WO2018163882A1 - 空調システム - Google Patents
空調システム Download PDFInfo
- Publication number
- WO2018163882A1 WO2018163882A1 PCT/JP2018/006930 JP2018006930W WO2018163882A1 WO 2018163882 A1 WO2018163882 A1 WO 2018163882A1 JP 2018006930 W JP2018006930 W JP 2018006930W WO 2018163882 A1 WO2018163882 A1 WO 2018163882A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- air conditioning
- compressor
- deterioration
- air conditioner
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/46—Improving electric energy efficiency or saving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
- F24F11/85—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
Definitions
- the present invention relates to an air conditioning system.
- the cooling system disclosed in FIG. 4 of Patent Document 1 Japanese Patent Application Laid-Open No. 2001-173991
- Japanese Patent Application Laid-Open No. 2001-173991 has a plurality of air conditioners in which the exhaust hot air outlet is located behind the ceiling and the cold air outlet is located indoors. It is a system that forms a room in a low temperature region and a ceiling behind a high temperature region.
- An object of the present invention is to provide an air conditioning system capable of preventing the operation from being biased toward a specific air conditioner and preventing the performance degradation or failure of the equipment.
- An air conditioning system is an air conditioning system that adjusts the temperature of a common space by a plurality of air conditioning units provided for the common space, and includes a control device that controls the plurality of air conditioning units. .
- the control device has a storage unit and a determination unit.
- storage part memorize
- the deterioration monitoring target component is a component selected in advance as a component to be monitored for deterioration from among the components of the air conditioning unit.
- the determination unit performs comparison based on a parameter or a value calculated using the parameter between the air conditioning units, and determines an air conditioning unit to be stopped or operated from among the plurality of air conditioning units.
- the air conditioning load in the common space is reduced, and when any one of the plurality of air conditioning units is stopped, the air conditioning unit whose deterioration is more advanced than other air conditioning units in the comparison of parameters etc. is preferentially stopped. By doing so, the level of deterioration progress between the air conditioning units is leveled.
- An air conditioning system is the air conditioning system according to the first aspect, and uses a vapor compression refrigeration cycle in which an air conditioning unit circulates refrigerant in the order of a compressor, a condenser, a decompression mechanism, and an evaporator.
- the parameter includes the cumulative operation time of the compressor.
- the air conditioning system according to the third aspect of the present invention is the air conditioning system according to the second aspect, and the cumulative operation time of the compressor is weighted according to the operation frequency of the compressor.
- An air conditioning system is the air conditioning system according to the first aspect, and uses a vapor compression refrigeration cycle in which an air conditioning unit circulates refrigerant in the order of a compressor, a condenser, a decompression mechanism, and an evaporator.
- the parameter includes the number of compressor start / stop times.
- An air conditioning system is the air conditioning system according to the first aspect, in which an air conditioning unit uses a vapor compression refrigeration cycle in which refrigerant is circulated in the order of a compressor, a condenser, a decompression mechanism, and an evaporator.
- the parameters include the cumulative operating time of the fan motor of the fan that blows air to the condenser or evaporator.
- the longer the cumulative operation time of the fan motor the more the deterioration of the durability progresses. Therefore, the fan motor with the long cumulative operation time is preferentially stopped or the operation is preferentially suppressed. In this way, the deterioration progress between air conditioning units is leveled.
- the air conditioning system which concerns on the 6th viewpoint of this invention is an air conditioning system which concerns on a 1st viewpoint, Comprising: It has the filter which removes the dust in air in the air introduction port which the air conditioning unit introduces the air of a common space.
- the parameter includes the cumulative air volume that passes through the filter.
- the air conditioning system according to the seventh aspect of the present invention is the air conditioning system according to any one of the first to sixth aspects, and the control device has a reset function that initializes the numerical values of the parameters.
- the equipment of any one of the plurality of air conditioning units for example, the compressor is replaced, but the compressor of the replaced compressor is replaced with the cumulative operation time of the compressor before the replacement. Adding the operation time is an erroneous deterioration evaluation, so that such a situation is avoided by the reset function.
- the air conditioning load in the common space is reduced, and when any one of the plurality of air conditioning units is stopped, the deterioration is more advanced than the other air conditioning units in comparison of parameters and the like.
- the degree of deterioration between the air conditioning units is leveled.
- priority is given to the air conditioning units that have not deteriorated more than other air conditioning units in the comparison of parameters, etc. By operating, the deterioration progress between air conditioning units is leveled.
- the longer the cumulative operation time of the compressor the more the deterioration of the durability progresses.
- the level of deterioration progress between the air conditioning units is leveled by suppressing operation.
- the air conditioning system In the air conditioning system according to the third aspect of the present invention, even if the actual accumulated operation time of the compressor is the same, the one operated for a long time at a high operation frequency and the one operated for a long time at a low operation frequency, Since the deterioration of durability is progressing in the former, by performing the deterioration comparison with the cumulative operation time weighted by the operation frequency, it is avoided that the deterioration evaluation is far from the reality.
- a compressor that frequently repeats starting and stopping is more durable than a compressor having a small number of starting and stopping even if the actual accumulated operation time is short. Since the deterioration of the property is progressing, it is avoided that the deterioration evaluation is far from the reality by comparing the deterioration by the number of times of starting and stopping.
- the longer the cumulative operation time of the fan motor the more the deterioration of the durability progresses.
- the level of deterioration progress between the air conditioning units is leveled by suppressing operation.
- the larger the cumulative air volume that passes through the filter the more clogging of the filter has progressed. Reduces the load on the fan and compressor and suppresses deterioration of durability.
- FIG. 5 is a control flowchart of control for determining the operation / stop target air conditioner based on the total operation time of the compressor (steps S1 to S10).
- FIG. 6 is a control flowchart of control for determining the operation / stop target air conditioner based on the total operation time of the compressor (steps S11 to S17).
- FIG. 1 is a perspective view of a building in which a plurality of air conditioners 10A to 10D constituting the air conditioning system are installed.
- each of the plurality of air conditioners 10A to 10D is an air conditioner in which an indoor unit that is a use side unit installed on the ceiling and a heat source side unit arranged on the back of the ceiling are integrated.
- the specific structure of such an integrated air conditioner is disclosed in, for example, Japanese Patent Application Laid-Open No. 9-324928, etc., and therefore the description of the specific structure is omitted here.
- the plurality of indoor units 21A to 21D are installed on the ceiling of the building, and the heat source side units 11A to 11D corresponding to the indoor units are arranged in the ceiling space CS.
- the indoor units 21A to 21D are collectively expressed as “indoor unit 21”, and the heat source side units 11A to 11D are collectively expressed as “heat source side unit 11”.
- the indoor units 21A to 21D of the air conditioners 10A to 10D are arranged on the ceiling of the room Ro that is the air conditioning target space.
- the heat source side units 11A to 11D of the air conditioners 10A to 10D are arranged in the ceiling space CS of the room Ro.
- a common exhaust fan 91 is provided on the side wall in order to ventilate the ceiling space CS.
- one common exhaust fan 91 is installed on each of the right side wall and the left side wall in plan view.
- the right common exhaust fan 91 is referred to as a right fan 91A
- the left common exhaust fan 91 is referred to as a left fan 91B.
- direction of the air flow may be switched according to the time zone in consideration of the influence of the morning and evening sunlight.
- the air blowing directions of all the heat source side units 11A to 11D are unified from left to right in FIG. 1, and the ventilation direction of the ceiling space is also the blowing direction of the heat source side units. Accordingly, in FIG. 1, an air flow from left to right is generated.
- the heat source side unit 11B is disposed on the upstream side of the air flow as viewed from the heat source side unit 11A.
- the heat source unit 11C is arranged in a direction intersecting with the air flow direction as viewed from the heat source unit 11A. Further, as viewed from the heat source side unit 11C, the heat source side unit 11D is arranged on the upstream side of the air flow.
- FIG. 2 is a block diagram showing the configuration of the control system of the air conditioning system.
- the central control unit 40 can communicate with the communication control unit 50 (see FIG. 4) mounted in each of the plurality of air conditioners 10A to 10D via the communication network 6. it can.
- the communication network 6 includes a communication line using information communication technology such as the Internet, an intranet, a LAN (Local Area Network), and a VPN (Virtual Private Network).
- information communication technology such as the Internet, an intranet, a LAN (Local Area Network), and a VPN (Virtual Private Network).
- the central control unit 40 can cause the air conditioners 10A to 10D to perform various operations by remote control.
- air conditioners 10A to 10D and the central control unit 40 will be described in detail. Note that the air conditioners 10A to 10D are collectively expressed as “air conditioner 10”.
- FIG. 3 is a configuration diagram of the air conditioner 10.
- an air conditioner 10 is a refrigeration apparatus that can perform a cooling operation and a heating operation, and communicates liquid refrigerant for connecting the heat source unit 11, the indoor unit 21, and the heat source unit 11 and the indoor unit 21.
- a pipe 2 and a gas refrigerant communication pipe 3 are provided.
- R32 which is a single refrigerant is sealed in the refrigerant circuit RC of the air conditioner 10.
- the heat source side unit 11 mainly includes a compressor 12, a four-way switching valve 15, a heat source side heat exchanger 13, and an expansion valve 14. Further, the heat source side unit 11 also has a heat source side fan 16.
- (2-1-1) Compressor 12 The compressor 12 compresses the low-pressure refrigerant and discharges the compressed high-pressure refrigerant.
- a scroll type or rotary type compression mechanism is driven by the compressor motor 12a.
- the operating frequency of the compressor motor 12a is changed by the inverter device.
- Heat source side heat exchanger 13 The heat source side heat exchanger 13 is a fin-and-tube heat exchanger. A heat source side fan 16 is installed in the vicinity of the heat source side heat exchanger 13. In the heat source side heat exchanger 13, the air conveyed by the heat source side fan 16 and the refrigerant exchange heat.
- the expansion valve 14 is an electronic expansion valve with a variable opening.
- the expansion valve 14 is disposed on the downstream side of the heat source side heat exchanger 13 in the refrigerant flow direction in the refrigerant circuit RC during the cooling operation.
- the opening degree of the expansion valve 14 is adjusted to reduce the pressure of the refrigerant flowing into the indoor heat exchanger 32 to a pressure at which the refrigerant can evaporate in the indoor heat exchanger 32 (that is, the evaporation pressure). Further, during the heating operation, the opening degree of the expansion valve 14 is adjusted so as to reduce the refrigerant flowing into the heat source side heat exchanger 13 to a pressure at which the heat source side heat exchanger 13 can evaporate.
- the four-way switching valve 15 has first to fourth ports P1 to P4.
- the first port P 1 is connected to the discharge side of the compressor 12
- the second port P 2 is connected to the suction side of the compressor 12
- the third port P 3 is the gas side of the heat source side heat exchanger 13.
- the fourth port P4 is connected to the gas-side shutoff valve 5.
- the four-way switching valve 15 switches between a first state (state indicated by a solid line in FIG. 1) and a second state (state indicated by a broken line in FIG. 1).
- first state state indicated by a solid line in FIG. 1
- second state state indicated by a broken line in FIG. 1
- the first port P1 and the third port P3 communicate with each other
- the second port P2 and the fourth port P4 communicate with each other
- the first port P1 and the fourth port P4 communicate with each other
- the second port P2 and the third port P3 communicate with each other.
