WO2007110913A1 - 系統連系インバータ装置 - Google Patents

系統連系インバータ装置 Download PDF

Info

Publication number
WO2007110913A1
WO2007110913A1 PCT/JP2006/306168 JP2006306168W WO2007110913A1 WO 2007110913 A1 WO2007110913 A1 WO 2007110913A1 JP 2006306168 W JP2006306168 W JP 2006306168W WO 2007110913 A1 WO2007110913 A1 WO 2007110913A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor switch
circuit
power
terminal
diode
Prior art date
Application number
PCT/JP2006/306168
Other languages
English (en)
French (fr)
Inventor
Masahiro Toba
Noriyuki Matsubara
Masanori Kageyama
Hirokazu Nakabayashi
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2006520593A priority Critical patent/JP4890247B2/ja
Priority to EP06730116A priority patent/EP1887672A4/en
Priority to US11/579,534 priority patent/US7839665B2/en
Priority to PCT/JP2006/306168 priority patent/WO2007110913A1/ja
Publication of WO2007110913A1 publication Critical patent/WO2007110913A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • H02H11/002Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of inverted polarity or connection; with switching for obtaining correct connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present invention relates to an inverter device, and more particularly to a grid-connected inverter device for linking DC power such as solar cells and fuel cells to an AC power system.
  • a boost converter to which DC power is input is configured as a full bridge via an intermediate-stage capacitor.
  • the boost converter and inverter An inverter protection unit that stops the oscillation operation of the inverter and a capacitor discharge unit that discharges the accumulated charge of the output capacitor provided in the filter based on the output of the inverter protection unit are shown. .
  • Patent Document 1 JP 2001-186664 A
  • Patent Document 2 JP-A-11 196527
  • An inverter protection unit is provided to quickly stop the oscillation operation of the boost converter and inverter when an overvoltage or overcurrent occurs.
  • the present invention has been made in view of the above, and does not impair efficiency. Also, even when a negative voltage is applied to the input side due to incorrect connection, an overcurrent protection element such as a fuse is provided. It is an object of the present invention to provide a grid-connected inverter device that can protect a step-up switching element and the like without using any other means, and that does not interfere with immediate normal operation after correcting a misconnection.
  • a grid-connected inverter device includes a converter that boosts and Z or steps down DC power, and an inverter that converts the output of the converter into AC power And a pair of capacitors connected in series between a pair of DC buses connecting each input terminal of the DC power and the converter, and connecting the output of the inverter to the AC power system
  • the DC power connected in the positive and negative polarity is connected to the positive or negative input end of the pair of DC buses at the input end side of the positive side bus or the negative side bus.
  • a short-circuit current cutoff diode that is inserted in a direction that does not cut off the flow of current flowing through the pair of DC buses, and one end side of the short-circuit current cutoff diode is connected to the input end side of the DC power,
  • a semiconductor switch connected to the other end of the short-circuit current interrupting diode, a semiconductor switch driving circuit for driving the semiconductor switch, and a negative power that causes a current to flow from the negative electrode side to the positive electrode side of the input terminal.
  • a semiconductor switch-off circuit that controls the semiconductor switch drive circuit to be turned off when applied, and a control circuit that controls the semiconductor switch drive circuit.
  • the short-circuit current interrupting diode is integrated. Since it is inserted into either the positive side DC bus or the negative side DC bus that constitutes the pair of DC buses, for example, the short-circuit current flowing through the free wheel diode of the semiconductor switch provided in the converter or the like can be The effect of being able to cut off without using a current protection element is obtained.
  • a semiconductor switch is connected to this short-circuit current cutoff diode, and the semiconductor that drives this semiconductor switch when negative power is applied so that current flows in the direction toward the negative side of the DC power input terminal.
  • the switch drive circuit is configured to include a semiconductor switch-off circuit that forcibly turns off the switch drive circuit, even if AC power or DC power is misconnected, it is safe and reliable that the converter and inverter do not operate. The effect that the stop state can be maintained is obtained.
  • FIG. 1 is a diagram showing a circuit configuration of a grid-connected inverter device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a circuit configuration of a grid-connected inverter device according to a second embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration example of the semiconductor SW off circuit shown in FIGS. 1 and 2.
  • FIG. 4 is a diagram showing another configuration example different from FIG. 3 of the semiconductor SW off circuit shown in FIGS. 1 and 2.
  • Fig. 1 shows the circuit configuration of the grid-connected inverter device according to the first embodiment of the present invention. It is a figure.
  • the DC input terminals 17 and 18 of the grid interconnection inverter device 2 are connected to the DC power 1 that is, for example, the solar cell output and the fuel cell output shown in the connection mode when normally connected.
  • the grid-connected inverter device 2 shown in FIG. 1 includes input capacitors 8a and 8b, a boost converter 29, and an inverter 14, which are typical components of the grid-connected inverter device.
  • boost converter 29 includes semiconductor switches 11a, l ib, diodes 12a, 12b for boost converters, and diodes for boost converters, in which diodes are connected in parallel to semiconductor switching elements such as boost converter rear tutors 10a, 10b, IGBT, etc.
  • Capacitors 13a and 13b are provided.
  • the grid interconnection inverter device 2 of this embodiment in addition to these components, the following components that characterize the present invention are provided.
  • semiconductor SW off circuit semiconductor switch-off circuit
  • semiconductor SW drive circuit semiconductor switch drive circuit
  • voltage monitoring means 9a and 9b for monitoring the terminal voltages of the input capacitors 8a and 8b are provided toward the AC output terminals 31 and 32, respectively, and the outputs thereof are the semiconductor SW drive circuit 5 and the relay 6 described later.
  • the short-circuit current interrupting diode 3 is inserted into the negative-polarity DC bus 35 in such a direction as not to interrupt the current that flows when the DC power is correctly connected (that is, as shown in the illustrated DC power 1).
  • the power sword of the short-circuit current interrupting diode 3 is connected to the DC input terminal 18 side.
  • a semiconductor switch 4 in which a diode is connected in reverse parallel to a semiconductor switching element such as an IGBT is inserted into the DC bus 35 on the negative electrode side.
  • the short circuit current cutoff diode 3 and the semiconductor switch 4 are connected with their anodes facing each other, and the short circuit current cutoff diode 3 is connected to the DC bus 35 to which the semiconductor SW off circuit 7 is connected.
  • a relay is provided in parallel with each of the short-circuit current cutoff diode and the semiconductor switch. You may comprise as follows.
  • the circuit configuration shown in FIG. 1 in which the short-circuit current cutoff diode 3, the semiconductor switch 4, and the relay 6 are inserted or connected to the DC bus 35 on the negative electrode side is not a very general configuration!
  • the short-circuit current cutoff diode 3 and the semiconductor switch 4 and the relay 6 may be inserted into or connected to the DC bus 34 on the positive side.
  • short-circuit current cutoff diode 3 is inserted between the connection point of DC bus 34 to which semiconductor SW off circuit 7 is connected and the connection point of DC bus 34 to which semiconductor SW drive circuit 5 is connected.
  • a semiconductor switch 4 is inserted between the connection point of the DC bus 34 to which the semiconductor SW drive circuit 5 is connected and the connection point of the DC bus 34 to which the input capacitor 8a is connected, and the short-circuit current cutoff diode 3 And the semiconductor switch 4 in such a way that the force swords of each other face each other, and the relay 6 is connected to both ends of the series circuit of the short-circuit current interrupting diode 3 and the semiconductor switch 4.
  • either the short-circuit current cutoff diode 3 or the semiconductor switch 4 may be inserted into the DC bus 34 on the positive electrode side.
  • the connection point of the DC bus 34 to which the semiconductor SW off circuit 7 is connected and the DC bus 34 to which the semiconductor SW drive circuit 5 is connected When the semiconductor switch 4 is inserted into the DC bus 34 on the positive electrode side between the connection point and the DC bus 34 on the positive electrode side, the connection point of the DC bus 34 to which the semiconductor SW drive circuit 5 is connected is connected to the input capacitor 8a. If it is inserted between the connection points of the DC bus 34 and relays are provided at both ends, it can be configured.
