WO2007108348A1 - 電圧制御発振回路 - Google Patents

電圧制御発振回路 Download PDF

Info

Publication number
WO2007108348A1
WO2007108348A1 PCT/JP2007/054821 JP2007054821W WO2007108348A1 WO 2007108348 A1 WO2007108348 A1 WO 2007108348A1 JP 2007054821 W JP2007054821 W JP 2007054821W WO 2007108348 A1 WO2007108348 A1 WO 2007108348A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
channel mos
mos transistor
voltage
input voltage
Prior art date
Application number
PCT/JP2007/054821
Other languages
English (en)
French (fr)
Inventor
Takashi Oka
Seiji Watanabe
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP07738293A priority Critical patent/EP1998449A1/en
Priority to JP2007524114A priority patent/JP4469894B2/ja
Priority to US11/885,410 priority patent/US7893777B2/en
Publication of WO2007108348A1 publication Critical patent/WO2007108348A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • H03K3/0315Ring oscillators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • H03L7/0995Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator

Definitions

  • the present invention relates to a voltage controlled oscillator circuit that is applied to a PLL (Phase Locked Loop) circuit and whose oscillation frequency is controlled in accordance with an input voltage.
  • PLL Phase Locked Loop
  • a voltage-controlled oscillation circuit in which an oscillation frequency is controlled according to an input voltage is applied to the PLL circuit (see, for example, Patent Document 1).
  • the voltage controlled oscillation circuit 400 shown in the figure is configured by cascading a voltage / current conversion circuit 410 and a current controlled oscillation circuit 420.
  • the voltage-current conversion circuit 410 is a circuit that generates a current (input voltage conversion current) corresponding to the input voltage (input voltage Vin).
  • the current control oscillation circuit 420 is a circuit in which the oscillation frequency changes according to the input voltage conversion current generated by the voltage / current conversion circuit 410.
  • the voltage-current conversion circuit 410 includes an N-channel MOS transistor 411, a P-channel MOS transistor 412 and a resistor 413.
  • N-channel MOS transistor 411 has an input voltage Vin connected to the gate and a drain connected to the gate and drain of P-channel MOS transistor 412.
  • the source of the N-channel MOS transistor 411 is grounded via a resistor 413.
  • the P-channel MOS transistor 412 is a transistor constituting an input voltage conversion current source, and the source is connected to the power supply VDD.
  • the current-controlled oscillation circuit 420 includes a plurality of stages of delay cells.
  • the number of delay cell stages may be an odd number of 2 or more, but in the following description, an example in which seven delay cells 421 to 427 are provided will be described.
  • delay cell 421 includes P-channel MOS transistor 421a, P-channel MOS transistor 421b, N-channel MOS transistor 421c, and capacitor 421d.
  • P-channel MOS transistor 421a forms a current source.
  • the source of the P-channel MOS transistor 421a is connected to the power supply VDD, and the drain is connected to the source of the P-channel MOS transistor 421b.
  • the gate of the P-channel MOS transistor 421a is connected to the potential at the connection point of the gate and drain of the P-channel MOS transistor 412 and the drain of the N-channel MOS transistor 411.
  • the P-channel MOS transistor 421b has a drain connected to the drain of the N-channel MOS transistor 421c and is grounded via a capacitor 42 Id. The source of N-channel MOS transistor 421c is grounded!
  • the drains of P-channel MOS transistor 421b and N-channel MOS transistor 421c constituting each delay cell are connected to the gates of P-channel MOS transistor 421b and N-channel MOS transistor 421c constituting the delay cell of the next stage. ing.
  • the drains (referred to as output terminals) of the P-channel MOS transistor 421b and the N-channel MOS transistor 421c constituting the final delay cell are connected to the constituents of the first delay cell.
  • the N-channel MOS transistor 411 is source follower connected.
  • the potential at the connection point (connection point A) between the N-channel MOS transistor 411 and the resistor 413 is approximately (Vin ⁇ Vth) when the input voltage Vin is greater than Vth.
  • Vth is the threshold voltage of the transistor. Therefore, when the input voltage Vin changes, the potential at node A also changes according to this change, and the current flowing through the resistor 413 (input voltage conversion current value Io) becomes the following when the resistance value of the resistor 413 is R413: Determined by the formula.
  • a current equal to the above current also flows through the N-channel MOS transistor 411 and the P-channel MOS transistor 412 constituting the input voltage conversion current source. Therefore, the input power The voltage is shifted from the voltage Vin to the Vth voltage, and a current linear to the input voltage Vin flows into the input voltage conversion current source (P-channel MOS transistor 412).
  • the potential at the connection point between the gate and drain of the P-channel MOS transistor 412 and the drain of the N-channel MOS transistor 411 that determines the current of the input voltage conversion current source (P-channel MOS transistor 412) is controlled by current control.
  • the current value of the current source (P-channel MOS transistor 421a) in each delay cell in the oscillation circuit 420 is determined. For this reason, the current values of these current sources are equal.
  • the N-channel MOS transistor 421c starts to flow current.
  • the voltage applied to the gate of the P-channel MOS transistor 421b rises due to the voltage applied to the gate of the P-channel MOS transistor 421b and the N-channel MOS transistor 421c.
  • the amount of current flowing through the N-channel MOS transistor 421c is larger than the current flowing through the capacitor, the charge of the capacitor 421d is discharged and the potential at the connection point of the P-channel MOS transistor 421b and the N-channel MOS transistor 421c drops. To do.
  • the delay cell repeats the above transition.
  • the input voltage conversion current value Io and the output signal Vout (output from the drains of the P-channel MOS transistor 421b and N-channel MOS transistor 421c of the delay cell in the final stage) explain the relationship of the oscillation frequency (oscillation frequency fout).
  • the relationship between the input voltage conversion current value Io and the oscillation frequency fout of the output signal Vout is determined by the number of delay cell stages.
  • a description will be given using a seven-stage delay cell as an example.
  • FIG. 6 shows P-channel MOS transistors 421b and delay cells 421 to 427, respectively.
  • the voltage applied to the gate of the N-channel MOS transistor 421c is shown.
  • the voltage applied to the delay cell gate is low, the voltage applied to the gates of the P channel MOS transistor 421b and N channel MOS transistor 421c of the delay cell 422 increases. Since the current flowing through the P-channel MOS transistor 421b of the delay cell 421 is determined by the current of the current source (P-channel MOS transistor 421a) of the delay cell 421, the current rises with a constant slope as shown in FIG.
  • the voltage applied to the gate of the transistor 421c rises, and the current that the N-channel MOS transistor 421c flows is larger than the current that the P-channel MOS transistor 421b of the delay cell 422 flows. To do.
  • the current flowing through the N-channel MOS transistor 421c is determined by the voltage applied to the gates of the P-channel MOS transistor 421b and the N-channel MOS transistor 421c of the delay cell 422. It will be.
  • the delay cell outputs a signal having a predetermined oscillation period.
  • the oscillation cycle is as follows. When the voltage applied to the gate of the 421c rises and the current flowing through the P-channel MOS transistor 421b and the current flowing through the N-channel MOS transistor 421c are equal, the P-channel voltage is defined as Vsw. If the time to rise is Tsw and the capacitance value of capacitor 42 Id is Co,
  • Tsw then o X Vsw / Io It is expressed. As shown in Fig. 6, in the case of seven delay cells, one cycle is 7 XTsw. Similarly, for an n-stage delay cell, one cycle is n XTsw, so the oscillation frequency of the output signal Vout of the n-stage delay cell is
  • Patent Document 1 JP-A-5-145412
  • the voltage-controlled oscillation circuit affects the stability of the PLL circuit, so that the performance that the output frequency with respect to the input voltage is linear is required.
  • the linearity of the oscillation frequency fout of the output signal Vout with respect to the input voltage Vin is good in the region lower than the predetermined frequency, but the frequency is higher than that. In the high frequency region, there was a problem if the linearity of the oscillation frequency fout of the output signal Vout with respect to the input voltage Vin was poor.
  • the conventional voltage-controlled oscillation circuit has a frequency lower than a predetermined frequency!
