合体組成物である。
[0011] 有機高分子化合物の分子量について考慮しない場合についての本発明の態様は 、図 35の左のとおりである。
有機高分子化合物及び金属酸化物ナノ粒子を含む複合体組成物中、又は有機高 分子化合物、金属酸化物ナノ粒子及び極性溶媒からなる複合体組成物中で金属酸 化物ナノ粒子は 1次粒子を形成している。有機高分子化合物同士の接触、絡み合う ことにより有機高分子化合物に吸着されていた金属酸化物ナノ粒子は急激に 2次凝 集を起す(図 35の右)。二次凝集を起している場合に溶媒を再び加えると、二次凝集 は解消され、粒子状の状態に戻る現象を見ることができ、二次凝集を起している状態 は可逆的な状態である。
[0012] 有機高分子化合物の分子量にっレ、て考慮しなレ、場合にっレ、ては以下のようにして 臨界濃度 (C*)を求めることができる。
前記有機高分子化合物の含有量は、前記有機高分子化合物に対する金属酸化 物ナノ粒子の重量を一定とした場合に(一般に添加する金属酸化物ナノ粒子は経験 力 重量で最大 50wt%程度であるということができる。)、金属酸化物ナノ粒子、有機 高分子化合物及び添加する極性溶媒からなる複合体組成物の有機高分子化合物 含有量であり、臨界濃度(C*)以下であると定める。
[0013] 前記臨界濃度 (C*)は、有機高分子化合物に対する金属酸化物ナノ粒子含有量( 重量)を一定量とした場合に、金属酸化物ナノ粒子、有機高分子化合物及び添加す る量が変わる極性溶媒からなる組成物について、複合体組成物の光透過率より、即 ち光透過率が変化することを測定して導き出される値である。
[0014] 臨界濃度(C*)は、特定量の金属酸化物ナノ粒子重量を定め、特定量の金属酸化 物ナノ粒子を含有する有機高分子化合物及び添加する量が変わる極性溶媒からな る組成物について、特定波長に対する光透過量を測定して得られる結果について高 く推移する光透過量の群と低く推移する光透過量の群とに分けたときに、高く推移す る光透過量の群中の有機高分子化合物含有量が最も多レ、ものの濃度と定める。
[0015] 具体例としては以下の通りである。
一次粒子の金属酸化物ナノ粒子を有機高分子化合物に均一に分散した複合体を 得る前記の方法にっレ、ては述べる。
有機高分子化合物としてポリメチルメタタリレート(以下, PMMAともいう)、金属酸 化物ナノ粒子の金属酸化物としてシリカゾル(SiOの溶媒に溶かしたゾル)、極性溶
2
剤として THF、非極性溶剤としてへキサンを用いた。 [0016] 特定量の金属酸化物ナノ粒子(シリカゾル)を、シリカゾル 4. 2重量%とする。これ に THFの添加量を変化させて、 PMMA (分子量 4000)の含有量を変化させて試料 を作成する。非極性溶剤であるへキサンを添加して、シリカゾルを均一に含む有機高 分子化合物を再沈澱させて、回収し、減圧乾燥させてテストピースを作成する。テスト ピース中では前記 PMMAの含有量は前記と同じ状態に固定されている。
PMMAに対するシリカナノ粒子の割合を 4. 2重量%とし、 THF添加量を変数とし て、 THF添カ卩量に応じて特定波長と波長毎の光透過性を測定して図示する(図 1)。 このテストピースについて、異なる含有量の PMMAを変数として、波長毎の光透過 性を測定する。低濃度の PMMA (2. 0力 5. 0wt%)の PMMAとシリカナノ粒子か らなる複合体は、高濃度の PMMA (6. 0力ら 8. 0wt%)の PMMAとシリカナノ粒子 力 なる複合体と比較すると、前者の光透過率は急激に高くなり(400nmで 80%を 超える)、その後徐々に高くなり、一方、後者ではなだらかに上昇し (400nmで 10% 力 50%を超える程度)となり、その後もなだらかに上昇し、 700nm程度の波長で透 過率が 80%を超える結果となる。 PMMAの濃度で見てみると、 400nmで 5. 0wt% と 6. 0wt%の間で光透過性は大きな相違が存在する(図 1)。光透過量が高い状態 で推移する有機高分子化合物含有量の中で最も大きレ、有機高分子化合物含有量 5 . 0wt%が求める臨界濃度(C*)である。
[0017] また、以下の方法によっても、臨界濃度(C*)をもとめること力 Sできる。
臨界濃度 (C*)は、特定量の金属酸化物ナノ粒子重量を定め、これに極性溶媒を 加えた状態で、特定濃度となるように有機高分子化合物を添加して得られる組成物 について、特定量の有機高分子化合物を添加した状態で、金属酸化物ナノ粒子、有 機高分子化合物及び添加する極性溶媒組成物に対して測定して得られる特定波長 の光透過率と有機高分子化合物重量濃度の関係から見て、高く推移する特定波長 の光透過率の郡中から急激に透過率が低下するときの特定波長の光透過率の有機 高分子化合物含有量であると定めることもできる。
[0018] シリカゾルを THFで希釈して濃度を一定に保ち、 PMMA (分子量 4000)粉末を少 量ずつ添加して PMMA濃度を変化させ、光透過スペクトルの変化とシートの透過性 を測定してみる(図 2)。 PMMA濃度 5. 0wt%までは、高い透過率で一定の値を保 つている(90%を超えている)。この点を過ぎると急激に低下する。 PMMA濃度 5· 0 wt%を過ぎると、光透過率は急激に減少する。高く推移する特定波長の光透過率の 郡中から急激に透過率が低下するときの特定波長の光透過率の有機高分子化合物 含有量(5. Owt%)を臨界濃度とする。
[0019] 分子量を 50000とした PMMAについて、臨界濃度(C*)は、特定量の金属酸化物 ナノ粒子重量を定め、特定量の金属酸化物ナノ粒子を含有する有機高分子化合物 及び添加する量が変わる極性溶媒からなる組成物について、特定波長に対する光 透過量を測定して得られる結果について高く推移する光透過量の群と低く推移する 光透過量の群とに分けたときに、高く推移する光透過量の群中の有機高分子化合物 含有量が最も多いものの濃度として 5. 3wt% (400nm)として、これを臨界濃度とし た(図 3)。
同様にして分子量を 100000とした PMMAにつレヽて、 400nmで 2. 83wt%とした (図 4)。
[0020] 分子量を 50000とした PMMAについて、特定量の金属酸化物ナノ粒子重量を定 め、これに極性溶媒を加えた状態で、特定濃度となるように有機高分子化合物を添 カロして得られる組成物について、特定量の有機高分子化合物を添加した状態で、金 属酸化物ナノ粒子、有機高分子化合物及び添加する極性溶媒組成物に対して測定 して得られる特定波長の光透過率と有機高分子化合物重量濃度の関係から見て、 高く推移する特定波長の光透過率の郡中から急激に透過率が低下するときの特定 波長の光透過率の有機高分子化合物含有量であるして 5. 3wt%として、これを臨界 濃度とした(図 5)。
同様にして分子量を 100000とした PMMAにつレヽて、 400nmで 2. 83wt%とした (図 7)。
[0021] 有機高分子化合物の分子量を考慮する場合については、以下のようにして臨界濃 度(C*)を求めることができる。
この場合に有機高分子化合物の分子量が限界分子量 (Mc)を超えて、前記有機 高分子化合物の含有量は臨界濃度 (C*)以下である場合について、有機高分子化 合物及び金属酸化物ナノ粒子からなる組成物の状態を示すと図 36の態様となる。有 機高分子化合物として MMA、金属酸化物ナノ粒子として SiOの場合として示して
2
ある。
有機高分子化合物について、 Mc (限界分子量) < M (有機高分子化合物の分子 量)の状態にある有機高分子化合物の場合には、有機高分子化合物分子量が大き ぐ有機高分子化合物濃度が臨界濃度 (C * )は (ポリマー臨界濃度ともいう)以下であ る場合には、有機高分子化合物サスペンション中で 1次粒子を保持している(図 36左 上の図)。この場合に、濃度が臨界濃度を超える場合には、有機高分子化合物同士 が接触し、絡み合うことによりポリマー吸着していたシリカが急激に 2次凝集を起こす 結果となる(図 36右上の図)。
[0022] 前記限界分子量 (Mc)及び前記臨界濃度 (C * )は、前記有機高分子化合物に対 する金属酸化物ナノ粒子含有量を特定量とした場合に、金属酸化物ナノ粒子、有機 高分子化合物及び添加する量が変わる極性溶媒からなる組成物について、組成物 の特波長の光透過率より導き出される値であるとして、定めること力 Sできる。
[0023] 前記限界分子量 (Mc)は、特定量の金属酸化物ナノ粒子に極性溶媒を加えた状 態で、特定濃度となるように添加する特定分子量の有機高分子化合物を添加して得 られる組成物について、特定分子量の有機高分子化合物の特定分子量を変数とし て、特定濃度の特定分子量の有機高分子化合物と、金属酸化物ナノ粒子、有機高 分子化合物及び添加する極性溶媒からなる組成物の特定波長の光透過率が有機 高分子化合物含有量の関係から見て、高く推移する特定波長の光透過率の郡中の 最も低い光透過率の有機高分子化合物の分子量と定め、前記臨界濃度 (C * )は、前 記最も低レ、光透過率の有機高分子化合物の次に低レ、透過率の特定分子量の有機 高分子化合物の含有量であると定めることができる。
[0024] 具体例としては以下の通りである。
PMMAとして分子量 4000の場合にっレ、て、特定量の金属酸化物ナノ粒子である 、シリカゾル 4. 2重量%とする。これに THFの添加量を変化させて、 PMMAの含有 量を変化させて、非極性溶剤であるへキサンを添加して、シリカゾルを均一に含む有 機高分子化合物を再沈澱させて、回収し、減圧乾燥させてテストピースを作成する。 テストピース中では前記 PMMAの含有量は前記と同じ状態に固定されている。 PMMAに対するシリカナノ粒子の割合を 4. 2重量%とし、 THF添加量を変数とし て、 THF添カ卩量に応じて特定波長と波長毎の光透過性を測定してみる。 ΡΜΜΑ濃 度を 0. 0, 1. 11, 3. 27, 5. 31, 7. 35, 9. 20, 11. 02, 12. 77, 15. 27, 18. 3 8, 25. 24, 28. 26, 31. 04各 wt%として光透過率と波長 400, 600, 800, 1000 nmについて変化を測定してみた。透過率はいずれも当初から 400nmで 80%を超 える高い数値を示した。
また、シリカナノ粒子に対して、これに極性溶媒をカ卩えて 4. 2重量%のシリカナノ粒 子含有量とし、特定濃度となるように有機高分子化合物 (分子量 4000)を添加して得 られる組成物について、前記と同様にしてテストピースを作製した。 PMMA濃度を 0 . 0, 1. 11, 3. 27, 5. 31 , 7. 35, 9. 20, 11. 02, 12. 77, 15. 27, 18. 38, 25 . 24, 28. 26, 31. 04各 wt0/0 (こつレヽて、 400nm、 600nm、 800nmの場合を示す と、図 8、図 9、図 10のとおりである。この結果からも高い光透過率で推移していること 力 sわ力る。
すなわち、 PMMAの分子量が 4000場合には、今回の場合では分子量 4000の場 合の結果であるが、仮に分子量が 4000場合未満の場合を測定していれば、分子量 4000の場合より光透過率は高い結果となる。これらのことを考慮すると、最も低い光 透過率の有機高分子化合物の分子量である分子量が 4000の場合が限界分子量( Mc)である。
波長が 400nmで PMMAの分子量が 100000の場合には、 4. 3wt%及び 2. 3wt %までは光透過率は高い状態で推移しておりこの点を過ぎると透過率は急速に低下 することがかる(図 8)。波長が 600nmでは 4· 8wt%及び 2· 3wt%までは光透過率 は高レ、状態で推移しておりこの点を過ぎると透過率は急速に低下することがかる(図 9)。同様に、波長が 800nmでは 4. 3wt%及び 2. 3wt%までは光透過率は高い状 態で推移しておりこの点を過ぎると透過率は急速に低下することがかる(図 10)。 前記臨界濃度 (C*)は、前記最も低い光透過率の有機高分子化合物の次に低い 透過率の特定分子量の有機高分子化合物の含有量である波長が 400nmで PMM Aの分子量が 50000の場合の 4. 3wt%であるとレ、うことができる。
この場合には有機高分子化合物の分子量が限界分子量 (Mc)を超えている場合 であるから、分子量が 4000の場合が限界分子量 (Mc)を超えている場合として、前 記最も低レ、光透過率の有機高分子化合物の次に低レ、透過率の特定分子量の PM MAの分子量が 50000の場合の臨界濃度(C*)を求めたことになる(さらに正確な値 を求めるであれば、分子量 40000と 50000の値について実験を行い測定することに より、より実際に近い値をもとめることができる。
[0025] 有機高分子化合物の分子量 Mについて、 Mc (限界分子量) >Mの状態にある有機 高分子化合物の場合には、有機高分子化合物の分子量が小さぐ有機高分子化合 物量臨界濃度は発生しない。この場合には、有機高分子化合物サスペンション中で 1次粒子を保持している状態(図 36左下の図)及び金属酸化物ナノ粒子の表面を有 機高分子化合物鎖が被覆し、金属酸化物ナノ粒子による 2次凝集を抑制するので、 凝集は起こらない(図 36右下の図)状態となる。
[0026] 有機高分子化合物の分子量が限界分子量 (Mc)以下である有機高分子化合物- 金属酸化物複合体組成物である。
前記限界分子量 (Mc)は、前記有機高分子化合物に対する金属酸化物ナノ粒子 含有量を特定量とした場合に、金属酸化物ナノ粒子、有機高分子化合物及び添カロ する量が変わる極性溶媒からなる組成物について、組成物の光透過率より導き出さ れる値である。
[0027] 前記限界分子量 (Mc)は、特定量の金属酸化物ナノ粒子に極性溶媒を加えた状 態で、特定濃度となるように特定分子量の有機高分子化合物を添加して得られる組 成物について、特定分子量の有機高分子化合物の特定分子量を変数として、特定 濃度の特定分子量の有機高分子化合物と、金属酸化物ナノ粒子、有機高分子化合 物及び添加する極性溶媒からなる組成物の光透過率を測定して得られる結果の中 の、高く推移する光透過率の群中の最も低い光透過率の有機高分子化合物分子量 である。
[0028] 具体例としては以下の通りである。
PMMAとして分子量 4000の場合にっレ、て、特定量の金属酸化物ナノ粒子である 、シリカゾル 4. 2重量%とする。これに THFの添加量を変化させて、 PMMAの含有 量を変化させて、非極性溶剤であるへキサンを添加して、シリカゾルを均一に含む有 機高分子化合物を再沈澱させて、回収し、減圧乾燥させてテストピースを作成する。 テストピース中では前記 PMMAの含有量は前記と同じ状態に固定されている。 分子量 4000の PMMAに対するシリカナノ粒子の割合を 4. 2重量%とし、 THF添 加量を変数として、 THF添加量に応じて特定波長と波長毎の光透過性を測定して みる。 PMMA濃度を 0. 0, 1. 1 1, 3. 27, 5. 31, 7. 35, 9. 20, 1 1. 02, 12. 77, 15. 27, 18. 38, 25. 24, 28. 26 , 31. 04各 wt%として光透過率と波長 400, 60 0, 800, l OOOnmについて変化を測定してみた。透過率はいずれも当初力 400η mで 80%を超える高い数値を示した。
また、シリカナノ粒子に対して、これに極性溶媒をカ卩えて 4. 2重量%のシリカナノ粒 子含有量とし、特定濃度となるように有機高分子化合物 (分子量 4000)を添加して得 られる組成物について、前記と同様にしてテストピースを作製した。 PMMA濃度を 0 . 0, 1. 1 1, 3. 27, 5. 31 , 7. 35, 9. 20, 1 1. 02, 12. 77, 15. 27, 18. 38, 25 . 24, 28. 26 , 31. 04各 wt0/0【こつレヽて、 400nm、 600nm、 800nmの場合を示す と、図 8、図 9、図 10のとおりである。この結果力もも高い光透過率で推移していること 力 sわ力る。
すなわち、 PMMAの分子量が 4000場合には、今回の場合では分子量 4000の場 合の結果であるが、仮に分子量が 4000場合未満の場合を測定していれば、分子量 4000の場合より光透過率は高い結果となる。これらのことを考慮すると、最も低い光 透過率の有機高分子化合物の分子量である分子量が 4000の場合が限界分子量( Mc)と定めることができる。
[0029] 有機高分子化合物濃度の臨界濃度 (以下 C *で示す)及び有機高分子化合物の分 子量の Mc (限界分子量)は、実験により求めることができる(測定結果を〇bsd. C * ) という。
[0030] 以下に理論的な計算に基づく有機高分子化合物濃度の臨界濃度 (Calcd C * )を 求めてみる。
有機高分子化合物濃度の臨界濃度 (C * )は、有機高分子化合物同士が接触し始め る濃度である。
( 1 )ポリマー分枝同士が接触し始める濃度 (C * ) θ溶媒で非摂動鎖の場合
C*は以下の式により算出できる。
[数 1]
3M <S„2>: 二乗平均回転半径 (A)
(g ml-1) A : アポガドロ定数 n<S0 2> ϊΑν M : ポリマーの分子量
1 ― : 持統長 (PMMA=8A)
<Sn 2> X 2Λ
6λ 3 "2λ
Μ C 結合讓 (2.5 A)
L = cX モノマーの分子量 m
高分子鎖の長さ が分子量に依存することは以下のように表現できる。
[数 2]
C* oc M"05
(2)良溶媒、実在鎖の場合は
前記 S2は以下のようになる。
[数 3] く S2>-Ot2<So2> α:画数 α5- α2 = 2€Μφχ(ΐ- ^Μ05 フローリ.
実験温度 定数 が分子量に依存することは以下のように表現できる。
籙替え '用 ¾ (¾02β) C* oc M 0 5〜 M 0 8
Figure imgf000020_0001
a5 oc M05 但し, a5 > a2
[0031] 以上の計算により導き出された有機高分子化合物濃度の臨界濃度 (C* ) (Calcd. C
*)及び実験により導き出された有機高分子化合物濃度の臨界濃度 (C*) (Obsd. C *)についての結果を表にまとめると以下の表 1の通りである。
Obsd. C*の算出にあたっては次式を使用した。
Mc (限界分子量)については、 27500又は 31500 (217°C条件下)を粘度から算出 した。
[0032] [表 1]
M 2<S0 2>0-5 Calcd.C* Obsd.C* Mw Mw
X10-4 nm wt% wt% xio-4 Mn
0.3 2.8 43 - 0.3 1.3
0.7 4.3 28 - 0.7 2.1
2.5 8.2 15 9.0 2.3 2.2
10 16.3 7.3 4.3 9.6 1.9
30 28.0 4.2 3.0 31 3.2
Obsc i.C* oc Mw -° « ; Calcd.C* oc M 0 s ( in Θ solvent )
Calcd.C* oc M ·°·5~-°·8 ( in good solvent ) 計算により導き出された有機高分子化合物濃度の臨界濃度(C *) (Calcd. C )及び 実験により導き出された有機高分子化合物濃度の臨界濃度(C*) (Obsd. C*)の対 比
表 1の結果より、計算により導き出された有機高分子化合物濃度の臨界濃度 (C*) ( Calcd. C*)及び実験により導き出された有機高分子化合物濃度の臨界濃度 (C*) ( Obsd. C*)は良好に一致しているということができる。
[0034] 以下に上記複合体を形成する際に使用する物質について説明する。
極性溶剤は、一般には極性溶媒と呼ばれるものである。双極子モーメントをもつ分 子からなる溶媒であり、大きな誘電率をもつ溶媒と定義される。具体的には、水、アル コール類、ケトン類、ジメチルスルホォキシド、 N, N—ジメチルホルムアミドへキサメ チノレホスホノレアミド、ニトロメタン、 N—メチルピロリドン、テトラヒドロフランなどがある。 アルコール類にはメタノール、エタノール、プロパノール、ブチルアルコールなどある 。ケトンには、アセトン、メチルブチルケトンなどがある。
非極性溶剤は、双極子モーメントをもたない溶媒である。へキサンなどの脂肪族炭 化水素、シクロへキサンなどの脂環式炭化水素、ベンゼンなどの芳香族炭化水素を 挙げ'ること力 Sできる。
[0035] 金属酸化物ナノ粒子は、 SiO、 Al O、 Sb O、 TiO、 SnO、 ZrO、 ZnO力ら選
2 2 3 2 5 2 2 2 2 ばれる。これらの金属酸化物ナノ粒子は単一の金属酸化物ナノ粒子である。 金属 酸化物ナノ粒子は金属酸化物ナノ粒子ゾノレである。
この粒子径は、可視光の波長である 380nm以下のもの、好ましくは 10〜: 100nm、さ らに好ましくは、 10〜30nmの範囲であることが好ましい。
[0036] これら金属酸化物粒子は、粒子状で用いることができるが、溶媒に分散させたコロイ ド状で用いることが好ましい。
例えば、シリカでは、溶媒分散させたシリカ粒子を用いることもできる力 特にコロイ ダルシリカとして種々の溶媒に分散させたものが知られ市販されているものを好ましく 使用すること力 Sできる。コロイダルシリカの分散溶媒としては水、有機溶媒がともに知 られているが、本発明においては有機溶媒に分散されたコロイダルシリカの使用が好 ましレ、。有機溶媒としては、メタノール、イソプロピルアルコール、 n—ブタノール, ME K、 PGME、酢酸ェチル、 n—へキサン、トルエン、 DMFが挙げられる。本発明にお レ、て使用可能な有機溶媒に分散したコロイダルシリカの粒子サイズ、粒径分布、粒子 形状については特に制限はなぐ:!〜 300nmの粒子径のものを選択して使用可能で ある。特に好ましくは粒子径が 10〜30nmのものである。 例えば、本発明で使用した SiOは、扶桑化学工業株式会社製の有機分散コロイダ
2
ルナノシリカを使用した。 SiOゾルは平均粒径 15nmであり、表面修飾は行われてお
2
らず、イソプロピルアルコール中に 12重量0 /0含有している。
[0037] 本発明で使用可能な上記コロイダルシリカはまた公知の方法により製造することがで きる。例えば水ガラスの酸中和方法により得られるコロイダルシリカや、アルコキシシラ ンを用いたゾルゲル法により製造されたコロイダルシリカを使用することができる(例え ば特開 2005— 314197号公報、特願 2004— 91220号公報を参照)。特に本発明 においてはアルコキシシランを用いたゾルゲル法により製造されたコロイダルシリカの 使用が好ましい。また本発明においてはシリカ粒子には、表面の性質を改質する目 的で従来公知の種々の表面改質剤で処理されたシリカ粒子をも含む。表面性質の 改質の目的、使用するマトリックスポリマーの化学的、物理的性質等から処理を最適 化することは容易である。本発明において好ましく使用できる有機溶媒に分散したコ ロイダルシリカとして、扶桑化学工業株式会社から市販されている高純度オノレガノゾ ルが挙げられる。これらは、コロイド物性のみならず、分散シリカの粒子径、粒子径分 布、粒子形状、分散有機溶媒、濃度(12〜40シリカ重量%)、不純物の種類と量に つき詳しく知られている。
[0038] チタニアのコロイドは公知の方法により製造できる。まず、四塩化チタンなどの塩ィ匕 チタンや硫酸チタン等のチタン化合物の水溶液とアンモニアや苛性ソーダ等の塩基 性物質力 オルトチタン酸と呼ばれる水酸化チタンゲルを得る。次いで、水を用いた デカンテーシヨンによって水酸化チタンゲルの沈殿を水洗し、水酸化チタンゲルを分 離する。さらに過酸化水素を作用させ、余分な過酸化水素を分解除去することにより 透明粘性液体が得られる。過酸化状態の水酸化チタンを含んでいるチタユアゾノレ溶 液を得た後、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコー ノレ一ポリプロピレングリコール共重合体、ポリテトラヒドロフランと混合することにより得 られる(特開 2002— 190324号公報)。
[0039] アルミナゾノレについては以下のようにして製造される。
親水性成分と微粒子アルミナとの混合物としては、親水性成分に、微粒子アルミナ を機械的に混合及び分散させたものも使用できるが、親水性成分とアルミナゾルと の混合物からアルミナゾルの分散媒体を除去して得られたものを使用することが好 ましレ、。上記親水性成分をそれらの可溶性有機溶剤の溶液として使用する場合には 、上記有機溶剤もアルミナゾルの分散媒体とともに混合物から除去する。本発明に おけるアルミナゾノレとは、微粒子アルミナが、通常、その分散媒体である水及び/ 又はアルコール等に安定に分散したものである。分散媒体としてはケトン、エステル、 その他の有機溶剤も使用される。このアルミナゾル中の微粒子アルミナの平均粒径 は、通常 l x m以下であり、特に 1〜300111 111 111)のものが好ましい。
[0040] ジルコニァ粒子は、 UEP (第一稀元素化学工業 (株)製)、 PCS (日本電工 (株)製)、 JS_01、 JS _03、 JS— 04 (日本電工 (株)製)、 UEP— 100 (第一稀元素化学工業( 株)製)などの粒子をノニオン型分散剤、好ましくは、ポリオキシエチレンアルキル構造 を有するリン酸エステル系ノニオン型分散剤、及び分散助剤として、ァセト酢酸メチル 、ァセチルアセトン、 N, N—ジメチルァセトァセトアミドから選択される一以上のもの を使用して、分散媒として、メタノーノレ、エタノール、イソプロパノール、ブタノール、ォ クタノール等のアルコール類;アセトン、メチルェチルケトン、メチルイソブチルケトン、 シクロへキサノン等のケトン類;酢酸ェチル、酢酸ブチル、乳酸ェチル、 γ—ブチロラ タトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノ ェチルエーテルアセテート等のエステル類;エチレングリコールモノメチルエーテル、 ジエチレングリコールモノブチルエーテル等のエーテル類;ベンゼン、トルエン、キシ レン、ェチルベンゼン等の芳香族炭化水素類;ジメチルフオルムアミド、 Ν, Ν—ジメ チルァセトァセトアミド、 Ν—メチルピロリドン等のアミド類を用いて得られる。
[0041] 三酸化アンチモンナノ粒子は光拡散効果を有しており、有機高分子化合物であるメ タクリリ樹脂に混合して用レ、られる(特開平 05 - 255562号公報)。
[0042] 酸化亜鉛では、粒子の一次粒径は、通常、 5nm〜: !OOnmのものを使用できる。ま た、結晶構造も特に限定されないが、単斜晶系等を使用できる。
酸化亜鉛粒子 (ハクスィテック (株)製、パゼット CK (商品名)、一次粒径 20〜40n m)、分散剤 (楠本化成 (株)製、 PLAAD ED211 (商品名))の高分子ポリカルボン 酸のアミドアミン塩、及び分散媒であるメチルェチルケトン混合して得られる(特開 20 05— 314648号公報)。 [0043] 本発明で用いることのできる有機高分子化合物としては、熱可塑性樹脂であれば 使用可能である。特に限定されるものではなぐポリカーボネート樹脂、ポリエステル 樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリフエ二レンエーテル樹脂、アクリル'メ タクリル系樹脂、ポリスチレン樹脂、ポリウレタン樹脂及びポリオレフイン樹脂などを例 示すること力 Sできる。
これらの樹脂の分子量に応じて使用される製品の対象は相違する。例えば、分子 量力 4000から 8000程度であれば方面処理剤として用いることができる。又、分子量 力 0000以上の場合には板状、シート状に加工して使用することができる。
[0044] メタクリル系樹脂組成物は、メタクリル酸、メタクリル酸エステルなどの重合体の他、 アクリル酸、アクリル酸エステル、アタリノレアミド、アクリロニトリル、メタクリル酸、メタタリ ル酸エステルなどの重合体及び樹脂改質のためのスチレンなどの他の単量体との共 重合体を包含する。
代表的なものとしてメタクリル酸エステル及びアクリル酸エステルの重合体。 ポリメタクリル酸エステルは、エステル残基が CHのポリメタクリル酸メチルが代表的。
3
直鎖状アルキル、分岐'環状アルキル、官能基を有するものがある。
ポリメタクリル酸メチルは、メタクリル酸メチルをラジカル重合により、塊状重合、溶液 重合、懸濁重合による。具体的には、メタクリル酸ェチル、メタクリル酸正ブチル、メタ クリル酸イソブチル、メタクリル酸正へキシル、メタクリル酸ラウリル、アクリル酸メチル、 アクリル酸正ブチル、アクリル酸イソブチル及びアクリル酸 2—ェチルへキシル、メ タクリル酸ジメチルアミノエチル、メタクリル酸第三ブチルアミノエチル、アクリル酸 2— ヒドロキシェチル、アクリル酸 2 ヒドロキプロピル及びメタクリル酸グリシジル(2004 - 22482)、アクリルモノマー(アクリル酸メチル)との共重合体、メタクリル酸メチル単 独重合体、またはメタクリル酸メチル 50質量%以上と他のビュル単量体との共重合体 である。このメタクリル樹脂の数平均分子量は、特に限定されないが、好ましくは 4,00 0〜1,000,000である。前記メタクリル樹脂は、一種単独で用いても二種以上を併用し てもよい。
[0045] 以下、例えば、アクリル酸およびメタクリル酸を (メタ)アクリル酸、アタリレートおよび メタタリレートを (メタ)アタリレート等と総括的に称する。 [0046] 前記共重合体の場合において、メタクリル酸メチルと共重合させる他のビニル単量 体としては、例えば、(メタ)アクリル酸ェチル、(メタ)アクリル酸プロピル、(メタ)アタリ ル酸ブチル、(メタ)アクリル酸シクロへキシル、(メタ)アクリル酸フエニル、(メタ)アタリ ル酸ベンジル、(メタ)アクリル酸 2-ェチルへキシル、(メタ)アクリル酸 2-ヒドロキシェ チル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アタリ ル酸ジェチルアミノエチル等の(メタ)アクリル酸エステル類;(メタ)アクリル酸等の不 飽和酸類;エチレングリコールジ(メタ)アタリレート、 1,3-ブチレングリコールジ(メタ) アタリレート、トリメチロールプロパントリ(メタ)アタリレート、ペンタエリスリトールテトラ( メタ)アタリレート等の多官能性(メタ)アタリレート;スチレン、 ひ -メチルスチレン等のス チレン類;(メタ)アクリロニトリル、無水マレイン酸、フエニルマレイミド、シクロへキシノレ マレイミド等が挙げられる。また、無水ダルタル酸単位、ダルタルイミド単位をさらに含 んでもよい。さらに前述の重合体、共重合体に、ポリブタジエン、ブタジエン/アタリ ル酸ブチル共重合体、ポリアクリル酸ブチルを主成分とする共重合体等のエラストマ
[0047] メタクリル樹脂としては以下の材料が使用される。
成形用材料:アタリペット MD、アタリペット VH、アタリペット MF、アタリペット V、アタリべ ット IR、アタリペット UT、 ST、アタリペット VH— 3R、(以上、三菱レイヨン)、パラペット G、パラペット HR、パラペット GF、パラペット EH、パラペット HR— L (以上、クラレ) シート材料アタリライト E、アタリライト S, L、アタリライト IR、アタリライト HR (以上、三菱 レイヨン株式会社製)などを挙げることができる。
[0048] ポリエステルについては以下の通りである。
ポリエステル樹脂 (A)とは、ジカルボン酸化合物とジヒドロキシィヒ合物の重縮合、ォ キシカルボン酸化合物の重縮合或いはこれら 3成分混合物の重縮合等によって得ら れるポリエステルである。ここで用いられるジカルボン酸化合物の例を示せば、テレフ タノレ酸、イソフタル酸、ナフタレンジカルボン酸、ジフエニルジカルボン酸、ジフエ二ノレ エーテルジカルボン酸、ジフエニルエタンジカルボン酸、シクロへキサンジカルボン酸 、アジピン酸、セバシン酸の如き公知のジカルボン酸及びこれらのアルキル、アルコ キシ又はハロゲン置換体等である。また、これらのジカルボン酸化合物は、エステル 形成可能な誘導体、例えばジメチルエステルの如き低級アルコールエステルの形で 重合に使用することも可能である。これは 2種以上が使用されることもある。
ポリエステル樹脂 (A)を構成するジヒドロキシィ匕合物の例を示せば、エチレングリコ ール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、ノ、イド口キノ ン、レゾルシン、ジヒドロキシフエニル、ナフタレンジオール、ジヒドロキシジフエニルェ 一テル、シクロへキサンジオール、 2,2—ビス(4—ヒドロキシフエニル)プロパン、ジェ トキシ化ビスフエノーノレ Aの如きジヒドロキシ化合物、ポリオキシアルキレングリコール 及びこれらのアルキル、アルコキシ又はハロゲン置換体等であり、 1種又は 2種以上 を混合使用することができる。また、ォキシカルボン酸の例を示せば、ォキシ安息香 酸、ォキシナフトェ酸、ジフヱ二レンォキシカルボン酸等のォキシカルボン酸及びこ れらのアルキル、アルコキシ又はハロゲン置換体等が挙げられる。また、これら化合 物のエステル形成可能な誘導体も使用できる。本発明においては、これら化合物の 一種又は二種以上が用いられる。また、これらの他に三官能性モノマー、即ちトリメリ ット酸、トリメシン酸、ピロメリット酸、ペンタエリスリトール、トリメチロールプロパン等を 少量併用した分岐又は架橋構造を有するポリエステルであってもよい。また、ジブ口 モテレフタル酸、テトラブロモテレフタル酸、テトラクロロテレフタル酸、 1,4 ジメチ口 一ルテトラブロモベンゼン、テトラブロモビスフエノール A、テトラブロモビスフエノール Aのエチレンまたはプロピオンオキサイド付加物のような芳香族核にハロゲン化合物 を置換基として有し、かつエステル形成性基を有する化合物を用いたハロゲンを有 するポリエステルコポリマーも含まれる。また、高融点ハードセグメントと低融点ソフト セグメントのブロック共重合体を構成するポリエステル系エラストマ一も使用すること ができる。このポリエステル系エラストマ一として、例えば、アルキレンテレフタレート 単位を主体とするハードセグメントと脂肪族ポリエステルもしくはポリエーテル力 成る ソフトセグメントとのブロック共重合体が挙げられる。本発明では、上記の如き化合物 をモノマー成分として、重縮合により生成するポリエステル樹脂は何れも本発明の (A) 成分として使用することができ、単独で、又は二種以上混合して使用されるが、好ま しくはポリアルキレンテレフタレート、更に好ましくはポリブチレンテレフタレート及びこ れを主体とする共重合体が使用される。 次に、エポキシ基変性ポリプロピレン系樹脂 (B)は、ポリプロピレン鎖にエポキシ基 が共有結合によって結ばれているものであれば、如何なるものも使用できる。また、プ ロピレン基以外のモノマーが共重合されたポリマー鎖も使用可能で、プロピレンーェ チレン共重合体、プロピレン一エチレン一ジェン共重合等が挙げられる。また、これら を混合して使用することも可能である。エポキシ基変性ポリプロピレン系樹脂 (B)を構 成するエポキシ基含有モノマー成分としては、例えばグリシジルアタリレート、グリシジ ルメタタリレート、 4,5 —エポキシベンジルアタリレート、 4,5—エポキシベンジルメタク リレート、ァリルグリシジルエーテル、メタクリルグリシジルエーテル、ブタジエンモノエ ポキシド等が挙げることができる力 特にグリシジルアタリレート、グリシジルメタクリレ ートが好ましく用いられる。エポキシ基含有モノマーの添加量としては、全成分中の 0 .1〜15重量%の範囲が好ましぐさらに好ましくは 0.5〜10重量%である。少なすぎる 場合には、 (A)成分のポリエステル樹脂との相容化不足による剥離、物性低下を生 じ、多過ぎる場合には、ポリエステノレ樹脂組成物の溶融粘度を著しく増加させ成形 性を悪化させる。さらにこのエポキシ基変性ポリプロピレン系樹脂中には、特性を低 下させない範囲で芳香族ビニルイヒ合物を共重合することも可能である。例えば、スチ レン、メチルスチレン、ビエルトルエン、ビエルキシレン、ェチルベンゼン、イソプロピ ルスチレン、クロロスチレン等が挙げられ、単独または混合して用いられる(特開平 09 263685号公報)。
ポリカーボネート樹脂については以下の通りである。
ポリカーボネート樹脂は、 2価フエノールより誘導される粘度平均分子量 10, 000 〜100, 000、好ましくは 15, 000〜60, 000のポジカーボネー卜であり、通常 2価フ ヱノールとカーボネート前駆体から溶液法又は溶融法で製造される。
2価フエノールの代表的な例としてビスフエノーノレ A[2, 2 _ビス(4—ヒドロキシフエ二 ル)プロパン]、ビス(4—ヒドロキシフヱニル)メタン、ビス(4—ヒドロキシフヱニル)エー テル、ビス(4—ヒドロキシフエ二ノレ)スルホン、ビス(4—ヒドロキシフエ二ノレ)スルホキシ ド、ビス(4—ヒドロキシフエニル)スルフイド、ビス(4—ヒドロキシフエニル)ケトン、 1 , 1 —ビス(4—ヒドロキシフエ二ノレ)ェタン、 1 , 1 _ビス(ヒドロキシフエ二ノレ)シクロへキサ ン、 2, 2_ビス(4—ヒドロキシフエ二ノレ)プロパン、 2, 2_ビス(4—ヒドロキシフエニル )、 2, 2 ビス(4ーヒドロキシ 3, 5 ジメチルフエニル)プロパンブタン等をあげるこ とができる。好ましレ、 2価フエノールはビス(4—ヒドロキシフエニル)アルカン系化合物 、特にビスフエノール Aである。 2価フエノールは単独で又は 2種以上混合して使用す ること力 Sできる。また、カーボネート前駆体としてはカルボニルハライド、カーボネート 又はハロホルメート等をあげることができる。代表的な例としてはホスゲン、ジフエニル カーボネート、 2価フエノールのジハロホルメート及びこれらの混合物をあげることが できる。ポリカーボネート樹脂の製造に際しては、適当な分子量調節剤、分岐剤、触 媒等も使用できる (特開 7 _ 216215号公報)。
[0050] ポリオレフイン樹脂は以下の通りである。
ポリオレフイン樹脂は、各種のものであって特に限定されるものではなレ、が、例えば 、低密度ポリエチレン樹脂、高密度ポリエチレン樹脂およびエチレンと炭素数が 3〜1 0のひ一ォレフイン等とを共重合させて得られる線状低密度ポリエチレン樹脂等のポ リエチレン系樹脂、未変性ポリプロピレン樹脂および変性ポリプロピレン樹脂等のポリ プロピレン系樹脂並びにエチレン/酢酸ビニル共重合体樹脂等が挙げられる。これ らの各種ポリオレフイン樹脂は、それぞれ単独で用いられてもよいし、 2種以上のもの が併用されてもよい。
[0051] なお、ポリオレフイン樹脂として特に好ましいものは、成形、粉碎等の加工性に優れ 、し力も安価であるという点において、ポリエチレン系樹脂、とりわけ低密度ポリエチレ ン樹脂および高密度ポリエチレン樹脂である(特開 2002— 40511号公報)。
[0052] ポリアセターノレ樹脂としては、ァセタールホモポリマ、及び、主としてォキシメチレン 単位からなり、ポリマ主鎖中に少なくとも 1種の炭素数 2〜8のォキシアルキレン単位 を含有するァセタールコポリマなどがあげられる。
ァセタールホモポリマとしては、末端の不安定なヒドロキシル基をエステル基またはェ 一テル基等に置換し、安定化されたォキシメチレン単独重合体が使用できる。例え ば、実質的に無水のホルムアルデヒドを有機ァミン、有機あるいは無機の錫化合物、 金属水酸化物のような塩基性重合触媒を含有する有機溶媒中に導入して重合し、 重合体を濾別したのち、無水酢酸中、酢酸ナトリウムの存在下で加熱して末端をァセ チル化して製造したものなどが挙げられる。 ァセタールコポリマとしては、例えば、実質的に無水のトリオキサン、あるいは、テト ラオキサンのようなホルムアルデヒドの環状オリゴマと共重合成分としての少なくとも 1 種の環状エーテルまたは環状ホルマールとをシクロへキサンやベンゼンのような有機 溶媒中に溶解、あるいは、懸濁したのち、重合触媒、例えば、三フッ化ホウ素、三フッ 化ホウ素水和物及び三フッ化ホウ素と酸素原子または硫黄原子を含む有機化合物と の配位化合物からなる群から選ばれる少なくとも一種の化合物を添加して重合し、不 安定末端を分解除去して製造したものなどが挙げられる。あるいは、溶媒を全く使用 せずにセルフクリーニング型撹拌機の中へトリオキサンと共重合成分/触媒の予備 混合物を導入して塊状重合したものも使用できる。所望により、この重合体から洗浄 によって触媒を除去、あるいは、失活剤によって触媒を失活させたのち、不安定末端 を分解除去して製造することも可能である。特に好ましいのは、トリオキサンと環状ェ 一テルまたは環状ホルマールとを、三フッ化ホウ素'ジェチルエーテラートのような重 合触媒の存在下、塊状重合させたのち、ヒンダードアミン系化合物を添加して重合反 応を停止させ、更に不安定末端を分解除去して得られたポリアセタール樹脂である。 そして、ポリアセタールにジペンタエリスリトール又はトリペンタエリスリトールと合わ せて使用することができる。ジペンタエリスリトールは化学式で(HOCH ) CCH OC
H C (CH OH) と表わされる。また、本発明で使用するトリペンタエリスリトールは化 学式で(HOCH ) CCH OCH C (CH OH) CH OCH C (CH OH) と表わされる ジペンタエリスリトール及び/またはトリペンタエリスリトールの添加量はポリアセター ル榭脂 100重量部に対して、 0. 001〜20重量部必要であり、好ましくは 0. 01〜5 重量部である。 0. 001重量部より少ないと十分な熱安定性が得られず、 20重量部よ り多いと逆に機械的強度の低下がみられ好ましくない。
さらに、ヒンダードフヱノール系化合物を使用する場合には、分子量 300以上のも のが使用でき、具体的には、 2, 2 '—メチレン一ビス(4—メチル _ 6 _t_ブチルフエ ノール)、トリエチレングリコール一ビス [3 _ (3 _t_ブチル _ 5_メチル _4—ヒドロ キシフエニル)プロピオネート]、 1, 6—へキサンジオール一ビス [3— (3, 5_ジ一 t —ブチル _4—ヒドロキシフヱニル)プロピオネート]、ペンタエリスリチルーテトラキス [ 3- (3, 5—ジ一 t ブチル 4—ヒドロキシフエニル)プロピオネート]、 N, N'—へキ サメチレンビス(3, 5 ジ一 t ブチル 4 ヒドロキシヒドロシンナマミド)、 2— t ブ チノレー 6— (3'— t ブチル 5 '—メチルー 2'—ヒドロキシベンジル) 4—メチルフ ェニルアタリレート、 3, 9 _ビス [2_ { 3_ (3_t_ブチル _4—ヒドロキシ _ 5 メチ ルフエニル)プロピオ二ルォキシ} _ 1, 1 _ジメチルェチル]— 2, 4, 8, 10—テトラオ キサスピロ [5, 5]ゥンデカンなどがあげられる。この中でトリエチレングリコール一ビス
[3_ (3_t_ブチル _ 5 _メチル _4—ヒドロキシフエニル)プロピオネート]、 1, 6 - へキサンジオール一ビス [3— (3, 5—ジ _t_ブチル _4—ヒドロキシフエニル)プロ ピオネート]、ペンタエリスリチルーテトラキス [3— (3, 5—ジ _t_ブチル _4—ヒドロ キシフヱニル)プロピオネート]が特に好ましレ、。分子量が 300より小さいとブリード現 象が著しぐポリアセタール樹脂組成物の外観を損なう上、熱安定性が低下するので 使用に耐えなレ、(特開平 06 - 345937)。
[0053] ポリスチレンについては、以下の通りである。
ポリスチレンの透明性、剛性を保持し、耐熱性を向上させたスチレン系樹脂として スチレン α—メチルスチレン共重合体(SAMS)、スチレン アクリル酸共重合体( SAA)、スチレンーメタクリル酸共重合体(SMAA)、スチレン 無水マレイン酸共重 合体(SMA)などの耐熱スチレン系共重合体を挙げることができる(特開 2005— 24 8002)。
[0054] ポリフエ二レンエーテルについては以下の通りである。
以下本発明を詳細に説明する。
本発明のポリフエ二レンエーテル樹脂は、 30°Cにおいて 0. 5g/dlの濃度のクロ口 ホルム溶液で測定された還元粘度(77 spZc)が 0. 04〜0. 20dlZg、好ましくは 0. 06〜0. 20dlZgの低分子量のポリフエ二レンエーテル樹脂である。
電子用途部品などにした際の機械強度の観点から還元粘度が 0. 04dl/g以上であ ることが必要であり、電子用途部品などへの加工性の観点から 0. 20dl/g以下が必 要である。
本発明のポリフエ二レンエーテル樹脂は、電子用途部品等での電気特性の観点か らカラーインデックス(以下 C. Iと略す。)が、 1. 0以下であり、好ましくは 0. 9〜0. 1 である(特開 2005— 272631号公報)。
[0055] ポリアミドについては、以下の通りである。
ポリアミドは水を含む性質があることから、これを防ぐ意味で共重合体が用いられる ポリアミドとメタタリレートなどの共重合体、具体的な例としては、以下のものがある。 メタクリル酸メチル一ひ一メチルスチレン一無水マレイン酸共重合体:!〜 89重量% と、ポリアミド樹脂:!〜 89重量%と、無水マレイン酸変性エチレン一プロピレン共重合 体 10〜40重量%とを混合してなる熱可塑性樹脂組成物(特開平 06— 99024)、メ チルメタタリレート単位を含む熱可塑性メタクリル (コ)ポリマー (A)を 80〜89重量%、少 なくとも 1種の衝撃補強剤 (B)を 6〜15重量%、並びにポリアミド及びポリエーテル序 歹 IJを含む少なくとも 1種のコポリマー (C)を 1〜5重量%なる熱可塑性樹脂組成物(特開 20001 - 64471)
A)メチルメタタリレート単量体、それと共重合可能なビニル系単量体、芳香族ビニル 系単量体から構成され、その構成比が90〜70 : 0〜40 : 10〜30でぁるビニル系共 重合体、(B)両末端にカルボキシル基を有するポリアミドブロックと芳香族ジオール のアルキレンォキシド付カ卩物と力 誘導されるブロックコポエイアミド樹脂、(C)アル キルスルホン酸アルカリ金属塩および/またはアルキルベンゼンスルホン酸アルカリ 金属塩及び (D)脂肪酸アミドを構成成分力もなる熱可塑性樹脂組成物 (特開平 10 67609号公報)
[0056] ポリウレタン樹脂は、有機ポリイソシァネートと、高分子量親水性ポリオール及び/ 又はポリアミン (以下「親水性成分」という)と、分子内に少なくとも 1個の活性水素含 有基を有するポリシロキサンと、少なくとも 1個の反応性基と少なくとも 1個の加水分解 性シリル基とを同一分子内に有する化合物とを反応させて得られる親水性ポリウレタ ン樹脂である(特開 2005— 239780号公報)。
以下に本発明を具体例で説明する。本発明はこれに限定されるものではない。 実施例 1
[0057] ポリメチルメタタリレートとナノシリカゾル粒子からなる複合体のテスト作製のための 各種条件 有機高分子化合物としてポリメチルメタタリレート(以下、 PMMAともいう)、ナノ粒子 の金属酸化物としてシリカゾル(Si〇の溶媒に溶かしたゾル)、極性溶剤として THF
2
、非極性用材としてへキサンを用いた。
具体的な条件は、以下の通りである。
PMMA (分子量 4000)に対する Si〇ゾルの含有量はいずれも 4. 2重量%とした。
2
各 PMMA濃度 2. 0重量%、 PMMA濃度 4. 3重量%、 PMMA濃度 5. 0重量%、 PMMA濃度 6. 0重量%、 PMMA濃度 6. 7重量%、 PMMA濃度 8. 0重量%につ いて、 PMMA量と SiOゾル量及び THFをブレンドしたものを用いた(添加する PM
2
MA量及び SiOゾルの使用量, THFの使用量を示す内訳は表 2に示すとおりで
2
ある。)。
[表 2]
ポリマー皇度 2Jwt% 翁 霾度 4.3 t½
PMMA 4,0234g PMMA 3,3503g
SK ¾ 1.414 SiOj. 1.206¾
THF 201, Og THF 91.4Cte!
ポリマ一鏖虞 5.0wt% ポリマ一鼸度 6,0wt%
PMMA 4.0232g PMMA 4J236g
灘 2 1.4146g Si02 L4136g
84,?ml THF 69.60ml
ポリマ一塵度 7wt% ポリマ一濃度 S,«wt%
PMMA 4細 ¾ PMMA 4.023 tg
SiOj 1.4146g SiOa L4l48g
THF 61J8g THF 4%
[0059] シリカゾルの分散液を、 THFと PMMAからなる混合液中に添加し、十分に攪拌操 作をほどこし、これにへキサンを添加すると、シリカを均一に含有する PMMAを、再 沈澱により得ること力 Sできることができる。得られた沈殿物について、ろ過(吸引ろ過) により回収し、減圧乾燥することにより、ナノ粒子が散した PMMAの複合体組成物の 粉体を得ることができ、これによりテストピースを作製した。
シートの加熱条件は 190°Cであり、圧力は 40〜50MPa、 10時間、 25MPaで 1分 の処理を行った。
[0060] PMMAと Si〇ゾルの濃度を THF量で変化させて調製したシート片について、 PM
2 MA含有量を変数にして UV波長と UV透過率の関係を測定した結果は図 1のとおり である。
[0061] PMMAに対するシリカナノ粒子の割合を 4. 2重量%とし、 THF添加量を変数として 、 THF添カ卩量に応じて特定波長と波長毎の光透過性を測定して図示する(図 1)。こ のテストピースについて、異なる含有量の PMMAを変数として、波長毎の光透過性 を測定する。低濃度の PMMA (2. 0力 5. Owt%)の PMMAとシリカナノ粒子から なる複合体は、高濃度の PMMA (6. 0力、ら 8. Owt%)の PMMAとシリカナノ粒子力、 らなる複合体と比較すると、前者の光透過率は急激に高くなり(400nmで 80%を超 える)、その後徐々に高くなり、一方、後者ではなだらかに上昇し (400nmで 10%か ら 50%を超える程度)となり、その後もなだらかに上昇し、 700nm程度の波長で透過 率が 80%を超える結果となる。 PMMAの濃度で見てみると、 400nmで 5. 0wt%と 6 . 0wt%の間で光透過性は大きな相違が存在する(図 1)。光透過量が高い状態で推 移する有機高分子化合物含有量の中で最も大きレ、有機高分子化合物含有量 5. Ow t%が求める臨界濃度(C*)である。
[0062] また、以下の方法によっても、臨界濃度(C*)をもとめること力 Sできる。
臨界濃度 (C*)は、特定量の金属酸化物ナノ粒子重量を定め、これに極性溶媒を 加えた状態で、特定濃度となるように有機高分子化合物を添加して得られる組成物 について、特定量の有機高分子化合物を添加した状態で、金属酸化物ナノ粒子、有 機高分子化合物及び添加する極性溶媒組成物に対して測定して得られる特定波長 の光透過率と有機高分子化合物重量濃度の関係から見て、高く推移する特定波長 の光透過率の郡中から急激に透過率が低下するときの特定波長の光透過率の有機 高分子化合物含有量であると定めることもできる。
[0063] シリカゾルを THFで希釈して濃度を一定に保ち、 PMMA (分子量 4000)粉末を少 量ずつ添加して PMMA濃度を変化させ、光透過スペクトルの変化とシートの透過性 を測定してみる(図 2)。 PMMA濃度 5. Owt%までは、高い透過率で一定の値を保 つている(90%を超えている)。この点を過ぎると急激に低下する。 PMMA濃度 5. 0 wt%を過ぎると、光透過率は急激に減少する。高く推移する特定波長の光透過率の 郡中から急激に透過率が低下するときの特定波長の光透過率の有機高分子化合物 含有量(5. Owt%)を臨界濃度とする。
分子量を 50000とした PMMAについて、臨界濃度(C*)は、特定量の金属酸化物 ナノ粒子重量を定め、特定量の金属酸化物ナノ粒子を含有する有機高分子化合物 及び添加する量が変わる極性溶媒からなる組成物について、特定波長に対する光 透過量を測定して得られる結果について高く推移する光透過量の群と低く推移する 光透過量の群とに分けたときに、高く推移する光透過量の群中の有機高分子化合物 含有量が最も多いものの濃度として 5. 3wt% (400nm)として、これを臨界濃度とし た(図 3)。
シリカゾルを所定量採取して、 THFを添加して希釈して濃度を一定に保ち、 PM MA (数平均分子量 5万の場合)の粉末を少量ずつ添加して PMMA濃度を変化させ 、波長に応じた光透過率を測定した。
PMMA濃度力 . 3wt%、 6. 4wt%、 5. 3wt%、 4. 3wt%、 3. 2wt%、 2. 2wt %、 0. 00wt%の場合の光透過率は図 3に示す。
0. 0wt%は〇、 2· 2wt%は口、 3· 2wt%は◊、 4. 3wt%は X、 5. 3wt%は△、 6. 4wt%は拿、 7. 3wt%は園で示した。
PMMA濃度が 5. 3wt%まで (濃度 2. 2重量%、濃度 3. 2重量%、濃度 5. 3重量 %)では、 400nm以上の波長で高い透過率(80〜90%)を保持している。 PMMA 濃度が 5. 0wt%を超える、 PMMA濃度 6. 4重量%、 7. 3重量%の場合には、透過 率は急激に減少してレ、る。透過率が急激に減少する臨界ポリマー濃度が存在するこ と力 Sわ力る。
波長 600nmで PMMA (分子量 50000)につレ、て PMMA濃度と UV光透過率との 関係は図 5に示すとおりである。 PMMA濃度が 5. 3wt%以下のとき透過率は 80% を超える結果となり、 5. 3wt%を超える場合には、 UV透過率は急減に減少している ことがわかる。透過率が急激に減少する臨界ポリマー濃度が存在することがわかる。 波長 800nmで PMMA濃度が変化した場合の UV光透過率は図 6に示すとおりで ある。 PMMA濃度が 5. 3wt%以下のとき透過率は 80%を超える結果となり、 5. 3w t%を超える場合には、 UV透過率は急減に減少していることがわかる。透過率が急 激に減少する臨界ポリマー濃度が存在することがわかる。 同様にして、図 8は分子量を 100000とした PMMAについて、 400nmで PMMA 濃度と光透過率の関係を示す。 PMMA濃度 2. 83wt%から急激に低下する。具体 的には以下の通りである。
シリカゾルを所定量採取して、 THFを添加して希釈して濃度を一定に保ち、 PMM A (分子量 100000の場合)の粉末を少量ずつ添加して PMMA濃度を変化させ、波 長に応じた光透過率を測定した。
400nmでは 2. 83wt%と 3. 79wt%の間で光透過率は大きく変化していることが わ力る。
波長 600nmで PMMA (分子量 100000の場合)の PMMA濃度が変化した場合 の UV光透過率は図 9に示す。 PMMA濃度が 2. 80wt%以下で急激に低下するこ とがわかる。
波長 800nmで PMMA (分子量 100000の場合)の PMMA濃度が変化した場合 の UV光透過率は図 10に示す。 PMMA濃度が 2. 80wt%以下で急激に低下する ことがわかる。
[0065] 分子量を 50000とした PMMAについて、特定量の金属酸化物ナノ粒子重量を定 め、これに極性溶媒を加えた状態で、特定濃度となるように有機高分子化合物を添 カロして得られる組成物について、特定量の有機高分子化合物を添加した状態で、金 属酸化物ナノ粒子、有機高分子化合物及び添加する極性溶媒組成物に対して測定 して得られる特定波長の光透過率と有機高分子化合物重量濃度の関係から見て、 高く推移する特定波長の光透過率の郡中から急激に透過率が低下するときの特定 波長の光透過率の有機高分子化合物含有量であるして 5. 3wt%として、これを臨界 濃度とした (図 4)。
分子量を 100000とした PMMAについて、 400nmで 4. 3wt%以降、急激に低下 した。
[0066] 有機高分子化合物の分子量を考慮するばあいについては、以下のようにして臨界 濃度(C*)を求めることができる。
この場合に有機高分子化合物の分子量が限界分子量 (Mc)を超えて、前記有機 高分子化合物の含有量は臨界濃度 (C*)以下である場合について、有機高分子化 合物及び金属酸化物ナノ粒子からなる組成物の状態を示すと図 36の態様となる。有 機高分子化合物として MMA、金属酸化物ナノ粒子として SiOの場合として示して
2
ある。
有機高分子化合物について、 Mc (限界分子量) < M (有機高分子化合物の分子 量)の状態にある有機高分子化合物の場合には、有機高分子化合物分子量が大き ぐ有機高分子化合物濃度が臨界濃度 (C*)は (ポリマー臨界濃度ともいう)以下であ る場合には、有機高分子化合物サスペンション中で 1次粒子を保持している(図 36左 上の図)。この場合に、濃度が臨界濃度を超える場合には、有機高分子化合物同士 が接触し、絡み合うことによりポリマー吸着していたシリカが急激に 2次凝集を起こす 結果となる(図 36右上の図)。
[0067] 前記限界分子量 (Mc)及び前記臨界濃度 (C*)は、前記有機高分子化合物に対 する金属酸化物ナノ粒子含有量を特定量とした場合に、金属酸化物ナノ粒子、有機 高分子化合物及び添加する量が変わる極性溶媒からなる組成物について、組成物 の特波長の光透過率より導き出される値であるとして、定めた。
[0068] 前記限界分子量 (Mc)は、特定量の金属酸化物ナノ粒子に極性溶媒を加えた状 態で、特定濃度となるように添加する特定分子量の有機高分子化合物を添加して得 られる組成物について、特定分子量の有機高分子化合物の特定分子量を変数とし て、特定濃度の特定分子量の有機高分子化合物と、金属酸化物ナノ粒子、有機高 分子化合物及び添加する極性溶媒からなる組成物の特定波長の光透過率が有機 高分子化合物含有量の関係から見て、高く推移する特定波長の光透過率の郡中の 最も低い光透過率の有機高分子化合物の分子量と定め、前記臨界濃度 (C*)は、前 記最も低レ、光透過率の有機高分子化合物の次に低レ、透過率の特定分子量の有機 高分子化合物の含有量であると定めた。
[0069] 以下のように実施例を行った。
PMMAとして分子量 4000の場合にっレ、て、特定量の金属酸化物ナノ粒子である 、シリカゾル 4. 2重量%とする。これに THFの添加量を変化させて、 PMMAの含有 量を変化させて、非極性溶剤であるへキサンを添加して、シリカゾルを均一に含む有 機高分子化合物を再沈澱させて、回収し、減圧乾燥させてテストピースを作成する。 テストピース中では前記 PMMAの含有量は前記と同じ状態に固定されている。
PMMAに対するシリカナノ粒子の割合を 4. 2重量%とし、 THF添加量を変数とし て、 THF添カ卩量に応じて特定波長と波長毎の光透過性を測定してみる。 PMMA濃 度を 0. 0, 1. 11, 3. 27, 5. 31, 7. 35, 9. 20, 11. 02, 12. 77, 15. 27, 18. 3 8, 25. 24, 28. 26, 31. 04各 wt%として光透過率と波長 400, 600, 800, 1000 nmについて変化を測定してみた。透過率はいずれも当初から 400nmで 80%を超 える高い数値を示した。
また、シリカナノ粒子に対して、これに極性溶媒をカ卩えて 4. 2重量%のシリカナノ粒 子含有量とし、特定濃度となるように有機高分子化合物 (分子量 4000)を添加して得 られる組成物について、前記と同様にしてテストピースを作製した。 PMMA濃度を 0 . 0, 1. 11, 3. 27, 5. 31 , 7. 35, 9. 20, 11. 02, 12. 77, 15. 27, 18. 38, 25 . 24, 28. 26, 31. 04各 wt0/0 (こつレヽて、 400nm、 600nm、 800nmの場合を示す と、図 8、図 9、図 10のとおりである。この結果力もも高い光透過率で推移していること 力 sわ力る。
波長 400nmで PMMA (分子量 4000の場合)の PMMA濃度と光透過率の関係を 図 11に示す。この場合には光透過率は低下しない。
波長 600nmで PMMA (分子量 4000の場合)の PMMA濃度と光透過率の関係を 図 12に示す。この場合には光透過率は低下しない。
波長 800nmで PMMA (分子量 4000の場合)の PMMA濃度と光透過率の関係を 図 13に示す。この場合には光透過率は低下しない。
すなわち、 PMMAの分子量が 4000場合には、今回の場合では分子量 4000の場 合の結果であるが、仮に分子量が 4000場合未満の場合を測定していれば、分子量 4000の場合より光透過率は高い結果となる。これらのことを考慮すると、最も低い光 透過率の有機高分子化合物の分子量である 4000の場合が限界分子量 (Mc)であ るとレ、こと力できる。
図 14fま PMMA_Si〇複合体(分子量 4000、 50000、 100000) (こつレヽて透過
2
光の波長 400nmのときの PMMAの含有量を変数としたときの PMMAの含有量と光 透過率の関係を示す。 図 15ίま PMMA— Si〇複合体(分子量 4000、 50000、 100000) tこつレヽて透過
2
光の波長 600nmのときの PMMAの含有量を変数としたときの PMMAの含有量と光 透過率の関係を示す。
図 16fま PMMA_Si〇複合体(分子量 4000、 50000、 100000) (こつレヽて透過
2
光の波長 800nmのときの PMMAの含有量を変数としたときの PMMAの含有量と光 透過率の関係を示す。
図 14より、前記臨界濃度(C*)は、前記最も低い光透過率の有機高分子化合物の 次に低い透過率の特定分子量の有機高分子化合物の含有量である波長が 400nm で PMMAの分子量が 50000の場合の 4. 3wt%であるとレ、うことができる。
この場合には有機高分子化合物の分子量が限界分子量 (Mc)を超えている場合 であるから、分子量が 4000の場合が限界分子量 (Mc)を超えている場合として、前 記最も低レ、光透過率の有機高分子化合物の次に低レ、透過率の特定分子量の PM MAの分子量が 50000の場合の臨界濃度(C*)を求めた。さらに正確な値を求める であれば、、分子量 40000と 50000のィ直につレヽて実験を行レヽ沏 J定することにより、より 実際に近い値をもとめることができる。
[0070] 有機高分子化合物の分子量 Mについて、 Mc (限界分子量) >Mの状態にある有 機高分子化合物の場合には、有機高分子化合物の分子量が小さぐ有機高分子化 合物量臨界濃度は発生しない。この場合には、有機高分子化合物サスペンション中 で 1次粒子を保持している状態(図 36左下の図)及び金属酸化物ナノ粒子の表面を 有機高分子化合物鎖が被覆し、金属酸化物ナノ粒子による 2次凝集を抑制するので 、凝集は起こらない(図 36右下の図)状態となる。
[0071] 前記限界分子量 (Mc)は、前記有機高分子化合物に対する金属酸化物ナノ粒子 含有量を特定量とした場合に、金属酸化物ナノ粒子、有機高分子化合物及び添カロ する量が変わる極性溶媒からなる組成物について、組成物の光透過率より導き出さ れる値である。
[0072] PMMAの分子量力 4000、 50000及び 100000の各場合にっレ、て、 PMMA濃 度対する光透過率の関係を、波長力 S400nm、 600nm、 800nmの場合について、 図 14から 16に示した。 PMMAの分子量 4000力 限界分子量(Mc)である。
[0073] PMMA- SiO複合体(Si〇の分子量 50000、 PMMA含有量 10. 0wt%)につい
2 2
て PMMAの含有量を変数としたときの光波長と光透過率の関係を示す(図 37)。 また、図 38は波長 400nmにおける PMMAの含有量を変数としたときの PMMAの 含有量と光透過率の関係を示す(SiOの分子量 50000、 PMMA含有量 10. Owt
2
%)。
図 39は波長 400nmにおける PMMAの含有量を変数としたときの PMMAの含有 量と光透過率の関係を示す(SiOの分子量 50000、 PMMA含有量 4. 0及び 10. 0
2
Wt %の場合を示す。)。
実施例 2
[0074] チタニア (TiO )場合について、 SiOの場合と同じくポリマー濃度の変化に応じて
2 2
光透過度の変化を測定した。
ナノ粒子のチタニアを有機高分子化合物に均一に分散した複合体を得る方法につ いては以下のとおりである。
有機高分子化合物としてポリメチルメタタリレート(以下, PMMAともいう)、ナノ粒子 の金属酸化物として酸化チタン (溶媒 (メチルイソブチルケトン: MBK)中に酸化チタ ンを分散したもの)、極性溶剤としてメチルェチルケトン(MEK)、非極性溶剤として へキサンを用いた。
[0075] チタニアの分散液を、 MEKと PMMAからなる混合液中に添加し、十分に攪拌操 作をほどこすと、チニァ粒子力 ¾次凝集を起こすことなぐ均一に分散した組成物を得 ること力 Sできる。そして、これにへキサンを添加すると、酸化チタンを均一に含有する P MMAを、再沈澱により得ることができることができる。得られた沈殿物について、ろ 過(吸引ろ過)により回収し、減圧乾燥することにより、ナノ微粒子が均一に分散した P MMAの複合体組成物の粉体を得ることができる。これにつレ、てヒートプレスして物 性テストを行い、評価する。
[0076] PMMAに対する TiOの含有量はいずれも 1. 0重量%とした(この設定は適宜変
2
更可能である)。
各 PMMA濃度 1. 0重量%、 PMMA濃度 5. 0重量%、 PMMA量と TiO量及び MEKをブレンドしたものを用いた(添加する PMMA濃度、 TiO及び MEKの使用量
2
仕込み量の内訳は表 3に示すとおりである。)。
PMMA濃度については以下の式により算出する。
PMMA濃度(wt%)
= [PMMA (g) /PMMA (g) +溶媒(g) +ΤΪΟ ] X 100
2
[表 3]
Figure imgf000040_0001
[0078] 複合体シートに関し、 PMMA濃度 1. 0重量%、 PMMA濃度 5. 0重量%の光透過 度の測定結果は図 16に示すとおりである。複合体シートの PMMA濃度が 1. Owt% では 700nm以上で光透過度が 80%を超えることを示している。 PMMA濃度 5. 0重 量%の光透過度は低レ、値に終始してレ、ることがわかる
[0079] PMMA濃度 1. 0重量0 /0の場合に、 MEKを 10ml、 30ml, 50ml, 70ml, 90ml, 110ml, 200mlを添加した場合の UV光透過度の測定結果は図 17に示すとおりで ある。 MEKの添加量が 10mlの場合は〇、 30mlの場合は口、 50mlの場合は◊、 7 0mlの場合は X、 90mlの場合は△、 110mlの場合はき、 200mlの場合は國により 表した。 500nm以上では 70ml以上の場合(70ml、 90ml, 110ml, 200ml)は 80 以上 100%の間にある。
[0080] TiOを所定量採取して、 MEKを添加して希釈して濃度を一定に保ち、 PMMA(
2
分子量 5万)の粉末を少量ずつ添加して PMMA濃度を変化させ、波長に応じた光 透過率を観測する。
PMMA濃度 1. 0wt%について、 Ti〇濃度が 0. 0wt% 0. 93wt% 1. 83wt%
2
、 3. 03wt%、 4. 18wt%、 5. 02wt%、 5. 86wt%6. 95wt%、 10. 49wt%の場 合の UV透過率は図 18に示す。
0. 0wto/o fま〇、 0. 93wt0/0 fま□、 1. 83wt0/0 fま◊、 3. 03wt% ¾ X , 4. 18wt% は +、 5. 02wt%は△、 5· 86wt%は拿、 6. 95wt%は國、 10· 49wt%は♦を表す
400應では 0· 93wt%で 67%である。 600應では 3· 03%以下で 80力ら 100% の間になる。 800nmでは 4. 18以下で 80力、ら 100%の間になる。
600mnでは、 3. 03wt%超える点で急激な減少を見ることができる。
800nmでは、 3. 03wt%超える点で急激な減少を見ることができる。
3. 03wt%の点が臨界濃度であるということができる。
400匪、 600nm及び 800nmの UV光透過率を記録した結果は図 19、図 20及び 図 21である。
[0081] ΤΪΟを所定量採取して、 MEKを添加して希釈して濃度を一定に保ち、 PMMA(
2
分子量 4000)の粉末を少量ずつ添加して PMMA濃度を変化させ、波長に応じた光 透過率を観測する。
PMMA濃度 1 · 0wt%について、 Ti〇濃度が 0· 0wt%、 0. 61wt%、 1. 23wt%
2
、 1. 83wt%、 2. 42wt%、 3. 01wt%、 3. 59wt%、 4. 17wt%、 4. 73wt%、 5. 2 9wt%、 5. 84wt%、 6. 39wt%、 6. 93wt%、 7. 46wt%、 7. 99wt%、 8. 51wt %、 9. 03wt%、 9. 54wt%、 10. 05wt%の場合の UV透過率は図 22に示す。 400醒の場合は図 23、 600應の場合は図 24、 800應の場合は図 25である。 400nmでは 1. 83wt%以下(この場合には当初の透過率が 70%と 80%の間であ り低レヽ)、 600nmでは 5. 29wt%以下、 800nmでは 5. 84wt%以下の場合につい て光透過率は 80から 100の間にある。これらは臨界濃度であるということができる。
[0082] Ti〇を所定量採取して、 MEKを添加して希釈して濃度を一定に保ち、 PMMA(
2
分子量 10万)の粉末を少量ずつ添加して PMMA濃度を変化させ、波長に応じた光 透過率を観測する。
PMMA濃度 1. 0wt%について、 Ti〇濃度が 0. 0wt%、 0. 62wt%、 1. 23wt%
2
、 1. 53wt%、 1. 83wt%、 2. 13wt%、 2. 43wt%、 3. 02wt%、 3. 59wt%の場 合の UV透過率は図 27に示す。
400應では 0. 6wt%で 70%、 600讓では 1. 5wt%以下、 800nmでは 1. 8wt
%以下の場合について光透過率は 80から 100の間にある。 400nm、 600nm及び 800nmの UV光透過率を記録した結果は図 27、図 28及び 図 29である。
[0083] PMMAの分子量が 4000、 50000及び 100000の各場合にっレ、て、 TiO濃度に
2 対する光透過率の関係を、波長力 S400nm、 600nm、 800nmの場合について、図 3 0、図 31、図 32に示した。
波長が 400nmの場合には、 PMMAが 10万の場合には TiOが 0. 61wt%、 PM
2
MAの分子量が 5万の場合には TiO濃度が 0. 93wt%
2
急減する。 PMMAの分子量が 4000の場合に Ti〇が 0. 61wt%から 2. 42wt%ま
2
で光透過率は 70%を維持し、その後、急激に減少する。
波長が 600nmの場合には、 PMMAの分子量が 10万の場合には Ti〇が 0. 61wt
2
%、 PMMAの分子量が 5万の場合には TiO濃度が 0. 93wt%で光透過率が 90%
2
を超える点から減少が始まる。 PMMAの分子量が分子量が 4000の場合には Ti〇
2 が 0. 61wt%力 4. 17wt%まで光透過率は 90%を維持し、その後、急激に減少す る。
波長が 800nmの場合には、 PMMAの分子量が 10万の場合には TiOが 0. 61wt
2
%以降、急激に減少する。 PMMAの分子量が 5万の場合には TiO濃度が 0. 93wt
2
%から 3. 03wt%まで光透過率が 90%を超えて一定の割合で減少し、やがて急激 に減少する。
PMMAの分子量が分子量力 ¾000の場合には TiOが 0. 61wt%力ら 4. 73wt%
2
まで光透過率は 95%を超える範囲で安定に推移し、その後急激に減少する。
実施例 3
[0084] ァノレミナゾノレ (A1〇 )について、 Si〇ゾル及び Ti〇ゾルと同じくポリマー濃度の変
2 3 2 2
化に応じて光透過度の変化を測定した。
ナノ粒子のアルミナを有機高分子化合物に均一に分散した複合体を得る方法につ いては以下のとおりである。
有機高分子化合物としてポリメチルメタタリレート(以下, PMMAともいう)、ナノ粒子 の金属酸化物としてアルミナ (溶媒中にアルミナを分散したもの)、極性溶剤としてメ チルェチルケトン (MEK)、非極性溶剤としてへキサンを用いた。 [0085] アルミナの分散液を、 MEKと PMMAからなる混合液中に添加し、十分に攪拌操 作をほどこすと、アルミナ粒子が 2次凝集を起こすことなぐ均一に分散した組成物を 得ること力 Sできる。そして、これにへキサンを添加すると、アルミナを均一に含有する P MMAを、再沈澱により得ることができることができる。得られた沈殿物について、ろ 過(吸引ろ過)により回収し、減圧乾燥することにより、ナノ微粒子が均一に分散した P MMAの複合体組成物の粉体を得ることができる。これにつレ、てヒートプレスして物 性テストを行い、評価する。
[0086] PMMAに対する Al Oの含有量は 5. 0重量%とした(この設定は適宜変更可能で
2 3
ある)。
Al Oを所定量採取して、 MEKを添カ卩して希釈して濃度を一定に保ち、 PMMA
2 3
の粉末を少量ずつ添加して PMMA濃度を変化させ、波長に応じた光透過率を観測 した(図 33)
PMMA濃度 5. Owt%について、 Ti〇濃度が 1. Owt%、 2. 01wt%、 3. 01wt%
2
、 4. 00wt%、 5. 02wt%、 6. 01wt%、 8. 01wt%の場合の UV透過率を示してい る。
1. Owt%は〇、 2· 01wt%は口、 3· 01wt%は◊、 4· 00wt%は△、 5· 02wt% は拿、 6. 01wt%は國、 8· 01wt%は♦をあらわす。
400應では 1 · Owt%で 50%である。 600應では 1 · Owt%で 78%である。 800η mでは 3. 01以下で 80から 100%の間になる。
[0087] PMMA濃度 5. 0重量0 /0の場合に、 MEKを 10g、 30g、 50g、 70g、 90g、 110g、
130g、 150g、 170g、 190g及び 210gを添カ卩した場合の UV光透過度の測定結果 は図 34に示すとおりである。 MEKの添加量が 0の場合は、〇、 10mgの場合は口、 3 Ogの場合は◊、 50gの場合は△、 70gの場合は X、 90gの場合はき、 110gの場合 は國、 130gの場合は♦、 150gの場合は▲、 170gの場合は◎、 190gの場合は〇 〇、 210§の場合はロロで示した。
600應以上では 90g以下の場合(10g、 30g、 50g、 70g、 90g)に光透過率は 80 以上 100ο/οの Γ ^こある。 800nmの場合 (こつレヽて fま 170g以下の場合(10g、 30g、 50 g、 70g、 90g、 110g、 130g、 150g及び 170g) こ光透過率 fま 80以上 1000/oの ある。
[0088] Al Oを所定量採取して、 MEKを添加して希釈して濃度を一定に保ち、 PMMA (
2 3
分子量 5万)の粉末を少量ずつ添加して PMMA濃度を変化させ、波長に応じた光 透過率を観測した。
PMMA濃度 5. Owt0/0につレヽて、 Al O濃度力 0. Owt%, 0. 47wt%, 0. 94wt
2 3
%、 1. 40wt%、 1. 86wt%、 2. 32wt%、 2. 77wt%、 3. 22wt%, 3. 66wt%、 4 . 10wt%、 4. 53wt%、 4. 96wt%、 5. 39wt%、 5. 81wt%、 6. 23wt%、 6. 64 wt%、 7. 06wt%、 7. 46wt%、 7. 87wt%、 8. 27wt%の場合の UV光透過度の 測定結果は、 400nm以上では、 65から 74%の間に含まれ、 600nmでは 88。/0力、ら 9 4%の間に含まれ、 800nmでは 94から 97%の間に含まれる結果となる。
産業上の利用可能性
[0089] 金属酸化物ナノ粒子を有機高分子化合物に採用することにより有機高分子化合物 全体の屈折率を高めることが可能となるので、光学製品のほか光透過性の材料とし て用いることができることに期待される。又、基材表上面に耐擦傷性を付与とともに、 帯電防止性および防汚性に優れる硬化物を形成しうる硬化性組成物として期待され 、材料の硬度を挙げることもできることから表面処理剤への利用が検討される。

Claims

請求の範囲
[1] 有機高分子化合物及び金属酸化物ナノ粒子を含み、前記金属酸化物ナノ粒子は 粒子として均一分散してレ、ることを特徴とする有機高分子化合物 ·金属酸化物複合 体組成物。
[2] 有機高分子化合物、金属酸化物ナノ粒子及び極性溶媒からなり、前記金属酸化物 ナノ粒子は粒子として均一分散していることを特徴とする請求項 1記載の有機高分子 化合物 ·金属酸化物複合体組成物。
[3] 前記金属酸化物ナノ粒子は金属酸化物ナノ粒子同士が凝集することなく均一分散 していることを特徴とする請求項 1又は 2記載の有機高分子化合物 ·金属酸化物複合 体組成物。
[4] 前記有機高分子化合物がポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂 、ポリアセタール樹脂、ポリフエ二レンエーテル樹脂、メタクリル系樹脂、ポリスチレン 樹脂、ポリウレタン樹脂、及びポリオレフイン樹脂から選ばれる樹脂であることを特徴と する請求項 1から 3いずれか記載の有機高分子化合物 ·金属酸化物複合体組成物。
[5] 前記金属酸化物ナノ粒子が、 SiO 、 Al O、 Sb O 、 Ti〇、 SnO 、 ZrO 、 ZnOか
2 2 3 2 5 2 2 2 2 ら選ばれる金属酸化物ナノ粒子であることを特徴とする請求項 1から 3いずれか記載 の有機高分子化合物 ·金属酸化物複合体組成物。
[6] 前記金属酸化物ナノ粒子が金属酸化物ナノ粒子ゾルであることを特徴とする請求 項 1から 5いずれか記載の有機高分子化合物 ·金属酸化物複合体組成物。
[7] 前記有機高分子化合物の含有量は、前記有機高分子化合物に対する金属酸化 物ナノ粒子の重量を一定とした場合に、金属酸化物ナノ粒子、有機高分子化合物及 び添加する極性溶媒からなる複合体組成物の有機高分子化合物含有量であり、臨 界濃度(C*)以下であることを特徴とする請求項 1から 6いずれか記載の有機高分子 化合物 ·金属酸化物複合体組成物。
[8] 前記臨界濃度 (C*)は、有機高分子化合物に対する金属酸化物ナノ粒子含有量( 重量)を一定量とした場合に、金属酸化物ナノ粒子、有機高分子化合物及び添加す る量が変わる極性溶媒からなる組成物について、組成物の光透過率より導き出され る値であることを特徴とする請求項 7記載の有機高分子化合物 '金属酸化物複合体 組成物。
[9] 前記臨界濃度 (C*)は、特定量の金属酸化物ナノ粒子重量を定め、特定量の金属 酸化物ナノ粒子を含有する有機高分子化合物及び添加する量が変わる極性溶媒か らなる組成物について、特定波長に対する光透過量を測定して得られる結果につい て高く推移する光透過量の群と低く推移する光透過量の群とに分けたときに、高く推 移する光透過量の群中の有機高分子化合物含有量が最も多レ、ものの濃度と定める ことを特徴とする請求項 8記載の有機高分子化合物 '金属酸化物複合体組成物。
[10] 前記臨界濃度 (C*)は、特定量の金属酸化物ナノ粒子重量を定め、これに極性溶 媒をカ卩えた状態で、特定濃度となるように有機高分子化合物を添加して得られる組 成物について、特定量の有機高分子化合物を添加した状態で、金属酸化物ナノ粒 子、有機高分子化合物及び添加する極性溶媒組成物に対して測定して得られる特 定波長の光透過率と有機高分子化合物重量濃度の関係から見て、高く推移する特 定波長の光透過率の郡中から急激に透過率が低下するときの特定波長の光透過率 の有機高分子化合物含有量であると定めることを特徴とする 8記載の有機高分子化 合物 ·金属酸化物複合体組成物。
[11] 前記有機高分子化合物の分子量が限界分子量 (Mc)を超えて、且つ前記有機高 分子化合物の含有量は臨界濃度(C*)以下であることを特徴とする請求項 1から 6い ずれか記載の有機高分子化合物 '金属酸化物複合体組成物。
[12] 前記限界分子量 (Mc)及び前記臨界濃度 (C*)は、前記有機高分子化合物に対 する金属酸化物ナノ粒子含有量を特定量とした場合に、金属酸化物ナノ粒子、有機 高分子化合物及び添加する量が変わる極性溶媒からなる組成物について、組成物 の特波長の光透過率より導き出される値であることを特徴とする請求項 11記載の有 機高分子化合物 ·金属酸化物複合体組成物。
[13] 前記限界分子量 (Mc)は、特定量の金属酸化物ナノ粒子に極性溶媒を加えた状 態で、特定濃度となるように添加する特定分子量の有機高分子化合物を添加して得 られる組成物について、特定分子量の有機高分子化合物の特定分子量を変数とし て、特定濃度の特定分子量の有機高分子化合物と、金属酸化物ナノ粒子、有機高 分子化合物及び添加する極性溶媒からなる組成物の特定波長の光透過率が有機 高分子化合物含有量の関係から見て、高く推移する特定波長の光透過率の郡中の 最も低い光透過率の有機高分子化合物の分子量と定め、前記臨界濃度 (C*)は、前 記最も低レ、光透過率の有機高分子化合物の次に低レ、透過率の特定分子量の有機 高分子化合物の含有量であると定めることを特徴とする請求項 11又は 12記載の有 機高分子化合物 ·金属酸化物複合体組成物。
[14] 前記有機高分子化合物の分子量が限界分子量 (Mc)以下であることを特徴とする 請求項 1から 6いずれか記載の有機高分子化合物 ·金属酸化物複合体組成物。
[15] 前記限界分子量 (Mc)は、前記有機高分子化合物に対する金属酸化物ナノ粒子 含有量を特定量とした場合に、金属酸化物ナノ粒子、有機高分子化合物及び添カロ する量が変わる極性溶媒からなる組成物について、組成物の光透過率より導き出さ れる値であることを特徴とする請求項 14記載の有機高分子化合物 '金属酸化物複合 体組成物。
[16] 前記限界分子量 (Mc)は、特定量の金属酸化物ナノ粒子に極性溶媒を加えた状態 で、特定濃度となるように特定分子量の有機高分子化合物を添加して得られる組成 物について、特定分子量の有機高分子化合物の特定分子量を変数として、特定濃 度の特定分子量の有機高分子化合物と、金属酸化物ナノ粒子、有機高分子化合物 及び添加する極性溶媒からなる組成物の光透過率を測定して得られる結果の中の、 高く推移する光透過率の群中の最も低い光透過率の有機高分子化合物分子量であ ることを特徴とする請求項 14記載の有機高分子化合物 ·金属酸化物複合体組成物。
PCT/JP2007/059627 2006-05-09 2007-05-09 ナノ粒子を分散させた透明な高分子材料及びその製造方法 WO2007129748A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008514522A JPWO2007129748A1 (ja) 2006-05-09 2007-05-09 ナノ粒子を分散させた透明な高分子材料及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006130722 2006-05-09
JP2006-130722 2006-05-09

Publications (2)

Publication Number Publication Date
WO2007129748A1 true WO2007129748A1 (ja) 2007-11-15
WO2007129748A8 WO2007129748A8 (ja) 2008-03-27

Family

ID=38667856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059627 WO2007129748A1 (ja) 2006-05-09 2007-05-09 ナノ粒子を分散させた透明な高分子材料及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2007129748A1 (ja)
WO (1) WO2007129748A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090799A1 (ja) * 2008-01-17 2009-07-23 National Institute Of Advanced Industrial Science And Technology 複合化高分子材料、これを含む光学材料および熱可塑性芳香族ポリマー
JP2009179691A (ja) * 2008-01-30 2009-08-13 Sumitomo Chemical Co Ltd メタクリル樹脂組成物の製造方法
JP2015504472A (ja) * 2011-12-21 2015-02-12 アグフア−ゲヴエルト 金属性、金属酸化物又は金属前駆体ナノ粒子、高分子分散剤及び熱的に開裂可能な薬剤を含んでなる分散系
JP2015505865A (ja) * 2011-12-21 2015-02-26 アグフア−ゲヴエルト 金属性、金属酸化物又は金属前駆体ナノ粒子、高分子分散剤及び焼結助剤を含んでなる分散系

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527108A (ja) * 1997-12-19 2001-12-25 フラウンホッファー−ゲゼルシャフト ツール フェルデルング デル アンゲヴァンテン フォールシュング イー.ヴィ. 隔離して分散させられているナノ・スケールの固形物粒子を含有するポリマー、このようなポリマーの製造法並びにその用途
JP2003520177A (ja) * 2000-01-19 2003-07-02 株式会社ブリヂストン 安定化シリカおよびこれの製造および使用方法
JP2003246811A (ja) * 2001-12-07 2003-09-05 Merck Patent Gmbh シリカ粒子を含むポリマー系材料、その製造方法、その利用
JP2004018763A (ja) * 2002-06-19 2004-01-22 Asahi Kasei Corp 高分子ナノ複合材料及びその製造方法
JP2004224882A (ja) * 2003-01-22 2004-08-12 Nissan Motor Co Ltd ナノ複合アクリル樹脂組成物およびその製造方法
JP2004346288A (ja) * 2003-05-26 2004-12-09 Matsushita Electric Works Ltd 熱硬化性樹脂組成物の製造方法及び熱硬化性樹脂組成物
JP2006249276A (ja) * 2005-03-11 2006-09-21 Tokyo Electric Power Co Inc:The ポリマー系ナノコンポジットの製造方法
JP2006307199A (ja) * 2005-03-31 2006-11-09 Kri Inc ナノコンポジット
JP2007016189A (ja) * 2005-07-11 2007-01-25 Nissan Motor Co Ltd 透明複合材およびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527108A (ja) * 1997-12-19 2001-12-25 フラウンホッファー−ゲゼルシャフト ツール フェルデルング デル アンゲヴァンテン フォールシュング イー.ヴィ. 隔離して分散させられているナノ・スケールの固形物粒子を含有するポリマー、このようなポリマーの製造法並びにその用途
JP2003520177A (ja) * 2000-01-19 2003-07-02 株式会社ブリヂストン 安定化シリカおよびこれの製造および使用方法
JP2003246811A (ja) * 2001-12-07 2003-09-05 Merck Patent Gmbh シリカ粒子を含むポリマー系材料、その製造方法、その利用
JP2004018763A (ja) * 2002-06-19 2004-01-22 Asahi Kasei Corp 高分子ナノ複合材料及びその製造方法
JP2004224882A (ja) * 2003-01-22 2004-08-12 Nissan Motor Co Ltd ナノ複合アクリル樹脂組成物およびその製造方法
JP2004346288A (ja) * 2003-05-26 2004-12-09 Matsushita Electric Works Ltd 熱硬化性樹脂組成物の製造方法及び熱硬化性樹脂組成物
JP2006249276A (ja) * 2005-03-11 2006-09-21 Tokyo Electric Power Co Inc:The ポリマー系ナノコンポジットの製造方法
JP2006307199A (ja) * 2005-03-31 2006-11-09 Kri Inc ナノコンポジット
JP2007016189A (ja) * 2005-07-11 2007-01-25 Nissan Motor Co Ltd 透明複合材およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090799A1 (ja) * 2008-01-17 2009-07-23 National Institute Of Advanced Industrial Science And Technology 複合化高分子材料、これを含む光学材料および熱可塑性芳香族ポリマー
JP2009167316A (ja) * 2008-01-17 2009-07-30 National Institute Of Advanced Industrial & Technology 複合化高分子材料、これを含む光学材料および熱可塑性芳香族ポリマー
US8367757B2 (en) 2008-01-17 2013-02-05 National Institute Of Advanced Industrial Science Technology Polymer composite material, optical material including the same, and thermoplastic aromatic polymer
JP2009179691A (ja) * 2008-01-30 2009-08-13 Sumitomo Chemical Co Ltd メタクリル樹脂組成物の製造方法
JP2015504472A (ja) * 2011-12-21 2015-02-12 アグフア−ゲヴエルト 金属性、金属酸化物又は金属前駆体ナノ粒子、高分子分散剤及び熱的に開裂可能な薬剤を含んでなる分散系
JP2015505865A (ja) * 2011-12-21 2015-02-26 アグフア−ゲヴエルト 金属性、金属酸化物又は金属前駆体ナノ粒子、高分子分散剤及び焼結助剤を含んでなる分散系

Also Published As

Publication number Publication date
WO2007129748A8 (ja) 2008-03-27
JPWO2007129748A1 (ja) 2009-09-17

Similar Documents

Publication Publication Date Title
JP5167582B2 (ja) ジルコニア透明分散液及び透明複合体並びに透明複合体の製造方法
JP6511059B2 (ja) ポリマーマトリクスとナノ粒子を含む複合材料、その製造方法及び使用
Wang et al. Transparent and high refractive index thermoplastic polymer glasses using evaporative ligand exchange of hybrid particle fillers
KR101382369B1 (ko) 미립자, 미립자의 제조방법, 이 미립자를 포함하는 수지 조성물 및 광학 필름
JP5096013B2 (ja) 有機無機複合組成物とその製造方法、成形体および光学部品
JP5096014B2 (ja) 有機無機複合組成物とその製造方法、成形体および光学部品
JP2008120848A (ja) 無機酸化物透明分散液と透明複合体およびその製造方法、発光素子封止用組成物並びに発光素子
JP2007145015A (ja) ポリカーボネート樹脂積層体及びその製造方法と光拡散板
KR101837829B1 (ko) 고굴절 유무기 하이브리드 조성물 및 이의 제조방법
TW201529656A (zh) 具有經修飾金屬氧化物之奈米分散液之穩定底漆調配物及塗層
KR101898454B1 (ko) 나노 입자 함유액 및 그 용도
WO2007129748A1 (ja) ナノ粒子を分散させた透明な高分子材料及びその製造方法
CN102652156B (zh) 有机溶剂分散体、树脂组合物和光学器件
JP2008056776A (ja) ナノ酸化物粒子及びその製造方法
JP2010116442A (ja) 透明被膜形成用塗布液、被膜付基材
US20230107275A1 (en) Nanocomposites
JP6432269B2 (ja) 有機酸含有ジルコニア微粒子分散液、表面修飾ジルコニア微粒子分散液及びその製造方法、樹脂複合組成物
TW202014465A (zh) 透明彈性奈米複合摻合物
TW202016196A (zh) 透明彈性奈米複合物
JP2010100679A (ja) 中空シリコーン系含フッ素多官能樹脂塗布液およびそれを使用した被膜付基材
JP2011099017A (ja) 水系有機・無機複合組成物
JP5362416B2 (ja) 有機・無機複合組成物
JP5660481B2 (ja) 無機酸化物微粒子の疎水化処理方法と分散液の製造方法、および無機酸化物微粒子とその分散液、樹脂組成物並びに用途
KR20080047012A (ko) 친수기로 개질된 아크릴계 수지, 이를 포함하는 무기 나노입자 코팅액, 및 상기 코팅액으로 제조된 무기 나노 입자필름
JP2006328110A (ja) 樹脂組成物、樹脂組成物の製造方法、及び樹脂組成物用複合酸化物粒子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743062

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008514522

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743062

Country of ref document: EP

Kind code of ref document: A1