  • the short-circuit current cutoff diode 3 is inserted into the DC bus 35.
  • the short-circuit current flowing through the free wheel diode (FWD) in the semiconductor switch 11a, l ib of the boost converter 29 can be cut off without using an overcurrent protection element such as a fuse.
  • the semiconductor switch 4 connected in series with the anode of the short-circuit current interrupting diode 3 has a function of automatically turning on itself when a normal DC power is applied at a constant voltage, for example, 10 to 30 V or more. Is done. Note that the on / off state of the semiconductor switch 4 is also controlled by the semiconductor SW drive circuit 5 controlled by the control circuit 15. On the other hand, the semiconductor SW off circuit 7 forcibly operates when negative power is applied by the AC power 16 incorrectly connected at the DC input end side or the DC power 30 reversely connected, and the semiconductor SW drive circuit 5 Forcibly stop and turn off semiconductor switch 4.
  • control circuit 15 controls the semiconductor SW drive circuit 5 and the relay 6 based on the terminal voltages of the input capacitors 8a and 8b monitored by the voltage monitoring means 9a and 9b. As described above, the semiconductor switch 4 is automatically turned on when the normal DC power 1 is applied to a certain voltage or higher. At this time, the relay 6 is in the off state. On the other hand, when it is confirmed that the voltage monitoring means 9a and 9b are normal, the control circuit 15 turns on the relay 6 and then turns off the semiconductor switch 4.
  • the current path during normal operation of the grid-connected inverter device 2 becomes a path including the relay 6, and it is not necessary to consider the loss due to the short-circuit current cutoff diode 3 and the semiconductor switch 4, so that high efficiency is achieved. It is possible to configure a protection circuit that does not impair the efficiency of the required grid-connected inverter device.
  • the control circuit 15 turns on the relay 6 for the first time after confirming that the voltage monitoring means 9a, 9b is normal. 1
  • a negative power is applied by 6 or reversely connected DC power 30
  • a path that bypasses the short-circuit current blocking diode 3 (a bypass path by the relay 6) is not formed.
  • either the positive-side DC bus or the negative-side DC constituting the pair of DC buses is inserted into the short-circuit current interrupting diode. Therefore, for example, the short circuit current flowing through the free wheel diode of the semiconductor switch provided in the converter or the like can be cut off without using an overcurrent protection element such as a fuse.
  • a semiconductor switch is connected to this short-circuit current cutoff diode, and this semiconductor switch is driven when negative power is applied so that current flows from the negative side to the positive side of the DC power input terminal. Since the semiconductor switch drive circuit is configured to include a semiconductor switch-off circuit that forcibly turns off the semiconductor switch drive circuit, even if AC power or DC power is misconnected, the comparator does not operate and safe. In addition, a reliable stop state can be maintained.
  • the output of DC power 1 becomes a high voltage (for example, 1000 VDC or more), and when the device is turned on, the DC power 1 that is a high voltage is directed to a capacitor of substantially zero voltage.
  • a desired resistance element should be inserted between the short-circuit current cutoff diode 3 and the semiconductor switch 4 or at either end of these series circuits. May be. Even if such a resistance element is inserted, after the semiconductor switch 4 is turned on, the relay 6 connected in parallel is turned on and the path including the semiconductor switch 4 is bypassed. There is no increase in loss due to insertion.
  • FIG. 2 is a diagram illustrating a circuit configuration of the grid-connected inverter device according to the second embodiment of the present invention.
  • the control circuit power supply 21 is provided.
  • the control circuit power supply 21 has an input side of AC power 16 half cycle of power.
  • the control circuit power supply capacitor 22 having a sufficiently chargeable capacity is connected to the positive side branch end 19 on the DC bus 34 and the negative side branch end 20 on the DC bus 35 (the anodes of the short-circuit current cutoff diode 3 and the semiconductor switch 4). And a charging diode 24 between them.
  • the other configurations are the same as or equivalent to those of the first embodiment shown in FIG. 1, and the same reference numerals are given to those components, and a detailed description for the configuration and operation is given. Omitted.
  • the negative electrode of the control circuit power supply 21 is drawn from the connection point (negative electrode branch end 20) to which the anodes of the short-circuit current interrupting diode 3 and the semiconductor switch 4 are connected.
  • the short-circuit current due to the negative power of the AC power 16 is cut off by the action of the short-circuit current cut-off diode 3, and the operation of the semiconductor SW drive circuit 5 is stopped by the action of the semiconductor SW off circuit 7, so that the boost converter 29, Inverter 14 can operate only the control circuit 15 with half-power of AC power 16 while maintaining a safe and reliable stop state without operating.
  • the control circuit 15 can detect the abnormality of the control circuit power supply capacitor 22 due to the application of the AC power 16 through the voltage monitoring means 9a, 9b, and the alarm connected to the control circuit 15
  • the device 23 can issue a desired alarm.
  • this alarm action can issue an alarm to the local worker for an abnormality of the grid-connected inverter device caused by the incorrect connection of AC power, and whether or not the cause of the device error is an incorrect connection. Can be easily identified.
  • the abnormality detection of the voltage monitoring means 9a, 9b can be performed using a method that compares the instantaneous value and the average value of the terminal voltages of the voltage monitoring means 9a, 9b, for example.
  • the embodiment Similar to 1 the switching of the switching means can be controlled based on the monitored terminal voltage of the capacitor, and the same effect as in the first embodiment can be obtained.
  • FIG. 3 is a diagram showing an example of the configuration of the semiconductor SW off circuit 7 shown in FIGS. 1 and 2, and it is shown together with some other components related to the operation.
  • the semiconductor The SW off circuit 7 includes a discharge transistor 25 and a bypass diode 27 as main components.
  • a drive circuit power capacitor 28 acting as an operation power source for the semiconductor SW drive circuit 5 is connected via a collector resistor between the collector of the discharge transistor 25 and the emitter. The discharge path is configured.
  • the semiconductor SW off circuit 7 As shown in FIG. 3, the semiconductor SW drive circuit 5 does not operate even when AC power or DC power is misconnected, and the semiconductor Switch 4 is turned off and relay 6 does not work.
  • the semiconductor switch 4 is turned on when normal DC power is applied to a certain voltage or more as described above. Therefore, the semiconductor switch 4 is not turned on in the positive half cycle of the AC power, and the input capacitors 8a and 8b are charged. It will not be charged.
  • the step-up converter 29 and the inverter 14 can maintain a safe and reliable stop state without operating, and even if an incorrect connection is corrected immediately, there is no electric shock.
  • FIG. 4 is a diagram illustrating another configuration example different from that of FIG. 3 of the semiconductor SW off circuit 7 illustrated in FIGS. 1 and 2, and illustrates the configuration together with some other components related to the operation.
  • the semiconductor SW off circuit 7 includes a discharge photopower bra 26 and a bypass diode 27 as main components.
  • the discharge photo power bra 26-2 A drive circuit power supply capacitor 28 is connected between the collector and the emitter of the secondary phototransistor via a collector resistor, and a discharge path of the drive circuit power supply capacitor 28 is formed.
  • the semiconductor SW off circuit 7 As shown in FIG. 4, the semiconductor SW drive circuit 5 does not operate even when AC power or DC power is misconnected, and the semiconductor Switch 4 is turned off and relay 6 does not work.
  • the semiconductor switch 4 is turned on when normal DC power is applied to a certain voltage or more as described above. Therefore, the semiconductor switch 4 is not turned on in the positive half cycle of the AC power, and the input capacitors 8a and 8b are charged. It will not be charged.
  • the step-up converter 29 and the inverter 14 can maintain a safe and reliable stop state without operating, and even if an incorrect connection is corrected immediately, there is no electric shock.
  • the grid-connected inverter device according to the present invention is useful as a grid-connected inverter device for linking DC power such as solar cells and fuel cells to an AC power system.