  • the voltage Vsw can be regarded as constant regardless of the input voltage conversion current value Io. This is because the dependence on Io increases in the high-frequency region where the frequency is higher, as explained below.
  • the voltage applied to the gate is Vsw
  • the currents flowing in the P-channel MOS transistor 42 lb and N-channel MOS transistor 421c are I421b and 1421c, respectively.
  • I421c j8 / 2 X (Vsw -Vth) "2 It is represented by The symbol 'means a power.
  • Vsw Vth + (2 X Io / j8) "0.5
  • the above equation is the input voltage conversion current value I of the high-frequency region, that is, the P-channel MOS transistor 421a. Means that the oscillation frequency f out of the output signal Vout decreases and the linearity deteriorates.
  • the present invention has been made paying attention to the above problem, and can make the output frequency linear with respect to the input voltage even in the high frequency region, and improve the stability of the PLL circuit in a wide frequency range.
  • An object of the present invention is to provide a voltage controlled oscillation circuit capable of performing Means for solving the problem
  • one embodiment of the present invention provides:
  • a voltage-controlled oscillation circuit in which a voltage-current conversion circuit that generates an input voltage conversion current that is a current corresponding to an input voltage and a current-controlled oscillation circuit that changes an oscillation frequency according to the input voltage conversion current are connected in series.
  • the voltage-current converter circuit is a first current that outputs a current proportional to the input voltage.
  • a plurality of second current sources that output a current proportional to a voltage obtained by shifting the input voltage, and the current output from the first current source and the plurality of second current sources. Is added to the current control oscillation circuit as the input voltage conversion current.
  • the output frequency with respect to the input voltage can be made linear in a wide frequency range. Therefore, the PLL circuit to which the voltage controlled oscillator circuit according to the present invention is applied can improve the stability of the PLL circuit in a wide frequency range.
  • FIG. 1 is a block diagram showing a configuration of a voltage controlled oscillation circuit according to a first embodiment.
  • FIG. 2 is a block diagram showing a configuration of a voltage controlled oscillation circuit according to Reference Example 1.
  • FIG. 3 is a block diagram showing a configuration of a voltage controlled oscillation circuit according to a modification of Reference Example 1.
  • FIG. 4 is a block diagram showing a configuration of a voltage controlled oscillation circuit according to Reference Example 2.
  • FIG. 5 is a block diagram showing a configuration of a conventional voltage controlled oscillation circuit.
  • FIG. 6 is a diagram showing an output signal of a delay cell.
  • FIG. 1 is a block diagram showing a configuration of the voltage controlled oscillator circuit 300 according to the first embodiment of the present invention.
  • the voltage controlled oscillation circuit 300 is a circuit that outputs a signal (output signal Vout) having a frequency corresponding to the input voltage (input voltage Vin).
  • the voltage-controlled oscillation circuit 300 is configured by connecting a voltage-current conversion circuit 310 and a current-controlled oscillation circuit 120 in cascade.
  • the voltage-current conversion circuit 310 is a circuit that generates a current (input voltage conversion current) corresponding to the input voltage Vin.
  • the current control oscillation circuit 120 is a circuit whose oscillation frequency changes according to the input voltage conversion current generated by the voltage / current conversion circuit 310.
  • the voltage-current conversion circuit 310 includes an N-channel MOS transistor 111, a P-channel MOS transistor 112, a resistor 211, and a plurality of current sources (current sources 311 to 31p).
  • the N-channel MOS transistor 111 has a gate connected to the input voltage Vin and a drain connected to the input voltage Vin.
  • P channel MOS transistor 112 is connected to the gate and drain.
  • the source of the N-channel MOS transistor 111 is grounded through the resistor 113 !.
  • the P-channel MOS transistor 112 is a transistor that constitutes an input voltage conversion current source.
  • the source of the P-channel MOS transistor 112 is connected to the power supply VDD.
  • the resistor 211 is configured by connecting a plurality of resistors in series.
  • Figure 1 shows only two resistors, 21 la and 21 lb! /, But connect more resistors directly to U.
  • Each current source is a circuit that creates a linear current with respect to an input voltage.
  • a plurality of current sources may be further provided between the forces 311 and 31p illustrating the two of 311 and 31p. Since each current source has the same configuration, the current source 311 will be described as a representative.
  • the current source 311 includes an N-channel MOS transistor 311a and a resistor 3 l ib.
  • the source is grounded via the resistor 3 l ib and connected to the drain, and the gate is connected to the connection point (connection point A) of the N-channel MOS transistor 111 and the resistor 211 (to each other) In the example, it is connected to one of the connection points of resistors 21 la to 21 lb). That is, the potential of the connection point A or the potential obtained by dividing the potential between the connection point A and the ground is input to the gate of the N-channel MOS transistor 31 la.
  • the current control oscillation circuit 120 includes a plurality of delay cells.
  • the number of delay cells may be an odd number of 2 or more, but in the following description, an example in which seven delay cells 121 to 127 are provided will be described.
  • two delay cells 121 and 127 are illustrated, but a plurality of delay cells 122 to 126 are further provided between 121 and 127.
  • 121 is the first-stage delay cell
  • 127 is the last-stage delay cell. Since all the delay cells have the same configuration, the delay cell 121 will be described as a representative.
  • delay cell 121 includes P-channel MOS transistors 121a ′ 121b, N-channel MOS transistor 121c, and capacitor 121d.
  • P channel MOS transistor 121a constitutes a current source.
  • P channel MOS tiger The source of transistor 121a is connected to power supply VDD, and the drain is connected to the source of P-channel MOS transistor 121b.
  • the gate of the P-channel MOS transistor 121a is connected to the potential at the connection point between the gate and drain of the P-channel MOS transistor 112 and the drain of the N-channel MOS transistor 111 !.
  • P-channel MOS transistor 121b has a drain connected to the drain of N-channel MOS transistor 121c and is grounded through capacitor 121d.
  • the source of the N channel MOS transistor 121c is grounded.
  • the drain of the transistor 121c is connected to the gates of the P channel MOS transistor 12 lb and the N channel MOS transistor 12 lc constituting the delay cell of the next stage!
  • the drains (referred to as output terminals) of the P-channel MOS transistor 12 lb and the N-channel MOS transistor 121c constituting the final delay cell are connected to the first delay cell.
  • the N-channel MOS transistor 31 la is connected to the source follower. Assuming that the voltage applied to the gate of the N-channel MOS transistor 31 la is Vc, the voltage at the connection point between the N-channel MOS transistor 311a and the resistor 3 l ib is the voltage Vc applied to the gate of the N-channel MOS transistor 31 la. When is larger than Vth, it becomes about (Vc- Vth).
  • the current value 18 flowing through the N-channel MOS transistor 31 la and the resistor 31 lb is calculated as follows:
  • I8 (Vc-Vth) / R311b
  • N-channel MOS transistor 31 la in each of current sources 31 l to 31p A voltage obtained by dividing the voltage at the connection point A between the N-channel MOS transistor 111 and the resistor 211 is applied by the resistors 211a '211b.
  • the voltage applied to the gate of the N-channel MOS transistor 311a in each of the current sources 311 to 31p is assumed to be 311 ⁇ (Vin ⁇ Vth) to j8 31p X (Vin ⁇ Vth).
  • j8 311 to j8 31p are constants of 0 to 1.
  • R311-R3 lp be the resistance value of the resistor 31 lb of each of the current sources 311 to 31p
  • 131 l to I31p be the current value flowing through the N-channel MOS transistors 31 la of the current sources 311 to 3 lp.
  • I31p j8 31p X (Vin- (Vth + Vth / j8 31p)) / R31p
  • the P-channel MOS transistor 112 flows to the input voltage conversion current source (P
  • the input voltage conversion current value Io flowing in the channel MOS transistor 112) is
  • Io (Vin-Vth) / R211 + j8 311 X (Vin-(Vth + Vth / j8 311)) / R311 +
  • the oscillation frequency decreases in the high frequency region.
  • a plurality of currents 1311 having a linear characteristic with respect to the input voltage are used. It can be corrected by ⁇ I3 lp.
