WO2007112677A1 - Procédé de préparation d'hormone parathyroïdienne humaine 1-34 - Google Patents

Procédé de préparation d'hormone parathyroïdienne humaine 1-34 Download PDF

Info

Publication number
WO2007112677A1
WO2007112677A1 PCT/CN2007/001025 CN2007001025W WO2007112677A1 WO 2007112677 A1 WO2007112677 A1 WO 2007112677A1 CN 2007001025 W CN2007001025 W CN 2007001025W WO 2007112677 A1 WO2007112677 A1 WO 2007112677A1
Authority
WO
WIPO (PCT)
Prior art keywords
fusion protein
enterokinase
expression
parathyroid hormone
fermentation
Prior art date
Application number
PCT/CN2007/001025
Other languages
English (en)
French (fr)
Inventor
Liming Yang
Renhuai Zhang
Sheji Liu
Yong Yang
Kai He
Bilian Huang
Delin Liu
Original Assignee
Shenzhen Watsin Genetech Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Watsin Genetech Ltd. filed Critical Shenzhen Watsin Genetech Ltd.
Publication of WO2007112677A1 publication Critical patent/WO2007112677A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/635Parathyroid hormone, i.e. parathormone; Parathyroid hormone-related peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site

Definitions

  • the present invention relates to a technique for the preparation of proteins, and in particular to a method for producing human parathyroid hormone 1-34 (hPTH(l-34)) by genetic engineering techniques. Background technique
  • Parathyroid Hormone is synthesized by parathyroid hormone master cells and consists of 84 amino acids. It is increasingly recognized that PTH can increase the number of very active osteoblasts in the synthesis of new bone matrix and can alter gene expression in bone in vivo. PTH also has the effect of lowering blood pressure, regulating vitamin D receptor (VDR) expression, and modulating alkaline phosphatase activity.
  • VDR vitamin D receptor
  • Tregear et al. (Tregear GW et al., Endocrinology, 1973, 93: 1349) demonstrated that PTH exerts a calcium-phosphorus regulatory molecule with only an amino-terminal 1-34 amino acid residue [ ⁇ (1-34)]. However, ⁇ (1-34) does not contain cysteine and is less stable in the body.
  • the expressed fusion protein needs to be purified by inclusion body digestion, dilution and renaturation, and then subjected to ion exchange and reversed phase HPLC chromatography to obtain hPTH (l-34). Therefore, the preparation steps of this type of method are complicated.
  • Chinese Patent Application Publication No. CN1424325A discloses a process for preparing a recombinant human parathyroid hormone precursor peptide and a recombinant human parathyroid hormone 1-34 peptide.
  • the obtained fusion protein was digested and purified to obtain the desired parathyroid hormone 1-34 peptide. Due to the need to make The preparation process disclosed in the patent application is also complicated by double enzyme digestion.
  • Trx Thiroedoxin
  • One aspect of the invention provides a novel method of preparing hPTH (1-34).
  • the method comprises the following steps: (1) expressing an expression vector capable of expressing a fusion protein from the N-terminus to the C-terminus is a Trx-(His) 6 -Enterokinase recognition site-parathyroid hormone 1_34 a peptide; (2) purifying the fusion protein obtained in the step (1) by nickel ion chelation affinity chromatography; and (3) digesting the fusion protein obtained by the step (2) with enterokinase to cleave the parathyroid The gland hormone 1-34 peptide is released from the fusion protein.
  • hPTH (l-34) can be purified quickly, simply and efficiently, which greatly improves the recovery rate.
  • the method of the present invention preferably further comprises the following steps: (4) The mixture obtained by the step (3) is subjected to chromatography on an anion exchange column to collect a penetrating protein solution; (5) the penetrating protein solution collected in the step (4) is subjected to a reverse phase chromatography column to collect an elution peak. And (6) passing the protein solution obtained in the step (5) through the cation exchange column.
  • the enterokinase recognition site-parathyroid hormone 1-34 peptide of the fusion protein is encoded by the following nucleotide sequence -
  • an E. coli expression vector system or a yeast expression system may be used. If an E. coli expression system is used, an expression vector capable of expressing the fusion protein is first constructed.
  • the present invention utilizes a commercially available purchase
  • the resulting expression vector pET32a(+) was inserted into the nucleotide sequence encoding human PTH (1-34) downstream of the thioredoxin (Trx) gene contained in the commercially available vector, and the resulting expression vector was named pET. -PTH (l-34).
  • the step (1) is carried out under the following conditions: Escherichia coli BL21 (DE3) containing the expression vector pET-PTH (1-34) is fermented in at least one medium selected from the group consisting of LB, TB and M9CA
  • the fermentation temperature is 30-40 ° C
  • the pH of the fermentation broth is 6.5-7.5
  • OD 6 () r4.0
  • IPTG was added to the medium at a final concentration of 0.3-1.0 mM, and induction was induced, and the fermentation induction time was 3-5 hours.
  • enterokinase is added in a ratio of 1 U of enterokinase cleavage of 5 mg of the fusion protein.
  • the digestion step is carried out under the following conditions: lmg/mL fusion protein,
  • Figure 1 is a restriction map of the recombinant expression plasmid pET-PTH (l-34).
  • M DNA molecular weight standard (X DNA/Hand lll, molecular weight is shown on the left); 1.
  • Recombinant plasmid pET-PTH (l-34) 2.
  • Recombinant plasmid pET- PTH(l-34) was digested with EcoR I; 3.
  • pET32a(+) plasmid DNA was digested with Pst I; 4.
  • Recombinant plasmid pET-PTH (l-34) was digested with Pst I.
  • Figure 2 shows the results of forward sequencing of the recombinant plasmid pET-PTH (l-34).
  • Figure 3 shows the results of reverse sequencing of the recombinant plasmid pET-PTH (l-34).
  • Figure 4 is a SDS-PAGE electropherogram of expression screening of recombinants.
  • M is the protein molecular weight standard (molecular weight size is shown on the left);
  • lane 1 shows the results of pre-induction sampling;
  • lanes 2-9 show the results of induced expression of recombinants 1-8, respectively.
  • Figure 5 shows the SDS-PAGE electrophoresis analysis of the engineered bacteria after fermentation.
  • M is the molecular weight standard of the protein, and the molecular weight of each band (kDa) is shown on the left; Lane 1 shows the collected fermenting cells; Lane 2 shows the cells before IPTG induction.
  • FIG. 6 SDS-PAGE electrophoresis analysis of purified samples of each step of rhPTH (l-34).
  • Fig. 6 1, fermenting bacteria; 2. centrifugation supernatant after sterilizing; 3. nickel ion chelate affinity chromatography sample; 4, fusion protein enterokinase digestion sample; 5, Q Sepharose High Performance column layer Analysis of the sample; 6, reversed-phase column chromatography sample; 7, SP Sepharose Fast Flow column chromatography sample; M, is the molecular weight standard of the protein, and the molecular weight of each band (kDa) is shown on the right.
  • Figure 7 is a RP-HPLC analysis map of rhPTH (l-34).
  • Figure 8 is a mass spectrometry spectrum of rhPTH (l-34).
  • Figure 9 is a map showing the commercially available pET32a(+) plasmid.
  • Figure 10 is a synthetic DNA sequence containing the coding sequence for rhPTH (l-34).
  • 5'-CTG and AAG-3' are the bases for protecting the enzyme
  • GGTACC is the Kpn I restriction site
  • GACGACGACGACAAG is the coding sequence for the enterokinase restriction site.
  • GACGTTCACAACTTC is the sequence encoding ⁇ , ⁇ is the stop codon,
  • GTCGAC is a Sal I restriction site.
  • the expression vector can be constructed by inserting a DNA sequence encoding hFTH (l-34) into the downstream of the Trx gene under the control of a promoter.
  • Trx is a protein commonly found in yeast, bacteria, animals, and plants. This protein is also an endogenous protein of the currently used hPTH (l-34) expression host such as yeast or Escherichia coli. This protein regulates the balance of protein folding and aggregation processes in cells.
  • Trx interacts with many proteins to enhance the solubility of fusion proteins, thereby reducing the formation of inclusion bodies (Thomas, JG et al, Appl Biochem Biotechnol. 66 (3): 197-238).
  • the complete Trx may be used in the present invention, or a part of Trx or a mutant thereof may be used, and the selected portion or mutant has the same or similar spatial structure and function as Trx.
  • the expression vector of the present invention may be an expression vector of yeast or an expression vector of Escherichia coli.
  • the hPTH (1-34) may be a completely synthetic new DNA sequence or a DNA sequence encoding hPTH (l-34) which has been disclosed.
  • a cloning vector which already contains the Trx gene or a partial sequence thereof. This carrier is also available for purchase.
  • pET32a(+) is such a vector.
  • Trx-Tag polypeptide after insertion of the foreign gene into its multiple cloning site, produces a fusion protein containing cleavable Trx-Tag and S-Tag sequences for easy detection and purification.
  • hPTH(l-34) In order to release hPTH(l-34) from the fusion protein in a subsequent step, it is preferred to introduce a proteolytic enzyme recognition site nucleotide sequence at the 5' end of the DNA sequence encoding hPTH(l-34).
  • the proteolytic enzyme may be thrombin, Ke X 2-600, proline endopeptidase, enterokinase. Enterokinase is preferred because it is capable of hydrolyzing the fusion protein at the C-terminus of the recognition site.
  • hPTH(l-34) it is more preferred to directly follow the coding sequence of hPTH(l-34) at the nucleotide sequence encoding the enterokinase recognition site, such that enterokinase can completely and accurately release the final desired hPTH (l-34). come out. If a DNA sequence encoding hPTH (l-34) is artificially synthesized, in order to facilitate cloning, it is necessary to introduce an appropriate restriction enzyme cleavage site at the 5' and 3' ends of the sequence when artificially synthesizing the DNA sequence. point.
  • a sequence which facilitates purification can be inserted at a suitable position of the fusion protein, and for example, a His-Tag is preferably inserted at the N-terminus or C-terminus of the Trx used.
  • the commercially available vector pET32a(+) not only has the gene of Trx, but also has a His-Tag upstream of the gene.
  • the present invention also provides a large-scale, high-efficiency hPTH (l-34) expression method.
  • hPTH high-efficiency hPTH
  • a suitable host such as yeast cells or E. coli cells
  • competent cells of a suitable host such as yeast cells or E. coli cells
  • the host cell used in a specific embodiment of the present invention is commercially available E. coli BL21 (DE3). Both the intracellular and intercellular proteases of the cells have been inactivated, so that when the soluble expression of the foreign protein is carried out, it is not easily hydrolyzed by the protease of the host bacteria, and thus can be stably present.
  • the pET series vector is such a type of E. coli expression vector.
  • the vector is an E. coli expression vector constructed using the T7 phage RNA polymerase/promoter system, ie, the T7 RNA polymerase gene is integrated on the chromosome of E. coli BL21 (DE3) or JM109 (DE3), and is manipulated by lac Sub-regulation. Therefore, when induced by IPTG, it leads to the synthesis of T7 RNA polymerase, thereby inducing expression of the gene of interest on the pET vector.
  • T7 phage RNA/promoter has strong priming activity and is in the vector multiple cloning sequence There is a strong ribosome binding sequence (rbs) upstream, so the pET vector can efficiently express foreign proteins.
  • the fermentation medium described will vary from host to host.
  • the fermentation medium may be LB, TB, M9CA or the like, preferably TB medium.
  • the fermentation temperature is 30-40 ° C, preferably 37 ° C; pH 6.5-7.5, preferably pH 7.0; dissolved oxygen DO ⁇ 30%, the final concentration of IPTG for induction is 0.3-1.
  • OmM preferably 0.5 mM
  • the induction time is 3-5 h, preferably 3.5-4 h. Under the above suitable conditions, the concentration of the fermentation broth can reach 30 g of the bacterial wet weight / L fermentation broth, and the target fusion protein expression level is above 25%.
  • the intracellular secreted fusion protein is firstly dissolved in the lysate by high-pressure homogenization, and then purified by nickel ion chelate affinity chromatography for preliminary purification.
  • the sample is digested with enterokinase, and the digested sample is chromatographed with an anion exchange column, the penetrating protein solution is collected, the penetrating protein solution is passed through a reverse phase chromatography column, and finally the sample is removed from the cation exchange column to obtain an organic solvent.
  • rhPTH (l-34) protein stock solution By this method, about 2000 g of wet weight bacteria can be obtained in 70 liters of the fermentation broth, and about 3.5 g of rhPTH (l-34) polypeptide stock solution can be obtained by purification.
  • rhPTH (l-34) prepared by the invention has a significant promoting effect on osteoblast formation, and the safe dose is 15 ⁇ / kg. Therefore, the preparation of the invention rhPTH (l-34) is safe and effective for human therapy.
  • hPTH(l-34) is fused with a hydrophilic Trx-segment sequence, and the fusion protein is expressed in a soluble form in the cell, thereby avoiding a complicated step of the inclusion body and a low yield.
  • the N-terminal of the fusion protein contains His-Tag, which can be quickly, easily and efficiently purified by Ni 2+ and affinity chromatography, which greatly improves the recovery rate.
  • An enterokinase cleavage site exists between Trx and hPTH (l-34) to ensure that the purified fusion protein is cleaved by enterokinase to release intact hPTH (l-34).
  • the expressed fusion protein was decomposed by enterokinase, and the target protein hPTH (l-34) was purified by a series of column chromatography, and the purity was over 99%, even 100%.
  • Example 1 Design and Synthesis of DNA Sequences Expressing hPTH(l-34) According to the amino acid sequence of hPTH(l-34) (see Table 1), artificially optimized for E. coli expression based on E. coli codon preference DNA sequence.
  • the Kpn I restriction site GGTACC was introduced at the 5' end of the gene, and the stop codon ⁇ and the Sal I restriction site GTCGAC were introduced at the 3' end, and introduced at the 5' end.
  • Plasmid pUC18 contains the same Kpn l and Sail restriction sites as plasmid pET32a( + ). hPTH(l-34) codon usage table
  • the following molecular cloning technique methods refer to the literature: Guide to Molecular Cloning Experiments (translated by Huang Peitang et al., [US] Sambrook et al., Science Press, 2002).
  • the DNA extraction kit (UNIQ-10), the DNA gel recovery kit (UNIQ-10) and the connection kit used in DNA manipulation were purchased from Shanghai Shenggong Bioengineering Technology Service Co., Ltd.
  • the cloning vector pUC 18 and restriction endonuclease were purchased from Fermentas Life Science.
  • the expression vector pET32a(+), E. coli TOP10 and BL21 (DE3) were purchased from Novagen.
  • the cloned E. coli host was TOP10, and the expression was E.
  • the pUC18 plasmid DNA containing the hPTH(l-34) coding sequence was extracted with a DNA extraction kit, and digested with Kpn I /Sal I, and the small fragment was separated by electrophoresis on a 1% agarose gel, and the fragment containing about 130 bp was excised.
  • the gel was recovered from the gel DNA recovery kit by a fragment of about 130 bp, and verified by electrophoresis.
  • the pET32a(+) plasmid DNA was extracted with DNA extraction kit, digested with Kpn I /Sal I, and the large fragment was separated by 1% agarose gel electrophoresis. The gel containing the large fragment was excised and recovered by gel DNA. The kit recovers large fragments and is ready for electrophoresis.
  • the ligated product was transformed into E. coli TOP10 competent cells, and plated on LB agarose plate (1% peptone, 0.5% yeast extract, 1% NaCl, 2% agar) containing 100 g/ml Amp, and cultured overnight at 37 ° C. .
  • C was cultured overnight, and plasmid DNA was extracted using a DNA extraction kit.
  • the extracted DNA was digested with EcoR I and Pst l, respectively, and then subjected to 1% agarose gel electrophoresis to identify recombinants.
  • the recombinant plasmid pET-PTH (l-34) was sequenced and verified. The results of forward sequencing are shown in Figure 2, and the results of reverse sequencing are shown in Figure 3.
  • the nucleotide sequence of the linker-parathyroid hormone 1-34 peptide encoding the fusion protein Trx-containing (His) 6 and the enterokinase recognition site is as follows:
  • the sequence consisting of non-black uppercase letters is a Trx coding sequence
  • the sequence consisting of lowercase letters is a linker peptide coding sequence comprising a Trx-containing (His) 6 and a protease recognition site coding region
  • the underlined italicized portion is ( His) 6 coding region
  • the double-lined portion is the coding region of the enterokinase recognition site
  • the sequence consisting of uppercase letters in bold is the hPTH(l-34) DNA sequence
  • the TAA in italics is the stop codon.
  • Escherichia coli BL21 (DE3) was transformed with the recombinant plasmid pET-PTH(l-34) DNA, and the obtained genetically engineered strain for expressing the rhPTH(l-34) fusion protein was obtained.
  • Eight single colonies were picked and cultured in 5 ml of LB medium (1% peptone, 0.5% yeast extract, 1% NaCl) containing 100 g/ml Amp overnight at 37 ° C, and transferred to 50 ml at a volume of 1/100.
  • 37 Q C was cultured in LB medium containing 100 g/ml Amp, and the remaining bacterial solution was frozen in 15% glycerol.
  • the fermenting cells of Example 4 were collected using a continuous flow centrifuge (CEPA Z41, B. Braun, Germany) using Buffer A (10 mM PBS (phosphate buffer), 500 mM NaCl, 30 mM imidazole, pH 8.0). Suspended, then use APV-1000 high pressure slurry The machine (APV Co. Denmark) was sterilized, and the secreted fusion protein was dissolved in buffer A and centrifuged at 9000 rpm for 30 min. The supernatant was taken and the rhPTH (l-34) was purified by the following method:
  • the high-pressure homogenate supernatant was placed on a column of Chelting Sepharose Fast Flow (GE Healthcare) equilibrated with buffer A, buffer A was thoroughly washed, and buffer B (10 mM PB) was used. 5 500 mM NaCl, 200 mM imidazole, pH 8.0) was eluted, and the eluted peak was collected to obtain a fusion protein sample.
  • the digestion reaction solution was prepared and its composition was as follows: lmg/mL fusion protein, 50 mM
  • Tris-HCl pH 8.0
  • enterokinase in addition to enterokinase in a ratio of 1 U of enterokinase cleavage of 5 mg of fusion protein.
  • the enzyme was digested at 25 °C for 20 hours.
  • the digested protein solution was applied to a Q Sepharose High Performance (GE Healthcare) column equilibrated with buffer C (50 mM Tds-HCl, pH 8.0).
  • buffer C 50 mM Tds-HCl, pH 8.0.
  • the theoretical isoelectric point of rhPTH(l-34) is 8.29, which is positively charged at pH 8.0 and does not bind to the anion exchange column.
  • the heteroprotein is bound to the anion exchange column due to negative charge.
  • the penetrating solution was collected to obtain a rhPTH(l-34) protein sample with a purity of 95% or more.
  • the ruthenium (1-34) protein sample purified by ion exchange column chromatography as described above was finely purified using a reverse phase column Source 15RPC (GE Healthcare), and eluted with a gradient of 24-64% ethanol at 40 The elution peak of rhPTH(1-34) protein appeared in -60% ethanol, and the purity reached 98% or more.
  • the sample eluted from the reverse phase column was diluted with buffer D (10 mM PB, pH 7.0), and applied to a SP Sepharose Fast Flow (GE Healthcare) column equilibrated with buffer D. After buffer D was thoroughly washed, Elution with buffer D containing 400 mM NaCl yielded a rhPTH(l-34) protein with a purity greater than 99%.
  • Non-reducing electrophoresis was performed using a Tris-Tricine SDS-PAGE system (Guo Junjun, Protein Electrophoresis Experimental Technology, Science Press, 1999), and the purity of rhPTH (l-34) was determined by Bio-Rad Gel Doc 2000 gel imaging system. 100% (see the seventh lane in Figure 6).
  • the purity of proteins and peptides is determined by HPLC, and the accuracy is high and the retention time can also be used as an indicator of qualitative.
  • the column was Delta-Pak C18 5 ⁇ 3.9 ⁇ 150 (Waters Co.), buffer A (0.1% trifluoroacetic acid (TFA) in 95% dH 2 O and 5% acetonitrile) to buffer B (0.1%) TFA, in 95% and 5% dH 2 0) Linear gradient elution for 70 min, flow rate 1 ml/min, 220 nm UV detection.
  • the analysis results show that the H LC spectrum of rhPTH(l-34) prepared by the above process is a single peak with a purity of 100%.
  • the results of the RP-HPLC analysis are shown in Figure 7.
  • N-terminal 15 amino acid sequence of rhPTH(l-34) was purified by the Edman degradation method according to Example 5: Ser-Val-Ser-Glu-Ile-Gln-Leu-Met-His-Asn
  • the purified rhPTH (l-34) was subjected to mass spectrometry using a Finnigan LCQ-Classic mass spectrometer, and the molecular weight of rhPTH (l-34) was determined to be 4117.5 Da (see Figure 9). Consistent with the theoretical value of rhPTH(l-34) (4118.8 Da).
  • the endotoxin content of the prepared rhPTH (l-34) sample was not higher than 10 EU/20 g by the sputum reagent method according to the "Chinese Biological Products Regulations” (2000 version). rhPTH (l-34). According to the “Chinese Biological Products Regulations” (2000 edition) "Bioproducts Thermal Test Procedures", the rabbits were used to determine their pyrogens as negative. Test Example 2 Determination of PTH activity UMR-106-01 cells (purchased from ATCC) were seeded in 96-well cell culture plates at an inoculum of 1 2 X 10 5 cells/mL, ⁇ wells, and incubated at 37 ° C, 5% CO 2 overnight.
  • the cells were washed once with serum-free medium and added to the medium (containing 20 mM Hepes, 0.1% bovine serum albumin, 0.2 mM IBMX (3-isobutyl-1-methylxanthine, Sigma), pH 7.4) 180 ⁇ Then add 20 ⁇ to dilute to different concentrations of hPTH (l-34) and its standard (purchased from the WHO Biological Products Standards Laboratory (NIBSC)), and set the control with and without IBMX. Double wells, incubated at 37 ° C, 5% CO 2 for 45 min.
  • the model of primary osteoporosis was established by ovanceclomiwd (OVX) method. After 8 weeks of treatment with rhPTH (l-34), bone mass, bone biomechanics, bone morphometry and bone metabolism related blood were observed. Urine biochemical indicators comprehensively evaluate its therapeutic effect. The results showed that:
  • rhPTH (l-34) has obvious therapeutic effects on OVX-induced osteoporosis rats.
  • rhHTH (l-34) was observed to increase blood calcium and phosphorus at 4 h after injection, and it was normal after 24 h.
  • rhPTH(l-34) significantly promotes osteoblast formation and has a significant therapeutic effect on osteoporotic rats.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Endocrinology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

制备人甲状旁腺素 1-34的方法 技术领域
本发明涉及蛋白质的制备技术, 具体地讲, 涉及利用基因工程技 术制备人甲状旁腺素 1-34 ( hPTH(l-34)) 的方法。 背景技术
甲状旁腺激素 (Parathyroid Hormone, PTH)是由甲状旁腺激素主 细胞合成的, 由 84个氨基酸组成。 人们逐渐认识到 PTH能够增加在 合成新骨基质中非常活跃的成骨细胞的数量, 并且能在体内改变骨骼 中的基因表达。 PTH还具有降低血压、 调节维生素 D受体 (VDR) 表达、 调节碱性磷酸酯酶的活性的作用。 Tregear等 (Tregear GW等, Endocrinology, 1973,93 : 1349 ) 用实验证明 PTH发挥钙磷调节分子作 用仅需氨基端 1-34个氨基酸残基 [ΡΤΗ(1-34)]。 但是, ΡΤΗ(1-34)不含 半胱氨酸, 在体内较不稳定。
PTH的基因工程研究开始于 20世纪 80年代。目前制备 ΡΤΗ(1-34) 的基因工程方法主要有两类, 一类为以包涵体的形式制备, 另一类以 可溶蛋白的形式制备。 1997年, 日本科学家 Yuji Suzuki等将人甲状 旁腺素(hPTH(l-34) )与 β -半乳糖苷酶融合表达, 但融合蛋白以包涵 体形式存在。中国专利公开号 CN1417231A也公开了一种以包涵体的 形式制备 hPTH(l-34)的方法。在这一类的方法中, 表达出的融合蛋白 需经包涵体提取、 稀释复性、 酶切, 然后进行离子交换、 反相 HPLC 层析等手段进行纯化, 才能得到 hPTH(l-34), 因而这一类方法的制备 步骤较为复杂。
中国专利申请公开号 CN1424325A 公开了一种重组人甲状旁腺 素前体肽以及重组人甲状旁腺素 1-34 肽的制备工艺。 为了制备该甲 状旁腺素 1-34肽,需要先使工程菌表达出 GST-Gly-Ser-Pro-PTH(l-34) 这一融合蛋白, 再先后用凝血酶和脯氨酸内肽酶对所得融合蛋白进行 酶切, 再经分离纯化后得到所需的甲状旁腺素 1-34 肽。 由于需要使 用双酶切, 该专利申请公开的制备工艺也较为复杂。
人们早已知道硫氧还蛋白(Thiroedoxin,下文有时简称为" Trx" ) 是一种普遍存在于酵母、 细菌、 动物、 植物体内的蛋白质, 该蛋白质 也是目前常用的 ΡΤΗ(1-34)表达宿主例如酵母或大肠杆菌的内源蛋 白, 但是至今还没有人利用该蛋白与 ΡΤΗ(1-34)融合来简便地制备 hPTH(l-34)。 发明内容
本发明的一个方面提供了一种新的制备 hPTH(l-34)方法。该方法 包括如下步骤: (1 ) 使能表达融合蛋白的表达载体进行表达, 所述 融合蛋白从 N端到 C端的序列为 Trx -(His)6 -肠激酶识别位点-甲状旁 腺激素 1_34 肽; (2) 用镍离子螯合亲和层析对步骤 (1 ) 得到的融 合蛋白进行纯化; 以及 (3 ) 将步骤 (2) 纯化得到的融合蛋白用肠激 酶酶切, 以将甲状旁腺激素 1-34 肽从所述融合蛋白中释放下来。 利 用本发明的方法, 可快速、 简便、 高效地纯化 hPTH(l-34), 大大提高 了回收率。
为了得到 hPTH(l-34)多肽纯品, 在如上所述利用肠激酶将 hPTH(l-34)从所述融合蛋白中释放下来后, 本发明的方法还优选进一 步包括如下步骤: (4) 对步骤 (3 ) 酶切得到的混合物用阴离子交换 柱进行层析, 收集穿透蛋白溶液; (5 ) 使步骤 (4 ) 收集得到的穿透 蛋白溶液过反相层析柱, 收集洗脱峰; 以及 (6 ) 将步骤 (5 ) 得到的 蛋白溶液过阳离子交换柱。
在本发明的一个具体的实施例中,所述融合蛋白中肠激酶识别位 点 - 甲 状 旁 腺 激素 1-34 肽 由 下 列 核 苷 酸序 列 编 码 -
Figure imgf000003_0001
GTAAAAAACTGCAGGACGTTCACAACTTC。
在所述步骤 (1 ) 中, 可以使用大肠杆菌表达载体体系, 也可以 使用酵母表达体系。 如果使用大肠杆菌表达体系, 先构建能表达融合 蛋白的表达载体。 在一个具体的实施例中, 本发明利用了可自市售购 得的表达载体 pET32a(+), 将编码人 PTH ( 1-34) 的核苷酸序列插入 到该市售载体所含的硫氧还蛋白 (Trx)基因的下游,所得表达载体被命 名为 pET-PTH(l-34)。 优选所述步骤(1 ) 是在如下条件下完成的: 将 含有表达载体 pET-PTH(l-34)的大肠杆菌 BL21(DE3)在至少一种选自 LB、 TB和 M9CA的培养基中发酵; 发酵温度为 30-40°C, 发酵液 pH 为 6.5-7.5 以及发酵溶氧 DO≥30%。 当培养至 OD6()(r4.0时, 向培养基 中加入终浓度为 0.3-1.0mM 的 IPTG, 幵始诱导表达, 发酵诱导时间 为 3-5小时。
在所述步骤 (2 ) 中, 按 1U肠激酶切割 5mg融合蛋白的比例加 入肠激酶。 优选该酶切步骤在下列条件下完成: lmg/mL 融合蛋白,
50 mM Tris-HCl (pH8.0), 1 mM CaCl2, 约 25 °C, 酶切约 20小时。 附图说明
图 1为重组表达质粒 pET-PTH(l-34)酶切鉴定图谱。 图 1中, 各 泳道代表的内容为: M、 DNA分子量标准 ( X DNA/ Hand lll, 分子 量大小标于图左) ; 1、 重组质粒 pET-PTH(l-34) ; 2、 重组质粒 pET-PTH(l-34)经 EcoR I酶切; 3、 pET32a(+)质粒 DNA经 Pst I酶 切; 4、 重组质粒 pET-PTH(l-34)经 Pst I酶切。
图 2为重组质粒 pET-PTH(l-34)正向测序结果。
图 3为重组质粒 pET-PTH(l-34)反向测序结果。
图 4为重组子的表达筛选的 SDS-PAGE电泳图。 图 4中, M、 为蛋白质分子量标准(分子量大小标于图左) ; 泳道 1显示的是诱导 前取样结果; 泳道 2-9分别显示的是 1-8号重组子诱导表达结果。
图 5工程菌发酵表达后的 SDS-PAGE电泳分析。 图 5中, M、 为蛋白质分子量标准, 各条带分子量大小 (kDa) 标于图左; 泳道 1 显示的是收集的发酵菌体; 泳道 2显示的是 IPTG诱导前菌体。
图 6 rhPTH(l-34)各步纯化样品的 SDS-PAGE电泳分析。图 6中, 1、 发酵菌体; 2、破菌后离心上清; 3、镍离子螯合亲和层析样品; 4、 融合蛋白的肠激酶酶切样品; 5、 Q Sepharose High Performance柱层 析样品; 6、反相柱层析样品; 7、 SP Sepharose Fast Flow柱层析样品; M、 为蛋白质分子量标准, 各条带分子量大小 (kDa) 标于图右。 图 7是 rhPTH(l-34)的 RP-HPLC分析图谱。
图 8是 rhPTH(l-34)的质谱分析图谱。
图 9是显示市售的 pET32a(+)质粒图谱。
图 10是人工合成的含有 rhPTH(l-34)编码序列的 DNA序列。其 中, 5'-CTG和 AAG-3'为酶切保护碱基, GGTACC 为 Kpn I酶切位 点, GACGACGACGACAAG 为肠激酶酶切位点编码序列,
Figure imgf000005_0001
GACGTTCACAACTTC 为编码 ΡΤΗ 的序列, ΤΑΑ 为终止密码子,
GTCGAC为 Sal I酶切位点。 具体实施方式
为了获得本发明的融合蛋白, 需要先构建能够表达该融合蛋白 的表达载体。该表达载体可以通过将编码 hFTH(l-34)的 DNA序列插 入到受启动子控制下的 Trx基因的下游而构建完成。如背景技术部分 所述, Trx是一种普遍存在于酵母、 细菌、 动物、 植物体内的蛋白质, 该蛋白质也是目前常用的 hPTH(l-34)表达宿主例如酵母或大肠杆菌 的内源蛋白。 该蛋白可在细胞内调节蛋白质的折叠和聚集过程的平 衡, Trx能与许多蛋白发生相互作用, 增强融合蛋白的溶解性, 从而 减少了包涵体的形成 (Thomas, J.G.等, Appl Biochem Biotechnol. 66(3): 197-238 ) 。 在本发明中可以使用完整的 Trx, 也可以使用 Trx 的一部分或其突变体,所选取的部分或突变体具有与 Trx相同或相似 的空间结构和功能。
本发明的表达载体可以是酵母的表达载体, 也可以是大肠杆菌 的表达载体。所述的 hPTH(l-34)可以是完全人工合成的新 DNA序列, 也可以为已经公开的编码 hPTH(l-34)的 DNA 序列。 为了将编码 hPTH(l-34)的 DNA序列插入 Trx基因的下游, 优选使用已经含有所 述 Trx基因或其部分序列的克隆载体。 这种载体也可通过购买得到。 例如, pET32a(+)就是这样一种载体。 pET32a(+)可以高效表达含有 109个氨基酸的 Trx-Tag的多肽, 外源基因插入其多克隆位点后, 产 生的融合蛋白含有可剪切的 Trx-Tag和 S-Tag序列, 便于检测和纯 化。
为了在后续步骤中将 hPTH(l-34)从融合蛋白上释放下来, 优选 在编码 hPTH(l-34)的 DNA序列的 5'端引入编码蛋白水解酶识别位点 核苷酸序列。 所述蛋白水解酶可以为凝血酶、 KeX2-600、 脯氨酸内肽 酶、 肠激酶。 肠激酶是优选的, 因为该酶能够在识别位点的 C 末端 水解融合蛋白。 因此, 更优选在编码肠激酶识别位点的核苷酸序列的 后面直接跟着 hPTH(l-34)的编码序列, 这样肠激酶可以将最终所需 的 hPTH(l-34)完整、 准确地释放出来。 如果采用人工合成编码 hPTH(l-34)的 DNA序列的话, 为了便于克隆, 在人工合成所述 DNA 序列时, 还需要在该序列的 5'端和 3'端引入适当的限制性酶切位点。 为了便于日后的纯化,可在融合蛋白的适当位置上插入便于纯化的序 列, 例如优选在所用 Trx的 N端或 C端插入 His-Tag。 市售的载体 pET32a(+)中不但具有 Trx 的基因, 而且在该基因的上游还具有 His-Tag。
本发明还提供了一种大规模、 高效的 hPTH(l-34)表达方法。 为 了大量制备 hPTH(l-34), 需要将构建的重组表达载体转化适当宿主 的感受态细胞, 例如酵母细胞或大肠杆菌细胞, 并在适当的培养基中 进行发酵, 以收获融合蛋白。在本发明的一个具体实施例中采用的宿 主细胞是可市售得到的 E. coli BL21 ( DE3 ) 。 该细胞的胞内和胞间 周质蛋白酶均已失活, 这样当进行外源蛋白的可溶性表达时, 不容易 被宿主菌的蛋白酶水解, 因而可稳定存在。
为了在发酵期间进行有效的控制, 通常建议可诱导型的表达载 体。 pET 系列载体就是这样一类大肠杆菌表达载体。 该载体是利用 T7噬菌体 RNA聚合酶 /启动子系统构建的 E. coli表达载体, 即在 E. coli BL21 ( DE3 ) 或 JM109 ( DE3 ) 的染色体上整合了 T7 RNA聚合 酶基因, 而且受 lac操纵子调控。 所以, 当用 IPTG诱导时, 导致 T7 RNA聚合酶的合成, 从而诱导了 pET载体上目的基因的表达。 T7噬 菌体 RNA/启动子具有很强的启动活性, 而且在载体多克隆位点序列 上游有强核蛋白体结合序列 (rbs ) , 所以, pET 载体可以高效地表 达外源蛋白。
所述的发酵培养基根据宿主的不同而异。 在选用大肠杆菌为宿 主, 以 pET系列载体为表达载体的情况下, 发酵培养基可以为 LB、 TB、M9CA等,优选为 TB培养基。发酵温度为 30-40°C,优选为 37°C; pH6.5-7.5 , 优选为 pH 7.0; 溶氧 DO≥30%, 诱导用的 IPTG终浓度为 0.3-1. OmM, 优选为 0.5mM; 诱导时间为 3-5h, 优选为 3.5-4h。 在上 述适宜的条件下, 可使发酵液浓度达到 30g细菌湿重 /L发酵液以上, 目的融合蛋白表达量在 25%以上。
为了得到 rhPTH(l-34)多肽纯品, 首先用高压匀浆破菌法将胞内 分泌的融合蛋白溶于裂解液中;然后用镍离子螯合亲和层析进行初步 纯化, 将初步纯化后的样品用肠激酶酶切, 酶切后的样品用阴离子交 换柱进行层析, 收集穿透蛋白溶液, 将穿透蛋白溶液过反相层析柱, 最后将样品过阳离子交换柱除去有机溶剂得到 rhPTH(l-34)蛋白原 液。 利用该方法, 70升发酵液可得约 2000g湿重菌体, 通过纯化可 得到约 3.5g rhPTH(l-34)多肽原液。
临床前药效学试验、 毒理学试验研究表明: 本发明制备的 rhPTH(l-34)皮下注射具有显著促进成骨细胞骨形成作用, 其安全剂 量为 15 μο/kg . 因此, 本发明制备的 rhPTH(l-34)用于人体治疗是安 全有效的。
本发明将 hPTH(l-34)与亲水性的 Trx—段序列融合, 该融合蛋 白在胞内以可溶形式表达,避免了工艺复杂且收率较低的包涵体复性 步骤。 融合蛋白 N端含 His-Tag, 可以通过 Ni2+鳌和亲和层析快速、 简便、 高效地纯化, 大大提高了回收率。 Trx与 hPTH(l-34)间存在肠 激酶切割位点, 保证纯化的融合蛋白经肠激酶切割可以释放完整的 hPTH(l-34)。 采用肠激酶将表达出的融合蛋白酶解, 并利用一系列的 柱层析将目的蛋白 hPTH(l-34)纯化出来, 纯度可达到 99 %以上, 甚 至达到 100 %。
以下将以大肠杆菌作为宿主的例子, 通过具体实施例的方式, 对本发明进行举例说明,但应当理解这些实施例不以任何形式限制本 发明范围。 实施例 1 表达 hPTH(l-34)的 DNA序列的设计和人工合成 根据 hPTH(l-34)氨基酸序列 (见表 1 ) , 依据大肠杆菌密码子 偏爱性, 人工合成优化的适合大肠杆菌表达的 DNA 序列。 合成 hPTH(l-34)基因时, 在该基因的 5'端引入 Kpn I酶切位点 GGTACC , 在 3'端引入终止密码 ΤΑΑ和 Sal I酶切位点 GTCGAC, 并在 5'端引 入的 Kpn I 酶切位点后面加上肠激酶酶切识别位点的编码序列 GACGACGACGACAAG, 得到序列 1 (见图 10) 。 为便于以后的亚 克隆, 将合成基因克隆到 pUC18上, 用于保存该合成的 DNA序列。 质粒 pUC18含有与质粒 pET32a( + )相同的 Kpn l和 Sai l酶切位点。 hPTH(l-34) 密码子使用表
序号 氨基酸 所选密 可选密码子 不可选 码子 密码子
1 Ser TCC TCT, TCA, TCG, AGT, AGC
2 Val GTT GTC, GTA, GTG
3 Ser TCC TCT, TCA, TCG, AGT, AGC
4 Glu GAA GAG
5 He ATC ATT ATA
6 Gin CAG CAA
7 Leu CTG TTA, TTG, CTT, CTC CTA
8 MET ATG
9 His CAC CAT
10 Asn AAC AAT
11 Leu CTG TTA, TTG, CTT, CTC CTA
12 Gly GGT GGC, GGG GGA
13 Lys AAA AAG
14 His CAC CAT
15 Leu CTG TTA, TTG, CTT, CTC CTA 16 Asn AAC AAT
17 Ser TCC TCT, TCA, TCG, AGT, AGC
18 Met ATG
19 Glu GAA GAG
20 Arg CGT CGC CGA,
CGG, AGA, AGG
21 Val GTT GTC, GTA, GTG
22 Glu GAA GAG
23 Trp TGG
24 Leu CTG TTA, TTG, CTT, CTC CTA
25 Arg CGT CGC CGA,
CGG, AGA, AGG
26 Lys AAA AAG
27 Lys AAA AAG
28 Leu CTG TTA, TTG, CTT, CTC CTA
29 Gin CAG CAA
30 Asp GAC GAT
31 Val GTT GTC, GTA, GTG
32 His CAC CAT
33 Asn AAC AAT
34 Phe TTC TTT
注: 氨基酸序列是从 hPTH多肽的 N端开始标记的。 实施例 2 重组质粒的构建过程
以下分子克隆技术操作方法, 如无特别说明, 均参照文献: 分 子克隆实验指南 (黄培堂等译, [美]萨姆布鲁克等著, 科学出版社, 2002 ) 。 DNA 操作中所用的 DNA 提取试剂盒 (UNIQ-10) 、 DNA 胶回收试剂盒(UNIQ-10 )及连接试剂盒等购自上海生工生物工程技 术服务有限公司。克隆载体 pUC 18、限制性内切酶购自 Fermentas Life Science公司。 表达载体 pET32a(+), 大肠杆菌 TOP10及 BL21(DE3) 均购自 Novagen公司。 克隆用大肠杆菌宿主为 TOP10 , 表达用大肠 杆菌宿主为 BL21(DE3) o BL21(DE3)基因型为: hsdS gal ( λ dts857 indl Sam7 nin5 lacUV5-T7 genel)= BL21(DE3)带有 T7 RNA多聚酶基 因, 在 IPTG的诱导下 T7 RNA多聚酶大量产生, 因而开启了外源基 因的表达, 可使外源基因髙效表达。
1 . 准备目的基因片段
用 DNA抽提试剂盒提取含有 hPTH(l-34)编码序列的 pUC18质 粒 DNA, 用 Kpn I /Sal I双酶切, 在 1%的琼脂糖凝胶电泳分离小片 段, 切下含有 130bp左右片段的凝胶, 用凝胶 DNA回收试剂盒回收 130bp左右片段, 电泳验证后备用。
2. 准备表达载体片段
用 DNA抽提试剂盒提取 pET32a(+)质粒 DNA, 用 Kpn I /Sal I 双酶切, 1%的琼脂糖凝胶电泳分离大片段,切下含有大片段的凝胶, 用凝胶 DNA回收试剂盒回收大片段, 电泳验证后备用。
3. 构建重组质粒 pET-PTH( 1 -34)
将 1、 2 准备好的 DNA 片段用 T4 DNA连接酶在 16° C连接
30min, 连接产物转化大肠杆菌 TOP10 感受态细胞, 涂布于含有 lOO g/ml Amp的 LB琼脂糖平板( 1 %蛋白胨, 0.5 %酵母膏, 1 %NaCl, 2 %琼脂) , 37° C培养过夜。
4. 重组子筛选
挑取 10个菌落, 在 5ml含 lOO g/ml Amp 的 LB培养基中 37°
C培养过夜, 用 DNA抽提试剂盒提取质粒 DNA。 分别用 EcoR I、 Pst l对所提取的 DNA酶切, 然后进行 1%的琼脂糖凝胶电泳鉴定重 组子。 由于 EcoR I在 pET32a (+)中为单一酶切位点, 构建重组子时 已被 Kpn I /Sal I双酶切除去, 故重组子不能被 EcoR I切割; 而 pET32a (+)中的 Pst l单一位点不在多克隆区, 且 rhPTH(l-34)基因中 含一个 Pst I位点, 故用 Pst I酶切 pET32a(+)载体质粒时, 得到分子 量为 5.9kb的单一 DNA片段,而重组质粒用 Pst I酶切应该出现 1.2kb 和 4.7kb左右的两条 DNA片段 (请参见图 1 ) 。 酶切分析结果表明, 10 个菌落均为正确的重组子, 正确的重组质粒命名为 pET-PTH(l-34)。
5. 质粒 pET-PTH(l-34)的序列测定:
将重组质粒 pET-PTH(l-34)进行测序验证,正向测序结果见图 2, 反向测序结果见图 3。 其中编码融合蛋白 Trx-含有 (His)6和肠激酶识 别位点的连接肽-甲状旁腺激素 1-34 肽的核苷酸序列如下:
Figure imgf000011_0001
TCGACGCTAACCTGGCCggttctggttctggccatatgcacc fefltcatcfltcattcttctg gtctggtgccacgcggttctggtatgaaagaaaccgctgctgctaaattcgaacgccagcacatggacag cccagatctgggtaccgacgacsacgacaagTCCGTTTCCGAAATCCAGCTGAT GCACAACCTGGGTAAACACCTGAACTCCATGGAACGTGTTGA ATGGCTGCGTAAAAAACTGCAGGACGTTCACAACTTCJ^。 其 中,非黑体大写字母组成的序列是 Trx编码序列, 小写字母组成的序 列是含有 Trx-含有 (His)6和蛋白酶识别位点编码区的连接肽编码序 列, 带有下划线的斜体字部分是 (His)6编码区, 双划线部分是肠激酶 识别位点编码区,黑体大写字母组成的序列是 hPTH(l-34) DNA序列, 斜体的 TAA是终止密码子。测序证明构建的工程菌中的 hPTH(l-34) DNA序列与理论设计完全一致。 另外, 需要说明的是, 在上述融合 蛋白的编码序列中, 小写字母所组成的连接肽编码序列中 (His)6-Tag 和肠激酶编码区对于获得纯的 hPTH(l-34)是必需的序列, 因此小写 字母中的其它序列是可有可无的, 也可替换为其它有功能的序列。 实施例 3 工程菌的诱导表达
用重组质粒 pET-PTH(l-34) DNA转化大肠杆菌 BL21(DE3), 所 得到的即为用于表达 rhPTH(l-34)融合蛋白的基因工程菌。 挑取 8个 单菌落, 在 5ml含 lOO g/ml Amp 的 LB培养基 (1%蛋白胨, 0.5% 酵母膏, l%NaCl) 中 37°C培养过夜, 以 1/100的体积转接于 50ml 含 lOO g/ml Amp 的 LB培养基中 37QC培养, 剩余菌液用 15%甘油 分装冻存。 OD6Q()达到 0.5时, 加入 IPTG到终浓度 0.5mM进行诱导 表达, 4小时后取样进行 SDS-PAGE电泳。 与未诱导的对照相比, 诱 导后的重组子均有预期分子量 20kDa左右的表达带, 表达量均为全 菌蛋白的 25%以上。 取产量最高菌 6 号作为工程菌, 命名为 BL21(DE3)-PTH(l-34), 置甘油中保存。 蛋白表达筛选电泳图见附图 4。 实施例 4 工程菌 BL21(DE3)-PTH(l-34)的发酵
取表达 Trx-hFTH的工程菌 BL21(DE3)-PTH(l-34)的甘油菌种 1 支 (lmL) , 接种到 400mLLB培养基 (1%蛋白胨, 0.5%酵母膏, 1 %NaCl) 中, 37°C, 200rpm摇瓶培养 15h, 得活化种子。 取活化种 子按 10%接种量接于 3.5L TB培养基中(1.2%蛋白胨, 2.4%酵母膏, 0.4%甘袖, 17 mM H2PO4, 72 mM K2HP04) (5LB. Braun发酵罐),
37°C培养 4h。 然后将此培养液按 5%接种量接于 70L TB 培养基中 (lOOLB.Braun发酵罐)进行发酵, 温度为 37°C、 pH7.0、 DO>30%, 培养至 OD6()()=4.0时开始诱导表达,诱导用的 IPTG终浓度为 0.5mM, 诱导时间为 4h。 在此条件下, 菌体密度为 30g细菌湿重 /L发酵液, 目的融合蛋白表达量 25%。 结果请参见图 5。 实施例 5 rhPTH(l-34)的纯化
采用连速流离心机 (CEPA Z41, B. Braun公司, 德国 ) 收集 实施例 4中的发酵菌体, 用缓冲液 A (lOmM PBS (磷酸盐缓冲液) , 500mMNaCl, 30mM咪唑, pH8.0) 悬浮, 然后用 APV-1000高压勾浆 机(APV Co. 丹麦)破菌, 将胞内分泌的融合蛋白溶于缓冲液 A中, 9000rpm离心 30min。 取上清液依次采用以下方法对 rhPTH(l-34)进 行纯化:
1. 镍离子螯合亲和层析
将高压匀浆破菌上清液上于用缓冲液 A平衡的镍离子螯合亲和 层析 (Chelating Sepharose Fast Flow, GE Healthcare) 柱, 缓冲液 A 充分洗涤后, 用缓冲液 B ( lOmM PB5 500mM NaCl, 200mM 咪唑, pH8.0) 洗脱, 收集洗脱峰, 得到融合蛋白样品。
2. 融合蛋白的酶切
配制酶切反应液, 其组成如下: lmg/mL 融合蛋白, 50 mM
Tris-HCl (pH8.0), 1 mM CaCl2, 肠激酶 (按 1U肠激酶切割 5mg融合 蛋白的比例加入肠激酶) 。 25 °C酶切 20小时。
3. 1¾离子交换柱层析
将酶切后蛋白溶液上样于用缓冲液 C( 50 mM Tds-HCl , pH8.0 ) 平衡的 Q Sepharose High Performance ( GE Healthcare ) 层析柱。 rhPTH(l-34)理论等电点为 8.29, 在 pH8.0 时带正电荷, 不与阴离子 交换柱结合, 杂蛋白则因带负电荷而与阴离子交换柱结合。收集穿透 液, 可得到纯度为 95%以上的 rhPTH(l-34)蛋白样品。
4. 反相柱层析
选用反相柱 Source 15RPC ( GE Healthcare) 对按上文所述经离 子交换柱层析纯化得到的 ΛΡΤΗ(1-34)蛋白样品进行精细纯化, 用 24-64%乙醇作梯度洗脱, 在 40-60%乙醇时出现 rhPTH( 1-34)蛋白洗 脱峰, 纯度达到 98%以上。
5. 阳离子交换柱层析
将反相柱洗脱的样品用缓冲液 D ( lOmM PB, pH7.0 ) 稀释后, 上于经缓冲液 D平衡的 SP Sepharose Fast Flow ( GE Healthcare) 层 析柱, 缓冲液 D充分洗涤后, 用含 400mM NaCl的缓冲液 D洗脱, 得到纯度大于 99%的 rhPTH(l-34)蛋白。
用 SDS-PAGE电泳分析各步纯化效果 (见图 6 ) 。
试验例 1 rhPTH(l-34)的检定 1、 SDS-PAGE纯度分析
采用 Tris-Tricine SDS-PAGE系统 (郭尧君, 蛋白质电泳实验技 术,科学出版社, 1999 )进行非还原型电泳,用 Bio-Rad Gel Doc 2000 凝胶成像系统扫描测定, rhPTH(l-34)纯度为 100% (见图 6中第 7道)。
2、 RP-HPLC纯度分析
用 HPLC法测定蛋白质和肽类的纯度, 准确度高并且其保留时 间亦可作为定性的一个指标。 层析柱为 Delta-Pak C18 5μιη 3.9 Χ 150(Waters Co.), 缓冲液 A ( 0.1% 三氟乙酸(TFA) , 在 95% dH2O 和 5% 乙腈中) 到缓冲液 B ( 0.1%TFA, 在 95% 和 5% dH20中) 线性梯度洗脱 70min, 流速 1 ml/min, 220nm紫外检测。 分析结果表 明, 上述工艺制备的 rhPTH(l-34) 的 H LC 图谱为单一峰, 纯度为 100%。 RP-HPLC分析结果见图 7。
3、 N、 C末端氨基酸序列分析
采用 Edman降解法测定按照实施例 5纯化得到 rhPTH(l-34) N- 末端 15个氨基酸序列为: Ser-Val-Ser-Glu-Ile-Gln-Leu- Met-His-Asn
-Leu-Gly-Lys-His-Leu; 采用羧肽酶 Y法测定 rhPTH(l-34) C-末端 3 个氨基酸序列为: HiS-Asn-I>he。 N、 C末端氨基酸序列分析结果与理 论序列完全相同, 说明我们制备的 rfiPTH(l-34)—级结构是正确的。
4、 rhPTH(l -34)的质谱分析
采用 Finnigan公司的 LCQ-Classic质谱仪对纯化的 rhPTH(l-34) 进行质谱分析, 测得 rhPTH(l-34)的分子量为 4117.5 Da (见图 9) 。 与 rhPTH(l-34)的理论值 ( 4118.8 Da) 一致。
5、 内毒素及热原质试验
按照 《中国生物制品规程》 (2000年版) 中 "生物制品细菌内 毒素试验规程 "的规定,用鲎试剂法检测所制备的 rhPTH(l-34)样品的 内毒素含量不高于 10EU/20 g rhPTH(l-34)。 按照 《中国生物制品规 程》 (2000 年版) "生物制品热原质试验规程" 的规定, 采用家兔 法测定其热原质为阴性。 试验例 2 PTH活性测定 在 96孔细胞培养板中接种 UMR-106-01细胞 (购自 ATCC ) , 接种量为 1 2 X 105个细胞 /mL, ΙΟΟμΐ 孔, 37°C, 5% C02孵育过夜。 用无血清培养基洗细胞一次, 加入培养基 (含 20mM Hepes, 0.1%牛 血清白蛋白, 0.2mM IBMX ( 3-异丁基 -1-甲基黄嘌呤, Sigma) , pH7.4) 180μΙ^,再加入 20μ 用该培养基稀释成不同浓度的 hPTH(l-34)及其标 准品 (购自 WHO生物制品标准品实验室 (NIBSC)) , 同时设含与不 含 IBMX的对照, 都作双复孔, 37°C, 5% CO2孵育 45min。 去除培 养基, 每孔加 20(^L 0.1N HC1, 温育 30min, 充分裂解细胞, 取上清 采用 cAMP (low pH) KIT (R&D公司, Cat No.DE0355 ) 测定 cAMP 值。 数据利用计算机软件进行处理, 并按下式公式计算结果:
待检样品预稀释倍数 待检样品半效稀释倍数 待测样品效价 = 示准品效价 X X
标准品预稀释倍数 标准品的半效稀释倍数 结果表明, 我们制备的 rhPTH(l-34)与 WHO对照品具有相同的 生物活性, 其比活性大于 1.0 X 105 U/mg rhPTH(l-34)。 试验例 3 主要药效学试验
应用大鼠卵巢摘除 (ovanceclomiwd, OVX) 方法建立模拟原发 性骨质疏松症模型, 给予 rhPTH(l-34)治疗 8周后观察骨量、 骨生物 力学、骨形态计量和骨代谢相关血、尿生化指标综合评价其治疗效果。 试验结果表明:
1) 卵巢摘除 12 周组大鼠的子宫湿重明显较假摘卵组降低, 骨 量 (股骨与腰椎骨密度) 与骨生物力学性能 (股骨三点弯曲载荷、 腰 椎压缩载荷)均较假摘卵组明显减少,表明雌激素缺乏所致骨质疏松 大鼠模型成立;
2) rhPTH(l-34)对 OVX诱发骨质疏松大鼠具有明显治疗效果。 rhPTH(l-34)治疗 8周, 低剂量 ( lO g/Kg) 组即对模型骨质疏松大鼠 的股骨、 腰椎骨量 (干重、 灰重、 骨密度) 生物力学性能 (股骨三点 弯曲最大载荷、腰椎压縮最大载荷)和腰椎骨小梁面积显示明显提高 作用, 并随治疗剂量增加而提高。 3)本实验中观察到 rhPTH(l-34)注射 4h 时血钙磷有增高和下降 波动改变, 24h后正常。
因此, rhPTH(l-34)有显著促进成骨细胞骨形成作用, 对骨质疏 松大鼠具有明显治疗效果。

Claims

权利要求:
1. 一种制备 hPTH(l-34)的方法, 该方法包括如下步骤:
(1) 使能表达融合蛋白的表达载体进行表达, 所述融合蛋白从 N端到 C端的序列为硫氧还蛋白 -(His)6-肠激酶识别位点 -甲状旁腺激 素 1-34肽;
(2) 用镍离子螯合亲和层析对步骤 (1) 得到的融合蛋白进行 纯化; 以及
(3) 将步骤 (2) 纯化得到的融合蛋白用肠激酶酶切, 以将甲 状旁腺激素 1-34肽从所述融合蛋白中释放下来。
2. 权利要求 1所述的制备方法, 还进一步包括:
(4) 对步骤 (3) 酶切得到的混合物用阴离子交换柱进行层析, 收集穿透蛋白溶液; 以及
(5) 使步骤 (4) 收集得到的穿透蛋白溶液过反相层析柱。
3. 权利要求 1或 2所述的制备方法, 其中所述融合蛋白中的肠 激酶识别位点-甲状旁腺激素 1-34 肽由下列核苷酸序列编码-
Figure imgf000017_0001
CGTAAAAAACTGCAGGACGTTCACAACTTC。
4. 权利要求 3所述的制备方法, 其中所述步骤 (1) 中使用的表 达载体为大肠杆菌表达载体 pET-PTH(l-34), 表达用宿主为大肠杆菌 BL21(DE3)。
5. 根据权利要求 4所述的制备方法, 所述步骤 (1)是在如下条 件下完成的:
将含有表达载体 pET-PTH(l-34)的大肠杆菌 BL21(DE3)在至少 一种选自 LB、 TB和 M9CA的培养基中发酵; 发酵温度为 30-40°C, 发酵液 pH为 6.5-7.5以及发酵溶氧 DO≥30%。
6. 根据权利要求 5 的方法, 其中当培养至 OD6()()=4.0时, 向培 养基中加入终浓度为 0.3-1.0raM 的 IPTG, 开始诱导表达。
7. 根据权利要求 6所述的制备方法, 其中所述的发酵诱导时间 为 3-5小时。
8. 根据权利要求 5-7中任一项所述的制备方法: 其中培养基为 TB, 发酵温度为约 37°C, 发酵液 pH为约 7.0, IPTG的终浓度为约
0.5mM, 诱导发酵时间为约 4小时。
9. 根据权利要求 1所述的制备方法: 其中在步骤 (2) 中, 按 1 单位 (U) 肠激酶切割 5mg融合蛋白的比例加入肠激酶。
10. 根据权利要求 9所述的方法,所述酶切步骤是在下列条件下 完成的: lmg/mL 融合蛋白, 50 mM Tris-HCl (pH8.0), 1 mM CaCI2, 约 25 °C, 酶切约 20小时。
PCT/CN2007/001025 2006-03-31 2007-03-29 Procédé de préparation d'hormone parathyroïdienne humaine 1-34 WO2007112677A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610074216.8 2006-03-31
CNA2006100742168A CN1916172A (zh) 2006-03-31 2006-03-31 制备人甲状旁腺素1-34的方法

Publications (1)

Publication Number Publication Date
WO2007112677A1 true WO2007112677A1 (fr) 2007-10-11

Family

ID=37737235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001025 WO2007112677A1 (fr) 2006-03-31 2007-03-29 Procédé de préparation d'hormone parathyroïdienne humaine 1-34

Country Status (2)

Country Link
CN (1) CN1916172A (zh)
WO (1) WO2007112677A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011151721A1 (en) 2010-06-04 2011-12-08 Lupin Limited Process for production of fusion proteins using truncated e. coli thioredoxin
CN111018965A (zh) * 2019-12-30 2020-04-17 重庆艾力彼生物科技有限公司 一种重组甲状旁腺素pth(1-34)的纯化方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106636163A (zh) * 2017-01-12 2017-05-10 上海柏根生物科技有限公司 一种融合蛋白表达纯化方法
CN110938151B (zh) * 2019-12-30 2023-03-17 重庆艾力彼生物科技有限公司 用于表达甲状旁腺素pth的融合蛋白及重组质粒、重组工程菌
CN111004318B (zh) * 2019-12-30 2022-03-04 北京博康健基因科技有限公司 rhPTH(1-34)蛋白原液的纯化方法
CN112625117A (zh) * 2020-12-23 2021-04-09 无锡和邦生物科技有限公司 一种可溶性重组特立帕肽的非变性纯化方法及应用
CN112646826A (zh) * 2020-12-23 2021-04-13 无锡和邦生物科技有限公司 编码Trx-hPTH(1-34)融合蛋白的基因序列、重组表达质粒、工程菌及应用
CN114790473A (zh) * 2021-11-08 2022-07-26 汉肽生物医药集团有限公司 一种利拉鲁肽融合蛋白在位酶切和纯化的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424325A (zh) * 2001-12-12 2003-06-18 中国科学院上海生物工程研究中心 重组人甲状旁腺素1-34肽的生产工艺
CN1189565C (zh) * 2000-09-18 2005-02-16 中山大学 一种高效原核表达载体
CN1212336C (zh) * 2002-11-29 2005-07-27 西南生物工程产业化中试基地有限公司 重组人甲状旁腺激素pth(1-34)的制备方法
CN1706947A (zh) * 2004-06-04 2005-12-14 南京大学生物制药工程研究中心 重组人甲状旁腺激素在大肠杆菌中的构建、表达与纯化方法
CN1861790A (zh) * 2006-04-25 2006-11-15 华东理工大学 重组人甲状旁腺激素1-84的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1189565C (zh) * 2000-09-18 2005-02-16 中山大学 一种高效原核表达载体
CN1424325A (zh) * 2001-12-12 2003-06-18 中国科学院上海生物工程研究中心 重组人甲状旁腺素1-34肽的生产工艺
CN1212336C (zh) * 2002-11-29 2005-07-27 西南生物工程产业化中试基地有限公司 重组人甲状旁腺激素pth(1-34)的制备方法
CN1706947A (zh) * 2004-06-04 2005-12-14 南京大学生物制药工程研究中心 重组人甲状旁腺激素在大肠杆菌中的构建、表达与纯化方法
CN1861790A (zh) * 2006-04-25 2006-11-15 华东理工大学 重组人甲状旁腺激素1-84的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011151721A1 (en) 2010-06-04 2011-12-08 Lupin Limited Process for production of fusion proteins using truncated e. coli thioredoxin
CN111018965A (zh) * 2019-12-30 2020-04-17 重庆艾力彼生物科技有限公司 一种重组甲状旁腺素pth(1-34)的纯化方法
CN111018965B (zh) * 2019-12-30 2023-05-09 重庆艾力彼生物科技有限公司 一种重组甲状旁腺素pth(1-34)的纯化方法

Also Published As

Publication number Publication date
CN1916172A (zh) 2007-02-21

Similar Documents

Publication Publication Date Title
WO2007112677A1 (fr) Procédé de préparation d'hormone parathyroïdienne humaine 1-34
JP3054192B2 (ja) 副甲状腺ホルモンの製造のための組換えdna法
KR100316347B1 (ko) 대장균엔테로톡신ⅱ신호펩티드의변형체와인체성장호르몬의융합단백질을발현하는재조합미생물및그를이용한인체성장호르몬의제조방법
FI108943B (fi) Menetelmiä seriiniproteaasi-inhibiittorien valmistamiseksi ja menetelmässä käytettävä synteettinen tai eristetty DNA-sekvenssi, yhdistelmävektori sekä bakteeri- tai hiivaisäntäsolu
JPS62501538A (ja) araBプロモーターを含有する複製可能な発現ビヒクル
JP2001513638A (ja) 修飾されたカルボキシペプチダーゼ
JP2019195327A (ja) 枯草菌(bacillus subtilis)において真正で生物活性を有する塩基性線維芽細胞増殖因子を発現させる方法及び手段
WO2010062279A1 (ru) Способ получения рекомбинантного инсулина человека
Wingender et al. Expression of human parathyroid hormone in Escherichia coli
WO2007112676A1 (fr) Protéine hybride de l'hormone parathyroïde humaine 1-34 et vecteurs d'expression correspondants
EP1001980A1 (en) Recombinant expression of insulin c-peptide
JP7266325B2 (ja) 蛍光タンパク質フラグメントを含む融合タンパク質およびその用途
EP0534568B1 (en) Human growth hormone analogues and their use
Liu et al. Large scale preparation of recombinant human parathyroid hormone 1–84 from Escherichia coli
FI93125B (fi) Kasvuhormonia vapauttavan tekijän sekvenssin sisältävien hybridipolypeptidien ilmentäminen E. colissa
US9580488B2 (en) Fusion tags and expression vector system for the expression of human parathyroid hormone (rhPTH)
Chunxiao et al. Study on preparation and activity of a novel recombinant human parathyroid hormone (1–34) analog with N-terminal Pro–Pro extension
WO1986003779A1 (en) Polypeptide secretion-causing vector, microorganisms transformed by said vector, and process for preparing polypeptide using said microorganisms
JP4870574B2 (ja) ペプチドおよびタンパク質のプロセシング
MX2014009979A (es) Metodo para la reduccion del desplazamiento de los marcos de lectura 1->3.
KR20140135716A (ko) 1→2 해독 프레임 이동의 감소 방법
CN107217069B (zh) 原核表达载体及rbFGF-2表达方法与工程菌和应用
KR940011339B1 (ko) 세린프로테아제억제제의 제조를 위한 dna 재조합 방법
KR100407792B1 (ko) 인간 글루카곤 유사펩타이드를 융합파트너로 이용한재조합 단백질의 제조방법
JP2574146B2 (ja) ポリペプチド発現ベクタ−、該ベクタ−で形質転換した宿主及び該宿主によるポリペプチドの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07720599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07720599

Country of ref document: EP

Kind code of ref document: A1