WO2007111282A1 - グリコヘモグロビン濃度測定方法および濃度測定装置 - Google Patents

グリコヘモグロビン濃度測定方法および濃度測定装置 Download PDF

Info

Publication number
WO2007111282A1
WO2007111282A1 PCT/JP2007/056110 JP2007056110W WO2007111282A1 WO 2007111282 A1 WO2007111282 A1 WO 2007111282A1 JP 2007056110 W JP2007056110 W JP 2007056110W WO 2007111282 A1 WO2007111282 A1 WO 2007111282A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
light
glycated hemoglobin
wavelength
measuring
Prior art date
Application number
PCT/JP2007/056110
Other languages
English (en)
French (fr)
Inventor
Koji Sugiyama
Toshikatsu Sakai
Original Assignee
Arkray, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray, Inc. filed Critical Arkray, Inc.
Priority to EP07739551.5A priority Critical patent/EP2012111B1/en
Priority to CN2007800187887A priority patent/CN101484792B/zh
Priority to US12/225,540 priority patent/US8268625B2/en
Priority to JP2008507482A priority patent/JP5279485B2/ja
Publication of WO2007111282A1 publication Critical patent/WO2007111282A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • G01N30/8679Target compound analysis, i.e. whereby a limited number of peaks is analysed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8822Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving blood