  • the voltage applied to the gates of the N-channel MOS transistors 31la of the current sources 31l to 31p can be changed by changing the resistance values of the resistors 21la to 21 lb constituting the resistor 211.
  • the voltage for starting the correction can be arbitrarily set. That is, in the present embodiment, the region to be corrected can be arbitrarily selected, and the correction amount can be arbitrarily selected by changing the resistance values R311 to R31p.
  • each current source current having a linear characteristic
  • the characteristic in which the rate of increase in the slope is positive as in the following reference examples and modifications thereof. Compared to the fact that the current with It becomes possible to suppress the fluctuation of the current value due to the influence of the ambient temperature.
  • FIG. 2 is a block diagram showing a configuration of the voltage controlled oscillation circuit 100 according to Reference Example 1.
  • the voltage controlled oscillation circuit 100 is a circuit that outputs a signal (output signal Vout) having a frequency corresponding to the input voltage (input voltage Vin).
  • the voltage controlled oscillation circuit 100 is configured by connecting a voltage / current conversion circuit 110 and a current controlled oscillation circuit 120 in cascade.
  • the voltage-current conversion circuit 110 is a circuit that generates a current (input voltage conversion current) corresponding to the input voltage Vin.
  • the current controlled oscillation circuit 120 is a circuit whose oscillation frequency changes according to the input voltage conversion current generated by the voltage / current conversion circuit 110.
  • the voltage-current conversion circuit 110 includes an N-channel MOS transistor 111, a P-channel MOS transistor 112, a resistor 113, and an N-channel MOS transistor 114.
  • N-channel MOS transistor 111 has a gate connected to input voltage Vin and a drain connected to the gate and drain of P-channel MOS transistor 112. The source of the N-channel MOS transistor 111 is grounded through the resistor 113 !.
  • the P-channel MOS transistor 112 is a transistor that constitutes an input voltage conversion current source.
  • the source of the P-channel MOS transistor 112 is connected to the power supply VDD.
  • the N-channel MOS transistor 114 has a gate connected to the input voltage Vin of the voltage-current conversion circuit 110.
  • the source of the N-channel MOS transistor 114 is grounded and connected to the node.
  • the current control oscillation circuit 120 includes a plurality of delay cells.
  • the number of delay cells may be an odd number of 2 or more, but in the following description, an example in which seven delay cells 121 to 127 are provided will be described.
  • two delay cells 121 and 127 are shown, but a plurality of delay cells 122 to 126 are further provided between 121 and 127.
  • 121 is the first-stage delay cell
  • 127 is the last-stage delay cell. Since all the delay cells have the same configuration, the delay cell 121 will be described as a representative.
  • delay cell 121 includes P-channel MOS transistors 121a ′ 121b, N-channel MOS transistor 121c, and capacitor 121d.
  • P-channel MOS transistor 121a forms a current source.
  • the source of the P-channel MOS transistor 121a is connected to the power supply VDD, and the drain is connected to the source of the P-channel MOS transistor 121b.
  • the gate of the P-channel MOS transistor 121a is connected to the potential at the connection point between the gate and drain of the P-channel MOS transistor 112 and the drain of the N-channel MOS transistor 111 !.
  • P-channel MOS transistor 121b has a drain connected to the drain of N-channel MOS transistor 121c, and is grounded via capacitor 121d.
  • the source of the N channel MOS transistor 121c is grounded.
  • the drain of the transistor 121c is connected to the gates of the P channel MOS transistor 12 lb and the N channel MOS transistor 12 lc constituting the delay cell of the next stage!
  • the drains (referred to as output terminals) of the P-channel MOS transistor 12 lb and the N-channel MOS transistor 121c constituting the final delay cell are connected to the first delay cell.
  • connection point A of N-channel MOS transistor 111 and resistor 113 is shown.
  • Vin – Vth Is approximately (Vin – Vth) when the input voltage Vin is greater than Vth (Vth is the threshold voltage of the transistor).
  • the current II flowing through the N-channel MOS transistor 111 and the resistor 113 is expressed as follows.
  • the input voltage Vin is applied to the N-channel MOS transistor 114. It can be seen that a current flows with a characteristic that the rate of increase of the slope is positive with respect to the input voltage. Note that the symbol ⁇ means power.
  • the oscillation frequency fout of the output signal Vout depends on the current obtained by adding the current II that is linear with respect to the input voltage and the current 12 that has a characteristic that the rate of increase of the slope is positive with respect to the input voltage. Determined.
  • a diode that is a device having a characteristic that the rate of increase in the slope with respect to the input voltage is positive can be realized.
  • an in-channel MOS transistor 115 may be provided as shown in FIG.
  • 0077Channel MOS transistor 115 has a gate connected to a connection point (connection point ⁇ ) between ⁇ channel MOS transistor 111 and resistor 113, and a drain connected to a connection point between ⁇ channel MOS transistor 111 and ⁇ channel MOS transistor 112. Connected and source is grounded.
  • the potential of the connection point ⁇ is the threshold voltage of the input voltage Vin! / And the value voltage Vth. When it is large, it becomes approximately (Vin- Vth). Therefore, the current 13 flowing through the resistor 113 is R113 when the resistance value of the resistor 113 is R113.
  • the N-channel MOS transistor 115 shifts the input voltage Vin force 2 X Vth voltage, and a current having a characteristic that the rate of increase of the slope becomes positive with respect to the input voltage flows.
  • the decrease in the oscillation frequency in the high frequency region can be corrected by the current 14 having the characteristic that the increase rate of the slope is positive with respect to the input voltage.
  • this modification can also be realized by a diode that is a device having a characteristic that the rate of increase of the slope is positive with respect to the input voltage, instead of the N-channel MOS transistor 115.
  • FIG. 4 is a block diagram showing a configuration of the voltage controlled oscillation circuit 200 according to Reference Example 2.
  • the voltage controlled oscillation circuit 200 includes a voltage / current conversion circuit 210 and a current controlled oscillation circuit 120 as shown in FIG.
  • the voltage-current conversion circuit 210 includes an N-channel MOS transistor 111, a P-channel MOS transistor 112, a resistor 211, and an N-channel MOS transistor 212.
  • the resistor 211 is configured by connecting a resistor 21 la and a resistor 21 lb in series. One end of the resistor 211 is connected to the source of the N-channel MOS transistor 111, and the other end is grounded.
  • N-channel MOS transistor 212 is connected to either the connection point of N-channel MOS transistor 111 and resistor 211 or the connection point of resistors 21 la and 21 lb. In the example shown in Fig. 4, the resistor is connected to the connection point of 21 la and 21 lb!
  • N-channel MOS transistor 212 The drain of N-channel MOS transistor 212 is connected to the connection point of N-channel MOS transistor 111 and P-channel MOS transistor 112, and the source is grounded!
  • the voltage at the connection point A between the N-channel MOS transistor 111 and the resistor 211 is approximately (Vin ⁇ Vth) when the input voltage is greater than Vth. Therefore, the current 16 flowing through the resistor 211 and the N-channel MOS transistor 111 is expressed as follows:
  • a voltage obtained by resistance-dividing the voltage at node A is applied to the gate of N-channel MOS transistor 212.
  • the gate potential of the N-channel MOS transistor 212 is Vb
  • Vb a X (Vin -Vth)
  • a is a constant between 0 and 1.
  • the current 17 flowing through the N-channel MOS transistor 212 is expressed as follows when the gate potential of the N-channel MOS transistor 212 is Vb:
  • the N-channel MOS transistor 212 has an input voltage Vin (Vt h + Vth / a) It can be seen that a current with a characteristic that the voltage shifts and the rate of increase of the slope is positive with respect to the input voltage flows.
  • Io (Vin ⁇ Vth) / R105 + j8 / 2 X ⁇ “2 ⁇ (Vin ⁇ (Vth + Vth / ⁇ ))” 2
  • the oscillation frequency decreases in the high frequency range by compensating for the increase rate of the slope with respect to the input voltage 17. Can be corrected.
  • the voltage controlled oscillation circuit according to the present invention has an effect that the output frequency with respect to the input voltage can be made linear in a wide frequency range. Therefore, it is useful as a voltage-controlled oscillator circuit that is applied to PLL circuits and whose oscillation frequency is controlled according to the input voltage.

