WO2007114178A1 - 多室型空気調和機の制御装置及び制御方法 - Google Patents

多室型空気調和機の制御装置及び制御方法 Download PDF

Info

Publication number
WO2007114178A1
WO2007114178A1 PCT/JP2007/056682 JP2007056682W WO2007114178A1 WO 2007114178 A1 WO2007114178 A1 WO 2007114178A1 JP 2007056682 W JP2007056682 W JP 2007056682W WO 2007114178 A1 WO2007114178 A1 WO 2007114178A1
Authority
WO
WIPO (PCT)
Prior art keywords
operation mode
unit
heat source
air conditioner
room air
Prior art date
Application number
PCT/JP2007/056682
Other languages
English (en)
French (fr)
Inventor
Hideki Sangenya
Takeshi Kitagawa
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to ES07740120.6T priority Critical patent/ES2671872T3/es
Priority to CN200780010871XA priority patent/CN101410675B/zh
Priority to EP07740120.6A priority patent/EP2009361B1/en
Priority to AU2007233445A priority patent/AU2007233445B2/en
Priority to US12/294,580 priority patent/US7957840B2/en
Publication of WO2007114178A1 publication Critical patent/WO2007114178A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • F24F1/12Vibration or noise prevention thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/40Vibration or noise prevention at outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode

Definitions

  • the present invention relates to a control device and a control method for a multi-room air conditioner having a heat source unit that can be switched to a plurality of operation modes having different silence levels.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-103546
  • An object of the present invention is to provide a multi-room air conditioner having a heat source unit that can be switched to a plurality of operation modes having different silence levels, when selecting one operation mode from a plurality of operation modes. By adjusting the demands, it is possible to achieve reasonable silent operation.
  • a control device for a multi-room air conditioner includes an operation mode assignment unit and an operation mode setting unit.
  • the multi-room air conditioner has a heat source unit and a plurality of utilization units connected to the heat source unit via a refrigerant communication pipe.
  • the heat source unit can be switched to a plurality of operation modes having different silent levels. Multiple usage units are installed in multiple rooms.
  • the operation mode assignment unit assigns one operation mode of the plurality of operation modes to each of the operation units being operated among the plurality of use units.
  • the operation mode setting unit sets the heat source unit to one of a plurality of operation modes based on the operation mode assigned to each of the operating units being operated by the operation mode assignment unit.
  • the operation mode setting unit sets the heat source unit to a predetermined operation mode under the first condition.
  • the first condition refers to a state in which a predetermined operation mode is assigned among all operation modes to all the operating units in operation.
  • a plurality of operation modes having different silence levels are prepared for the heat source unit of the multi-room air conditioner.
  • a single operation mode is specifically selected from the plurality of operation modes during the operation of the multi-room air conditioner, first, the plurality of operation modes are assigned to each of all operating units in operation. One of the operation modes is assigned. Subsequently, as a result of the operation mode being assigned to each of the usage units in this way, when the same predetermined operation mode is assigned to all the usage units in operation, the predetermined operation mode is assigned. The operation mode becomes the operation mode of the heat source unit.
  • the operation mode of the heat source unit is determined based on the operation mode assigned to the utilization unit.
  • a control device for a multi-room air conditioner according to a second invention is a control device for a multi-room air conditioner according to the first invention, wherein the plurality of operation modes include a normal operation mode, It includes a number of silent operation modes in which the silent level is stepwise higher than the normal operation mode.
  • the normal operation mode and the multi-stage silent operation mode are prepared for the heat source unit of the multi-room air conditioner. Therefore, it is possible to perform more detailed silent operation according to the situation.
  • the control device for a multi-room air conditioner according to the third invention is the control device for a multi-room air conditioner according to the first or second invention, wherein the multi-room air conditioner is operated It further has a mode selection part.
  • the operation mode selection unit allows the user to select one operation mode from among a plurality of operation modes via the operation unit being operated.
  • the operation mode assigning unit assigns one operation mode among a plurality of operation modes to each of the operating units being operated based on the operation mode selected by the user via the operation mode selection unit.
  • the user of the room where the usage unit is installed can request the operation mode through all the usage units in operation. Therefore, requests from each room can be collected and adjusted.
  • a control device for a multi-room air conditioner according to a fourth invention is a control device for a multi-room air conditioner according to the second invention, wherein the heat source unit includes a heat exchanger and a heat source side. And a fan.
  • the heat source side fan sends air to the heat exchanger. Different limits are set for the number of rotations of the heat source side fan depending on multiple operation modes.
  • the heat source unit can be operated in a plurality of operation modes having different silent levels.
  • a control device for a multi-room air conditioner according to a fifth invention is the control device for a multi-room air conditioner according to the second invention or the fourth invention, wherein the heat source unit has a compressor. Different limits are set for the operating frequency of the compressor depending on the multiple operating modes.
  • a control device for a multi-room air conditioner according to a sixth invention is a control device for a multi-room air conditioner according to any of the first invention power and the power of the fifth invention, wherein the operation mode setting unit comprises: Under the second condition, the heat source unit is set to the specified operation mode.
  • the second condition is that at least one of the operating usage units is assigned a predetermined operating mode and the required capacity of the room where the remaining usage units are installed among the operating usage units. All are smaller than the specified value.
  • the predetermined operation mode is set as the operation mode of the heat source unit.
  • the predetermined operation mode is set as the operation mode of the heat source unit.
  • a control device for a multi-room air conditioner according to a seventh invention is the control device for a multi-room air conditioner according to the second, fourth, or fifth invention, wherein the operation mode setting unit However, under the third condition, the heat source unit is not set to the operation mode at a lower noise level than the predetermined silent operation mode.
  • the third condition is that at least one of the operating units in operation is assigned a predetermined silent operation mode among a plurality of silent operation modes or a high-silence silent operation mode with a lower noise level than the predetermined silent operation mode. Let ’s talk to you.
  • the operation mode is lower than the predetermined silence level and the operation mode is the operation mode of the heat source unit. It will not be done. This is because if the silent operation mode is lower than a certain level, even if the silent operation mode is executed, it is unlikely that any room will be sufficiently air-conditioned. It is because it is considered. Thus, when selecting one operation mode from multiple operation modes, requests from each room Can be adjusted more reasonably.
  • a control device for a multi-room air conditioner according to an eighth invention is a control device for a multi-room air conditioner according to any of the first invention power and the power of the fifth invention. Further includes a priority use unit setting section.
  • the priority use unit setting unit accepts a setting for giving priority to one of a plurality of use units.
  • the operation mode setting unit sets the heat source unit to the operation mode assigned to the use unit for which priority has been set.
  • the fourth condition refers to the state in which the use unit that has been set with priority via the priority use unit setting unit is in operation.
  • a control device for a multi-room air conditioner according to a ninth invention is the control device for a multi-room air conditioner according to the second, fourth, or fifth invention, wherein the multi-room air conditioner
  • the harmony machine further includes a capability priority setting unit.
  • the ability priority setting unit accepts a setting for giving priority to securing the ability to at least one of the plurality of usage units.
  • the operation mode setting unit sets the heat source unit to the normal operation mode under the fifth condition.
  • the fifth condition refers to the state where the use unit that has been set with priority via the capacity priority setting unit is in operation.
  • the silent operation mode is prohibited and only the operation in the normal operation mode is allowed. Can do.
  • a control device for a multi-room air conditioner according to a tenth aspect of the invention is the control device for a multi-room air conditioner according to the fourth aspect of the invention, further comprising a fan rotation speed correction unit.
  • the multi-room air conditioner has an outside air temperature acquisition unit.
  • the outside air temperature acquisition unit acquires the outside air temperature.
  • the fan rotation speed correction unit corrects the rotation speed of the heat source side fan of the heat source unit operating in the silent operation mode to increase when the outside air temperature acquired by the outside air temperature acquisition unit satisfies a predetermined condition. .
  • a malfunction may be caused by a decrease in the rotation speed of the heat source side fan in the silent operation mode.
  • the outside air temperature is taken into account, and if necessary, correction is made to increase the rotation speed of the heat source side fan. .
  • the problems associated with the introduction of the silent operation mode are taken into consideration, and more comfortable silent operation is provided.
  • a control device for a multi-room air conditioner according to an eleventh aspect of the invention is the control device for a multi-room air conditioner according to the tenth aspect of the invention, wherein the fan rotation speed correction unit is acquired by an outside air temperature acquisition unit.
  • the outside air temperature is lower than the first temperature during heating operation or higher than the second temperature higher than the first temperature during cooling operation, the rotation speed of the heat source side fan is increased. .
  • a control method for a multi-room air conditioner is a control method for a multi-room air conditioner, and includes an operation mode assignment step and an operation mode setting step.
  • the multi-chamber air conditioner has a heat source unit and a plurality of utilization units connected to the heat source unit via a refrigerant communication pipe.
  • the heat source unit can be switched to multiple operation modes with different silence levels. Multiple usage units are installed in multiple rooms.
  • one operation mode of the plurality of operation modes is assigned to each of the operation units being operated among the plurality of use units.
  • the heat source unit is set to one of a plurality of operation modes based on the operation mode assigned to each of the operating units in operation.
  • the heat source unit is set to the same one operation mode under the first condition.
  • the first condition means that all operating units in operation have multiple operations.
  • the same operation mode is assigned among the rotation modes!
  • a plurality of operation modes having different silence levels are prepared for the heat source unit of the multi-room air conditioner.
  • a single operation mode is specifically selected from the plurality of operation modes during the operation of the multi-room air conditioner, first, the plurality of operation modes are assigned to each of all operating units in operation. One of the operation modes is assigned. Subsequently, as a result of the operation mode being assigned to each of the usage units in this way, when the same predetermined operation mode is assigned to all the usage units in operation, the predetermined operation mode is assigned. The operation mode becomes the operation mode of the heat source unit.
  • the operation mode of the heat source unit is determined based on the operation mode assigned to the utilization unit.
  • the multi-room air conditioner having a heat source unit that can be switched to a plurality of operation modes having different silence levels is provided in a plurality of operation modes.
  • the demands of each room force are adjusted to enable a reasonable silent operation.
  • control device for a multi-room air conditioner according to the second aspect of the invention, it is possible to perform a more detailed silent operation that matches the situation.
  • control device for a multi-room air conditioner With the control device for a multi-room air conditioner according to the third invention, it is possible to collect and adjust the demands of each room force.
  • the heat source unit can be operated in a plurality of operation modes having different silent levels.
  • the heat source unit can be operated in a plurality of operation modes having different silent levels.
  • the demand for each room force can be more rationally adjusted.
  • control device for a multi-room air conditioner when selecting one operation mode from a plurality of operation modes, the demand for each room force can be adjusted more rationally.
  • control device for a multi-room air conditioner it is possible to prioritize usage units that give priority to requests from one usage unit over requests from other usage units.
  • the silent operation mode is selected when there is a usage unit that requires operation with priority given to its capacity even from only one usage unit. Can be prohibited and only the operation in the normal operation mode can be allowed.
  • control device for a multi-room air conditioner In the control device for a multi-room air conditioner according to the eleventh aspect of the present invention, it is possible to suppress the problem that the electrical components are not sufficiently cooled if the amount of frost formation in the heat source side heat exchanger is increased. 12
  • the operation mode is changed from a plurality of operation modes to one. When selecting, the demands of each room force are adjusted, and a reasonable silent operation is possible.
  • FIG. 1 is a diagram showing a state in which an air conditioner is installed in a house.
  • FIG. 2 is a diagram showing a configuration of a refrigerant circuit of an air conditioner.
  • FIG. 3 is a diagram showing a configuration of a heat source side control unit.
  • FIG. 4 is a diagram showing details of limitations on the upper limit value of the operating frequency of the compressor and the upper limit value of the rotation speed of the heat source side fan in the silent operation mode 3.
  • FIG. 5 is a flowchart showing processing for determining one operation mode adopted by the heat source unit among the four operation modes.
  • FIG. 6 is a flowchart showing processing for correcting the upper limit value of the rotation speed of the heat source side fan.
  • control device heat source side control unit 20
  • control method of a multi-room air conditioner air conditioner 1 according to an embodiment of the present invention will be described. To do.
  • Figure 1 shows the air conditioner 1 installed in the house 100.
  • the air conditioner 1 has a configuration in which a plurality of usage units 3 are connected in parallel to a heat source unit 2.
  • the plurality of usage units 3 are installed in a plurality of rooms R1, R2,..., Rn (n is an integer greater than or equal to 2) in the house 100, and the heat source unit 2 is installed in the house It is installed on the side of 100 buildings. That is, the air conditioner 1 is a multi-room air conditioner. It has become.
  • FIG. 2 shows the refrigerant circuit 10 of the air conditioner 1.
  • the refrigerant circuit 10 of the air conditioner 1 mainly includes a compressor 11, a four-way switching valve 12, a heat source side heat exchanger 13, a heat source side expansion valve 14, and a use side heat exchange 16 in this order. Yes, it forms a vapor compression refrigeration cycle.
  • the compressor 11, the four-way switching valve 12, the heat source side heat exchanger 13 and the heat source side expansion valve 14 are included in the heat source unit 2, and the use side heat exchange ⁇ 16 is included in the use unit 3. Yes.
  • the refrigerant circuit inside the heat source unit 2 and the refrigerant circuit inside the utilization unit 3 are connected by a gas refrigerant communication pipe 17a and a liquid refrigerant communication pipe 17b. Further, the heat source unit 2 is provided with an accumulator and other attached devices. Illustration is omitted here.
  • the refrigerant circuit inside the heat source unit 2 is provided with a gas side closing valve 18a and a liquid side closing valve 18b.
  • the gas side closing valve 18a is arranged on the four-way switching valve 12 side
  • the liquid side closing valve 18b is arranged on the heat source side expansion valve 14 side.
  • These shutoff valves 18a and 18b are opened after the heat source unit 2 and the utilization unit 3 are installed in the field, and the refrigerant communication pipes 17a and 17b are connected to the shutoff valves 18a and 18b, respectively.
  • the compressor 11 is a variable capacity inverter compressor, and the operating frequency of the motor Mc that drives the compressor 11 is controlled by an inverter 50 (see FIG. 3).
  • the heat source unit 2 is provided with a heat source side fan 19.
  • the heat source side fan 19 sucks outdoor air into the casing of the heat source unit 2 by its rotation, and sends the sucked air to the heat source side heat exchange to promote heat exchange in the heat source side heat exchange. Air is blown out of the casing of the heat source unit 2.
  • the heat source side fan 19 is driven by a motor Mf controlled by an inverter 51 (see FIG. 3).
  • an outside air temperature sensor 62 that detects the temperature of the outdoor air flowing into the heat source unit 2 (that is, the outside air temperature Ta) is attached in the casing of the heat source unit 2
  • An indoor temperature sensor 61 for detecting the temperature of the indoor air flowing into the use unit 3 (that is, the indoor temperature Tr) is attached.
  • a heat source side control unit 20 is provided in the casing of the heat source unit 2, which is useful.
  • a use side control unit 30 connected to the heat source side control unit 20 is provided in the casing of the unit 3 for use.
  • the heat source side control unit 20 is arranged in an electrical component box (not shown) arranged in the casing of the heat source unit 2.
  • the heat source side control unit 20 controls the electric devices 11, 12, 14, 19 and the like included in the heat source unit 2 while communicating with the use side control unit 30, and the use side control unit 30 is connected to the heat source side control unit 20 It controls the electrical equipment included in the usage unit 3 while communicating with the unit.
  • the four-way selector valve 12 is maintained in the state indicated by the solid line in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the heat source side heat exchanger 13 through the four-way switching valve 12, and is condensed by exchanging heat with outdoor air.
  • the refrigerant condensed and liquefied in the heat source side heat exchanger 13 passes through the heat source side expansion valve 14 and flows into each usage unit 3 through the liquid side refrigerant communication pipe 17b.
  • the refrigerant evaporates by exchanging heat with room air in the usage-side heat exchanger 16.
  • the indoor air cooled by the evaporation of the refrigerant is blown out into the room by a use side fan (not shown) to cool the room. Further, the refrigerant evaporated and vaporized in the use side heat exchange 16 returns to the heat source unit 2 through the gas side refrigerant communication pipe 17a and is sucked into the compressor 11.
  • the four-way selector valve 12 is maintained in the state indicated by the broken line in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the utilization side heat exchanger 16 of each utilization unit 3 through the four-way switching valve 12, and is condensed by exchanging heat with room air.
  • the indoor air heated by the condensation of the refrigerant is blown out into the room by the use side fan to heat the room.
  • the refrigerant condensed and liquidized in the use side heat exchange 16 passes through the heat source side expansion valve 14 through the liquid side refrigerant communication pipe 17b and returns to the heat source unit 2.
  • the refrigerant returned to the heat source unit 2 further evaporates by exchanging heat with outdoor air in the heat source side heat exchanger 13.
  • the refrigerant evaporated and evaporated in the heat source side heat exchanger 13 is sucked into the compressor 11 through the four-way switching valve 12.
  • the configuration of the heat source side control unit 20 will be described with reference to FIG.
  • the heat source side control unit 20 is a control circuit having a microcomputer 21 and a memory 25, and reads out and executes a program stored in the memory 25 on the microcomputer 21, thereby executing the compressor 11 included in the heat source unit 2. , Various electric devices such as the four-way switching valve 12, the heat source side expansion valve 14, and the heat source side fan 19 are controlled.
  • the heat source side control unit 20 can receive information on the outside temperature Ta detected by the outside temperature sensor 62 and also receives the room temperature Tr detected by the room temperature sensor 61 via the use side control unit 30. be able to. Further, the heat source side control unit 20 can also receive operation information in the usage unit 3 via the usage side control unit 30.
  • the driving information includes state information related to the driving state of each part of the use-side control unit 30, setting information related to driving settings input by the user via the remote controller 40, and the like.
  • the heat source side control unit 20 controls various electric devices 11, 12, 14, 19 and the like based on these pieces of information.
  • the heat source side control unit 20 controls the compressor 11 by controlling the motor Mc via the inverter 50 and controls the heat source side fan 19 by controlling the motor Mf via the inverter 51.
  • These inverters 50 and 51 are arranged in an electrical component box (not shown) in which the heat source side control unit 20 is arranged.
  • the heat source side control unit 20 is provided with a priority use unit setting unit 26 in the form of a dip switch.
  • the priority usage unit setting unit 26 accepts priority setting that gives priority to one usage unit 3 among all usage units 3 over other usage units 3. For example, if the user desires this priority setting, the user informs the contractor to that effect. Then, when the supplier in charge receives the request and operates the dip switch on the control circuit of the heat source unit 2 at the user's home, any one of the usage units 3 can be prioritized.
  • the heat source unit 2 has a silent operation mode 3 with a quieter level than the normal operation mode.
  • ⁇ ⁇ is prepared.
  • the silent operation mode ⁇ has a higher silent level than the silent operation mode I
  • the silent operation mode III has a higher noise level than the silent operation mode II.
  • the silent operation modes ⁇ to ⁇ there is a restriction on the upper limit value Lc of the operating frequency of the compressor 11 and the upper limit value Lf of the rotation speed of the heat source side fan 19, so that the compressor 11 and the heat source side fan 19 Driving noise is suppressed.
  • Figure 4 shows the details of the upper limit values Lc and Lf in these three silent operation modes ⁇ ⁇ to ⁇ . That is, in the silent operation mode ⁇ , the upper limit value Lc of the operating frequency of the compressor 11 and the upper limit value Lf of the rotation speed of the heat source side fan 19 are set to be rated. In the silent operation mode II, the upper limit value Lc of the operating frequency of the compressor 11 and the upper limit value Lf of the rotation speed of the heat source side fan 19 are each a predetermined amount (in this embodiment, 3db ( It is set to be smaller by the equivalent of decibel).
  • the upper limit value Lc of the operating frequency of the compressor 11 and the upper limit value Lf of the rotational speed of the heat source side fan 19 are each smaller than the normal operation mode by a predetermined amount (in this embodiment, equivalent to 5 db). It is set as follows. As a result, in the quiet operation mode II, the operation sound can be suppressed by about 3 dB on average than in the normal operation mode, and in the silent operation mode ⁇ ⁇ , the operation sound can be reduced by about average than in the normal operation mode. 5db can be suppressed. In quiet operation mode I, the operation noise is suppressed more than in the normal operation mode, and the air conditioning capacity of the air conditioner 1 is kept to a minimum! / Speak.
  • the heat source unit 2 operates in one of the normal operation mode 1 and the silent operation mode 3 3 to ⁇ , which is one of the four operation modes. Of these four operation modes, the heat source side control unit 20 performs the process of determining one operation mode adopted by the heat source unit 2.
  • the process according to the flowchart of FIG. 5 is performed when power is first applied to any of the utilization units 3 connected to the heat source unit 2 (that is, when the operation of the air conditioner 1 is started), or From the power of all the usage units 3 in operation, This is started when a signal for selecting one of the operation modes (hereinafter referred to as an operation mode selection signal) is sent to the heat source side control unit 20.
  • the operation mode selection signal is “1” when the silent operation mode I is selected by the user, and the signal “2” when the silent operation mode ⁇ is selected. When selected, the signal is “3”.
  • the remote controller 40 operates as an operation mode selection unit 41 that allows the user to select one of the four operation modes via the use unit 3. The user must select one of the four operation modes from the four operation modes via the remote control 40 installed in the room Ri at any time while the unit 3 in the room Ri is in operation. Can do.
  • step S51 the heat source side control unit 20 operates as the operation mode assignment unit 22.
  • the operation mode assigning unit 22 assigns, for each of all the usage units 3 in operation among all the usage units 3 installed in all the rooms R1, 2, ⁇ ' ⁇ , ⁇ 3 ⁇ 4 ⁇ in the house 100, the usage unit. Assign one of the four operation modes to 3 to 3. At this time, the room Ri use unit 3 to which the operation mode selection signal has been sent is assigned the operation mode indicated by the operation mode selection signal, and the room Ri use unit to which the operation mode selection signal has been sent has been assigned. 3 is assigned a normal operation mode.
  • step S52 the heat source side control unit 20 operates as the operation mode setting unit 23.
  • the operation mode setting unit 23 determines whether or not the use unit 3 for which priority setting has been made via the priority use unit setting unit 26 is in operation. When it is determined that this condition is satisfied, the operation mode assigned to the use unit 3 for which priority is set is set as the operation mode adopted by the heat source unit 2, and the flow ends. On the other hand, if it is determined that this condition is not satisfied, the flow proceeds to step S53.
  • step S53 the operation mode setting unit 23 determines whether or not there is a usage unit 3 for which capability priority is set among all the usage units 3 in operation. If it is determined that this condition is satisfied, the normal operation mode is adopted in the heat source unit 2. And the flow is finished. On the other hand, if it is determined that this condition is not satisfied, the flow proceeds to step S54.
  • the capability priority setting is a setting in which the operation in the silent operation modes i to m is prohibited and only the operation in the normal operation mode is permitted, and details thereof will be described later.
  • step S54 the operation mode setting unit 23 determines whether or not the silent operation mode ⁇ is assigned to all operating units 3 that are in operation. If it is determined that this condition is satisfied, the silent operation mode ⁇ ⁇ is set to the operation mode adopted by the heat source unit 2, and the flow ends. On the other hand, if it is determined that this condition is not satisfied, the flow proceeds to step S55.
  • step S55 the operation mode setting unit 23 determines whether or not the silent operation mode ⁇ is assigned to all the operating use units 3 during operation. If it is determined that this condition is satisfied, the silent operation mode ⁇ is set as the operation mode adopted by the heat source unit 2, and the flow ends. On the other hand, if it is determined that this condition is not satisfied, the flow proceeds to step S56.
  • step S56 the operation mode setting unit 23 is assigned the silent operation mode ⁇ to at least one of the operating units 3 being operated, and the silent operation mode ⁇ ⁇ ⁇ is assigned to the operating unit 3 being operated. It is determined whether the power required by the room Ri in which the remaining usage units 3 are installed is less than a predetermined value. If it is determined that this condition is satisfied, the silent operation mode II is set to the operation mode adopted by the heat source unit 2, and the flow ends. On the other hand, if it is determined that this condition is not satisfied, the flow proceeds to step S57.
  • the capacity required by the room Ri is the difference between the set temperature set for the use unit 3 installed in the room Ri and the current room temperature Tr. In calculating this capability, the indoor temperature Tr detected by the outdoor temperature sensor 61 is used.
  • step S57 the operation mode setting unit 23 determines whether any one of the silent operation modes i to m is assigned to at least one of the operating usage units 3. If it is determined that this condition is satisfied, the silent operation mode I is set to the operation mode adopted by the heat source unit 2, and the flow ends. On the other hand, it is judged that this condition is not satisfied. If it is cut off, the normal operation mode is changed to the operation mode adopted by the heat source unit 2, and the flow ends.
  • the heat source side control unit 20 repeats the processing according to the flowchart of FIG. 6 at predetermined time intervals while the air conditioner 1 is in operation. At this time, the heat source side control unit 20 operates as the fan rotation speed correction unit 24. Also, the process according to the flowchart of FIG. 6 can be executed by the heat source side control unit 20 in parallel with the process according to the flowchart of FIG.
  • step S61 the fan rotation speed correction unit 24 determines whether or not the heat source unit 2 is operating in the silent operation mode II or III. If it is determined that the vehicle is operating, the flow proceeds to step S62. If it is determined that the vehicle is not operating, the flow ends.
  • step S62 the fan rotation speed correction unit 24 receives information related to the outside air temperature Ta detected by the outside air temperature sensor 62.
  • step S63 the fan rotation speed correction unit 24 determines whether the heat source unit is in the heating operation or the cooling operation. If it is determined that the heat source unit is in the heating operation, the flow is corrected. Proceeds to step S64, and if it is determined that the cooling operation is being performed, the flow proceeds to step S65.
  • step S64 the fan rotation speed correction unit 24 determines that the current outside air temperature Ta is based on the information on the outside air temperature Ta received in step S62 from the first temperature (4 ° C in this embodiment). It is judged whether it is low. If it is determined that the value is low, the upper limit value Lf of the rotation speed of the heat source side fan 19 is corrected to be the same value as in the normal operation mode, and the flow ends.
  • the silent operation mode ⁇ or ⁇ is adopted during heating operation under low outside air conditions, the number of frost formation in the heat source side heat exchange 13 is reduced because the rotation speed of the heat source side fan 19 is reduced. Although this may increase and the heating capacity may decrease, this step S64 suppresses the occurrence of such problems.
  • step S65 the fan speed correction unit 24 determines that the current outside air temperature Ta is higher than the first temperature based on the information about the outside air temperature ⁇ a received in step S62 (in this embodiment, 37 Judge whether it is higher than ° C). And if it ’s judged high, Corrects the upper limit value Lf of the rotation speed of the heat source side fan 19 to the same value as in the normal operation mode, and the flow ends.
  • the silent operation mode ⁇ or III is adopted during cooling operation under high outside air conditions, the number of rotations of the heat source side fan 19 is reduced, so the inside of the electrical component box in the heat source unit 2 Force that may cause the problem that the electrical components of the product are not sufficiently cooled
  • This step S65 suppresses the occurrence of such problems.
  • Silent operation mode [ ⁇ : When QI is adopted, the air conditioning capacity of the air conditioner 1 will be reduced somewhat, so the user is prohibited from operating in the silent operation modes i to m and in normal operation mode. The ability priority setting that allows only driving can be performed. The user
  • the remote controller 40 When performing this ability priority setting, input that the ability priority setting is to be made to the remote controller 40 of the unit 30 used in the room Ri where the setting is to be made. At this time, the remote controller 40 operates as the capability priority setting unit 42. Then, the capability priority setting unit 42 immediately sends a signal indicating that the capability priority setting is performed to the heat source side control unit 20. On the other hand, the heat source side control unit 20 operates as the operation mode setting unit 23 when receiving the signal. At this time, the operation mode setting unit 23 restores the use unit 3 for which capacity priority has been set and stores it in the memory 25. Then, by referring to this list stored in the memory 25, the operation mode setting unit 23 determines whether or not there is a use queue 3 for which priority setting has been made in step S53 described above.
  • the operation mode setting unit 23 receives a signal indicating that the capacity priority setting is to be performed, it immediately determines whether or not the heat source unit 2 is operating in any of the silent operation modes ⁇ to ⁇ . And silent operation mode I
  • the current operation mode is switched to the normal operation mode.
  • this capability priority setting can be canceled.
  • the user cancels the setting, and inputs to cancel the capability priority setting to the capability priority setting unit 42 of the usage unit 30 installed in the room Ri.
  • the capability priority setting unit 42 immediately sends a signal indicating that the capability priority setting is canceled to the heat source side control unit 20.
  • the operation mode setting unit 23 deletes the list of the used units 3 for which the capability priority setting is stored in the memory 25 and deletes the used unit 3, and performs the same process as the process shown in the flowchart of FIG. Therefore, the optimum operation mode is examined under the current conditions.
  • a multi-room air conditioner compared to a single-type air conditioner, multiple usage units are connected to one heat source unit, so the operating frequency of the compressor and the rotation of the heat source side fan The number increases and the driving noise tends to be excessive. However, if the upper limit of the operating frequency of the compressor or the upper limit of the rotation speed of the heat source side fan is excessively limited to prevent noise, the performance as an air conditioner may be degraded. .
  • the requests of the users of the rooms Ri are collected by the heat source side control unit 20 via the remote controller 40, and the heat source side control unit As these demands are adjusted in 20th, it is possible to achieve two purposes that have a trade-off relationship between ability priority and quietness priority.
  • the signal “1” is displayed.
  • the signal “2” is displayed.
  • a signal “3” is generated, and this generated signal is immediately sent from the utilization unit 3 to the heat source unit 2.
  • three types of signals representing these requests exchanged between the utilization unit 3 side and the heat source unit 2 side suffice for the silent operation mode, and these three types are equivalent to the normal operation mode.
  • the one operation mode to be set is determined. Therefore, the calculation load of the heat source side control unit 20 is too small.
  • the installation location of the air conditioner 1 is not limited to the house 100, but may be another form of building where there are multiple spaces to be air-conditioned.
  • the compressor 11 includes an inverter compressor and a constant capacity compressor that is controlled on and off. Any number of them may be combined.
  • the upper limit value Lf of the rotation speed of the heat source side fan 19 may be corrected so as to increase by a predetermined amount or a predetermined rate rather than the same value as in the normal operation mode,
  • the silence level may be lowered by one level.
  • Information regarding the predetermined amount or the predetermined rate used at this time may be stored in the memory 25 in advance, for example. The same applies when the upper limit Lf is corrected in step S65.
  • the silent operation mode 3 shown in detail in Fig. 4 ⁇ ⁇ ⁇ is as follows.
  • the upper limit value Lc of the operating frequency of the compressor 11 and the upper limit value Lf of the rotation speed of the heat source side fan 19 are both set to the rated values.
  • the upper limit values Lc and Lf are set lower by a predetermined rate (for example, 10% to 30%) than in the silent operation mode I.
  • the upper limit values Lc and Lf are set lower by a predetermined rate (for example, 10% to 30%) than the silent operation mode ⁇ ⁇ ⁇ ⁇ .
  • the upper limit values Lc, Lf may be set according to the total capacity of the operating unit 30 during operation.
  • the upper limit values Lc, Lf in the silent operation mode ⁇ , ⁇ The value of the predetermined rate, which is a parameter for setting the value, may be changed according to the total capacity of the operating use 30 during operation.
  • the present invention requires each room force when selecting one operation mode from the plurality of operation modes. Is useful as a control device and control method for a multi-room air conditioner having a heat source unit that can be switched to a plurality of operation modes with different silent levels. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)

Description

明 細 書
多室型空気調和機の制御装置及び制御方法
技術分野
[0001] 本発明は、静音レベルの異なる複数の運転モードに切り替え可能な熱源ユニットを 有する多室型空気調和機の制御装置及び制御方法に関する。
背景技術
[0002] 通常、空気調和機の熱源ユニットには、圧縮機やファン等の運転音の比較的大き な電気機器が据え付けられており、こうした運転音が騒音の原因となることがある。そ こで、特許文献 1に示される熱源ユニットでは、通常運転モードに加えて、圧縮機の 運転周波数やファンの回転数の上限値に適当な制限を設けることにより静音運転を 達成する静音運転モードが用意されている。
特許文献 1:特開平 7— 103546号公報
発明の開示
発明が解決しょうとする課題
[0003] ところで、熱源ユニットが窓の直ぐ外側に設置されている部屋と熱源ユニットから比 較的離れた位置に存在する部屋とでは、熱源ユニットの運転によりそれらの部屋にも たらされる騒音の程度に差異が生じる。このように、同じ熱源ユニットから受けるもの であってもその影響は部屋ごとに異なり、また、個人差もあるため、熱源ユニットを通 常運転モードで運転させたいか静音運転モードで運転させたいか、或いは、静音運 転モードに多段階の静音レベルが設けられている場合にはどの静音レベルで運転さ せたいかといつた要望は、部屋ごとに異なるものとなることが想定される。
し力しながら、多室型空気調和機の場合にあっては、 1の熱源ユニットに対して空 調運転の対象となる部屋が複数存在するため、熱源ユニットで採用される運転モード の設定を部屋ごとに可能とすることができない。特許文献 1に開示されるマルチタイプ の空気調和機においても、静音運転モードの採用の可否は運転時間帯に応じて強 制的に決定されるようになっており、部屋ごとの要望が考慮される構成とはなってい ない。 [0004] 本発明の課題は、静音レベルの異なる複数の運転モードに切り替え可能な熱源ュ ニットを有する多室型空気調和機において、複数の運転モードから 1の運転モードを 選択するに際して各部屋力 の要望を調整することにより、合理的な静音運転を可 會 こすることにある。
課題を解決するための手段
[0005] 第 1発明に係る多室型空気調和機の制御装置は、運転モード割り当て部と、運転 モード設定部とを備える。多室型空気調和機は、熱源ユニットと、熱源ユニットに冷媒 連絡配管を介して接続される複数の利用ユニットとを有する。熱源ユニットは、静音レ ベルの異なる複数の運転モードに切り替え可能である。複数の利用ユニットは、複数 の部屋に分散して設置される。運転モード割り当て部は、複数の利用ユニットのうち 運転中の利用ユニットのそれぞれに複数の運転モードのうち 1の運転モードを割り当 てる。運転モード設定部は、運転モード割り当て部により運転中の利用ユニットのそ れぞれに割り当てられた運転モードに基づいて、熱源ユニットを複数の運転モードの うち 1の運転モードに設定する。運転モード設定部は、第 1条件下では、熱源ユニット を所定の運転モードに設定する。第 1条件下とは、運転中の利用ユニットの全てに複 数の運転モードのうち所定の運転モードが割り当てられての、る状態を 、う。
[0006] ここでは、多室型空気調和機の熱源ユニットに、静音レベルの異なる複数の運転モ ードが用意されている。そして、多室型空気調和機の運転時においてこれら複数の 運転モードから具体的に 1の運転モードが選択される際には、まず、運転中の全ての 利用ユニットのそれぞれに複数の運転モードのうち 1の運転モードが割り当てられる。 続、て、このようにして利用ユニットのそれぞれに運転モードが割り当てられた結果、 運転中の全ての利用ユニットに同じ所定の運転モードが割り当てられた状態となって いる場合には、その所定の運転モードが熱源ユニットの運転モードとなる。このように 、ここでは、熱源ユニットの運転モードが、利用ユニットに割り当てられた運転モード に基づいて決定されることになる。従って、静音レベルの異なる複数の運転モードに 切り替え可能な熱源ユニットを有する多室型空気調和機において、複数の運転モー ドから 1の運転モードを選択するに際して各部屋力もの要望が調整されて、合理的な 静音運転が可能となって 、る。 [0007] 第 2発明に係る多室型空気調和機の制御装置は、第 1発明に係る多室型空気調 和機の制御装置であって、複数の運転モードには、通常運転モードと、通常運転モ ードよりも静音レベルが段階的に高くなる複数の静音運転モードとが含まれる。
ここでは、多室型空気調和機の熱源ユニットに、通常運転モードと多段階の静音運 転モードとが用意されている。従って、状況に見合ったより細やかな静音運転を行う ことが可能となる。
[0008] 第 3発明に係る多室型空気調和機の制御装置は、第 1発明又は第 2発明に係る多 室型空気調和機の制御装置であって、多室型空気調和機は、運転モード選択部を さらに有する。運転モード選択部は、利用者に運転中の利用ユニットを介して複数の 運転モードのうち 1の運転モードを選択させる。運転モード割り当て部は、運転モード 選択部を介して利用者により選択された運転モードに基づいて、運転中の利用ュニ ットのそれぞれに複数の運転モードのうち 1の運転モードを割り当てる。
ここでは、運転中の全ての利用ユニットを介して、その利用ユニットが設置される部 屋の利用者が運転モードを要望することができるようになつている。従って、各部屋か らの要望を収集して調整することが可能である。
[0009] 第 4発明に係る多室型空気調和機の制御装置は、第 2発明に係る多室型空気調 和機の制御装置であって、熱源ユニットは、熱交^^と、熱源側ファンとを有する。熱 源側ファンは、熱交換器に空気を送る。熱源側ファンの回転数には、複数の運転モ ードに応じて異なる制限が設定される。
ここでは、運転モードに応じて熱源側ファンの運転周波数に異なる制限が設定され る。これにより、熱源ユニットを静音レベルの異なる複数の運転モードで動作させるこ とがでさる。
[0010] 第 5発明に係る多室型空気調和機の制御装置は、第 2発明又は第 4発明に係る多 室型空気調和機の制御装置であって、熱源ユニットは、圧縮機を有する。圧縮機の 運転周波数には、複数の運転モードに応じて異なる制限が設定される。
ここでは、運転モードに応じて圧縮機の運転周波数に異なる制限が設定される。こ れにより、熱源ユニットを静音レベルの異なる複数の運転モードで動作させることがで きる。 [0011] 第 6発明に係る多室型空気調和機の制御装置は、第 1発明力も第 5発明のいずれ 力に係る多室型空気調和機の制御装置であって、運転モード設定部は、第 2条件下 では、熱源ユニットを所定の運転モードに設定する。第 2条件下とは、運転中の利用 ユニットの少なくとも 1つに所定の運転モードが割り当てられており、かつ、運転中の 利用ユニットのうち残りの利用ユニットが設置された部屋の要求する能力が全て所定 値よりも小さい状態をいう。
ここでは、運転中の利用ユニットの一部に所定の運転モードが割り当てられ、残りの 運転中の利用ユニットに別の運転モードが割り当てられた場合においても、その別の 運転モードが割り当てられた利用ユニットが設置されている全ての部屋からの要求能 力が十分に小さいと判断される場合には、その所定の運転モードが熱源ユニットの運 転モードとされる。すなわち、運転中の全ての利用ユニットにおける要望が同じとなら ない場合であっても、異なる要望を出している利用ユニットの要求能力が十分に小さ V、と判断される場合には、静音レベルの高 、運転モードを割り当てたとしてもその部 屋が十分に空調されな 、と 、う問題が生じにく!、と考えられるためである。このように 、複数の運転モードから 1の運転モードを選択するに際して、各部屋からの要望をよ り合理的に調整することができる。
[0012] 第 7発明に係る多室型空気調和機の制御装置は、第 2発明、第 4発明又は第 5発 明に係る多室型空気調和機の制御装置であって、運転モード設定部は、第 3条件下 では、熱源ユニットを所定の静音運転モードよりも静音レベルの低 、運転モードに設 定しない。第 3条件下とは、運転中の利用ユニットの少なくとも 1つに、複数の静音運 転モードのうち所定の静音運転モード又は所定の静音運転モードよりも静音レベル の高 ヽ静音運転モードが割り当てられて ヽる状態を 、う。
ここでは、たとえ 1の利用ユニットの力もであっても、所定の静音レベル以上の静音 運転モードが要望された場合には、その所定の静音レベルよりも低 、運転モードが 熱源ユニットの運転モードとされることがない。これは、静音レベルがある一定のレべ ル以下の静音運転モードであれば、静音運転モードが実行されたとしても ヽずれか の部屋が十分に空調されな ヽと 、う問題が生じにく 、と考えられるためである。このよ うに、複数の運転モードから 1の運転モードを選択するに際して、各部屋からの要望 をより合理的に調整することができる。
[0013] 第 8発明に係る多室型空気調和機の制御装置は、第 1発明力も第 5発明のいずれ 力に係る多室型空気調和機の制御装置であって、多室型空気調和機は、優先利用 ユニット設定部をさらに有する。優先利用ユニット設定部は、複数の利用ユニットのい ずれか 1つを優先する設定を受け付ける。運転モード設定部は、第 4条件下では、熱 源ユニットを優先の設定がされた利用ユニットに割り当てられた運転モードに設定す る。第 4条件下とは、優先利用ユニット設定部を介して優先の設定がされた利用ュ- ットが運転中である状態をいう。
ここでは、ある利用ユニットからの要望を他の利用ユニットからの要望よりも優先して 加味する利用ユニットの優先設定が可能となっている。
[0014] 第 9発明に係る多室型空気調和機の制御装置は、第 2発明、第 4発明又は第 5発 明に係る多室型空気調和機の制御装置であって、多室型空気調和機は、能力優先 設定部をさらに有する。能力優先設定部は、複数の利用ユニットの少なくとも 1つに 能力の確保を優先させる設定を受け付ける。運転モード設定部は、第 5条件下では 、熱源ユニットを通常運転モードに設定する。第 5条件下とは、能力優先設定部を介 して優先の設定がされた利用ユニットが運転中である状態をいう。
ここでは、たとえ 1の利用ユニットのみ力もであっても、能力を優先した運転を要望 する利用ユニットが存在する場合には、静音運転モードを禁止して通常運転モード での運転のみを許容することができる。
[0015] 第 10発明に係る多室型空気調和機の制御装置は、第 4発明に係る多室型空気調 和機の制御装置であって、ファン回転数補正部をさらに備える。多室型空気調和機 は、外気温度取得部を有する。外気温度取得部は、外気温度を取得する。ファン回 転数補正部は、外気温度取得部により取得された外気温度が所定の条件を満たす 場合、静音運転モードで運転中の熱源ユニットの熱源側ファンの回転数を増加させ るように補正する。
一般的に、外気温度条件によっては、静音運転モードによる熱源側ファンの回転 数の低下により不具合力もらされることがある。ここでは、外気温度が考慮され、必要 な場合には熱源側ファンの回転数を増加するような補正がなされるようになつている 。このように、静音運転モードの導入に伴う問題が配慮されており、より快適な静音運 転が提供されることになる。
[0016] 第 11発明に係る多室型空気調和機の制御装置は、第 10発明に係る多室型空気 調和機の制御装置であって、ファン回転数補正部は、外気温度取得部により取得さ れた外気温度が暖房運転時において第 1温度よりも低いか、又は、冷房運転時にお いて第 1温度よりも高い第 2温度よりも高い場合に、熱源側ファンの回転数を増加さ せる。
一般的に、低外気条件下における暖房運転中にある一定以上の静音レベルの静 音運転モードが実行された場合には、熱源側ファンの回転数が低減されるため熱源 側熱交 における着霜量が増加し、暖房能力が低下するという問題が生じること がある。また、高外気条件下における冷房運転中にある一定以上の静音レベルの静 音運転モードが実行された場合には、熱源側ファンの回転数が低減されるため熱源 ユニット内の電装品箱内の電装品が十分に冷却されないという問題が生じることがあ る。ここでは、静音運転モードの実行中において、外気温度が暖房運転時において は低くなりすぎた場合に、冷房運転時には高くなり過ぎた場合に、熱源側ファンの回 転数を増加させるような補正がなされる。このため、熱源側熱交^^における着霜量 の増加ゃ電装品が十分に冷却されないという問題を抑制することが可能である。
[0017] 第 12発明に係る多室型空気調和機の制御方法は、多室型空気調和機の制御方 法であって、運転モード割り当てステップと、運転モード設定ステップとを備える。多 室型空気調和機は、熱源ユニットと、熱源ユニットに冷媒連絡配管を介して接続され る複数の利用ユニットとを有する。熱源ユニットは、静音レベルの異なる複数の運転 モードに切り替え可能である。複数の利用ユニットは、複数の部屋に分散して設置さ れる。運転モード割り当てステップでは、複数の利用ユニットのうち運転中の利用ュ ニットのそれぞれに複数の運転モードのうち 1の運転モードが割り当てられる。運転モ ード設定ステップでは、運転中の利用ユニットのそれぞれに割り当てられた運転モー ドに基づいて、熱源ユニットが複数の運転モードのうち 1の運転モードに設定される。 そして、運転モード設定ステップでは、第 1条件下では、熱源ユニットがその同じ 1の 運転モードに設定される。第 1条件下とは、運転中の利用ユニットの全てに複数の運 転モードのうち同じ 1の運転モードが割り当てられて!/、る状態を 、う。
[0018] ここでは、多室型空気調和機の熱源ユニットに、静音レベルの異なる複数の運転モ ードが用意されている。そして、多室型空気調和機の運転時においてこれら複数の 運転モードから具体的に 1の運転モードが選択される際には、まず、運転中の全ての 利用ユニットのそれぞれに複数の運転モードのうち 1の運転モードが割り当てられる。 続、て、このようにして利用ユニットのそれぞれに運転モードが割り当てられた結果、 運転中の全ての利用ユニットに同じ所定の運転モードが割り当てられた状態となって いる場合には、その所定の運転モードが熱源ユニットの運転モードとなる。このように 、ここでは、熱源ユニットの運転モードが、利用ユニットに割り当てられた運転モード に基づいて決定されることになる。従って、静音レベルの異なる複数の運転モードに 切り替え可能な熱源ユニットを有する多室型空気調和機において、複数の運転モー ドから 1の運転モードを選択するに際して各部屋力もの要望が調整されて、合理的な 静音運転が可能となって 、る。 発明の効果
[0019] 第 1発明に係る多室型空気調和機の制御装置では、静音レベルの異なる複数の運 転モードに切り替え可能な熱源ユニットを有する多室型空気調和機において、複数 の運転モードから 1の運転モードを選択するに際して各部屋力もの要望が調整され て、合理的な静音運転が可能となっている。
第 2発明に係る多室型空気調和機の制御装置では、状況に見合ったより細やかな 静音運転を行うことが可能となる。
第 3発明に係る多室型空気調和機の制御装置では、各部屋力 の要望を収集して 調整することが可能である。
第 4発明に係る多室型空気調和機の制御装置では、熱源ユニットを静音レベルの 異なる複数の運転モードで動作させることができる。
[0020] 第 5発明に係る多室型空気調和機の制御装置では、熱源ユニットを静音レベルの 異なる複数の運転モードで動作させることができる。
第 6発明に係る多室型空気調和機の制御装置では、複数の運転モードから 1の運 転モードを選択するに際して、各部屋力 の要望をより合理的に調整することができ る。
第 7発明に係る多室型空気調和機の制御装置では、複数の運転モードから 1の運 転モードを選択するに際して、各部屋力 の要望をより合理的に調整することができ る。
第 8発明に係る多室型空気調和機の制御装置では、ある利用ユニットからの要望を 他の利用ユニットからの要望よりも優先して加味する利用ユニットの優先設定が可能 となっている。
第 9発明に係る多室型空気調和機の制御装置では、たとえ 1の利用ユニットのみか らであっても、能力を優先した運転を要望する利用ユニットが存在する場合には、静 音運転モードを禁止して通常運転モードでの運転のみを許容することができる。
[0021] 第 10発明に係る多室型空気調和機の制御装置では、静音運転モードの導入に伴 う問題が配慮されており、より快適な静音運転が提供されることになる。
第 11発明に係る多室型空気調和機の制御装置では、熱源側熱交換器における着 霜量の増加ゃ電装品が十分に冷却されな 、と 、う問題を抑制することが可能である 第 12発明に係る多室型空気調和機の制御方法では、静音レベルの異なる複数の 運転モードに切り替え可能な熱源ユニットを有する多室型空気調和機において、複 数の運転モードから 1の運転モードを選択するに際して各部屋力もの要望が調整さ れて、合理的な静音運転が可能となっている。
図面の簡単な説明
[0022] [図 1]空気調和機が住宅に設置された様子を示す図。
[図 2]空気調和機の冷媒回路の構成を示す図。
[図 3]熱源側制御部の構成を示す図。
[図 4]3の静音運転モードにおける圧縮機の運転周波数の上限値及び熱源側ファン の回転数の上限値の制限の詳細を示す図。
[図 5]4の運転モードのうち熱源ユニットで採用される 1の運転モードを決定する処理 を示すフローチャート。
[図 6]熱源側ファンの回転数の上限値の補正する処理を示すフローチャート。 符号の説明
[0023] 1 空気調和機
2 熱源ユニット
3 利用ユニット
11 圧縮機
13 熱源側熱交換器
17a ガス側冷媒連絡配管
17b 液側冷媒連絡配管
19 熱源側ファン
20 熱源側制御部
22 運転モード割り当て部
23 運転モード設定部
24 ファン回転数補正部
26 優先利用ユニット設定部
41 運転モード選択部
42 能力優先設定部
62 外気温度センサ
Rl, R2- - - , Rn 部屋
発明を実施するための最良の形態
[0024] 以下、図面を参照して、本発明の一実施形態に係る多室型空気調和機 (空気調和 機 1)の制御装置 (熱源側制御部 20)及び制御方法につ!、て説明する。
<空気調和機 >
(1)全体構成
図 1に、空気調和機 1が住宅 100に設置された様子を示す。この空気調和機 1は、 1の熱源ユニット 2に対して複数の利用ユニット 3が並列に接続された構成となってい る。これら複数の利用ユニット 3は、住宅 100内の互いに仕切られた複数の部屋 R1, R2, · · · , Rn(nは、 2以上の整数)に分散して設置され、熱源ユニット 2は、住宅 100 の建物の脇等に設置されている。すなわち、空気調和機 1は、多室型空気調和機と なっている。
[0025] 図 2に、空気調和機 1の冷媒回路 10を示す。空気調和機 1の冷媒回路 10は、主と して、圧縮機 11、四路切換弁 12、熱源側熱交換器 13、熱源側膨張弁 14、利用側 熱交 16が順に接続されたものであり、蒸気圧縮式の冷凍サイクルを形成してい る。
圧縮機 11、四路切換弁 12、熱源側熱交換器 13及び熱源側膨張弁 14は、熱源ュ ニット 2に含まれており、利用側熱交^^ 16は、利用ユニット 3に含まれている。また、 熱源ユニット 2の内部の冷媒回路と利用ユニット 3の内部の冷媒回路とは、ガス冷媒 連絡配管 17a及び液冷媒連絡配管 17bにより連結されている。また、熱源ユニット 2 には、アキュムレータやその他の付属機器も設けられている力 ここでは図示を省略 している。
熱源ユニット 2の内部の冷媒回路には、ガス側閉鎖弁 18aと液側閉鎖弁 18bとが設 けられている。ガス側閉鎖弁 18aは、四路切換弁 12側に配置されており、液側閉鎖 弁 18bは、熱源側膨張弁 14側に配置されている。これらの閉鎖弁 18a, 18bは、熱 源ユニット 2及び利用ユニット 3が現地に設置され、冷媒連絡配管 17a, 17bがそれぞ れ閉鎖弁 18a, 18bに接続された後に開状態とされる。
[0026] 圧縮機 11は、容量可変のインバータ圧縮機であって、圧縮機 11を駆動するモータ Mcの運転周波数は、インバータ 50 (図 3参照)により制御されるようになっている。 熱源ユニット 2には、熱源側ファン 19が設けられている。熱源側ファン 19は、その回 転により、熱源ユニット 2のケーシング内に室外空気を吸い込み、吸い込んだ空気を 熱源側熱交 に送ることにより熱源側熱交 における熱交換を促進させ 、熱交換後の空気を熱源ユニット 2のケーシング外へと吹き出させる。この熱源側ファ ン 19は、インバータ 51 (図 3参照)により制御されるモータ Mfにより駆動される。
また、熱源ユニット 2のケーシング内には、熱源ユニット 2内に流入する室外空気の 温度 (すなわち、外気温度 Ta)を検出する外気温度センサ 62が取り付けられており、 利用ユニット 3のケーシング内には、利用ユニット 3内に流入する室内空気の温度 (す なわち、室内温度 Tr)を検出する室内温度センサ 61が取り付けられている。
[0027] さらに、熱源ユニット 2のケーシング内には、熱源側制御部 20が設けられており、利 用ユニット 3のケーシング内には、熱源側制御部 20に接続された利用側制御部 30が 設けられている。熱源側制御部 20は、熱源ユニット 2のケーシング内に配置される電 装品箱(図示せず)内に配置されている。熱源側制御部 20は、利用側制御部 30と通 信しつつ、熱源ユニット 2に含まれる電気機器 11, 12, 14, 19等を制御し、利用側 制御部 30は、熱源側制御部 20と通信しつつ、利用ユニット 3に含まれる電気機器を 制御する。また、利用側制御部 30は、各部屋 Ri (i= l, 2, · · · , n)の利用者がその 部屋 Riの利用ユニット 3を個別に操作するためのリモコン 40と通信することが可能と なっている。
(2)運転動作
次に、この空気調和機 1の運転動作について説明する。
まず、冷房運転時は、四路切換弁 12が図 2において実線で示す状態に保持される 。圧縮機 11から吐出された高温高圧のガス冷媒は、四路切換弁 12を介して熱源側 熱交換器 13に流入し、室外空気と熱交換して凝縮する。熱源側熱交換器 13におい て凝縮して液化した冷媒は、熱源側膨張弁 14を通過し、液側冷媒連絡配管 17bを 通って各利用ユニット 3に流入する。利用ユニット 3において、冷媒は、利用側熱交換 器 16で室内空気と熱交換して蒸発する。そして、冷媒の蒸発によって冷却された室 内空気は、図示しない利用側ファンによって室内へと吹き出され、室内を冷房する。 また、利用側熱交翻 16において蒸発して気化した冷媒は、ガス側冷媒連絡配管 1 7aを通って熱源ユニット 2に戻り、圧縮機 11に吸入される。
一方、暖房運転時は、四路切換弁 12が図 2において破線で示す状態に保持され る。圧縮機 11から吐出された高温高圧のガス冷媒は、四路切換弁 12を介して各利 用ユニット 3の利用側熱交換器 16に流入し、室内空気と熱交換して凝縮する。冷媒 の凝縮によって加熱された室内空気は、利用側ファンによって室内へと吹き出され、 室内を暖房する。利用側熱交翻 16において凝縮して液ィ匕した冷媒は、液側冷媒 連絡配管 17bを通って熱源側膨張弁 14を通過し、熱源ユニット 2に戻る。熱源ュ-ッ ト 2に戻った冷媒は、さらに熱源側熱交 13で室外空気と熱交換して蒸発する。 そして、熱源側熱交換器 13において蒸発して気化した冷媒は、四路切換弁 12を介 して圧縮機 11に吸入される。 [0029] <熱源側制御部 >
(1)全体構成
図 3を参照して、熱源側制御部 20の構成について説明する。
熱源側制御部 20は、マイクロコンピュータ 21及びメモリ 25を有する制御回路であり 、メモリ 25に記憶されているプログラムをマイクロコンピュータ 21上に読み出して実行 することにより、熱源ユニット 2に含まれる圧縮機 11、四路切換弁 12、熱源側膨張弁 14及び熱源側ファン 19等の各種の電気機器を制御する。
熱源側制御部 20は、外気温度センサ 62において検出された外気温度 Taに関す る情報を受け取ることができるとともに、利用側制御部 30を介して室内温度センサ 61 において検出された室内温度 Trを受け取ることができる。また、熱源側制御部 20は 、利用側制御部 30を介して利用ユニット 3における運転情報も受け取ることができる。 なお、ここでいう運転情報には、利用側制御部 30の各部の運転状態に関する状態 情報やリモコン 40を介して利用者力 入力された運転設定に関する設定情報等が 含まれる。そして、熱源側制御部 20では、これらの情報に基づいて、各種の電気機 器 11, 12, 14, 19等が制御されることになる。
[0030] 熱源側制御部 20は、インバータ 50を介してモータ Mcを制御することにより圧縮機 11を制御するとともに、インバータ 51を介してモータ Mfを制御することにより熱源側 ファン 19を制御する。これらのインバータ 50, 51は、熱源側制御部 20が配置される 電装品箱(図示せず)内に配置されている。
また、熱源側制御部 20には、ディップスィッチの形式の優先利用ユニット設定部 26 が設けられている。この優先利用ユニット設定部 26は、全ての利用ユニット 3のうちの 1の利用ユニット 3をその他の利用ユニット 3に対して優先させる優先設定を受け付け ている。例えば、利用者は、この優先設定を希望する場合には、その旨を担当業者 に連絡する。そして、依頼を受けた担当業者が利用者宅に赴いて熱源ユニット 2の制 御回路上のディップスィッチを操作することにより、任意の 1の利用ユニット 3が優先 設定されること〖こなる。
[0031] (2)静音運転モード Ι〜ΠΙ
熱源ユニット 2には、通常運転モードよりも静音レベルの高い 3の静音運転モード I 〜ΙΠが用意されている。そして、静音運転モード Πは、静音運転モード Iよりも静音レ ベルが高くなつており、静音運転モード IIIは、静音運転モード IIよりも静音レベルが 高くなつている。静音運転モード Ι〜ΠΙでは、圧縮機 11の運転周波数の上限値 Lc及 び熱源側ファン 19の回転数の上限値 Lfに制限が設けられることにより、これらの圧縮 機 11及び熱源側ファン 19の運転音が抑制されるようになって 、る。
図 4は、これら 3の静音運転モード Ι〜ΠΙにおける上限値 Lc, Lfの制限の詳細を示 している。すなわち、静音運転モード Ίでは、圧縮機 11の運転周波数の上限値 Lc及 び熱源側ファン 19の回転数の上限値 Lfが定格並みに設定される。そして、静音運 転モード IIでは、圧縮機 11の運転周波数の上限値 Lc及び熱源側ファン 19の回転数 の上限値 Lfがそれぞれ通常運転モードの場合よりも所定量 (本実施形態では、 3db ( デシベル)相当)だけ小さくなるように設定される。静音運転モード ΙΠでは、圧縮機 11 の運転周波数の上限値 Lc及び熱源側ファン 19の回転数の上限値 Lfがそれぞれ通 常運転モードよりも所定量 (本実施形態では、 5db相当)だけ小さくなるように設定さ れる。これにより、静音運転モード IIでは、通常運転モードの場合よりも運転音を平均 しておよそ 3db抑制することができ、静音運転モード ΠΙでは、通常運転モードの場合 よりも運転音を平均しておよそ 5db抑制することができるようになつている。また、静音 運転モード Iでは、通常運転モードの場合よりも運転音が抑制され、空気調和機 1の 空調能力が最低限確保されるようになって!/ヽる。
(3)運転モードの決定処理
熱源ユニット 2は、 1の通常運転モード及び 3の静音運転モード Ι〜ΠΙの計 4の運転 モードのうちのいずれ力 1の運転モードで動作することになる。そして、これら 4の運 転モードのうち熱源ユニット 2で採用される 1の運転モードを決定する処理は、熱源側 制御部 20が行う。
以下、図 5を参照して、熱源側制御部 20により 4の運転モードのうち熱源ユニット 2 で採用される 1の運転モードが決定される様子を具体的に説明する。
図 5のフローチャートに係る処理は、熱源ユニット 2に接続される全ての利用ユニット 3のいずれかに最初に電源が投入されたとき(即ち、空気調和機 1の運転が開始した とき)か、或いは、運転中の全ての利用ユニット 3のいずれ力から上述の 4の運転モー ドのうち 1の運転モードを選択する信号 (以下、運転モード選択信号)が熱源側制御 部 20に送られてきたときに開始する。この運転モード選択信号は、各部屋 Ri (i= l, 2, · · · , n)に設置されているリモコン 40を介してその部屋 Riの利用者により 4の運転 モードのうち 1の運転モードが選択されたときに生成され、その部屋 Riに設置されて いる利用ユニット 3の利用側制御部 30を介して直ちに熱源側制御部 20へ送られる。 また、運転モード選択信号は、利用者により静音運転モード Iが選択された場合には 「1」となり、静音運転モード Πが選択された場合には信号「2」となり、静音運転モード I IIが選択された場合には信号「3」となる。このとき、リモコン 40は、利用者に利用ュ- ット 3を介して 4つ運転モードのうち 1の運転モードを選択させる運転モード選択部 41 として動作する。なお、利用者は、その部屋 Riの利用ユニット 3の運転中であればい つでも、その部屋 Riに設置されているリモコン 40を介して 4の運転モードのうち 1の運 転モードを選択することができる。
[0033] ステップ S51では、熱源側制御部 20は、運転モード割り当て部 22として動作する。
運転モード割り当て部 22は、住宅 100内の全ての部屋 R1, 2, · ' · , Ι¾ιに設置され た全ての利用ユニット 3のうちの運転中の全ての利用ユニット 3のそれぞれについて、 その利用ユニット 3に 4の運転モードのうちの 1の運転モードを割り当てる。このとき、 運転モード選択信号が送られてきた部屋 Riの利用ユニット 3には、その運転モード選 択信号が示す運転モードが割り当てられ、運転モード選択信号が送られてこなかつ た部屋 Riの利用ユニット 3には、通常運転モードが割り当てられることになる。
次に、ステップ S52では、熱源側制御部 20は、運転モード設定部 23として動作す る。まず、運転モード設定部 23は、優先利用ユニット設定部 26を介して優先設定が されている利用ユニット 3が運転中である力否かを判断する。そして、この条件が満た されると判断された場合には、その優先設定がされている利用ユニット 3に割り当てら れた運転モードを熱源ユニット 2で採用される運転モードとし、フローは終了する。一 方、この条件が満たされないと判断された場合には、フローはステップ S53に進む。
[0034] ステップ S53では、運転モード設定部 23は、運転中の全ての利用ユニット 3の中に 能力優先設定がされている利用ユニット 3が存在する力否かを判断する。そして、こ の条件が満たされると判断された場合には、通常運転モードを熱源ユニット 2で採用 される運転モードとし、フローは終了する。一方、この条件が満たされないと判断され た場合には、フローはステップ S54に進む。なお、能力優先設定とは、静音運転モー ド i〜mでの運転を禁止して通常運転モードでの運転のみを許容する設定であり、そ の詳細については、後述する。
ステップ S54では、運転モード設定部 23は、運転中の全ての利用ユニット 3に静音 運転モード ΠΙが割り当てられているか否かを判断する。そして、この条件が満たされ ると判断された場合には、静音運転モード ΠΙを熱源ユニット 2で採用される運転モー ドとし、フローは終了する。一方、この条件が満たされないと判断された場合には、フ ローはステップ S 55に進む。
[0035] ステップ S55では、運転モード設定部 23は、運転中の全ての利用ユニット 3に静音 運転モード Πが割り当てられているか否かを判断する。そして、この条件が満たされる と判断された場合には、静音運転モード Πを熱源ユニット 2で採用される運転モードと し、フローは終了する。一方、この条件が満たされないと判断された場合には、フロー はステップ S56に進む。
ステップ S56では、運転モード設定部 23は、運転中の利用ユニット 3の少なくとも 1 つに静音運転モード Πが割り当てられており、かつ、運転中の利用ユニット 3のうち静 音運転モード Πが割り当てられて!/ヽな 、残りの利用ユニット 3が設置された部屋 Riの 要求する能力が全て所定値よりも小さいものとなっている力否かを判断する。そして、 この条件が満たされると判断された場合には、静音運転モード IIを熱源ユニット 2で 採用される運転モードとし、フローは終了する。一方、この条件が満たされないと判断 された場合には、フローはステップ S57に進む。なお、部屋 Riの要求する能力とは、 その部屋 Riに設置された利用ユニット 3に対して設定されている設定温度と現在の室 内温度 Trとの差である。そして、この能力を算出する際には、室外温度センサ 61で 検出された室内温度 Trが用いられる。
[0036] ステップ S57では、運転モード設定部 23は、運転中の利用ユニット 3の少なくとも 1 つに静音運転モード i〜mのいずれかが割り当てられているか否かを判断する。そし て、この条件が満たされると判断された場合には、静音運転モード Iを熱源ユニット 2 で採用される運転モードとし、フローは終了する。一方、この条件が満たされないと判 断された場合には、通常運転モードを熱源ユニット 2で採用される運転モードとし、フ ローは終了する。
(4)熱源側ファンの回転数の上限値 Lfの補正処理
熱源側制御部 20は、空気調和機 1の運転中においては、図 6のフローチャートに 係る処理を所定の時間間隔で繰り返す。このとき、熱源側制御部 20は、ファン回転 数補正部 24として動作する。また、図 6のフローチャートに係る処理は、熱源側制御 部 20により図 5のフローチャートに係る処理と並列に実行されることも可能である。
[0037] ステップ S61において、ファン回転数補正部 24は、熱源ユニット 2が静音運転モー ド II又は IIIで運転しているか否かを判断する。そして、運転していると判断された場 合には、フローはステップ S62に進み、運転していると判断されな力つた場合には、 フローは終了する。
ステップ S62では、ファン回転数補正部 24は、外気温度センサ 62において検出さ れた外気温度 Taに関する情報を受け取る。
次に、ステップ S63では、ファン回転数補正部 24は、熱源ユニットが暖房運転中で あるか、冷房運転中であるかを判断し、暖房運転中であると判断された場合には、フ ローはステップ S64へ進み、冷房運転中であると判断された場合には、フローはステ ップ S 65へ進む。
[0038] ステップ S64は、ファン回転数補正部 24は、ステップ S62で受け取った外気温度 T aに関する情報に基づいて、現在の外気温度 Taが第 1温度 (本実施形態では、 4°C) よりも低いか否かを判断する。そして、低いと判断された場合には、熱源側ファン 19 の回転数の上限値 Lfを通常運転モードと同様の値となるように補正し、フローは終了 する。一般的に、低外気条件下における暖房運転中に静音運転モード Π又は ΠΙが 採用された場合には、熱源側ファン 19の回転数が低減されるため熱源側熱交 1 3における着霜量が増加し、暖房能力が低下するという問題が生じることがあるが、こ のステップ S64によりこうした問題の発生が抑制されることになる。
ステップ S65は、ファン回転数補正部 24は、ステップ S62で受け取った外気温度 Τ aに関する情報に基づいて、現在の外気温度 Taが第 1温度よりも高い第 2温度 (本実 施形態では、 37°C)よりも高いか否かを判断する。そして、高いと判断された場合に は、熱源側ファン 19の回転数の上限値 Lfを通常運転モードと同様の値となるように 補正し、フローは終了する。一般的に、高外気条件下における冷房運転中に静音運 転モード Π又は IIIが採用された場合には、熱源側ファン 19の回転数が低減されるた め熱源ユニット 2内の電装品箱内の電装品が十分に冷却されないという問題が生じる ことがある力 このステップ S65によりこうした問題の発生が抑制されることになる。
[0039] (5)能力優先設定が選択された際の処理
静音運転モード: [〜: QIが採用されると空気調和機 1の空調能力が多少なりとも低下 するため、利用者は、静音運転モード i〜mでの運転を禁止して通常運転モードで の運転のみを許容する能力優先設定を行うことができるようになって 、る。利用者は
、この能力優先設定を行う際には、その設定を行いたい部屋 Riに設置された利用ュ ニット 30のリモコン 40に能力優先設定を行う旨を入力する。このとき、リモコン 40は、 能力優先設定部 42として動作する。すると、能力優先設定部 42は、能力優先設定 を行う旨を示す信号を直ちに熱源側制御部 20に送る。一方、熱源側制御部 20は、 その信号を受け取った際には、運転モード設定部 23として動作する。このとき、運転 モード設定部 23は、能力優先設定がされた利用ユニット 3をリストイ匕してメモリ 25に記 憶する。そして、このメモリ 25に記憶されたこのリストを参照することにより、運転モー ド設定部 23は、上述のステップ S53において能力優先設定がされている利用ュ-ッ ト 3が存在する力否かを判断することが可能になる。また、運転モード設定部 23は、 能力優先設定を行う旨を示す信号を受け取ると、直ちに熱源ユニット 2が静音運転モ ード Ι〜ΠΙのいずれかで運転中でないか否かを判断する。そして、静音運転モード I
〜mのいずれかで運転中であると判断された場合には、現在の運転モードを通常運 転モードに切り替える。
[0040] なお、この能力優先設定は、解除することも可能である。その際には、利用者は、設 定の解除を行 、た 、部屋 Riに設置された利用ユニット 30の能力優先設定部 42に能 力優先設定を解除する旨を入力する。すると、能力優先設定部 42は、能力優先設 定を解除する旨を示す信号を直ちに熱源側制御部 20に送る。一方、運転モード設 定部 23は、メモリ 25に記憶されている能力優先設定がされた利用ユニット 3のリスト 力 その利用ユニット 3を削除し、図 5のフローチャートに係る処理と同様の処理を行 つて、現在の条件下において最適な運転モードを検討する。
<特徴 >
(1)
多室型空気調和機では、シングルタイプの空気調和機と比べると、 1の熱源ユニット に対して複数の利用ユニットが接続されることになるため、圧縮機の運転周波数や熱 源側ファンの回転数が増大し、運転音が過大なものとなり易い。しかしながら、騒音 対策のために圧縮機の運転周波数の上限値や熱源側ファンの回転数の上限値に過 度な制限をかけてしまうと、空気調和機としての性能が劣ることにもなりかねない。
[0041] この点、空気調和機 1では、各部屋 Ri (l, 2, · · · , n)の利用者の要望がリモコン 40 を介して熱源側制御部 20に収集され、熱源側制御部 20にお 、てこれらの要望が調 整されるようになって 、るため、能力優先か静音優先かと 、うトレードオフの関係にあ る 2つ目的を両立させることができる。
(2)
上記実施形態では、利用者によりリモコン 40を介して静音運転モード Iが選択され た場合には信号「1」が、静音運転モード IIが選択された場合には信号「2」が、静音 運転モード ΠΙが選択された場合には信号「3」が生成され、この生成された信号は、 直ちに利用ユニット 3から熱源ユニット 2へと送られるようになつている。このように、利 用ユニット 3側と熱源ユニット 2側とでやりとりされるこれらの要望を表す信号が、静音 運転モードの種類と同数の 3種類で足り、これらの 3種類に通常運転モード分の 1種 類を足した 4種類の情報を最大で運転中の利用ユニット 3の数だけ考慮することによ り、設定すべき 1の運転モードが決定されることになる。従って、熱源側制御部 20の 計算負荷も過小なものとなる。
[0042] <変形例>
(1)
空気調和機 1の設置場所は住宅 100に限定されず、空調対象となる空間が複数存 在する他の形態の建物であってもよ 、。
(2)
圧縮機 11は、インバータ圧縮機とオンオフ制御が為される定容量圧縮機とがそれ ぞれ任意の台数だけ組み合わされたものであってもよい。
(3)
上述のステップ S64において、熱源側ファン 19の回転数の上限値 Lfを通常運転モ ードと同様の値にするのではなぐ所定量又は所定率だけ増カロさせるように補正して もよいし、静音レベルを 1段階下げるようにしてもよい。なお、このとき用いられる所定 量又は所定率に関する情報は、例えば、予めメモリ 25に記憶されていてよい。また、 ステップ S65において上限値 Lfを補正する場合も同様である。
[0043] (4)
図 4に詳細を示す 3の静音運転モード Ι〜ΠΙが以下のようになって 、てもよ 、。すな わち、静音運転モード Iでは、圧縮機 11の運転周波数の上限値 Lc及び熱源側ファン 19の回転数の上限値 Lfがともに定格並みに設定される。そして、静音運転モード II では、上限値 Lc, Lfがそれぞれ静音運転モード Iの場合よりも所定率 (例えば、 10% 〜30%)だけ低く設定される。静音運転モード ΠΙでは、上限値 Lc, Lfがそれぞれ静 音運転モード Πよりも所定率 (例えば、 10%〜30%)だけ低く設定される。さらに、こ の場合において、上限値 Lc, Lfが運転中の利用ユニット 30の総容量に応じて設定 されるようになつていてもよぐ例えば、静音運転モード Π, ΙΠで上限値 Lc, Lfを設定 するためのパラメータである所定率の値が運転中の利用ュ-ット 30の総容量に応じ て変化するようになって ヽて 、てもよ 、。
産業上の利用可能性
[0044] 本発明は、静音レベルの異なる複数の運転モードに切り替え可能な熱源ユニットを 有する多室型空気調和機において、複数の運転モードから 1の運転モードを選択す るに際して各部屋力 の要望が調整されて、合理的な静音運転が可能であるという 効果を有し、静音レベルの異なる複数の運転モードに切り替え可能な熱源ユニットを 有する多室型空気調和機の制御装置及び制御方法として有用である。

Claims

請求の範囲
[1] 静音レベルの異なる複数の運転モードに切り替え可能な熱源ユニット (2)と、前記 熱源ユニット (2)に冷媒連絡配管(17a, 17b)を介して接続され、複数の部屋 (R1, R2- - - , Rn)に分散して設置される複数の利用ユニット (3)とを有する多室型空気調 和機(1)の制御装置(20)であって、
前記複数の利用ユニット(3)のうち運転中の利用ユニット(3)のそれぞれに前記複 数の運転モードのうち 1の運転モードを割り当てる運転モード割り当て部(22)と、 前記運転モード割り当て部(22)により前記運転中の利用ユニット(3)のそれぞれ に割り当てられた運転モードに基づ 、て、前記熱源ユニット (2)を前記複数の運転モ ードのうち 1の運転モードに設定する運転モード設定部(23)と、
を備え、
前記運転モード設定部(23)は、前記運転中の利用ユニット(3)の全てに前記複数 の運転モードのうち所定の運転モードが割り当てられている第 1条件下では、前記熱 源ユニット (2)を前記所定の運転モードに設定する、
多室型空気調和機(1)の制御装置 (20)。
[2] 前記複数の運転モードには、通常運転モードと、前記通常運転モードよりも静音レ ベルが段階的に高くなる複数の静音運転モードとが含まれる、
請求項 1に記載の多室型空気調和機(1)の制御装置 (20)。
[3] 前記多室型空気調和機(1)は、
利用者に前記運転中の利用ユニット(3)を介して前記複数の運転モードのうち 1の 運転モードを選択させる運転モード選択部 (41)、
をさらに有し、
前記運転モード割り当て部(22)は、前記運転モード選択部 (41)を介して前記利 用者により選択された運転モードに基づいて、前記運転中の利用ユニット(3)のそれ ぞれに前記複数の運転モードのうち 1の運転モードを割り当てる、
請求項 1又は 2に記載の多室型空気調和機(1)の制御装置(20)。
[4] 前記熱源ユニット(2)は、
熱交換器 (13)と、 前記熱交換器 (13)に空気を送る熱源側ファン( 19)と、
を有し、
前記熱源側ファン(19)の回転数には、前記複数の運転モードに応じて異なる制限 が設定される、
請求項 2に記載の多室型空気調和機(1)の制御装置 (20)。
[5] 前記熱源ユニット(2)は、
圧縮機(11)、
を有し、
前記圧縮機(11)の運転周波数には、前記複数の運転モードに応じて異なる制限 が設定される、
請求項 2又は 4に記載の多室型空気調和機(1)の制御装置(20)。
[6] 前記運転モード設定部(23)は、前記運転中の利用ユニット(3)の少なくとも 1つに 前記所定の運転モードが割り当てられており、かつ、前記運転中の利用ユニット(3) のうち残りの利用ユニット(3)が設置された部屋 (Rl, R2- - - , Rn)の要求する能力 が全て所定値よりも小さ 、第 2条件下では、前記熱源ユニット (2)を前記所定の運転 モードに設定する、
請求項 1から 5の 、ずれかに記載の多室型空気調和機(1)の制御装置(20)。
[7] 前記運転モード設定部(23)は、前記運転中の利用ユニット(3)の少なくとも 1つに 前記複数の静音運転モードのうち所定の静音運転モード又は前記所定の静音運転 モードよりも静音レベルの高 ヽ静音運転モードが割り当てられて ヽる第 3条件下では 、前記熱源ユニット (2)を前記所定の静音運転モードよりも静音レベルの低!、運転モ ードに設定しない、
請求項 2, 4又は 5に記載の多室型空気調和機(1)の制御装置(20)。
[8] 前記多室型空気調和機(1)は、
前記複数の利用ユニット(3)のいずれか 1つを優先する設定を受け付ける優先利 用ユニット設定部(26)、
をさらに有し、
前記運転モード設定部 (23)は、前記優先利用ユニット設定部 (26)を介して優先 の設定がされた利用ユニット(3)が運転中である第 4条件下では、前記熱源ユニット( 2)を前記優先の設定がされた利用ユニット (3)に割り当てられた運転モードに設定 する、
請求項 1から 5の 、ずれかに記載の多室型空気調和機(1)の制御装置(20)。
[9] 前記多室型空気調和機(1)は、
前記複数の利用ユニット (3)の少なくとも 1つに能力の確保を優先させる設定を受 け付ける能力優先設定部 (42)、
をさらに有し、
前記運転モード設定部 (23)は、前記能力優先設定部 (42)を介して優先の設定が された利用ユニット(3)が運転中である第 5条件下では、前記熱源ユニット (2)を前記 通常運転モードに設定する、
請求項 2, 4又は 5に記載の多室型空気調和機(1)の制御装置(20)。
[10] ファン回転数補正部(24)、
をさらに備え、
前記多室型空気調和機(1)は、
外気温度を取得する外気温度取得部(62)、
をさらに有し、
前記ファン回転数補正部(24)は、前記外気温度取得部(62)により取得された外 気温度が所定の条件を満たす場合、前記静音運転モードで運転中の前記熱源ュニ ット(2)の前記熱源側ファン(19)の回転数を増加させるように補正する、
請求項 4に記載の多室型空気調和機(1)の制御装置 (20)。
[11] 前記ファン回転数補正部(24)は、前記外気温度取得部(62)により取得された外 気温度が暖房運転時において第 1温度よりも低いか、又は、冷房運転時において前 記第 1温度よりも高い第 2温度よりも高い場合に、前記熱源側ファン(19)の回転数を 増加させる、
請求項 10に記載の多室型空気調和機(1)の制御装置(20)。
[12] 静音レベルの異なる複数の運転モードに切り替え可能な熱源ユニット (2)と、前記 熱源ユニット (2)に冷媒連絡配管(17a, 17b)を介して接続され、複数の部屋 (R1, R2- - - , Rn)に分散して設置される複数の利用ユニット (3)とを有する多室型空気調 和機(1)の制御方法であって、
前記複数の利用ユニット(3)のうち運転中の利用ユニット(3)のそれぞれに前記複 数の運転モードのうち 1の運転モードを割り当てる運転モード割り当てステップと、 前記運転中の利用ユニット(3)のそれぞれに割り当てられた運転モードに基づいて 、前記熱源ユニット(2)を前記複数の運転モードのうち 1の運転モードに設定する運 転モード設定ステップと、
を備え、
前記運転モード設定ステップでは、前記運転中の利用ユニット(3)の全てに前記複 数の運転モードのうち同じ 1の運転モードが割り当てられている第 1条件下では、前 記熱源ユニット(2)がその同じ 1の運転モードに設定される、
多室型空気調和機(1)の制御方法。
PCT/JP2007/056682 2006-03-31 2007-03-28 多室型空気調和機の制御装置及び制御方法 WO2007114178A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES07740120.6T ES2671872T3 (es) 2006-03-31 2007-03-28 Aparato de control y método de control para acondicionador de aire de múltiples salas
CN200780010871XA CN101410675B (zh) 2006-03-31 2007-03-28 多室型空调机的控制装置和控制方法
EP07740120.6A EP2009361B1 (en) 2006-03-31 2007-03-28 Control device and control method for multi-room air conditioner
AU2007233445A AU2007233445B2 (en) 2006-03-31 2007-03-28 Control apparatus and control method for multi-room air conditioner
US12/294,580 US7957840B2 (en) 2006-03-31 2007-03-28 Control apparatus and control method for multi-room air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006099388A JP4049188B2 (ja) 2006-03-31 2006-03-31 空気調和機の制御装置及び制御方法
JP2006-099388 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007114178A1 true WO2007114178A1 (ja) 2007-10-11

Family

ID=38563446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056682 WO2007114178A1 (ja) 2006-03-31 2007-03-28 多室型空気調和機の制御装置及び制御方法

Country Status (7)

Country Link
US (1) US7957840B2 (ja)
EP (1) EP2009361B1 (ja)
JP (1) JP4049188B2 (ja)
CN (1) CN101410675B (ja)
AU (1) AU2007233445B2 (ja)
ES (1) ES2671872T3 (ja)
WO (1) WO2007114178A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4466786B2 (ja) * 2008-09-30 2010-05-26 ダイキン工業株式会社 空気調和機
US8224490B2 (en) * 2009-05-21 2012-07-17 Dmitriy Knyazev System for controlling the heating and housing units in a building
GB0920557D0 (en) * 2009-11-24 2010-01-06 Nlsd Associates Ltd An improved heat recovery system
CN102762928B (zh) * 2010-02-17 2015-09-09 三菱电机株式会社 空气调和系统
JP5804774B2 (ja) * 2011-05-30 2015-11-04 三菱電機株式会社 冷凍サイクル装置
US9964345B2 (en) * 2013-12-26 2018-05-08 Emerson Electric Co. Heat pump controller with user-selectable defrost modes and reversing valve energizing modes
KR102243860B1 (ko) * 2014-04-22 2021-04-23 엘지전자 주식회사 공기조화기의 제어방법
JP6391977B2 (ja) * 2014-04-24 2018-09-19 三菱重工サーマルシステムズ株式会社 マルチ型空気調和装置の制御装置、それを備えたマルチ型空気調和システム及びマルチ型空気調和装置の制御方法並びに制御プログラム
CN105066349B (zh) * 2015-08-03 2017-10-27 珠海格力电器股份有限公司 热回收多联机的内机模式转换控制方法和热回收多联机
KR20170019254A (ko) 2015-08-11 2017-02-21 엘지전자 주식회사 공기조화기 및 그 동작방법
CN105157294B (zh) * 2015-10-14 2017-12-05 珠海格力电器股份有限公司 一种多联机智能回油的控制方法、系统和多联机系统
JP6714471B2 (ja) * 2016-08-26 2020-06-24 シャープ株式会社 空気調和機
CN109373498B (zh) * 2018-10-17 2019-12-10 珠海格力电器股份有限公司 温度调节设备的需求模式控制方法、装置、系统和空调
US11300321B2 (en) * 2020-03-31 2022-04-12 Johnson Controls Tyco IP Holdings LLP Systems and methods to operate an HVAC system based on sound level

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106645A (ja) * 1988-10-14 1990-04-18 Matsushita Electric Ind Co Ltd 空気調和機
JPH08247561A (ja) * 1995-03-10 1996-09-27 Toshiba Ave Corp 空気調和機
JP2005134082A (ja) * 2003-10-31 2005-05-26 Mitsubishi Electric Corp 空気調和システム
JP2005180842A (ja) * 2003-12-22 2005-07-07 Matsushita Electric Ind Co Ltd 空気調和機の室外ユニット

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644756A (en) * 1983-12-21 1987-02-24 Daikin Industries, Ltd. Multi-room type air conditioner
KR920007668B1 (en) * 1988-01-11 1992-09-14 Mitsubishi Electric Corp Air conditioner
JP2877674B2 (ja) 1993-09-30 1999-03-31 三洋電機株式会社 空気調和機
KR19990081638A (ko) * 1998-04-30 1999-11-15 윤종용 멀티형 공조기기 및 그 제어방법
JP2003042521A (ja) * 2001-07-26 2003-02-13 Hitachi Ltd 空気調和装置
US20050172304A1 (en) * 2003-11-28 2005-08-04 David Tavares Event management system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106645A (ja) * 1988-10-14 1990-04-18 Matsushita Electric Ind Co Ltd 空気調和機
JPH08247561A (ja) * 1995-03-10 1996-09-27 Toshiba Ave Corp 空気調和機
JP2005134082A (ja) * 2003-10-31 2005-05-26 Mitsubishi Electric Corp 空気調和システム
JP2005180842A (ja) * 2003-12-22 2005-07-07 Matsushita Electric Ind Co Ltd 空気調和機の室外ユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2009361A4 *

Also Published As

Publication number Publication date
CN101410675B (zh) 2011-08-10
ES2671872T3 (es) 2018-06-11
CN101410675A (zh) 2009-04-15
US20090138127A1 (en) 2009-05-28
AU2007233445A1 (en) 2007-10-11
JP2007271216A (ja) 2007-10-18
EP2009361A4 (en) 2013-11-20
US7957840B2 (en) 2011-06-07
EP2009361B1 (en) 2018-05-02
AU2007233445B2 (en) 2010-05-20
EP2009361A1 (en) 2008-12-31
JP4049188B2 (ja) 2008-02-20

Similar Documents

Publication Publication Date Title
WO2007114178A1 (ja) 多室型空気調和機の制御装置及び制御方法
US8015834B2 (en) Rotation speed control device, air conditioner, and rotation speed control method
EP2187141B1 (en) Air-conditioning apparatus
US7743617B2 (en) Chiller sound reduction control system and method
EP1862745B1 (en) Air conditioner
JP2007010200A (ja) 空気調和機とその制御方法
JP5631012B2 (ja) 空気調和機および空気調和機の制御方法
JP5695861B2 (ja) 外気処理空調機およびそれを用いたマルチ空調システム
JP6115556B2 (ja) 空気調和装置
WO2013145838A1 (ja) 床暖房装置および温調システム
JP2019143950A (ja) 空気調和機
JP2021042918A (ja) 空気調和システム
WO2018163882A1 (ja) 空調システム
JP2006170528A (ja) 空気調和装置
EP1677058A2 (en) Method of controlling over-load cooling operation of air conditioner
JPH10232040A (ja) 空調システム装置
US20200284463A1 (en) Damper control systems and methods for a zoning system
JP2005147541A (ja) 多室型空気調和機
CN109073256A (zh) 空调装置
JP2011047526A (ja) 空気調和機
JP5538070B2 (ja) 空気調和装置
EP3208550B1 (en) Air conditioning apparatus
WO2019163317A1 (ja) 空気調和機
JP6881641B2 (ja) 空気調和機および空気調和システム
JP2012117699A (ja) 空気調和システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740120

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780010871.X

Country of ref document: CN

Ref document number: 12294580

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007233445

Country of ref document: AU

Ref document number: 2007740120

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007233445

Country of ref document: AU

Date of ref document: 20070328

Kind code of ref document: A