Definitions

  • the present invention relates to a technique for measuring the concentration of glycohemoglobin contained in a sample such as blood.
  • HPLC device high performance liquid chromatography device
  • HPLC high performance liquid chromatography
  • the general HPLC apparatus 9 prepares a sample containing a biological component in the sample preparation unit 90 and then introduces the sample into the analytical column 91, and the biological component is analyzed in the analytical column 91. It is configured to be adsorbed on the filler.
  • a biological sample in which the hemolyzed blood is diluted is introduced into the analytical column 91 after hemolyzing red blood cells collected from the whole blood.
  • the biological component adsorbed on the filler is eluted by supplying the eluent to the eluent bottle 93 force analysis column 91 by the liquid feed pump 92.
  • the eluent containing the biological component from the analytical column 91 is introduced into the photometric mechanism 94, and the biological component is analyzed by continuously measuring the absorbance of the eluent containing the biological component in the photometric mechanism 94. .
  • the photometric mechanism 94 irradiates the light from the light source 97 while the eluent containing biological components flows through the flow path 96 of the photometric cell 95, and the transmitted light at that time. Is received by the light receiving unit 98.
  • the wavelength of light received by the light receiving unit 98 is selected by the interference filter 99, while the light receiving unit 98 outputs a signal having an output level corresponding to the amount of received light. Since the photometric measurement of the eluent in the photometric mechanism 94 is performed continuously, the relationship between the elution time and the amount of received light (absorbance) can be obtained as a chromatogram as shown in FIG.
  • the HPLC apparatus 9 further calculates the concentration based on the chromatogram, which is the change in absorbance over time.
  • concentration of glycohemoglobin is calculated as the proportion of glycohemoglobin in the total amount of hemoglobin (the part indicated by cross-hatching in Fig. 15).
  • the amount of oxygen and other gases dissolved in the eluent varies depending on the temperature of the eluent. Therefore, when the temperature outside the apparatus (environment temperature) fluctuates, or when the environment temperature is different. When biological components are analyzed, the dissolved gas state (dissolution amount) in the eluent is different. For this reason, when the dissolved oxygen concentration in the eluent fluctuates with changes in ambient temperature, the ratio of oxyhemoglobin to deoxyhemoglobin in hemoglobin varies. Further, in the biological sample introduced into the analytical column 91, the ratio of oxyhemoglobin to deoxyhemoglobin in hemoglobin may vary with each measurement.
  • the photometric mechanism 94 has a maximum absorption of oxyhemoglobin.
  • the wavelength of 415 nm is used as the measurement wavelength. For this reason, the ratio of oxyhemoglobin and deoxyhemoglobin is different in environments where the environmental temperature varies greatly, making accurate measurement difficult when measuring them at the same wavelength. It becomes.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-120447
  • the present invention has an object to make it possible to appropriately measure the concentration of projectohemoglobin even when the ratio between oxyhemoglobin and deoxyhemoglobin is different. Means for Solving the Problems
  • the glycated hemoglobin concentration measuring method provided in the first aspect of the present invention is a method for measuring the glycated hemoglobin concentration based on the light that progresses in the sample force when the sample is irradiated with light. And measuring the concentration of glycohemoglobin based on light having a plurality of measurement wavelengths having peak wavelengths in a wavelength range of 400 to 450 nm.
  • the glycated hemoglobin concentration is measured.
  • the present invention can be applied to a method for measuring the concentration of glycated hemoglobin using liquid chromatography.
  • the glycated hemoglobin concentration is calculated based on, for example, a three-dimensional chromatogram with the measurement wavelength, elution time, and detection amount as variables. More specifically, for example, the glycated hemoglobin concentration is calculated as a volume corresponding to the total amount of hemoglobin in the three-dimensional chromatogram or a ratio occupied by a volume corresponding to glycated hemoglobin or an integrated value in the integrated value.
  • Glycohemoglobin concentration may be calculated by calculating the ratio of darcohemoglobin with the elution time and detection amount at each measurement wavelength as variables and averaging the ratio of darcohemoglobin at each measurement wavelength. .
  • Glycohemoglobin concentration is calculated as the ratio of the area corresponding to glycohemoglobin in the area corresponding to the total amount of hemoglobin in the two-dimensional chromatogram of the peak value of the detected amount of hemoglobin at each measurement wavelength and the elution time.
  • Glycohemoglobin concentration peaks in the first light quantity, which is the amount of light having a peak wavelength in the wavelength range of 400 to 420 nm where the sample force also advances, and in the wavelength range of 420 to 440 nm where the sample force advances. It can also be measured based on the second light amount, which is the amount of light having a wavelength.
  • the glycated hemoglobin concentration calculates the oxyhemoglobin concentration or a value that correlates with this concentration based on the first light amount, while the glycated hemoglobin concentration correlates with the concentration based on the second light amount.
  • the sum of the oxyhemoglobin concentration and the deoxyhemoglobin concentration, or the value correlated with the oxyhemoglobin concentration and the value correlated with the deoxyhemoglobin concentration. can do.
  • the glycohemoglobin concentration method of the present invention utilizes liquid chromatography
  • the relationship between the elution time obtained based on the first light amount and the detected amount is shown.
  • Chromatogram of the first chromatogram corresponding to oxyhemoglobin and the second chromatogram corresponding to deoxyhemoglobin showing the relationship between the dissolution time obtained based on the second light intensity and the detected amount. Based on the above, the concentration of disruptohemoglobin may be calculated.
  • the sample is obtained, for example, by hemolyzing blood cells.
  • a glycated hemoglobin concentration measuring device including a photometric mechanism that irradiates a sample with light from a light source and receives light that also advances the sample force at that time in a light receiving unit.
  • the photometric mechanism is configured so that light having a plurality of wavelengths having a peak wavelength in a wavelength range of 400 to 450 nm can be distinguished and received by the light receiving unit, and the glycohemoglobin is characterized in that A concentration measuring device is provided.
  • the light receiving unit is configured to be capable of continuously or intermittently receiving light having different peak wavelengths in a wavelength range of at least 415 to 430 nm.
  • the present invention can be applied to a glycohemoglobin concentration measuring apparatus using liquid chromatography.
  • the glycated hemoglobin concentration measuring apparatus further includes a calculation unit configured to calculate the glycated hemoglobin concentration based on a three-dimensional chromatogram using the wavelength, elution time, and detection amount as variables. Is done.
  • the calculation unit is configured to calculate the glycated hemoglobin concentration, for example, as a volume corresponding to the total amount of hemoglobin in the three-dimensional chromatogram or a ratio occupied by a volume corresponding to the glycated hemoglobin or an accumulated value in the accumulated value. ing. More specifically, for example, in the two-dimensional chromatogram in which the elution time obtained based on the above-described three-dimensional chromatogram and the peak value of the detected amount are variables, the calculation unit can calculate the area corresponding to the total amount of hemoglobin. It is configured to calculate the glycated hemoglobin concentration as a percentage of the area corresponding to glycated hemoglobin.
  • the calculation unit also calculates chromatogram power with the elution time and detection amount at each peak wavelength as variables, calculates the ratio of darcohemoglobin, and averages the ratio of darcohemoglobin at each peak wavelength to determine the concentration of glycohemoglobin.
  • the area corresponding to glycohemoglobin occupies the area corresponding to the total amount of hemoglobin. Calculate as a percentage It can be configured as follows.
  • the glycated hemoglobin concentration measuring device of the present invention includes a first light amount that is an amount of light having a peak wavelength in a wavelength range of 400 to 420 nm that proceeds from a sample force, and a light beam that travels from a sample. Based on the second light amount that is the amount of light having a peak wavelength in the wavelength range of 440 nm, a calculation unit that calculates the glycohemoglobin concentration may be provided. For example, the calculation unit calculates the oxyhemoglobin concentration or a value related to this concentration based on the first light amount, while the deoxyhemoglobin concentration or a value correlated to the concentration based on the second light amount. And the sum of the oxyhemoglobin concentration and the deoxyhemoglobin concentration, or the sum of the value correlated with the oxyhemoglobin concentration and the value correlated with the deoxyhemoglobin concentration. Configured to calculate concentration.
  • the calculation unit corresponds to oxyhemoglobin indicating the relationship between the elution time obtained based on the first light quantity and the detected amount. Based on the chromatogram obtained by superimposing the first chromatogram and the second chromatogram corresponding to deoxyhemoglobin indicating the relationship between the elution time and the detection amount obtained based on the second light intensity V. It may be configured to calculate the projectohemoglobin concentration.
  • the sample is obtained, for example, by hemolyzing blood cells.
  • FIG. 1 is a schematic configuration diagram showing an HPLC apparatus which is an example of a glycated hemoglobin measuring apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view for explaining a photometric mechanism in the HPLC apparatus shown in FIG.
  • FIG. 3 is a block diagram showing the main part of the HPLC apparatus shown in FIG. 1.
  • FIG. 4 is a flowchart for explaining the operation of the HPLC apparatus shown in FIG.
  • FIG. 5 is a flowchart for explaining the concentration measurement process in the arithmetic circuit in the HPLC apparatus shown in FIG. 1.
  • FIG. 6 is an example of a three-dimensional chromatogram obtained in the arithmetic circuit.
  • FIG. 7 illustrates the concentration measurement process in the arithmetic circuit according to the second embodiment of the present invention. It is a flowchart for this.
  • FIG. 8A is a graph showing the relationship between the measurement wavelength and absorbance at a specific time
  • FIG. 8B is a two-dimensional chromatogram created based on the maximum absorbance at the specific time.
  • FIG. 9 is a flowchart for explaining concentration measurement processing in an arithmetic circuit according to a third embodiment of the present invention.
  • FIG. 11 is a graph showing the relationship between environmental temperature and glycated hemoglobin concentration in Example 1
  • FIG. 12 is a graph showing the relationship between environmental temperature and glycated hemoglobin concentration in Comparative Example 1
  • FIG. 13 is a schematic configuration diagram showing an HPLC apparatus which is an example of a conventional glycohemoglobin measuring apparatus.
  • FIG. 14 is a cross-sectional view for explaining a photometric mechanism in the HPLC apparatus shown in FIG.
  • FIG. 15 is an example of a chromatogram obtained from the HPLC apparatus shown in FIG. Explanation of symbols
  • the HPLC apparatus X shown in FIG. 1 corresponds to an example of the glycated hemoglobin concentration measuring apparatus of the present invention, and is configured to measure glycated hemoglobin concentration using whole blood. It is a thing.
  • the HPLC apparatus X includes a plurality of eluent bottles 10, 11, 12 (three in the drawing), a degassing device 2, a sample preparation unit 3, an analysis unit 4, a photometric mechanism 5, and an arithmetic circuit 6.
  • Each of the eluent bottles 10, 11, 12 holds an eluent to be supplied to an analysis column 40 described later.
  • eluents for example, kaffers with different pH and salt concentrations are used.
  • the degassing device 2 is for removing dissolved gas from the eluent before supplying the eluent to the analysis unit 4 (analytical column 40), and is connected via pipes 70A, 70B, and 70C.
  • the eluent bottles 10, 11, 12 are connected to the Mayunoredo 41 of the analysis unit 4 via self-tubes 71A, 71B, 71C.
  • the sample preparation unit 3 is for preparing a sample to be introduced into the analysis column 40 from blood cell components collected from the blood collection tube 13.
  • the sample preparation unit 3 has a sampling nozzle 30, a preparation liquid tank 31, and a dilution tank 32.
  • the sampling nozzle 30 is for collecting various liquids including the blood sample 14 in the blood collection tube 13.
  • the sampling nozzle 30 is capable of sucking and discharging the liquid and moving in the vertical and horizontal directions. It is possible.
  • the operation of the sampling nozzle 30 is controlled by a control means (not shown).
  • the preparation liquid tank 31 holds a preparation liquid for preparing an introduction sample to be introduced into the analysis column 40 based on the blood sample 14.
  • the preparation liquid tank 31 holds, as preparation liquids, hemolyzed blood for lysing red blood cells, diluted liquid for diluting the hemolyzed blood, and the like.
  • the dilution tank 32 is for providing a place for lysing red blood cells in the blood sample 14 and preparing a sample for introduction by diluting the hemolyzed blood.
  • This dilution tank 32 is connected to an injection valve 43 in an analysis unit 4 to be described later via a pipe 72.
  • the sample force for introduction prepared in the dilution tank 32 is connected to the analysis column 40 via the injection valve 43. It is configured to be introduced.
  • the analysis unit 4 controls the adsorption and elution of biological components with respect to the packing material of the analytical column 40, and supplies various biological components to the photometric mechanism 5.
  • the temperature is controlled by.
  • the set temperature in the analysis unit 4 is about 40 ° C, for example.
  • the analytical column 40 holds a filler for selectively adsorbing hemoglobin in the sample.
  • the filler for example, a methacrylic acid ester copolymer is used.
  • the analysis unit 4 has a mold 41, a liquid feed pump 42, and an injection valve 43.
  • the marhold 41 selectively supplies the eluent from the specific eluent bottles 10 0, 11, 12 of the plurality of eluent bottles 10, 11, 12 to the injection valve 43. It is intended.
  • the hold 41 is connected to the deaerator 2 through pipes 71A, 71B, 71C, and is connected to the injection valve 43 through a pipe 73.
  • the liquid feed pump 42 is for applying power for moving the eluent to the analysis column 40 via the injection valve 43, and is provided in the middle of the pipe 73.
  • the liquid feed pump 42 is operated, for example, so that the flow rate of the eluent is 1.0 to 2 OmlZmin.
  • the injection valve 43 collects a fixed amount of the sample for introduction and allows the sample for introduction to be introduced into the analysis column 40.
  • the injection valve 43 includes a plurality of introduction ports and discharge ports (not shown). Yes.
  • An injection loop 44 is connected to the injection valve 43.
  • the injection loop 44 is capable of holding a fixed amount (for example, several / z L) of liquid, and the injection loop 44 communicates with the dilution tank 32 from the dilution tank 32 by appropriately switching the injection valve 43.
  • an injection valve 43 for example, a hexagonal noble can be used.
  • the photometric mechanism 5 is for optically detecting hemoglobin contained in the eluent from the analytical column 40, and includes a photometric cell 50, a light source 51, and a beam splitter. 5 2. It has a light receiving system 53 for measurement and a light receiving system 54 for reference.