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Amplifiers (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

入力電圧に応じた電流である入力電圧変換電流を生成する電圧電流変換回路(310)と、入力電圧変換電流に応じて発振周波数が変化する電流制御発振回路(120)とが縦続接続された電圧制御発振回路において、電圧電流変換回路(310)には、入力電圧に比例する電流を出力する第1の電流源と、入力電圧をシフトさせた電圧に比例する電流を出力する複数の第2の電流源とを設ける。そして、第1の電流源が出力した電流と複数の第2の電流源が出力した電流とを加算した電流を、入力電圧変換電流として電流制御発振回路(120)に対して出力させる。

Description

明 細 書
電圧制御発振回路
技術分野
[0001] 本発明は、 PLL (Phase Locked Loop)回路に適用され、入力電圧に応じて発 振周波数が制御される電圧制御発振回路に関するものである。
背景技術
[0002] PLL回路には、入力電圧に応じて発振周波数が制御される電圧制御発振回路が 適用されている(例えば、特許文献 1を参照)。
[0003] 従来の電圧制御発振回路には、例えば、図 5に示すように構成されているものがあ る。同図に示す電圧制御発振回路 400は、電圧電流変換回路 410と電流制御発振 回路 420とが縦続接続されて構成されている。電圧電流変換回路 410は、入力電圧 (入力電圧 Vin)に応じた電流 (入力電圧変換電流)を生成する回路である。また、電 流制御発振回路 420は、電圧電流変換回路 410が生成した入力電圧変換電流に応 じて発振周波数が変化する回路である。
[0004] 電圧電流変換回路 410は、 Nチャネル MOSトランジスタ 411、 Pチャネル MOSトラ ンジスタ 412および抵抗 413を備えている。
[0005] Nチャネル MOSトランジスタ 411は、入力電圧 Vinがゲートに接続され、ドレインが Pチャネル MOSトランジスタ 412のゲートおよびドレインに接続されている。また、 N チャネル MOSトランジスタ 411のソースは、抵抗 413を介して接地されている。 Pチヤ ネル MOSトランジスタ 412は、入力電圧変換電流源を構成するトランジスタであり、ソ ースが電源 VDDに接続されて!、る。
[0006] 電流制御発振回路 420は、複数段の遅延セルを備えて 、る。遅延セルの段数は、 2以上の奇数段であればよいが、以下の説明では、 7段の遅延セル 421〜427を備 えている例を説明する。なお、図 5の例では、遅延セル 421 ·427の 2つを図示してい る力 421と 427の間には、さらに遅延セノレ 422〜426力設けられている。すなわち、 421が初段の遅延セルであり、 427が最終段の遅延セルである。遅延セルは、全て 同じ構成であるので、代表で遅延セル 421につ 、て説明する。 [0007] 遅延セル 421は、図 5に示すように、 Pチャネル MOSトランジスタ 421a、 Pチャネル MOSトランジスタ 421b、 Nチャネル MOSトランジスタ 421cおよびコンデンサ 421d を備えている。
[0008] Pチャネル MOSトランジスタ 421aは、電流源を構成している。 Pチャネル MOSトラ ンジスタ 421aのソースは、電源 VDDに接続され、ドレインは Pチャネル MOSトランジ スタ 421bのソースに接続されている。また、 Pチャネル MOSトランジスタ 421aのゲー トは、 Pチャネル MOSトランジスタ 412のゲート、ドレイン、および Nチャネル MOSトラ ンジスタ 411のドレインの接続点の電位が接続されて!、る。
[0009] Pチャネル MOSトランジスタ 421bは、ドレインが Nチャネル MOSトランジスタ 421c のドレインに接続されるとともに、コンデンサ 42 Idを介して接地されている。 Nチヤネ ル MOSトランジスタ 421cのソースは、接地されて!、る。
[0010] 各遅延セルを構成する Pチャネル MOSトランジスタ 421bおよび Nチャネル MOSト ランジスタ 421cのドレインは、次段の遅延セルを構成する Pチャネル MOSトランジス タ 421bおよび Nチャネル MOSトランジスタ 421cのゲートに接続されている。また、 最終段の遅延セルを構成する Pチャネル MOSトランジスタ 421bと Nチャネル MOSト ランジスタ 421cの各ドレイン(出力端と呼ぶことにする)は、初段の遅延セルを構成す トに接続されている。
[0011] 次に、電圧制御発振回路 400の動作を説明する。
[0012] まず、 Nチャネル MOSトランジスタ 411は、ソースフォロア接続されている。 Nチヤネ ル MOSトランジスタ 411と抵抗 413の接続点(接続点 A)の電位は、入力電圧 Vinが Vthよりも大きいとき、およそ(Vin— Vth)になる。 Vthは、トランジスタのしきい値電 圧である。したがって、入力電圧 Vinが変化した場合は、この変化に従って接続点 A の電位も変化し、抵抗 413に流れる電流 (入力電圧変換電流値 Io)は、抵抗 413の 抵抗値を R413とすると、次の式によって決定される。
Io = (Vin Vth) /R413
上記電流と等しい電流が、 Nチャネル MOSトランジスタ 411、および入力電圧変換 電流源を構成する Pチャネル MOSトランジスタ 412にも流れる。したがって、入力電 圧 Vinから Vth電圧シフトし、入力電圧 Vinに線形な電流が、入力電圧変換電流源( Pチャネル MOSトランジスタ 412)に流れる。
[0013] 一方、入力電圧変換電流源(Pチャネル MOSトランジスタ 412)の電流を決定する 、 Pチャネル MOSトランジスタ 412のゲート、ドレインおよび Nチャネル MOSトランジ スタ 411のドレインの接続点の電位は、電流制御発振回路 420内の各遅延セル内の 電流源(Pチャネル MOSトランジスタ 421a)の電流値を決定している。このため、これ らの電流源の電流値は等しくなる。
[0014] 続いて、遅延セルの動作を説明する。遅延セル内の Pチャネル MOSトランジスタ 4 21bおよび Nチャネル MOSトランジスタ 421cのゲートに印加される電圧が Lowレべ ルのとき、 Pチャネル MOSトランジスタ 421bは、電流を流し、 Nチャネル MOSトラン ジスタ 421cは、電流を流さない。このとき Pチャネル MOSトランジスタ 421bが流す電 流値は、遅延セル内の電流源(Pチャネル MOSトランジスタ 421a)により決定され、 入力電圧変換電流値 Ioとなる。この電流によって、コンデンサ 421dに電荷が充電さ 続点の電位が上昇する。 のゲートに印加される電圧が Lowレベルから上昇し、 Nチャネル MOSトランジスタ 42 lcのしきい値電圧 Vthを超えると Nチャネル MOSトランジスタ 421cが電流を流すよ うになる。 Nチャネル MOSトランジスタ 421cが流す電流は、 Pチャネル MOSトランジ スタ 421bおよび Nチャネル MOSトランジスタ 421cのゲートに印加される電圧によつ タ 421cのゲートに印加される電圧が上昇し、 Pチャネル MOSトランジスタ 421bが流 す電流よりも Nチャネル MOSトランジスタ 421cが流す電流量が多くなると、コンデン サ 421dの電荷は、放電することになり Pチャネル MOSトランジスタ 421bおよび Nチ ャネル MOSトランジスタ 421cの接続点の電位は降下する。遅延セルは、以上の遷 移を繰り返すことになる。
[0016] 次に、入力電圧変換電流値 Ioと、出力信号 Vout (最終段の遅延セルの Pチャネル MOSトランジスタ 421b、 Nチャネル MOSトランジスタ 421cのドレインから出力される 信号)の発振周波数 (発振周波数 fout)の関係を説明する。
[0017] 入力電圧変換電流値 Ioと、出力信号 Voutの発振周波数 foutの関係は、遅延セル の段数により決まる。ここでは、 7段の遅延セルを例に用いて説明する。
[0018] 図 6は、遅延セル 421〜427それぞれの Pチャネル MOSトランジスタ 421bおよび
Nチャネル MOSトランジスタ 421cのゲートに印加される電圧を示している。遅延セル ゲートに印加される電圧が Lowレベルのとき、遅延セル 422の Pチャネル MOSトラン ジスタ 421bおよび Nチャネル MOSトランジスタ 421cのゲートに印加される電圧が上 昇する。遅延セル 421の Pチャネル MOSトランジスタ 421bが流す電流は、遅延セル 421の電流源(Pチャネル MOSトランジスタ 421a)の電流によって決定されるので、 図 6に示すように一定の傾きで上昇する。 スタ 421cのゲートに印加される電圧が上昇し、遅延セル 422の Pチャネル MOSトラ ンジスタ 421bが流す電流よりも Nチャネル MOSトランジスタ 421cが流す電流が多く ンジスタ 421cのゲートに印加される電圧は、降下する。このとき、 Nチャネル MOSト ランジスタ 421cが流す電流は、遅延セル 422の Pチャネル MOSトランジスタ 421bお よび Nチャネル MOSトランジスタ 421cのゲートに印加される電圧によって決定される ので、急激に Lowレベルまで降下することになる。以上の動作を遅延セルが繰り返 すことによって、所定の発振周期の信号が出力される。発振周期は、以下のようにな る。 タ 421cのゲートに印加される電圧が上昇し、 Pチャネル MOSトランジスタ 421bが流 す電流と Nチャネル MOSトランジスタ 421cが流す電流が等しくなる時の、 Pチャネル る電圧を Vswとし、 Lowレベルから Vswまで上昇するまでの時間を Tsw、コンデンサ 42 Idの容量値を Coとすると、