- Heat source side fan 16 The heat source side fan 16 includes a propeller fan 16a and a fan motor 16b that drives the propeller fan 16a.
- the rotation speed of the fan motor 16b is variable by an inverter device.
- FIG. 4 is a block diagram showing the control unit 41 of the air conditioner 10.
- the heat source side control unit 41a includes a microcomputer 41aa and a memory 41ab.
- the microcomputer 41aa performs various calculations and gives instructions to the control target device.
- the memory 41ab stores various data.
- the heat source side unit 11 is equipped with an intake air temperature sensor 61 and a heat exchanger temperature sensor 63.
- the intake air temperature sensor 61 detects the temperature of the air flowing into the heat source side unit 11 on the air inlet side of the heat source side unit 11.
- the intake air temperature sensor 61 detects the ambient temperature around the heat source unit 11 in order to perform an appropriate air conditioning operation, and the detected value is used for calculations necessary for the refrigeration cycle, and the temperature of the ceiling space CS. Also used to measure distribution.
- the heat exchanger temperature sensor 63 is a temperature sensor provided in the heat source side heat exchanger 13 and detects the saturation temperature of the refrigerant in order to perform an appropriate air conditioning operation, and the detected value is a calculation required for the refrigeration cycle. Used for.
- the heat exchanger temperature sensor 63 also functions as an exhaust temperature sensor that measures the temperature of air discharged from the heat source side of the heat source side unit 11.
- the intake air temperature sensor 61 and the heat exchanger temperature sensor 63 are composed of a thermistor.
- the indoor unit 21 includes an indoor heat exchanger 32 and an indoor fan 27.
- the indoor unit 21 is accompanied by a remote control unit (hereinafter referred to as “remote controller 42”).
- remote controller 42 The user can set various operation modes of the air conditioner 10 via the remote controller 42.
- the indoor heat exchanger 32 is a fin-and-tube heat exchanger.
- An indoor fan 27 is installed in the vicinity of the indoor heat exchanger 32.
- the indoor heat exchanger 32 functions as a refrigerant evaporator during cooling operation to cool indoor air, and functions as a refrigerant condenser during heating operation to heat indoor air.
- the indoor fan 27 is a cross flow fan.
- the indoor fan 27 has a fan 27a and a fan motor 27b for rotating the fan 27a.
- the indoor unit 21 sucks indoor air into the interior, and after exchanging heat with the refrigerant in the indoor heat exchanger 32, supplies the indoor air as supply air.
- the indoor fan 27 can change the air volume of the air supplied to the indoor heat exchanger 32 in a predetermined air volume range.
- (2-2-3) Indoor control unit 41b As shown in FIG. 1, the indoor unit 21 is equipped with an indoor side control unit 41b. Moreover, as shown in FIG. 4, the indoor side control part 41b incorporates microcomputer 41ba and memory 41bb.
- the microcomputer 41ba performs various calculations.
- the memory 41bb stores various data.
- the indoor side control part 41b communicates a control signal etc. between the remote control 42 for operating the indoor unit 21 separately, and also controls a control signal via the transmission line between the heat source side units 11. And so on.
- the indoor unit 21 is provided with an indoor temperature sensor 65.
- the indoor temperature sensor 65 is provided on the indoor air inlet side of the indoor unit 21.
- the indoor temperature sensor 65 detects the temperature of the indoor air flowing into the indoor unit 21.
- the room temperature sensor 65 is a thermistor.
- the central control unit 40 via the control unit 41 of each of the air conditioners 10A to 10D, the operating frequency of the compressor 12, the switching operation of the four-way switching valve 15, the opening of the expansion valve 14, the heat source side fan 16, the indoor fan 27 rotations can be remotely controlled. Therefore, the central control unit 40 can also perform communication control with the outside.
- the central control unit 40 controls the air conditioners 10A to 10D via the communication network 6.
- Each indoor unit 21 of each of the air conditioners 10A to 10D is equipped with a communication control unit 50 (see FIG. 4) so that signals can be transmitted to and received from the central control unit 40.
- the central control unit 40 includes a storage unit 401, a determination unit 403, a determination unit 405, a communication unit 407, and a command unit 409.
- Storage unit 401 stores data between the units of the central control unit 40 and operation information communicated between the central control unit 40 and the air conditioners 10A to 10D.
- the storage unit 401 stores deterioration monitoring target components.
- the deterioration monitoring target parts are parts selected in advance as components to be monitored for deterioration from among the components of the air conditioner 10, for example, the compressor 12, the fan motor 16 b of the heat source side fan 16, and the fan of the indoor fan 27. This corresponds to the motor 27b.
- the storage unit 401 also stores parameters related to deterioration determined in advance for the deterioration monitoring target component. For example, for each of the compressor 12, the fan motor 16 b of the heat source side fan 16, and the fan motor 27 b of the indoor fan 27, the “operating time” is a parameter.
- the determination unit 403 determines whether or not the operation state of each of the air conditioners 10A to 10D satisfies a preset operation condition based on the operation information.
- the determination unit 403 relatively evaluates the degree of deterioration of the deterioration monitoring target parts of the air conditioners 10A to 10D based on the above parameters. For example, when the operation time of the compressor 12 is compared between the air conditioners 10A to 10D, the deterioration proceeds in the case of the air conditioner 10D, the air conditioner 10B, the air conditioner 10C, and the air conditioner 10A in order from the longest. The ranking is evaluated as air conditioner 10D, air conditioner 10B, air conditioner 10C, air conditioner 10A.
- Determination unit 405 When the determination unit 405 determines an air conditioner to be stopped or operated from a plurality of air conditioners, the determination unit 405 determines based on the result of deterioration evaluation based on the parameters at that time. For example, when the determination unit 403 evaluates that the air conditioner 10D is most deteriorated and the air conditioner 10A is not deteriorated with the operation time of the compressor 12 as a parameter, when stopping an arbitrary air conditioner Air conditioner A is stopped preferentially.
- the determination unit 403 evaluates that the air conditioner 10D is most deteriorated and the air conditioner 10A is not most deteriorated using the operation time of the compressor 12 as a parameter, when operating any air conditioner Causes the air conditioner A to operate preferentially.
- the communication unit 407 is an interface to the communication network 6, transmits a signal to the communication network 6 in accordance with an instruction from the command unit 409, or receives a signal from the communication network 6, and sends a signal indicating that to the command unit 409.
- Command unit 409 controls the communication unit 407 to receive the operation information transmitted from each of the air conditioners 10A to 10D, and controls the operation of each unit of the central control unit 40 based on the operation information.
- the refrigerant circulation cycle can be switched to one of the circulation cycle during the cooling operation and the circulation cycle during the heating operation by the four-way switching valve 15.
- the high-pressure refrigerant compressed by the compressor 12 flows through the heat source side heat exchanger 13 and exchanges heat with air.
- the high-pressure refrigerant dissipates heat to the air and condenses.
- the refrigerant condensed in the heat source side heat exchanger 13 is decompressed by the expansion valve 14 while being sent to the indoor heat exchanger 32, and then flows through the indoor heat exchanger 32.
- the indoor air sucked by the indoor fan 27 passes through the indoor heat exchanger 32 and exchanges heat with the refrigerant.
- the refrigerant absorbs heat from the indoor air and evaporates, and at that time, the air is cooled.
- the air cooled by the indoor heat exchanger 32 is supplied to the indoor space.
- the refrigerant evaporated in the indoor heat exchanger 32 is sucked into the compressor 12 and compressed again.
- the high-pressure refrigerant compressed by the compressor 12 flows through the indoor heat exchanger 32.
- the indoor air sucked in by the indoor fan 27 passes through the indoor heat exchanger 32 and exchanges heat with the refrigerant.
- the refrigerant dissipates heat to the indoor air and condenses, and the air is heated at that time.
- the air heated by the indoor heat exchanger 32 is supplied to the indoor space.
- the refrigerant condensed in the indoor heat exchanger 32 flows through the heat source side heat exchanger 13 after being decompressed by the expansion valve 14.
- the refrigerant absorbs heat from the air and evaporates.
- the refrigerant evaporated in the heat source side heat exchanger 13 is sucked into the compressor 12 and compressed again.
- the central control unit 40 performs comparison based on the values calculated using parameters or parameters of the deterioration monitoring target parts among the air conditioners.
- the air conditioning unit to be stopped or operated is determined from among the air conditioners.
- FIG. 5A is a comparative evaluation table when the total operation time of the compressor 12 is set as the parameter of the deterioration monitoring target part.
- each of the four air conditioners 10A to 10D is referred to as an air conditioner A, an air conditioner B, an air conditioner C, and an air conditioner D.
- the operating frequency band is described vertically in the left column, and the operating frequency value is increased from the upper stage toward the lower stage.
- the cumulative operation time according to the operation frequency band of the compressor 12 is described for each air conditioner on the right side.
- the lowermost row in FIG. 5A describes the total operation time obtained by adding up the cumulative operation time for each operation frequency band of the compressor 12 for each air conditioner.
- Fcomn of the compressor 12 is hca1, hca2, hca3, hca4.
- the central control unit 40 stores a table as shown in FIG. 5A and updates it sequentially.
- the central control unit 40 compares the total operation time of the compressor 12 among the air conditioners A, B, C, and D, so that a plurality of air conditioners can be compared.
- the air conditioning unit to be stopped or operated is determined.
- FIG. 6 is a control flowchart (step S1 to step S10) of control for determining the operation / stop target air conditioner based on the total operation time of the compressor 12.
- step S1 to step S10 the temperature distribution image will be described with reference to FIG.
- Step S1 First, in step S1, the central control unit 40 determines whether or not the absolute value
- Step S2 the central control part 40 acquires the total operation time data of the compressor 12 of each of the air conditioner A, the air conditioner B, the air conditioner C, and the air conditioner D through the storage unit 401 in step S2.
- the acquired data is sent to the determination unit 403.
- step S3 the central control unit 40 compares the total operation time of the compressors 12 of the air conditioner A, the air conditioner B, the air conditioner C, and the air conditioner D via the determination unit 403 to determine the total operation time. Select the longest air conditioner.
- Step S4 the central control unit 40 stops the air conditioner selected by the determination unit 403 in step S4.
- the determination unit 403 compares the total operation time based on the comparison evaluation table of FIG. 5A and the total operation time ⁇ hcdi of the compressor 12 of the air conditioner D is the longest
- the determination unit 405 In order to reduce the difference in the degree of deterioration of the compressor 12 between the air conditioner and the air conditioner D, the stop of the air conditioner D is determined and executed.
- step S5 the central control unit 40 determines whether or not the absolute value
- step S6 the central control unit 40 determines whether or not the number N of stopped air conditioners is 2 or more, the process proceeds to step S7 when N ⁇ 2, and when N ⁇ 2 is not satisfied. Proceed to step S11.
- Step S7 the central control unit 40 identifies the stopped air conditioner and acquires the total operation time data via the storage unit 401. For example, when the air conditioner A and the air conditioner D are stopped, the total operation time data of the air conditioner A and the air conditioner D is acquired via the storage unit 401. The acquired data is sent to the determination unit 403.