Abstract

 交流電力系統と連系する系統連系インバータ装置において、誤接続によって入力側へ負電圧を印加した場合であってもヒューズ等の過電流保護素子等を用いることなく昇圧スイッチング素子等を保護すること。また、誤接続修正後の即時の通常運転を可能とすること。昇圧コンバータ29と、インバータ14とを備え、インバータ14の出力を交流電力系統と連系させる系統連系インバータ装置2において、一対の直流母線34,35を構成する負極側母線35の入力端にカソードが接続される短絡電流遮断ダイオード3と、短絡電流遮断ダイオード3のアノードに接続される半導体スイッチ4と、半導体スイッチ4を駆動する半導体スイッチ駆動回路5と、入力端の負極側から正極側に向かって電流が流れるような負電力が印加された場合に、半導体スイッチ駆動回路5をオフ制御する半導体スイッチオフ回路7と、半導体スイッチ駆動回路5を制御する制御回路21と、を備えた。

Description

明 細 書
系統連系インバータ装置
技術分野
[0001] 本発明は、インバータ装置に関するものであり、特に、太陽電池、燃料電池等の直 流電力を交流電力系統に連系するための系統連系インバータ装置に関するもので ある。
背景技術
[0002] 従来技術に力かる系統連系インバータ装置として、例えば下記特許文献 1に示され た系統連系インバータ装置では、直流電力が入力される昇圧コンバータが中間段コ ンデンサを介してフルブリッジ構成のスイッチング素子力もなるインバータに接続され るとともに、インバータの出力がフィルタを介して交流電力系統に接続される構成に おいて、装置の内部で過電圧や過電流が発生したときに昇圧コンバータおよびイン バータの発振動作を停止させるインバータ保護部と、このインバータ保護部の出力に 基づいてフィルタに具備される出力コンデンサの蓄積電荷を放電させるコンデンサ放 電部と、を備えるようにした構成が示されている。
[0003] また、従来技術に力かる保護回路として、例えば下記特許文献 2に示され直流電源 ラインの保護回路では、直流電源供給回路から負荷回路に供給された電流が異常 に大きくなつた場合に、直流電源ラインに挿入した過電流 ·過熱保護素子をトリップ( 保護動作)させ、負荷回路に流れる電流を遮断することにより、負荷回路を保護する ようにした構成が示されている。なお、この保護回路では、ヒューズ等を省略すること ができ、障害が復旧した場合に、直流電源ラインを自動的に復帰させることが可能と なる。
[0004] 特許文献 1 :特開 2001—186664号公報
特許文献 2:特開平 11 196527号公報
発明の開示
発明が解決しょうとする課題
[0005] 上述のように、例えば特許文献 1に代表される従来の系統連系インバータ装置では 、過電圧や過電流が発生した場合に、昇圧コンバータおよびインバータの発振動作 を速やかに停止させるインバータ保護部を備えて 、る。
[0006] し力しながら、系統連系インバータ装置の入力側に、本来、出力側に連係すべき電 力系統である交流電力を誤って接続した場合や、入力側の直流電力の正極と負極と を誤って逆接続し、負電力(回路内部で負極側から正極側に電流が流れる場合の印 加電力を指していう。以下同じ)を印加してしまった場合には、たとえインバータ保護 部で異常を検出し、昇圧コンバータの発振動作を異常停止させたとしても、入力端の 負極側から昇圧コンバータ内の昇圧用スイッチング素子に逆並列接続されたフリー ホイールダイオード (FWD)を経由して入力端の正極側に向カゝぅ短絡経路が形成さ れてしまう。これにより、負電力による短絡電流で上記のフリーホイールダイオードが 短絡破壊を起こし、昇圧用スイッチング素子をも破壊に至らしめるという問題点があつ た。
[0007] なお、この種の短絡破壊の防止に際しては、まず、短絡経路内にヒューズを備える ような簡易な手法により、フリーホイールダイオードおよび昇圧用スイッチング素子を 保護することが考えられる。し力しながら、例えば上記のように入力側に交流電力を 誤って印加してしまった場合や、直流電力の正極と負極とを誤って逆接続してしまつ た場合にも、ヒューズの溶断は起こるため、ヒューズ交換という作業が必ず必要となる
[0008] 特に、このような誤接続は、系統連系インバータ装置を現地で設置工事する際に発 生することが多い。なお、ヒューズの溶断が発生した場合には、誤接続以外の原因も 考えられるので、ヒューズ交換だけでなぐ昇圧用スイッチング素子が正常に動作す ること等の品質確認を行う必要があり、現地での復旧作業および設置工事の継続が 困難となって、工事が遅延するといつた問題点があった。
[0009] また、ヒューズが溶断した場合には、系統連系インバータ装置の機能が完全に停止 してしまうため、現地作業者への警報を発することもできず、装置異常の原因が誤接 続であるか否かを容易に特定できな 、と 、つた問題点もあった。
[0010] 一方、従来の直流電源ラインに対する保護回路では、例えば上記特許文献 2に示 されるように、過電流'加熱保護素子が電源ラインへ直列に挿入されている。ところが 、この過電流'加熱保護素子として、高耐圧'大電流用を用途とするものは存在しな い。また、仮に、そのような素子が存在していたとしても、使用に際しての大きな問題 点があった。すなわち、この種の素子は、一般的な特性として、通常数オームの抵抗 があるため、例えば太陽電池の出力を、 DC700V, 20Aとして、系統連系インバータ 装置に使用すると、常時、数百 Wという大きな損失が発生することになる。したがって 、従来技術に見られるような過電流'加熱保護素子は、高効率が要求されている系統 連系インバータ装置に適用することができないといった問題点があった。
[0011] 本発明は、上記に鑑みてなされたものであって、効率を損なうことなぐまた、誤接 続によって入力側へ負電圧を印カロした場合であってもヒューズ等の過電流保護素子 等を用いることなく昇圧スイッチング素子等を保護でき、誤接続修正後の即時の通常 運転に何ら支障のな ヽ系統連系インバータ装置を提供することを目的とする。
課題を解決するための手段
[0012] 上述した課題を解決し、目的を達成するため、本発明にかかる系統連系インバータ 装置は、直流電力を昇圧および Zまたは降圧するコンバータと、該コンバータの出力 を交流電力に変換するインバータと、該直流電力の各入力端と該コンバータとを接 続する一対の直流母線間に挿入される直列接続された一対のコンデンサと、を具備 し、該インバータの出力を交流電力系統と連系させる系統連系インバータ装置にお V、て、前記一対の直流母線を構成する正極側母線または負極側母線の!/、ずれかの 入力端側で、正 、極性で接続された直流電力が該一対の直流母線に流す電流の 流れを遮断しない向きに挿入される短絡電流遮断ダイオードと、前記短絡電流遮断 ダイオードの一端側が前記直流電力の入力端側に接続されているときの、該短絡電 流遮断ダイオードの他端側に接続される半導体スィッチと、前記半導体スィッチを駆 動する半導体スィッチ駆動回路と、前記入力端の負極側から正極側に向かって電流 が流れるような負電力が印加された場合に、前記半導体スィッチ駆動回路をオフ制 御する半導体スィッチオフ回路と、前記半導体スィッチ駆動回路を制御する制御回 路と、を備えたことを特徴とする。