Tsw =し o X Vsw/ Io と表される。図 6にも示しているように 7段の遅延セルの場合、 1周期は 7 XTswとなる 。同様に n段の遅延セルの場合、 1周期は n XTswなので、 n段遅延セルの出力信号 Voutの発振周波数は、
fout= l/ (n XTsw)
=Io/ (n X Co XVsw)
と表すことができる。
[0021] そのため、入力電圧 Vinと出力電圧 Voutの発振周波数 foutの関係は、
f out = (Vin - Vth) / (n X Co X Vsw XR413)
となる。したがって、入力電圧 Vinカゝら Vth電圧シフトして、入力電圧 Vinに線形な出 力信号 Voutの発振周波数 foutとなる。
特許文献 1 :特開平 5— 145412号公報
発明の開示
発明が解決しょうとする課題
[0022] ところで、電圧制御発振回路は、 PLL回路の安定性に影響を与えるので入力電圧 に対する出力周波数が線形であるという性能が要求される。
[0023] し力しながら、上記従来の電圧制御発振回路では、所定の周波数よりも低い領域 では、入力電圧 Vinに対する出力信号 Voutの発振周波数 foutの線形性は良いもの の、それよりも周波数の高い高周波領域では、入力電圧 Vinに対する出力信号 Vou tの発振周波数 foutの線形性が悪ィ匕すると ヽぅ問題があった。
[0024] これは、従来の電圧制御発振回路は、所定の周波数よりも低!、低周波領域では、 電圧 Vswが入力電圧変換電流値 Ioに関わらず一定であるとみなしても差し支えない 力 それよりも周波数の高い高周波領域では、以下に説明するように Ioへの依存性 が大きくなるためである。 トに印加される電圧が Vswの時、 Pチャネル MOSトランジスタ 42 lbおよび Nチャネル MOSトランジスタ 421cに流れる電流をそれぞれ I421b、 1421cとすると、
I421b=Io
I421c= j8 /2 X (Vsw -Vth) "2 で表される。なお、記号'は、べき乗を意味している。
[0026] 上式における 13は、 j8 =u X Cox X WZL (uは電子移動度、 Coxはゲート容量、 W はトランジスタのチャネル幅、 Lはトランジスタのチャネル長)を意味している。また、 Vt hはトランジスタの閾値電圧を意味して 、る。
[0027] 上記の 1421bと 1421cが等しくなるので、
Ιο = β /2 Χ (Vsw-Vth) " 2
と表される。 Ioを用いて Vswを表すと、
Vsw = Vth + (2 X Io/ j8 ) "0. 5
と表される。上式は、遅延セル内の Pチャネル MOSトランジスタ 421bが流す電流と N チャネル MOSトランジスタ 421cが流す電流が等しくなる時の、 Pチャネル MOSトラ ンジスタ 421bおよび Nチャネル MOSトランジスタ 421cのゲートに印加される電圧 Vs wが、電流源(Pチャネル MOSトランジスタ 421 a)の入力電圧変換電流値 Ioによりが 変化することを表している。このとき入力電圧変換電流値 Ioと出力信号 Voutの発振 周波数 f outの関係は、コンデンサ 421 dの容量を Coとした場合、
Figure imgf000008_0001
となる。
[0028] 上式は、高周波領域つまり Pチャネル MOSトランジスタ 421aの入力電圧変換電流 値 I。が大きな時に出力信号 Voutの発振周波数 f outが低下して、線形性を悪化させ ることを意味している。
[0029] 本発明は、上記の問題に着目してなされたものであり、高周波領域においても入力 電圧に対する出力周波数を線形にすることができ、広い周波数範囲で PLL回路の 安定性を向上することができる電圧制御発振回路を提供することを目的としている。 課題を解決するための手段
[0030] 前記の課題を解決するため、本発明の一態様は、
入力電圧に応じた電流である入力電圧変換電流を生成する電圧電流変換回路と、 前記入力電圧変換電流に応じて発振周波数が変化する電流制御発振回路とが縦 続接続された電圧制御発振回路であって、
前記電圧電流変換回路は、前記入力電圧に比例する電流を出力する第 1の電流 源と、前記入力電圧をシフトさせた電圧に比例する電流を出力する複数の第 2の電 流源とを有し、前記第 1の電流源が出力した電流と前記複数の第 2の電流源が出力 した電流とを加算した電流を、前記入力電圧変換電流として前記電流制御発振回路 に出力することを特徴とする。
発明の効果
[0031] 本発明によれば、電圧制御発振回路において、広い周波数範囲で、入力電圧に 対する出力周波数を線形にすることができる。それゆえ、本発明に係る電圧制御発 振回路適用された PLL回路では、広い周波数範囲で PLL回路の安定性を向上する ことができる。
図面の簡単な説明
[0032] [図 1]図 1は、実施形態 1に係る電圧制御発振回路の構成を示すブロック図である。
[図 2]図 2は、参考例 1に係る電圧制御発振回路の構成を示すブロック図である。
[図 3]図 3は、参考例 1の変形例に係る電圧制御発振回路の構成を示すブロック図で ある。
[図 4]図 4は、参考例 2に係る電圧制御発振回路の構成を示すブロック図である。
[図 5]図 5は、従来例の電圧制御発振回路の構成を示すブロック図である。
[図 6]図 6は、遅延セルの出力信号を示す図である。
符号の説明
[0033] 100 電圧制御発振回路
110 電圧電流変換回路
111 Nチャネル MOSトランジスタ
112 Pチャネル MOSトランジスタ
113 抵抗
114 Nチャネル MOSトランジスタ
115 Nチャネル MOSトランジスタ
116 Pチャネル MOSトランジスタ
120 電流制御発振回路
121〜127 遅延セル 121a Pチャネル MOSトランジスタ
121b Pチャネル MOSトランジスタ
121c Nチャネル MOSトランジスタ
121d コンデンサ
200 電圧制御発振回路
210 電圧電流変換回路
211 抵抗
211a〜211b 抵抗
212 Nチャネル MOSトランジスタ
300 電圧制御発振回路
310 電圧電流変換回路
311〜31p 電流源
311a Nチャネル MOSトランジスタ
311b 抵抗
発明を実施するための最良の形態
[0034] 以下、本発明の実施形態及び参考例について図面を参照しながら説明する。
[0035] 《発明の実施形態 1》
図 1は、本発明の実施形態 1に係る電圧制御発振回路 300の構成を示すブロック 図である。電圧制御発振回路 300は、入力された電圧 (入力電圧 Vin)に応じた周波 数の信号(出力信号 Vout)を出力する回路である。電圧制御発振回路 300は、図 1 に示すように、電圧電流変換回路 310と電流制御発振回路 120とが縦続接続されて 構成されている。電圧電流変換回路 310は、入力電圧 Vinに応じた電流 (入力電圧 変換電流)を生成する回路である。また、電流制御発振回路 120は、電圧電流変換 回路 310が生成した入力電圧変換電流に応じて発振周波数が変化する回路である
[0036] 電圧電流変換回路 310は、 Nチャネル MOSトランジスタ 111、 Pチャネル MOSトラ ンジスタ 112、抵抗 211、および複数の電流源(電流源 311〜31p)を備えている。
[0037] Nチャネル MOSトランジスタ 111は、ゲートが入力電圧 Vinに接続され、ドレインが Pチャネル MOSトランジスタ 112のゲートおよびドレインに接続されている。また、 N チャネル MOSトランジスタ 111のソースは、抵抗 113を介して接地されて!、る。
[0038] Pチャネル MOSトランジスタ 112は、入力電圧変換電流源を構成するトランジスタ である。 Pチャネル MOSトランジスタ 112のソースは、電源 VDDに接続されている。
[0039] 抵抗 211は、図 1に示すように、複数の抵抗が直列に接続されて構成されている。
図 1には抵抗 21 laと抵抗 21 lbの 2つのみを図示して!/、るが、さらに多くの抵抗を直 歹 Uに接続してちょい。
[0040] 各電流源は、入力された電圧に対して線形な電流を作成する回路である。図 1の 例では、 311と 31pの 2つを図示している力 311と 31pの間には、さらに複数の電流 源を設けてもよい。各電流源は、全て同じ構成であるので、代表で電流源 311につ いて説明する。
[0041] 電流源 311は、図 1に示すように、 Nチャネル MOSトランジスタ 311aと抵抗 3 l ibを 備えている。
[0042] Nチャネル MOSトランジスタ 311aは、ソースが抵抗 3 l ibを介して接地され、ドレイ に接続され、ゲートが Nチャネル MOSトランジスタ 111と抵抗 211の接続点(接続点 A)あるいは抵抗同士(この例では抵抗 21 la〜21 lb)の接続点の何れかに接続され ている。すなわち、 Nチャネル MOSトランジスタ 31 laのゲートには、接続点 Aの電位 、あるいは接続点 Aと接地間の電位を抵抗分割した電位が入力されて ヽる。
[0043] 電流制御発振回路 120は、複数段の遅延セルを備えている。遅延セルの段数は、 2以上の奇数段であればよいが、以下の説明では、 7段の遅延セル 121〜127を備 えている例を説明する。なお、図 1の例では、遅延セル 121 · 127の 2つを図示してい るが、 121と 127の間には、さらに複数の遅延セル 122〜126が設けられている。す なわち、 121が初段の遅延セルであり、 127が最終段の遅延セルである。遅延セル は、全て同じ構成であるので、代表で遅延セル 121について説明する。
[0044] 遅延セル 121は、図 1に示すように、 Pチャネル MOSトランジスタ 121a' 121b、 N チャネル MOSトランジスタ 121cおよびコンデンサ 121dを備えている。
[0045] Pチャネル MOSトランジスタ 121aは、電流源を構成している。 Pチャネル MOSトラ ンジスタ 121aのソースは、電源 VDDに接続され、ドレインは Pチャネル MOSトランジ スタ 121bのソースに接続されている。また、 Pチャネル MOSトランジスタ 121aのゲー トは、 Pチャネル MOSトランジスタ 112のゲート、ドレインおよび Nチャネル MOSトラ ンジスタ 111のドレインの接続点の電位が接続されて!、る。
[0046] Pチャネル MOSトランジスタ 121bは、ドレインが Nチャネル MOSトランジスタ 121c のドレインに接続されるとともに、コンデンサ 121dを介して接地されている。 Nチヤネ ル MOSトランジスタ 121cのソースは、接地されている。 ランジスタ 121cのドレインは、次段の遅延セルを構成する Pチャネル MOSトランジス タ 12 lbおよび Nチャネル MOSトランジスタ 12 lcのゲートに接続されて!、る。また、 最終段の遅延セルを構成する Pチャネル MOSトランジスタ 12 lbと Nチャネル MOSト ランジスタ 121cのドレイン(出力端と呼ぶことにする)は、初段の遅延セルを構成する に接続されている。
[0048] 次に、電圧制御発振回路 300の動作を説明する。
[0049] 電圧制御発振回路 300において、 Nチャネル MOSトランジスタ 31 laはソースフォ ロア接続されている。 Nチャネル MOSトランジスタ 31 laのゲートに印加される電圧を Vcとすると、 Nチャネル MOSトランジスタ 311aと抵抗 3 l ibの接続点の電圧は、 Nチ ャネル MOSトランジスタ 31 laのゲートに印加される電圧 Vcが Vthよりも大きいとき、 およそ (Vc— Vth)となる。
[0050] したがって、 Nチャネル MOSトランジスタ 31 laと抵抗 31 lbに流れる電流値 18は、 抵抗 31 lbの抵抗値を R31 lbとすると、
I8= (Vc-Vth) /R311b
で表すことができる。上式は、 Nチャネル MOSトランジスタ 31 laのゲートに印加され る電圧 Vcから Vthだけ電圧シフトして、 Nチャネル MOSトランジスタ 31 laのゲートに 印加される電圧 Vcに対して、線形な電流が流れることを意味して!/ヽる。
[0051] 具体的に入力電圧変換電流値 Ioについて、電流源 311〜31pを用いて説明する。
電流源 31 l〜31pのそれぞれにおける Nチャネル MOSトランジスタ 31 laのゲートに は、抵抗 211a' 211bによって、 Nチャネル MOSトランジスタ 111と抵抗 211の接続 点 Aの電圧を抵抗分割した電圧が印加される。
[0052] ここで、電流源 311〜31pのそれぞれにおける Nチャネル MOSトランジスタ 311a のゲートに印加される電圧を 311 Χ (Vin— Vth)〜j8 31p X (Vin-Vth)とする。 ただし、 j8 311〜 j8 31pは、 0〜1の定数である。また、電流源 311〜31pのそれぞれ の抵抗 31 lbの抵抗値を R311〜R3 lpとし、電流源 311〜3 lpのそれぞれの Nチヤ ネル MOSトランジスタ 31 laに流れる電流値を 131 l〜I31pとすると、
1311 = j8 311 X (Vin—(Vth+Vth/ j8 311) ) /R311
I31p= j8 31p X (Vin- (Vth+Vth/ j8 31p) ) /R31p
と表すことができる。
[0053] 抵抗 211に流れる電流 16と電流源 311〜3 lpのそれぞれの Nチャネル MOSトラン ジスタ 31 laに流れる電流 1311〜I3 lp力 Pチャネル MOSトランジスタ 112に流れる ので、入力電圧変換電流源(Pチャネル MOSトランジスタ 112)に流れる入力電圧変 換電流値 Ioは、
Io = (Vin - Vth) /R211 + j8 311 X (Vin - (Vth + Vth/ j8 311) ) /R311 + · · · + j8 31p X (Vin- (Vth+Vth/ j8 31p) ) /R31p
で決定される。
[0054] すなわち、入力電圧に対して線形特性を持つ電流 16だけだと高周波領域において 発振周波数が低下するのを、電圧制御発振回路 300では、入力電圧に対して線形 特性を持つ複数の電流 1311〜I3 lpによって補正することができる。
[0055] なお、抵抗 211を構成する抵抗 21 la〜21 lbの抵抗値を変化させることで、電流 源 31 l〜31pのそれぞれの Nチャネル MOSトランジスタ 31 laのゲートに印加する電 圧を変更すれば、補正を開始する電圧を任意に設定することができる。すなわち、本 実施形態では、補正したい領域を任意に選ぶことができ、また抵抗値 R311〜R31p を変更することで補正量を任意に選ぶことができる。
[0056] さらに、各電流源が出力する電流 (線形な特性を持つ電流)は抵抗により決定され るので、以下に示す参考例やその変形例のように、傾きの増加率が正となる特性を 持つ電流がトランジスタのコンダクタンス gmで決定されるのに比べ、製造プロセスや 周辺温度の影響による電流値の変動を抑えることが可能になる。
[0057] 《参考例 1》
図 2は、参考例 1に係る電圧制御発振回路 100の構成を示すブロック図である。電 圧制御発振回路 100は、入力された電圧 (入力電圧 Vin)に応じた周波数の信号(出 力信号 Vout)を出力する回路である。電圧制御発振回路 100は、図 2に示すように、 電圧電流変換回路 110と電流制御発振回路 120とが縦続接続されて構成されてい る。電圧電流変換回路 110は、入力電圧 Vinに応じた電流 (入力電圧変換電流)を 生成する回路である。また、電流制御発振回路 120は、電圧電流変換回路 110が生 成した入力電圧変換電流に応じて発振周波数が変化する回路である。
[0058] 電圧電流変換回路 110は、 Nチャネル MOSトランジスタ 111、 Pチャネル MOSトラ ンジスタ 112、抵抗 113、および Nチャネル MOSトランジスタ 114を備えている。
[0059] Nチャネル MOSトランジスタ 111は、ゲートが入力電圧 Vinに接続され、ドレインが Pチャネル MOSトランジスタ 112のゲートおよびドレインに接続されている。また、 N チャネル MOSトランジスタ 111のソースは、抵抗 113を介して接地されて!、る。
[0060] Pチャネル MOSトランジスタ 112は、入力電圧変換電流源を構成するトランジスタ である。 Pチャネル MOSトランジスタ 112のソースは、電源 VDDに接続されている。
[0061] Nチャネル MOSトランジスタ 114は、ゲートが電圧電流変換回路 110の入力電圧 V inに接続されている。また、 Nチャネル MOSトランジスタ 114のソースは接地され、ド 点に接続されている。
[0062] 電流制御発振回路 120は、複数段の遅延セルを備えている。遅延セルの段数は、 2以上の奇数段であればよいが、以下の説明では、 7段の遅延セル 121〜127を備 えている例を説明する。なお、図 2の例では、遅延セル 121 · 127の 2つを図示してい るが、 121と 127の間には、さらに複数の遅延セル 122〜126が設けられている。す なわち、 121が初段の遅延セルであり、 127が最終段の遅延セルである。遅延セル は、全て同じ構成であるので、代表で遅延セル 121について説明する。
[0063] 遅延セル 121は、図 2に示すように、 Pチャネル MOSトランジスタ 121a' 121b、 N チャネル MOSトランジスタ 121cおよびコンデンサ 121dを備えている。 [0064] Pチャネル MOSトランジスタ 121aは、電流源を構成している。 Pチャネル MOSトラ ンジスタ 121aのソースは、電源 VDDに接続され、ドレインは Pチャネル MOSトランジ スタ 121bのソースに接続されている。また、 Pチャネル MOSトランジスタ 121aのゲー トは、 Pチャネル MOSトランジスタ 112のゲート、ドレインおよび Nチャネル MOSトラ ンジスタ 111のドレインの接続点の電位が接続されて!、る。
[0065] Pチャネル MOSトランジスタ 121bは、ドレインが Nチャネル MOSトランジスタ 121c のドレインに接続されるとともに、コンデンサ 121dを介して接地されている。 Nチヤネ ル MOSトランジスタ 121cのソースは、接地されている。 ランジスタ 121cのドレインは、次段の遅延セルを構成する Pチャネル MOSトランジス タ 12 lbおよび Nチャネル MOSトランジスタ 12 lcのゲートに接続されて!、る。また、 最終段の遅延セルを構成する Pチャネル MOSトランジスタ 12 lbと Nチャネル MOSト ランジスタ 121cのドレイン(出力端と呼ぶことにする)は、初段の遅延セルを構成する に接続されている。
[0067] 次に、電圧制御発振回路 100の動作を説明する。
[0068] まず、図 2に示す、 Nチャネル MOSトランジスタ 111と抵抗 113の接続点(接続点 A
)の電位は、入力電圧 Vinが Vth (Vthは、トランジスタのしきい値電圧)よりも大きいと きは、およそ (Vin— Vth)となる。
[0069] したがって、 Nチャネル MOSトランジスタ 111および抵抗 113に流れる電流 IIは、 抵抗 113の抵抗値を R113とすると、
11 = (Vin- Vth) /R113
によって決定される。すなわち、抵抗 113には、入力電圧 Vin力 Vth電圧シフトし、 入力電圧に対して線形な電流が流れることがわかる。
[0070] また、 Nチャネル MOSトランジスタ 114のゲートには、入力電圧 Vinが接続されてい るので、 Nチャネル MOSトランジスタ 114に流れる電流 12は、
12= β /2 Χ (Vin -Vth) "2
によって決定される。すなわち、 Nチャネル MOSトランジスタ 114には入力電圧 Vin から Vth電圧シフトし、入力電圧に対して傾きの増加率が正となる特性を持つ電流が 流れることがわかる。なお、記号 Ίま、べき乗を意味している。
[0071] Nチャネル MOSトランジスタ 111および抵抗 113に流れる電流 IIと、 Nチャネル M OSトランジスタ 114に流れる電流 12が Pチャネル MOSトランジスタ 112に流れるので 、入力電圧変換電流源(Pチャネル MOSトランジスタ 112)に流れる電流値 Ioは、 Io= (Vin-Vth) /R113+ j8 /2 X (Vin-Vth) "2
によって決定される。上式における j8は、 j8 =u X CoxXWZL (uは電子移動度、 C oxはゲート容量、 Wはトランジスタのチャネル幅、 Lはトランジスタのチャネル長)を意 味している。また、 Vthはトランジスタの閾値電圧を意味している。 タ 121cのゲートに印加される電圧が Lowレベルのときに、 Pチャネル MOSトランジス タ 121bが流す電流値は、遅延セル内の電流源(Pチャネル MOSトランジスタ 121a) により決定され、入力電圧変換電流値 Io ( =11 +12)となる。
[0073] 出力信号 Voutの発振周波数 foutは、入力電圧に対して線形な電流 IIと、入力電 圧に対して傾きの増加率が正となる特性を持つ電流 12とが加算された電流に応じて 決定される。
[0074] すなわち、本参考例によれば、入力電圧に対して線形特性を持つ電流 IIだけだと 高周波領域にぉ 、て発振周波数が低下するのを、傾きの増加率が正となる特性を持 つ 12によって、ネ ΐ正することができる。
[0075] なお、 Νチャネル MOSトランジスタ 114の代わりに、入力電圧に対し傾きの増加率 が正となる特性を持つ素子であるダイオードでも実現できる。
[0076] 《参考例 1の変形例》
また、電圧電流変換回路 110においては、 Νチャネル MOSトランジスタ 114の代わ りに、図 3に示すように、 Νチャネル MOSトランジスタ 115を設けてもよい。
[0077] Νチャネル MOSトランジスタ 115は、ゲートが Νチャネル MOSトランジスタ 111と抵 抗 113の接続点(接続点 Α)に接続され、ドレインが Νチャネル MOSトランジスタ 111 と Ρチャネル MOSトランジスタ 112の接続点と接続され、ソースが接地されている。
[0078] この変形例にお!、て、接続点 Αの電位は、入力電圧 Vinがしき!/、値電圧 Vthよりも 大きいときは、およそ (Vin— Vth)となる。したがって、抵抗 113に流れる電流 13は、 抵抗 113の抵抗値を R113とすると、
13= (Vin -Vth) /R113
によって決定される。すなわち、抵抗 113には、入力電圧 Vin力も Vth電圧シフトし、 入力電圧に対して線形な電流が流れることがわかる。
[0079] さらに接続点 Aの電圧が Nチャネル MOSトランジスタ 115のゲートに接続されるの で、 Nチャネル MOSトランジスタ 115に流れる電流 14は、
14 = β /2 Χ (Vin- 2 X Vth) "2
によって決定される。すなわち、 Nチャネル MOSトランジスタ 115には入力電圧 Vin 力 2 X Vth電圧シフトし、入力電圧に対して傾きの増加率が正となる特性を持つ電 流が流れることがわかる。
[0080] 抵抗 113に流れる電流 13と Nチャネル MOSトランジスタ 115に流れる電流 14力 そ れぞれ Pチャネル MOSトランジスタ 112に流れるので、入力電圧変換電流源(Pチヤ ネル MOSトランジスタ 112)に流れる電流値 Ioは、
Io= (Vin-Vth) /R113+ j8 /2 X (Vin- 2 X Vth) "2
によって決定される。
[0081] したがって、本変形例においても、高周波領域において発振周波数が低下するの を、入力電圧に対して、傾きの増加率が正となる特性を持つ電流 14によって補正す ることがでさる。
[0082] なお、本変形例においても、 Nチャネル MOSトランジスタ 115の代わりに、入力電 圧に対し、傾きの増加率が正となる特性を持つ素子であるダイオードでも実現できる
[0083] 《参考例 2》
図 4は、参考例 2に係る電圧制御発振回路 200の構成を示すブロック図である。電 圧制御発振回路 200は、図 4に示すように、電圧電流変換回路 210と電流制御発振 回路 120を備えている。
[0084] 電圧電流変換回路 210は、 Nチャネル MOSトランジスタ 111、 Pチャネル MOSトラ ンジスタ 112、抵抗 211、および Nチャネル MOSトランジスタ 212を備えている。 [0085] 抵抗 211は、抵抗 21 laと抵抗 21 lbが直列に接続されて構成されている。抵抗 21 1の一端は Nチャネル MOSトランジスタ 111のソースと接続され、他端は接地されて いる。
[0086] Nチャネル MOSトランジスタ 212のゲートは、 Nチャネル MOSトランジスタ 111と抵 抗 211の接続点あるいは、抵抗 21 laと 21 lbの接続点の何れかに接続される。図 4 に示す例では、抵抗 21 laと 21 lbの接続点に接続されて!、る。
[0087] また、 Nチャネル MOSトランジスタ 212のドレインは、 Nチャネル MOSトランジスタ 1 11と Pチャネル MOSトランジスタ 112の接続点に接続され、ソースは接地されて!、る
[0088] 次に、電圧制御発振回路 200の動作を説明する。
[0089] 電圧制御発振回路 200にお!/、て Nチャネル MOSトランジスタ 111と抵抗 211の接 続点 Aの電圧は、入力電圧が Vthより大きいときには、およそ (Vin— Vth)となる。そ れゆえ、抵抗 211および Nチャネル MOSトランジスタ 111に流れる電流 16は、抵抗 2 11の抵抗値を R211とすると、
16= (Vin -Vth) /R211
によって決定される。したがって、抵抗 211には、入力電圧 Vin力も Vth電圧シフトし 、入力電圧に対して線形な電流が流れることがわかる。
[0090] また、 Nチャネル MOSトランジスタ 212のゲートには、接続点 Aの電圧を抵抗分割 した電圧が印加される。 Nチャネル MOSトランジスタ 212のゲートの電位を Vbとする と、
Vb= a X (Vin -Vth)
と表される。上式の aは 0〜1の定数である。
[0091] したがって、 Nチャネル MOSトランジスタ 212に流れる電流 17は、 Nチャネル MOS トランジスタ 212のゲートの電位を Vbとすると、
17 = β /2 Χ (Vb-Vth) "2
によって決定される。ゲート電位 Vbを代入すると、
17 = β /2 Χ α "2 Χ (Vin- (Vth + Vth/ a ) ) "2
と表される。したがって、 Nチャネル MOSトランジスタ 212には入力電圧 Vinから(Vt h+Vth/ a )電圧シフトし、入力電圧に対して傾きの増加率が正となる特性を持つ 電流が流れることがわかる。
[0092] 抵抗 211および、 Nチャネル MOSトランジスタ 111に流れる電流 16と Nチャネル M OSトランジスタ 212に流れる電流 17が Pチャネル MOSトランジスタ 112に流れるので 、入力電圧変換電流源(Pチャネル MOSトランジスタ 112)に流れる入力電圧変換電 流値 Ioは、
Io = (Vin-Vth) /R105 + j8 /2 X α " 2 Χ ( Vin - ( Vth + Vth/ α ) ) " 2 によって決定される。
[0093] 以上のように、電圧制御発振回路 200では、高周波領域にぉ 、て発振周波数が低 下するのを、入力電圧に対して、傾きの増加率が正となる特性を持つ 17によって補 正することができる。
[0094] また、抵抗 211を構成する抵抗 21 la〜21 lbの抵抗値を変化させることで、 Nチヤ ネル MOSトランジスタ 212のゲートに印加する電圧を変更すれば、出力周波数の補 正を開始する電圧を任意に設定することができる。
[0095] なお、本参考例においても、 Nチャネル MOSトランジスタ 212の代わりに、入力電 圧に対し、傾きの増加率が正となる特性を持つ素子であるダイオードでも実現できる 産業上の利用可能性
[0096] 本発明に係る電圧制御発振回路は、広い周波数範囲で、入力電圧に対する出力 周波数を線形にすることができるという効果を有する。そのため、 PLL回路に適用さ れて、入力電圧に応じて発振周波数が制御される電圧制御発振回路等として有用 である。