  • the photometric cell 50 is for defining a photometric area. This photometric cell 50 has an introduction channel 50A, a photometry channel 50B, and a discharge channel 50C, and these channels 50A, 50B, and 50C communicate with each other.
  • the introduction channel 50A is used to introduce the eluent from the analysis column 40 (see FIG. 1) into the photometric channel 50B, and is connected to the analysis column 40 via a pipe 75.
  • the photometric flow path 50B circulates the eluent to be measured and provides a field for photometric measurement of the eluent, and is formed in a straight line.
  • the photometric flow path 50B is open at both ends, and both ends are closed by the transparent cover 55.
  • the discharge channel 50C is for discharging the eluent from the photometric channel 50B, and is connected to the waste liquid tank 15 via a pipe 76 (see FIG. 1).
  • the light source 51 is for irradiating light to the eluent flowing through the photometric channel 50B.
  • the light source 51 is arranged in a state of facing the end face 50Ba (transparent cover 55) of the photometric flow path 50B so that the optical axis L passes through the center of the photometric flow path 50B.
  • the light source 51 may have a wavelength range that can be emitted in accordance with a concentration calculation method in a calculation unit 61 (see FIG. 3) to be described later. Usually, light having a wavelength range of 400 to 500 nm is used. What can emit light, for example, a neuron lamp is used.
  • the light source 51 it is possible to use a light source other than the halogen lamp, for example, one provided with one or a plurality of LED elements.
  • the beam splitter 52 divides the light emitted from the light source 51 and transmitted through the photometric flow path 50B and makes it incident on the measurement light receiving system 53 and the reference light receiving system 54. On the optical axis L, it is arranged in a state inclined by 45 degrees.
  • the beam splitter 52 various known ones such as a half mirror can be used.
  • the measurement light receiving system 53 selectively receives light having a target wavelength out of the light transmitted through the beam splitter 52, and is disposed on the optical axis L.
  • the measurement light receiving system 53 includes a wavelength selection unit 53A and a light receiving element 53B for receiving the light transmitted through the wavelength selection unit 53A.
  • the wavelength selection unit 53A selects the wavelength of light to be transmitted according to the concentration calculation method in the calculation unit 61 (see FIG. 3) described later.
  • known spectroscopic means such as an interference filter, a sharp cut filter, and craiding can be employed.
  • As the light receiving element 53B a photodiode Can be used.
  • the reference light receiving system 54 is for acquiring data for suppressing the influence of the turbidity and scattering of the eluent from the analysis column 40 (see Fig. 1), and is reflected by the beam splitter 52. Of the light whose optical path has been changed, the reference wavelength of 500 nm is selectively received.
  • the measurement light receiving system 74 includes an interference filter 54A that selectively transmits 500 nm light, and a light receiving element 54B that receives the light transmitted through the interference filter 54A.
  • a photodiode can be used as the light receiving element 54B.
  • the arithmetic circuit 6 includes a control unit 60 and a calculation unit 61.
  • the control unit 60 is for controlling the operation of each unit. More specifically, the control unit 60 controls the turning on / off of the light source 51, and controls the wavelength selection unit 53A to select the wavelength of light to be received by the light receiving element 53B. , Controls concentration calculation processing in the calculation unit 61.
  • the calculation unit 61 is for calculating the glycohemoglobin concentration in whole blood based on the light reception results of the light receiving elements 53B and 54B.
  • the calculation unit 61 stores a program necessary for calculation, and its operation is controlled by the control unit 60.
  • the eluent is supplied to the analytical column 40 (S2).
  • the eluent is supplied from the eluent bottles 10, 11 and 12 to the injection valve 43 through the degassing device 2 and the hold 41 by the power of the liquid feed pump 42.
  • the eluent bottle 10, 11, or 12 is supplied by controlling the hold 41.
  • the eluent supplied to the injection valve 43 is supplied to the analysis power ram 40 via the pipe 74.
  • an introduction sample to be introduced into the analytical column 40 is prepared (S3).
  • a blood sample 14 is first collected from the blood collection tube 13. Collection of the blood sample 14 from the blood collection tube 13 is performed by operating the sampling nozzle 30. The blood sample 14 collected by the sampling nozzle 30 It is supplied to the dilution tank 32 by operating the Gnozzle 30. Further, a hemolyzing agent and a diluent are sequentially supplied from the preparation tank 31 to the dilution tank 32, and a sample for introduction is prepared by mixing the liquid in the dilution tank 32 by pipetting operation using the sampling nozzle 30. .
  • the sample for introduction is introduced into the analytical column 40 (S4).
  • the introduction sample is introduced into the analysis column 40 by switching the injection valve 43 so that the introduction sample of the injection loop 44 is introduced into the analysis column 40 together with the eluent.
  • glycohemoglobin is adsorbed to the packing material by introducing the sample for introduction. After glycated hemoglobin is adsorbed on the packing material, the type of eluent supplied to the analytical column 40 is appropriately switched by the hold 41 to elute the glycated hemoglobin adsorbed on the packing material.
  • the eluent containing glycohemoglobin discharged from the analysis column 40 is supplied to the photometric cell 50 of the photometric mechanism 5 through the pipe 76 and photometrically measured (S6).
  • the eluent is introduced into the photometric cell 50 through the pipe 75 and the introduction flow path 50A, and this eluent passes through the photometry flow path 50B and the discharge flow path 50C and then passes through the pipe 76 to the waste liquid tank. Guided to 15.
  • the photometric mechanism 5 when the eluent from the analysis column 40 passes through the photometric channel 50B, the light source 51 continuously irradiates the eluent with light.
  • the light transmitted through the photometric flow path 50B is split by the beam splitter 52 and then received by the measurement light receiving system 53 and the reference light receiving system 54.
  • the wavelength selector Light of a specific wavelength that has passed through 53A is selectively received by the light receiving element 53B.
  • the reference light receiving system 54 In the reference light receiving system 54, light having a reference wavelength of 500 nm transmitted through the interference filter 54A is selectively received by the light receiving element 54B.
  • the results of light reception by the light receiving elements 53B and 54B are output to the arithmetic circuit 6, where the concentration of glycohemoglobin is calculated (S7).
  • the density calculation processing in the calculation circuit 6 is performed according to the procedure of the flowchart shown in FIG.
  • photometry is performed for each wavelength at a specific time (S10). More specifically, while the light is continuously emitted from the light source 51, the wavelength selection unit 53A is controlled by the control unit 60, and the wavelength of the light received by the light receiving element 53B is changed over time in the above wavelength range. To change. That is, the wavelength of light received by the light receiving element 53B is changed continuously or intermittently. It should be noted that photometry with the wavelength changed in the above wavelength range is repeated.
  • Fig. 6 shows the force when the wavelength is changed intermittently.
  • a two-dimensional chromatogram is obtained for each measurement wavelength.
  • the constant wavelength is also variable, a three-dimensional chromatogram with elution time, absorbance, and measurement wavelength as variables can be obtained.
  • the measurement wavelength interval is very small (eg, 0.1 to 2 nm), and the wavelength is a variable.
  • the plot points are more continuous than discrete.
  • the absorbance corresponding to glycated hemoglobin at each wavelength at the same time is integrated (S12).
  • the volume of the portion corresponding to glycohemoglobin in the three-dimensional chromatogram in FIG. 6 is calculated as the integrated value of the area of the portion corresponding to hemoglobin in the two-dimensional chromatogram at each measurement wavelength.
  • the ratio of glycohemoglobin to the total amount of hemoglobin is calculated (S13). That is, the ratio of the volume (integrated value) corresponding to glycohemoglobin out of the volume (integrated value) corresponding to the total amount of three-dimensional hemoglobin in FIG. 6 is calculated and used as the glycohemoglobin concentration (%).
  • the wavelength is changed continuously or intermittently over a wavelength range including 415 nm, which is the maximum absorption wavelength of oxyhemoglobin, and 430 nm, which is the maximum absorption wavelength of doxyhemoglobin.
  • the glycated hemoglobin concentration is calculated based on the change in absorbance. That is, in the present invention, the concentration of glycated hemoglobin is calculated by taking into account the influence of deoxyhemoglobin rather than calculating the concentration of glycated hemoglobin by paying attention mainly to oxyhemoglobin.
  • the state of dissolved gas in the eluent fluctuates and the ratio of oxyhemoglobin to deoxyhemoglobin in hemoglobin fluctuates, or oxyhemoglobin and deoxy in the introduction sample introduced into the analytical column 40 are changed. Even if the ratio to oxyhemoglobin changes, it will not be affected.
  • the concentration when measuring the glycated hemoglobin concentration in an environment where the temperature outside the HPLC apparatus X (environment temperature) varies or in a different environment temperature, or in the sample introduced into the analytical column, Even when the concentration varies, it is possible to measure the stable glycated hemoglobin concentration regardless of the ratio of oxyhemoglobin to deoxyhemoglobin in the eluent.
  • the calculation of the glycated hemoglobin concentration is based on, for example, calculating the proportion of glycated hemoglobin in the total amount of hemoglobin based on a two-dimensional chromatogram at each measured wavelength, and also calculating the glycated hemoglobin at each measured wavelength. Calculate the average value of the ratio, and use the average value as the glycated hemoglobin concentration.
  • the method of density calculation processing in the calculation circuit 6 is This is different from the previous embodiment.
  • photometry is performed at specific times at a plurality of wavelengths selected from a wavelength range of 400 to 450 nm, preferably 415 to 430 nm (S20). This is the same as S10 (see FIG. 5) in the first embodiment.
  • S20 a wavelength range of 400 to 450 nm, preferably 415 to 430 nm
  • FIG. 8A a graph showing the relationship between the measurement wavelength and the absorbance at each time is obtained.
  • the glycated hemoglobin concentration (%) is calculated as the area corresponding to the amount of glycated hemoglobin relative to the area corresponding to the total amount of hemoglobin (S22).
  • the measurement wavelength a wavelength range including 415 nm, which is the maximum absorption wavelength of oxyhemoglobin, and 430 nm, which is the maximum absorption wavelength of deoxyhemoglobin, is used.
  • the glycated hemoglobin concentration is calculated from the maximum absorbance measured in the range. Therefore, as in the case of the first embodiment of the present invention, it is possible to measure a stable glycated hemoglobin concentration regardless of the ratio of oxyhemoglobin to deoxyhemoglobin in the eluent from the analytical column 40. Become.
  • the present embodiment is different from the previous embodiment in the method of concentration calculation processing in the arithmetic circuit 6.
  • photometry is performed at specific times at 415 nm and 430 nm (S30). More specifically, while the light is continuously emitted from the light source 51, the control unit 60 controls the wavelength selection unit 53A so that the wavelength of the light received by the light receiving element 53B is between 415 nm and 430 nm. Switch alternately with. Such measurement wavelength switching is repeated. As a result, as shown in FIG. 10, oxyhemoglobin when the measurement wavelength is 415 nm.
  • Reference two-dimensional chromatogram (dotted line in Fig. 10) and doxyhemoglobin reference two-dimensional chromatogram (chain line in Fig. 10) when the measurement wavelength is 430 nm. Obtained as the relationship between elution time and absorbance. .
  • the glycated hemoglobin concentration is calculated from the oxyhemoglobin-based two-dimensional chromatogram (one-dot chain line in Fig. 10) when the measurement wavelength is 415 nm (S31).
  • the concentration calculation result when the measurement wavelength is set to 415 nm and the concentration calculation result when the measurement wavelength is set to 430 nm are added together to obtain the glycohemoglobin concentration (S33).
  • the measurement wavelength the measurement result of 415 nm which is the maximum absorption wavelength of oxyhemoglobin, the maximum absorption wavelength of deoxyhemoglobin, and the measurement result of 430 nm are added together to calculate the glycohemoglobin concentration. is doing. Therefore, as in the case of the first embodiment of the present invention, it is possible to measure a stable glycohemoglobin concentration regardless of the ratio of oxyhemoglobin and deoxyhemoglobin in the eluent from the analytical column 40. .
  • the glycohemoglobin concentration is calculated based on a chromatogram (solid line in FIG. 10) obtained by adding the chromatogram when the measurement wavelength is 415 nm and the chromatogram when the measurement wavelength is 430 nm. May be.
  • the measurement wavelength when obtaining an oxyhemoglobin-based chromatogram is not limited to 415 nm, and a wavelength range of 400 to 420 nm may be selected. Measurement for obtaining a oxyhemoglobin-based chromatogram The wavelength is not limited to 430 nm, and a force ranging from 420 to 440 nm may be selected.
  • the present invention is not limited to the embodiment described above, and can be variously modified.
  • the force that the amount of hemoglobin was acquired as the absorbance in addition to the case of performing by one light receiving element 53B, a light receiving element corresponding to the number of measurement wavelengths is provided or light receiving is performed. A method using a light emitting element having an area may be used.
  • the present invention is not limited to an HPLC apparatus for measuring the concentration of glycated hemoglobin in blood, but is also applicable to a liquid chromatographic apparatus other than the HPLC apparatus or other glycated hemoglobin concentration measuring apparatus when a sample other than blood is used. It can also be applied to.
  • the concentration of glycated hemoglobin was measured using the glycated hemoglobin measuring device (ADAMS Ale HA-8160; manufactured by ARKRAY, Inc.) when the ambient temperature was 10 ° C, 20 ° C and 30 ° C.
  • Photodiode array (“UV-visible multi-wavelength detector")
  • Glycohemoglobin concentration is determined by measuring the total amount of hemoglobin and the amount of glycated hemoglobin for each lnm in the wavelength range of 415 to 430 nm, and then integrating the total amount of glycated hemoglobin in the previous wavelength range. Calculated as a percentage of the value.
  • the concentration of glycated hemoglobin was measured under the same conditions as in Example 1 except that the measurement wavelength was fixed, and was calculated as a ratio of the amount of glycated hemoglobin to the total amount of glycated hemoglobin.
  • the measurement results of glycated hemoglobin are shown in Table 2 and FIG.
  • Example 1 the integrated value when the measurement wavelength is changed between the maximum absorption wavelength (415 nm) of oxyhemoglobin and the maximum absorption wavelength (430 nm) of deoxyhemoglobin.
  • the glycated hemoglobin concentration was calculated by the above, as shown in Table 1 and Fig. 11, even if the ambient temperature changed in the range of 10 to 30 ° C, the measured value was not greatly affected by the ambient temperature. It became a substantially constant value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 グリコヘモグロビン濃度を測定する場合に、測定波長として400~450nmの波長範囲から複数の波長を選択する。好ましくは、液体クロマトグラフィを利用して、少なくとも415~430nmの波長範囲における異なるピーク波長の光を連続的または間欠的を受光して、波長と溶離時間と検出量とを変数とする3次元クロマトグラムを得、この3次元クロマトグラムに基づいて、グリコヘモグロビン濃度を演算する。

Description

明 細 書
グリコヘモグロビン濃度測定方法および濃度測定装置
技術分野
[0001] 本発明は、血液などの試料に含まれるグリコヘモグロビンの濃度を測定する技術に 関する。
背景技術
[0002] 血液などの生体試料を用いて生体成分を分離分析する場合には、高速液体クロマ トグラフィ (HPLC)を利用した高速液体クロマトグラフィ装置 (HPLC装置)が広く用 V、られて 、る(たとえば特許文献 1参照)。
[0003] 図 13に示したように、一般的な HPLC装置 9は、試料調製ユニット 90において生体 成分を含んだ試料を調製した後にその試料を分析カラム 91に導入させ、生体成分を 分析カラム 91の充填剤に吸着させるように構成されて ヽる。試料として全血を用いて ダルコヘモグロビンを測定する場合には、分析カラム 91に対しては、全血から採取し た赤血球を溶血させた後に、溶血液を希釈した状態の生体試料が導入される。その 一方で、充填剤に吸着させた生体成分は、送液ポンプ 92によって溶離液ボトル 93 力 分析カラム 91に溶離液を供給することによって溶離させられる。分析カラム 91か らの生体成分を含む溶離液は、測光機構 94に導入され、この測光機構 94において 生体成分を含む溶離液の吸光度を連続的に測定することにより、生体成分の分析が 行なわれる。
[0004] 図 14に示したように、測光機構 94は、生体成分を含む溶離液が測光セル 95の流 路 96を流通する間に、光源 97からの光を照射し、そのときの透過光を受光部 98に おいて受光するものである。受光部 98において受光させる光の波長は、干渉フィル タ 99において選択される一方で、受光部 98からは受光量に応じた出力レベルの信 号が出力される。測光機構 94における溶離液の測光は連続的に行なわれるため、 溶離時間と受光量(吸光度)との関係は、図 15に示したようなクロマトグラムとして得ら れる。
[0005] HPLC装置 9ではさらに、吸光度の経時的変化であるクロマトグラムに基づいて、へ モグロビン総量を演算するとともに、このヘモグロビン総量におけるグリコへモグロビ ンが占める割合(図 15においてクロスハッチングで示した部分)としてグリコへモグロ ビン濃度が演算される。
[0006] し力しながら、溶離液への酸素などの気体の溶解量は、溶離液の温度によって異 なるため、装置外部の温度 (環境温度)が変動した場合、あるいは環境温度が異なる 状態で生体成分の分析を行なった場合には、溶離液中の溶存気体の状態 (溶解量) が異なったものとなる。そのため、溶離液中の溶存酸素濃度が環境温度の変動など に伴って変動した場合には、ヘモグロビン中のォキシヘモグロビンとデォキシへモグ ロビンとの比率が変動する。また、分析カラム 91に導入される生体試料においても、 各回の測定ごとにヘモグロビン中のォキシヘモグロビンとデォキシヘモグロビンとの 比率が変動しうる。
[0007] その一方で、分析カラム 91に導入する生体試料として、溶血液を希釈して酸素が 比較的多い状態のものを使用することから、測光機構 94においては、ォキシへモグ ロビンの最大吸収波長である 415nmを測定波長として採用している。そのため、環 境温度の変化が大きな環境下などででは、ォキシヘモグロビンとデォキシへモグロビ ンとの比率が異なったものとなるため、それらを同一の波長において測定する場合に は正確な測定が困難となる。
[0008] 特許文献 1 :特開平 7— 120447号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、ォキシヘモグロビンとデォキシヘモグロビンとの比率が異なる場合であ つても、クリコヘモグロビンの濃度を適切に測定できるようにすることを課題としている 課題を解決するための手段
[0010] 本発明の第 1の側面において提供されるグリコヘモグロビン濃度測定方法は、試料 に対して光を照射したときに試料力 進行してくる光に基づいてグリコヘモグロビン濃 度を測定する方法であって、 400〜450nmの波長範囲にピーク波長を有する複数 の測定波長の光に基づいてグリコヘモグロビンの濃度を測定することを特徴としてい る。
[0011] 好ましくは、試料から進行してくる光のうち、少なくとも 415〜430nmの波長範囲に おける異なるピーク波長の光を連続的または間欠的を受光してグリコヘモグロビン濃 度を測定する。
[0012] 本発明は、液体クロマトグラフィを利用したグリコヘモグロビン濃度の測定方法に適 用することができる。その場合、グリコヘモグロビン濃度は、たとえば測定波長、溶離 時間および検出量を変数とする 3次元クロマトグラムに基づいて演算される。より具体 的には、たとえば、グリコヘモグロビン濃度は、上記 3次元クロマトグラムでのへモグロ ビン総量に対応する体積または積算値おけるグリコヘモグロビンに対応する体積また は積算値が占める割合として演算される。グリコヘモグロビン濃度は、各測定波長に おける溶離時間と検出量とを変数とするクロマトグラム力 ダルコヘモグロビンの割合 を演算するとともに、各測定波長におけるダルコヘモグロビンの割合を平均すること により演算してもよい。
[0013] グリコヘモグロビン濃度は、各測定波長におけるヘモグロビンの検出量のピーク値 と、溶離時間と、の 2次元クロマトグラムにおいて、ヘモグロビン総量に対応する面積 おけるグリコヘモグロビンに対応する面積が占める割合として演算さすることもできる
[0014] グリコヘモグロビン濃度は、試料力も進行してくる 400〜420nmの波長範囲にピー ク波長を有する光の量である第 1光量と、試料力 進行してくる 420〜440nmの波長 範囲にピーク波長を有する光の量である第 2光量と、に基づいて測定することもでき る。この場合、グリコヘモグロビン濃度は、上記第 1光量に基づいてォキシへモグロビ ン濃度またはこの濃度に相関する値を算出する一方で、上記第 2光量に基づいてデ ォキシヘモグロビン濃度またはこの濃度に相関する値を算出し、かつ、ォキシへモグ ロビン濃度とデォキシヘモグロビン濃度とを合算し、あるいはォキシヘモグロビン濃度 に相関する値とデォキシヘモグロビン濃度に相関する値とを合算することで演算する ことができる。
[0015] 本発明のグリコヘモグロビン濃度方法が液体クロマトグラフィを利用したものである 場合において、上記第 1光量に基づいて得られる溶離時間と検出量との関係を示す ォキシヘモグロビンに対応した第 1クロマトグラムと、第 2光量に基づいて得られる溶 離時間と検出量との関係を示すデォキシヘモグロビンに対応した第 2クロマトグラムと 、を重ね合わせたクロマトグラムに基づいて、クリコヘモグロビン濃度を演算するように してちよい。
[0016] 上記試料は、たとえば血球を溶血させものである。
[0017] 本発明の第 2の側面では、光源からの光を試料に照射し、そのときに試料力も進行 してくる光を受光部において受光する測光機構を備えたグリコヘモグロビン濃度測定 装置であって、上記測光機構は、 400〜450nmの波長範囲にピーク波長を有する 複数の波長の光を区別して、受光部において受光させることができるように構成され て 、ることを特徴とする、グリコヘモグロビン濃度測定装置が提供される。
[0018] 好ましくは、受光部は、少なくとも 415〜430nmの波長範囲における異なるピーク 波長の光を連続的または間欠的を受光できるように構成される。
[0019] 本発明は、液体クロマトグラフィを利用したグリコヘモグロビン濃度の測定装置に適 用することができる。この場合のグリコヘモグロビン濃度測定装置は、波長と溶離時 間と検出量とを変数とする 3次元クロマトグラムに基づいて、グリコヘモグロビン濃度を 演算するように構成された演算部をさらに備えたものとされる。
[0020] 演算部は、たとえば上記 3次元クロマトグラムでのヘモグロビン総量に対応する体積 または積算値おけるグリコヘモグロビンに対応する体積または積算値が占める割合と してグリコヘモグロビン濃度を演算するように構成されている。より具体的には、演算 部は、たとえば上記 3次元クロマトグラムに基づいて得られる溶離時間と検出量のピ ーク値とを変数とする 2次元クロマトグラムにおいて、ヘモグロビン総量に対応する面 積おけるグリコヘモグロビンに対応する面積が占める割合としてグリコヘモグロビン濃 度を演算するように構成される。演算部はまた、各ピーク波長における溶離時間と検 出量とを変数とするクロマトグラム力もダルコヘモグロビンの割合を演算するとともに、 各ピーク波長におけるダルコヘモグロビンの割合を平均することによりグリコへモグロ ビン濃度を演算するように構成してもよぐ各ピーク波長におけるヘモグロビンの検出 量のピーク値と、溶離時間と、の 2次元クロマトグラムにおいて、ヘモグロビン総量に 対応する面積おけるグリコヘモグロビンに対応する面積が占める割合として演算する ように構成することちできる。
[0021] 本発明のグリコヘモグロビン濃度測定装置は、試料力ら進行してくる 400〜420nm の波長範囲にピーク波長を有する光の量である第 1光量と、試料から進行してくる 42 0〜440nmの波長範囲にピーク波長を有する光の量である第 2光量と、に基づ 、て 、グリコヘモグロビン濃度を演算する演算部を備えたものとすることもできる。演算部 は、たとえば上記第 1光量に基づいてォキシヘモグロビン濃度またはこの濃度に相 関する値を算出する一方で、上記第 2光量に基づいてデォキシヘモグロビン濃度ま たはこの濃度に相関する値を算出し、かつ、上記ォキシヘモグロビン濃度と上記デォ キシヘモグロビン濃度とを合算し、あるいは上記ォキシヘモグロビン濃度に相関する 値と上記デォキシヘモグロビン濃度に相関する値とを合算してヘモグロビン濃度を演 算するように構成される。
[0022] 本発明のグリコヘモグロビン濃度装置が液体クロマトグラフィを利用したものである 場合において、演算部は、上記第 1光量に基づいて得られる溶離時間と検出量との 関係を示すォキシヘモグロビンに対応した第 1クロマトグラムと、上記第 2光量に基づ V、て得られる溶離時間と検出量との関係を示すデォキシヘモグロビンに対応した第 2 クロマトグラムと、を重ね合わせたクロマトグラムに基づいて、クリコヘモグロビン濃度 を演算するように構成してもよ 、。
[0023] 上記試料は、たとえば血球を溶血させものである。
図面の簡単な説明
[0024] [図 1]本発明の第 1の実施の形態に係るグリコヘモグロビン測定装置の一例である H PLC装置を示す概略構成図である。
[図 2]図 1に示した HPLC装置における測光機構を説明するための断面図である。
[図 3]図 1に示した HPLC装置の要部を示すブロック図である。
[図 4]図 1に示した HPLC装置の動作を説明するためのフローチャートである。
[図 5]図 1に示した HPLC装置における演算回路での濃度測定処理を説明するため のフローチャートである。
[図 6]演算回路において得られる 3次元クロマトグラムの一例である。
[図 7]本発明の第 2の実施の形態における演算回路での濃度測定処理を説明するた めのフローチャートである。
[図 8]図 8Aは特定時間における測定波長と吸光度との関係を示すグラフであり、図 8 Bは特定時間における最大吸光度により作成した 2次元クロマトグラムである。
[図 9]本発明の第 3の実施の形態における演算回路での濃度測定処理を説明するた めのフローチャートである。
[図 10]測定波長が 415nmの場合(1点鎖線、)、測定波長が 430nmの場合 (鎖線)、 および測定波長が 415nmのときの吸光度と 430nmのときの吸光度とを合算した場 合 (実線)の 2次元クロマトグラムである。
[図 11]実施例 1における環境温度とグリコヘモグロビン濃度と関係を示すグラフである
[図 12]比較例 1における環境温度とグリコヘモグロビン濃度と関係を示すグラフである
[図 13]従来のグリコヘモグロビン測定装置の一例である HPLC装置を示す概略構成 図である。
[図 14]図 13に示した HPLC装置における測光機構を説明するための断面図である。
[図 15]図 13に示した HPLC装置にお!/、て得られるクロマトグラムの一例である。 符号の説明
[0025] X HPLC装置(ダルコヘモグロビン測定装置)
5 測光機構
51 (測光機構の)光源
53B (測光機構の)受光素子 (受光部)
61 演算部
発明を実施するための最良の形態
[0026] 以下においては、本発明の第 1ないし第 3の実施の形態について、図面を参照して 具体的に説明する。
[0027] まず、本発明の第 1の実施の形態について、図 1ないし図 6を参照して説明する。
[0028] 図 1に示した HPLC装置 Xは、本発明のグリコヘモグロビン濃度測定装置の一例に 相当するものであり、全血を用いてグリコヘモグロビン濃度を測定するように構成され たものである。この HPLC装置 Xは、複数の溶離液ボトル 10, 11, 12 (図面上は 3つ )、脱気装置 2、試料調製ユニット 3、分析ユニット 4、測光機構 5および演算回路 6を 備えている。
[0029] 各溶離液ボトル 10, 11, 12は、後述する分析カラム 40に供給すべき溶離液を保 持したものである。溶離液としては、たとえば pHや塩濃度の異なるノ ッファが使用さ れる。
[0030] 脱気装置 2は、分析ユニット 4 (分析カラム 40)に溶離液を供給する前に、溶離液か ら溶存気体を除去するためのものであり、配管 70A, 70B, 70Cを介して溶離液ボト ノレ 10, 11, 12【こ、酉己管 71A, 71B, 71Cを介して分析ユニット 4のマユホーノレド 41【こ 連結されている。
[0031] 図 1に示したように、試料調製ユニット 3は、採血管 13から採取した血球成分から、 分析カラム 40に導入する試料を調製するためのものである。この試料調製ユニット 3 は、サンプリングノズル 30、調製液タンク 31および希釈槽 32を有している。
[0032] サンプリングノズル 30は、採血管 13の血液試料 14をはじめとする各種の液体を採 取するためのものであり、液体の吸引'吐出が可能であるとともに、上下方向および 水平方向に移動可能とされている。このサンプリングノズル 30の動作は、図外の制御 手段によって制御されている。
[0033] 調製液タンク 31は、血液試料 14をもとに、分析カラム 40に導入する導入用試料を 調製するための調製液を保持したものである。この調製液タンク 31には、調製液とし て、赤血球の溶血させるための溶血液、溶血液を希釈するための希釈液などが保持 されている。
[0034] 希釈槽 32は、血液試料 14中の赤血球を溶血させ、かつ溶血液を希釈して導入用 試料を調製する場を提供するためのものである。この希釈槽 32は、後述する分析ュ ニット 4におけるインジェクションバルブ 43に配管 72を介して接続されており、希釈槽 32において調製された導入用試料力 Sインジェクションバルブ 43を介して分析カラム 4 0に導入できるように構成されている。
[0035] 分析ユニット 4は、分析カラム 40の充填剤に対する生体成分の吸着'溶離をコント口 ールし、各種の生体成分を測光機構 5に供するためのものであり、図外の温調機構 により温度コントロールされている。分析ユニット 4における設定温度は、たとえば 40 °C程度とされる。分析カラム 40は、試料中のヘモグロビンを選択的に吸着させるため の充填剤を保持させたものである。充填剤としては、たとえばメタクリル酸エステル共 重合体が使用される。
[0036] 分析ユニット 4は、分析カラム 40の他に、マ-ホールド 41、送液ポンプ 42、およびィ ンジェクシヨンバルブ 43を有して!/、る。
[0037] マ-ホールド 41は、複数の溶離液ボトル 10, 11, 12のうちの特定の溶離液ボトル 1 0, 11, 12から、インジェクションバルブ 43に対して選択的に溶離液を供給させるた めのものである。このマ-ホールド 41は、配管 71A, 71B, 71Cを介して脱気装置 2 に接続され、配管 73を介してインジェクションバルブ 43に接続されている。
[0038] 送液ポンプ 42は、インジェクションバルブ 43を介して溶離液を分析カラム 40に移動 させるための動力を付与するためのものであり、配管 73の途中に設けられている。送 液ポンプ 42は、たとえば溶離液の流量が 1. 0〜2. OmlZminとなるように動作させ られる。
[0039] インジェクションバルブ 43は、一定量の導入用試料を採取するとともに、その導入 用試料を分析カラム 40に導入可能とするものであり、複数の導入ポートおよび排出 ポート(図示略)を備えている。このインジェクションバルブ 43には、インジェクションル ープ 44が接続されている。このインジェクションループ 44は、一定量(たとえば数 /z L )の液体を保持可能なものであり、インジェクションバルブ 43を適宜切り替えることに より、インジェクションループ 44が希釈槽 32と連通して希釈槽 32からインジェクション ループ 44に導入用試料が供給される状態、インジェクションループ 44が配管 74を介 して分析カラム 40と連通してインジェクションループ 44から導入用試料が分析カラム 40に導入される状態、あるいはインジェクションループ 44に図外の洗浄槽カも洗浄 液が供給される状態を選択することができる。このようなインジェクションバルブ 43とし ては、たとえば六方ノ レブを使用することができる。
[0040] 図 2に示したように、測光機構 5は、分析カラム 40からの溶離液に含まれるへモグロ ビンを光学的に検出するためのものであり、測光セル 50、光源 51、ビームスプリッタ 5 2、測定用受光系 53および参照用受光系 54を有している。 [0041] 測光セル 50は、測光エリアを規定するためのものである。この測光セル 50は、導入 流路 50A、測光流路 50Bおよび排出流路 50Cを有しており、これらの流路 50A, 50 B, 50Cがー連に連通している。導入流路 50Aは、分析カラム 40 (図 1参照)からの 溶離液を測光流路 50Bに導入するためのものであり、分析カラム 40に配管 75を介し て接続されている。測光流路 50Bは、測光対象となる溶離液を流通させ、かつ溶離 液を測光するための場を提供するものであり、直線状に形成されている。この測光流 路 50Bは、両端が開放しているとともに、両端部が透明カバー 55により塞がれている 。排出流路 50Cは、測光流路 50Bの溶離液を排出するためのものであり、配管 76を 介して廃液槽 15に接続されて!ヽる (図 1参照)。
[0042] 光源 51は、測光流路 50Bを流通する溶離液に光を照射するためのものである。こ の光源 51は、光軸 Lが測光流路 50Bの中心を通過するように、測光流路 50Bの端面 50Ba (透明カバー 55)に対面した状態で配置されている。光源 51は、後述する演算 部 61 (図 3参照)における濃度演算手法に応じて出射可能な波長範囲が選択される ものであってもよいが、通常は、 400〜500nmの波長範囲の光を出射可能なもの、 たとえばノヽロゲンランプが使用されている。もちろん、光源 51としては、ハロゲンラン プ以外のもの、たとえば 1または複数の LED素子を備えたものを使用することもでき る。
[0043] ビームスプリッタ 52は、光源 51から出射された光のうち、測光流路 50Bを透過した 光を分割して測定用受光系 53および参照用受光系 54に入射させるためのものであ り、光軸 L上において、 45度傾斜した状態で配置されている。ビームスプリッタ 52とし ては、ハーフミラーなどの公知の種々のものを使用することができる。
[0044] 測定用受光系 53は、ビームスプリッタ 52を透過した光のうち、目的とする波長の光 を選択的に受光するものであり、光軸 L上に配置されている。この測定用受光系 53 は、波長選択部 53Aと、この波長選択部 53Aを透過した光を受光するための受光素 子 53Bと、を備えている。波長選択部 53Aは、後述する演算部 61 (図 3参照)におけ る濃度演算手法に応じて透過させるべき光の波長を選択するものである。この波長 選択部 53Aとしては、干渉フィルタ、シャープカットフィルタおよびクレーデイングなど の公知の分光手段を採用することができる。受光素子 53Bとしては、フォトダイオード を使用することができる。
[0045] 参照用受光系 54は、分析カラム 40 (図 1参照)からの溶離液の濁度や散乱の影響 を抑制するためのデータを取得するためのものであり、ビームスプリッタ 52において 反射して光路が変えられた光のうち、参照波長である 500nmの光を選択的に受光 するものである。この測定用受光系 74は、 500nmの光を選択的に透過させる干渉フ ィルタ 54Aと、干渉フィルタ 54Aを透過した光を受光するための受光素子 54Bと、を 備えている。受光素子 54Bとしては、フォトダイオードを使用することができる。
[0046] 図 3に示したように、演算回路 6は、制御部 60および演算部 61を備えている。
[0047] 制御部 60は、各部の動作を制御するためのものである。より具体的には、制御部 6 0は、光源 51の点灯 ·消灯を制御し、波長選択部 53Aを制御して受光素子 53Bにお V、て受光させる光の波長を選択し、ある!/、は演算部 61における濃度演算処理を制 御する。
[0048] 演算部 61は、受光素子 53B, 54Bでの受光結果に基づいて、全血中のグリコへモ グロビン濃度を演算するためのものである。この演算部 61は、演算に必要なプロダラ ムを記憶したものであり、その動作は制御部 60によって制御される。
[0049] 次に、 HPLC装置 Xの動作について、図 1ないし図 3に加えて、図 4に示したフロー チャートを参照しつつ説明する。
[0050] HPLC装置 Xにおいては、測定開始の指示が確認された場合には(S1)、分析カラ ム 40に対して溶離液を供給する(S2)。溶離液は、送液ポンプ 42の動力により、溶離 液ボトル 10, 11, 12から脱気装置 2、マ-ホールド 41を介してインジェクションバル ブ 43に供給され、また複数の溶離液ボトル 10, 11, 12のうちのいずれの溶離液ボト ル 10, 11, 12の溶離液を供給するかは、マ-ホールド 41を制御することによって選 択される。インジェクションバルブ 43に供給された溶離液は、配管 74を介して分析力 ラム 40に供給される。
[0051] HPLC装置 Xにおいてはさらに、分析カラム 40に導入すべき導入用試料を調製す る(S3)。導入用試料の調製に当たっては、まず採血管 13から血液試料 14を採取す る。採血管 13からの血液試料 14の採取は、サンプリングノズル 30を動作させることに より行なわれる。サンプリングノズル 30によって採取された血液試料 14は、サンプリン グノズル 30を動作させることによって希釈槽 32に供給される。希釈槽 32にはさらに、 調製液タンク 31から溶血剤および希釈液が順次供給され、サンプリングノズル 30を 利用したピペッティング操作によって希釈槽 32内の液体を混合することによって導入 用試料が調製される。
[0052] 導入用試料は、分析カラム 40に導入される(S4)。分析カラム 40に対する導入用 試料の導入は、インジェクションバルブ 43の切替操作を行うことにより、インジェクショ ンループ 44の導入用試料が溶離液とともに分析カラム 40に導入される。分析カラム 40においては、導入用試料が導入されることにより、充填剤にグリコヘモグロビンが 吸着する。充填剤にグリコヘモグロビンを吸着させた後においては、マ-ホールド 41 によって、分析カラム 40に供給する溶離液の種類を適宜切り替え、充填剤に吸着し たグリコヘモグロビンを溶離させる。
[0053] 一方、導入用試料の導入開始から一定時間経過した場合には、インジェクションバ ルブ 43の切替操作を行うことにより、分析カラム 40に対して引き続き溶離液を供給す るとともに、インジェクションループ 44の洗浄を行なう(S5)。一方、インジェクションル ープ 44の洗浄と同時的に、先に説明したのと同様にして、先とは異なる採血管 13の 血液試料 14から導入用試料を調製し (S3)、インジェクションループ 44の洗浄後に おいては、再び導入用試料をインジェクションループ 44に導入する(S4)。このような 導入用試料の調製 (S3)、導入 (S4)、洗浄 (S5)は、インジェクションバルブ 43を適 宜切り替えつつ、測定対象となる採血管 13 (血液試料 14)の数に応じて繰り返し行 なわれる。
[0054] 分析カラム 40から排出されるグリコヘモグロビンを含む溶離液は、配管 76を介して 測光機構 5の測光セル 50に供給され、測光される(S6)。測光セル 50に対しては、 配管 75および導入流路 50Aを介して溶離液が導入され、この溶離液は測光流路 50 Bおよび排出流路 50Cを通過した後に、配管 76を介して廃液槽 15に導かれる。
[0055] 測光機構 5においては、分析カラム 40からの溶離液が測光流路 50Bを通過する際 に、光源 51によって溶離液に対して連続的に光が照射される。その一方で、測光流 路 50Bを透過した光は、ビームスプリッタ 52において分割された後、測定用受光系 5 3および参照用受光系 54において受光される。測定用受光系 53では、波長選択部 53Aを透過した特定波長の光が受光素子 53Bにおいて選択的に受光される。一方
、参照用受光系 54では、干渉フィルタ 54Aを透過した参照波長である 500nmの光 が受光素子 54Bにおいて選択的に受光される。
[0056] 受光素子 53B, 54Bでの受光結果は、演算回路 6に出力され、この演算回路 6に お 、てグリコヘモグロビンの濃度が演算される(S7)。
[0057] 演算回路 6における濃度演算処理は、図 5に示したフローチャートの手順にしたが つて行なわれる。
[0058] まず、 400〜450nm、好ましくは 415〜430nmの波長範囲から選択された複数の 波長について、各波長ごとに特定時間ごとに測光を行なう(S10)。より具体的には、 光源 51から連続的に光を出射する一方で、制御部 60によって波長選択部 53Aを制 御し、受光素子 53Bにおいて受光される光の波長を、上記波長範囲において経時 的に変化させる。すなわち、受光素子 53Bにおいて受光される光の波長は、連続的 または間欠的に変化させられる。なお、上記波長範囲で波長変化させた測光は繰り 返し行なわれる。
[0059] 図 6には、波長を間欠的に変化させた場合の例を示した力 上記時間範囲を同一 時間として取り扱った場合には、各測定波長ごとに 2次元クロマトグラムが得られ、測 定波長をも変数すれば、溶離時間、吸光度および測定波長を変数とする 3次元クロ マトグラムが得られる。なお、図 6では、測定波長の間隔を比較的に大きく設定してい る力 実際には、測定波長の間隔は、極めて小さく(たとえば 0. l〜2nm)、波長を変 数のとする場合のプロット点は離散的ではなぐもっと連続的なものとなる。
[0060] 次いで、同一時間における各波長でのヘモグロビンに相当する吸光度を積算する
(Sl l) oすなわち、図 6の 3次元クロマトグラムにおけるヘモグロビンに相当する部分 の体積を、各測定波長での 2次元クロマトグラムにおけるヘモグロビンに相当する部 分の面積の積算値として演算する。
[0061] 次いで、同一時間における各波長でのグリコヘモグロビンに相当する吸光度を積 算する(S12)。すなわち、図 6の 3次元クロマトグラムにおけるグリコヘモグロビンに相 当する部分の体積を、各測定波長での 2次元クロマトグラムにおけるヘモグロビンに 相当する部分の面積の積算値として演算する。 [0062] 次いで、ヘモグロビン総量に対するグリコヘモグロビンの比率を演算する(S13)。 すなわち、図 6における 3次元ヘモグロビン総量に相当する体積 (積算値)のうち、グ リコヘモグロビンに相当する体積 (積算値)の割合を演算し、それをグリコへモグロビ ン濃度 (%)とする。
[0063] S13における演算が終了した場合には、図 4における S7に戻る(S14)。すなわち、 演算回路 6での演算結果は、図外の表示パネルに表示され、また自動的あるいは使 用者のボタン操作によってプリントアウトされる(S8)。
[0064] 本実施の形態では、ォキシヘモグロビンの最大吸収波長である 415nmおよびデォ キシヘモグロビンの最大吸収波長である 430nmを含む波長範囲にぉ 、て、連続的 または間欠的に波長を変化させたときの吸光度変化に基づいて、グリコヘモグロビン 濃度を演算している。すなわち、本発明は、ォキシヘモグロビンに主体的に着目して グリコヘモグロビン濃度を演算するのではなく、デォキシヘモグロビンの影響をも勘案 してグリコヘモグロビンの濃度を演算している。そのため、溶離液中の溶存気体の状 態が変動してヘモグロビン中のォキシヘモグロビンとデォキシヘモグロビンとの比率 が変動し、あるいは分析カラム 40に導入する導入用試料におけるォキシへモグロビ ンとデォキシヘモグロビンとの比率が変動した場合であっても、その影響を受けること もない。その結果、本実施の形態では、 HPLC装置 Xの外部の温度 (環境温度)が変 動する環境下や環境温度が異なる状態でグリコヘモグロビン濃度を測定する場合、 あるいは分析カラムに導入する試料における酸素濃度のバラツキが生じる場合であ つても、溶離液におけるォキシヘモグロビンとデォキシヘモグロビンとの比率に関係 なぐ安定したグリコヘモグロビン濃度の測定が可能となる。
[0065] なお、グリコヘモグロビン濃度の算出は、たとえば各測定波長での 2次元クロマトグ ラムに基づ 、てヘモグロビン総量におけるグリコヘモグロビンが占める割合をそれぞ れ演算するとともに、各測定波長でのグリコヘモグロビンの割合の平均値を算出し、 その平均値をグリコヘモグロビン濃度としてもよ 、。
[0066] 次に、本発明の第 2の実施の形態について、図 3、図 7および図 8を参照して説明 する。
[0067] 本実施の形態は、図 7に示したように、演算回路 6における濃度演算処理の手法が 、先の実施の形態とは異なっている。
[0068] まず、 400〜450nm、好ましくは 415〜430nmの波長範囲から選択された複数の 波長において、特定時間ごとに測光を行なう(S20)。この点については、第 1の実施 に形態における S10 (図 5参照)と同様である。測定波長を連続的あるいは間欠的に 変化させた場合には、図 8Aに示したように各時間ごとに測定波長と吸光度との関係 を示すグラフが得られる。
[0069] 次いで、同一時間における最大吸光度 (max)を選択し、図 8Bに示すような溶離時 間と最大吸光度との関係を示す 2次元クロマトグラムを得る(S21)。
[0070] 次いで、図 8Bに示した 2次元クロマトグラムから、ヘモグロビン総量に相当する面積 に対するグリコヘモグロビン量に対応する面積としてグリコヘモグロビン濃度(%)を演 算する(S22)。
[0071] S22における処理が終了した場合には、図 4における S7に戻り(S23)、演算回路 6 での演算結果力 図外の表示パネルなどに出力される(S8)。
[0072] 本実施の形態では、測定波長として、ォキシヘモグロビンの最大吸収波長である 4 15nmおよびデォキシヘモグロビンの最大吸収波長である 430nmを含む波長範囲 を利用しているとともに、それらの波長範囲において測定される最大吸光度によって グリコヘモグロビン濃度を演算している。そのため、本発明の第 1の実施の形態の場 合と同様に、分析カラム 40からの溶離液におけるォキシヘモグロビンとデォキシへモ グロビンとの比率に関係なぐ安定したグリコヘモグロビン濃度の測定が可能となる。
[0073] 次に、本発明の第 3の実施の形態について、図 3、図 9および図 10を参照して説明 する。
[0074] 本実施の形態は、図 9に示したように、演算回路 6における濃度演算処理の手法が 、先の実施の形態とは異なっている。
[0075] まず、 415nmおよび 430nmにおいて特定時間ごとに測光を行なう(S30)。より具 体的には、光源 51から連続的に光を出射する一方で、制御部 60によって波長選択 部 53Aを制御し、受光素子 53Bにおいて受光される光の波長を、 415nmと 430nm との間で交互に切り替える。このような測定波長の切り替えは、繰り返し行なわれる。 その結果、図 10に示したように、測定波長を 415nmとしたときのォキシヘモグロビン 基準の 2次元クロマトグラム(図 10の一点鎖線)と、測定波長を 430nmとしたときのデ ォキシヘモグロビン基準の 2次元クロマトグラム(図 10の鎖線)力 溶離時間と吸光度 との関係として得られる。
[0076] 次いで、測定波長を 415nmとしたときのォキシヘモグロビン基準の 2次元クロマトグ ラム(図 10の一点鎖線)からグリコヘモグロビン濃度を演算する(S31)。
[0077] 次いで、測定波長を 430nmとしたときのデォキシヘモグロビン基準の 2次元クロマト グラム(図 10の鎖線)力 グリコヘモグロビン濃度を演算する(S32)。
[0078] 次いで、測定波長を 415nmとしたときの濃度演算結果と測定波長を 430nmとした ときの濃度演算結果とを合算し、それをグリコヘモグロビン濃度とする(S33)。
[0079] S33における処理が終了した場合には、図 4における S7に戻り(S34)、演算回路 6 での演算結果力 図外の表示パネルなどに出力される(S8)。
[0080] 本実施の形態では、測定波長として、ォキシヘモグロビンの最大吸収波長である 4 15nmの測定結果とデォキシヘモグロビンの最大吸収波長と 430nmの測定結果を 合算してグリコヘモグロビン濃度を演算している。そのため、本発明の第 1の実施の 形態の場合と同様に、分析カラム 40からの溶離液におけるォキシヘモグロビンとデ ォキシヘモグロビンとの比率に関係なぐ安定したグリコヘモグロビン濃度の測定が 可能となる。
[0081] 本実施の形態では、グリコヘモグロビン濃度は、測定波長が 415nmのときのクロマ トグラムと 430nmのときのクロマトグラムとを合算して得られるクロマトグラム(図 10の 実線)に基づいて演算してもよい。
[0082] また、ォキシヘモグロビン基準のクロマトグラムを得るときの測定波長は、 415nmに 限らず、 400〜420nmの波長範囲力 選択すればよぐデォキシヘモグロビン基準 のクロマトグラムを得るときの測定波長は、 430nmに限らず、 420〜440nmの範囲 力も選択すればよい。
[0083] 本発明は、先に説明した実施の形態には限定されず、種々に変更可能である。た とえば、 先に説明した濃度演算処理においては、ヘモグロビン量が吸光度として取 得されていた力 ヘモグロビン量は、必ずしも吸光度として取得する必要はなぐ透過 率として、あるいは単に受光量として取得してもよい。 [0084] また、測光機構 5において複数の測定波長の光を区別して認識する方法としては、 1つの受光素子 53Bによって行なう場合の他、測定波長の数に応じた受光素子を設 け、あるいは受光エリアを有する発光素子を用いる方法であってもよ 、。
[0085] 測光機構 5における測定用受光系 53の受光素子 53Bに受光させる光の波長(測 定波長)を選択する方法としては、測定用受光系 53において波長選択部 53Aを設 ける構成を採用して ヽたが、波長選択部を光源 51と測光セル 50との間に配置した構 成を採用することもできる。
[0086] 本発明はさらに、血液中のグリコヘモグロビン濃度を測定するための HPLC装置に 限らず、血液以外の検体を用いる場合、あるいは HPLC装置以外の液体クロマトダラ フィ装置その他のグリコヘモグロビン濃度測定装置に対しても適用することができる。 実施例
[0087] (実施例 1)
本実施例では、測定波長を変化させてグリコヘモグロビン濃度を測定した場合に、 環境温度が測定値に与える影響にっ 、て検討した。
[0088] グリコヘモグロビンの濃度は、環境温度を 10°C、 20°Cおよび 30°Cとした場合につ いて、グリコヘモグロビン測定装置(「ADAMS Ale HA— 8160」;アークレイ株式 会社製)において、受光素子としてフォトダイオードアレイ(「紫外可視多波長検出器
MD- 910J;日本分光株式会社製)を採用したものを用いて行った。グリコへモグ ロビン濃度は、 415〜430nmの波長範囲において、 lnm毎にヘモグロビン総量およ びグリコヘモグロビン量をそれぞれ測定した上で、先の波長範囲におけるへモグロビ ン総量の積算値に対するグリコヘモグロビンの積算値が占める割合として演算した。
[0089] 検体としては、健常人から採取した血液 (健常人検体)および糖尿病患者から採取 した血液 (糖尿患者血液)を用いた。グリコヘモグロビンの測定結果にっ 、ては下記 表 1および図 11に示した。
[0090] [表 1] グリコヘモグロビン測定値
1 0。C 20°C 30°C
健常人検体 4.41 % 4.47% 4.40%
糖尿病患者検体 8.40% 8.43% 8.33% [0091] (比較例 1)
本比較例では、測定波長をォキシヘモグロビンの最大吸収波長である 415nmに 固定してグリコヘモグロビン濃度を測定した場合に、環境温度が測定値に与える影 響について検討した。
[0092] グリコヘモグロビンの濃度は、測定波長を固定した以外は基本的には実施例 1と同 様な条件にお!、て測定し、グリコヘモグロビン総量におけるグリコヘモグロビン量が 占める割合として演算した。グリコヘモグロビンの測定結果にっ 、ては下記表 2およ び図 12に示した。
[0093] [表 2]
Figure imgf000019_0001
[0094] 比較例 1のように、測定波長をォキシヘモグロビンの最大吸収波長である 415nm に固定してグリコヘモグロビンを測定した場合には、表 2および図 12から分力るように 、環境温度が高くなるほど測定値が大きくなり、測定値が環境温度の影響を大きく受 けていた。
[0095] これに対して、実施例 1のように、測定波長をォキシヘモグロビンの最大吸収波長( 415nm)力 デォキシヘモグロビンの最大吸収波長(430nm)の間で変化させたとき の積算値によりグリコヘモグロビン濃度を演算した場合には、表 1および図 11から分 かるように、環境温度が 10〜30°Cの範囲で変化したとしても、測定値が環境温度の 影響をさほど受けておらず、略一定値となった。
[0096] このこと力 、測定波長をォキシヘモグロビンの最大吸収波長(415nm)からデォキ シヘモグロビンの最大吸収波長 (430nm)の間で変化させたときの積算値によりダリ コヘモグロビン濃度を演算した場合には、環境温度 (溶離液の溶存酸素濃度)や試 料の溶存酸素濃度の影響を受けることなく、正確かつ安定したグリコヘモグロビン濃 度の測定が可能であることが分かる。

Claims

請求の範囲
[1] 試料に対して光を照射したときに試料力も進行してくる光に基づいてグリコへモグロ ビン濃度を測定する方法であって、
400〜450nmの波長範囲にピーク波長を有する複数の測定波長の光に基づいて グリコヘモグロビンの濃度を測定する、グリコヘモグロビン濃度測定方法。
[2] 試料力も進行してくる光のうち、少なくとも 415〜430nmの波長範囲における異な るピーク波長の光を連続的または間欠的に受光してグリコヘモグロビン濃度を測定 する、請求項 1に記載のグリコヘモグロビン濃度測定方法。
[3] 液体クロマトグラフィを利用したグリコヘモグロビン濃度の測定方法にぉ 、て、 測定波長、溶離時間、および検出量を変数とする 3次元クロマトグラムに基づいて、 グリコヘモグロビン濃度を演算する、請求項 1に記載のグリコヘモグロビン濃度測定 方法。
[4] グリコヘモグロビン濃度は、上記 3次元クロマトグラムでのヘモグロビン総量に対応 する体積または積算値おけるグリコヘモグロビンに対応する体積または積算値が占 める割合として演算される、請求項 3に記載のグリコヘモグロビン濃度測定方法。
[5] グリコヘモグロビン濃度は、各測定波長における溶離時間と検出量とを変数とする クロマトグラム力もダルコヘモグロビンの割合を演算するとともに、各測定波長におけ るダルコヘモグロビンの割合を平均することにより演算される、請求項 3に記載のダリ コヘモグロビン濃度測定方法。
[6] グリコヘモグロビン濃度は、各測定波長におけるヘモグロビンの検出量のピーク値 と、溶離時間と、の 2次元クロマトグラムにおいて、ヘモグロビン総量に対応する面積 おけるグリコヘモグロビンに対応する面積が占める割合として演算される、請求項 3に 記載のグリコヘモグロビン濃度測定方法。
[7] 試料力も進行してくる 400〜420nmの波長範囲にピーク波長を有する光の量であ る第 1光量と、試料力 進行してくる 420〜440nmの波長範囲にピーク波長を有する 光の量である第 2光量と、に基づいて、グリコヘモグロビン濃度を測定する、請求項 1 に記載のグリコヘモグロビン濃度測定方法。
[8] 上記第 1光量に基づ 、てォキシヘモグロビン濃度またはこの濃度に相関する値を 算出する一方で、上記第 2光量に基づ 、てデォキシヘモグロビン濃度またはこの濃 度に相関する値を算出し、かつ、
上記ォキシヘモグロビン濃度と上記デォキシヘモグロビン濃度とを合算し、ある ヽ は上記ォキシヘモグロビン濃度に相関する値と上記デォキシヘモグロビン濃度に相 関する値とを合算して演算される値をヘモグロビン濃度とする、請求項 7に記載のダリ コヘモグロビン濃度測定方法。
[9] 液体クロマトグラフィを利用したグリコヘモグロビン濃度の測定方法にぉ 、て、
上記第 1光量に基づいて得られる溶離時間と検出量との関係を示すォキシへモグ ロビンに対応した第 1クロマトグラムと、上記第 2光量に基づいて得られる溶離時間と 検出量との関係を示すデォキシヘモグロビンに対応した第 2クロマトグラムと、を重ね 合わせたクロマトグラムに基づいて、クリコヘモグロビン濃度を演算する、請求項 7に 記載のクリコヘモグロビン濃度測定方法。
[10] 上記試料は、血球を溶血させものである、請求項 1に記載のグリコヘモグロビン濃 度測定方法。
[11] 光源力もの光を試料に照射し、そのときに試料力も進行してくる光を受光部におい て受光する測光機構を備えたグリコヘモグロビン濃度測定装置であって、
上記測光機構は、 400〜450nmの波長範囲にピーク波長を有する複数の測定波 長の光を区別して、受光部において受光させることができるように構成されている、グ リコヘモグロビン濃度測定装置。
[12] 上記受光部は、少なくとも 415〜430nmの波長範囲における異なるピーク波長の 光を連続的または間欠的を受光できるように構成されている、請求項 11に記載のグ リコヘモグロビン濃度測定装置。
[13] 液体クロマトグラフィを利用したグリコヘモグロビン濃度の測定装置にお 、て、
測定波長、溶離時間および検出量を変数とする 3次元クロマトグラムに基づいて、 グリコヘモグロビン濃度を演算するように構成された演算部をさらに備えている、請求 項 11に記載のグリコヘモグロビン濃度測定装置。
[14] 上記演算部は、上記 3次元クロマトグラムでのヘモグロビン総量に対応する体積ま たは積算値おけるグリコヘモグロビンに対応する体積または積算値が占める割合とし てグリコヘモグロビン濃度を演算するように構成されている、請求項 13に記載のダリ コヘモグロビン濃度測定装置。
[15] 上記演算部は、各測定波長における溶離時間と検出量とを変数とするクロマトダラ ムカもダルコヘモグロビンの割合を演算するとともに、各測定波長におけるダルコへ モグロビンの割合を平均することによりグリコヘモグロビン濃度を演算するように構成 されている、請求項 13に記載のグリコヘモグロビン濃度測定装置。
[16] 上記演算部は、各ピーク波長におけるヘモグロビンの検出量のピーク値と、溶離時 間と、の 2次元クロマトグラムにおいて、ヘモグロビン総量に対応する面積おけるダリ コヘモグロビンに対応する面積が占める割合として演算するように構成されて 、る、 請求項 13に記載のグリコヘモグロビン濃度測定装置。
[17] 試料力 進行してくる 400〜420nmの波長範囲にピーク波長を有する光の量であ る第 1光量と、試料力 進行してくる 420〜440nmの波長範囲にピーク波長を有する 光の量である第 2光量と、に基づいて、グリコヘモグロビン濃度を演算する演算部をさ らに備えて!/、る、請求項 11に記載のグリコヘモグロビン濃度測定装置。
[18] 上記演算部は、上記第 1光量に基づいてォキシヘモグロビン濃度またはこの濃度 に相関する値を算出する一方で、上記第 2光量に基づ 、てデォキシヘモグロビン濃 度またはこの濃度に相関する値を算出し、かつ、上記ォキシヘモグロビン濃度と上記 デォキシヘモグロビン濃度とを合算し、あるいは上記ォキシヘモグロビン濃度に相関 する値と上記デォキシヘモグロビン濃度に相関する値とを合算してヘモグロビン濃度 を演算するように構成されている、請求項 17に記載のグリコヘモグロビン濃度測定装 置。
[19] 液体クロマトグラフィを利用したグリコヘモグロビン濃度の測定装置にお 、て、 上記演算部は、上記第 1光量に基づいて得られる溶離時間と検出量との関係を示 すォキシヘモグロビンに対応した第 1クロマトグラムと、上記第 2光量に基づいて得ら れる溶離時間と検出量との関係を示すデォキシヘモグロビンに対応した第 2クロマト グラムと、を重ね合わせたクロマトグラムに基づいて、クリコヘモグロビン濃度を演算す る、請求項 17に記載のクリコヘモグロビン濃度測定装置。
[20] 上記試料は、血球を溶血させものである、請求項 11に記載のグリコヘモグロビン濃 度測定装置。
PCT/JP2007/056110 2006-03-24 2007-03-23 グリコヘモグロビン濃度測定方法および濃度測定装置 WO2007111282A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07739551.5A EP2012111B1 (en) 2006-03-24 2007-03-23 Method of measuring glycohemoglobin concentration and apparatus for concentration measurement
CN2007800187887A CN101484792B (zh) 2006-03-24 2007-03-23 糖基血红蛋白浓度测定方法和浓度测定装置
US12/225,540 US8268625B2 (en) 2006-03-24 2007-03-23 Method of measuring glycated hemoglobin concentration and concentration measuring apparatus
JP2008507482A JP5279485B2 (ja) 2006-03-24 2007-03-23 グリコヘモグロビン濃度測定方法および濃度測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006082095 2006-03-24
JP2006-082095 2006-03-24

Publications (1)

Publication Number Publication Date
WO2007111282A1 true WO2007111282A1 (ja) 2007-10-04

Family

ID=38541199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056110 WO2007111282A1 (ja) 2006-03-24 2007-03-23 グリコヘモグロビン濃度測定方法および濃度測定装置

Country Status (5)

Country Link
US (1) US8268625B2 (ja)
EP (1) EP2012111B1 (ja)
JP (1) JP5279485B2 (ja)
CN (1) CN101484792B (ja)
WO (1) WO2007111282A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181350A (ja) * 2009-02-09 2010-08-19 Shimadzu Corp クロマトグラフ用データ処理装置
JP2012500401A (ja) * 2008-08-21 2012-01-05 バイオ−ラッド ラボラトリーズ,インコーポレイティド 分析物の比を決定する校正表面方法
JP2013529780A (ja) * 2010-06-25 2013-07-22 インペリアル イノベイションズ リミテッド 小型hplc装置
JPWO2016147415A1 (ja) * 2015-03-19 2017-10-19 株式会社島津製作所 クロマトグラフ用制御装置
JP2019007865A (ja) * 2017-06-26 2019-01-17 アークレイ株式会社 液体クロマトグラフィ装置
US10712320B2 (en) 2015-10-14 2020-07-14 Alps Alpine Co., Ltd. Flow channel structure and measuring device for measurement target liquid

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5843509B2 (ja) * 2010-07-26 2016-01-13 アークレイ株式会社 クロマトグラムの表示方法
CN107402178B (zh) * 2011-04-15 2020-05-05 罗氏血液诊断股份有限公司 测量细胞体积和成份
US9176154B2 (en) * 2012-12-12 2015-11-03 Bio-Rad Laboratories, Inc. Calibration process and system
JP6048373B2 (ja) * 2013-04-09 2016-12-21 株式会社島津製作所 クロマトグラフ用データ処理装置及びデータ処理方法
WO2015015555A1 (ja) * 2013-07-29 2015-02-05 株式会社島津製作所 クロマトグラフ用データ処理装置及びデータ処理方法
CN105518454B (zh) * 2013-09-02 2018-04-10 株式会社岛津制作所 色谱仪用数据处理装置以及方法
JP6062837B2 (ja) * 2013-09-30 2017-01-18 株式会社日立ハイテクノロジーズ 液体クロマトグラフ用検出器
CN104730183B (zh) * 2014-12-17 2016-05-18 广州标旗电子科技有限公司 液相色谱阵列式紫外可见检测器重叠信号的分离方法
CN105115918A (zh) * 2015-08-12 2015-12-02 泉州装备制造研究所 基于吸收光谱的pH值快速在线检测装置及方法
US10527594B2 (en) * 2016-04-20 2020-01-07 Arkray, Inc. Liquid chromatography measurement method, liquid chromatography measurement instrument, and liquid chromatography measurement program storage medium
CN108195839A (zh) * 2018-01-03 2018-06-22 常州恒达生物科技有限公司 一种图像视频处理系统及设备
CN115508568A (zh) * 2019-01-29 2022-12-23 美国西门子医学诊断股份有限公司 降低血红蛋白A1c测定中的英脱利匹特/脂血干扰的浊度归一化算法和方法
CN114200070B (zh) * 2021-12-14 2024-07-16 嘉兴市唯真生物科技有限公司 一种液相色谱分析装置
WO2023223176A1 (en) * 2022-05-14 2023-11-23 Shanmukha Innovations Private Limited An apparatus, kit and methods for detecting thalassemia hemoglobin in a sample
CN117717334B (zh) * 2024-02-07 2024-07-05 荣耀终端有限公司 数据获取方法及电子设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256851A (ja) * 1992-03-16 1993-10-08 Hitachi Ltd 糖化ヘモグロビンの測定方法及び装置
JPH0611510A (ja) * 1992-03-05 1994-01-21 Boehringer Mannheim Gmbh ヘモグロビン誘導体の測定のための免疫学的方法
US5294336A (en) 1989-09-18 1994-03-15 Hitachi, Ltd. Apparatus for liquid chromatography for separating AIC components from hemoglobin in blood
JPH07120447A (ja) 1993-10-25 1995-05-12 Hitachi Ltd グリコヘモグロビン分析計
JPH07270387A (ja) * 1994-03-28 1995-10-20 Hitachi Ltd マルチチャンネルクロマトグラム解析方法及び装置
JPH08159954A (ja) * 1994-12-07 1996-06-21 Tosoh Corp グリコヘモグロビン測定用の吸光度計
US5692503A (en) 1995-03-10 1997-12-02 Kuenstner; J. Todd Method for noninvasive (in-vivo) total hemoglobin, oxyhemogolobin, deoxyhemoglobin, carboxyhemoglobin and methemoglobin concentration determination
JP2002369814A (ja) * 2001-04-19 2002-12-24 Samsung Electronics Co Ltd 非侵襲的なヘモグロビン濃度及び酸素飽和度のモニタリング方法並びに装置
WO2004057285A1 (en) * 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Optical analysis system
JP2004526141A (ja) * 2001-02-07 2004-08-26 ユニヴァーシティ カレッジ ロンドン 組織から得た広帯域弾性散乱スペクトルを処理する方法
JP2004309250A (ja) * 2003-04-04 2004-11-04 Shimadzu Corp クロマトグラフ用データ処理装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4407961A (en) * 1981-03-16 1983-10-04 Sanders James L Ion-exchange system and method for isolation and determination of glycosylated hemoglobin in human blood
US4465774A (en) * 1981-07-16 1984-08-14 Sherwood Medical Company Standard or control material for glysocylated or total hemoglobin determination
US4807148A (en) * 1987-05-29 1989-02-21 Hewlett-Packard Company Deconvolving chromatographic peaks
JPH05113441A (ja) * 1991-04-18 1993-05-07 Tosoh Corp 糖化ヘモグロビンの分析法
US5543315A (en) * 1992-06-30 1996-08-06 Kyoto Daiichi Kagaku Co., Ltd. Method for stabilizing measurement values by high speed liquid chromatography
JP3262631B2 (ja) * 1993-04-27 2002-03-04 積水化学工業株式会社 糖化ヘモグロビン測定用標準物質およびその製造法
DE69430152T2 (de) 1993-06-25 2002-10-31 Edward W. Stark Verfahren und Vorrichtung zum Messen von Glukoseverwandten Substanzen
US5644503A (en) 1994-03-28 1997-07-01 Hitachi, Ltd. Methods and apparatuses for analyzing multichannel chromatogram
JPH08233824A (ja) * 1994-12-19 1996-09-13 Bio Rad Lab Inc カラム再生をしないクロマトグラフィによる糖化ヘモグロビンの連続測定法
JPH11142326A (ja) * 1997-11-07 1999-05-28 Kdk Corp グリコヘモグロビン測定用の吸光度計

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294336A (en) 1989-09-18 1994-03-15 Hitachi, Ltd. Apparatus for liquid chromatography for separating AIC components from hemoglobin in blood
JPH0611510A (ja) * 1992-03-05 1994-01-21 Boehringer Mannheim Gmbh ヘモグロビン誘導体の測定のための免疫学的方法
JPH05256851A (ja) * 1992-03-16 1993-10-08 Hitachi Ltd 糖化ヘモグロビンの測定方法及び装置
JPH07120447A (ja) 1993-10-25 1995-05-12 Hitachi Ltd グリコヘモグロビン分析計
JPH07270387A (ja) * 1994-03-28 1995-10-20 Hitachi Ltd マルチチャンネルクロマトグラム解析方法及び装置
JPH08159954A (ja) * 1994-12-07 1996-06-21 Tosoh Corp グリコヘモグロビン測定用の吸光度計
US5692503A (en) 1995-03-10 1997-12-02 Kuenstner; J. Todd Method for noninvasive (in-vivo) total hemoglobin, oxyhemogolobin, deoxyhemoglobin, carboxyhemoglobin and methemoglobin concentration determination
JP2004526141A (ja) * 2001-02-07 2004-08-26 ユニヴァーシティ カレッジ ロンドン 組織から得た広帯域弾性散乱スペクトルを処理する方法
JP2002369814A (ja) * 2001-04-19 2002-12-24 Samsung Electronics Co Ltd 非侵襲的なヘモグロビン濃度及び酸素飽和度のモニタリング方法並びに装置
WO2004057285A1 (en) * 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Optical analysis system
JP2004309250A (ja) * 2003-04-04 2004-11-04 Shimadzu Corp クロマトグラフ用データ処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2012111A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500401A (ja) * 2008-08-21 2012-01-05 バイオ−ラッド ラボラトリーズ,インコーポレイティド 分析物の比を決定する校正表面方法
JP2010181350A (ja) * 2009-02-09 2010-08-19 Shimadzu Corp クロマトグラフ用データ処理装置
JP2013529780A (ja) * 2010-06-25 2013-07-22 インペリアル イノベイションズ リミテッド 小型hplc装置
US9354209B2 (en) 2010-06-25 2016-05-31 Imperial Innovations Ltd Miniature HPLC device
JPWO2016147415A1 (ja) * 2015-03-19 2017-10-19 株式会社島津製作所 クロマトグラフ用制御装置
US10712320B2 (en) 2015-10-14 2020-07-14 Alps Alpine Co., Ltd. Flow channel structure and measuring device for measurement target liquid
JP2019007865A (ja) * 2017-06-26 2019-01-17 アークレイ株式会社 液体クロマトグラフィ装置

Also Published As

Publication number Publication date
JPWO2007111282A1 (ja) 2009-08-13
JP5279485B2 (ja) 2013-09-04
US20100291691A1 (en) 2010-11-18
CN101484792B (zh) 2011-05-18
EP2012111A1 (en) 2009-01-07
EP2012111B1 (en) 2014-07-16
CN101484792A (zh) 2009-07-15
EP2012111A4 (en) 2009-07-15
US8268625B2 (en) 2012-09-18

Similar Documents

Publication Publication Date Title
WO2007111282A1 (ja) グリコヘモグロビン濃度測定方法および濃度測定装置
JP5710739B2 (ja) 血液分析装置
EP1869431B1 (en) Device for determining of properties in a fluid and/or constituents thereof
AU2012241983B2 (en) Method and apparatus for monitoring a treatment of a patient, preferably for monitoring hemodialysis, hemodiafiltration, and/or peritoneal dialysis
JP4989628B2 (ja) グリコヘモグロビン濃度測定方法および濃度測定装置
JP5324913B2 (ja) 脱気装置およびそれを備えた液体クロマトグラフィ装置
JP2013195139A (ja) 分析装置、分析プログラム及び分析方法
JP5260967B2 (ja) 液体クロマトグラフィ装置
JP2007212277A (ja) 液体クロマトグラフィ装置
WO2022208445A2 (en) Multiparametric optical method and device for determining uremic solutes, including uremix toxins, in biological fluids
US20140095082A1 (en) Expanded linear range by use of two flow cell detectors with long and short path
JP6435165B2 (ja) 液体クロマトグラフィ測定方法、液体クロマトグラフィ測定装置、及び液体クロマトグラフィ測定プログラム
JP6895819B2 (ja) 液体クロマトグラフィ装置
JP2007240500A (ja) 液体クロマトグラフィ装置
CN117110508A (zh) 稳定型糖化血红蛋白的测定方法、测定装置和非暂时性计算机可读存储介质
JPH06288923A (ja) 水中のシリカ成分の分析装置
JP2007240499A (ja) 試料調製方法および液体クロマトグラフィ装置
JPS62102141A (ja) 化学反応の微量分析方法および装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018788.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739551

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008507482

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007739551

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12225540

Country of ref document: US