- Step S8 the central control unit 40 compares the total operation time of the air conditioners A and D via the determination unit 403, and selects an air conditioner with a short total operation time.
- the air conditioner A and the air conditioner D are stopped, for example, when the total operation time ⁇ hcai of the air conditioner A is shorter than the total operation time ⁇ hcdi of the air conditioner D, the air conditioner A is selected. .
- Step S9 the central control unit 40 activates the air conditioner selected by the determination unit 403 in step S9.
- the determination unit 405 of the central control unit 40 determines to start the air conditioner A without starting the air conditioner D in order to reduce the difference in durability deterioration of the compressor 12 between the air conditioner D and the air conditioner A. Run it.
- Step S10 the central control unit 40 determines whether or not there is a stop command for all the air conditioners. If there is a stop command, the central control unit 40 determines that the air conditioning system is stopped and ends the control. On the other hand, when there is no stop command for all the air conditioners, the central control unit 40 returns to step S1 and continues the control.
- FIG. 7 is a control flowchart (step S11 to step S17) of determination control of the operation / stop target air conditioner based on the total operation time of the compressor 12.
- step S12 the central control unit 40 activates the stopped air conditioner.
- the air conditioner D that has been stopped is restarted and operated.
- step S13 the central control unit 40 determines whether or not a predetermined time has elapsed since starting the stopped air conditioner. When it is determined that the predetermined time has elapsed, the process proceeds to step S14. If it is determined that the predetermined time has not elapsed, this determination is continued.
- step S14 the central control unit 40 determines whether or not the absolute value
- Step S15 the central control part 40 acquires the total operation time data of the compressor 12 of each of the air conditioner A, the air conditioner B, the air conditioner C, and the air conditioner D through the storage unit 401 in step S15.
- the acquired data is sent to the determination unit 403.
- preparation for selecting an air conditioner that increases the operating frequency of the compressor 12 is made in order to compensate for the shortage of the air conditioning capacity.
- Step S16 Next, in step S ⁇ b> 16, the central control unit 40 compares the total operation time of the compressors 12 of the air conditioner A, air conditioner B, air conditioner C, and air conditioner D via the determination unit 403, and the compressor 12. Select the air conditioner with the shortest total operating time. Here, in order to select an air conditioner having sufficient durability, an appropriate air conditioner is selected based on the total operation time of the compressor 12.
- Step S17 the central control unit 40 increases the operating frequency of the air conditioner selected by the determination unit 403 in step S17. For example, if the determination unit 403 compares the total operation time based on the comparative evaluation table of FIG. 5A and the total operation time ⁇ hcbi of the compressor 12 of the air conditioner B is the shortest, Compared with the durability of the compressor 12 of the air conditioner B, the determination unit 405 determines and executes an increase in the operating frequency of the air conditioner B in order to reduce the difference in the degree of deterioration.
- the central control unit 40 preferentially stops the air conditioner with the longest total operation time and determines the degree of deterioration of the compressor 12 in comparison with other air conditioners. Close the gap.
- the central control unit 40 preferentially activates the air conditioner with the shortest total operation time, and narrows the disparity in the degree of deterioration of the compressor 12 in comparison with other air conditioners. .
- the room temperature Tr does not reach the set temperature Ts even though all the air conditioners are operated, it is determined that the capacity is insufficient and the total operation time estimated to have sufficient durability is provided.
- the shortest air conditioner is preferentially activated, and the disparity in the degree of deterioration of the compressor 12 in comparison with other air conditioners is reduced.
- the determination control of the operation / stop target air conditioner is simply performed based on the total operation time of the compressor 12.
- the former is more deteriorated in durability when it is operated for a long time at a high operating frequency and when it is operated for a long time at a low operating frequency. Since it is presumed to be progressing, the deterioration comparison can be performed by the total operation time weighted by the operation frequency.
- FIG. 5B is a comparative evaluation table when the total operation time of the compressor 12 weighted according to the operation frequency is set as the parameter of the deterioration monitoring target component.
- each of the four air conditioners 10A to 10D is referred to as an air conditioner A, an air conditioner B, an air conditioner C, and an air conditioner D.
- the operating frequency band is described vertically in the left column, and the value of the operating frequency increases from the top to the bottom. And the weighting coefficient according to the driving frequency is described on the right side. Further, on the right side, the cumulative operating time for each operating frequency band of the compressor 12 is described for each air conditioner.
- Fcomn of the compressor 12 are hca1, hca2, hca3, hca4.
- the cumulative operation time considered is hca1 ⁇ g1, hca2 ⁇ g2, hca3 ⁇ g3, hca4 ⁇ g4..., Hcan ⁇ gi.
- FIG. 5B describes the total operation time obtained by adding up the cumulative operation time for each operation frequency band of the compressor 12 for each air conditioner.
- the central control unit 40 stores a table as shown in FIG. 5B and updates it sequentially.