Claims

請求の範囲
入力電圧に応じた電流である入力電圧変換電流を生成する電圧電流変換回路と、 前記入力電圧変換電流に応じて発振周波数が変化する電流制御発振回路とが縦 続接続された電圧制御発振回路であって、
前記電圧電流変換回路は、前記入力電圧に比例する電流を出力する第 1の電流 源と、前記入力電圧をシフトさせた電圧に比例する電流を出力する複数の第 2の電 流源とを有し、前記第 1の電流源が出力した電流と前記複数の第 2の電流源が出力 した電流とを加算した電流を、前記入力電圧変換電流として前記電流制御発振回路 に出力することを特徴とする電圧制御発振回路。
PCT/JP2007/054821 2006-03-23 2007-03-12 電圧制御発振回路 WO2007108348A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07738293A EP1998449A1 (en) 2006-03-23 2007-03-12 Voltage controlled oscillator circuit
JP2007524114A JP4469894B2 (ja) 2006-03-23 2007-03-12 電圧制御発振回路
US11/885,410 US7893777B2 (en) 2006-03-23 2007-03-12 Voltage controlled oscillation circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-080199 2006-03-23
JP2006080199 2006-03-23

Publications (1)

Publication Number Publication Date
WO2007108348A1 true WO2007108348A1 (ja) 2007-09-27

Family

ID=38522380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054821 WO2007108348A1 (ja) 2006-03-23 2007-03-12 電圧制御発振回路

Country Status (5)

Country Link
US (1) US7893777B2 (ja)
EP (1) EP1998449A1 (ja)
JP (1) JP4469894B2 (ja)
CN (1) CN101313467A (ja)
WO (1) WO2007108348A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075763A (ja) * 2012-10-05 2014-04-24 Seiko Npc Corp 温度周波数変換回路及び温度補償型発振回路

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839224B2 (en) * 2007-09-28 2010-11-23 Rohm Co., Ltd. Oscillator with a stable oscillating frequency
TWI355804B (en) 2008-09-22 2012-01-01 Etron Technology Inc A voltage control oscillator without being affecte
JP6371581B2 (ja) * 2014-05-12 2018-08-08 ラピスセミコンダクタ株式会社 発振回路、電流生成回路および発振方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145412A (ja) 1991-11-21 1993-06-11 Toshiba Corp 電圧制御発振回路
JP2000134092A (ja) * 1998-10-23 2000-05-12 Mitsubishi Electric Corp 位相同期ループ回路および電圧制御型発振器
JP2003198333A (ja) * 2001-12-28 2003-07-11 Asahi Kasei Microsystems Kk 発振器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5459653A (en) * 1993-06-23 1995-10-17 Ati Technologies Inc. Voltage to current converter with independent loop gain and frequency control
US5748048A (en) * 1996-12-12 1998-05-05 Cypress Semiconductor Corporation Voltage controlled oscillator (VCO) frequency gain compensation circuit
JP3586059B2 (ja) * 1997-02-26 2004-11-10 株式会社東芝 半導体回路
US6166592A (en) * 1998-07-31 2000-12-26 Lucent Technologies Inc. Linear CMOS transconductor with rail-to-rail compliance
US6404294B1 (en) * 2000-07-18 2002-06-11 Cypress Semiconductor Corp. Voltage control oscillator (VCO) with automatic gain control
JP2002050961A (ja) * 2000-08-02 2002-02-15 Mitsubishi Electric Corp フェイズロックループ回路
JP3808338B2 (ja) * 2001-08-30 2006-08-09 株式会社ルネサステクノロジ 位相同期回路
JP2003152507A (ja) * 2001-11-15 2003-05-23 Mitsubishi Electric Corp 電圧制御型発振回路
JP2003229764A (ja) 2002-02-01 2003-08-15 Hitachi Ltd 半導体集積回路
KR100510487B1 (ko) * 2002-05-28 2005-08-26 삼성전자주식회사 넓은 동기 범위를 갖는 위상동기루프 회로 및 이를 구비한반도체 집적회로 장치
JP4083077B2 (ja) * 2002-08-02 2008-04-30 三洋電機株式会社 電圧制御発振器
TWI232023B (en) * 2004-05-21 2005-05-01 Sunplus Technology Co Ltd Voltage control oscillator
US7498885B2 (en) * 2006-11-03 2009-03-03 Taiwan Semiconductor Manufacturing Co., Ltd. Voltage controlled oscillator with gain compensation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145412A (ja) 1991-11-21 1993-06-11 Toshiba Corp 電圧制御発振回路
JP2000134092A (ja) * 1998-10-23 2000-05-12 Mitsubishi Electric Corp 位相同期ループ回路および電圧制御型発振器
JP2003198333A (ja) * 2001-12-28 2003-07-11 Asahi Kasei Microsystems Kk 発振器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075763A (ja) * 2012-10-05 2014-04-24 Seiko Npc Corp 温度周波数変換回路及び温度補償型発振回路

Also Published As

Publication number Publication date
JPWO2007108348A1 (ja) 2009-08-06
EP1998449A1 (en) 2008-12-03
US7893777B2 (en) 2011-02-22
US20080136539A1 (en) 2008-06-12
JP4469894B2 (ja) 2010-06-02
CN101313467A (zh) 2008-11-26

Similar Documents

Publication Publication Date Title
US7592877B2 (en) Variable frequency oscillator and communication circuit with it
US8669810B2 (en) Time difference amplifier and amplification method using slew rate control
US7292079B2 (en) DLL-based programmable clock generator using a threshold-trigger delay element circuit and a circular edge combiner
US10530297B2 (en) Semiconductor device and control method of semiconductor device
JP4495695B2 (ja) 発振回路
US20040051576A1 (en) Delay generator
JP2007174621A (ja) クロック信号出力回路
US20200127653A1 (en) Correction circuit
US20200007082A1 (en) Clock synthesizer with integrated voltage droop detection and clock stretching
JP6902951B2 (ja) タイミング発生器および半導体集積回路
WO2007108348A1 (ja) 電圧制御発振回路
JPH08288801A (ja) 低ジッタ広周波数域電圧制御発振器
JP6902952B2 (ja) 位相補間器およびタイミング発生器、半導体集積回路
EP0641078B1 (en) Ring oscillator circuit for VCO with frequency-independent duty cycle
US9577661B2 (en) Voltage-controlled oscillator and analog-digital converter
US10483956B2 (en) Phase interpolator, timing generator, and semiconductor integrated circuit
JP2001094418A (ja) 電圧制御発振器
US6417714B1 (en) Method and apparatus for obtaining linear code-delay response from area-efficient delay cells
JP2011130518A (ja) チャージポンプ回路
CN115313857A (zh) 一种低失配电流电荷泵及其应用的小数分频锁相环
JPH1098356A (ja) 電圧制御発振器
US20040155714A1 (en) Oscillation circuit
US8519799B2 (en) Voltage controlled oscillator
US9479144B2 (en) Extended range ring oscillator using scalable feedback
CN108418557B (zh) 一种环形振荡器、温度传感电路及电子设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000239.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2007524114

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11885410

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738293

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007738293

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE