WO2007125929A1 - 繊維強化複合材料用エポキシ樹脂組成物 - Google Patents

繊維強化複合材料用エポキシ樹脂組成物 Download PDF

Info

Publication number
WO2007125929A1
WO2007125929A1 PCT/JP2007/058882 JP2007058882W WO2007125929A1 WO 2007125929 A1 WO2007125929 A1 WO 2007125929A1 JP 2007058882 W JP2007058882 W JP 2007058882W WO 2007125929 A1 WO2007125929 A1 WO 2007125929A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
fiber
resin composition
reinforced composite
weight
Prior art date
Application number
PCT/JP2007/058882
Other languages
English (en)
French (fr)
Inventor
Takashi Kousaka
Mitsuhiro Iwata
Tomohiro Ito
Original Assignee
The Yokohama Rubber Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006120704A external-priority patent/JP4141479B2/ja
Priority claimed from JP2006120706A external-priority patent/JP4141480B2/ja
Priority claimed from JP2006120707A external-priority patent/JP4141481B2/ja
Priority to US12/298,049 priority Critical patent/US8153229B2/en
Priority to KR1020087028722A priority patent/KR101374439B1/ko
Priority to CA 2650563 priority patent/CA2650563C/en
Application filed by The Yokohama Rubber Co., Ltd. filed Critical The Yokohama Rubber Co., Ltd.
Priority to EP20070742317 priority patent/EP2017296B1/en
Priority to AU2007244335A priority patent/AU2007244335B2/en
Priority to ES07742317T priority patent/ES2425368T3/es
Priority to CN200780014731XA priority patent/CN101426830B/zh
Priority to BRPI0709491-4A priority patent/BRPI0709491A2/pt
Publication of WO2007125929A1 publication Critical patent/WO2007125929A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4035Hydrazines; Hydrazides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/24Derivatives of hydrazine
    • C08K5/25Carboxylic acid hydrazides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/315Compounds containing carbon-to-nitrogen triple bonds
    • C08K5/3155Dicyandiamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/34Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
    • E04C2/36Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by transversely-placed strip material, e.g. honeycomb panels
    • E04C2/365Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by transversely-placed strip material, e.g. honeycomb panels by honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • Y10T428/24157Filled honeycomb cells [e.g., solid substance in cavities, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249994Composite having a component wherein a constituent is liquid or is contained within preformed walls [e.g., impregnant-filled, previously void containing component, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • Y10T428/292In coating or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the present invention relates to an epoxy resin composition for fiber reinforced composite materials, and more particularly to an epoxy resin composition suitable as a matrix resin for a self-adhesive pre-preda for a honeycomb panel face plate.
  • Fiber-reinforced composite materials using an epoxy resin composition as a matrix resin are widely used for aircraft, automobiles, and industrial applications because of their excellent mechanical properties. Especially in aircraft structural materials and interior materials, there are an increasing number of cases where fiber reinforced composite materials are used as face plates for honeycomb panels from the viewpoint of light weight.
  • the matrix resin a resin composition mainly composed of an epoxy resin and an amine curing agent is used, and many of the cured products have high toughness and high heat deformation temperature. ing.
  • the use of composite materials expands, there is an increasing demand for higher mechanical properties.
  • Patent Document 1 proposes to improve interlayer shear strength and bending strength by adding dicyandiamide as a curing agent to an epoxy resin composition.
  • dicyandiamide dissolves in the epoxy resin during the temperature rising process and the reaction activity with the epoxy resin immediately increases. There is a problem that the reaction is accelerated and the viscosity of the resin composition is continuously increased. Further, there is a problem that the curing reaction proceeds while the prepreader is stored in the working environment, and the tackiness and draping property of the prepreader tends to be lost.
  • a matrix tree of a pre-preda is used. It is necessary to improve the self-adhesion strength with grease. In order to improve the self-adhesion strength, it is important to improve the shape and strength of the fillet formed on the joint surface of the honeycomb core and the pre-preda.
  • the strength of the fillet depends on the toughness of the cured product of the matrix resin, and the shape of the fillet becomes better as the minimum viscosity becomes deeper with the viscosity of the matrix resin during heat curing. That is, sufficient adhesive strength by a fillet cannot be obtained unless the toughness of the cured resin and the resin viscosity at the time of heat curing are appropriate.
  • the viscosity of the matrix resin is low before the heat curing of the pre-preda.
  • the resin viscosity in the room temperature range where the pre-preda is handled is low, the tackiness and draping properties can be maintained well, and in the resin film preparation process before impregnation with the pre-preda, the resin viscosity is in the range of 60 to 90 ° C. This is because if the value is low, the production efficiency of the pre-preda can be improved.
  • Patent Document 2 uses dicyandiamide together with an amine-based curing agent as a curing agent for an epoxy resin composition that serves as a matrix resin for a pre-preda, thereby forming a fillet with good strength when directly bonded to a honeycomb core.
  • the adhesive strength can be improved.
  • dicyandiamide is used in combination with an amine curing agent in this way, as described above, the reaction activity with the epoxy resin increases, so that even when the temperature rises slightly, a curing reaction with the epoxy resin occurs immediately. There is a problem that the production efficiency of the pre-preda is lowered because the resin viscosity continuously increases during the production.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2-51538
  • Patent Document 2 Japanese Laid-Open Patent Publication No. 58-83022
  • An object of the present invention is to maintain mechanical properties as a matrix resin for a pre-preda. Another object of the present invention is to provide an epoxy resin composition for fiber-reinforced composite material that improves the storage stability of such tack. Another object of the present invention is to provide an epoxy resin composition for a fiber-reinforced composite material that improves the self-adhesive strength and also improves the productivity and storage stability of a pre-preda.
  • the epoxy resin composition for fiber-reinforced composite material of the present invention that achieves the above object is selected from aliphatic polyamines, alicyclic polyamines, or aromatic polyamines with respect to 100 parts by weight of the epoxy resin (A). 25 to 50 parts by weight of the amine-based curing agent (B), and an organic acid dihydrazide compound (C) having a melting point of 150 ° C. or higher:! To 20 parts by weight.
  • the epoxy resin composition should contain dicyandiamide (D), and the organic acid dihydrazide compound (C) should be dispersed in the form of particles in the epoxy resin composition. Les.
  • the epoxy resin composition preferably contains a thermosetting resin (E) that is solid at room temperature, and the thermosetting resin (E) is preferably dispersed in the form of particles.
  • the epoxy resin composition for a fiber-reinforced composite material of the present invention comprises an organic acid dihydrazide compound (C) having a melting point of 150 ° C or higher instead of dicyandiamide in an epoxy resin (A) and an amine curing agent (B).
  • C organic acid dihydrazide compound
  • A epoxy resin
  • B amine curing agent
  • the organic acid dihydrazide compound (C) has a melting point of 150 ° C or higher, which is higher than that of dicyandiamide (D) Nyamin curing agent (B). Since it is a melting point and is dispersed in the form of particles in a non-dissolved state, it inhibits the curing reaction between dicyandiamide (D) and epoxy resin (A) before heat curing.
  • the productivity of resin film production can be improved, and the storage stability of the pre-preda at room temperature can be improved.
  • the epoxy resin (A) is not particularly limited, and is not limited to glycidyl ether type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, etc.
  • urethane-modified epoxy resins, rubber-modified epoxy resins, alkyd-modified epoxy resins, and the like may be used.
  • a glycidyl ether type epoxy resin or a daricidylamine type epoxy resin is preferable.
  • the number of functional groups of the epoxy resin is not particularly limited, but is preferably 2 to 5, more preferably 2 to 3.
  • such epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, phenol novolac type epoxy resins, and crezo glycidyl ether type epoxy resins.
  • Lunovolak type epoxy resin, resorcinol type epoxy resin, etc. are preferably mentioned.
  • Preferred examples include diphenylmethane resin, tetraglycidyl m_xylyleneamine resin, N, N-diamineaminoresole resin, and other various modified epoxy resins and crystalline epoxy resins.
  • the amine-based curing agent (B) is selected from aliphatic polyamines, alicyclic polyamines or aromatic polyamines, and preferably aromatic polyamines.
  • aromatic polyamine diaminodiphenylsulfone, diaminodiphenylmethane, metaxylenediamine, metaphenyldiamine, and the like are preferable.
  • diaminodiphenylsulfone is preferable in terms of increasing the heat resistance of the cured product.
  • 3, 3 'diaminodiphenyl sulfone and 4, 4' diami Nodiphenyl sulfone is particularly preferred.
  • These amine curing agents (B) can be used in combination of two or more.
  • the compounding amount of the amine curing agent (B) is 25 to 50 parts by weight, preferably 30 to 45 parts by weight with respect to 100 parts by weight of the epoxy resin (A).
  • the blending amount of the amine curing agent (B) within this range, the mechanical properties of the resin cured product, particularly physical properties such as strength, toughness and heat resistance can be sufficiently secured.
  • the epoxy resin composition of the present invention comprises particles of an epoxy resin (A) and an amine curing agent (B) and an organic acid dihydrazide compound (C) which is an active hydrogen type latent curing agent. Mix in the form.
  • the organic acid dihydrazide compound (C) should have a melting point of 150 ° C or higher, preferably 160 ° C to 200 ° C. By making the melting point 150 ° C or higher, it has excellent thermal stability and suppresses the progress of the curing reaction with the epoxy resin during coating work performed at a resin temperature of 60 to 90 ° C or storage at room temperature. be able to.
  • an increase in resin viscosity can be suppressed even if the resin is exposed to a resin temperature of 60 to 90 ° C. for a long time during the coating operation. For example, even if the supply tank is placed on the resin dam of the coater roll at a resin temperature of 60 to 90 ° C for 1 to 2 hours, the increase in resin viscosity is kept low during that time, and the discharge from the supply tank is facilitated. A resin film can be produced without changing the operating conditions of the roll.
  • the organic acid dihydrazide compound is preferably in the form of particles because it is difficult to dissolve in the epoxy resin at low temperatures where the melting point is as high as 150 ° C or higher.
  • the particles of the organic acid dihydrazide compound (C) have an average particle size of preferably 100 xm or less, more preferably 5 to 50 xm.
  • the average particle diameter is 100 xm or less, it is preferable that the temperature rises at the time of heat-curing, and if it reaches a predetermined temperature, it easily dissolves in the epoxy resin.
  • Fine particles having an average particle size of 100 ⁇ m or less can be appropriately obtained from commercially available products. Furthermore, in order to obtain fine particles, it is preferable to make them fine by an impact powder method or a spray drying method.
  • the “average particle size” is a value obtained by measuring the particle size and frequency distribution of the pulverized particles and calculating these values as a weight average.
  • the organic acid dihydrazide compound (C) is more preferably a carboxylic acid dihydrazide compound, preferably a carboxylic acid dihydrazide compound or a dibasic acid dihydrazide compound.
  • the carboxylic acid dihydrazide compound may be a compound represented by the following formula (I).
  • X represents a phenyl group or an aliphatic hydrocarbon group having 2 to 18 carbon atoms.
  • the aliphatic hydrocarbon group is a group composed of a saturated hydrocarbon or an unsaturated hydrocarbon, and may be any of a straight chain, a side chain, or an alicyclic group.
  • organic acid dihydrazide compounds include adipic acid dihydrazide, succinic acid dihydrazide, sebacic acid dihydrazide, dodecanoic acid dihydrazide, and octadecadiene monodicarbohydrazide.
  • the organic acid dihydrazide compound (C) is preferably a carboxylic acid dihydrazide compound represented by the following formula (II).
  • the organic acid dihydrazide compound (C) may be blended in an amount of:! To 20 parts by weight, preferably 3 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin (A).
  • the effect of improving the mechanical properties of the cured resin is obtained by setting the blending amount to 1 part by weight or more.
  • the blending amount 20 parts by weight or less it can be surely dissolved in the epoxy resin during thermal curing. Thereby, the minimum viscosity at the time of heat curing can be optimized.
  • the epoxy resin composition of the present invention uses dicyandiamide, and even in this case, the organic acid dihydrazide compound (C) which is an active hydrogen type latent curing agent is used. It is possible to obtain excellent mechanical properties at the same level without lowering the mechanical properties of the cured resin, particularly toughness and heat resistance. Therefore, when used as a matrix resin for a pre-preda, the strength of the fillet is increased to improve the adhesive strength with the honeycomb core. Ability to do S.
  • the epoxy resin composition for a fiber-reinforced composite material of the present invention essentially comprises the above components (A) to (C), but further, within the range not impairing the effects of the present invention, dicyandiamide ( D) can be included.
  • Dicyandiamide (D) is suitably used as a curing agent for an epoxy resin composition for a pre-preda because it has high reaction activity and excellent physical properties after curing. However, since the curing reaction with the epoxy resin group is likely to proceed before heat curing, the curing reaction before heating can be suppressed by coexisting particles of the organic acid dihydrazide compound (C 3).
  • the organic acid dihydrazide compound (C) having a melting point of 150 ° C or higher has an excellent property of inhibiting the curing reaction between the epoxy resin (A) and the dicyandiamide (D) before heat curing. For this reason, it is possible to suppress the progress of the curing reaction of dicyandiamide (D) before heat-curing, to suppress the resin viscosity from increasing, and to suppress the decrease in tackiness when the pre-preda is stored at room temperature. For example, even if dicyandiamide (D) coexists, the resin temperature is 60
  • Prolonged exposure to the state to 90 ° C also can suppress the increase of the resin viscosity, the resin dam of the supply tanks Ya coater roll; be placed • L ⁇ 2 hours, an increase in resin viscosity low
  • the resin film can be produced without facilitating the discharge from the supply tank and without significantly changing the operating conditions of the coater roll.
  • the dicyandiamide (D) is preferably 1 to 5 parts by weight, more preferably 1 to 3 parts by weight, based on 100 parts by weight of the epoxy resin (A).
  • the amount of dicyandiamide (D) is preferably 1 to 5 parts by weight, more preferably 1 to 3 parts by weight, based on 100 parts by weight of the epoxy resin (A).
  • the epoxy resin composition of the present invention contains a thermosetting resin (E) that is solid at room temperature.
  • the thermosetting resin (E) may be dispersed in the form of particles.
  • the particles of the thermosetting resin (E), which is solid at room temperature, are not completely dissolved in the epoxy resin (A) unless the temperature reaches a predetermined temperature.
  • the viscosity can be optimized and a good fillet can be formed.
  • thermosetting resin (E) even when the thermoplastic resin (F) described later is blended, the blending amount can be reduced.
  • the viscosity of the resin composition before the process By reducing the viscosity of the resin composition before the process, the tackiness and draping properties of the pre-preda can be improved, and excellent workability can be obtained.
  • the effect of improving the toughness of the epoxy resin composition is superior to the case where the thermoplastic resin particles are not dissolved. Therefore, the strength of the fillet can be improved, and the self-adhesion can be improved by further increasing the adhesive strength with the honeycomb core.
  • the particles of the thermosetting resin (E) that is solid at room temperature do not completely dissolve in the epoxy resin (A), preferably at a temperature of less than 90 ° C, more preferably at 60 ° C to 90 ° C, and
  • the softening point is preferably 120 ° C or higher, more preferably 130 ° C to 160 ° C.
  • the softening point is a value measured in accordance with JISK-7234.
  • the type of particles of the thermosetting resin (E) is not particularly limited.
  • Saturated polyester resins or vinyl ester resins are preferred, especially epoxy resins that are solid at room temperature, and bismaleimide or isocyanate resins.
  • Epoxy resins that are solid at room temperature can be prepared by, for example, purifying bisphenol A type epoxy resin to increase its purity and increase its molecular weight, and become a solid that has crystallinity at room temperature and has a high softening point. It has the effect of improving the workability and improving the porosity.
  • the particles of the thermosetting resin (E) preferably have a particle size of 100 ⁇ m or less, more preferably 5 to 50 ⁇ m. By setting the particle size of the thermosetting resin (E) within this range, it will dissolve evenly at the specified temperature in the heat curing process, so the viscosity of the epoxy resin composition is adjusted appropriately. can do.
  • the thermosetting resin (E) The particle preparation method and the particle diameter measurement method are the same as those for the organic acid dihydrazide compound (C) described above, and pulverization is prepared and measured.
  • the epoxy resin composition of the present invention is preferably 2 to 20 parts by weight, more preferably 5 to 15 parts by weight of the thermosetting resin (E) with respect to 100 parts by weight of the epoxy resin (A). It should be included in the mixing ratio.
  • the amount of the thermosetting resin (E) to 2 parts by weight or more, the viscosity of the epoxy resin composition can be adjusted appropriately to improve the toughness of the cured resin. It is preferable because the pre-preda can be made to have an appropriate hardness to improve tackiness and drapeability.
  • the epoxy resin composition of the present invention may contain a thermoplastic resin (F).
  • a thermoplastic resin (F) By dissolving the thermoplastic resin (F) in the epoxy resin (A), the viscosity of the epoxy resin composition is adjusted, and the minimum viscosity of the resin composition at the time of heat curing is increased to form a well-shaped fillet. In addition, the toughness of the cured resin can be improved. Therefore, the thermoplastic resin (F) is preferably dissolved in the epoxy resin (A) at a temperature of 90 ° C or higher, more preferably 95 ° C to 150 ° C. By dissolving in such a temperature range, it can be easily and uniformly dissolved and stirred and mixed.
  • the type of the thermoplastic resin (F) is not particularly limited, but is polyether sulfonate resin, polyether imide resin, polyimide resin, polyamide resin, polyether resin, polyester resin, polysulfone resin, polyamide. It is preferably at least one selected from imide resins, polyacrylate resins, polyaryl ether resins, polyphenyl ether resins, and polyether ether ketone resins.
  • the thermoplastic resin (F) is a resin-cured resin that has a higher compatibility or affinity with the epoxy resin component that is particularly preferred for polyethersulfone resin or polyetherimide resin compared to other thermoplastic resins. Greatly improves the toughness of objects.
  • the thermoplastic resin (F) is preferably used in the form of particles, and the particle size is preferably 200 xm or less, more preferably 5 to: lOO xm.
  • the particle size of the fine particles is 200 ⁇ m. If it is less than m, it is possible to obtain an effect of uniformly dissolving in the epoxy resin (A) and improving the physical properties, particularly toughness of the resin composition.
  • the method for preparing the thermoplastic resin (F) particles and the method for measuring the particle size are the same as those for the particles of the organic acid dihydrazide compound (C) described above.
  • the epoxy resin composition of the present invention contains 20 to 60 parts by weight, more preferably 30 to 50 parts by weight of the thermoplastic resin (F) with respect to 100 parts by weight of the epoxy resin (A). If you include it in proportion, By adjusting the amount of the thermoplastic resin (F) within the range of 20 to 60 parts by weight, the viscosity of the epoxy resin composition can be adjusted appropriately, and the tackiness and drape can be reduced to 60 parts by weight or less. Can be improved.
  • the epoxy resin composition for a fiber-reinforced composite material of the present invention comprises the above components (A) to (C) as essential components, and optionally blends the components (D) to (F).
  • known curing agents other than the components (A) to (F) thermosetting resin particles, viscosity modifiers, fillers, stabilizers, flame retardants, and pigments, as necessary. You can mix various additives such as
  • the epoxy resin composition of the present invention has a minimum viscosity by dynamic viscoelasticity measurement at a temperature rising rate of 2 ° C / min, preferably 10 to: 150 Pa's, more preferably 20 to 150 Pa '. If it is s. Keeping the minimum viscosity of the dynamic viscoelasticity measurement within the above range is important for improving the productivity and self-adhesion of the pre-preda, and if it exceeds lOPa 's, a good fillet can be formed. The self-adhesive property is improved, and when it is 150 Pa's or less, the reinforcing fiber can be easily impregnated with the resin composition at the time of pre-preparation while maintaining the fillet formation.
  • the minimum viscosity by dynamic viscoelasticity measurement is a dynamic viscosity with a temperature rise rate of 2 ° C / second, a frequency of lOrad / second, and a strain of 1% between 25 ° C and 200 ° C.
  • the minimum value of the complex viscosity in elasticity measurement shall be ⁇ .
  • the epoxy resin composition of the present invention has a fracture toughness value of a cured resin cured product of ASTM
  • Fracture toughness value measured according to D5045-91 preferably 1.8 MPa ' ⁇ Tm or more, more preferably 1.8 to 2.5 MPa'm. If the fracture toughness value of the cured resin is 1.8 MPa'm or more, the strength of the fillet portion is increased, and in the peel test after bonding the face plate (prepreda) and honeycomb core, the material breakage of the honeycomb core is partially Beginning to occur The peel strength can be improved as the thickness increases.
  • the epoxy resin composition of the present invention has a small change in resin viscosity even during a long period of time at a resin temperature of 60 to 90 ° C during the coating operation for producing a resin film.
  • the amount of change in viscosity when left at a resin temperature of 75 ° C for 2 hours is preferably 150 Pa's or less, more preferably lOOPa's or less, even more preferably 70 Pa's or less, and particularly preferably 55 Pa. It's less than s. If the change in viscosity is 150 Pa's or less, even if the supply tank stays in the resin dam of the coater roll for a long time, the change in resin viscosity is small.
  • a resin film can be produced without significantly changing the operating conditions.
  • the change in viscosity is determined by measuring the change over time in the complex viscosity with a frequency of lOradZ seconds and a strain of 1% in a dynamic viscoelasticity measurement at a constant temperature of 75 ° C. .
  • the epoxy resin composition of the present invention has a thermal stability before heat-curing in which the reaction initiation temperature during heat-curing is preferably 100 ° C or higher, more preferably 110 to 145 ° C. It is excellent in that the increase in resin viscosity accompanying the curing reaction can be suppressed.
  • the reaction start temperature measured by differential scanning calorimetry (DSC) is high. Resin temperature during normal coating operations (60 to 90 ° C) and the progress of curing reaction during storage at room temperature are suppressed. can do.
  • the reaction start temperature during heat curing is the reaction start temperature measured by DSC at a rate of temperature increase of 10 ° C / min, that is, the temperature at the intersection of the rise of the exothermic peak and the baseline.
  • the method for producing the epoxy resin composition for fiber-reinforced composite material of the present invention is not particularly limited, but the epoxy resin (A) is preferably at a temperature of 95 to 150 ° C, more preferably at a temperature. Mix and stir at 100-125 ° C to make resin solution. At this time, when the thermoplastic resin (F) is combined, it is preferable to add the thermoplastic resin (F) and dissolve it to make a mixed resin. Thereafter, the mixed resin is preferably cooled to a temperature of 60 to 90 ° C, more preferably to a temperature of 70 to 80 ° C, and then the amine-based curing agent (B) and the organic acid dihydrazide compound (C) are added to the mixed resin.
  • the epoxy resin (A) and preferably the thermoplastic resin (F) are heated at a temperature of 95 to 15: Use a planetary mixer set at 0 ° C and stir and mix for about 0.5 to 3 hours until evenly and reliably dissolved. Thereafter, the mixed resin is cooled to a temperature of 60 to 90 ° C., and the amine curing agent (B), the organic acid dihydrazide compound (C), dicyandiamide (D) and / or a thermosetting resin (E It is preferable to prepare the mixture by uniformly dispersing and mixing.
  • the fiber-reinforced pre-preder of the present invention is a composite of the above-described epoxy resin composition for fiber-reinforced composite material used as a matrix resin and this matrix resin combined with reinforcing fibers.
  • Preferred examples of the reinforcing fiber include carbon fiber, graphite fiber, aramid fiber, and glass fiber. Among them, a carbon fiber fabric in which carbon fiber is preferable is particularly preferable.
  • the fiber-reinforced pre-preda has a matrix resin content power of preferably 30 to 50% by weight, more preferably 35 to 45% by weight. If the ratio of the matrix resin in the fiber reinforced pre-predators is within such a range, the self-adhesion of the pre-predder will be improved, workability and appearance quality will be improved, and the mechanical properties of the carbon fiber reinforced composite material will be sufficient. It is possible to have S
  • a method for producing a fiber reinforced pre-preder comprises preparing a resin film in which the epoxy resin composition of the present invention is applied in a thin film on a release paper, and laminating the reinforcing fiber on the upper and lower sides, heating and A hot melt method in which the reinforcing fiber is impregnated with the epoxy resin composition by applying pressure is preferred.
  • the pre-prepader thus obtained has excellent storage stability and does not deteriorate the tackiness and draping property even if it is left for a long time in the working environment or room temperature atmosphere.
  • the fiber-reinforced pre-preda of the present invention does not contain dicyandiamide or contains a small amount, and contains an organic acid dihydrazide compound (C) having a melting point of 150 ° C or higher. Is excellent. That is, when stored at room temperature for a long time, the viscosity of the matrix resin is small and the tackiness of the pre-preda hardly changes.
  • normal temperature refers to the temperature of the working environment where the pre-preda is handled, and is approximately 10 to 35 ° C.
  • the epoxy resin composition of the present invention has, for example, excellent tackiness immediately after preparation of a pre-preda, which does not deteriorate even when left at a room temperature of 20 ° C., preferably for 10 days. To maintain.
  • a fiber-reinforced composite material can be produced by thermosetting such as autoclave molding or hot press molding.
  • the obtained fiber-reinforced composite material has an excellent mechanical performance that has a good fillet and has high adhesive strength.
  • the honeycomb core to be used in the present invention is preferably aramid honeycomb, and is preferably selected from aramid honeycomb, aluminum honeycomb, paper honeycomb, and glass honeycomb.
  • Epoxy resin (A), amine-based curing agent (B), organic acid dihydrazide compound (C) and optional components such as dicyandiamide (D), thermosetting resin (E), and thermoplastic resin (F) are listed below.
  • An epoxy resin composition was prepared using the materials described in the mixing ratios shown in Tables 1 and 2, respectively. First, the whole amount of the epoxy resin (A) and the thermoplastic resin (F) was stirred and mixed for 75 minutes until a uniform resin solution was obtained using a planetary mixer set at a temperature of 125 ° C.
  • this planetary mixer was set to 70 ° C, and when the resin temperature became uniform, the amine curing agent (B), organic acid dihydrazide compound (C), dicyandiamide (D) and thermosetting The total amount of resin (E) particles was added to the resin solution, and the mixture was stirred and mixed to prepare an epoxy resin composition.
  • Resin A_ 1 N, N, O—Triglycidyl _p—Aminophenol resin (MY-0510 manufactured by Huntsman “Advanced” Materials)
  • Resin A-2 Bisphenol F type epoxy resin (Epicoat-806 manufactured by Japan Epoxy Resin Co., Ltd.)
  • Hardener ⁇ 3, 3 '—Diaminodiphenyl sulfone (Huntsman' Advanced 'Materials, ARADUR9719-1)
  • Curing agent C-1 Adipic acid dihydrazide compound (ADH manufactured by Nihon Finechem) Melting point: 177-184 ° C, average particle size: 13 ⁇ m
  • Curing agent C_2 Dodecanoic acid dihydrazide (N-12, Fine Fine Chemicals Japan Ltd.) Melting point 185 ⁇ 190 ° C, average particle size 9 z m
  • Curing agent C_3 Sebacic acid dihydrazide compound (Nihon Finechem SDH) Melting point 185-189 ° C, average particle size 21 ⁇ m
  • Curing agent C_4 l, 3 _bis (hydrazinocarbonoethyl) _ 5 _isopropylhydantoin (VDH manufactured by Ajinomoto Fine Techno Co.) Melting point 118-124 ° C, average particle size 10 ⁇ m
  • Curing agent C_ 5 7, 11-octadecadiene 1, 18-dicarbohydrazide (UDH manufactured by Ajinomoto Fine Techno Co.) Melting point 150-165 ° C, average particle size 20 ⁇ m
  • Resin E Bisphenol A type epoxy resin (YD-020N, manufactured by Tohto Kasei Co., Ltd.), soft particles 135 ° C to 150 ° C, fine particles with a particle size of 100 ⁇ m or less by impact grinding.
  • Resin F Polyethersulfone resin (Sumitomo Chemical Co., Ltd. Sumika Etacel PES5003P) Impact Fine particles with a particle size of 100 ⁇ m or less by pulverization
  • the change over time in the viscosity of the epoxy resin composition at 75 ° C. was measured for 2 hours, and the amount of change in viscosity after 2 hours with respect to the initial viscosity was measured.
  • the viscosity of the epoxy resin composition is a dynamic viscosity with a frequency of lOradZ seconds and a strain of 1% under the condition of a constant temperature of 75 ° C.
  • the complex viscosity in elasticity measurement was measured.
  • the temperature rise rate from 20 ° C to 350 ° C
  • DSC Differential running calorimetry
  • a resin film is formed on a release paper, and this film is added to a carbon fiber plain woven fabric (T-300-3K manufactured by Toray Industries, Inc.) with a resin content of 41% by weight. As shown in FIG.
  • a test sample was prepared from the cured resin obtained in accordance with ASTM D5045-91, and the fracture toughness value (MPa'm) at 23 ° C (dry state) was measured.
  • the obtained honeycomb panel was processed into the predetermined dimensions for the face plates disposed on the upper and lower sides of the honeycomb core in the heat curing step, and the temperature was 23 ° C.
  • the peel strength (lb_in / 3in) of the test pieces on the upper side plate and the lower side plate in the dry state was measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Architecture (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 プリプレグ用のマトリックス樹脂として、機械的特性を維持しながらのタックの保存安定性を向上するようにした繊維強化複合材料用エポキシ樹脂組成物を提供する。  エポキシ樹脂(A)100重量部に対して、脂肪族ポリアミン、脂環族ポリアミン又は芳香族ポリアミンから選ばれるアミン系硬化剤(B)を25~50重量部、融点が150°C以上の有機酸ジヒドラジド化合物(C)を1~20重量部配合することを特徴とする。

Description

明 細 書
繊維強化複合材料用エポキシ樹脂組成物
技術分野
[0001] 本発明は、繊維強化複合材料用エポキシ樹脂組成物に関し、さらに詳しくは、ハニ カムパネルの面板用自己接着性プリプレダのマトリックス樹脂として好適なエポキシ 樹脂組成物に関する。
背景技術
[0002] エポキシ樹脂組成物をマトリックス樹脂にする繊維強化複合材料は、その優れた力 学物性などから、航空機、自動車、産業用途に幅広く使用されている。特に航空機 用構造材料や内装材においては、軽量ィ匕の観点から、ハニカムパネルの面板として 繊維強化複合材料を用いるケースが増加している。そのマトリックス樹脂としては、ェ ポキシ樹脂とアミン系硬化剤を主体とする樹脂組成物を用レ、るものが多ぐその硬化 物は高靭性を有し、熱変形温度が高いという特性が得られている。しかし、複合材料 の用途が拡大するにつれ、さらに高い機械的特性の発現に対する要求が強くなつて いる。
[0003] その対策の 1つとして、特許文献 1は、エポキシ樹脂組成物中に硬化剤としてジシ アンジアミドを添加することにより、層間せん断強度や曲げ強度を向上させることを提 案している。しかし、ジシアンジアミドを使用した場合には、昇温過程でエポキシ樹脂 中に溶解しやすぐエポキシ樹脂との反応活性が高くなるため、樹脂フィルム作製時 やプリプレダ含浸時に、温度上昇によるエポキシ樹脂との硬化反応を促進しやすぐ 樹脂組成物の粘度を連続的に上昇させてしまう問題がある。また、プリプレダを、作 業環境で保管している間に硬化反応が進み、プリプレダのタック性'ドレープ性が失 われやすいとレ、う問題がある。
[0004] 一方、ハニカムパネルをさらに軽量ィ匕し、成形コスト低減のため繊維強化複合材料 のプリプレダをハニカムコアに接合するのにフィルム接着剤を使用せず、直接接着さ せる自己接着技術が求められている。
[0005] しかし、フィルム接着剤を使用しないようにするためには、プリプレダのマトリックス樹 脂による自己接着強度の向上が必要であり、 自己接着強度を向上させるためにはハ 二カムコアとプリプレダの接合面に形成されるフィレットの形状及び強度を向上するこ とが重要である。フィレットの強度はマトリックス樹脂の硬化物の靭性に左右され、フィ レットの形状は加熱硬化時におけるマトリックス樹脂の粘度との関係が深ぐ最低粘 度が高いほど良好な形状が得られる。すなわち、樹脂硬化物の靭性及び加熱硬化 時の樹脂粘度が適正でないとフィレットによる十分な接着強度が得られない。
[0006] また、プリプレダの加熱硬化前では、マトリックス樹脂の粘度は低い方が好ましい。
プリプレダを取り扱う常温領域の樹脂粘度が低ければ、タック性'ドレープ性を良好に 維持することができ、またプリプレダ含浸前の樹脂フィルム作製工程において、温度 6 0〜90°Cくらいの範囲で樹脂粘度が低ければ、プリプレダの生産効率を向上すること ができるからである。
[0007] 特許文献 2は、プリプレダのマトリックス樹脂となるエポキシ樹脂組成物の硬化剤と してアミン系硬化剤と共にジシアンジアミドを使用することにより、ハニカムコアに直接 接着させるとき強度の良好なフィレットを形成し、接着強度を向上することができるとし ている。しかし、このようにアミン系硬化剤にジシアンジアミドを併用すると、前述した ように、エポキシ樹脂との反応活性が高くなるため、若干の温度上昇でもエポキシ榭 脂との硬化反応を起こしやすぐ例えば樹脂フィルム作製時に樹脂粘度が連続的に 上昇するためプリプレダの生産効率を低下させる問題がある。また、プリプレダを、作 業環境で保管している間に硬化反応が進み、プリプレダのタック性'ドレープ性が失 われやすいという問題がある。また、このマトリックス樹脂は、樹脂硬化物の靭性をあ る程度改良するもののハニカムとプリプレダとを直接接着させる場合に形成されるフィ レットの強度を向上するための靭性向上には必ずしも十分ではなく機械的特性が不 足していた。
特許文献 1 :日本国特開平 2— 51538号公報
特許文献 2 :日本国特開昭 58— 83022号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明の目的は、プリプレダ用のマトリックス樹脂として、機械的特性を維持しなが らのタックの保存安定性を向上するようにした繊維強化複合材料用エポキシ樹脂組 成物を提供することにある。また、自己接着強度を向上すると共に、プリプレダの生産 性及び保存安定性を向上するようにした繊維強化複合材料用エポキシ樹脂組成物 を提供することにある。
課題を解決するための手段
[0009] 上記目的を達成する本発明の繊維強化複合材料用エポキシ樹脂組成物は、ェポ キシ樹脂 (A) 100重量部に対して、脂肪族ポリアミン、脂環族ポリアミン又は芳香族 ポリアミンから選ばれるアミン系硬化剤(B)を 25〜50重量部、融点が 150°C以上の 有機酸ジヒドラジド化合物(C)を:!〜 20重量部配合することを特徴とする。
[0010] 前記エポキシ樹脂組成物は、ジシアンジアミド(D)を含むようにすると共に、前記有 機酸ジヒドラジド化合物(C)が、エポキシ樹脂組成物で粒子状に分散してレ、るように するとよレ、。
[0011] また、前記エポキシ樹脂組成物は、常温で固形の熱硬化性樹脂 (E)を含むように すると共に、この熱硬化性樹脂 (E)が粒子状に分散していることが好ましい。
発明の効果
[0012] 本発明の繊維強化複合材料用エポキシ樹脂組成物は、エポキシ樹脂 (A)とァミン 系硬化剤(B)とに、ジシアンジアミドの代わりに融点 150°C以上の有機酸ジヒドラジド 化合物(C)を添加することにより、昇温過程でエポキシ樹脂中に溶解し難くなり、ェポ キシ樹脂との硬化反応をすることがなく粘度の安定性が高ぐプリプレダとしたときタツ ク性'ドレープ性を常温で長期間維持することができ、しかも、樹脂硬化物の機械的 特性を、ジシアンジアミドを使用した場合と同等にすることができる。
[0013] また、ジシアンジアミド(D)を共に使用するようにする場合でも、有機酸ジヒドラジド 化合物(C)は融点が 150°C以上で、ジシアンジアミド(D)ゃァミン系硬化剤(B)よりも 高融点であり、これが粒子状に非溶解で分散しているため、加熱硬化の前にはジシ アンジアミド(D)とエポキシ樹脂 (A)との硬化反応を阻害し、このため、プリプレダ含 浸前の樹脂フィルム作製の生産性を向上することができ、またプリプレダの常温にお ける保存安定性を向上することができる。
[0014] 一方、プリプレダの加熱硬化の際に高温度で加熱するときは、有機酸ジヒドラジド化 合物(C)が溶解し、アミン系硬化剤(B)及びジシアンジアミド(D) 、エポキシ樹脂 ( A)と硬化反応を開始するため樹脂の最低粘度を増加させ、良好な形状のフィレット を得ると同時に、樹脂硬化物の靭性を向上させることができる。このため、プリプレダ のマトリックス樹脂に使用すると、プリプレダの自己接着強度を向上することができる。 発明を実施するための最良の形態
[0015] 本発明の繊維強化複合材料用エポキシ樹脂組成物において、エポキシ樹脂 (A) は、特に限定されるものではなぐグリシジルエーテル型エポキシ樹脂、グリシジルェ ステル型エポキシ樹脂、グリシジルァミン型エポキシ樹脂等を使用することができ、ま た、ウレタン変性エポキシ樹脂、ゴム変性エポキシ樹脂、アルキド変性エポキシ樹脂 等を用いてもよい。これらの中でも、グリシジルエーテル型エポキシ樹脂又はダリシジ ルァミン型エポキシ樹脂が好ましい。エポキシ樹脂の官能基の数は、特に限定される ものではないが、好ましくは 2〜5個、より好ましくは 2〜3個がよい。
[0016] このようなエポキシ樹脂は、具体的に、グリシジルエーテル型エポキシ樹脂として、 ビスフエノール A型エポキシ樹脂、ビスフエノール F型エポキシ樹脂、ビスフエノール S 型エポキシ樹脂、フエノールノボラック型エポキシ樹脂、クレゾ一ルノボラック型ェポキ シ樹脂、レゾルシノール型エポキシ樹脂等が好ましく挙げられ、グリシジノレアミン型ェ ポキシ樹脂として、テトラグリシジノレジアミノジフエニルメタン、トリグリシジノレ _p—アミ ノフエノーノレ、トリグリシジルァミノクレゾール、テトラグリシジルジアミノジフエニルメタン 樹脂、テトラグリシジル m_キシリレンアミン樹脂、 N, N—ジァミノタレゾール樹脂及 びその他各種変性エポキシ樹脂や結晶性エポキシ樹脂等が好ましく挙げられる。こ れらのエポキシ樹脂を、単独又は 2種以上を組み合わせて使用することにより、マトリ ックス樹脂に要求される靭性、耐熱性等の機械的特性を確保しながら、プリプレダの タック性'ドレープ性を調整することができる。
[0017] アミン系硬化剤(B)は、脂肪族ポリアミン、脂環族ポリアミン又は芳香族ポリアミンか ら選ばれるものであり、好ましくは芳香族ポリアミンがよい。芳香族ポリアミンとしては、 ジアミノジフエニルスルホン、ジアミノジフエニルメタン、メタキシレンジァミン、メタフエ 二レンジァミン等が好ましぐとりわけジァミノジフヱニルスルホンが硬化物の耐熱性を 高める点力 好ましい。なかでも 3, 3' ジアミノジフエニルスルホン及び 4, 4' ジアミ ノジフヱニルスルホンが特に好ましレ、。これらのアミン系硬化剤(B)は、 2種以上を組 み合わせて使用することもできる。
[0018] アミン系硬化剤(B)の配合量は、エポキシ樹脂 (A) 100重量部に対して、 25-50 重量部、好ましくは 30〜45重量部にするとよい。アミン系硬化剤(B)の配合量を、こ の範囲内にすることにより樹脂硬化物の機械的特性、特に強度、靭性、耐熱性など の物性を十分に確保することができる。
[0019] 本発明のエポキシ樹脂組成物は、エポキシ樹脂 (A)とァミン系硬化剤(B)とに、さ らに活性水素型の潜在性硬化剤である有機酸ジヒドラジド化合物(C)を粒子状にし て配合する。有機酸ジヒドラジド化合物(C)としては、融点が 150°C以上のもの、好ま しくは 160°C〜200°Cのものを使用するとよレ、。融点を 150°C以上にすることにより熱 的安定性に優れ、樹脂温度 60〜90°Cくらいで行われる塗工作業や、常温での保管 中にエポキシ樹脂と硬化反応が進むのを抑制することができる。すなわち、塗工作業 時に 60〜90°Cの樹脂温度の状態に長時間、さらされていても、樹脂粘度の増加を 抑制することができる。例えば、供給タンクゃコーターロールの樹脂ダムに樹脂温度 60〜90°Cで 1〜2時間おかれていても、その間、樹脂粘度の増加を低く抑え、供給 タンクからの排出を容易にし、かつコーターロールの運転条件を変更することなく榭 脂フィルムを作製することができる。
[0020] 有機酸ジヒドラジド化合物は、融点が 150°C以上と高ぐ低温ではエポキシ樹脂に 溶解し難いため、粒子状のものを使用することが好ましい。粒子状の有機酸ジヒドラ ジド化合物を使用することにより、加熱硬化時に昇温しやすく所定の温度になるとェ ポキシ樹脂に容易に溶解し硬化反応を進めることができる。有機酸ジヒドラジド化合 物(C)の粒子は、平均粒子径が、好ましくは 100 x m以下、より好ましくは 5〜50 x m がよレ、。平均粒子径を 100 x m以下にすると、加熱硬化時に昇温しやすぐ所定の 温度になるとエポキシ樹脂に容易に溶解し好ましい。平均粒子径 100 μ m以下の微 細粒子は、市販品の中から適宜、入手することができる。さらに、微細な粒子を得るた めには、衝撃粉碎法、噴霧乾燥法により微細化することが好ましい。なお、本発明に おいて、「平均粒子径」とは、粉砕後の粒子の粒径と度数分布を測定し、それらの値 を重量平均として算出する値をレ、う。 [0021] 有機酸ジヒドラジド化合物(C)は、カルボン酸ジヒドラジド化合物又は二塩基酸ジヒ ドラジド化合物が好ましぐカルボン酸ジヒドラジド化合物がより好ましい。カルボン酸 ジヒドラジドィ匕合物は、下式 (I)に示す化合物にするとよい。
[0022] [化 1]
Figure imgf000007_0001
[0023] 式 (I)において、 Xは、フエニル基又は炭素数 2〜: 18の脂肪族炭化水素基を表す。
脂肪族炭化水素基は、飽和炭化水素又は不飽和炭化水素からなる基であり、また直 鎖状、側鎖状又は脂環式のいずれであってもよい。
[0024] このような有機酸ジヒドラジド化合物としては、アジピン酸ジヒドラジド、コハク酸ジヒド ラジド、セバチン酸ジヒドラジド、ドデカンニ酸ジヒドラジド及びォクタデカジエン一ジ カルボヒドラジド等を好ましく挙げることができる。
[0025] なかでも、有機酸ジヒドラジド化合物(C)は、下式 (II)に示すカルボン酸ジヒドラジド 化合物であることが好ましレ、。
[0026] [化 2]
0 0
II II
H2NHNC— (CH2)6CH=CH(CH2)2CH=CH(CH2)6—CNHNH2 (II)
[0027] 有機酸ジヒドラジド化合物(C)は、エポキシ樹脂 (A) 100重量部に対して、:!〜 20 重量部、好ましくは 3〜: 10重量部配合するとよい。配合量を 1重量部以上にすること により樹脂硬化物の力学物性を向上する効果が得られ、 20重量部以下にすることに より熱硬化の際にエポキシ樹脂に確実に溶解することができ、これにより加熱硬化時 の最低粘度を適正化することができる。
[0028] 本発明のエポキシ樹脂組成物は、ジシアンジアミドを使用してレ、なレ、場合でも、活 性水素型の潜在性硬化剤である有機酸ジヒドラジド化合物(C)を使用するので、得ら れる樹脂硬化物の力学特性、特に靭性及び耐熱性を低下させることなぐ同等レべ ルの優れた力学特性を得ることができる。したがって、プリプレダのマトリックス樹脂と して使用した場合、フィレットの強度を高くして、ハニカムコアとの接着強度を向上す ること力 Sできる。
[0029] 本発明の繊維強化複合材料用エポキシ樹脂組成物は、上記 (A)〜(C)成分を必 須とするものであるが、本発明の効果を損なわない範囲で、さらに、ジシアンジアミド( D)を含むことができる。
[0030] ジシアンジアミド(D)は、反応活性が高ぐ硬化後の物性に優れるため、プリプレダ 用のエポキシ樹脂組成物の硬化剤として好適に用いられる。しかし、加熱硬化を行う 前にエポキシ樹脂組との硬化反応が進みやすいので、有機酸ジヒドラジド化合物(C )の粒子を共存させることにより、加熱前の硬化反応を抑制することができる。
[0031] 融点が 150°C以上の有機酸ジヒドラジド化合物(C)は、加熱硬化前にエポキシ樹 脂 (A)とジシアンジアミド (D)との硬化反応を阻害する性質に優れる。このため、加熱 硬化前のジシアンジアミド(D)の硬化反応の進行を抑制し樹脂粘度が上昇するのを 抑制し、プリプレダを常温保存したときのタック性の低下を抑制することができる。例 えば、ジシアンジアミド (D)が共存する場合であっても、塗工作業時に樹脂温度 60
〜90°Cの状態に長時間さらされても樹脂粘度の増加を抑制することができ、供給タ ンクゃコーターロールの樹脂ダムに ;L〜2時間おかれても、樹脂粘度の増加を低く抑 え、供給タンクからの排出を容易にし、かつコーターロールの運転条件を大幅に変更 することなく樹脂フィルムを作製することができる。
[0032] ジシアンジアミド(D)は、エポキシ樹脂 (A) 100重量部に対して、ジシアンジアミド( D)を好ましくは 1〜 5重量部、より好ましくは 1〜 3重量部配合するとよレ、。ジシアンジ アミド (D)の配合量を 1重量部以上にすることにより、樹脂硬化物の機械的特性の向 上効果が十分に得られ、 5重量部以下にすることにより熱硬化工程の前の硬化反応 を起こり難くする。
[0033] また、加熱硬化時にエポキシ樹脂組成物が加熱され、有機酸ジヒドラジド化合物(C )が溶解し始めると、アミン系硬化剤(B)及びジシアンジアミド(D)力 エポキシ樹脂 ( A)と、硬化反応を開始するため、加熱硬化時の樹脂組成物の最低粘度を増加させ フィレットの形状を良好にすると共に、樹脂硬化物の靭性を向上させることが可能とな る。
[0034] 本発明のエポキシ樹脂組成物は、常温で固形の熱硬化性樹脂(E)を含むようにし 、この熱硬化性樹脂 (E)が粒子状に分散しているようにしてもよい。常温で固形の熱 硬化性樹脂 (E)を粒子は、所定の温度に達しないとエポキシ樹脂 (A)に完全に溶解 しないようにし、所定の温度になると、均一に溶解しエポキシ樹脂組成物の粘度を適 正化し、良好なフィレットを形成することができる。
[0035] また、熱硬化性樹脂 (E)の粒子を添加することにより、後述する熱可塑性樹脂 (F) を配合する場合であっても、その配合量を低減することができるので、加熱硬化工程 前の樹脂組成物の粘度を低くしてプリプレダのタック性及びドレープ性を向上させ、 優れた作業性を得ることができる。さらに、熱硬化性樹脂 (E)の粒子を添加する場合 は、熱可塑性樹脂の粒子のみを溶解させないようにして配合した場合に比べて、ェ ポキシ樹脂組成物の靭性を向上させる効果に優れているのでフィレットの強度を改 善し、ハニカムコアとの接着強度をさらに強くして自己接着性を向上させることができ る。
[0036] 常温で固形の熱硬化性樹脂 (E)の粒子は、エポキシ樹脂 (A)に好ましくは温度 90 °C未満、より好ましくは 60°C〜90°Cで完全に溶解せず、かつ軟化点が好ましくは 12 0°C以上、より好ましくは 130°C〜160°Cであるとよい。なお、軟化点は、 JISK—723 4に準拠して測定する値である。
[0037] 本発明において、熱硬化性樹脂 (E)の粒子の種類は、特に制限されるものではな いが、例えば、常温で固形のエポキシ樹脂、ビスマレイミド樹脂、イソシァネート樹脂 、フエノール樹脂、不飽和ポリエステル樹脂又はビニルエステル樹脂が好ましぐ特 に常温で固形のエポキシ樹脂、ビスマレイミド系又はイソシァネート系樹脂が好まし レ、。常温で固形のエポキシ樹脂は、例えばビスフエノール A型エポキシ樹脂を精製し 純度を高めると共にその分子量を高くすることにより調製することができ、常温で結晶 性を有する固形になり、軟化点が高くプリプレダの作業性を改善すると共に、ポロシ ティを改善する効果があり好ましレ、。
[0038] また、熱硬化性樹脂(E)の粒子は、その粒子径が、好ましくは 100 μ m以下、より好 ましくは 5〜50 μ mであるとよレ、。熱硬化性樹脂(E)の粒子の粒子径をこのような範 囲内にすることで、加熱硬化工程で所定の温度になると均一に溶解するため、ェポ キシ樹脂組成物の粘度を適正に調整することができる。なお、熱硬化性樹脂 (E)の 粒子の調製方法及び粒子径の測定方法は、前述した有機酸ジヒドラジド化合物(C) の粒子と同様にして、粉砕調製及び測定するものとする。
[0039] 本発明のエポキシ樹脂組成物は、エポキシ樹脂 (A) 100重量部に対して、熱硬化 性樹脂(E)を好ましくは 2〜20重量部、より好ましくは 5〜: 15重量部の配合割合で含 むとよレ、。熱硬化性樹脂(E)の配合量を 2重量部以上にすることによりエポキシ樹脂 組成物の粘度を適正に調整して樹脂硬化物の靭性向上効果が得られ、 20重量部 以下にすることによりプリプレダを適度な硬さにしてタック性及びドレープ性を向上す ることができ好ましい。
[0040] 本発明のエポキシ樹脂組成物は、熱可塑性樹脂(F)を含むものであってもよい。熱 可塑性樹脂(F)をエポキシ樹脂 (A)に溶解させることにより、エポキシ樹脂組成物の 粘度を調整し、加熱硬化時の樹脂組成物の最低粘度を増加させ良好な形状のフィ レットを形成すると共に、樹脂硬化物の靭性を向上することができるからである。この ため、熱可塑性樹脂(F)は、エポキシ樹脂 (A)に、好ましくは温度 90°C以上、より好 ましくは 95°C〜150°Cで溶解するとよい。このような温度範囲で溶解することにより、 容易かつ均一に溶解させ撹拌 ·混合することができる。
[0041] 熱可塑性樹脂(F)の種類は、特に限定されるものではないが、ポリエーテルスルホ ン樹脂、ポリエーテルイミド樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリエーテル樹脂、 ポリエステル樹脂、ポリスルホン樹脂、ポリアミドイミド樹脂、ポリアタリレート樹脂、ポリ ァリールエーテル樹脂、ポリフエニルエーテル樹脂及びポリエーテルエーテルケトン 樹脂から選ばれる少なくとも 1種以上であることが好ましい。熱可塑性樹脂(F)は、と りわけポリエーテルスルホン樹脂又はポリエーテルイミド榭脂が好ましぐエポキシ榭 脂成分との相溶性又は親和性が、他の熱可塑性樹脂と比べて高ぐ樹脂硬化物の 靭性を向上する効果が大きい。
[0042] 熱可塑性樹脂(F)は、粒子状のものを使用することが好ましぐその粒子径が、好ま しくは 200 x m以下、より好ましくは 5〜: lOO x mにするとよレ、。このような粒子径を有 する微細粒子の熱可塑性樹脂を使用することにより、エポキシ樹脂に配合するときに 大きな粒子が解け残ることを防止して素早く均一に溶解するため、樹脂組成物の粘 度特性及び靭性を向上させることができる。すなわち、微細粒子の粒子径を、 200 μ m以下にすると、エポキシ樹脂 (A)へ均一に溶解し樹脂組成物の物性、特に靭性を 向上する効果が得られる。熱可塑性樹脂 (F)の粒子の調製方法及び粒子径の測定 方法は、前述した有機酸ジヒドラジドィ匕合物(C)の粒子と同様にして、粉碎調製及び 測定するものとする。
[0043] 本発明のエポキシ樹脂組成物は、エポキシ樹脂 (A) 100重量部に対して、熱可塑 性樹脂(F)を好ましくは 20〜60重量部、より好ましくは 30〜50重量部の配合割合で 含むとよレ、。熱可塑性樹脂(F)の配合量を 20〜60重量部の範囲内にすることにより エポキシ樹脂組成物の粘度を適正に調整することができ、 60重量部以下にしてタツ ク性及びドレープ性を向上することができる。
[0044] 本発明の繊維強化複合材料用エポキシ樹脂組成物は、上記 (A)〜(C)成分を必 須とし、(D)〜(F)成分を任意に配合するものであるが、本発明の効果を損なわない 範囲で、必要に応じて上記 (A)〜(F)成分以外の公知の硬化剤、熱硬化性樹脂の 粒子、粘度調整剤、充填剤、安定剤、難燃剤、顔料等の各種添加剤を配合してもよ レ、。
[0045] 本発明のエポキシ樹脂組成物は、昇温速度 2°C/分における動的粘弾性測定によ る最低粘度が、好ましくは 10〜: 150Pa' s、より好ましくは 20〜: 150Pa' sであるとょレヽ 。動的粘弾性測定の最低粘度を上記の範囲内にすることは、プリプレダの生産性及 び自己接着性を向上する上で重要であり、 lOPa' s以上にすると良好なフィレットを 形成することができ自己接着性が向上し、 150Pa' s以下にするとフィレットの形成性 を保ちつつ、プリプレダ製造時に強化繊維に樹脂組成物を容易に含浸させることが できる。なお、本発明において動的粘弾性測定による最低粘度は、温度 25°Cから 20 0°Cまでの間で、昇温速度 2°C/秒、周波数 lOrad/秒、ひずみ 1%の動的粘弾性 測定における複素粘性率の最低値をレ、うものとする。
[0046] 本発明のエポキシ樹脂組成物は、硬化した樹脂硬化物の破壊靭性値が、 ASTM
D5045— 91に準拠して測定する破壊靭性値で、好ましくは 1. 8MPa'^Tm以上、 より好ましくは 1. 8〜2. 5MPa' mであるとよい。樹脂硬化物の破壊靭性値が、 1. 8MPa' m以上であると、フィレット部分の強度を高くして、面板(プリプレダ)とハニ カムコアの接着後の剥離試験において、ハニカムコアの材料破断が部分的に生じ始 めるほど、剥離強度を向上することができる。
[0047] また、本発明のエポキシ樹脂組成物は、樹脂フィルムを作製する塗工作業の際に 6 0〜90°Cの樹脂温度の状態に長時間おいても、樹脂粘度の変化が少ないことが特 徴である。例えば、樹脂温度 75°Cの状態に 2時間おかれた場合の粘度変化量が、 好ましくは 150Pa' s以下、より好ましくは lOOPa ' s以下、さらに好ましくは 70Pa' s以 下、特に好ましくは 55Pa' s以下であるとよレ、。粘度変化量が、 150Pa' s以下であると 、供給タンクゃコーターロールの樹脂ダムに長時間滞留した場合にも、樹脂粘度の 変化が少ないので、その後の供給タンクからの排出を容易にしコーターロールの運 転条件を大幅に変更することなく樹脂フィルムを作製することができる。なお、粘度の 変化は、動的粘弾性測定において、温度 75°Cの一定条件で、周波数 lOradZ秒、 ひずみ 1 %の複素粘性率の経時変化を測定し、粘度の変化量を求めるものとする。
[0048] さらに、本発明のエポキシ樹脂組成物は、加熱硬化時の反応開始温度が、好ましく は 100°C以上、より好ましくは 110〜: 145°Cと高ぐ加熱硬化前の熱的安定性に優れ 、硬化反応に伴う樹脂粘度の増加を抑制することができる。具体的に、示差走査熱 量測定 (DSC)により測定した反応開始温度が高ぐ通常の塗工作業時の樹脂温度 (60〜90°C)や常温での保管時に硬化反応が進むことを抑制することができる。なお 、加熱硬化時の反応開始温度は、 DSCにより昇温速度 10°C/分で測定した反応開 始温度、すなわち発熱ピークの立ち上がりとベースラインとの交点の温度とする。
[0049] 本発明の繊維強化複合材料用エポキシ樹脂組成物の製造方法は、特に制限され るものではないが、エポキシ樹脂 (A)を、好ましくは温度 95〜: 150°C、より好ましくは 温度 100〜125°Cで混合'撹拌し樹脂溶液にする。このとき、熱可塑性樹脂 (F)を配 合する場合には、熱可塑性樹脂 (F)を添加し溶解させて、混合樹脂にすることが好 ましレ、。この後、混合樹脂を好ましくは温度 60〜90°C、より好ましくは温度 70〜80°C に冷却してから、この混合樹脂にアミン系硬化剤(B)及び有機酸ジヒドラジド化合物( C)を含む他の配合成分、具体的は、アミン系硬化剤(B)、有機酸ジヒドラジド化合物 (C)、必要に応じてジシアンジアミド (D)及び Z又は熱硬化性樹脂 (E)の粒子を添 加し均一に分散させるようにして製造する。
[0050] 具体的には、エポキシ樹脂 (A)と、好ましくは熱可塑性樹脂(F)とを、温度 95〜: 15 0°Cに設定したプラネタリミキサを用いて、均一に確実に溶解するまで約 0. 5〜3時 間、撹拌 ·混合するとよい。その後、この混合樹脂を温度 60〜90°Cまで冷却し、アミ ン系硬化剤(B)、有機酸ジヒドラジド化合物(C)、必要に応じてジシアンジアミド (D) 及び/又は熱硬化性樹脂 (E)の粒子を加え、均一に分散'混合して調製することが 好ましい。
[0051] 本発明の繊維強化プリプレダは、上述した繊維強化複合材料用エポキシ樹脂組成 物をマトリックス樹脂とし、このマトリックス樹脂を強化繊維と複合させたものである。強 化繊維は、炭素繊維、黒鉛繊維、ァラミド繊維、ガラス繊維等を好ましく挙げることが でき、なかでも炭素繊維が好ましぐ炭素繊維織物が特に好ましい。
[0052] 繊維強化プリプレダは、マトリックス樹脂の含有量力 好ましくは 30〜50重量%、よ り好ましくは 35〜45重量%にするとよレ、。繊維強化プリプレダにおけるマトリックス樹 脂の割合がこのような範囲内であれば、プリプレダの自己接着性を向上すると共に作 業性及び外観品質を向上させ、さらに炭素繊維強化複合材料の機械的特性を十分 に発揮させること力 Sできる。
[0053] 繊維強化プリプレダを製造する方法は、本発明のエポキシ樹脂組成物を離型紙の 上に薄レ、フィルム状に塗布した樹脂フィルムを作製し、強化繊維の上下に積層して、 加熱及び加圧することでエポキシ樹脂組成物を強化繊維に含浸させるホットメルト法 が好ましい。このようにして得られたプリプレダは、作業環境や常温雰囲気に長期間 ぉレヽても保存安定性に優れ、タック性及びドレープ性が低下しなレ、。
[0054] 具体的に、本発明の繊維強化プリプレダは、ジシアンジアミドを配合しないか又は 配合量を少なくし、融点 150°C以上の有機酸ジヒドラジド化合物(C)を配合するので 、常温における保存安定性に優れている。すなわち、常温で長期間保存した場合に 、マトリックス樹脂の増粘が少なくプリプレダのタック性が殆ど変化することがない。こ こで、常温とはプリプレダを取り扱う作業環境の温度をいい、およそ 10〜35°Cである 。本発明のエポキシ樹脂組成物は、例えば、温度 20°Cの室温に、好ましくは 10日間 、静置しておいてもタック性が悪化することなぐプリプレダ作製直後の優れたタック性 を良好な状態に維持する。
[0055] このようにして得られた繊維強化プリプレダをハニカムコアの両面に積層して、通常 のオートクレープ成形又はホットプレス成形等の熱硬化成形することにより、繊維強 化複合材料を製造することができる。得られた繊維強化複合材料は、良好なフィレツ トを有し接着強度が高いば力りでなぐ優れた機械的性能を有する。
[0056] 本発明に使用するハニカムコアは、好ましくはァラミドハ二カム、アルミハニカム、ぺ 一パーハニカム、ガラスハニカムから選ばれるいずれかであるとよぐ中でもァラミドハ 二カムが好ましい。
[0057] 以下、実施例によって本発明をさらに説明するが、本発明の範囲をこれらの実施例 に限定されるものではない。
実施例
[0058] 〔実施例:!〜 6及び比較例:!〜 4〕
エポキシ樹脂 (A)、アミン系硬化剤(B)、有機酸ジヒドラジド化合物(C)及び任意成 分として、ジシアンジアミド (D)、熱硬化性樹脂 (E)、熱可塑性樹脂 (F)を下記に列 記されたものを使用し、それぞれ表 1及び 2に記載する配合割合において、エポキシ 樹脂組成物を調製した。先ずエポキシ樹脂 (A)及び熱可塑性樹脂 (F)の全量を、温 度 125°Cに設定したプラネタリミキサを用いて、均一な樹脂溶液になるまで 75分間、 撹拌'混合した。その後、このプラネタリミキサの温度を 70°Cに設定し、樹脂温度が均 一になつたところで、アミン系硬化剤(B)、有機酸ジヒドラジド化合物(C)、ジシアンジ アミド (D)及び熱硬化性樹脂 (E)の粒子の全量をこの樹脂溶液中に加え、撹拌-混 合してエポキシ樹脂組成物を調製した。
[0059] ·エポキシ樹脂(A)
樹脂 A_ 1 : N, N, O—トリグリシジル _p—アミノフエノール樹脂(ハンツマン 'アドバ ンスト'マテリアルズ社製 MY -0510)
樹脂 A— 2:ビスフエノール F型エポキシ樹脂(ジャパンエポキシレジン社製ェピコート - 806)
[0060] ·アミン系硬化剤(B)
硬化剤 Β : 3, 3' —ジアミノジフエニルスルホン(ハンツマン 'アドバンスト'マテリアル ズ社製 ARADUR9719 - 1)
[0061] ·ジシアンジアミド(D) 硬化剤 D:ジシアンジアミド(ジャパンエポキシレジン社製ェピキュア DICY 15) [0062] ·有機酸ジヒドラジド化合物(C)
硬化剤 C— 1:アジピン酸ジヒドラジド化合物(日本ファインケム社製 ADH)融点 177 〜 184°C、平均粒子径 13 μ m
硬化剤 C_ 2:ドデカンニ酸ジヒドラジド(日本ファインケム社製 N— 12)融点 185〜1 90°C、平均粒子径 9 z m
硬化剤 C_ 3:セバチン酸ジヒドラジド化合物(日本ファインケム社製 SDH)融点 185 〜189°C、平均粒子径 21 μ m
硬化剤 C_4 : l , 3 _ビス(ヒドラジノカルボノエチル) _ 5 _イソプロピルヒダントイン( 味の素ファインテクノ社製 VDH)融点 118〜 124°C、平均粒子径 10 μ m
硬化剤 C_ 5 : 7, 11—ォクタデカジエン一 1 , 18—ジカルボヒドラジド(味の素フアイ ンテクノ社製 UDH)融点 150〜 165°C、平均粒子径 20 μ m
[0063] ·熱硬化性樹脂 (E)
樹脂 E :ビスフエノール A型エポキシ樹脂 (東都化成社製 YD— 020N)、軟化点 135 °C〜150°C、衝撃粉砕により粒子径 100 μ m以下の微細粒子。
[0064] ·熱可塑性樹脂 (F)
樹脂 F:ポリエーテルスルホン樹脂(住友化学社製スミカエタセル PES5003P)衝撃 粉砕により、粒子径 100 μ m以下の微細粒子
得られた 10種類のエポキシ樹脂組成物(実施例 1〜6、比較例:!〜 4)について、そ れぞれ下記に示す方法で、エポキシ樹脂組成物の粘度変化量、反応開始温度、タツ ク性及び硬化物の破壊靭性値を評価し、その結果を表 1及び 2に示す。また、このう ち 5種類のエポキシ樹脂組成物(実施例 4〜6、比較例 3, 4)について、それぞれ下 記に示す方法で、エポキシ樹脂組成物の熱硬化時の最低粘度、プリプレダのタック 性及びハニカムパネルの剥離強度を評価し、その測定結果を表 2に示す。
[0065] 〔エポキシ樹脂組成物の粘度変化量〕
エポキシ樹脂組成物の温度 75°Cにおける粘度の経時変化を 2時間測定し、初期 の粘度に対する 2時間後の粘度の変化量を測定した。なお、エポキシ樹脂組成物の 粘度は、温度 75°Cで一定にした条件で、周波数 lOradZ秒、ひずみ 1%の動的粘 弾性測定における複素粘性率を測定した。
[0066] 〔エポキシ樹脂組成物の反応開始温度〕
エポキシ樹脂組成物の約 5mgを試料にして、温度 20°Cから 350°Cまで、昇温速度
10°C/分の温度条件で、窒素雰囲気下において、示差走查熱量測定 (DSC、ティ
~ .エイ'インスツルメント社製 DSC— 2920)により熱分析を行った。発熱ピークの立 ち上がりの延長線とベースラインとの交点の温度を、反応開始温度として測定した。
[0067] 〔エポキシ樹脂組成物の最低粘度〕
得られたエポキシ樹脂組成物を試料にして、温度 25°Cから 200°Cまでの間で、昇 温速度 2°C/秒、周波数 lOrad/秒、ひずみ 1%の条件の動的粘弾性測定における 複素粘性率の最低値を測定した。
[0068] 〔プリプレダのタック'性〕
得られたエポキシ樹脂組成物を用いて離型紙上に樹脂フィルムを形成し、このフィ ルムを炭素繊維平織織物(東レ社製 T— 300— 3K)に、樹脂含有量が 41重量%とな るように加熱加圧して転写し、プリプレダを得た。
[0069] 作製直後及び室温に 10日間暴露した後のプリプレダのタック性を、以下の三段階 基準で触手により評価した。
〇: 十分な粘着性が感じられたもの
Δ : やや粘着性が感じられたもの
X: ほぼ粘着性が感じられなかったもの
得られた樹脂硬化物を、 ASTM D5045— 91に準拠して、試験サンプルを作製し 、 23°C (乾燥状態)における破壊靭性値 (MPa' m)を測定した。
[0070] 〔硬化物の破壊靱性〕
得られたエポキシ樹脂組成物を使用して、プログラムオーブンにて温度 180°Cで、 2時間硬化し、樹脂硬化物を作製した。
[0071] 〔ハニカムパネルの剥離強度〕
得られたプリプレダを 2枚積層し、これをハニカムコア(昭和飛行機工業社製ノーメッ クスハ二カム SAH— 1/8— 8. 0)の両面に配置した後、バッグに入れ、これをオート クレープ内で温度 180°C、 2時間(昇温速度 2. 8°CZ分)加熱し、硬化させてハニカ ムパネルを作製した。この間、ォ一トクレーブ内を圧空で 0. 32MPaにカロ圧した。
[0072] 得られたハニカムパネルを、 ASTM D1781に準拠して、加熱硬化工程にハニカ ムコアの上側及び下側に配置された面板をそれぞれ所定の寸法に加工し温度 23°C
(乾燥状態)における上側面板及び下側面板の試験片の剥離強度 (lb_in/3in)を 測定した。
[0073] [表 1]
Figure imgf000017_0001
表 1の結果から、本発明のエポキシ樹脂組成物(実施例:!〜 3)は、温度 75°C 2時 間後の粘度変化量が少ないことが認められた。また、 DSCにより測定した反応開始 温度が高ぐ通常の塗工作業時の樹脂温度(60 90°C)や常温での保管時に硬化 反応が進む可能性が低いことが認められた。また、室温で 10日間暴露した後におい ても、プリプレダのタック性はほとんど変化しないことが認められた。
[0075] これに対して、ジシアンジアミド(比較例 2)や融点が 150°C未満の有機酸ジヒドラジ ド(比較例 1 )を使用した場合には、温度 75°C 2時間後の粘度変化量が多ぐ同時 に反応開始温度も低いことが認められた。さらに、プリプレダのタック性も、室温で 10 日間暴露した後、大幅に低下することが確認された。
[0076] [表 2]
Figure imgf000018_0001

Claims

請求の範囲
エポキシ樹脂 (A) 100重量部に対して、脂肪族ポリアミン、脂環族ポリアミン又は芳 香族ポリアミンから選ばれるアミン系硬化剤(B)を 25〜50重量部、融点が 150°C以 上の有機酸ジヒドラジドィヒ合物(C)を:!〜 20重量部配合する繊維強化複合材料用ェ ポキシ樹脂組成物。
前記エポキシ樹脂組成物が、ジシアンジアミド(D)を含むと共に、前記有機酸ジヒド ラジド化合物 (C)が粒子状に分散してレ、る請求項 1に記載の繊維強化複合材料用ェ ポキシ樹脂組成物。
前記エポキシ樹脂組成物が、常温で固形の熱硬化性樹脂 (E)を含み、該熱硬化 性樹脂 (E)が粒子状に分散している請求項 1又は 2に記載の繊維強化複合材料用 エポキシ樹脂組成物。
さらに、熱可塑性樹脂 (F)を含む請求項 1, 2又は 3に記載の繊維強化複合材料用 エポキシ樹脂組成物。
前記有機酸ジヒドラジド化合物(C) 1 二塩基酸ジヒドラジド又は下式 (I)に示す力 ルボン酸ジヒドラジド化合物である請求項 1〜4のいずれかに記載の繊維強化複合 材料用エポキシ樹脂組成物。
[化 3]
0 0
II II …
H2NHNC-X-CNHNH2 ( I )
(式中、 Xは、フエニル基又は炭素数 2〜: 18の脂肪族炭化水素基を表す。 ) 前記有機酸ジヒドラジド化合物(C)が、下式 (II)に示すカルボン酸ジヒドラジド化合 物である請求項 1〜5のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成 物。
[化 4]
0 0
II II
H2NHNC-(CH2)6CH二 CH(CH2)2CH=CH(CH2)6-CNHNH2 ( I I ) 前記有機酸ジヒドラジド化合物(C)の平均粒子径が、 100 μ m以下である請求項 1 〜 6のレ、ずれかに記載の繊維強化複合材料用エポキシ樹脂組成物。
[8] 前記アミン系硬化剤(B)が、 3, 3' ジァミノジフヱニルスルホン及び/又は 4, 4' ジァミノジフヱニルスルホンである請求項 1〜7のいずれかに記載の繊維強化複合材 料用エポキシ樹脂組成物。
[9] 前記熱硬化性樹脂 (E)が、前記エポキシ樹脂に温度 90°C以下で完全に溶解しな い常温で固形のエポキシ樹脂、ビスマレイミド系樹脂及びイソシァネート系樹脂から 選ばれる少なくとも 1種を含む請求項 3〜8のいずれかに記載の繊維強化複合材料 用エポキシ樹脂組成物。
[10] 前記熱可塑性樹脂(F)力 ポリエーテルスルホン樹脂又はポリエーテルイミド樹脂 である請求項 4〜9のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物。
[11] 前記エポキシ樹脂 (A) 100重量部に対して、前記ジシアンジアミド(D)を 1〜5重量 部の配合割合で含む請求項 2〜: 10のいずれかに記載の繊維強化複合材料用ェポ キシ樹脂組成物。
[12] 前記エポキシ樹脂 (A) 100重量部に対して、前記熱硬化性樹脂 (E)を 1〜20重量 部の配合割合で含む請求項 3〜: 11のいずれかに記載の繊維強化複合材料用ェポ キシ樹脂組成物。
[13] 前記エポキシ樹脂 (A) 100重量部に対して、前記熱可塑性樹脂 (F)を 20〜60重 量部の配合割合で含む請求項 4〜: 12のいずれかに記載の繊維強化複合材料用ェ ポキシ樹脂組成物。
[14] 前記エポキシ樹脂組成物の昇温速度 2°C/分における動的粘弾性測定による最 低粘度が 10〜 150Pa · sである請求項 1〜: 13のいずれかに記載の繊維強化複合材 料用エポキシ樹脂組成物。
[15] 前記エポキシ樹脂組成物の硬化後に、 ASTM D5045— 91に準拠して測定され る破壊靭性値が、 1. 8MPa' m以上である請求項 1〜: 14のいずれかに記載の繊 維強化複合材料用エポキシ樹脂組成物。
[16] 請求項 4〜: 15のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物の製 造方法であって、前記エポキシ樹脂 (A)に、前記熱可塑性樹脂(F)を 95〜150°Cで 溶解させ混合樹脂にした後、 60〜90°Cに冷却し、該混合樹脂中に前記アミン系硬 化剤(B)及び有機酸ジヒドラジド化合物(C)を含む他の配合成分を添加する繊維強 化複合材料用エポキシ樹脂組成物の製造方法。
[17] 請求項 1〜: 15のいずれかに記載のエポキシ樹脂組成物をマトリックス樹脂として、 強化繊維と複合させた繊維強化プリプレダ。
[18] 前記マトリックス樹脂の含有量が 30〜50重量%である請求項 17に記載の繊維強 化プリプレダ。
[19] 前記強化繊維が炭素繊維である請求項 17又は 18に記載の繊維強化プリプレダ。
[20] 請求項 17、 18又は 19に記載の繊維強化プリプレダとハニカムコアとを積層したハ 二カムサンドイッチパネル。
[21] 前記ハニカムコア力 ァラミドハ二カム、アルミハニカム、ペーパーハニカム、ガラス ハニカムから選ばれるいずれかである請求項 20に記載のハニカムサンドイッチパネ ノレ。
PCT/JP2007/058882 2006-04-25 2007-04-24 繊維強化複合材料用エポキシ樹脂組成物 WO2007125929A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BRPI0709491-4A BRPI0709491A2 (pt) 2006-04-25 2007-04-24 Composição de resina epóxi para material composto de fibra reforçada método para a produção de uma composição de resina epóxi pré-impregnado de fibra reforçada painel impressado colméia
CN200780014731XA CN101426830B (zh) 2006-04-25 2007-04-24 纤维强化复合材料用环氧树脂组合物
ES07742317T ES2425368T3 (es) 2006-04-25 2007-04-24 Composición de resina epoxi para materiales compuestos reforzados con fibras
KR1020087028722A KR101374439B1 (ko) 2006-04-25 2007-04-24 섬유 강화 복합 재료용 에폭시 수지 조성물
CA 2650563 CA2650563C (en) 2006-04-25 2007-04-24 Epoxy resin composition for fiber-reinforced composite material
US12/298,049 US8153229B2 (en) 2006-04-25 2007-04-24 Epoxy resin composition for fiber-reinforced composite material
EP20070742317 EP2017296B1 (en) 2006-04-25 2007-04-24 Epoxy resin composition for fiber-reinforced composite material
AU2007244335A AU2007244335B2 (en) 2006-04-25 2007-04-24 Epoxy resin composition for fiber-reinforced composite material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006120704A JP4141479B2 (ja) 2006-04-25 2006-04-25 繊維強化複合材料用エポキシ樹脂組成物
JP2006-120704 2006-04-25
JP2006-120706 2006-04-25
JP2006-120707 2006-04-25
JP2006120707A JP4141481B2 (ja) 2006-04-25 2006-04-25 繊維強化複合材料用エポキシ樹脂組成物
JP2006120706A JP4141480B2 (ja) 2006-04-25 2006-04-25 繊維強化複合材料用エポキシ樹脂組成物

Publications (1)

Publication Number Publication Date
WO2007125929A1 true WO2007125929A1 (ja) 2007-11-08

Family

ID=38655455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058882 WO2007125929A1 (ja) 2006-04-25 2007-04-24 繊維強化複合材料用エポキシ樹脂組成物

Country Status (9)

Country Link
US (1) US8153229B2 (ja)
EP (1) EP2017296B1 (ja)
KR (1) KR101374439B1 (ja)
AU (1) AU2007244335B2 (ja)
BR (1) BRPI0709491A2 (ja)
CA (1) CA2650563C (ja)
ES (1) ES2425368T3 (ja)
TW (1) TWI414538B (ja)
WO (1) WO2007125929A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165999A (ja) * 2008-01-18 2009-07-30 Yokohama Rubber Co Ltd:The 高粘度熱硬化性樹脂フィルムの成形方法
WO2016088528A1 (ja) * 2014-12-03 2016-06-09 Dic株式会社 エポキシ樹脂用硬化剤、及びこれを用いてなるエポキシ樹脂組成物
WO2017038880A1 (ja) * 2015-09-03 2017-03-09 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JPWO2018174217A1 (ja) * 2017-03-23 2020-01-16 帝人株式会社 自己接着性プリプレグ、及びその製造方法
WO2023139756A1 (ja) * 2022-01-21 2023-07-27 三菱電機株式会社 懸架部材、および、懸架部材の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010099029A1 (en) * 2009-02-27 2010-09-02 Cytec Technology Corp. Epoxy compositions with improved mechanical performance
US8686069B2 (en) * 2010-10-12 2014-04-01 Hexcel Corporation Solvent resistance of epoxy resins toughened with polyethersulfone
RU2014110183A (ru) * 2011-08-18 2015-09-27 ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи Отверждаемые полимерные композиции
EP2695903B1 (en) * 2012-08-08 2018-09-26 Siemens Aktiengesellschaft Method of modifying the rate of temperature change of an epoxy resin composition in a resin container during a casting process
JP6240560B2 (ja) * 2013-06-26 2017-11-29 本田技研工業株式会社 マトリックス材
WO2015080035A1 (ja) * 2013-11-26 2015-06-04 東邦テナックス株式会社 熱硬化性樹脂組成物、プリプレグ及びこれらを用いる繊維強化複合材料の製造方法
JP6710972B2 (ja) * 2014-11-17 2020-06-17 東レ株式会社 エポキシ樹脂組成物、プリプレグ、樹脂硬化物および繊維強化複合材料
RU2690115C1 (ru) * 2015-09-28 2019-05-30 Торэй Индастриз, Инк. Препрег со смоляными композициями, имеющими различные скорости отверждения
TWI575016B (zh) 2015-12-03 2017-03-21 財團法人工業技術研究院 環氧樹脂組成物及包含該組成物之熱介面材料
CN106926516B (zh) * 2015-12-31 2019-07-26 比亚迪股份有限公司 复合蜂窝夹芯板及其制备方法
US11274236B2 (en) * 2017-02-26 2022-03-15 Ddp Specialty Electronic Materials Us, Llc One-component toughened epoxy adhesives containing a mixture of latent curing agents
CN111574689A (zh) * 2020-04-13 2020-08-25 安徽福斯特渔具有限公司 改性新型环氧绝缘树脂基体及其制备方法
JP2024511705A (ja) * 2021-03-31 2024-03-15 東レ株式会社 エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料
US12110425B2 (en) 2021-08-17 2024-10-08 Uniseal, Inc. Electromagnetic curable novel toughened epoxy-hybrid structural adhesives and applications using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883022A (ja) 1981-11-13 1983-05-18 Toho Rayon Co Ltd エポキシ樹脂組成物
JPH0251538A (ja) 1988-08-12 1990-02-21 Sumitomo Chem Co Ltd 繊維強化複合材料
JP2003026768A (ja) * 2001-07-13 2003-01-29 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2004075914A (ja) * 2002-08-21 2004-03-11 Toray Ind Inc エポキシ樹脂組成物及びプリプレグ
JP2004269600A (ja) * 2003-03-06 2004-09-30 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2847395A (en) * 1955-06-13 1958-08-12 Minnesota Mining & Mfg Stable heat-curing epoxy resin compositions
US4956411A (en) * 1988-02-05 1990-09-11 Mitsubishi Rayon Company, Ltd. Epoxy resin composition for composite material from m- or o-substituted triglycidylaminophenols, diaminodiphenylsulfone and latent curing agents
JP3342709B2 (ja) * 1992-05-12 2002-11-11 三菱レイヨン株式会社 エポキシ樹脂組成物及びそれからのプリプレグ
TW305860B (ja) * 1994-03-15 1997-05-21 Toray Industries
JPH1143546A (ja) * 1997-07-30 1999-02-16 Toray Ind Inc クロスプリプレグおよびハニカム構造体
WO2001027190A1 (fr) * 1999-10-13 2001-04-19 Toray Industries, Inc. Composition de resine epoxy pour matiere composite renforcee par des fibres, pre-impregne et matiere composite renforcee par des fibres ainsi obtenue
ES2281412T3 (es) * 2000-04-21 2007-10-01 Mitsubishi Rayon Co., Ltd. Composicion de resina epoxi y prepreg fabricado con la composicion de resina epoxi.
WO2003066741A1 (fr) * 2002-02-06 2003-08-14 Sekisui Chemical Co., Ltd. Composition de resine
JP2003238657A (ja) * 2002-02-14 2003-08-27 Toray Ind Inc エポキシ樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料
JP2005298713A (ja) * 2004-04-14 2005-10-27 Toray Ind Inc 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2007308678A (ja) * 2005-11-02 2007-11-29 Shin Etsu Chem Co Ltd 液状エポキシ樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883022A (ja) 1981-11-13 1983-05-18 Toho Rayon Co Ltd エポキシ樹脂組成物
JPH0251538A (ja) 1988-08-12 1990-02-21 Sumitomo Chem Co Ltd 繊維強化複合材料
JP2003026768A (ja) * 2001-07-13 2003-01-29 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2004075914A (ja) * 2002-08-21 2004-03-11 Toray Ind Inc エポキシ樹脂組成物及びプリプレグ
JP2004269600A (ja) * 2003-03-06 2004-09-30 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165999A (ja) * 2008-01-18 2009-07-30 Yokohama Rubber Co Ltd:The 高粘度熱硬化性樹脂フィルムの成形方法
WO2016088528A1 (ja) * 2014-12-03 2016-06-09 Dic株式会社 エポキシ樹脂用硬化剤、及びこれを用いてなるエポキシ樹脂組成物
JP6048619B2 (ja) * 2014-12-03 2016-12-21 Dic株式会社 エポキシ樹脂用硬化剤、及びこれを用いてなるエポキシ樹脂組成物
WO2017038880A1 (ja) * 2015-09-03 2017-03-09 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JPWO2017038880A1 (ja) * 2015-09-03 2018-06-14 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
US10851217B2 (en) 2015-09-03 2020-12-01 Toray Industries, Inc. Epoxy resin composition, prepreg, and carbon fiber reinforced composite material
JPWO2018174217A1 (ja) * 2017-03-23 2020-01-16 帝人株式会社 自己接着性プリプレグ、及びその製造方法
WO2023139756A1 (ja) * 2022-01-21 2023-07-27 三菱電機株式会社 懸架部材、および、懸架部材の製造方法

Also Published As

Publication number Publication date
KR20090015079A (ko) 2009-02-11
AU2007244335B2 (en) 2010-08-12
CA2650563A1 (en) 2007-11-08
TW200806702A (en) 2008-02-01
AU2007244335A1 (en) 2007-11-08
KR101374439B1 (ko) 2014-03-17
BRPI0709491A2 (pt) 2011-07-19
ES2425368T3 (es) 2013-10-15
EP2017296A4 (en) 2012-02-29
EP2017296A1 (en) 2009-01-21
CA2650563C (en) 2014-07-29
US8153229B2 (en) 2012-04-10
US20090130379A1 (en) 2009-05-21
EP2017296B1 (en) 2013-07-24
TWI414538B (zh) 2013-11-11

Similar Documents

Publication Publication Date Title
WO2007125929A1 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP4141487B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP4141479B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP4141478B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
EP2956497B1 (en) Fire retardant epoxy resin formulations and their use
KR101993014B1 (ko) 충격 개질된 접착제
JP4141481B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP2007297549A (ja) エポキシ樹脂組成物
WO2019176935A1 (ja) プリプレグ及び炭素繊維強化複合材料
JP4141480B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
US11680144B2 (en) Self-adhesive prepreg

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742317

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007244335

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12298049

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2650563

Country of ref document: CA

Ref document number: 200780014731.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007244335

Country of ref document: AU

Date of ref document: 20070424

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007742317

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087028722

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0709491

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081008