- the central control unit 40 compares the total operation time of the compressor 12 among the air conditioners A, B, C, and D, and stops or operates the plurality of air conditioners. Since the flow for determining the air conditioning unit is the same as that shown in FIGS. 6 and 7, detailed description thereof will be omitted.
- the air conditioning load of the ceiling space CS is increased and one of the stopped air conditioners 10 is operated, the deterioration in the comparison of the total operation time of the compressor 12 is more advanced than the other air conditioners.
- the air conditioners By preferentially operating the air conditioners that are not, it is possible to level the degree of progress of deterioration between the air conditioners.
- the total operating time of the compressor 12 or the total operating time of the compressor 12 weighted according to the operating frequency is set as the parameter of the deterioration monitoring target component. It is not limited to them.
- the start / stop count of the compressor 12 may be set as a parameter of the deterioration monitoring target component. This is because even if the compressor 12 has a short actual total operating time, the compressor 12 that is frequently started and stopped is more deteriorated in durability than the compressor 12 that has a small number of starts and stops. It is estimated that it is. Therefore, by performing deterioration comparison based on the number of times of starting and stopping, it is possible to avoid a deterioration evaluation that is far from reality.
- the fan motor 16b of the heat source side fan 16 or the fan motor 27b of the indoor fan 27 may be set as a parameter of the deterioration monitoring target component. Similar to the compressor 12, the longer the total operating time of the fan motor 16 b of the heat source side fan 16 or the fan motor 27 b of the indoor fan 27, the more the durability deteriorates. Therefore, the fan motor 16 b of the heat source side fan 16. Alternatively, it is possible to equalize the degree of progress of deterioration between the air conditioners by preferentially stopping the fan motor 27b of the indoor fan 27 that has a long total operation time or preferentially suppressing the operation.
- a cumulative air volume that passes through a filter may be set as a parameter of the deterioration monitoring target component.
- Each of the air conditioners 10A to 10D has a filter (not shown) for removing dust in the air at an air inlet (not shown) for introducing the air in the room Ro, and the total amount of air passing through the filter It is estimated that the larger the is, the more clogged the filter is. Therefore, by preferentially performing maintenance from the one with the large cumulative air volume, the load on the compressor 12, the fan motor 16b of the heat source side fan 16, or the fan motor 27b of the indoor fan 27 is reduced, and durability is improved. Deterioration can be suppressed.
- the accumulated air volume can also be estimated from the fan motor 27b of the indoor fan 27.
- FIG. 7 This is because the compression after the replacement is performed during the cumulative operation time of the compressor 12 before the replacement even though the equipment of any one of the plurality of air conditioners 10A to 10D, for example, the compressor 12 is replaced. It is because it is desirable to avoid such a situation by the reset function because adding the operation time of the machine is an erroneous deterioration evaluation.
- Air conditioner air conditioning unit
- 10A-10D air conditioner air conditioning unit
- 12 Compressor 13
- Heat source side heat exchanger condenser, evaporator
- Expansion valve pressure reduction mechanism
- 16 Heat source side fan fan
- 16b Fan motor Inside fan (fan) 27a Fan motor
- 32 Indoor heat exchanger condenser, evaporator
- 40 Central control unit (control device)
- Storage unit 405 Determination unit
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Signal Processing (AREA)
- Thermal Sciences (AREA)
- Air Conditioning Control Device (AREA)
Abstract
本発明の課題は、稼働が特定の空調機に偏ることを防止し、機器の性能低下や故障を予防することができる空調システムを提供することにある。空調システムでは、天井裏空間(CS)の空調負荷が小さくなり、複数の空調機(10A~10D)のいずれかを停止させる際に、圧縮機(12)の総運転時間の比較において劣化が他の空調機よりも進んでいる空調機を優先的に停止させることによって、空調機間の劣化進行度の平準化を図ることができる。また、天井裏空間(CS)の空調負荷が増加し、停止している複数の空調機(10)のいずれかを運転させる際に、圧縮機(12)の総運転時間の比較において劣化が他の空調機よりも進んでいない空調機を優先的に運転させることによって、空調機間の劣化進行度の平準化を図ることができる。
Description
本発明は、空調システムに関する。
近年、同一の空調対象空間を複数の空調機で空調する、多種多様な空調システムが普及するようになった。例えば、特許文献1(特開2001-173991号公報)の図4に開示されている冷房システムは、排熱空気排出口を天井裏に位置させ、冷気吹出口を室内に位置させた複数の空調機によって、室内を低温領域、天井裏を高温領域となるように形成するシステムである。
一般に、上記のようなシステムでは、空調機ごとに稼働時間が異なるので、全ての空調機が同様の経年変化をたどることは極めて稀である。それゆえ、特定の空調機が他の空調機よりも早く寿命を迎えることが起こり得る。
しかしながら、ユーザー側としては、稼働が特定の空調機に偏ることを避けて、システム寿命を長く維持したいという要望がある。
本発明の課題は、稼働が特定の空調機に偏ることを防止し、機器の性能低下や故障を予防することができる空調システムを提供することにある。
本発明の第1観点に係る空調システムは、共通空間に対して設けられる複数の空調ユニットによって共通空間の温度調節を行う空調システムであって、複数の空調ユニットを制御する制御装置を備えている。制御装置は、記憶部と決定部とを有している。記憶部は、劣化監視対象部品、および空調ユニットそれぞれの劣化監視対象部品について予め決定された劣化に関係するパラメータを記憶する。劣化監視対象部品とは、空調ユニットの構成部品の中から劣化を監視すべきものとして予め選定された部品である。決定部は、空調ユニット間で、パラメータ又はそのパラメータを用いて算出した値に基づく比較を行って、複数の空調ユニットの中から停止あるいは運転させる空調ユニットを決定する。
この空調システムでは、共通空間の空調負荷が小さくなり、複数の空調ユニットのいずれかを停止させる際に、パラメータ等の比較において劣化が他の空調ユニットよりも進んでいる空調ユニットを優先的に停止させることによって、空調ユニット間の劣化進行度の平準化を図る。
また、共通空間の空調負荷が増加し、停止している複数の空調ユニットのいずれかを運転させる際に、パラメータ等の比較において劣化が他の空調ユニットよりも進んでいない空調ユニットを優先的に運転させることによって、空調ユニット間の劣化進行度の平準化を図る。
本発明の第2観点に係る空調システムは、第1観点に係る空調システムであって、空調ユニットが圧縮機、凝縮器、減圧機構および蒸発器の順に冷媒を循環させる蒸気圧縮式冷凍サイクルを利用しており、パラメータには圧縮機の累積運転時間が含まれる。
この空調システムでは、圧縮機の累積運転時間が長くなればなるほど耐久性の劣化が進行するので、圧縮機の累積運転時間が長いものを優先的に停止させ、或いは優先的に運転を抑制することによって、空調ユニット間の劣化進行度の平準化を図る。
本発明の第3観点に係る空調システムは、第2観点に係る空調システムであって、圧縮機の累積運転時間は、圧縮機の運転周波数に応じて重み付けされている。
この空調システムでは、圧縮機の実際の累積運転時間が同じてあっても、高い運転周波数で長く運転されたものと、低い運転周波数で長く運転されたものとでは、耐久性の劣化は前者の方が進行しているので、運転周波数で重み付けされた累積運転時間で劣化比較を行うことによって、現実とかけ離れた劣化評価となることを回避する。
本発明の第4観点に係る空調システムは、第1観点に係る空調システムであって、空調ユニットが圧縮機、凝縮器、減圧機構および蒸発器の順に冷媒を循環させる蒸気圧縮式冷凍サイクルを利用しており、パラメータには圧縮機の発停回数が含まれる。
この空調システムでは、実際の累積運転時間が短い圧縮機であっても、発停を頻繁に繰り返している圧縮機は、発停回数の少ない圧縮機に比べて、耐久性の劣化が進行しているので、発停回数で劣化比較を行うことによって、現実とかけ離れた劣化評価となることを回避する。
本発明の第5観点に係る空調システムは、第1観点に係る空調システムであって、空調ユニットが圧縮機、凝縮器、減圧機構および蒸発器の順に冷媒を循環させる蒸気圧縮式冷凍サイクルを利用しており、パラメータには凝縮器又は蒸発器に送風するファンのファンモータの累積運転時間が含まれる。
この空調システムでは、ファンモータの累積運転時間が長くなればなるほど耐久性の劣化が進行するので、ファンモータの累積運転時間が長いものを優先的に停止させ、或いは優先的に運転を抑制することによって、空調ユニット間の劣化進行度の平準化を図る。
本発明の第6観点に係る空調システムは、第1観点に係る空調システムであって、空調ユニットが共通空間の空気を導入する空気導入口に、空気中の塵埃を除去するフィルタを有しており、パラメータにはフィルタを通過する累計風量が含まれる。
この空調システムでは、フィルタを通過する累計風量が大きければ大きいほど、フィルタの目詰まりは進行しており、当該累計風量が大きいものから優先的にメンテナンスを行うことによって、ファン、圧縮機への負荷を軽減し、耐久性の劣化を抑制する。
本発明の第7観点に係る空調システムは、第1観点から第6観点のいずれか1つに係る空調システムであって、制御装置がパラメータの数値を初期化するリセット機能を有する。
この空調システムでは、複数の空調ユニットのうちのいずれかの空調ユニットの機器、例えば、圧縮機が交換されているにも拘らず、交換前の圧縮機の累積運転時間に交換後の圧縮機の運転時間を加算していくことは、誤った劣化評価となるので、リセット機能によってそのような事態を回避する。
本発明の第1観点に係る空調システムでは、共通空間の空調負荷が小さくなり、複数の空調ユニットのいずれかを停止させる際に、パラメータ等の比較において劣化が他の空調ユニットよりも進んでいる空調ユニットを優先的に停止させることによって、空調ユニット間の劣化進行度の平準化を図る。また、共通空間の空調負荷が増加し、停止している複数の空調ユニットのいずれかを運転させる際に、パラメータ等の比較において劣化が他の空調ユニットよりも進んでいない空調ユニットを優先的に運転させることによって、空調ユニット間の劣化進行度の平準化を図る。
本発明の第2観点に係る空調システムでは、圧縮機の累積運転時間が長くなればなるほど耐久性の劣化が進行するので、圧縮機の累積運転時間が長いものを優先的に停止させ、或いは優先的に運転を抑制することによって、空調ユニット間の劣化進行度の平準化を図る。
本発明の第3観点に係る空調システムでは、圧縮機の実際の累積運転時間が同じてあっても、高い運転周波数で長く運転されたものと、低い運転周波数で長く運転されたものとでは、耐久性の劣化は前者の方が進行しているので、運転周波数で重み付けされた累積運転時間で劣化比較を行うことによって、現実とかけ離れた劣化評価となることを回避する。
本発明の第4観点に係る空調システムでは、実際の累積運転時間が短い圧縮機であっても、発停を頻繁に繰り返している圧縮機は、発停回数の少ない圧縮機に比べて、耐久性の劣化が進行しているので、発停回数で劣化比較を行うことによって、現実とかけ離れた劣化評価となることを回避する。
本発明の第5観点に係る空調システムでは、ファンモータの累積運転時間が長くなればなるほど耐久性の劣化が進行するので、ファンモータの累積運転時間が長いものを優先的に停止させ、或いは優先的に運転を抑制することによって、空調ユニット間の劣化進行度の平準化を図る。
本発明の第6観点に係る空調システムでは、フィルタを通過する累計風量が大きければ大きいほど、フィルタの目詰まりは進行しており、当該累計風量が大きいものから優先的にメンテナンスを行うことによって、ファン、圧縮機への負荷を軽減し、耐久性の劣化を抑制する。
本発明の第7観点に係る空調システムでは、複数の空調ユニットのうちのいずれかの空調ユニットの機器、例えば、圧縮機が交換されているにも拘らず、交換前の圧縮機の累積運転時間に交換後の圧縮機の運転時間を加算していくことは、誤った劣化評価となるので、リセット機能によってそのような事態を回避する。
以下、図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。
(1)空調システムの概要
図1は、空調システムを構成する複数の空調機10A~10Dが据え付けられている建屋の斜視図である。
図1は、空調システムを構成する複数の空調機10A~10Dが据え付けられている建屋の斜視図である。
図1において、複数の空調機10A~10Dそれぞれは、天井に設置される利用側ユニットである室内ユニットと、天井裏に配置される熱源側ユニットとが一体化された空調機である。このような一体型空調機の具体的構造については、例えば、公開特許公報の特開平9-324928等に開示されているので、ここでは具体的構造の説明は省略する。
複数の室内ユニット21A~21Dは、建屋の天井に設置され、各室内ユニットに対応する熱源側ユニット11A~11Dは天井裏空間CSに配置されている。
なお、室内ユニット21A~21Dをまとめて指す場合は「室内ユニット21」と表現し、熱源側ユニット11A~11Dをまとめて指す場合は「熱源側ユニット11」と表現する。
この空調システムでは、空調対象空間である部屋Roの天井に、空調機10A~10Dの室内ユニット21A~21Dが配置されている。そして、空調機10A~10Dの熱源側ユニット11A~11Dは、部屋Roの天井裏空間CSに配置されている。
また、天井裏空間CSの換気を行うため、共通排気ファン91が側壁に設けられている。共通排気ファン91は、図1において、平面視で右側壁および左側壁に一台ずつ据え付けられている。説明の便宜上、右側の共通排気ファン91を右ファン91A、左側の共通排気ファン91を左ファン91Bという。
天井裏空間CSでは、外気を左ファン91Bによって取り込み、内部空気を右ファン91Aによって排出すれば、図1において、左から右への空気の流れが生じる。また、外気を右ファン91Aによって取り込み、内部空気を左ファン91Bによって排出すれば、図1において、右から左への空気の流れが生じる。
なお、朝夕の日差しの影響を考慮して、時間帯に応じて、空気流れの方向が切り替えられてもよい。
本実施形態では、全ての熱源側ユニット11A~11Dの空気の吹出方向を、図1おいて、左から右への方向に統一しており、天井裏空間の換気方向も熱源側ユニットの吹出方向に合わせて、図1において、左から右への空気の流れが生じるように構成されている。
図1の天井裏空間CSでは、熱源側ユニット11Aから視て、空気の流れの上流側に熱源側ユニット11Bが配置されている。そして、熱源側ユニット11Aから視て、空気の流れ方向と交差する方向に熱源側ユニット11Cが配置されている。また、熱源側ユニット11Cから視て、空気の流れの上流側に熱源側ユニット11Dが配置されている。
図2は、空調システムの制御系の構成を示すブロック図である。図2において、空調システムでは、集中制御部40が通信ネットワーク6を介して、複数の空調機10A~10Dそれぞれに搭載された通信制御部50(図4参照)との間で通信を行うことができる。
通信ネットワーク6は、インターネット、イントラネット、LAN(Local・Area・Network)、VPN(Virtual・Private・Network)等の情報通信技術を利用した通信回線により構成されている。
集中制御部40は、遠隔制御により空調機10A~10Dに各種の運転を行わせることができる。
以下、空調機10A~10D、及び集中制御部40について詳細を説明する。なお、空調機10A~10Dをまとめて指す場合は、「空調機10」と表現する。
(2)空調機10の構成
図3は、空調機10の構成図である。図3において、空調機10は、冷房運転および暖房運転が可能な冷凍装置であり、熱源側ユニット11と、室内ユニット21と、熱源側ユニット11と室内ユニット21とを接続するための液冷媒連絡配管2、及びガス冷媒連絡配管3とを備えている。空調機10の冷媒回路RCには、例えば、単一冷媒であるR32が封入されている。
図3は、空調機10の構成図である。図3において、空調機10は、冷房運転および暖房運転が可能な冷凍装置であり、熱源側ユニット11と、室内ユニット21と、熱源側ユニット11と室内ユニット21とを接続するための液冷媒連絡配管2、及びガス冷媒連絡配管3とを備えている。空調機10の冷媒回路RCには、例えば、単一冷媒であるR32が封入されている。
(2-1)熱源側ユニット11の構成
図3において、熱源側ユニット11は、主に、圧縮機12、四方切換弁15、熱源側熱交換器13、及び膨張弁14を有している。さらに、熱源側ユニット11は熱源側ファン16も有している。
図3において、熱源側ユニット11は、主に、圧縮機12、四方切換弁15、熱源側熱交換器13、及び膨張弁14を有している。さらに、熱源側ユニット11は熱源側ファン16も有している。
(2-1-1)圧縮機12
圧縮機12は、低圧の冷媒を圧縮し、圧縮後の高圧の冷媒を吐出する。圧縮機12では、スクロール式、ロータリ式等の圧縮機構が圧縮機モータ12aによって駆動される。圧縮機モータ12aの運転周波数は、インバータ装置によって変更される。
圧縮機12は、低圧の冷媒を圧縮し、圧縮後の高圧の冷媒を吐出する。圧縮機12では、スクロール式、ロータリ式等の圧縮機構が圧縮機モータ12aによって駆動される。圧縮機モータ12aの運転周波数は、インバータ装置によって変更される。
(2-1-2)熱源側熱交換器13
熱源側熱交換器13は、フィン・アンド・チューブ式の熱交換器である。熱源側熱交換器13の近傍には、熱源側ファン16が設置される。熱源側熱交換器13では、熱源側ファン16が搬送する空気と冷媒とが熱交換する。
熱源側熱交換器13は、フィン・アンド・チューブ式の熱交換器である。熱源側熱交換器13の近傍には、熱源側ファン16が設置される。熱源側熱交換器13では、熱源側ファン16が搬送する空気と冷媒とが熱交換する。
(2-1-3)膨張弁14
膨張弁14は、開度可変の電子膨張弁である。膨張弁14は、冷房運転時の冷媒回路RCにおける冷媒の流れ方向において熱源側熱交換器13の下流側に配置されている。
膨張弁14は、開度可変の電子膨張弁である。膨張弁14は、冷房運転時の冷媒回路RCにおける冷媒の流れ方向において熱源側熱交換器13の下流側に配置されている。
冷房運転時、膨張弁14の開度は、室内熱交換器32に流入する冷媒を室内熱交換器32において蒸発させることが可能な圧力(すなわち、蒸発圧力)まで減圧するように調節される。また、暖房運転時は、膨張弁14の開度は、熱源側熱交換器13に流入する冷媒を熱源側熱交換器13において蒸発させることが可能な圧力まで減圧するように調節される。
(2-1-4)四方切換弁15
四方切換弁15は、第1から第4までのポートP1~P4を有している。四方切換弁15では、第1ポートP1が圧縮機12の吐出側に接続され、第2ポートP2が圧縮機12の吸入側に接続され、第3ポートP3が熱源側熱交換器13のガス側端部に接続され、第4ポートP4がガス側閉鎖弁5に接続されている。
四方切換弁15は、第1から第4までのポートP1~P4を有している。四方切換弁15では、第1ポートP1が圧縮機12の吐出側に接続され、第2ポートP2が圧縮機12の吸入側に接続され、第3ポートP3が熱源側熱交換器13のガス側端部に接続され、第4ポートP4がガス側閉鎖弁5に接続されている。
四方切換弁15は、第1状態(図1の実線で示す状態)と第2状態(図1の破線で示す状態)とに切り換わる。第1状態の四方切換弁15では、第1ポートP1と第3ポートP3とが連通し且つ第2ポートP2と第4ポートP4とが連通する。第2状態の四方切換弁15では、第1ポートP1と第4ポートP4とが連通し且つ第2ポートP2と第3ポートP3とが連通する。
(2-1-5)熱源側ファン16
熱源側ファン16は、プロペラファン16aと、プロペラファン16aを駆動するファンモータ16bとで構成されている。ファンモータ16bは、インバータ装置によって、その回転数が可変である。
熱源側ファン16は、プロペラファン16aと、プロペラファン16aを駆動するファンモータ16bとで構成されている。ファンモータ16bは、インバータ装置によって、その回転数が可変である。
(2-1-6)熱源側制御部41a
図3に示すように、熱源側ユニット11には熱源側制御部41aが搭載されている。また、図4は、空調機10の制御部41を示すブロック図である。図4において、熱源側制御部41aは、マイコン41aa、メモリ41abを内蔵している。マイコン41aaは、各種の演算を行い、制御対象機器への指令を行う。メモリ41abは、各種データを格納する。
図3に示すように、熱源側ユニット11には熱源側制御部41aが搭載されている。また、図4は、空調機10の制御部41を示すブロック図である。図4において、熱源側制御部41aは、マイコン41aa、メモリ41abを内蔵している。マイコン41aaは、各種の演算を行い、制御対象機器への指令を行う。メモリ41abは、各種データを格納する。
(2-1-7)各種センサ
図1に示すように、熱源側ユニット11には、吸込空気温度センサ61及び熱交換器温度センサ63が搭載されている。
図1に示すように、熱源側ユニット11には、吸込空気温度センサ61及び熱交換器温度センサ63が搭載されている。
吸込空気温度センサ61は、熱源側ユニット11の空気の吸込口側で、熱源側ユニット11内に流入する空気の温度を検出する。
吸込空気温度センサ61は、適切な空調運転を行うため、熱源側ユニット11の周囲の雰囲気温度を検出しており、検出値は冷凍サイクルに必要な演算に用いられる他、天井裏空間CSの温度分布の測定にも使用される。
熱交換器温度センサ63は、熱源側熱交換器13に設けられた温度センサであり、適切な空調運転を行うため、冷媒の飽和温度を検出しており、検出値は冷凍サイクルに必要な演算に用いられる。また、熱交換器温度センサ63は、熱源側ユニット11の熱源側から排出される空気の温度を測定する排気温度センサとしても機能する。
本実施形態において、吸込空気温度センサ61及び熱交換器温度センサ63は、サーミスタからなる。
(2-2)室内ユニット21の構成
室内ユニット21は、室内熱交換器32と、室内ファン27とを有している。また、室内ユニット21には、リモートコントロールユニット(以下、「リモコン42」という。)が付帯されている。ユーザーは、リモコン42を介して、空調機10の各種運転モード等を設定することができる。
室内ユニット21は、室内熱交換器32と、室内ファン27とを有している。また、室内ユニット21には、リモートコントロールユニット(以下、「リモコン42」という。)が付帯されている。ユーザーは、リモコン42を介して、空調機10の各種運転モード等を設定することができる。
(2-2-1)室内熱交換器32
室内熱交換器32は、フィン・アンド・チューブ式の熱交換器である。室内熱交換器32の近傍には、室内ファン27が設置される。
室内熱交換器32は、フィン・アンド・チューブ式の熱交換器である。室内熱交換器32の近傍には、室内ファン27が設置される。
室内熱交換器32は、冷房運転時には冷媒の蒸発器として機能して室内空気を冷却し、暖房運転時には冷媒の凝縮器として機能して室内空気を加熱する。
(2-2-2)室内ファン27
室内ファン27は、クロスフローファンである。室内ファン27は、ファン27aと、ファン27aを回転させるためのファンモータ27bとを有している。
室内ファン27は、クロスフローファンである。室内ファン27は、ファン27aと、ファン27aを回転させるためのファンモータ27bとを有している。
室内ファン27の稼動によって、室内ユニット21は内部に室内空気を吸入し、室内熱交換器32において冷媒と熱交換させた後に、供給空気として室内に供給する。また、室内ファン27は、室内熱交換器32に供給する空気の風量を所定風量範囲において変更することができる。
(2-2-3)室内側制御部41b
図1に示すように、室内ユニット21には、室内側制御部41bが搭載されている。また、図4に示すように、室内側制御部41bは、マイコン41ba及びメモリ41bbを内蔵している。
図1に示すように、室内ユニット21には、室内側制御部41bが搭載されている。また、図4に示すように、室内側制御部41bは、マイコン41ba及びメモリ41bbを内蔵している。
マイコン41baは、各種の演算を行う。また、メモリ41bbは、各種データを格納する。
また、室内側制御部41bは、室内ユニット21を個別に操作するためのリモコン42との間で制御信号等の通信を行い、さらに、熱源側ユニット11との間で伝送線を介して制御信号等の通信を行う。
(2-2-4)各種センサ
室内ユニット21には、室内温度センサ65が設けられている。室内温度センサ65は、室内ユニット21の室内空気の吸込口側に設けられている。室内温度センサ65は、室内ユニット21内に流入する室内空気の温度を検出する。本実施形態において、室内温度センサ65は、サーミスタからなる。
室内ユニット21には、室内温度センサ65が設けられている。室内温度センサ65は、室内ユニット21の室内空気の吸込口側に設けられている。室内温度センサ65は、室内ユニット21内に流入する室内空気の温度を検出する。本実施形態において、室内温度センサ65は、サーミスタからなる。
(2-3)集中制御部40
集中制御部40は、各空調機10A~10Dの制御部41を介して、圧縮機12の運転周波数、四方切換弁15の切換動作、膨張弁14の開度、および熱源側ファン16、室内ファン27の回転を遠隔制御することができる。そのため、集中制御部40は、外部との通信制御も行うことができる。
集中制御部40は、各空調機10A~10Dの制御部41を介して、圧縮機12の運転周波数、四方切換弁15の切換動作、膨張弁14の開度、および熱源側ファン16、室内ファン27の回転を遠隔制御することができる。そのため、集中制御部40は、外部との通信制御も行うことができる。
図2において、集中制御部40は、通信ネットワーク6を介して各空調機10A~10Dを制御する。各空調機10A~10Dの各室内ユニット21には、集中制御部40との間で信号の送受信が行えるように通信制御部50(図4参照)が搭載されている。
また、集中制御部40は、記憶部401と、判定部403と、決定部405と、通信部407と、指令部409とを有している。
(2-3-1)記憶部401
記憶部401は、集中制御部40の各部間のデータ、及び集中制御部40と各空調機10A~10Dとの間で通信された運転情報を記憶する。
記憶部401は、集中制御部40の各部間のデータ、及び集中制御部40と各空調機10A~10Dとの間で通信された運転情報を記憶する。
また、記憶部401は、劣化監視対象部品を記憶している。劣化監視対象部品とは、空調機10の構成部品の中から劣化を監視すべきものとして予め選定された部品であり、例えば、圧縮機12、熱源側ファン16のファンモータ16bおよび室内ファン27のファンモータ27bが該当する。
さらに、記憶部401は、劣化監視対象部品について予め決定された劣化に関係するパラメータも記憶している。例えば、例えば、圧縮機12、熱源側ファン16のファンモータ16bおよび室内ファン27のファンモータ27bについては、それぞれの「運転時間」がパラメータとなる。
(2-3-2)判定部403
判定部403は、上記運転情報に基づいて各空調機10A~10Dの運転状態が予め設定される運転条件を充足しているか否かを判定する。
判定部403は、上記運転情報に基づいて各空調機10A~10Dの運転状態が予め設定される運転条件を充足しているか否かを判定する。
また、判定部403は、上記パラメータに基づき、各空調機10A~10Dの劣化監視対象部品の劣化の程度を相対評価する。例えば、各空調機10A~10D間で圧縮機12の運転時間を比較したとき、最も長い方から順に空調機10D、空調機10B、空調機10C、空調機10Aであった場合、劣化が進んでいる順位は、空調機10D、空調機10B、空調機10C、空調機10Aと評価される。
(2-3-3)決定部405
決定部405は、複数の空調機の中から停止あるいは運転させる空調機を決定する際に、その時点におけるパラメータに基づく劣化評価の結果に基づいて決定する。例えば、判定部403が圧縮機12の運転時間をパラメータとして、空調機10Dが最も劣化し、空調機10Aが最も劣化していないと評価している場合において、任意の空調機を停止させるときは空調機Aを優先的に停止させる。
決定部405は、複数の空調機の中から停止あるいは運転させる空調機を決定する際に、その時点におけるパラメータに基づく劣化評価の結果に基づいて決定する。例えば、判定部403が圧縮機12の運転時間をパラメータとして、空調機10Dが最も劣化し、空調機10Aが最も劣化していないと評価している場合において、任意の空調機を停止させるときは空調機Aを優先的に停止させる。
同様に、判定部403が圧縮機12の運転時間をパラメータとして、空調機10Dが最も劣化し、空調機10Aが最も劣化していないと評価している場合において、任意の空調機を運転させるときは空調機Aを優先的に運転させる。
(2-3-4)通信部407
通信部407は、通信ネットワーク6に対するインタフェースであり、指令部409の命令に従って通信ネットワーク6に信号を送信し、或いは通信ネットワーク6から信号を受信し、その旨を表す信号を指令部409に送る。
通信部407は、通信ネットワーク6に対するインタフェースであり、指令部409の命令に従って通信ネットワーク6に信号を送信し、或いは通信ネットワーク6から信号を受信し、その旨を表す信号を指令部409に送る。
(2-3-5)指令部409
指令部409は、通信部407を制御して各空調機10A~10Dから送信された運転情報を受信し、且つその運転情報に基づき集中制御部40の各部の動作を制御する。
指令部409は、通信部407を制御して各空調機10A~10Dから送信された運転情報を受信し、且つその運転情報に基づき集中制御部40の各部の動作を制御する。
(3)空調機10の動作
空調機10では、四方切換弁15によって、冷媒の循環サイクルを冷房運転時の循環サイクルおよび暖房運転時の循環サイクルのいずれか一方に切り換えることが可能である。
空調機10では、四方切換弁15によって、冷媒の循環サイクルを冷房運転時の循環サイクルおよび暖房運転時の循環サイクルのいずれか一方に切り換えることが可能である。
(3-1)冷房運転
冷房運転では、図3に示す四方切換弁15が実線で示す状態となり、圧縮機12、室内ファン27、熱源側ファン16が運転状態となる。これにより、冷媒回路RCでは、熱源側熱交換器13が凝縮器となり、室内熱交換器32が蒸発器となる冷凍サイクルが行われる。
冷房運転では、図3に示す四方切換弁15が実線で示す状態となり、圧縮機12、室内ファン27、熱源側ファン16が運転状態となる。これにより、冷媒回路RCでは、熱源側熱交換器13が凝縮器となり、室内熱交換器32が蒸発器となる冷凍サイクルが行われる。
具体的には、圧縮機12で圧縮された高圧冷媒は、熱源側熱交換器13を流れ、空気と熱交換する。熱源側熱交換器13では、高圧冷媒が空気へ放熱して凝縮する。熱源側熱交換器13で凝縮した冷媒は、室内熱交換器32へ送られる途中において、膨張弁14で減圧され、その後、室内熱交換器32を流れる。
室内ユニット21では、室内ファン27によって吸い込まれた室内空気が、室内熱交換器32を通過し、その際に冷媒と熱交換する。室内熱交換器32では、冷媒が室内空気から吸熱して蒸発し、その際に空気が冷却される。室内熱交換器32で冷却された空気は、室内空間へ供給される。また、室内熱交換器32で蒸発した冷媒は、圧縮機12に吸入され再び圧縮される。
(3-2)暖房運転
暖房運転では、図1に示す四方切換弁15が破線で示す状態となり、圧縮機12、室内ファン27、熱源側ファン16が運転状態となる。これにより、冷媒回路RCでは、室内熱交換器32が凝縮器となり、熱源側熱交換器13が蒸発器となる冷凍サイクルが行われる。
暖房運転では、図1に示す四方切換弁15が破線で示す状態となり、圧縮機12、室内ファン27、熱源側ファン16が運転状態となる。これにより、冷媒回路RCでは、室内熱交換器32が凝縮器となり、熱源側熱交換器13が蒸発器となる冷凍サイクルが行われる。
具体的には、圧縮機12で圧縮された高圧冷媒は、室内熱交換器32を流れる。室内ユニット21では、室内ファン27よって吸い込まれた室内空気が、室内熱交換器32を通過し、その際に冷媒と熱交換する。室内熱交換器32では、冷媒が室内空気へ放熱して凝縮し、その際に空気が加熱される。室内熱交換器32で加熱された空気は、室内空間へ供給される。また、室内熱交換器32で凝縮した冷媒は、膨張弁14で減圧された後、熱源側熱交換器13を流れる。熱源側熱交換器13では、冷媒が空気から吸熱して蒸発する。熱源側熱交換器13で蒸発した冷媒は、圧縮機12に吸入され再び圧縮される。
(4)運転/停止対象空調機の決定制御
この空調システムでは、集中制御部40が、空調機間で、劣化監視対象部品のパラメータ又はパラメータを用いて算出した値に基づく比較を行って、複数の空調機の中から停止あるいは運転させる空調ユニットを決定する。
この空調システムでは、集中制御部40が、空調機間で、劣化監視対象部品のパラメータ又はパラメータを用いて算出した値に基づく比較を行って、複数の空調機の中から停止あるいは運転させる空調ユニットを決定する。
図5Aは、劣化監視対象部品のパラメータとして、圧縮機12の総運転時間を設定した場合の比較評価表である。図5において、説明の便宜上、4台の空調機10A~10Dそれぞれを空調機A、空調機B、空調機C、空調機Dと称している。
また、図5Aでは、左欄に運転周波数帯が上下に記載され、上段から下段に向かって運転周波数の値は大きくなるように記載されている。そして、その右側に空調機ごとに圧縮機12の運転周波数帯別の累積運転時間が記載されている。
また、図5Aの最下段は、空調機ごとに圧縮機12の運転周波数帯別の累積運転時間を合計した総運転時間が記載されている。例えば、空調機Aについて、圧縮機12の運転周波数fcom1、fcom2、fcom3、fcom4・・・、fcomnそれぞれの累積運転時間がhca1、hca2、hca3、hca4・・・、hcanであるとき、総運転時間はΣhcai(但し、i=n)となる。空調機B、空調機C及び空調機Dについても、同様である。集中制御部40は、図5Aに示すような表を記憶して、逐次更新している。
そして、この空調システムでは、集中制御部40が、空調機A、空調機B、空調機Cおよび空調機D間で、圧縮機12の総運転時間の比較を行って、複数の空調機の中から停止あるいは運転させる空調ユニットを決定する。
図6は、圧縮機12の総運転時間に基づく運転/停止対象空調機の決定制御の制御フローチャート(ステップS1~ステップS10)である。以下、図6を参照しながら温度分布画像について説明する。
(ステップS1)
先ず、集中制御部40は、ステップS1において、部屋Roの設定温度Tsと実際の温度である室内温度Trと差の絶対値│Ts-Tr│がα以下であるか否かを判定し、│Ts-Tr│がα以下であると判定した場合はステップS2へ進み、そうでない場合はこの判定を継続する。
先ず、集中制御部40は、ステップS1において、部屋Roの設定温度Tsと実際の温度である室内温度Trと差の絶対値│Ts-Tr│がα以下であるか否かを判定し、│Ts-Tr│がα以下であると判定した場合はステップS2へ進み、そうでない場合はこの判定を継続する。
(ステップS2)
次に、集中制御部40は、ステップS2において、記憶部401を介して空調機A、空調機B、空調機Cおよび空調機Dそれぞれの圧縮機12の総運転時間データを取得する。取得したデータは、判定部403へ送られる。
次に、集中制御部40は、ステップS2において、記憶部401を介して空調機A、空調機B、空調機Cおよび空調機Dそれぞれの圧縮機12の総運転時間データを取得する。取得したデータは、判定部403へ送られる。
(ステップS3)
次に、集中制御部40は、ステップS3において、判定部403を介して空調機A、空調機B、空調機Cおよび空調機Dそれぞれの圧縮機12の総運転時間を比較し、総運転時間が最長の空調機を選定する。
次に、集中制御部40は、ステップS3において、判定部403を介して空調機A、空調機B、空調機Cおよび空調機Dそれぞれの圧縮機12の総運転時間を比較し、総運転時間が最長の空調機を選定する。
(ステップS4)
次に、集中制御部40は、ステップS4において、判定部403で選定した空調機を停止させる。例えば、判定部403が図5Aの比較評価表に基づき総運転時間の比較を行った結果、空調機Dの圧縮機12の総運転時間Σhcdiが最長であった場合には、決定部405は他の空調機と空調機Dとの圧縮機12の劣化度合の格差を縮めるため、空調機Dの停止を決定し、実行する。
次に、集中制御部40は、ステップS4において、判定部403で選定した空調機を停止させる。例えば、判定部403が図5Aの比較評価表に基づき総運転時間の比較を行った結果、空調機Dの圧縮機12の総運転時間Σhcdiが最長であった場合には、決定部405は他の空調機と空調機Dとの圧縮機12の劣化度合の格差を縮めるため、空調機Dの停止を決定し、実行する。
(ステップS5)
次に、集中制御部40は、ステップS5において、部屋Roの設定温度Tsと室内温度Trと差の絶対値│Ts-Tr│がβ以上であるか否かを判定し、│Ts-Tr│がβ以上であると判定した場合はステップS6へ進み、そうでない場合はこの判定を継続する。
次に、集中制御部40は、ステップS5において、部屋Roの設定温度Tsと室内温度Trと差の絶対値│Ts-Tr│がβ以上であるか否かを判定し、│Ts-Tr│がβ以上であると判定した場合はステップS6へ進み、そうでない場合はこの判定を継続する。
(ステップS6)
次に、集中制御部40は、ステップS6において、停止中の空調機の数Nが2以上であるか否かを判定し、N≧2のときはステップS7へ進み、N≧2でないときはステップS11へ進む。
次に、集中制御部40は、ステップS6において、停止中の空調機の数Nが2以上であるか否かを判定し、N≧2のときはステップS7へ進み、N≧2でないときはステップS11へ進む。
(ステップS7)
次に、集中制御部40は、ステップS7において、停止中の空調機を特定し記憶部401を介してそれらの総運転時間データを取得する。例えば、空調機Aおよび空調機Dが停止している場合、記憶部401を介して空調機Aおよび空調機Dの総運転時間データを取得する。取得したデータは、判定部403へ送られる。
次に、集中制御部40は、ステップS7において、停止中の空調機を特定し記憶部401を介してそれらの総運転時間データを取得する。例えば、空調機Aおよび空調機Dが停止している場合、記憶部401を介して空調機Aおよび空調機Dの総運転時間データを取得する。取得したデータは、判定部403へ送られる。
(ステップS8)
次に、集中制御部40は、ステップS8において、判定部403を介して空調機Aおよび空調機Dの総運転時間を対比し、総運転時間が短い空調機を選定する。ここでは、空調機Aと空調機Dとが停止しているので、例えば、空調機Aの総運転時間Σhcaiが空調機Dの総運転時間Σhcdiよりも短いときは、空調機Aが選定される。
次に、集中制御部40は、ステップS8において、判定部403を介して空調機Aおよび空調機Dの総運転時間を対比し、総運転時間が短い空調機を選定する。ここでは、空調機Aと空調機Dとが停止しているので、例えば、空調機Aの総運転時間Σhcaiが空調機Dの総運転時間Σhcdiよりも短いときは、空調機Aが選定される。
(ステップS9)
次に、集中制御部40は、ステップS9において、判定部403で選定した空調機を起動させる。集中制御部40の決定部405は、空調機Dと空調機Aとの圧縮機12の耐久劣化の格差を縮めるため、空調機Dを起動させずに、空調機Aを起動させることを決定し、それを実行する。
次に、集中制御部40は、ステップS9において、判定部403で選定した空調機を起動させる。集中制御部40の決定部405は、空調機Dと空調機Aとの圧縮機12の耐久劣化の格差を縮めるため、空調機Dを起動させずに、空調機Aを起動させることを決定し、それを実行する。
(ステップS10)
そして、集中制御部40は、ステップS10において、全空調機に対する停止指令の有無を判定し、停止指令が有った場合は空調システムの停止と判断し、制御を終了する。一方、集中制御部40は、全空調機に対する停止指令が無い場合はステップS1に戻って、制御を継続する。
そして、集中制御部40は、ステップS10において、全空調機に対する停止指令の有無を判定し、停止指令が有った場合は空調システムの停止と判断し、制御を終了する。一方、集中制御部40は、全空調機に対する停止指令が無い場合はステップS1に戻って、制御を継続する。
(ステップS11)
図7は、圧縮機12の総運転時間に基づく運転/停止対象空調機の決定制御の制御フローチャート(ステップS11~ステップS17)である。
図7は、圧縮機12の総運転時間に基づく運転/停止対象空調機の決定制御の制御フローチャート(ステップS11~ステップS17)である。
図7において、集中制御部40が、先のステップS6においてN≧2でないと判断してこのステップS11へ進んだ場合、停止中の空調機の数Nが1台であるか否かを判定し、N=1と判定したときはステップS12に進み、N=1でないと判定したときはステップS15へ進む。
(ステップS12)
次に、集中制御部40は、ステップS12において、停止中の空調機を起動させる。ここでは、停止させていた空調機Dを再び起動させ、運転させる。
次に、集中制御部40は、ステップS12において、停止中の空調機を起動させる。ここでは、停止させていた空調機Dを再び起動させ、運転させる。
(ステップS13)
次に、集中制御部40が、ステップS13において、停止中の空調機を起動させてから所定時間が経過したか否かを判定し、所定時間が経過したと判定したときはステップS14へ進み、所定時間が経過していないと判定したときはこの判定を継続する。
次に、集中制御部40が、ステップS13において、停止中の空調機を起動させてから所定時間が経過したか否かを判定し、所定時間が経過したと判定したときはステップS14へ進み、所定時間が経過していないと判定したときはこの判定を継続する。
(ステップS14)
次に、集中制御部40は、ステップS14において、部屋Roの設定温度Tsと室内温度Trと差の絶対値│Ts-Tr│がβ以上であるか否かを判定し、│Ts-Tr│がβ以上であると判定した場合はステップS15へ進み、そうでない場合はこの判定を継続する。ここでは、空調負荷に対して空調能力が不足しているか否かを判断している。
次に、集中制御部40は、ステップS14において、部屋Roの設定温度Tsと室内温度Trと差の絶対値│Ts-Tr│がβ以上であるか否かを判定し、│Ts-Tr│がβ以上であると判定した場合はステップS15へ進み、そうでない場合はこの判定を継続する。ここでは、空調負荷に対して空調能力が不足しているか否かを判断している。
(ステップS15)
次に、集中制御部40は、ステップS15において、記憶部401を介して空調機A、空調機B、空調機Cおよび空調機Dそれぞれの圧縮機12の総運転時間データを取得する。取得したデータは、判定部403へ送られる。ここでは、空調能力の不足分を補うため、圧縮機12の運転周波数を増加させる空調機を選定するための準備をしている。
次に、集中制御部40は、ステップS15において、記憶部401を介して空調機A、空調機B、空調機Cおよび空調機Dそれぞれの圧縮機12の総運転時間データを取得する。取得したデータは、判定部403へ送られる。ここでは、空調能力の不足分を補うため、圧縮機12の運転周波数を増加させる空調機を選定するための準備をしている。
(ステップS16)
次に、集中制御部40は、ステップS16において、判定部403を介して空調機A、空調機B、空調機Cおよび空調機Dそれぞれの圧縮機12の総運転時間を比較し、圧縮機12の総運転時間が最短の空調機を選定する。ここでは、耐久性に余裕のある空調機を選定するために、圧縮機12の総運転時間に基いて適切な空調機を選定する。
次に、集中制御部40は、ステップS16において、判定部403を介して空調機A、空調機B、空調機Cおよび空調機Dそれぞれの圧縮機12の総運転時間を比較し、圧縮機12の総運転時間が最短の空調機を選定する。ここでは、耐久性に余裕のある空調機を選定するために、圧縮機12の総運転時間に基いて適切な空調機を選定する。
(ステップS17)
次に、集中制御部40は、ステップS17において、判定部403で選定した空調機の運転周波数を増加させる。例えば、判定部403が図5Aの比較評価表に基づき総運転時間の比較を行った結果、空調機Bの圧縮機12の総運転時間Σhcbiが最短であった場合には、他の空調機に比べて空調機Bの圧縮機12の耐久性には余裕があるので、決定部405は劣化度合の格差を縮めるため、空調機Bの運転周波数の増加を決定し、実行する。
次に、集中制御部40は、ステップS17において、判定部403で選定した空調機の運転周波数を増加させる。例えば、判定部403が図5Aの比較評価表に基づき総運転時間の比較を行った結果、空調機Bの圧縮機12の総運転時間Σhcbiが最短であった場合には、他の空調機に比べて空調機Bの圧縮機12の耐久性には余裕があるので、決定部405は劣化度合の格差を縮めるため、空調機Bの運転周波数の増加を決定し、実行する。
以上のように、集中制御部40は、空調機を停止させる場合には総運転時間が最長の空調機を優先的に停止させて、他の空調機との比較における圧縮機12の劣化度合の格差を縮める。一方、集中制御部40は、空調機を起動させる場合には総運転時間が最短の空調機を優先的に起動させて、他の空調機との比較における圧縮機12の劣化度合の格差を縮める。
また、全空調機が運転されているにもかかわらず、室内温度Trが設定温度Tsに到達しない場合には、能力不足と判断して、耐久性に余裕があると推定される総運転時間が最短の空調機を優先的に起動させ、他の空調機との比較における圧縮機12の劣化度合の格差を縮める。
(5)変形例
上記実施形態では、単純に圧縮機12の総運転時間に基づいて運転/停止対象空調機の決定制御を行っている。しかし、圧縮機12の実際の総運転時間が同じてあっても、高い運転周波数で長く運転されたものと、低い運転周波数で長く運転されたものとでは、耐久性の劣化は前者の方が進行していると推定されるので、運転周波数で重み付けされた総運転時間で劣化比較を行うこともできる。
上記実施形態では、単純に圧縮機12の総運転時間に基づいて運転/停止対象空調機の決定制御を行っている。しかし、圧縮機12の実際の総運転時間が同じてあっても、高い運転周波数で長く運転されたものと、低い運転周波数で長く運転されたものとでは、耐久性の劣化は前者の方が進行していると推定されるので、運転周波数で重み付けされた総運転時間で劣化比較を行うこともできる。
図5Bは、劣化監視対象部品のパラメータとして、運転周波数に応じて重み付けされた圧縮機12の総運転時間を設定した場合の比較評価表である。図5Bにおいて、説明の便宜上、4台の空調機10A~10Dそれぞれを空調機A、空調機B、空調機C、空調機Dと称している。
また、図5Bでは、左欄に運転周波数帯が上下に記載され、上段から下段に向かって運転周波数の値は大きくなるように記載されている。そして、その右隣に運転周波数に応じた重み付け係数が記載されている。さらに、その右側に空調機ごとに圧縮機12の運転周波数帯別の累積運転時間が記載されている。
例えば、空調機Aについて、圧縮機12の運転周波数fcom1、fcom2、fcom3、fcom4・・・、fcomnそれぞれの単純累積運転時間がhca1、hca2、hca3、hca4・・・、hcanであるとき、重み付けを考慮した累積運転時間はhca1×g1、hca2×g2、hca3×g3、hca4×g4・・・、hcan×giとなる。
そして、図5Bの最下段は、空調機ごとに圧縮機12の運転周波数帯別の累積運転時間を合計した総運転時間が記載されている。総運転時間はΣhcai×gi(但し、i=n)となる。空調機B、空調機C及び空調機Dについても、同様である。また、集中制御部40は、図5Bに示すような表を記憶して、逐次更新している。
なお、集中制御部40が、空調機A、空調機B、空調機Cおよび空調機D間で、圧縮機12の総運転時間の比較を行って、複数の空調機の中から停止あるいは運転させる空調ユニットを決定するフローは図6及び図7と同じであるので、詳細説明は省略する。
(6)特徴
(6-1)
空調システムでは、天井裏空間CSの空調負荷が小さくなり、複数の空調機10A~10Dのいずれかを停止させる際に、圧縮機12の総運転時間の比較において劣化が他の空調機よりも進んでいる空調機を優先的に停止させることによって、空調機間の劣化進行度の平準化を図ることができる。
(6-1)
空調システムでは、天井裏空間CSの空調負荷が小さくなり、複数の空調機10A~10Dのいずれかを停止させる際に、圧縮機12の総運転時間の比較において劣化が他の空調機よりも進んでいる空調機を優先的に停止させることによって、空調機間の劣化進行度の平準化を図ることができる。
また、天井裏空間CSの空調負荷が増加し、停止している複数の空調機10のいずれかを運転させる際に、圧縮機12の総運転時間の比較において劣化が他の空調機よりも進んでいない空調機を優先的に運転させることによって、空調機間の劣化進行度の平準化を図ることができる。
(6-2)
空調システムでは、圧縮機12の実際の累積運転時間が同じてあっても、高い運転周波数で長く運転されたものと、低い運転周波数で長く運転されたものとでは、耐久性の劣化は前者の方が進行しているので、運転周波数で重み付けされた総運転時間で劣化比較を行うことによって、現実とかけ離れた劣化評価となることを回避する。
空調システムでは、圧縮機12の実際の累積運転時間が同じてあっても、高い運転周波数で長く運転されたものと、低い運転周波数で長く運転されたものとでは、耐久性の劣化は前者の方が進行しているので、運転周波数で重み付けされた総運転時間で劣化比較を行うことによって、現実とかけ離れた劣化評価となることを回避する。
(7)その他
上記実施形態又は変形例では、劣化監視対象部品のパラメータとして、圧縮機12の総運転時間、又は運転周波数に応じて重み付けされた圧縮機12の総運転時間を設定したが、必ずしもそれらに限定されるものではない。
上記実施形態又は変形例では、劣化監視対象部品のパラメータとして、圧縮機12の総運転時間、又は運転周波数に応じて重み付けされた圧縮機12の総運転時間を設定したが、必ずしもそれらに限定されるものではない。
(7-1)
例えば、劣化監視対象部品のパラメータとして、圧縮機12の発停回数が設定されてもよい。なぜなら、実際の総運転時間が短い圧縮機12であっても、発停を頻繁に繰り返している圧縮機12は、発停回数の少ない圧縮機12に比べて、耐久性の劣化が進行していると推定されるからである。したがって、発停回数で劣化比較を行うことによって、現実とかけ離れた劣化評価となることを回避する。
例えば、劣化監視対象部品のパラメータとして、圧縮機12の発停回数が設定されてもよい。なぜなら、実際の総運転時間が短い圧縮機12であっても、発停を頻繁に繰り返している圧縮機12は、発停回数の少ない圧縮機12に比べて、耐久性の劣化が進行していると推定されるからである。したがって、発停回数で劣化比較を行うことによって、現実とかけ離れた劣化評価となることを回避する。
(7-2)
また、劣化監視対象部品のパラメータとして、熱源側ファン16のファンモータ16b、或いは室内ファン27のファンモータ27bが設定されてもよい。圧縮機12と同様に、熱源側ファン16のファンモータ16b、或いは室内ファン27のファンモータ27bの総運転時間が長くなればなるほど耐久性の劣化が進行するので、熱源側ファン16のファンモータ16b、或いは室内ファン27のファンモータ27bの総運転時間が長いものを優先的に停止させ、或いは優先的に運転を抑制することによって、空調機間の劣化進行度の平準化を図ることができる。
また、劣化監視対象部品のパラメータとして、熱源側ファン16のファンモータ16b、或いは室内ファン27のファンモータ27bが設定されてもよい。圧縮機12と同様に、熱源側ファン16のファンモータ16b、或いは室内ファン27のファンモータ27bの総運転時間が長くなればなるほど耐久性の劣化が進行するので、熱源側ファン16のファンモータ16b、或いは室内ファン27のファンモータ27bの総運転時間が長いものを優先的に停止させ、或いは優先的に運転を抑制することによって、空調機間の劣化進行度の平準化を図ることができる。
(7-3)
また、劣化監視対象部品のパラメータとして、フィルタ(図示せず)を通過する累計風量が設定されてもよい。空調機10A~10Dは、部屋Roの空気を導入する空気導入口(図示せず)に、空気中の塵埃を除去するフィルタ(図示せず)を有しており、そのフィルタを通過する累計風量が大きければ大きいほど、フィルタの目詰まりは進行していると推定される。それゆえ、当該累計風量が大きいものから優先的にメンテナンスを行うことによって、圧縮機12、熱源側ファン16のファンモータ16b、或いは室内ファン27のファンモータ27bへの負荷を軽減し、耐久性の劣化を抑制することができる。なお、累計風量は室内ファン27のファンモータ27bから推定することもできる。
また、劣化監視対象部品のパラメータとして、フィルタ(図示せず)を通過する累計風量が設定されてもよい。空調機10A~10Dは、部屋Roの空気を導入する空気導入口(図示せず)に、空気中の塵埃を除去するフィルタ(図示せず)を有しており、そのフィルタを通過する累計風量が大きければ大きいほど、フィルタの目詰まりは進行していると推定される。それゆえ、当該累計風量が大きいものから優先的にメンテナンスを行うことによって、圧縮機12、熱源側ファン16のファンモータ16b、或いは室内ファン27のファンモータ27bへの負荷を軽減し、耐久性の劣化を抑制することができる。なお、累計風量は室内ファン27のファンモータ27bから推定することもできる。
(7-4)
集中制御部40に、パラメータの数値を初期化するリセット機能を付加してもよい。なぜなら、複数の空調機10A~10Dのうちのいずれかの空調機の機器、例えば、圧縮機12が交換されているにも拘らず、交換前の圧縮機12の累積運転時間に交換後の圧縮機の運転時間を加算していくことは、誤った劣化評価となるので、リセット機能によってそのような事態を回避することが望ましいからである。
集中制御部40に、パラメータの数値を初期化するリセット機能を付加してもよい。なぜなら、複数の空調機10A~10Dのうちのいずれかの空調機の機器、例えば、圧縮機12が交換されているにも拘らず、交換前の圧縮機12の累積運転時間に交換後の圧縮機の運転時間を加算していくことは、誤った劣化評価となるので、リセット機能によってそのような事態を回避することが望ましいからである。
10 空調機(空調ユニット)
10A~10D 空調機(空調ユニット)
12 圧縮機
13 熱源側熱交換器(凝縮器、蒸発器)
14 膨張弁(減圧機構)
16 熱源側ファン(ファン)
16b ファンモータ
27 室内ファン(ファン)
27a ファンモータ
32 室内熱交換器(凝縮器、蒸発器)
40 集中制御部(制御装置)
401 記憶部
405 決定部
10A~10D 空調機(空調ユニット)
12 圧縮機
13 熱源側熱交換器(凝縮器、蒸発器)
14 膨張弁(減圧機構)
16 熱源側ファン(ファン)
16b ファンモータ
27 室内ファン(ファン)
27a ファンモータ
32 室内熱交換器(凝縮器、蒸発器)
40 集中制御部(制御装置)
401 記憶部
405 決定部
Claims (7)
- 共通空間に対して設けられる複数の空調ユニットによって前記共通空間の温度調節を行う空調システムであって、
複数の前記空調ユニットを制御する制御装置(40)を備え、
前記制御装置(40)は、
前記空調ユニットの構成部品の中から劣化を監視すべきものとして予め選定された部品である劣化監視対象部品、および前記空調ユニットそれぞれの前記劣化監視対象部品について予め決定された劣化に関係するパラメータを記憶する記憶部(401)と、
前記空調ユニット間で、前記パラメータ又は前記パラメータを用いて算出した値に基づく比較を行って、複数の前記空調ユニットの中から停止あるいは運転させる前記空調ユニットを決定する決定部(405)と、
を有する、
空調システム。 - 前記空調ユニットは、圧縮機(12)、凝縮器、減圧機構および蒸発器の順に冷媒を循環させる蒸気圧縮式冷凍サイクルを利用しており、
前記パラメータには、前記圧縮機(12)の累積運転時間が含まれる、
請求項1に記載の空調システム。 - 前記圧縮機(12)の累積運転時間は、前記圧縮機(12)の運転周波数に応じて重み付けされる、
請求項2に記載の空調システム。 - 前記空調ユニットは、圧縮機(12)、凝縮器、減圧機構および蒸発器の順に冷媒を循環させる蒸気圧縮式冷凍サイクルを利用しており、
前記パラメータには、前記圧縮機(12)の発停回数が含まれる、
請求項1に記載の空調システム。 - 前記空調ユニットは、圧縮機(12)、凝縮器、減圧機構および蒸発器の順に冷媒を循環させる蒸気圧縮式冷凍サイクルを利用しており、
前記パラメータには、前記凝縮器又は前記蒸発器に送風するファン(16,27)のファンモータの累積運転時間が含まれる、
請求項1に記載の空調システム。 - 前記空調ユニットは、前記共通空間の空気を導入する空気導入口に、空気中の塵埃を除去するフィルタを有しており、
前記パラメータには、前記フィルタを通過する累計風量が含まれる、
請求項1に記載の空調システム。 - 前記制御装置(40)は、前記パラメータの数値を初期化するリセット機能を有する、
請求項1から請求項6のいずれか1項に記載の空調システム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-041550 | 2017-03-06 | ||
JP2017041550A JP2018146171A (ja) | 2017-03-06 | 2017-03-06 | 空調システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018163882A1 true WO2018163882A1 (ja) | 2018-09-13 |
Family
ID=63447774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/006930 WO2018163882A1 (ja) | 2017-03-06 | 2018-02-26 | 空調システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018146171A (ja) |
WO (1) | WO2018163882A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112682921A (zh) * | 2019-10-17 | 2021-04-20 | 广东美的制冷设备有限公司 | 空调器的控制方法、装置及空调器 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6881492B2 (ja) * | 2019-03-19 | 2021-06-02 | ダイキン工業株式会社 | 装置評価システム及び装置評価方法 |
WO2021224962A1 (ja) * | 2020-05-07 | 2021-11-11 | 三菱電機株式会社 | 空気調和装置 |
CN111981636B (zh) * | 2020-08-13 | 2021-12-14 | 珠海格力电器股份有限公司 | 空调系统控制方法、装置及空调系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1114120A (ja) * | 1997-06-18 | 1999-01-22 | Funai Electric Co Ltd | 集塵装置付き空気調和機及びこれに用いられる記録媒体 |
JP2008057818A (ja) * | 2006-08-30 | 2008-03-13 | Ntt Facilities Inc | 空調システムの運転制御方法 |
JP2010175130A (ja) * | 2009-01-29 | 2010-08-12 | Mitsubishi Electric Corp | 空気調和システム及び空調制御装置 |
JP2010230210A (ja) * | 2009-03-26 | 2010-10-14 | Kanden Energy Solution Co Inc | 空調システムおよび空調制御方法 |
WO2014050195A1 (ja) * | 2012-09-26 | 2014-04-03 | ダイキン工業株式会社 | 制御装置 |
-
2017
- 2017-03-06 JP JP2017041550A patent/JP2018146171A/ja active Pending
-
2018
- 2018-02-26 WO PCT/JP2018/006930 patent/WO2018163882A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1114120A (ja) * | 1997-06-18 | 1999-01-22 | Funai Electric Co Ltd | 集塵装置付き空気調和機及びこれに用いられる記録媒体 |
JP2008057818A (ja) * | 2006-08-30 | 2008-03-13 | Ntt Facilities Inc | 空調システムの運転制御方法 |
JP2010175130A (ja) * | 2009-01-29 | 2010-08-12 | Mitsubishi Electric Corp | 空気調和システム及び空調制御装置 |
JP2010230210A (ja) * | 2009-03-26 | 2010-10-14 | Kanden Energy Solution Co Inc | 空調システムおよび空調制御方法 |
WO2014050195A1 (ja) * | 2012-09-26 | 2014-04-03 | ダイキン工業株式会社 | 制御装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112682921A (zh) * | 2019-10-17 | 2021-04-20 | 广东美的制冷设备有限公司 | 空调器的控制方法、装置及空调器 |
CN112682921B (zh) * | 2019-10-17 | 2022-11-11 | 广东美的制冷设备有限公司 | 空调器的控制方法、装置及空调器 |
Also Published As
Publication number | Publication date |
---|---|
JP2018146171A (ja) | 2018-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6642379B2 (ja) | 空調機 | |
CN107477803B (zh) | 空调器及其控制方法、装置 | |
WO2018163882A1 (ja) | 空調システム | |
JP4173880B2 (ja) | 空気調和システムの除湿制御方法 | |
JP2009121812A (ja) | 圧縮機の運転制御装置及びそれを備えた空気調和装置 | |
JP7142682B2 (ja) | 空気調和システム | |
JP2008175490A (ja) | 空気調和装置 | |
JP2014190600A (ja) | 空気調和装置 | |
JP2014219162A (ja) | 空気調和機 | |
JP6819807B2 (ja) | 空調システム、機械学習装置及び機械学習方法 | |
US10914476B2 (en) | Method for sequencing compressor operation based on space humidity | |
JP6784161B2 (ja) | 空調システム | |
JP2008039388A (ja) | マルチ式空気調和機 | |
JP2006234295A (ja) | マルチ型空気調和装置 | |
JP2023055946A (ja) | 空気調和機 | |
JP2010096479A (ja) | 空気調和機 | |
JP2011202884A (ja) | 冷凍サイクル装置 | |
JP4105413B2 (ja) | マルチ式空気調和機 | |
JP6562139B2 (ja) | 冷凍装置 | |
JP2008116136A (ja) | 空気調和装置 | |
JP6745895B2 (ja) | 空調システム | |
JP4910577B2 (ja) | 逆相検知装置、それを備えた空気調和装置、及び、逆相検知方法 | |
WO2022254825A1 (ja) | 空気調和機 | |
US11698203B2 (en) | Air-conditioning system | |
JP6990260B2 (ja) | 全館空調システム及び建物の空調方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18764771 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18764771 Country of ref document: EP Kind code of ref document: A1 |