発明の効果
[0013] 本発明にかかる系統連系インバータ装置によれば、短絡電流遮断ダイオードを一 対の直流母線を構成する正極側直流母線または負極側直流母線のいずれかに挿 入しているので、例えばコンバータなどに具備される半導体スィッチのフリーホイール ダイオードを通じて流れる短絡電流を、ヒューズなどの過電流保護素子を使用せず に遮断することができるという効果が得られる。また、この短絡電流遮断ダイオードに 半導体スィッチを接続し、直流電力の入力端の負極側力 正極側に向力つて電流が 流れるような負電力が印加された場合に、この半導体スィッチを駆動する半導体スィ ツチ駆動回路を強制的にオフ制御する半導体スィッチオフ回路を備える構成とした ので、交流電力や直流電力を誤接続した場合であっても、コンバータやインバータを 動作させることがなぐ安全かつ確実な停止状態を維持可能とする効果が得られる。 図面の簡単な説明
[0014] [図 1]図 1は、本発明の実施の形態 1にかかる系統連系インバータ装置の回路構成を 示す図である。
[図 2]図 2は、本発明の実施の形態 2にかかる系統連系インバータ装置の回路構成を 示す図である。
[図 3]図 3は、図 1および図 2に示した半導体 SWオフ回路の一構成例を示す図である
[図 4]図 4は、図 1および図 2に示した半導体 SWオフ回路の図 3とは異なる他の構成 例を示す図である。
符号の説明
[0015] 1, 30 直流電力
2 系統連系インバータ装置
3 短絡電流遮断ダイオード
4 半導体スィッチ
5 半導体 SW駆動回路
6 リレー
7 半導体 SWオフ回路
8a, 8b 入力コンデンサ
9a, 9b 電圧モニタ手段 10a, 10b 昇圧コンバータ用リアタトル
11a, l ib 半導体スィッチ
12a, 12b 昇圧コンバータ用ダイオード
13a, 13b 昇圧コンバータ用コンデンサ
14 インノ ータ
15 制御回路
16 交流電力
17, 18 直流入力端
19 正極側分岐端
20 負極側分岐端
21 制御回路用電源
22 制御回路用電源コンデンサ
23 警報装置
24 充電用ダイオード
25 放電用トランジスタ
26 放電用フォトカプラ
27 バイパスダイオード
28 駆動回路用電源コンデンサ
29 昇圧コンバータ
31, 32 交流出力端
34, 35 直流母線
発明を実施するための最良の形態
[0016] 以下に、本発明にかかる系統連系インバータ装置の好適な実施の形態を図面に基 づいて詳細に説明する。なお、以下の実施の形態により本発明が限定されるもので はない。また、以下に示す回路構成は、その一例を示すものであり、本発明の技術 的意義を逸脱しなレ、範囲内で種々の変形が可能である。
[0017] 実施の形態 1.
図 1は、本発明の実施の形態 1にかかる系統連系インバータ装置の回路構成を示 す図である。同図において、まず、系統連系インバータ装置 2の直流入力端 17, 18 には、正常に接続された場合の接続態様で示される、例えば太陽電池出力、燃料電 池出力である直流電力 1と、系統連系のために出力側に接続すべきものを誤って接 続した場合の接続態様で示される交流電力 16と、正極と負極とを誤って逆接続した 接続態様で示される直流電力 30と、が図示されている。
[0018] また、図 1に示した系統連系インバータ装置 2は、系統連系インバータ装置の典型 的な構成部である、入力コンデンサ 8a, 8b、昇圧コンバータ 29およびインバータ 14 を備えている。また、昇圧コンバータ 29は、昇圧コンバータ用リアタトル 10a, 10b、 I GBTなどの半導体スイッチング素子にダイオードが逆並列に接続された半導体スィ ツチ 11a, l ib、昇圧コンバータ用ダイオード 12a, 12bおよび昇圧コンバータ用コン デンサ 13a, 13bを備えている。一方、この実施の形態の系統連系インバータ装置 2 では、これらの構成部に加えて、本発明を特徴づける以下の構成部が具備される。
[0019] まず、直流入力端 17に接続された正極側の直流母線 34と直流入力端 18に接続さ れた負極側の直流母線 35との間に、直流入力端 17, 18に近い方から、半導体スィ ツチオフ回路 (以下「半導体 SWオフ回路」と表記) 7と、半導体スィッチ駆動回路 (以 下「半導体 SW駆動回路」と表記) 5とが接続される。また、交流出力端 31, 32に向か つて、入力コンデンサ 8a, 8bの端子電圧をそれぞれモニタする電圧モニタ手段 9a, 9bが具備され、その出力は、半導体 SW駆動回路 5および後述するリレー 6などをそ れぞれ制御する制御回路 15に入力される。さらに、負極側の直流母線 35には、直 流電力を正しく(すなわち図示の直流電力 1のように)接続したときに流れる電流を遮 断しない向きに短絡電流遮断ダイオード 3が挿入される。すなわち、短絡電流遮断ダ ィオード 3の力ソードが直流入力端 18側となるように接続される。また、負極側の直流 母線 35には、 IGBTなどの半導体スイッチング素子にダイオードが逆並列に接続さ れた半導体スィッチ 4が挿入される。なお、短絡電流遮断ダイオード 3と半導体スイツ チ 4とは、互いのアノードを突き合わせた形で接続されるとともに、短絡電流遮断ダイ オード 3は、半導体 SWオフ回路 7が接続される直流母線 35の接続点と、半導体 SW 駆動回路 5が接続される直流母線 35の接続点との間に挿入され、半導体スィッチ 4 は、半導体 SW駆動回路 5が接続される直流母線 35の接続点と、入力コンデンサ 8b が接続される直流母線 35の接続点との間に挿入される。また、短絡電流遮断ダイォ ード 3と半導体スィッチ 4との直列回路の両端には、上述したリレー 6が接続される。
[0020] なお、短絡電流遮断ダイオード 3と半導体スィッチ 4との直列回路の両端にリレー 6 を接続する構成に代えて、短絡電流遮断ダイオードと半導体スィッチのそれぞれ〖こ 対し、各並列にリレーを備えるように構成してもよい。
[0021] また、短絡電流遮断ダイオード 3および半導体スィッチ 4ならびにリレー 6を負極側 の直流母線 35に挿入または接続するようにした図 1に示す回路構成に対して、あまり 一般的な構成ではな!ヽが、短絡電流遮断ダイオード 3および半導体スィッチ 4ならび にリレー 6を正極側の直流母線 34に挿入または接続するようにしてもよい。ただし、こ の場合には、半導体 SWオフ回路 7が接続される直流母線 34の接続点と半導体 SW 駆動回路 5が接続される直流母線 34の接続点との間に短絡電流遮断ダイオード 3を 挿入するとともに、半導体 SW駆動回路 5が接続される直流母線 34の接続点と入力 コンデンサ 8aが接続される直流母線 34の接続点との間に半導体スィッチ 4を挿入し 、かつ、短絡電流遮断ダイオード 3と半導体スィッチ 4の互いの力ソードを突き合わせ た形で接続し、かつ、短絡電流遮断ダイオード 3と半導体スィッチ 4との直列回路の 両端にリレー 6を接続するようにすればょ 、。
[0022] また、図 1の構成に代えて、短絡電流遮断ダイオード 3または半導体スィッチ 4のい ずれか一方を正極側の直流母線 34に挿入するようにしてもよい。例えば、短絡電流 遮断ダイオード 3を正極側の直流母線 34に挿入する場合には、半導体 SWオフ回路 7が接続される直流母線 34の接続点と半導体 SW駆動回路 5が接続される直流母線 34の接続点との間に挿入し、半導体スィッチ 4を正極側の直流母線 34に挿入する場 合には、半導体 SW駆動回路 5が接続される直流母線 34の接続点と入力コンデンサ 8aが接続される直流母線 34の接続点との間に挿入するとともに、それぞれの両端に リレーを備えるように構成すればょ 、。
[0023] つぎに、図 1に示した実施の形態 1にかかる連系インバータ装置の構成および動作 の特徴について説明する。
[0024] まず、上述のように、短絡電流遮断ダイオード 3が直流母線 35に挿入されている。
この構成により、交流電力を入力側に接続してしまった場合や、直流電力の極性を 誤って接続した場合に、昇圧コンバータ 29の半導体スィッチ 11a, l ib内のフリーホイ ールダイオード (FWD)を通じて流れる短絡電流を、ヒューズなどの過電流保護素子 を使用せずに遮断することができる。
[0025] また、短絡電流遮断ダイオード 3のアノードに直列に接続された半導体スィッチ 4は 、正常な直流電力が一定電圧、例えば 10〜30V以上印加されると自身を自動的に オンする機能が具備される。なお、半導体スィッチ 4は、制御回路 15によって制御さ れる半導体 SW駆動回路 5によっても、そのオン Zオフが制御される。一方、半導体 S Wオフ回路 7は、直流入力端側で誤接続した交流電力 16もしくは逆接続した直流電 力 30によって負電力が印加された場合には、強制的に動作し、半導体 SW駆動回路 5を強制的に停止させ、半導体スィッチ 4をオフする。
[0026] この作用により、交流電力や直流電力を誤接続した場合であっても、入力コンデン サ 8a,8bに負電力が印加されることもなぐ突入電流も流れないので、入力コンデン サ 8a,8bが充電されることはない。その結果、昇圧コンバータ 29、インバータ 14が動 作することはなぐ安全かつ確実な停止状態を維持可能とする保護回路が構成され る。なお、入力コンデンサ 8a,8bに電荷が充電されないので、誤接続の修正を即時に 行ったとしても感電することがな 、。
[0027] さらに、制御回路 15は、電圧モニタ手段 9a,9bによってモニタされた入力コンデン サ 8a,8bの端子電圧に基づいて半導体 SW駆動回路 5およびリレー 6を制御する。な お、上述のように、正常な直流電力 1が一定電圧以上印加された場合に半導体スィ ツチ 4は自動的にオンとなる力 この時点では、リレー 6はオフの状態である。一方、 制御回路 15は、電圧モニタ手段 9a,9bが正常であることを確認した場合には、リレー 6をオン制御し、その後に半導体スィッチ 4をオフ制御する。
[0028] この作用により、系統連系インバータ装置 2の正常動作時の電流経路はリレー 6を 含む経路となり、短絡電流遮断ダイオード 3および半導体スィッチ 4による損失を考慮 する必要がないので、高効率が要求される系統連系インバータ装置に対して効率を 損なうことのな!/ヽ保護回路を構成することができる。
[0029] なお、制御回路 15は、上述のように、電圧モニタ手段 9a, 9bが正常であることを確 認した後に初めてリレー 6をオン制御するようにして 、るので、誤接続した交流電力 1 6もしくは逆接続した直流電力 30によって負電力が印加されるような状態時に、短絡 電流遮断ダイオード 3をバイパスする経路(リレー 6による迂回経路)力形成されること はない。
[0030] 以上説明したように、この実施の形態の系統連系インバータ装置によれば、短絡電 流遮断ダイオードを一対の直流母線を構成する正極側直流母線または負極側直流 のいずれか〖こ挿入しているので、例えばコンバータなどに具備される半導体スィッチ のフリーホイールダイオードを通じて流れる短絡電流を、ヒューズなどの過電流保護 素子を使用せずに遮断することができるという効果が得られる。また、この短絡電流 遮断ダイオードに半導体スィッチを接続し、直流電力の入力端の負極側から正極側 に向力つて電流が流れるような負電力が印加された場合に、この半導体スィッチを駆 動する半導体スィッチ駆動回路を強制的にオフ制御する半導体スィッチオフ回路を 備える構成としたので、交流電力や直流電力を誤接続した場合であっても、コンパ一 タゃインバータを動作させることがなく、安全かつ確実な停止状態が維持可能となる
[0031] なお、図 1の構成において、直流電力 1の出力が高電圧(例えば 1000VDC以上) となり、装置をオンする際に、高電圧である直流電力 1から略零電圧のコンデンサに 向力つて流れる可能性のある突入電流を防止するために、例えば、短絡電流遮断ダ ィオード 3と半導体スィッチ 4との間、あるいはこれらの直列回路のいずれかの端に所 望の抵抗素子を挿入するようにしてもよい。なお、このような抵抗素子を挿入したとし ても、半導体スィッチ 4がオンした後に、並列に接続されているリレー 6がオンとなって 、半導体スィッチ 4を含む経路がバイパスされるので、抵抗素子の挿入によって損失 が増加することはない。
[0032] 実施の形態 2.
図 2は、本発明の実施の形態 2にかかる系統連系インバータ装置の回路構成を示 す図である。同図に示す系統連系インバータ装置 2は、図 1に示す実施の形態 1の 構成において、例えば直流入力端への誤接続に対する警報を発するための警報装 置 23、制御回路 15を動作させるための制御回路用電源 21を備えるように構成され ている。また、制御回路用電源 21の入力側には、交流電力 16の半サイクルの電力 で充分に充電可能な容量を有する制御回路用電源コンデンサ 22が直流母線 34上 の正極側分岐端 19と直流母線 35上の負極側分岐端 20 (短絡電流遮断ダイオード 3 および半導体スィッチ 4の各アノード側の端)との間に、充電用ダイオード 24を介して 接続されている。なお、その他の構成については、図 1に示した実施の形態 1と同一 または同等であり、それらの構成部には同一符号を付して示し、その構成および動 作に力かる詳細な説明を省略する。
[0033] 上述のように、制御回路用電源 21の負極は短絡電流遮断ダイオード 3および半導 体スィッチ 4の各アノードが接続される接続点 (負極側分岐端 20)から引き出されて いる。その結果、短絡電流遮断ダイオード 3の作用により交流電力 16の負電力による 短絡電流が遮断され、かつ、半導体 SWオフ回路 7の作用により半導体 SW駆動回 路 5の動作が停止させられるので、昇圧コンバータ 29、インバータ 14は動作すること なく安全かつ確実な停止状態を維持しつつ、制御回路 15のみを交流電力 16の半サ イタルの電力で動作させることができる。
[0034] この作用により、制御回路 15は、交流電力 16の印加に起因する制御回路用電源 コンデンサ 22の異常を電圧モニタ手段 9a,9bを通じて検出することができ、制御回路 15に接続された警報装置 23において、所望の警報を発することができる。また、この 警報動作により、交流電力の誤接続に起因する系統連系インバータ装置の異常に 対し、現地作業者への警報を発することができ、装置異常の原因が誤接続であるか 否かを容易に特定することができる。なお、電圧モニタ手段 9a,9bの異常検出は、例 えば電圧モニタ手段 9a,9bの端子電圧の瞬時値と平均値とを比較するような手法を 用!/、ることができる。
[0035] 以上説明したように、この実施の形態の系統連系インバータ装置によれば、太陽電 池力 供給された入力電圧を昇圧および Zまたは降圧するコンバータを備えていた としても、実施の形態 1と同様に、モニタしたコンデンサの端子電圧に基づいて開閉 手段の開閉を制御することができ、実施の形態 1と同様な効果が得られる。
[0036] 実施の形態 3.
図 3は、図 1および図 2に示した半導体 SWオフ回路 7の一構成例を示す図であり、 その動作に関連する他の一部の構成部とともに図示している。図 3において、半導体 SWオフ回路 7は、主要な構成素子として、放電用トランジスタ 25およびバイパスダイ オード 27を備えて構成される。また、放電用トランジスタ 25のコレクタとェミッタとの間 には、半導体 SW駆動回路 5の動作用電源として作用する駆動回路用電源コンデン サ 28がコレクタ抵抗を介して接続され、駆動回路用電源コンデンサ 28の放電経路が 構成される。さらに、直流入力端 18 (短絡電流遮断ダイオード 3の力ソード)側から、 放電用トランジスタ 25のベースと短絡電流遮断ダイオード 3のアノードとを経由し、バ ィパスダイオード 27を介して直流入力端 18 (直流母線 34)側に抜けるベース電流の 帰還経路が構成される。
[0037] この構成により、交流電力を誤って接続した場合には、直流入力端 17, 18に負電 力が印加される都度、放電用トランジスタ 25がオンとなり、駆動回路用電源コンデン サ 28の電荷が放電される。一方、直流電力の正負を誤って逆接続した場合には、直 流入力端 17, 18には常時負電力が印加されるため、放電用トランジスタ 25は常時ォ ンとなり、駆動回路用電源コンデンサ 28は常時放電状態下に置かれる。これらの作 用により、駆動回路用電源コンデンサ 28は、半導体 SW駆動回路 5が動作する電圧 以上に充電されることはな 、。
[0038] このように、図 3に示すような半導体 SWオフ回路 7を構成することで、交流電力や 直流電力を誤接続した場合であっても、半導体 SW駆動回路 5は動作せず、半導体 スィッチ 4はオフ制御され、リレー 6も働かない。また、半導体スィッチ 4は、上述のよう に正常な直流電力が一定電圧以上印加された場合にオンとなるので、交流電力の 正の半サイクルではオンとならず、入力コンデンサ 8a,8bに電荷が充電されることは ない。その結果、昇圧コンバータ 29、インバータ 14は動作することなく安全かつ確実 な停止状態を維持することができ、また、誤接続の修正を即時に行ったとしても感電 することがない。
[0039] 実施の形態 4.
図 4は、図 1および図 2に示した半導体 SWオフ回路 7の図 3とは異なる他の構成例 を示す図であり、その動作に関連する他の一部の構成部とともに図示している。図 4 において、半導体 SWオフ回路 7は、主要な構成素子として、放電用フォト力ブラ 26 およびバイパスダイオード 27を備えて構成される。また、放電用フォト力ブラ 26の二 次側フォトトランジスタのコレクタとェミッタ間には駆動回路用電源コンデンサ 28がコ レクタ抵抗を介して接続され、駆動回路用電源コンデンサ 28の放電経路が構成され る。さらに、直流入力端 18 (短絡電流遮断ダイオード 3の力ソード)側から、放電用フ オト力ブラ 26の一次側 LEDとバイノ スダイオード 27とを介して直流入力端 17 (直流 母線 34)側に抜けるバイパス経路が構成される。
[0040] この構成により、交流電力を誤って接続した場合には、直流入力端 17, 18に負電 力が印加される都度、放電用フォト力ブラ 26の一次側 LEDに電流が流れ、二次側フ オトトランジスタがオンし、駆動回路用電源コンデンサ 28の電荷が放電される。一方、 直流電力の正負を誤って逆接続した場合には、直流入力端 17, 18には常時、負電 力が印加されるため、放電用フォト力ブラ 26は常時オンとなり、駆動回路用電源コン デンサ 28は常時放電状態下に置かれる。これらの作用により、駆動回路用電源コン デンサ 28は、半導体 SW駆動回路 5が動作する電圧以上に充電されることはない。
[0041] このように、図 4に示すような半導体 SWオフ回路 7を構成することで、交流電力や 直流電力を誤接続した場合であっても、半導体 SW駆動回路 5は動作せず、半導体 スィッチ 4はオフ制御され、リレー 6も働かない。また、半導体スィッチ 4は、上述のよう に正常な直流電力が一定電圧以上印加された場合にオンとなるので、交流電力の 正の半サイクルではオンとならず、入力コンデンサ 8a,8bに電荷が充電されることは ない。その結果、昇圧コンバータ 29、インバータ 14は動作することなく安全かつ確実 な停止状態を維持することができ、また、誤接続の修正を即時に行ったとしても感電 することがない。
産業上の利用可能性
[0042] 以上のように、本発明に力かる系統連系インバータ装置は、太陽電池、燃料電池等 の直流電力を交流電力系統に連系するための系統連系インバータ装置として有用 である。

Claims

請求の範囲
[1] 直流電力を昇圧する昇圧コンバータと、該昇圧コンバータの出力を交流電力に変 換するインバータと、該直流電力の各入力端と該昇圧コンバータとを接続する一対の 直流母線間に挿入される直列接続された一対のコンデンサと、を具備し、該インバー タの出力を交流電力系統と連系させる系統連系インバータ装置において、
前記一対の直流母線を構成する負極側母線の入力端に力ソードが接続される短 絡電流遮断ダイオードと、
前記短絡電流遮断ダイオードのアノードに接続される半導体スィッチと、 前記半導体スィッチを駆動する半導体スィッチ駆動回路と、
前記入力端の負極側力も正極側に向力つて電流が流れるような負電力が印加され た場合に、前記半導体スィッチ駆動回路をオフ制御する半導体スィッチオフ回路と、 前記半導体スィッチ駆動回路を制御する制御回路と、
を備えたことを特徴とする系統連系インバータ装置。
[2] 前記短絡電流遮断ダイオードと前記半導体スィッチとの直列回路の両端に接続さ れ、ある!/、は該短絡電流遮断ダイオードおよび該半導体スィッチの各両端に接続さ れるリレーと、前記一対のコンデンサの各端子電圧をそれぞれモニタする電圧モニタ 手段と、をさらに備え、
前記制御回路は、前記電圧モニタ手段が検出したモニタ電圧に基づいて前記半 導体スィッチ駆動回路を制御することを特徴とする請求項 1に記載の系統連系インバ ータ装置。
[3] 前記制御回路を動作させる制御回路用電源と、
前記制御回路用電源の入力端に接続されるとともに、自己の負極側端子が前記短 絡電流遮断ダイオードのアノードに接続されて該制御回路用電源の動作電力を供 給する制御回路用電源コンデンサと、
アノードが前記直流電力の正極側入力端に接続され、力ソードが前記前記制御回 路用電源コンデンサの正極側端子に接続される充電用ダイオードと、
前記制御回路によって制御される警報装置と、
をさらに備え、 前記制御回路は、前記直流電力の各入力端に交流電力が誤って接続された場合 に前記電圧モニタ手段の出力に基づいて前記警報装置に所定の警報信号を出力 することを特徴とする請求項 1に記載の系統連系インバータ装置。
[4] 前記半導体スィッチ駆動回路に動作電力を供給する半導体スィッチ駆動回路用電 源コンデンサが具備され、
前記半導体スィッチオフ回路には、
第 1端子、第 2端子および制御端子を有し、該第 1端子側が該半導体スィッチ駆動 回路用電源コンデンサの正極側端子に接続され、該第 2端子側が該半導体スィッチ 駆動回路用電源コンデンサの負極側端子に接続され、該制御端子側が前記直流電 力の負極側入力端に所定の抵抗を介して接続される放電用スイッチング素子と、 前記一対の直流母線間に力ソード側が正極側母線となるように所定の抵抗とともに 挿入されるバイパスダイオードと、
が具備され、
さらに前記放電用スイッチング素子の制御端子と第 2端子との間が所定の抵抗を介 してバイパス接続されるように構成されることを特徴とする請求項 1に記載の系統連 系インバータ装置。
[5] 前記半導体スィッチ駆動回路に動作電力を供給する半導体スィッチ駆動回路用電 源コンデンサが具備され、
前記半導体スィッチオフ回路には、一次側フォトダイオードおよび二次側フォトトラ ンジスタを有し、該二次側フォトトランジスタの第 1端子側が該半導体スィッチ駆動回 路用電源コンデンサの正極側端子に接続され、該第 2端子側が該半導体スィッチ駆 動回路用電源コンデンサの負極側端子に接続される放電用フォト力ブラと、前記放 電用フォト力ブラの一次側フォトダイオードと同極性に直列に接続され、前記一対の 直流母線間に力ソード側が正極側母線となるように所定の抵抗とともに挿入されるバ ィパスダイオードと、が具備されるように構成されることを特徴とする請求項 1に記載の 系統連系インバータ装置。
[6] 直流電力を昇圧および Zまたは降圧するコンバータと、該コンバータの出力を交流 電力に変換するインバータと、該直流電力の各入力端と該コンバータとを接続する一 対の直流母線間に挿入される直列接続された一対のコンデンサと、を具備し、該イン バータの出力を交流電力系統と連系させる系統連系インバータ装置において、 前記一対の直流母線を構成する正極側母線または負極側母線のいずれかの入力 端側で、正 ヽ極性で接続された直流電力が該一対の直流母線に流す電流の流れ を遮断しな ヽ向きに挿入される短絡電流遮断ダイオードと、
前記短絡電流遮断ダイオードの一端側が前記直流電力の入力端側に接続されて いるときの、該短絡電流遮断ダイオードの他端側に接続される半導体スィッチと、 前記半導体スィッチを駆動する半導体スィッチ駆動回路と、
前記入力端の負極側力も正極側に向力つて電流が流れるような負電力が印加され た場合に、前記半導体スィッチ駆動回路をオフ制御する半導体スィッチオフ回路と、 前記半導体スィッチ駆動回路を制御する制御回路と、
を備えたことを特徴とする系統連系インバータ装置。
前記短絡電流遮断ダイオードと前記半導体スィッチとの直列回路の両端に接続さ れ、ある!/、は該短絡電流遮断ダイオードおよび該半導体スィッチの各両端に接続さ れるリレーと、前記一対のコンデンサの各端子電圧をそれぞれモニタする電圧モニタ 手段と、をさらに備え、
前記制御回路は、前記電圧モニタ手段が検出したモニタ電圧に基づいて前記半 導体スィッチ駆動回路を制御することを特徴とする請求項 6に記載の系統連系インバ ータ装置。
PCT/JP2006/306168 2006-03-27 2006-03-27 系統連系インバータ装置 WO2007110913A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006520593A JP4890247B2 (ja) 2006-03-27 2006-03-27 系統連系インバータ装置
EP06730116A EP1887672A4 (en) 2006-03-27 2006-03-27 SYSTEM link INVERTER DEVICE
US11/579,534 US7839665B2 (en) 2006-03-27 2006-03-27 System interconnection inverter including overvoltage and negative voltage protection
PCT/JP2006/306168 WO2007110913A1 (ja) 2006-03-27 2006-03-27 系統連系インバータ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306168 WO2007110913A1 (ja) 2006-03-27 2006-03-27 系統連系インバータ装置

Publications (1)

Publication Number Publication Date
WO2007110913A1 true WO2007110913A1 (ja) 2007-10-04

Family

ID=38540853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306168 WO2007110913A1 (ja) 2006-03-27 2006-03-27 系統連系インバータ装置

Country Status (4)

Country Link
US (1) US7839665B2 (ja)
EP (1) EP1887672A4 (ja)
JP (1) JP4890247B2 (ja)
WO (1) WO2007110913A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014147203A (ja) * 2013-01-29 2014-08-14 Noritz Corp パワーコンディショナ
JP2015091193A (ja) * 2013-11-06 2015-05-11 三菱電機株式会社 パワーコンディショナ
JP2015100250A (ja) * 2013-11-20 2015-05-28 三菱電機株式会社 パワーコンディショナ
JP2015154508A (ja) * 2014-02-10 2015-08-24 三菱電機株式会社 系統連系インバータ装置
KR20180099161A (ko) * 2017-02-28 2018-09-05 주식회사 엘지화학 과전류 유입 방지시스템
JP7319179B2 (ja) 2019-11-27 2023-08-01 ニチコン株式会社 パワーコンディショナに接続して使用される蓄電ユニット

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2415841B (en) 2004-11-08 2006-05-10 Enecsys Ltd Power conditioning unit
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8405367B2 (en) 2006-01-13 2013-03-26 Enecsys Limited Power conditioning units
GB2454389B (en) 2006-01-13 2009-08-26 Enecsys Ltd Power conditioning unit
US7586770B2 (en) * 2006-02-24 2009-09-08 Mitsubishi Electric Corporation Interconnection inverter device
WO2007110954A1 (ja) * 2006-03-29 2007-10-04 Mitsubishi Denki Kabushiki Kaisha 電源装置
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
CN101933209B (zh) 2007-12-05 2015-10-21 太阳能安吉有限公司 分布式电力装置中的安全机构、醒来和关闭方法
EP2232690B1 (en) 2007-12-05 2016-08-31 Solaredge Technologies Ltd. Parallel connected inverters
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
WO2009118682A2 (en) 2008-03-24 2009-10-01 Solaredge Technolgies Ltd. Zero current switching
WO2009136358A1 (en) 2008-05-05 2009-11-12 Solaredge Technologies Ltd. Direct current power combiner
DE102008034955A1 (de) * 2008-07-26 2010-02-04 Semikron Elektronik Gmbh & Co. Kg Stromrichteranordnung für Solarstromanlagen und Ansteuerverfahren hierzu
DE102009004225A1 (de) * 2009-01-09 2010-07-15 Conti Temic Microelectronic Gmbh Spannungsversorgungseinrichtung für eine Last
US8253424B2 (en) * 2009-09-11 2012-08-28 Sma Solar Technology Ag Topology surveying a series of capacitors
US8975899B2 (en) 2009-09-11 2015-03-10 Sma Solar Technology Ag Inverter device comprising a topology surveying a series of capacitors
US20110121647A1 (en) * 2009-09-21 2011-05-26 Renewable Energy Solution Systems, Inc. Solar power distribution system
EP2395639B1 (de) * 2010-05-31 2020-04-01 SEMIKRON Elektronik GmbH & Co. KG Schaltungsanordnung und Verfahren zur Erzeugung einer Wechselspannung aus mindestens einer Spannungsquelle mit zeitlich variabler Ausgangsgleichspannung
GB2482653B (en) 2010-06-07 2012-08-29 Enecsys Ltd Solar photovoltaic systems
JP5867677B2 (ja) * 2010-07-13 2016-02-24 住友電気工業株式会社 リアクトル、コンバータ及び電力変換装置
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
GB2487368B (en) 2011-01-18 2012-12-05 Enecsys Ltd Inverters
DE202011102068U1 (de) * 2011-06-07 2012-09-10 Voltwerk Electronics Gmbh Hochsetzsteller
JP2013026419A (ja) * 2011-07-20 2013-02-04 Sumitomo Electric Ind Ltd リアクトル
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
CN203027126U (zh) * 2012-01-09 2013-06-26 欧司朗股份有限公司 防止输出端误接交流的保护电路和交流/直流转换设备
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP3506370B1 (en) 2013-03-15 2023-12-20 Solaredge Technologies Ltd. Bypass mechanism
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
EP3163729B1 (en) * 2014-06-30 2022-04-20 Mitsubishi Electric Corporation Power conversion device
US10404060B2 (en) * 2015-02-22 2019-09-03 Abb Schweiz Ag Photovoltaic string reverse polarity detection
CN104882857B (zh) * 2015-06-18 2017-11-03 安徽朗越能源股份有限公司 一种锂电型太阳能路灯对锂电池安全充电保护电路及方法
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US10272785B2 (en) * 2017-01-31 2019-04-30 Ford Global Technologies, Llc Fault detection of a bypass diode in a variable voltage convert system
DE112017007744T5 (de) * 2017-07-14 2020-03-26 Danfoss Power Electronics A/S Dc-zwischenkreiskondensatorschutz
EP3605813A1 (de) * 2018-07-30 2020-02-05 Fronius International GmbH Wechselrichter mit zwischenkreisschutz
KR102274958B1 (ko) * 2019-04-15 2021-07-08 주식회사 에스제이솔루션 지능형 프리 레귤레이터를 이용한 전원공급장치
CN112350282B (zh) * 2020-11-18 2023-07-25 深圳市永联科技股份有限公司 一种用于防止铝电解电容过压漏液失效的方法
DE102021201401B4 (de) 2021-02-15 2022-12-29 Vitesco Technologies GmbH Fahrzeugseitiger Lade-Spannungswandler mit Rückstromsperre
DE102021201403A1 (de) 2021-02-15 2022-08-18 Vitesco Technologies GmbH Fahrzeugseitiger Lade-Gleichspannungswandler mit Arbeitsdiode und ausgangsseitiger weiterer Diode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06311758A (ja) * 1993-04-23 1994-11-04 Sanyo Electric Co Ltd インバータ
JPH06348350A (ja) * 1993-06-10 1994-12-22 Matsushita Electric Works Ltd 電源装置
JP2002112448A (ja) * 2000-09-29 2002-04-12 Canon Inc 系統連系装置およびその連系方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322484A (ja) 1994-05-20 1995-12-08 Toshiba Corp 電力変換装置
JP3245504B2 (ja) * 1994-09-27 2002-01-15 シャープ株式会社 インバータ装置
JP3862320B2 (ja) * 1996-06-27 2006-12-27 松下電工株式会社 系統連系型インバータ装置
JPH11196527A (ja) 1997-12-26 1999-07-21 Fujikura Ltd 直流電源ラインの保護回路
JP2001186664A (ja) 1999-12-24 2001-07-06 Matsushita Electric Ind Co Ltd 系統連系インバータ装置
JP2002144033A (ja) * 2000-11-15 2002-05-21 Sansha Electric Mfg Co Ltd アーク利用機器用電源装置
JP4698817B2 (ja) * 2000-11-24 2011-06-08 株式会社三社電機製作所 アーク利用機器用直流電源装置
JP2002165357A (ja) * 2000-11-27 2002-06-07 Canon Inc 電力変換装置およびその制御方法、および発電システム
JP3545721B2 (ja) * 2001-04-02 2004-07-21 株式会社小糸製作所 保護装置
JP4595248B2 (ja) * 2001-06-06 2010-12-08 パナソニック株式会社 自動車用空調装置
US7586770B2 (en) * 2006-02-24 2009-09-08 Mitsubishi Electric Corporation Interconnection inverter device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06311758A (ja) * 1993-04-23 1994-11-04 Sanyo Electric Co Ltd インバータ
JPH06348350A (ja) * 1993-06-10 1994-12-22 Matsushita Electric Works Ltd 電源装置
JP2002112448A (ja) * 2000-09-29 2002-04-12 Canon Inc 系統連系装置およびその連系方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1887672A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014147203A (ja) * 2013-01-29 2014-08-14 Noritz Corp パワーコンディショナ
JP2015091193A (ja) * 2013-11-06 2015-05-11 三菱電機株式会社 パワーコンディショナ
JP2015100250A (ja) * 2013-11-20 2015-05-28 三菱電機株式会社 パワーコンディショナ
JP2015154508A (ja) * 2014-02-10 2015-08-24 三菱電機株式会社 系統連系インバータ装置
KR20180099161A (ko) * 2017-02-28 2018-09-05 주식회사 엘지화학 과전류 유입 방지시스템
KR102253782B1 (ko) 2017-02-28 2021-05-20 주식회사 엘지화학 과전류 유입 방지시스템
JP7319179B2 (ja) 2019-11-27 2023-08-01 ニチコン株式会社 パワーコンディショナに接続して使用される蓄電ユニット

Also Published As

Publication number Publication date
JP4890247B2 (ja) 2012-03-07
EP1887672A1 (en) 2008-02-13
JPWO2007110913A1 (ja) 2009-08-06
US20080304298A1 (en) 2008-12-11
EP1887672A4 (en) 2009-03-18
US7839665B2 (en) 2010-11-23

Similar Documents

Publication Publication Date Title
JP4890247B2 (ja) 系統連系インバータ装置
US7586770B2 (en) Interconnection inverter device
WO2016203517A1 (ja) 電力変換装置
CN110224381B (zh) 一种光伏逆变器及其光伏发电系统
JP5743913B2 (ja) 電力変換装置
JP2012254008A (ja) 電力発生器モジュールの接続性制御
CN108604607B (zh) 光伏(pv)模块的保护电路、用于操作该保护电路的方法和含这种保护电路的光伏(pv)系统
JP4942169B2 (ja) 3レベルインバータ装置
CN107359688B (zh) 供电设备的故障处理方法及装置
JP5289192B2 (ja) 電力変換装置および電力変換装置の故障検出方法
CN111591140A (zh) 电池管理系统及车辆
CN106469980B (zh) 直流-直流转换装置
CN101807497B (zh) 带选择性的直流断路器
CN114128067A (zh) 直流配电盘
US20220231513A1 (en) Method for operating an energy generating system, and energy generating system comprising said method
CN115065263A (zh) 一种三电平逆变器、光伏系统及控制方法
JP4766241B2 (ja) 直流電圧降圧回路および電力変換装置
JP3857167B2 (ja) 電圧変動補償装置
US10243353B2 (en) DC-DC converter
JP4771125B2 (ja) 無停電電源装置
JP6455719B2 (ja) 無停電電源システム
CN217459622U (zh) 一种电解槽保护装置及电解装置
JP2008154379A (ja) 昇圧チョッパレギュレータ回路
JP2002112470A (ja) オフラインupsシステム
JP3585792B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2006520593

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11579534

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006730116

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06730116

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 2006730116

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE