WO2007105415A1 - モータ装備車両 - Google Patents

モータ装備車両 Download PDF

Info

Publication number
WO2007105415A1
WO2007105415A1 PCT/JP2007/052963 JP2007052963W WO2007105415A1 WO 2007105415 A1 WO2007105415 A1 WO 2007105415A1 JP 2007052963 W JP2007052963 W JP 2007052963W WO 2007105415 A1 WO2007105415 A1 WO 2007105415A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotor
peripheral side
inner peripheral
outer peripheral
Prior art date
Application number
PCT/JP2007/052963
Other languages
English (en)
French (fr)
Inventor
Hirofumi Atarashi
Hiroyuki Isegawa
Hiromitsu Sato
Masaaki Kaizuka
Shoei Abe
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to US12/281,108 priority Critical patent/US7755314B2/en
Priority to EP07714489A priority patent/EP1990896A4/en
Publication of WO2007105415A1 publication Critical patent/WO2007105415A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/12Structural association with clutches, brakes, gears, pulleys or mechanical starters with auxiliary limited movement of stators, rotors or core parts, e.g. rotors axially movable for the purpose of clutching or braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/28Stator flux based control
    • H02P21/30Direct torque control [DTC] or field acceleration method [FAM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0052Filtering, filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a motor-equipped vehicle.
  • first and second rotors provided concentrically around a rotating shaft of an electric motor are provided, and the first and second rotors are provided according to the rotational speed of the electric motor or the speed of the rotating magnetic field generated in the stator.
  • an electric motor that controls the relative positions of the first and second rotors in the circumferential direction, that is, the phase difference (see, for example, Patent Document 1).
  • the first and second elements are displaced via a member that is displaced along the radial direction by the action of centrifugal force.
  • Change the circumferential relative position of the rotor For example, when the phase difference between the first and second rotors is controlled according to the speed of the rotating magnetic field generated in the stator, each rotor is kept in the stator winding while maintaining the rotation speed due to inertia. The relative position in the circumferential direction of the first and second rotors is changed by passing the control current and changing the rotating magnetic field velocity.
  • Patent Document 1 JP 2002-204541 A
  • the present invention has been made in view of the above circumstances, and can be operated by making the induced voltage constant variable easily and appropriately while suppressing the complexity of the configuration of the motor and the motor-equipped vehicle. It is an object to provide a motor-equipped vehicle that can expand the speed range and torque range, improve driving efficiency, and expand the driving range with high efficiency.
  • the present invention adopts the following configuration. That is,
  • a motor-equipped vehicle that receives a power supply of power from a power storage device and includes a motor that assists the traveling drive or the traveling drive of the vehicle by an internal combustion engine, the motor including each magnet piece and the rotating shaft of each other Are arranged coaxially on the inner peripheral rotor and outer peripheral rotor, the inner peripheral rotor and the stator disposed on the outer peripheral side or inner peripheral side of the outer peripheral rotor, the inner peripheral rotor and the outer peripheral side Phase changing means capable of changing a relative phase with the rotor.
  • the magnet piece of the inner rotor and the outer rotor are driven against the motor for driving the vehicle or assisting the driving of the vehicle by the internal combustion engine.
  • the relative position with the magnet piece can be changed efficiently.
  • the amount of interlinkage magnetic flux in which the field magnetic flux due to the magnet piece of the outer rotor is linked to the stator winding is actively increased or reduced by the field magnetic flux due to the magnet piece of the inner rotor.
  • the torque constant of the motor (that is, the torque Z phase current) can be set to a relatively high value. Therefore, reducing current loss during motor operation
  • the maximum torque output by the motor can be increased without changing the maximum value of the output current of the inverter that controls the energization of the stator windings, and the maximum value of the motor operating efficiency. And the high efficiency region where the operating efficiency exceeds the predetermined efficiency can be expanded.
  • the state change between the field strengthening state and the field weakening state due to the field flux of the magnet piece of the inner rotor can be set continuously with respect to the field flux of the magnet piece of the outer rotor,
  • the induced voltage constant of the data can be continuously changed to an appropriate value.
  • the rotational speed and torque values at which the motor can be operated can be continuously changed, and the operable rotational speed and torque ranges can be expanded.
  • a motor-equipped vehicle including a motor that receives power from a power storage device and starts an internal combustion engine that is driven to travel, the motor including each magnet piece and the rotation axes of which are coaxial.
  • An inner circumferential rotor and an outer circumferential rotor disposed on the outer circumferential side, a stator disposed on an outer circumferential side or an inner circumferential side of the inner circumferential rotor and the outer circumferential rotor, and the inner circumferential rotor and the outer circumferential rotor.
  • Phase change means capable of changing the relative phase.
  • the relative positions of the magnet pieces of the inner and outer rotors can be efficiently changed with respect to the motor that starts the internal combustion engine. .
  • the field flux generated by the magnet piece of the outer rotor is linked to the stator winding, and the amount of flux linkage is actively increased or reduced by the field flux generated by the magnet of the inner rotor.
  • the torque constant of the motor that is, the torque Z-phase current
  • the torque Z-phase current can be set to a relatively high value without reducing the current loss during motor operation or the stator.
  • the maximum torque value output by the motor can be increased, increasing the maximum value of the motor operating efficiency and increasing the operating efficiency. It is possible to expand the high-efficiency region in which becomes more than the predetermined efficiency.
  • the state change between the field strengthening state and the field weakening state due to the field flux of the magnet piece of the inner rotor can be set continuously with respect to the field flux of the magnet piece of the outer rotor,
  • the induced voltage constant of the data can be continuously changed to an appropriate value.
  • the operating speed and torque of the motor can be continuously changed, and the operating speed and torque range can be expanded.
  • the motor-equipped vehicle is rotated with respect to the inner and outer rotors including the magnet pieces each having a substantially rectangular shape in a cross section in a direction parallel to the rotation axis.
  • the long side of the inner peripheral magnet piece and the long side of the outer peripheral magnet piece are aligned along the radial direction. It can be arranged to face each other.
  • the amount of interlinkage magnetic flux in which the field magnetic flux due to the magnet piece on the outer peripheral side links the stator winding can be effectively increased or reduced by the field magnetic flux due to the magnet piece on the inner peripheral side. it can.
  • the phase changing means changes a relative phase between the inner peripheral rotor and the outer peripheral rotor in accordance with a driving state of the vehicle.
  • the induced voltage constant of the motor can be continuously changed to an appropriate value according to the driving state of the vehicle. Therefore, it is possible to suppress an increase in power consumption of energization control for the motor.
  • the phase changing means changes a relative phase between the inner circumferential rotor and the outer circumferential rotor in accordance with a transmission gear ratio.
  • the induced voltage constant of the motor can be continuously changed to an appropriate value in accordance with the gear ratio of the transmission of the vehicle. Therefore, it is possible to suppress an increase in power consumption of energization control for the motor.
  • the phase change means has a transmission gear ratio less than a predetermined value
  • the field magnetic flux generated by the magnet piece of the inner circumferential rotor and the outer circumferential rotor is changed so that the field weakening state is caused by the field magnetic flux generated by the magnet piece.
  • the drive efficiency of the internal combustion engine when the transmission gear ratio is less than a predetermined value, that is, on the high gear side. Increases relatively. Therefore, when the vehicle is driven using the driving force of the internal combustion engine preferentially, the motor is set in a field weakening state, so that a braking action on the vehicle is generated by the counter electromotive force of the motor. Can be suppressed.
  • the motor is provided inside an inner peripheral end face plate provided in the inner peripheral rotor, and is provided with one end to which hydraulic pressure is supplied from the outside.
  • An oil passage having an other end opened on the outer peripheral surface of the inner peripheral end plate, and is accommodated in the other end, and can be projected to the outside by an opening end force of the other end by the hydraulic pressure.
  • the movable pin member is provided on the inner peripheral surface of the outer peripheral side end plate provided in the outer peripheral side rotor, and can accommodate the distal end portion of the movable pin member protruding on the outer peripheral surface of the inner peripheral side end plate. And a receiving hole.
  • the tip of the movable pin member protruding from the inner peripheral end plate is accommodated in the accommodating hole of the outer peripheral end plate.
  • the field flux can be set to be weakened by the field flux caused by the magnet pieces and the field flux caused by the magnet pieces of the outer rotor.
  • the induced voltage constant of the motor can be easily changed to the field strengthened state force field weakened state corresponding to the state in which the tip of the movable pin member is not housed in the housing hole.
  • each motor is provided in an inner peripheral end face plate provided in the inner peripheral rotor, and is supplied with an oil pressure from the outside.
  • the inner circumference side A plurality of oil passages each having an opening at each position along the circumferential direction on the outer peripheral surface of the end face plate, and each of the other ends by the oil pressure. Open end force Provided on the inner peripheral surface of the outer peripheral side end plate provided on the outer peripheral rotor and projecting from the outer peripheral surface of the inner peripheral end surface plate, and a plurality of movable pin members that can project to the outside And a plurality of receiving holes that can receive the respective tip portions of the movable pin members.
  • each movable pin member protruding from the inner peripheral side end face plate is accommodated in each accommodation hole of the outer peripheral side end face plate.
  • Mutual field weakening state force due to the field magnetic flux by the magnet piece of the side rotor and the field magnetic flux by the magnet piece of the outer rotor can be set to be in an appropriate state over the field strengthening state.
  • the state change between the field strengthening state and the field weakening state corresponding to the state in which the distal end portion of the movable pin member is not housed in the housing hole can be appropriately set stepwise.
  • An internal combustion engine that is a drive source for one of the drive wheels on the front wheel side and the rear wheel side, and a motor that is driven by the power supply of the power storage device and that is the drive source for the other drive wheel
  • the motor is equipped with a motor, and the motor includes each magnet piece and an inner peripheral rotor and an outer peripheral rotor on which the rotation shafts are arranged coaxially, and the inner peripheral rotor and the outer periphery described above.
  • a stator disposed on the outer peripheral side or inner peripheral side of the side rotor, and phase changing means capable of changing a relative phase between the inner peripheral rotor and the outer peripheral rotor.
  • the induced voltage constant of the motor can be continuously changed to an appropriate value in accordance with the driving state of the vehicle capable of driving all wheels. As a result, it is possible to suppress an increase in power consumption of energization control for the motor.
  • the first motor driven by the power supply of the power storage device power and used as the drive source for one of the front wheel side and the rear wheel side and the power supply from the power storage device,
  • a motor-equipped vehicle including a second motor serving as a drive source for driving wheels, wherein at least one of the first motor and the second motor includes each magnet piece and a rotation shaft of each of the first motor and the second motor.
  • An inner circumferential rotor and an outer circumferential rotor disposed coaxially, a stator disposed on the outer circumferential side or the inner circumferential side of the inner circumferential rotor and the outer circumferential rotor, the inner circumferential rotor and the outer circumferential rotor Phase changing means capable of changing the relative phase between and.
  • the induced voltage constant of the motor can be continuously changed to an appropriate value in accordance with the driving state of the vehicle capable of driving all wheels. Therefore, it is possible to suppress an increase in power consumption of the energization control for the motor.
  • the induced voltage constant of the motor can be continuously changed to an appropriate value in accordance with the driving state of the vehicle capable of driving all wheels. Therefore, it is possible to suppress an increase in power consumption of the energization control for the motor.
  • the phase changing means may be configured so that the field by the magnet piece of the inner circumferential rotor is in a driving state of the driving wheels on the front wheel side and the rear wheel side.
  • the relative phase of the inner rotor and the outer rotor is changed so that the magnetic field and the field magnetic flux generated by the magnet piece of the outer rotor are mutually increased.
  • a mutual magnetic field is generated by a field magnetic flux by the magnet piece of the inner peripheral side port and a field flux by the magnet piece of the outer peripheral side rotor.
  • the relative phase between the inner peripheral rotor and the outer peripheral rotor is changed so as to be in a weak state.
  • the non-driving motor can be set in the field weakening state in the driving state of only the driving wheels on the front wheel side or the rear wheel side. As a result, it is possible to suppress the occurrence of braking action on the vehicle due to the counter electromotive voltage of the motor.
  • the invention's effect is possible to suppress the occurrence of braking action on the vehicle due to the counter electromotive voltage of the motor.
  • the magnet piece of the inner circumferential rotor and the outer motor are used for driving the vehicle or assisting the vehicle driving by the internal combustion engine.
  • the relative position of the circumferential rotor with the magnet piece can be changed efficiently.
  • the amount of interlinkage magnetic flux generated by the magnetic flux generated by the magnet piece of the outer rotor on the outer rotor side is actively increased or reduced by the field magnetic flux generated by the magnet piece of the inner rotor on the inner rotor side.
  • the relative positions of the magnet piece of the inner circumferential rotor and the magnet piece of the outer circumferential rotor are efficiently determined relative to the motor that starts the internal combustion engine. Can change.
  • the amount of interlinkage magnetic flux in which the field magnetic flux due to the magnet piece of the outer rotor is linked to the stator winding is actively increased or reduced by the field magnetic flux due to the magnet piece of the inner rotor. It is possible to continuously set the state change between the field strengthening state and the field weakening state due to the field magnetic flux of the magnet piece of the inner circumferential side rotor with respect to the field magnetic flux of the magnet piece of the outer circumferential side rotor. It is possible to continuously change the induced voltage constant to an appropriate value.
  • the amount of interlinkage magnetic flux in which the field magnetic flux by the outer peripheral side permanent magnet links the stator winding is determined as the field by the inner peripheral side permanent magnet.
  • the magnetic flux can be efficiently increased or decreased.
  • the induced voltage constant of the motor can be continuously changed to an appropriate value in accordance with the driving state of the vehicle, and the electric power for power control for the motor can be changed. It can suppress that consumption will increase.
  • the induced voltage constant of the motor can be continuously changed to an appropriate value in accordance with the gear ratio of the transmission of the vehicle. Therefore, it is possible to suppress an increase in power consumption in energization control for the motor.
  • the motor-equipped vehicle according to (6) of the present invention in a vehicle equipped with an internal combustion engine as a drive source, when the transmission gear ratio is less than a predetermined value, that is, on the high gear side, Since the driving efficiency is relatively increased, when the vehicle is driven using the driving force of the internal combustion engine preferentially, the motor is set in a field weakening state, so that the back electromotive force of the motor It is possible to suppress the occurrence of braking action.
  • the motor-equipped vehicle according to (7) of the present invention when the amount of change in the gear ratio is greater than or equal to the predetermined value, that is, the gear ratio is relatively small and the state (high gear side) is large. Setting the motor to a field weakening state when changing to a state (one gear side) can suppress excessive charging due to regenerative operation of the motor and inrush current to power equipment.
  • the induced voltage constant of the motor can be easily changed from the field strengthened state to the field weakened state while suppressing the complication of the motor configuration. Can be changed.
  • the induced voltage constant of the motor is gradually increased from the field strong state to the field weak state while suppressing the complication of the motor configuration. It can be changed.
  • the induced voltage constant of the motor is continuously set to an appropriate value according to the driving state of the vehicle capable of all-wheel drive. Can be changed. Therefore, it is possible to suppress an increase in power consumption of the energization control for the motor.
  • the motor-equipped vehicle according to (13) of the present invention in the driving state of only the driving wheels on the front wheel side or the rear wheel side, by setting the non-driving motor to the field weakening state, It is possible to suppress the braking action on the vehicle due to the back electromotive voltage of the motor.
  • FIG. 1 is a configuration diagram of a motor-equipped vehicle according to an embodiment of the present invention.
  • FIG. 2 is a sectional view of the motor according to the same embodiment.
  • FIG. 3 is a cross-sectional view of a rotor of the motor according to the same embodiment.
  • FIG. 4 is a plan view of the motor according to the embodiment as viewed in the axial direction toward one force and the other.
  • FIG. 5 is a flowchart showing the operation of the field weakening phase command output unit according to the same embodiment.
  • FIG. 6A is a graph showing a predetermined correspondence between the relative phase ⁇ between the inner and outer rotors in the field weakened state and the speed ratio.
  • FIG. 6B This is a graph showing a predetermined correspondence between the relative phase ⁇ between the inner and outer rotors in the field weakened state and the speed ratio.
  • FIG. 11 is a flowchart showing the operation of the induced voltage constant command output unit according to the first modification of the embodiment.
  • ⁇ 14 A configuration diagram of a motor-equipped vehicle according to a second modification of the embodiment.
  • ⁇ 15 A configuration diagram of a motor-equipped vehicle according to a third modification of the embodiment.
  • ⁇ 16 A configuration diagram of a motor-equipped vehicle according to a fourth modification of the embodiment.
  • ⁇ 17 A configuration diagram of a motor-equipped vehicle according to a fifth modification of the embodiment.
  • ⁇ 19 A configuration diagram of a motor-equipped vehicle according to a seventh modification of the embodiment.
  • FIG. 20 is a configuration diagram of a motor-equipped vehicle according to an eighth modification of the embodiment.
  • ⁇ 22 A configuration diagram of a motor-equipped vehicle according to a tenth modification of the embodiment.
  • ⁇ 23 A configuration diagram of a motor-equipped vehicle according to an eleventh modification of the embodiment.
  • Phase control device phase change means
  • a motor-equipped vehicle 10 (hereinafter simply referred to as a vehicle 10) according to the present embodiment is a hybrid vehicle equipped with a motor 11 and an internal combustion engine 12 as drive sources, as shown in FIG. At least the driving force of either the motor 11 or the internal combustion engine 12 is transmitted to the driving wheels W of the vehicle 10 via the transmission TZM.
  • the rotation shaft O of the motor 11 and the input shaft R of the transmission TZM connected to the crank shaft Q of the internal combustion engine 12 via the clutch 13 are paired with each other. Or a chain spanned between the gears connected integrally to the shafts O and R. Alternatively, they are connected by a power transmission mechanism 14 that transmits the power by means of a belt or the like that is stretched between pulleys that are integrally connected to the shafts O and R.
  • the driving forces of the motor 11 and the internal combustion engine 12 are transmitted to the driving wheels W of the vehicle 10 through the differential 15.
  • the motor 11 When the driving force is also transmitted to the motor 11 when the vehicle 10 decelerates, the motor 11 functions as a generator to generate a so-called regenerative braking force, which converts the kinetic energy of the vehicle body into electrical energy. Collect as (regenerative energy). Even when the output of the internal combustion engine 12 is transmitted to the motor 11 with the clutch 13 set to the connected state, the motor 11 functions as a generator and generates generated energy.
  • the drive and regenerative operation of the motor 11 of a plurality of phases are controlled by receiving a control command output from the control unit 16. This is done by the drive unit (PDU) 17.
  • the PDU 17 includes a PWM inverter based on pulse width modulation (PWM) having a bridge circuit formed by bridge connection using, for example, a plurality of switching elements of transistors, and is a high-voltage type battery that transfers electric energy to and from the motor 11. (Power storage device) 18 is connected.
  • PWM pulse width modulation
  • the PDU 17 is based on the gate signal (that is, the PWM signal) that is a switching command input from the control unit 16 when the motor 11 is driven, etc., and the transistors that are paired for each phase in the PWM inverter are turned on (conductive).
  • the Z-off (shutoff) state the DC power supplied from the battery 18 is converted to three-phase AC power, and the current to the stator wires of the three-phase motor 11 is sequentially commutated.
  • AC phase U current Iu, phase V current Iv, and phase W current Iw are applied to the stator wires of each phase.
  • the motor 11 includes substantially annular inner and outer rotors 21 and 22 each having permanent magnets 21a and 22a arranged along the circumferential direction. 22 between the rotor 23, the stator 24 having a stator winding 24 a of multiple phases that generates a rotating magnetic field that rotates the rotor 23, and the inner rotor 21 and the outer rotor 22. And a phase control device 25 for controlling the relative phases of the two.
  • the inner circumferential rotor 21 and the outer circumferential rotor 22 are arranged so that their rotational axes are coaxial with the rotational axis O of the motor 11.
  • the inner circumferential rotor 21 includes a substantially cylindrical inner circumferential rotor core 31 and a plurality of inner circumferential magnet mounting portions 33 provided at predetermined intervals in the circumferential direction on the outer circumferential portion of the inner circumferential rotor core 31. It is equipped with.
  • the outer peripheral rotor 22 includes a substantially cylindrical outer rotor core 32 and a plurality of outer magnet mounting portions 34 provided at predetermined intervals in the circumferential direction inside the outer rotor core 32. .
  • a concave groove 31a extending in parallel with the rotation axis O is formed between the inner peripheral magnet mounting portions 33 adjacent in the circumferential direction.
  • a concave groove 32a extending parallel to the rotation axis O is formed between the outer peripheral magnet mounting portions 34 adjacent in the circumferential direction.
  • the magnet mounting portion 33 includes a pair of magnet mounting holes 33a penetrating in parallel to the rotation axis O.
  • the pair of magnet mounting holes 33a are arranged adjacent to each other in the circumferential direction via the center rib 33b.
  • the magnet mounting portion 34 includes a pair of magnet mounting holes 34 a that penetrates in parallel with the rotation axis O.
  • the pair of magnet mounting holes 34a are arranged adjacent to each other in the circumferential direction via the center rib 34b.
  • Each of the magnet mounting holes 33a, 34a has a cross section in a direction parallel to the rotation axis O, and is formed in a substantially rectangular shape having a substantially circumferential direction as a longitudinal direction and a substantially radial direction as a short direction.
  • a substantially rectangular plate-shaped permanent magnet 21a extending in parallel with the rotation axis O is mounted.
  • Each magnet mounting hole 34a is mounted with a substantially rectangular plate-like permanent magnet 22a extending parallel to the rotation axis O.
  • the pair of inner peripheral side permanent magnets 21a mounted in the pair of magnet mounting holes 33a are magnetized in the thickness direction (that is, the radial direction of the rotors 21 and 22), and are magnetically coupled to each other. ⁇ direction is set to be the same direction.
  • the pair of inner peripheral side permanent magnets 2 la are set so that the magnetic field directions are different from each other with respect to the inner peripheral side magnet mounting portions 33 adjacent in the circumferential direction.
  • a pair of inner peripheral side permanent magnets 21a whose outer peripheral side is the S pole are mounted on the inner peripheral side magnet mounting portion 33 where the pair of inner peripheral side permanent magnets 21a that are the outer peripheral side poles are mounted.
  • the inner circumference side magnet mounting portion 33 made is adjacent in the circumferential direction through the groove 31a.
  • the pair of outer peripheral permanent magnets 22a mounted in the pair of magnet mounting holes 34a are magnetized in the thickness direction (that is, the radial direction of the rotors 21 and 22), and are mutually connected.
  • the magnetic field direction is set to be the same direction.
  • Each pair of outer peripheral permanent magnets 22a is set so that the magnetic field directions are different from each other with respect to the outer peripheral magnet mounting portions 34 adjacent in the circumferential direction.
  • outer peripheral side permanent magnets 22a whose outer peripheral side is an S pole are mounted on the outer peripheral side magnet mounting part 34, which is mounted with a pair of outer peripheral side permanent magnets 22a whose outer peripheral side is an N pole.
  • the outer peripheral magnet mounting portion 34 is adjacent in the circumferential direction via the concave groove 32a.
  • the magnet mounting portions 33 of the inner circumferential rotor 21 and the magnet mounting portions 34 of the outer rotor 22 are arranged so as to be able to face each other in the radial direction of the rotors 21 and 22. ing. Furthermore, the respective concave grooves 31a of the inner circumferential rotor 21 and the respective concave grooves 32a of the outer circumferential rotor 22 are arranged so as to be able to face each other in the radial direction of the respective rotors 21 and 22.
  • the state of the motor 11 is changed from the inner peripheral side permanent magnet 21a of the inner peripheral side rotor 21 to the outer peripheral side according to the relative positions of the inner peripheral side rotor 21 and the outer peripheral side rotor 22 around the rotation axis O.
  • the long side of the inner peripheral side permanent magnet 21a and the long side of the outer peripheral side permanent magnet 22a face each other in a cross section in a direction parallel to the rotation axis O. It is set.
  • the inner circumferential rotor 21 includes a substantially annular plate-shaped inner circumferential side end surface portion 36 a that contacts one axial end of the inner circumferential rotor core 31, and the inner circumferential side of the inner circumferential rotor core 31.
  • a substantially cylindrical inner peripheral side shaft portion 36b attached to the outer peripheral side shaft member 36 and a substantially cylindrical inner peripheral side shaft end portion 36c connected to the phase control device 25 are integrally formed. It has.
  • the outer circumferential rotor 22 is in contact with the substantially annular plate-shaped outer circumferential end surface member 37 that abuts on one axial end of the outer circumferential rotor core 32 and the other axial end of the outer circumferential rotor core 32.
  • a substantially annular plate-shaped outer peripheral shaft member 3 having a mounting hole 38a in which the rotary shaft O is mounted. 8 and equipped.
  • the inner circumferential side end surface portion 36a of the inner circumferential side shaft member 36 covers the inner ends of the magnet mounting holes 33a of the inner circumferential side rotor 21 so as to cover the inner ends. It is in contact with one axial end of the circumferential rotor core 31.
  • the inner peripheral side shaft portion 36b of the inner peripheral side shaft member 36 has an outer diameter slightly larger than the inner diameter of the inner peripheral portion of the inner peripheral side rotor core 31, and is press-fitted into the inner peripheral portion of the inner peripheral side rotor core 31. And fixed in a tight-fitted state.
  • the inner peripheral side shaft member 36 has an inner peripheral surface having an inner diameter larger than the outer diameter of the rotary shaft O. Between the inner peripheral surface of the inner peripheral side shaft member 36 and the outer peripheral surface of the rotary shaft O, a bearing member 39 is provided. The inner circumferential rotor 21 can rotate independently of the rotation axis O.
  • a first end portion that opens on the surface of the inner peripheral side shaft end portion 36c connected to the phase control device 25 and is supplied with hydraulic pressure from the phase control device 25.
  • a plurality of oil passages 40 each including 40a and a second end portion 40b opened on the outer peripheral surface 36A of the inner peripheral end surface portion 36a are provided.
  • a movable pin 41 that can project outward from each second end portion 40b by the pressure of oil supplied from the phase control device 25 to each oil passage 40 is provided at the second end portion 40b of each oil passage 40. Contained.
  • a spring 42 is provided between the proximal end of the movable pin 41 and the inside of the oil passage 40 to apply a reaction force against the pressure of oil acting on the movable pin 41 to the movable pin 41.
  • Each spring 42 is set so as to have a natural length even when the tip of each movable pin 41 is housed in each oil passage 40!
  • the outer peripheral end surface member 37 covers one opening end of each outer peripheral rotor core 32 so as to cover each opening end of each magnet mounting hole 34 a of the outer peripheral rotor 22. It is in contact with the part.
  • the outer circumferential end surface member 37 has an inner circumferential surface 37A having an inner diameter slightly larger than the outer diameter of the outer circumferential surface 36A of the inner circumferential side end surface portion 36a of the inner circumferential side shaft member 36.
  • On the inner peripheral surface 37A there are formed a plurality of receiving holes 43 that can receive the tip portions of the movable pins 41 that also project the force on the outer peripheral surface 36A of the inner peripheral side end surface portion 36a.
  • Each receiving hole 43 penetrates the outer peripheral end surface member 37.
  • Through holes 44 that open on the surface (outer peripheral surface) of the outer peripheral end surface member 37 are connected to each other.
  • the field states of the inner peripheral rotor 21 and the outer peripheral rotor 22 are The magnetic poles of different polarities of the inner peripheral side permanent magnet 21a of the inner peripheral side rotor 21 and the outer peripheral side permanent magnet 22a of the outer peripheral side rotor 22 are arranged opposite each other in the radial direction (that is, the inner peripheral side permanent magnet 21a).
  • the same polarity of the inner peripheral side permanent magnet 21a of the inner peripheral side rotor 21 and the outer peripheral side permanent magnet 22a of the outer peripheral side rotor 22 from the strong field state where the outer peripheral side permanent magnet 22a has the same polarity) Are arranged opposite to each other along the radial direction (that is, the inner peripheral side permanent magnet 21a and the outer peripheral side permanent magnet 22a are arranged opposite to each other) between a plurality of different field states set over the field weakening state. Are arranged so as to transition
  • the outer peripheral side shaft member 38 is in contact with the other axial end of the outer peripheral side rotor core 32 so as to cover each open end of each magnet mounting hole 34a of the outer peripheral side rotor 22.
  • the rotary shaft O has an outer diameter that is slightly larger than the inner diameter of the mounting hole 38a of the outer peripheral side shaft member 38, and is pressed into the mounting hole 38a and fixed in an interference-fitted state.
  • the outer permanent magnet 22a mounted in each magnet mounting hole 34a of the outer rotor 22 is arranged so as to be sandwiched from both sides in the axial direction, and the outer permanent magnet 22a is restricted from being displaced along the axial direction.
  • the outer peripheral side end surface member 37 and the outer peripheral side shaft member 38 are fixed to the outer peripheral side rotor core 32 by outer peripheral side fastening members 45 such as rivets and bolts.
  • each spring 42 has a natural length, and the tip of each movable pin 41 has each second of each oil passage 40.
  • the inner circumferential rotor 21 can rotate independently of the rotating shaft O and the outer circumferential rotor 22. Accordingly, when no external force is applied, the inner peripheral side permanent magnet 21 of the inner peripheral side rotor 21 is in accordance with the attractive force and the repulsive force generated between the inner peripheral side permanent magnet 21a and the outer peripheral side permanent magnet 22a.
  • the magnetic poles of different polarities of the magnet 21a and the outer peripheral side permanent magnet 22a of the outer peripheral side rotor 22 face each other along the radial direction (that is, the inner peripheral side permanent magnet 21a and the outer peripheral side permanent magnet 22a have the same polarity). It becomes a strong field state.
  • the inner circumferential rotor 21 follows the rotation of the outer circumferential rotor 22, It rotates while maintaining a strong field state.
  • each movable pin 41 when hydraulic pressure is supplied from the phase control device 25 to each oil passage 40, when the tip of each movable pin 41 protrudes from the outer peripheral surface 36A of the inner peripheral side end surface portion 36a, each movable pin 41 In a state in which the tip of 41 faces the opening of an appropriate accommodation hole 43 provided in the outer peripheral side end surface member 37, the tip of each movable pin 41 is accommodated in the appropriate accommodation hole 43.
  • each movable pin 41 When the tip of each movable pin 41 does not face the opening of an appropriate receiving hole 43 provided in the outer peripheral end surface member 37, the tip of each movable pin 41 is on the inner peripheral surface 37A of the outer peripheral end surface member 37. Abut. For this reason, when the motor 11 is rotated, the inner peripheral rotor 21 is rotated against the rotation of the outer peripheral rotor 22 according to the attractive force and the repulsive force generated between the inner peripheral permanent magnet 21a and the outer peripheral permanent magnet 22a. The follow-up rotation is suppressed by the friction between each movable pin 41 and the outer peripheral end surface member 37.
  • the state of the motor 11 depends on the position of the accommodation hole 43, and a predetermined range from a strong field state to a weak field state is obtained. It is fixed in the field state.
  • the inner circumferential rotor 21 can rotate independently with respect to the rotary shaft O and the outer circumferential rotor 22, and The rotor rotates while maintaining the strong field state so as to follow the rotation of the side rotor 22.
  • the phase control device 25 is connected to the inner peripheral side shaft member 36 of the inner peripheral side rotor 21, and controls the hydraulic pressure to the plurality of oil passages 40 inside the inner peripheral side shaft member 36 under the control of the control unit 16. Supplying oil bon (Not shown) and the like are provided.
  • the control unit 16 performs current feedback control on the dq coordinates forming the rotation orthogonal coordinates.
  • the control unit 16 calculates the d-axis current command Idc and the q-axis current command Iqc based on the torque command Tq set according to the accelerator opening degree related to the driver's accelerator operation, and the d-axis current command Idc and q Calculate each phase output voltage Vu, Vv, Vw based on the shaft current command Iqc.
  • the control unit 16 inputs a PWM signal, which is a gate signal, to the PDU 17 according to the output voltages Vu, Vv, and Vw of each phase, and the phase currents Iu, Iv, and Iw that are actually supplied from the PDU 17 to the motor 11.
  • a PWM signal which is a gate signal
  • the phase currents Iu, Iv, and Iw that are actually supplied from the PDU 17 to the motor 11.
  • This control unit 16 includes a target current setting unit 51, a current deviation calculation unit 52, a field control unit 53, a power control unit 54, a current control unit 55, a dq—three-phase conversion unit 56, a PWM
  • the signal generation unit 57, the filter processing unit 58, the three-phase-dq conversion unit 59, the rotation speed calculation unit 60, the field weakening phase command output unit 61, and the hydraulic control unit 62 are configured. Yes.
  • the control unit 16 outputs a current sensor 71 that detects the U-phase current Iu and the W-phase current Iw, respectively, of the three-phase currents Iu, Iv, and Iw output from the PDU 17 to the motor 11.
  • a current sensor 71 that detects the U-phase current Iu and the W-phase current Iw, respectively, of the three-phase currents Iu, Iv, and Iw output from the PDU 17 to the motor 11.
  • the detection signal output from the rotation sensor 73 that detects the rotation angle of the magnetic pole of the rotor from the rotation position
  • the control command for the torque command Tq output from the external control device not shown
  • the transmission TZM gear ratio And a driving wheel selection command that is a control command for the driving state of the vehicle
  • the target current setting unit 51 for example, outputs a torque command Tq (for example, a torque required according to the amount of depression of the accelerator pedal by the driver) input from an external control device (not shown).
  • a torque command Tq for example, a torque required according to the amount of depression of the accelerator pedal by the driver
  • Each phase current Iu supplied from the PDU 17 to the motor 11 based on the rotation speed NM of the motor 11 input from the rotation speed calculation unit 60 and the induced voltage constant Ke. , Iv, Iw is calculated current command.
  • This current finger The command is output to the current deviation calculation unit 52 as a d-axis target current (current command) Idc and a q-axis target current (current command) Iqc on the rotating orthogonal coordinates.
  • the dq coordinate that forms this rotation orthogonal coordinate has the d-axis (field axis) as the magnetic flux direction of the field pole by the permanent magnet of the rotor, and the q-axis (torque axis) as the direction orthogonal to the d-axis.
  • the motor 11 is rotating in synchronization with the rotational phase of the motor 23.
  • the d-axis target current Idc and the q-axis target current Iqc which are DC signals, are given as current commands for the AC signal supplied from the PDU 17 to each phase of the motor 11.
  • the current deviation calculation unit 52 calculates a deviation ⁇ Id between the d-axis target current Idc and the d-axis current Id added with the d-axis correction current input from the field control unit 53.
  • the d-axis current deviation calculation unit 52a A q-axis current deviation calculation unit 52a that calculates a deviation ⁇ between the q-axis target current Iqc to which the q-axis correction current is added and the q-axis target current Iqc is added. Yes.
  • the field control unit 53 controls the current phase so that the field amount of the rotor 23 is equivalently weakened to suppress the increase of the counter electromotive voltage with the increase in the rotational speed NM of the motor 11.
  • the target value for the field current is output as the d-axis correction current.
  • the power control unit 54 outputs a q-axis correction current for correcting the q-axis target current Iqc according to appropriate power control according to the remaining capacity of the battery 18 and the like.
  • the current control unit 55 controls and amplifies the deviation ⁇ to calculate the d-axis voltage command value Vd by PI (proportional integration) operation according to the motor speed NM, and controls and amplifies the deviation ⁇ Calculate the voltage command value Vq.
  • PI proportional integration
  • the three-phase converter 56 uses the rotor rotation angle ⁇ M input from the rotation speed calculator 60 to calculate the d-axis voltage command value Vd and the q-axis voltage command value Vq on the dq coordinate. It is converted to the U-phase output voltage Vu, V-phase output voltage Vv, and W-phase output voltage Vw, which are voltage command values on the three-phase AC coordinates that are stationary coordinates.
  • the PWM signal generation unit 57 performs each switching of the PW M inverter of the PDU 17 by pulse width modulation based on the sinusoidal output voltages Vu, Vv, Vw, the carrier signal composed of a triangular wave, and the switching frequency.
  • a gate signal (that is, a PWM signal), which is a switching command consisting of pulse pulses that drive the element on and off, is generated.
  • the filter processing unit 58 detects the detection signal for each phase current detected by each current sensor 71.
  • the Ius and Iws are filtered to remove high-frequency components and the phase currents Iu and Iw are extracted as physical quantities.
  • the three-phase-to-dq conversion unit 59 uses the phase currents Iu and Iw extracted by the filter processing unit 58 and the rotation angle ⁇ M of the rotor 23 input from the rotation number calculation unit 60 to Calculate the d-axis current Id and the q-axis current Iq on the rotation coordinate, that is, on the dq coordinate.
  • the rotation speed calculation unit 60 also extracts the rotation angle ⁇ M of the rotor of the motor 11 from the detection signal force output from the rotation sensor 73, and the rotation speed N of the motor 11 based on the rotation angle ⁇ M.
  • the field weakening phase command output unit 61 for example, based on the torque command Tq, the rotational speed NM of the motor 11, the speed change command, and the drive wheel selection command, the outer peripheral side permanent magnet 22 of the outer peripheral side rotor 22.
  • a command value is output for the opposing field arrangement, that is, the strong field state in which the inner peripheral side permanent magnet 21a and the outer peripheral side permanent magnet 22a are disposed with the same polarity is set to zero.
  • the hydraulic pressure control unit 62 according to the field weakening phase command output from the field weakening phase command output unit 61, any one of the plurality of oil paths 40 inside the inner peripheral side shaft member 36. Is selected, and a hydraulic pressure command is output to instruct the hydraulic pressure to be supplied from the phase control device 25 to the selected oil passage 40.
  • the motor-equipped vehicle 10 has the above-described configuration. Next, the operation of the vehicle 10, in particular, the operation of the field weakening phase command output unit 61 will be described with reference to the attached drawings.
  • step S01 shown in FIG. 5 a shift command output from an external control device or the like is acquired.
  • step S02 it is determined whether or not the speed ratio according to the acquired speed change command is less than a predetermined speed ratio #R.
  • step S03 if the determination result force is “YES”, that is, if the gear ratio is on the high gear side, the process proceeds to step S03.
  • step S03 for example, a map showing a predetermined correspondence between the relative phase ⁇ between the inner circumferential rotor 21 and the outer circumferential rotor 22 in the field weakened state and the gear ratio, etc. Referring to this, a field weakening phase command corresponding to the gear ratio is output, and a series of processing ends.
  • the predetermined correspondence between the phase ⁇ and the transmission ratio is zero when the transmission ratio is equal to or greater than the predetermined transmission ratio #R.
  • the phase ⁇ is set to increase.
  • the transmission TZM is a stepped transmission, as shown in Fig. 6B, the transmission ratio is zero when the transmission ratio is greater than or equal to the predetermined transmission ratio #R, and the transmission ratio decreases from the predetermined transmission ratio #R. Accordingly, the phase ⁇ is set to increase in a stepwise manner with an appropriate increase width.
  • step S04 it is determined whether or not a field weakening phase command is being output.
  • step S05 the output of the field weakening phase command is stopped, and the series of processing ends.
  • step S 11 shown in FIG. 7 a shift command output from an external control device or the like is acquired.
  • step S12 the current value of the acquired shift command is subtracted from the previous value of the shift command acquired in the previous process to calculate the speed ratio change amount.
  • step S13 whether or not the calculated gear ratio change amount is equal to or greater than a predetermined change amount. Determine.
  • step S14 if the determination result force is “YES”, that is, if the gear ratio is relatively small (high gear side) and large (low gear side), the process proceeds to step S14.
  • step S14 a map or the like showing a predetermined correspondence between the relative phase ⁇ between the inner rotor 21 and the outer rotor 22 in the field weakened state and the gear ratio change amount is provided. Referring to it, a field weakening phase command corresponding to the change ratio of the gear ratio is output.
  • step S15 the operation of a predetermined subtraction timer is started.
  • step S16 it is determined whether or not the force of the subtraction timer operation has ended.
  • step S17 it is determined whether or not the force is in the process of outputting the field weakening phase command.
  • step S18 the output of the field weakening phase command is stopped, and the series of processes is terminated.
  • the output of the field weakening phase command is stopped after the operation of the subtraction timer ends. Therefore, in the state where the running state of the vehicle 10 is relatively stable after the change of the transmission gear ratio, the field state of the inner rotor 21 and the outer rotor 22 is reduced, and the field weakening state force is also increased. You can transition to the state.
  • the motor 10 that travels the vehicle 10 or the motor 11 that assists the traveling drive of the vehicle 10 by the internal combustion engine 12 is compared with the motor 11.
  • the relative position between the inner peripheral side permanent magnet 21a of the peripheral side rotor 21 and the outer peripheral side permanent magnet 22a of the outer peripheral side rotor 22 can be changed efficiently.
  • the amount of interlinkage magnetic flux in which the field magnetic flux by the outer peripheral side permanent magnet 22a links the stator winding 24a is actively increased or reduced by the field magnetic flux by the inner peripheral side permanent magnet 21a. be able to.
  • the torque constant of motor 11 (that is, torque Z-phase current) can be set to a relatively high value. Therefore, the maximum output from the motor 11 can be achieved without reducing the current loss during operation of the motor 11 or without changing the maximum value of the output current of the PDU17 that controls the energization of the stator winding 24a.
  • the torque value can be increased, the maximum value of the operating efficiency of the motor 11 can be increased, and the high efficiency region in which the operating efficiency exceeds the predetermined efficiency can be expanded.
  • the state change between the field strengthening state and the field weakening state due to the field flux of the inner peripheral side permanent magnet 21a with respect to the field magnetic flux of the outer peripheral side permanent magnet 22a can be set continuously.
  • the induced voltage constant Ke can be continuously changed to an appropriate value.
  • the operable speed and torque values of the motor 11 can be continuously changed, and the operable speed and torque ranges can be expanded.
  • the gear ratio change amount exceeds the predetermined change amount, that is, if the transmission TZM state is relatively small, the gear ratio (high gear side) force is also large, and the force changes to the gear state (low gear side)
  • the force of the motor 11 can be easily reduced to the field weakened state by the movable pins 41 controlled by the hydraulic pressure while suppressing the complexity of the configuration of the motor 11 from being reduced. It can be changed.
  • a plurality of oil passages 40 are provided in the inner peripheral side shaft member 36 and a plurality of receiving holes 43 are provided in the outer peripheral side end surface member 37.
  • the present invention is not limited to this.
  • only a single accommodation hole 43 may be provided for the plurality of oil passages 40, for example, each single oil passage 40 and only the accommodation holes 43 may be provided.
  • the field weakening phase command output unit 61 is omitted, and the hydraulic sensor 81, the induced voltage constant calculation unit 82,
  • the control unit 16 may be configured by newly providing an induced voltage constant command output unit 83 and an induced voltage constant difference calculation unit 84.
  • the hydraulic sensor 81 outputs a detection signal of the hydraulic pressure supplied from the phase control device 25 to each oil passage 40.
  • the induced voltage constant calculator 82 Based on the hydraulic pressure detection signal output from the hydraulic sensor 81, the induced voltage constant calculator 82 generates an induced voltage constant Ke corresponding to the relative phase ⁇ between the inner rotor 21 and the outer rotor 22. Is calculated and input to the target current setting unit 51.
  • the induced voltage constant command output unit 83 generates the induced voltage constant Ke of the motor 11 in the field weakened state based on the torque command Tq, the rotation speed NM of the motor 11, the shift command, and the drive wheel selection command.
  • Command value (induced voltage constant command) Kec is output.
  • the induced voltage constant difference calculation unit 84 subtracts the induced voltage constant Ke output from the induced voltage constant calculation unit 82 from the induced voltage constant command Kec output from the induced voltage constant command output unit 83. Outputs voltage constant difference AKe.
  • the hydraulic control unit 62 selects any one of the plurality of oil passages 40 in the inner peripheral side shaft member 36 according to the induced voltage constant difference AKe input from the induced voltage constant difference calculating unit 84. Then, an oil pressure command for instructing the oil pressure to be supplied from the phase control device 25 to the selected oil passage 40 is output.
  • the motor-equipped vehicle 10 has the above configuration. Next, the operation of the vehicle 10, in particular, the operation of the induced voltage constant command output unit 83 will be described with reference to the attached drawings.
  • step S21 shown in FIG. 9 a shift command output from an external control device or the like is acquired.
  • step S22 it is determined whether or not the speed ratio according to the acquired speed change command is less than a predetermined speed ratio #R.
  • step S23 reference is made to a map or the like showing a predetermined correspondence between the command value (induced voltage constant command) Kec for the induced voltage constant Ke of the motor 11 in the field weakened state and the gear ratio. Then, set the induced voltage constant command Kec according to the gear ratio.
  • the predetermined correspondence relationship between the induced voltage constant command Kec and the gear ratio is a predetermined upper limit induced voltage constant #Kel when the gear ratio is equal to or greater than the predetermined gear ratio #R.
  • the predetermined induced voltage constant command Kec is set to change from the upper limit induced voltage constant # Kel to a decreasing tendency!
  • the relative phase ⁇ between the inner rotor 21 and the outer rotor 22 in the field weakened state and the induced voltage constant command Kec are, for example, decreased as shown in FIG. 10B. Accordingly, the phase ⁇ is set to increase.
  • step S24 the set induced voltage constant command Kec is output, and the series of processing ends.
  • step S25 as the induced voltage constant command Kec, a predetermined command value for the induced voltage constant Ke of the motor 11 in the field strengthened state (field strengthened phase Ke command) is set, and the series of processing ends. .
  • step S31 shown in FIG. 11 a shift command output from an external control device or the like is acquired.
  • step S32 the current value of the acquired speed change command is subtracted from the previous value of the speed change command acquired in the previous process to calculate the speed ratio change amount.
  • step S33 it is determined whether or not the calculated gear ratio change amount is equal to or greater than a predetermined change amount.
  • step S34 if the determination result force is “YES”, that is, if the gear ratio is relatively small (high gear side) and is large (low gear side), the process proceeds to step S34.
  • step S34 for example, refer to a map showing a predetermined correspondence between the command value (induced voltage constant command) Kec for the induced voltage constant Ke of the motor 11 in the field weakened state and the gear ratio change amount. Then, the induced voltage constant command Kec corresponding to the change ratio of the gear ratio is output.
  • step S35 the operation of a predetermined subtraction timer is started.
  • step S36 it is determined whether or not the force of the subtraction timer operation has ended.
  • step S37 as the induced voltage constant command Kec, a predetermined command value for the induced voltage constant Ke of the motor 11 in the field strengthened state (field strengthened phase Ke command) is set, and a series of processing is performed. Exit.
  • step S41 shown in FIG. 12 a drive wheel selection command output from an external control device or the like is acquired.
  • step S42 it is determined whether or not the all-wheel drive state is set in the acquired drive wheel selection command.
  • step S43 the field voltage constant command Kec is used as the field voltage constant command Kec.
  • a predetermined command value field weakening phase Ke command
  • step S44 is advanced.
  • the field weakening phase for the induced voltage constant command Kec is advanced. Cancel the Ke command setting and end the series of processing.
  • the non-driving motor 11 is set to the field weakening state, so that the braking action on the vehicle 10 is caused by the counter electromotive voltage of the motor 11. Can be prevented from occurring.
  • a phase control unit and a phase sensor may be provided instead of the hydraulic control unit 62 and the hydraulic sensor 81 !.
  • the phase control unit for example, according to the induced voltage constant difference AKe output from the induced voltage constant difference calculating unit 84, between the inner circumferential side rotor 21 and the outer circumferential side rotor 22 in the field weakened state. Outputs the relative phase ⁇ . Then, the phase control device 25 selects one of the plurality of oil passages 40 inside the inner peripheral side shaft member 36 according to the phase ⁇ input from the phase control unit, and selects the selected oil passage 40. Is supplied with hydraulic pressure from the phase control device 25. The phase sensor detects the relative phase ⁇ between the inner rotor 21 and the outer rotor 22 in the field weakened state, for example, in accordance with the oil passage 40 to which the hydraulic pressure is supplied in the phase controller 25. The
  • the vehicle 10 that is a hybrid vehicle is driven and regeneratively controlled by a PDU 17 that uses a notch (B) 18 as a DC power source, for example, as shown in FIG.
  • Input of the transmission TZM connected to the crankshaft Q of the internal combustion engine (E) 12 via the rotary shaft O of the motor (MZG) 11 and the clutch 13 having the phase control device 25
  • the shaft R is connected by the power transmission mechanism 14, and each driving force of the motor (MZG) 11 and the internal combustion engine (E) 12 is transmitted to the driving wheel W through the differential 15.
  • the present invention is not limited to this, and the clutch 13 may be omitted as in the vehicle 10 according to the second modified example shown in FIG.
  • crankshaft Q of the internal combustion engine 12 and the clutch 13 are connected in series between the internal combustion engine (E) 12 and the clutch 13.
  • An electric motor (MZG) 91 having a rotating shaft may be provided as a travel drive source for vehicle 10 or a starter motor and alternator for starting internal combustion engine (E) 12.
  • the clutch 13 and the power transmission mechanism 14 are omitted, and the rotating shaft O of the motor (M) 11 and the transmission TZM are omitted.
  • the input shaft R may be connected coaxially.
  • the electric motor (G) 91 connected in series to the internal combustion engine (E) 12 generates electric power by the driving force of the internal combustion engine (E) 11.
  • the power generation energy obtained by this power generation is stored in the battery (B) 18 via the inverter 92.
  • Transmission TZM can be omitted!
  • an internal combustion engine is used instead of the electric motor (G) 91 as in the vehicle 10 according to the ninth modification shown in FIG. 21, for example.
  • the output of 12 is connected to the rotor (R) 93a coaxially connected to the crankshaft Q of the internal combustion engine (E) 12 and the output shaft S connected to the power transmission mechanism 14 via the clutch 13.
  • a motor 93 may be provided that distributes between the stator 93b.
  • crankshaft Q of the internal combustion engine (E) 12 and the vehicle 10 according to the tenth modification shown in FIG. Connect the rotating shaft O of the motor (M) 11 and the rotating shaft T of the electric motor (G) 91 to the planetary gear mechanism (P) 94.
  • the clutch 13 and the power transmission mechanism 14 are omitted, and the internal power transmission mechanism 14 is omitted as in the vehicle 10 according to the eleventh modification shown in FIG.
  • the combustion engine (E) 12, motor (MZG), and transmission TZM may be directly connected in series.
  • the battery (B) 18 is used as a DC power supply, as in the vehicle 10 according to the twelfth modification shown in Fig. 24, for example.
  • the driving and regenerative operations are controlled by the second PDU 17, and the driving force of the second motor (MZG) 11 having the second phase control device 25 is transmitted to the other driving wheels W via the second differential 15. It can be configured to be communicated.
  • the motor 11 may be provided as a starter motor or an alternator that starts the internal combustion engine 12).
  • the magnet piece of the inner circumferential side rotor and the magnet piece of the outer circumferential side rotor are compared with the motor that assists the running drive of the vehicle or the running drive of the vehicle by the internal combustion engine.
  • the relative position can be changed efficiently.
  • the amount of interlinkage magnetic flux in which the field magnetic flux due to the magnet piece of the outer rotor is linked to the stator winding is actively increased or reduced by the field magnetic flux due to the magnet piece of the inner rotor.
  • the state change between the field strengthening state and the field weakening state due to the field flux of the magnet piece of the inner rotor can be set continuously with respect to the field flux of the magnet piece of the outer rotor,
  • the induced voltage constant can be continuously changed to an appropriate value.

Abstract

 本発明のモータ装備車両は、蓄電装置からの電源供給を受け、走行駆動あるいは内燃機関による車両の走行駆動を補助するモータを備える。前記モータは、各磁石片を具備すると共に互いの回転軸が同軸に配置された内周側ロータおよび外周側ロータと;前記内周側ロータおよび前記外周側ロータの外周側または内周側に配置されたステータと;前記内周側ロータと前記外周側ロータとの相対的な位相を変更可能な位相変更手段と;を備える。

Description

明 細 書
モータ装備車両
技術分野
[0001] 本発明は、モータ装備車両に関する。
本願は、 2006年 2月 28日に出願された特願 2006— 052045号に基づき優先権 を主張し、その内容をここに援用する。
背景技術
[0002] 従来、電動機の回転軸の周囲に同心円状に設けた第 1および第 2回転子を備え、 電動機の回転速度に応じて、あるいは、固定子に発生する回転磁界の速度に応じて 第 1および第 2回転子の周方向の相対位置つまり位相差を制御する電動機が知られ ている(例えば、特許文献 1参照)。
この電動機では、例えば電動機の回転速度に応じて第 1および第 2回転子の位相 差を制御する場合には、遠心力の作用により径方向に沿って変位する部材を介して 第 1および第 2回転子の周方向の相対位置を変更する。また、例えば固定子に発生 する回転磁界の速度に応じて第 1および第 2回転子の位相差を制御する場合には、 各回転子が慣性により回転速度を維持する状態で固定子卷線に制御電流を通電し て回転磁界速度を変更することによって、第 1および第 2回転子の周方向の相対位 置を変更する。
特許文献 1:特開 2002— 204541号公報
発明の開示
発明が解決しょうとする課題
[0003] ところで、上記従来技術の一例に係る電動機において、電動機の回転速度に応じ て第 1および第 2回転子の位相差を制御する場合には、電動機の作動状態つまり回 転速度に応じた遠心力が作用する状態でのみ第 1および第 2回転子の位相差を制 御可能であり、電動機の停止状態を含む適宜のタイミングで位相差を制御できないと いう問題が生じる。そして、この電動機を駆動源として車両に搭載した場合のように、 この電動機に外部からの振動が作用し易い状態においては、遠心力の作用のみに よって第 1および第 2回転子の位相差を適切に制御することが困難であるという問題 力 S生じる。しかも、この場合には、電動機に対する電源での電源電圧の変動に拘わら ずに位相差が制御されることから、電源電圧と電動機の逆起電圧との大小関係が逆 転してしまうと!、う不具合が生じる虞がある。
また、例えば固定子に発生する回転磁界の速度に応じて第 1および第 2回転子の 位相差を制御する場合には、回転磁界速度が変更されることから、電動機の制御処 理が複雑ィ匕してしまうという問題が生じる。
課題を解決するための手段
[0004] 本発明は上記事情に鑑みてなされたもので、モータおよびモータ装備車両の構成 が複雑ィ匕することを抑制しつつ、容易かつ適切に誘起電圧定数を可変とすることで、 運転可能な回転数範囲およびトルク範囲を拡大し、運転効率を向上させると共に高 効率での運転可能範囲を拡大することが可能なモータ装備車両を提供することを目 的とする。
[0005] 上記課題を解決して係る目的を達成するために、本発明は以下の構成を採用した 。すなわち、
(1)蓄電装置力もの電源供給を受け、走行駆動あるいは内燃機関による車両の走行 駆動を補助するモータを備えるモータ装備車両であって、前記モータは、各磁石片 を具備すると共に互いの回転軸が同軸に配置された内周側ロータおよび外周側ロー タと、前記内周側ロータおよび前記外周側ロータの外周側または内周側に配置され たステータと、前記内周側ロータと前記外周側ロータとの相対的な位相を変更可能な 位相変更手段とを備える。
[0006] 上記(1)〖こ係るモータ装備車両によれば、車両を走行駆動あるいは内燃機関によ る車両の走行駆動を補助するモータに対して、内周側ロータの磁石片と外周側ロー タの磁石片との相対位置を効率よく変更できる。これにより、例えば外周側ロータの 磁石片による界磁磁束が固定子卷線を鎖交する鎖交磁束量を、内周側ロータの磁 石片による界磁磁束によって能動的に効率よく増大あるいは低減させることができる
。そして、例えば界磁強め状態では、モータのトルク定数 (つまり、トルク Z相電流)を 相対的に高い値に設定できる。したがって、モータ運転時の電流損失を低減すること 無しに、または、固定子卷線への通電を制御するインバータの出力電流の最大値を 変更すること無しに、モータが出力する最大トルク値を増大させることができ、モータ の運転効率の最大値を増大させ、運転効率が所定効率以上となる高効率領域を拡 大させることができる。
し力も、外周側ロータの磁石片の界磁磁束に対する内周側ロータの磁石片の界磁 磁束による界磁強め状態と界磁弱め状態との間の状態変化を連続的に設定でき、モ ータの誘起電圧定数を適宜の値に連続的に変化させることができる。これにより、モ ータの運転可能な回転数およびトルクの値を連続的に変更できると共に、運転可能 な回転数およびトルクの範囲を拡大させることができる。
[0007] (2)蓄電装置力もの電源供給を受け、走行駆動する内燃機関を始動させるモータを 備えるモータ装備車両であって、前記モータは、各磁石片を具備すると共に互いの 回転軸が同軸に配置された内周側ロータおよび外周側ロータと、前記内周側ロータ および前記外周側ロータの外周側または内周側に配置されたステータと、前記内周 側ロータと前記外周側ロータとの相対的な位相を変更可能な位相変更手段とを備え る。
[0008] 上記(2)〖こ係るモータ装備車両によれば、内燃機関を始動させるモータに対して、 内周側ロータの磁石片と外周側ロータの磁石片との相対位置を効率よく変更できる。 これにより、例えば外周側ロータの磁石片による界磁磁束が固定子卷線を鎖交する 鎖交磁束量を、内周側ロータの磁石片による界磁磁束によって能動的に効率よく増 大あるいは低減させることができる。そして、例えば界磁強め状態では、モータのトル ク定数 (つまり、トルク Z相電流)を相対的に高い値に設定でき、モータ運転時の電 流損失を低減すること無しに、または、固定子卷線への通電を制御するインバータの 出力電流の最大値を変更すること無しに、モータが出力する最大トルク値を増大させ ることができ、モータの運転効率の最大値を増大させ、運転効率が所定効率以上と なる高効率領域を拡大させることができる。
し力も、外周側ロータの磁石片の界磁磁束に対する内周側ロータの磁石片の界磁 磁束による界磁強め状態と界磁弱め状態との間の状態変化を連続的に設定でき、モ ータの誘起電圧定数を適宜の値に連続的に変化させることができる。これにより、モ ータの運転可能な回転数およびトルクの値を連続的に変更できると共に、運転可能 な回転数およびトルクの範囲を拡大させることができる。
[0009] (3)上記(1)または(2)において、前記内周側ロータの前記磁石片および前記外周 側ロータの前記磁石片カ S、前記位相変更手段による少なくとも前記内周側ロータお よび前記外周側ロータの何れか一方の回動により、前記回転軸に平行な方向に対 する断面において、前記内周側ロータの前記磁石片の長辺と前記外周側ロータの前 記磁石片の長辺とが対向するように配置されてなる。
[0010] 上記(3)に係るモータ装備車両によれば、回転軸に平行な方向に対する断面にお いて略長方形状となる各磁石片を具備する内周側ロータおよび外周側ロータに対し 、回動手段によって内周側ロータと外周側ロータとの間の相対的な位相が変更され た際に内周側の磁石片の長辺と外周側の磁石片の長辺とが径方向に沿って対向す るように配置することができる。これにより、例えば外周側の磁石片による界磁磁束が 固定子卷線を鎖交する鎖交磁束量を、内周側の磁石片による界磁磁束によって効 率よく増大ある 、は低減させることができる。
[0011] (4)上記(1)または(2)において、前記位相変更手段が、車両の運転状態に応じて 前記内周側ロータと前記外周側ロータとの相対的な位相を変更する。
[0012] 上記 (4)〖こ係るモータ装備車両によれば、車両の運転状態に応じてモータの誘起 電圧定数を適宜の値に連続的に変化させることができる。したがって、モータに対す る通電制御の電力消費が増大してしまうことを抑制できる。
[0013] (5)上記 (4)にお 、て、前記位相変更手段が、変速機の変速比に応じて前記内周側 ロータと前記外周側ロータとの相対的な位相を変更する。
[0014] 上記(5)〖こ係るモータ装備車両によれば、車両の変速機の変速比に応じてモータ の誘起電圧定数を適宜の値に連続的に変化させることができる。したがって、モータ に対する通電制御の電力消費が増大してしまうことを抑制できる。
[0015] (6)上記(5)において、前記位相変更手段が、変速機の変速比が所定値未満となる 場合に、前記内周側ロータの前記磁石片による界磁磁束と前記外周側ロータの前記 磁石片による界磁磁束とによる相互の界磁弱め状態となるように、前記内周側ロータ と前記外周側ロータとの相対的な位相を変更する。 [0016] 上記(6)〖こ係るモータ装備車両によれば、駆動源として内燃機関を備える車両で は、変速機の変速比が所定値未満、つまりハイギア側となる場合に内燃機関の駆動 効率が相対的に増大する。したがって、この内燃機関の駆動力を優先的に用いて車 両を走行させる際に、モータを界磁弱め状態に設定することにより、モータの逆起電 圧によって車両に対する制動作用が生じてしまうことを抑制できる。
[0017] (7)上記(5)において、前記位相変更手段が、変速機の変速比の変化量が所定値 以上となる場合に、前記内周側ロータの前記磁石片による界磁磁束と前記外周側口 ータの前記磁石片による界磁磁束とによる相互の界磁弱め状態となるように、前記内 周側ロータと前記外周側ロータとの相対的な位相を変更する。
[0018] 上記(7)に係るモータ装備車両によれば、変速比の変化量が所定値以上となる場 合、つまり相対的に変速比が小さ!ヽ状態 (ハイギア側)力も大き!ヽ状態 (ローギア側) に変化する場合に、モータを界磁弱め状態に設定することにより、モータの回生作動 による過剰な充電や電力機器に対する突入電流の発生を抑制できる。
[0019] (8)上記(1)または(2)において、前記モータが、前記内周側ロータに具備される内 周側端面板の内部に設けられ、外部から油圧が供給される一端部と前記内周側端 面板の外周面上で開口する他端部とを具備する油路と、前記他端部に収容され、前 記油圧によって前記他端部の開口端力 外部に突出可能とされた可動ピン部材と、 前記外周側ロータに具備される外周側端面板の内周面上に設けられ、前記内周側 端面板の外周面上力 突出する前記可動ピン部材の先端部を収容可能な収容穴と を備える。
[0020] 上記(8)に係るモータ装備車両によれば、例えば内周側端面板から突出する可動 ピン部材の先端部が外周側端面板の収容穴に収容された状態で内周側ロータの磁 石片による界磁磁束と外周側ロータの磁石片による界磁磁束とによる相互の界磁弱 め状態となるように設定できる。これにより、可動ピン部材の先端部が収容穴に収容 されていない状態に対応する界磁強め状態力 界磁弱め状態へとモータの誘起電 圧定数を容易〖こ変化させることができる。
[0021] (9)上記(1)または(2)において、前記モータが、前記内周側ロータに具備される内 周側端面板の内部に設けられ、外部から油圧が供給される各一端部と前記内周側 端面板の外周面上の周方向に沿った各位置で開口する各他端部とを具備する複数 の油路と、前記各他端部に収容され、前記油圧によって前記各他端部の各開口端 力 外部に突出可能とされた複数の可動ピン部材と、前記外周側ロータに具備され る外周側端面板の内周面上に設けられ、前記内周側端面板の外周面上から突出す る各前記可動ピン部材の各先端部を収容可能な複数の収容穴とを備える。
[0022] 上記(9)に係るモータ装備車両によれば、例えば内周側端面板から突出する各可 動ピン部材の先端部が外周側端面板の各収容穴に収容された状態で内周側ロータ の磁石片による界磁磁束と外周側ロータの磁石片による界磁磁束とによる相互の界 磁弱め状態力 界磁強め状態に亘る適宜の状態となるように設定できる。これにより 、可動ピン部材の先端部が収容穴に収容されていない状態に対応する界磁強め状 態と界磁弱め状態との間の状態変化を段階的に適宜に設定できる。
[0023] (10)前輪側および後輪側の一方の駆動輪の駆動源とされる内燃機関と、蓄電装置 力 の電源供給により駆動され、他方の駆動輪の駆動源とされるモータとを備えるモ ータ装備車両であって、前記モータは、各磁石片を具備すると共に互いの回転軸が 同軸に配置された内周側ロータおよび外周側ロータと、前記内周側ロータおよび前 記外周側ロータの外周側または内周側に配置されたステータと、前記内周側ロータと 前記外周側ロータとの相対的な位相を変更可能な位相変更手段とを備える。
[0024] 上記(10)〖こ係るモータ装備車両によれば、総輪駆動可能な車両の運転状態に応 じてモータの誘起電圧定数を適宜の値に連続的に変化させることができる。これによ り、モータに対する通電制御の電力消費が増大してしまうことを抑制できる。
[0025] (11)蓄電装置力 の電源供給により駆動され、前輪側および後輪側の一方の駆動 輪の駆動源とされる第 1モータと、蓄電装置からの電源供給により駆動され、他方の 駆動輪の駆動源とされる第 2モータとを具備するモータ装備車両であって、少なくとも 前記第 1モータおよび前記第 2モータの何れか一方は、各磁石片を具備すると共に 互いの回転軸が同軸に配置された内周側ロータおよび外周側ロータと、前記内周側 ロータおよび前記外周側ロータの外周側または内周側に配置されたステータと、前 記内周側ロータと前記外周側ロータとの相対的な位相を変更可能な位相変更手段と を備える。 [0026] 上記(11)〖こ係るモータ装備車両によれば、総輪駆動可能な車両の運転状態に応 じてモータの誘起電圧定数を適宜の値に連続的に変化させることができる。したがつ て、モータに対する通電制御の電力消費が増大してしまうことを抑制できる。
[0027] (12)蓄電装置からの電源供給により駆動され、内燃機関と共に、前輪側および後輪 側の一方の駆動輪の駆動源とされる第 1モータと、蓄電装置からの電源供給により駆 動され、他方の駆動輪の駆動源とされる第 2モータとを具備するモータ装備車両であ つて、少なくとも前記第 1モータおよび前記第 2モータの何れか一方は、各磁石片を 具備すると共に互いの回転軸が同軸に配置された内周側ロータおよび外周側ロータ と、前記内周側ロータおよび前記外周側ロータの外周側または内周側に配置された ステータと、前記内周側ロータと前記外周側ロータとの相対的な位相を変更可能な 位相変更手段とを備える。
[0028] 上記(12)〖こ係るモータ装備車両によれば、総輪駆動可能な車両の運転状態に応 じてモータの誘起電圧定数を適宜の値に連続的に変化させることができる。したがつ て、モータに対する通電制御の電力消費が増大してしまうことを抑制できる。
[0029] (13)上記(10)から(12)において、前記位相変更手段が、前記前輪側および前記 後輪側の前記駆動輪の駆動状態において、前記内周側ロータの前記磁石片による 界磁磁束と前記外周側ロータの前記磁石片による界磁磁束とによる相互の界磁強め 状態となるように、前記内周側ロータと前記外周側ロータとの相対的な位相を変更し 、前記前輪側または前記後輪側の前記駆動輪の駆動状態において、前記内周側口 ータの前記磁石片による界磁磁束と前記外周側ロータの前記磁石片による界磁磁 束とによる相互の界磁弱め状態となるように、前記内周側ロータと前記外周側ロータ との相対的な位相を変更する。
[0030] 上記(13)〖こ係るモータ装備車両によれば、前輪側または後輪側の駆動輪のみの 駆動状態では、非駆動状態のモータを界磁弱め状態に設定できる。これにより、この モータの逆起電圧によって車両に対する制動作用が生じてしまうことを抑制できる。 発明の効果
[0031] 本発明の上記(1)に係るモータ装備車両によれば、車両を走行駆動あるいは内燃 機関による車両の走行駆動を補助するモータに対して、内周側ロータの磁石片と外 周側ロータの磁石片との相対位置を効率よく変更できる。これにより、外周側ロータの 磁石片による界磁磁束が固定子卷線を鎖交する鎖交磁束量を、内周側ロータの磁 石片による界磁磁束によって能動的に効率よく増大あるいは低減させることができ、 外周側ロータの磁石片の界磁磁束に対する内周側ロータの磁石片の界磁磁束によ る界磁強め状態と界磁弱め状態との間の状態変化を連続的に設定でき、モータの誘 起電圧定数を適宜の値に連続的に変化させることができる。
[0032] 本発明の上記(2)に係るモータ装備車両によれば、内燃機関を始動させるモータ に対して、内周側ロータの磁石片と外周側ロータの磁石片との相対位置を効率よく 変更できる。これにより、外周側ロータの磁石片による界磁磁束が固定子卷線を鎖交 する鎖交磁束量を、内周側ロータの磁石片による界磁磁束によって能動的に効率よ く増大あるいは低減させることができ、外周側ロータの磁石片の界磁磁束に対する内 周側ロータの磁石片の界磁磁束による界磁強め状態と界磁弱め状態との間の状態 変化を連続的に設定でき、モータの誘起電圧定数を適宜の値に連続的に変化させ ることがでさる。
[0033] 本発明の上記(3)に係るモータ装備車両によれば、外周側永久磁石による界磁磁 束が固定子卷線を鎖交する鎖交磁束量を、内周側永久磁石による界磁磁束によつ て効率よく増大ある 、は低減させることができる。
本発明の上記 (4)に係るモータ装備車両によれば、車両の運転状態に応じてモー タの誘起電圧定数を適宜の値に連続的に変化させることができ、モータに対する通 電制御の電力消費が増大してしまうことを抑制できる。
[0034] 本発明の上記(5)に係るモータ装備車両によれば、車両の変速機の変速比に応じ てモータの誘起電圧定数を適宜の値に連続的に変化させることができる。したがって 、モータに対する通電制御の電力消費が増大してしまうことを抑制できる。
[0035] 本発明の上記 (6)に係るモータ装備車両によれば、駆動源として内燃機関を備え る車両では、変速機の変速比が所定値未満、つまりハイギア側となる場合に内燃機 関の駆動効率が相対的に増大することから、この内燃機関の駆動力を優先的に用い て車両を走行させる際に、モータを界磁弱め状態に設定することにより、モータの逆 起電圧によって車両に対する制動作用が生じてしまうことを抑制できる。 [0036] 本発明の上記(7)に係るモータ装備車両によれば、変速比の変化量が所定値以 上となる場合、つまり相対的に変速比が小さ 、状態 (ハイギア側)から大き 、状態 (口 一ギア側)に変化する場合に、モータを界磁弱め状態に設定することにより、モータ の回生作動による過剰な充電や電力機器に対する突入電流の発生を抑制できる。
[0037] 本発明の上記(8)に係るモータ装備車両によれば、モータの構成が複雑化すること を抑制しつつ、界磁強め状態から界磁弱め状態へとモータの誘起電圧定数を容易 に変ィ匕させることができる。
本発明の上記(9)に係るモータ装備車両によれば、モータの構成が複雑化すること を抑制しつつ、界磁強め状態から界磁弱め状態へとモータの誘起電圧定数を段階 的〖こ変ィ匕させることができる。
[0038] 本発明の上記(10)から(12)〖こ係るモータ装備車両によれば、総輪駆動可能な車 両の運転状態に応じてモータの誘起電圧定数を適宜の値に連続的に変化させること ができる。したがって、モータに対する通電制御の電力消費が増大してしまうことを抑 制できる。
[0039] 本発明の上記(13)に係るモータ装備車両によれば、前輪側または後輪側の駆動 輪のみの駆動状態では、非駆動状態のモータを界磁弱め状態に設定することにより 、このモータの逆起電圧によって車両に対する制動作用が生じてしまうことを抑制で きる。
図面の簡単な説明
[0040] [図 1]本発明の一実施形態に係るモータ装備車両の構成図である。
[図 2]同実施形態に係るモータの断面図である。
[図 3]同実施形態に係るモータのロータの断面図である。
[図 4]同実施形態に係るモータを軸方向に沿って一方力 他方に向かい見た平面図 である。
[図 5]同実施形態に係る界磁弱め位相指令出力部の動作を示すフローチャートであ る。
[図 6A]界磁弱め状態での内周側回転子と外周側回転子との相対的な位相 Θと、変 速比との所定の対応関係を示すグラフである。 圆 6B]界磁弱め状態での内周側回転子と外周側回転子との相対的な位相 Θと、変 速比との所定の対応関係を示すグラフである。
圆 7]同実施形態に係る界磁弱め位相指令出力部の動作を示すフローチャートであ る。
圆 8]同実施形態の第 1変形例に係るモータ装備車両の構成図である。
圆 9]同実施形態の第 1変形例に係る誘起電圧定数指令出力部の動作を示すフロー チャートである。
圆 10A]界磁弱め状態での誘起電圧定数指令 Kecと、変速比との所定の対応関係を 示すグラフである。
圆 10B]界磁弱め状態での内周側回転子 21と外周側回転子 22との相対的な位相 0 と、誘起電圧定数指令 Kecとの所定の対応関係を示すグラフである。
圆 11]同実施形態の第 1変形例に係る誘起電圧定数指令出力部の動作を示すフロ 一チャートである。
圆 12]同実施形態の第 1変形例に係る誘起電圧定数指令出力部の動作を示すフロ 一チャートである。
圆 13]同実施形態に係るモータ装備車両の構成図である。
圆 14]同実施形態の第 2変形例に係るモータ装備車両の構成図である。
圆 15]同実施形態の第 3変形例に係るモータ装備車両の構成図である。
圆 16]同実施形態の第 4変形例に係るモータ装備車両の構成図である。
圆 17]同実施形態の第 5変形例に係るモータ装備車両の構成図である。
圆 18]同実施形態の第 6変形例に係るモータ装備車両の構成図である。
圆 19]同実施形態の第 7変形例に係るモータ装備車両の構成図である。
圆 20]同実施形態の第 8変形例に係るモータ装備車両の構成図である。
圆 21]同実施形態の第 9変形例に係るモータ装備車両の構成図である。
圆 22]同実施形態の第 10変形例に係るモータ装備車両の構成図である。
圆 23]同実施形態の第 11変形例に係るモータ装備車両の構成図である。
圆 24]同実施形態の第 12変形例に係るモータ装備車両の構成図である。
符号の説明 [0041] 10 モータ装備車両(車両)
12 内燃機関
18 バッテリ(蓄電装置)
21 内周側回転子(内周側ロータ)
21a 内周側永久磁石 (磁石片)
22 外周側回転子 (外周側ロータ)
22a 外周側永久磁石 (磁石片)
24 固定子 (ステータ)
25 位相制御装置 (位相変更手段)
36 内周側軸部材(内周側端面板)
36 A 外周面
37 外周側端面部材 (外周側端面板)
37A 内周面
40 油路
40a 第一端部
40b 第二端部
41 可動ピン (可動ピン部材)
43 収容穴
発明を実施するための最良の形態
[0042] 以下、本発明のモータ装備車両の一実施形態について添付図面を参照しながら 説明する。
本実施形態によるモータ装備車両 10 (以下、単に車両 10と呼ぶ)は、例えば図 1に 示すように、モータ 11および内燃機関 12を駆動源として備えるノ、イブリツド車両であ る。少なくともモータ 11または内燃機関 12のいずれかの駆動力は、トランスミッション TZMを介して車両 10の駆動輪 Wに伝達される。
[0043] この車両 10では、モータ 11の回転軸 Oと、クラッチ 13を介して内燃機関 12のクラン ク軸 Qに接続されたトランスミッション TZMの入力軸 Rとは、互いに嚙み合う 1対のギ ァ、あるいは、各軸 O, Rに一体に接続された各ギア間に掛け渡されたチェーン、ある いは、各軸 O, Rに一体に接続された各プーリ間に掛け渡されたベルト等によって動 力を伝達する動力伝達機構 14によって接続されている。モータ 11と内燃機関 12と の各駆動力は、ディファレンシャル 15を介して車両 10の駆動輪 Wに伝達される。
[0044] この車両 10の減速時に駆動輪 W側力もモータ 11に駆動力が伝達されると、モータ 11は発電機として機能して、いわゆる回生制動力を発生し、車体の運動エネルギー を電気エネルギー(回生エネルギー)として回収する。クラッチ 13が接続状態に設定 された状態で、内燃機関 12の出力がモータ 11に伝達された場合にも、モータ 11は 発電機として機能して、発電エネルギーを発生する。
[0045] この車両 10において、複数相(例えば、 U相、 V相、 W相の 3相)のモータ 11の駆 動および回生作動は、制御部 16から出力される制御指令を受けて、パワードライブ ユニット(PDU) 17により行われる。
PDU17は、例えばトランジスタのスイッチング素子を複数用いてブリッジ接続して なるブリッジ回路を具備するパルス幅変調(PWM)による PWMインバータを備え、モ ータ 11と電気エネルギーの授受を行う高圧系のノ ッテリ(蓄電装置) 18が接続されて いる。
PDU 17は、モータ 11の駆動時等に制御部 16から入力されるスイッチング指令で あるゲート信号(つまり、 PWM信号)に基づき、 PWMインバータにおいて各相毎に 対をなす各トランジスタのオン (導通) Zオフ (遮断)状態を切り替えることによって、バ ッテリ 18から供給される直流電力を 3相交流電力に変換し、 3相のモータ 11のステー タ卷線への通電を順次転流させることで、各相のステータ卷線に交流の U相電流 Iu および V相電流 Ivおよび W相電流 Iwを通電する。
[0046] モータ 11は、図 2〜図 3に示すように、周方向に沿って配置された各永久磁石 21a , 22aを具備する略円環状の各内周側回転子 21および外周側回転子 22からなる口 ータ 23と、ロータ 23を回転させる回転磁界を発生する複数相の固定子卷線 24aを有 する固定子 24と、内周側回転子 21と外周側回転子 22との間の相対的な位相を制御 する位相制御装置 25とを備えて 、る。
[0047] 内周側回転子 21および外周側回転子 22は、互いの回転軸がモータ 11の回転軸 Oと同軸となるように配置されて 、る。 内周側回転子 21は、略円筒状の内周側ロータ鉄心 31と、内周側ロータ鉄心 31の 外周部で周方向に所定間隔をおいて設けられた複数の内周側磁石装着部 33とを備 えている。
外周側回転子 22は、略円筒状の外周側ロータ鉄心 32と、外周側ロータ鉄心 32の 内部で周方向に所定間隔をおいて設けられた複数の外周側磁石装着部 34とを備え ている。
[0048] 周方向で隣り合う内周側磁石装着部 33間において、内周側ロータ鉄心 31の外周 面 31A上には、回転軸 Oに平行に伸びる凹溝 31aが形成されている。
周方向で隣り合う外周側磁石装着部 34間において、外周側ロータ鉄心 32の外周 面 32A上には、回転軸 Oに平行に伸びる凹溝 32aが形成されている。
[0049] 磁石装着部 33は、回転軸 Oに平行に貫通する 1対の磁石装着孔 33aを備えている
。 1対の磁石装着孔 33aは、センターリブ 33bを介して、周方向で隣り合うように配置 されている。
磁石装着部 34は、回転軸 Oに平行に貫通する 1対の磁石装着孔 34aを備えている 。 1対の磁石装着孔 34aは、センターリブ 34bを介して、周方向で隣り合うように配置 されている。
各磁石装着孔 33a, 34aは、回転軸 Oに平行な方向に対する断面が、略周方向が 長手方向かつ略径方向が短手方向の略長方形状に形成されている。各磁石装着孔 33aには、回転軸 Oに平行に伸びる略長方形板状の永久磁石 21aが装着されている 。各磁石装着孔 34aには、回転軸 Oに平行に伸びる略長方形板状の永久磁石 22a が装着されている。
[0050] 1対の磁石装着孔 33aに装着される 1対の内周側永久磁石 21aは、厚さ方向(つま り各回転子 21, 22の径方向)に磁ィ匕され、互いに磁ィ匕方向が同方向となるように設 定される。そして、周方向で隣り合う内周側磁石装着部 33に対して、各 1対の内周側 永久磁石 2 laは互いに磁ィ匕方向が異方向となるように設定される。すなわち、外周側 力 極とされた 1対の内周側永久磁石 21aが装着された内周側磁石装着部 33には、 外周側が S極とされた 1対の内周側永久磁石 21aが装着された内周側磁石装着部 3 3が、凹溝 31aを介して周方向で隣接する。 [0051] 同様に、 1対の磁石装着孔 34aに装着される 1対の外周側永久磁石 22aは、厚さ方 向(つまり各回転子 21, 22の径方向)に磁ィ匕され、互いに磁ィ匕方向が同方向となるよ うに設定される。そして、周方向で隣り合う外周側磁石装着部 34に対して、各 1対の 外周側永久磁石 22aは互いに磁ィ匕方向が異方向となるように設定される。すなわち、 外周側が N極とされた 1対の外周側永久磁石 22aが装着された外周側磁石装着部 3 4には、外周側が S極とされた 1対の外周側永久磁石 22aが装着された外周側磁石 装着部 34が、凹溝 32aを介して周方向で隣接する。
[0052] 内周側回転子 21の各磁石装着部 33と外周側回転子 22の各磁石装着部 34とは、 各回転子 21 , 22の径方向で互いに対向配置可能となるように配置されている。さら に、内周側回転子 21の各凹溝 31aと外周側回転子 22の各凹溝 32aとは、各回転子 21 , 22の径方向で互いに対向配置可能となるように配置されて 、る。
これにより、内周側回転子 21と外周側回転子 22との回転軸 O周りの相対位置に応 じて、モータ 11の状態を、内周側回転子 21の内周側永久磁石 21aと外周側回転子 22の外周側永久磁石 22aとの同極の磁極同士が対向配置(つまり、内周側永久磁 石 21aと外周側永久磁石 22aとが対極配置)される弱め界磁状態から、内周側回転 子 21の内周側永久磁石 21aと外周側回転子 22の外周側永久磁石 22aとの異極の 磁極同士が対向配置 (つまり、内周側永久磁石 21aと外周側永久磁石 22aとが同極 配置)される強め界磁状態に亘る適宜の状態に設定可能である。
特に、弱め界磁状態および強め界磁状態においては、回転軸 Oに平行な方向に 対する断面において、内周側永久磁石 21aの長辺と外周側永久磁石 22aの長辺と が対向するように設定されて 、る。
[0053] 内周側回転子 21は、内周側ロータ鉄心 31の一方の軸方向端部に当接する略円 環板状の内周側端面部 36aと、内周側ロータ鉄心 31の内周部に装着される略円筒 状の内周側軸部 36bと、位相制御装置 25に接続される略円筒状の内周側軸端部 3 6cとが一体に形成された内周側軸部材 36を備えている。
外周側回転子 22は、外周側ロータ鉄心 32の一方の軸方向端部に当接する略円 環板状の外周側端面部材 37と、外周側ロータ鉄心 32の他方の軸方向端部に当接 すると共に回転軸 Oが装着される装着孔 38aを有する略円環板状の外周側軸部材 3 8とを備えている。
[0054] 内周側回転子 21において、内周側軸部材 36の内周側端面部 36aは、内周側回 転子 21の各磁石装着孔 33aの各開口端を覆うようにして、内周側ロータ鉄心 31の一 方の軸方向端部に当接している。
内周側軸部材 36の内周側軸部 36bは、内周側ロータ鉄心 31の内周部の内径より も僅かに大きな外径を有し、内周側ロータ鉄心 31の内周部に圧入されて、締まりば めされた状態で固定されている。
内周側軸部材 36は、回転軸 Oの外径よりも大きな内径の内周面を有している。この 内周側軸部材 36の内周面と回転軸 Oの外周面との間には、ベアリング部材 39が備 えられている。内周側回転子 21は、回転軸 Oに対して独立に回転可能である。
[0055] 内周側軸部材 36の内部には、位相制御装置 25に接続される内周側軸端部 36cの 表面上において開口し、位相制御装置 25から油圧が供給される第一端部 40aと、内 周側端面部 36aの外周面 36A上で開口する第二端部 40bとを具備する複数の油路 40が設けられている。
そして、各油路 40の第二端部 40bには、位相制御装置 25から各油路 40に供給さ れるオイルの圧力によって、各第二端部 40bから外部に突出可能である可動ピン 41 が収容されている。可動ピン 41の基端と油路 40の内部との間には、可動ピン 41に作 用するオイルの圧力に対する反力を可動ピン 41に付与するスプリング 42が備えられ ている。
各スプリング 42は、各可動ピン 41の先端が各油路 40の内部に収容されている状 態にお ヽて自然長となるように設定されて!、る。
[0056] 外周側回転子 22において、外周側端面部材 37は、外周側回転子 22の各磁石装 着孔 34aの各開口端を覆うようにして、外周側ロータ鉄心 32の一方の軸方向端部に 当接している。
この外周側端面部材 37は、内周側軸部材 36の内周側端面部 36aの外周面 36A の外径よりも僅かに大きな内径の内周面 37Aを有している。この内周面 37A上には 、内周側端面部 36aの外周面 36A上力も突出する各可動ピン 41の先端部を収容可 能な複数の収容穴 43が形成されている。各収容穴 43は、外周側端面部材 37を貫 通して、外周側端面部材 37の表面 (外周面)上で開口する貫通孔 44がそれぞれ接 続されている。
[0057] 複数の収容穴 43は、適宜の可動ピン 41の先端部が各収容穴 43に順次収容され た場合に、内周側回転子 21と外周側回転子 22との界磁状態が、内周側回転子 21 の内周側永久磁石 21aと外周側回転子 22の外周側永久磁石 22aとの異極の磁極 同士が径方向に沿って対向配置(つまり、内周側永久磁石 21aと外周側永久磁石 2 2aとが同極配置)される強め界磁状態から、内周側回転子 21の内周側永久磁石 21 aと外周側回転子 22の外周側永久磁石 22aとの同極の磁極同士が径方向に沿って 対向配置(つまり、内周側永久磁石 21aと外周側永久磁石 22aとが対極配置)される 弱め界磁状態に亘つて設定された複数の異なる界磁状態間を段階的に遷移するよう に配置されている。
[0058] 外周側軸部材 38は、外周側回転子 22の各磁石装着孔 34aの各開口端を覆うよう にして、外周側ロータ鉄心 32の他方の軸方向端部に当接している。回転軸 Oは外周 側軸部材 38の装着孔 38aの内径よりも僅かに大きな外径を有し、この装着孔 38aに 圧入されて、締まりばめされた状態で固定されている。
外周側回転子 22の各磁石装着孔 34aに装着された外周側永久磁石 22aを軸方向 の両側から挟み込むように配置され、外周側永久磁石 22aが軸方向に沿って変位す ることを規制する外周側端面部材 37および外周側軸部材 38は、リベットやボルト等 の外周側締結部材 45によって外周側ロータ鉄心 32に固定されている。
[0059] これにより、位相制御装置 25から各油路 40に油圧が供給されていないことで各ス プリング 42が自然長であって、各可動ピン 41の先端が各油路 40の各第二端部 40b 力も外部に突出していない状態においては、内周側回転子 21は、回転軸 Oおよび 外周側回転子 22に対して独立に回転可能となる。したがって、外力が作用していな い状態では、内周側永久磁石 21aと外周側永久磁石 22aとの間に発生する吸引力 及び反発力に応じて、内周側回転子 21の内周側永久磁石 21aと外周側回転子 22 の外周側永久磁石 22aとの異極の磁極同士が径方向に沿って対向配置(つまり、内 周側永久磁石 21aと外周側永久磁石 22aとが同極配置)される強め界磁状態となる。 モータ 11の回転時には、内周側回転子 21は、外周側回転子 22の回転に追従して、 強め界磁状態を維持しつつ、回転する。
[0060] 一方、位相制御装置 25から各油路 40に油圧が供給されることで、各可動ピン 41の 先端が内周側端面部 36aの外周面 36A上から突出した際に、各可動ピン 41の先端 が外周側端面部材 37に設けられた適宜の収容穴 43の開口部に臨む状態では、各 可動ピン 41の先端は適宜の収容穴 43内に収容される。
各可動ピン 41の先端が外周側端面部材 37に設けられた適宜の収容穴 43の開口 部に臨んでいない状態では、各可動ピン 41の先端が外周側端面部材 37の内周面 3 7A上に当接する。このため、モータ 11の回転時には、内周側永久磁石 21aと外周 側永久磁石 22aとの間に発生する吸引力及び反発力に応じた外周側回転子 22の 回転に対する内周側回転子 21の追従回転が、各可動ピン 41と外周側端面部材 37 との間の摩擦によって抑制される。そして、内周側回転子 21と外周側回転子 22との 間の相対的な位相が変化し、各可動ピン 41の先端が外周側端面部材 37の適宜の 収容穴 43の開口部に臨む状態となった時点で、各可動ピン 41の先端が適宜の収容 穴 43内に収容される。
各可動ピン 41の先端が適宜の収容穴 43内に収容された場合には、モータ 11の状 態は、この収容穴 43の位置に応じて、強め界磁状態から弱め界磁状態に亘る所定 の界磁状態で固定される。
[0061] 位相制御装置 25から各油路 40に油圧が供給されることで、各可動ピン 41の先端 が内周側端面部 36aの外周面 36A上力も突出した際には、スプリング 42は伸長状 態となつて、各可動ピン 41を径方向外方に向かい押圧するオイルの圧力に抗ぅ反力 を発生する。このため、モータ 11の回転時において位相制御装置 25から各油路 40 に対する油圧の供給が停止されると、スプリング 42の弾性力によって、各可動ピン 41 は径方向内方に向かい変位する。これに伴い、各可動ピン 41の先端が収容穴 43内 力も離脱した場合には、内周側回転子 21は、回転軸 Oおよび外周側回転子 22に対 して独立に回転可能となり、外周側回転子 22の回転に追従するようにして、強め界 磁状態を維持しつつ、回転する。
[0062] 位相制御装置 25には、内周側回転子 21の内周側軸部材 36に接続され、制御部 1 6の制御により内周側軸部材 36内部の複数の油路 40に油圧を供給するオイルボン プ(図示略)等が備えられて 、る。
[0063] 制御部 16は、回転直交座標をなす dq座標上で電流のフィードバック制御を行うも のである。制御部 16は、運転者のアクセル操作に係るアクセル開度等に応じて設定 されるトルク指令 Tqに基づき d軸電流指令 Idc及び q軸電流指令 Iqcを演算し、 d軸電 流指令 Idc及び q軸電流指令 Iqcに基づいて各相出力電圧 Vu, Vv, Vwを算出する 。そして制御部 16は、各相出力電圧 Vu, Vv, Vwに応じて PDU17へゲート信号で ある PWM信号を入力すると共に、実際に PDU17からモータ 11に供給される各相 電流 Iu, Iv, Iwの何れ力 2つの相電流を dq座標上の電流に変換して得た d軸電流 Id 及び q軸電流 Iqと、 d軸電流指令 Idc及び q軸電流指令 Iqcとの各偏差がゼロとなるよ うに制御を行う。
[0064] この制御部 16は、目標電流設定部 51と、電流偏差算出部 52と、界磁制御部 53と 、電力制御部 54と、電流制御部 55と、 dq— 3相変換部 56と、 PWM信号生成部 57と 、フィルタ処理部 58と、 3相— dq変換部 59と、回転数演算部 60と、界磁弱め位相指 令出力部 61と、油圧制御部 62とを備えて構成されている。
[0065] 制御部 16には、 PDU17からモータ 11に出力される 3相の各相電流 Iu, Iv, Iwのう ち U相電流 Iuおよび W相電流 Iwをそれぞれ検出する電流センサ 71から出力される 各検出信号 Ius, Iwsと、バッテリ 18の端子電圧 (電源電圧) VBを検出する電圧セン サ 72から出力される検出信号と、モータ 11のロータの回転角 0 M (つまり、所定の基 準回転位置からのロータの磁極の回転角度)を検出する回転センサ 73から出力され る検出信号と、外部の制御装置(図示略)から出力されるトルク指令 Tqおよびトランス ミッション TZMの変速比に対する制御指令である変速指令および車両 10の駆動状 態 (例えば、前輪駆動状態および総輪駆動状態等)に対する制御指令である駆動輪 選択指令とが入力されている。
[0066] 目標電流設定部 51は、例えば外部の制御装置(図示略)から入力されるトルク指令 Tq (例えば、運転者によるアクセルペダルの踏み込み操作量に応じて必要とされるト ルクをモータ 11に発生させるための指令値)と、回転数演算部 60から入力されるモ ータ 11の回転数 NMと、誘起電圧定数 Keとに基づき、 PDU 17からモータ 11に供給 される各相電流 Iu, Iv, Iwを指定するための電流指令を演算している。この電流指 令は、回転する直交座標上での d軸目標電流 (電流指令) Idc及び q軸目標電流 (電 流指令) Iqcとして電流偏差算出部 52へ出力されている。
[0067] この回転直交座標をなす dq座標は、ロータの永久磁石による界磁極の磁束方向を d軸(界磁軸)とし、この d軸と直交する方向を q軸(トルク軸)としており、モータ 11の口 ータ 23の回転位相に同期して回転している。これにより、 PDU17からモータ 11の各 相に供給される交流信号に対する電流指令として、直流的な信号である d軸目標電 流 Idcおよび q軸目標電流 Iqcを与える。
[0068] 電流偏差算出部 52は、界磁制御部 53から入力される d軸補正電流が加算された d 軸目標電流 Idcと d軸電流 Idとの偏差 Δ Idを算出する d軸電流偏差算出部 52aと、電 力制御部 54力 入力される q軸補正電流が加算された q軸目標電流 Iqcと q軸電流 Iq との偏差 Δ を算出する q軸電流偏差算出部 52aとを備えて構成されている。
界磁制御部 53は、モータ 11の回転数 NMの増大に伴う逆起電圧の増大を抑制す るために、ロータ 23の界磁量を等価的に弱めるようにして電流位相を制御する弱め 界磁制御の弱め界磁電流に対する目標値を、 d軸補正電流として出力する。
電力制御部 54は、バッテリ 18の残容量等に応じた適宜の電力制御に応じて q軸目 標電流 Iqcを補正するための q軸補正電流を出力する。
[0069] 電流制御部 55は、モータ回転数 NMに応じた PI (比例積分)動作により、偏差 Δ を制御増幅して d軸電圧指令値 Vdを算出し、偏差 Δ を制御増幅して q軸電圧指令 値 Vqを算出する。
[0070] dq— 3相変換部 56は、回転数演算部 60から入力されるロータの回転角 θ Mを用 いて、 dq座標上での d軸電圧指令値 Vdおよび q軸電圧指令値 Vqを、静止座標であ る 3相交流座標上での電圧指令値である U相出力電圧 Vu、 V相出力電圧 Vv、およ び W相出力電圧 Vwに変換する。
[0071] PWM信号生成部 57は、正弦波状の各相出力電圧 Vu, Vv, Vwと、三角波からな るキャリア信号と、スイッチング周波数とに基づくパルス幅変調により、 PDU17の PW Mインバータの各スイッチング素子をオン Zオフ駆動させる各パルスカゝらなるスィッチ ング指令であるゲート信号 (つまり、 PWM信号)を生成する。
[0072] フィルタ処理部 58は、各電流センサ 71により検出された各相電流に対する検出信 号 Ius, Iwsに対して、高周波成分の除去等のフィルタ処理を行い、物理量としての 各相電流 Iu, Iwを抽出する。
[0073] 3相— dq変換部 59は、フィルタ処理部 58により抽出された各相電流 Iu, Iwと、回 転数演算部 60から入力されるロータ 23の回転角 θ Mとにより、モータ 11の回転位相 による回転座標すなわち dq座標上での d軸電流 Idおよび q軸電流 Iqを算出する。
[0074] 回転数演算部 60は、回転センサ 73から出力される検出信号力もモータ 11のロー タの回転角 θ Mを抽出すると共に、この回転角 θ Mに基づき、モータ 11の回転数 N
Mを算出する。
[0075] 界磁弱め位相指令出力部 61は、例えばトルク指令 Tqと、モータ 11の回転数 NMと 、変速指令と、駆動輪選択指令とに基づき、外周側回転子 22の外周側永久磁石 22 aによる界磁磁束が固定子卷線 24aを鎖交する鎖交磁束量を、内周側回転子 21の 内周側永久磁石 21aによる界磁磁束によって低減させる界磁弱め状態での内周側 回転子 21と外周側回転子 22との相対的な位相 0 (例えば、内周側回転子 21の内 周側永久磁石 21aと外周側回転子 22の外周側永久磁石 22aとの異極の磁極同士 が対向配置、つまり内周側永久磁石 21aと外周側永久磁石 22aとが同極配置される 強め界磁状態を、ゼロとする)に対する指令値 (界磁弱め位相指令)を出力する。
[0076] 油圧制御部 62は、界磁弱め位相指令出力部 61から出力される界磁弱め位相指令 に応じて、内周側軸部材 36内部の複数の油路 40のうちの何れか 1つを選択し、選択 した油路 40に対して位相制御装置 25から油圧を供給することを指示する油圧指令 を出力する。
[0077] 本実施形態によるモータ装備車両 10は上記構成を備えている。次に、この車両 10 の動作、特に、界磁弱め位相指令出力部 61の動作について添付図面を参照しなが ら説明する。
[0078] 先ず、図 5に示すステップ S01においては、外部の制御装置等から出力される変速 指令を取得する。
次に、ステップ S02においては、取得した変速指令による変速比が所定変速比 #R 未満であるか否かを判定する。
この判定結果が「NO」の場合、つまり変速比がローギア側となる場合には、後述す るステップ S04に進む。
一方、この判定結果力「YES」の場合、つまり変速比がハイギア側となる場合には、 ステップ S03に進む。
[0079] ステップ S03においては、例えば界磁弱め状態での内周側回転子 21と外周側回 転子 22との相対的な位相 Θと、変速比との所定の対応関係を示すマップ等を参照し て、変速比に応じた界磁弱め位相指令を出力し、一連の処理を終了する。
位相 Θと変速比との所定の対応関係は、トランスミッション TZMが無段変速機であ る場合には、図 6Aに示すように、変速比が所定変速比 #R以上である場合にはゼロ とされ、変速比が所定変速比 #R力 減少することに伴い、位相 Θが増大傾向に変 化するように設定されて 、る。トランスミッション TZMが有段変速機である場合には、 図 6Bに示すように、変速比が所定変速比 #R以上である場合にはゼロとされ、変速 比が所定変速比 #Rから減少することに伴い、適宜の増大幅のステップ状に位相 Θ が増大傾向に変化するように設定されて 、る。
[0080] ステップ S04においては、界磁弱め位相指令の出力中であるか否かを判定する。
この判定結果が「NO」の場合には、一連の処理を終了する。
一方、この判定結果が「YES」の場合には、ステップ S05に進む。
ステップ S05においては、界磁弱め位相指令の出力を停止し、一連の処理を終了 する。
[0081] つまり、変速比が所定変速比 #R未満であってハイギア側となる場合には内燃機関 12の駆動効率が相対的に増大するので、この内燃機関 12の駆動力を優先的に用 いて車両 10を走行させる。この際に、モータ 11を界磁弱め状態に設定することにより 、モータ 11の逆起電圧によって車両 10に対する制動作用が生じてしまうことを抑制 できる。
[0082] 図 7に示すステップ S 11においては、外部の制御装置等から出力される変速指令 を取得する。
次に、ステップ S12においては、取得した変速指令の今回値を、前回の処理にお いて取得した変速指令の前回値から減算して、変速比変化量を算出する。
[0083] ステップ S 13においては、算出した変速比変化量が所定変化量以上であるか否か を判定する。
この判定結果が「NO」の場合には、後述するステップ S 17に進む。
一方、この判定結果力「YES」の場合、つまり相対的に変速比が小さい状態 (ハイ ギア側)から大きい状態(ローギア側)に変化する場合には、ステップ S 14に進む。
[0084] ステップ S14においては、界磁弱め状態での内周側回転子 21と外周側回転子 22 との相対的な位相 Θと、変速比変化量との所定の対応関係を示すマップ等を参照し て、変速比変化量に応じた界磁弱め位相指令を出力する。
そして、ステップ S 15においては、所定の減算タイマーの作動を開始する。 そして、ステップ S16においては、減算タイマーの作動が終了した力否かを判定す る。
この判定結果が「YES」の場合には、一連の処理を終了する。
一方、この判定結果が「NO」の場合には、上述したステップ S 15に戻る。
[0085] ステップ S17においては、界磁弱め位相指令の出力中である力否かを判定する。
この判定結果が「NO」の場合には、一連の処理を終了する。
一方、この判定結果が「YES」の場合には、ステップ S18に進む。
ステップ S18においては、界磁弱め位相指令の出力を停止し、一連の処理を終了 する。
[0086] つまり、変速比変化量が所定変化量以上となる場合、つまりトランスミッション TZM の状態が相対的に変速比が小さ!、状態 (ハイギア側)力も大き!、状態 (ローギア側) に変化する場合に、モータ 11を界磁弱め状態に設定することにより、モータ 11の回 生作動による過剰な充電や PDU17等の電力機器に対する突入電流の発生を抑制 できる。
し力も、界磁弱め位相指令の出力は減算タイマーの作動終了後に停止される。した がって、変速比の変化後に車両 10の走行状態が相対的に安定した状態で、内周側 回転子 21と外周側回転子 22との界磁状態を界磁弱め状態力も界磁強め状態に移 行させることができる。
[0087] 上述したように、本実施形態によるモータ装備車両 10によれば、車両 10を走行駆 動あるいは内燃機関 12による車両 10の走行駆動を補助するモータ 11に対して、内 周側回転子 21の内周側永久磁石 21aと外周側回転子 22の外周側永久磁石 22aと の相対位置を効率よく変更できる。
これにより、外周側永久磁石 22aによる界磁磁束が固定子卷線 24aを鎖交する鎖 交磁束量を、内周側永久磁石 21aによる界磁磁束によって能動的に効率よく増大あ るいは低減させることができる。
界磁強め状態では、モータ 11のトルク定数 (つまり、トルク Z相電流)を相対的に高 い値に設定できる。したがって、モータ 11の運転時の電流損失を低減すること無しに 、または、固定子卷線 24aへの通電を制御する PDU17の出力電流の最大値を変更 すること無しに、モータ 11が出力する最大トルク値を増大させることができ、モータ 11 の運転効率の最大値を増大させ、運転効率が所定効率以上となる高効率領域を拡 大させることができる。
しかも、外周側永久磁石 22aの界磁磁束に対する内周側永久磁石 21aの界磁磁 束による界磁強め状態と界磁弱め状態との間の状態変化を連続的に設定でき、モー タ 11の誘起電圧定数 Keを適宜の値に連続的に変化させることができる。これにより、 モータ 11の運転可能な回転数およびトルクの値を連続的に変更できると共に、運転 可能な回転数およびトルクの範囲を拡大させることができる。
[0088] し力も、変速比が所定変速比 #R未満であってハイギア側となる場合には、モータ 1 1を界磁弱め状態に設定することにより、駆動効率が相対的に増大する内燃機関 12 の駆動力を優先的に用いて車両 10を走行させる際に、モータ 11の逆起電圧によつ て車両 10に対する制動作用が生じてしまうことを抑制できる。
また、変速比変化量が所定変化量以上となる場合、つまりトランスミッション TZMの 状態が相対的に変速比が小さ!ヽ状態 (ハイギア側)力も大き!ヽ状態 (ローギア側)に 変化する場合に、モータ 11を界磁弱め状態に設定することにより、モータ 11の回生 作動による過剰な充電や PDU17等の電力機器に対する突入電流の発生を抑制で きる。
[0089] し力も、モータ 11の構成が複雑ィ匕することを抑制しつつ、油圧により制御される各 可動ピン 41によって界磁強め状態力 界磁弱め状態へとモータ 11の誘起電圧定数 を容易〖こ変化させることができる。 [0090] なお、上述した実施形態においては、内周側軸部材 36の内部に複数の油路 40を 設けると共に、外周側端面部材 37に複数の収容穴 43を設けるとしたが、これに限定 されず、例えば複数の油路 40に対して単一の収容穴 43のみを備えてもよいし、例え ば各単一の油路 40および収容穴 43のみを備えてもよい。
[0091] なお、上述した実施形態においては、例えば図 8に示す第 1変形例のように、界磁 弱め位相指令出力部 61を省略し、油圧センサ 81と、誘起電圧定数算出部 82と、誘 起電圧定数指令出力部 83と、誘起電圧定数差分算出部 84とを、新たに備えて制御 部 16を構成してもよい。
この第 1変形例では、油圧センサ 81は、位相制御装置 25から各油路 40に供給さ れる油圧の検出信号を出力する。
誘起電圧定数算出部 82は、油圧センサ 81から出力される油圧の検出信号に基づ き、内周側回転子 21と外周側回転子 22との相対的な位相 Θに応じた誘起電圧定数 Keを算出し、目標電流設定部 51に入力する。
[0092] 誘起電圧定数指令出力部 83は、トルク指令 Tqと、モータ 11の回転数 NMと、変速 指令と、駆動輪選択指令とに基づき、界磁弱め状態でのモータ 11の誘起電圧定数 Keに対する指令値 (誘起電圧定数指令) Kecを出力する。
誘起電圧定数差分算出部 84は、誘起電圧定数指令出力部 83から出力される誘 起電圧定数指令 Kecから、誘起電圧定数算出部 82から出力される誘起電圧定数 K eを減算して得た誘起電圧定数差分 AKeを出力する。
油圧制御部 62は、誘起電圧定数差分算出部 84から入力される誘起電圧定数差 分 AKeに応じて、内周側軸部材 36内部の複数の油路 40のうちの何れか 1つを選択 し、選択した油路 40に対して位相制御装置 25から油圧を供給することを指示する油 圧指令を出力する。
[0093] この第 1変形例によるモータ装備車両 10は上記構成を備えている。次に、この車両 10の動作、特に、誘起電圧定数指令出力部 83の動作について添付図面を参照し ながら説明する。
[0094] 先ず、例えば図 9に示すステップ S21においては、外部の制御装置等から出力され る変速指令を取得する。 次に、ステップ S22においては、取得した変速指令による変速比が所定変速比 #R 未満であるか否かを判定する。
この判定結果が「NO」の場合、つまり変速比がローギア側となる場合には、後述す るステップ S 25に進む。
一方、この判定結果力「YES」の場合、つまり変速比がハイギア側となる場合には、 ステップ S23に進む。
[0095] ステップ S23においては、界磁弱め状態でのモータ 11の誘起電圧定数 Keに対す る指令値 (誘起電圧定数指令) Kecと、変速比との所定の対応関係を示すマップ等を 参照して、変速比に応じた誘起電圧定数指令 Kecを設定する。
誘起電圧定数指令 Kecと変速比との所定の対応関係は、例えば図 10Aに示すよう に、変速比が所定変速比 #R以上である場合には所定の上限誘起電圧定数 #Kel とされ、変速比が所定変速比 #R力 減少することに伴い、所定の誘起電圧定数指 令 Kecが上限誘起電圧定数 # Kelから減少傾向に変化するように設定されて!ヽる。 界磁弱め状態での内周側回転子 21と外周側回転子 22との相対的な位相 Θと、誘起 電圧定数指令 Kecとは、例えば図 10Bに示すように、誘起電圧定数指令 Kecが減少 することに伴い、位相 Θが増大傾向に変化するように設定されている。
[0096] ステップ S24においては、設定した誘起電圧定数指令 Kecを出力し、一連の処理 を終了する。
ステップ S25においては、誘起電圧定数指令 Kecとして、界磁強め状態でのモータ 11の誘起電圧定数 Keに対する所定の指令値 (界磁強め位相用 Ke指令)を設定し て、一連の処理を終了する。
[0097] つまり、変速比が所定変速比 #R未満であってハイギア側となる場合には内燃機関 12の駆動効率が相対的に増大するので、この内燃機関 12の駆動力を優先的に用 いて車両 10を走行させる。この際に、モータ 11を界磁弱め状態に設定することにより 、モータ 11の逆起電圧によって車両 10に対する制動作用が生じてしまうことを抑制 できる。
[0098] 図 11に示すステップ S31においては、外部の制御装置等から出力される変速指令 を取得する。 次に、ステップ S32においては、取得した変速指令の今回値を、前回の処理にお いて取得した変速指令の前回値から減算して、変速比変化量を算出する。
[0099] ステップ S33においては、算出した変速比変化量が所定変化量以上であるか否か を判定する。
この判定結果が「NO」の場合には、後述するステップ S37に進む。
一方、この判定結果力「YES」の場合、つまり相対的に変速比が小さい状態 (ハイ ギア側)から大きい状態(ローギア側)に変化する場合には、ステップ S34に進む。
[0100] ステップ S34においては、例えば界磁弱め状態でのモータ 11の誘起電圧定数 Ke に対する指令値 (誘起電圧定数指令) Kecと、変速比変化量との所定の対応関係を 示すマップ等を参照して、変速比変化量に応じた誘起電圧定数指令 Kecを出力す る。
そして、ステップ S35においては、所定の減算タイマーの作動を開始する。 そして、ステップ S36においては、減算タイマーの作動が終了した力否かを判定す る。
この判定結果が「YES」の場合には、一連の処理を終了する。
一方、この判定結果が「NO」の場合には、上述したステップ S35に戻る。
[0101] ステップ S37においては、誘起電圧定数指令 Kecとして、界磁強め状態でのモータ 11の誘起電圧定数 Keに対する所定の指令値 (界磁強め位相用 Ke指令)を設定し て、一連の処理を終了する。
[0102] つまり、変速比変化量が所定変化量以上となる場合、つまりトランスミッション TZM の状態が相対的に変速比が小さ!、状態 (ハイギア側)力も大き!、状態 (ローギア側) に変化する場合に、モータ 11を界磁弱め状態に設定することにより、モータ 11の回 生作動による過剰な充電や PDU17等の電力機器に対する突入電流の発生を抑制 できる。
し力も、界磁弱め位相指令の出力は、減算タイマーの作動終了後に停止される。し たがって、変速比の変化後に車両 10の走行状態が相対的に安定した状態で、内周 側回転子 21と外周側回転子 22との界磁状態を界磁弱め状態から界磁強め状態に 移行させることができる。 [0103] 図 12に示すステップ S41においては、外部の制御装置等から出力される駆動輪選 択指令を取得する。
次に、ステップ S42においては、取得した駆動輪選択指令において、総輪駆動状 態が設定されて!ヽるか否かを判定する。
この判定結果が「NO」の場合、つまり前輪駆動状態または後輪駆動状態が設定さ れている場合には、ステップ S43に進み、このステップ S43においては、誘起電圧定 数指令 Kecとして、界磁弱め状態でのモータ 11の誘起電圧定数 Keに対する所定の 指令値 (界磁弱め位相用 Ke指令)を設定して、一連の処理を終了する。
一方、この判定結果力 S「YES」の場合、つまり総輪駆動状態が設定されている場合 には、ステップ S44〖こ進み、このステップ S44においては、誘起電圧定数指令 Kecに 対する界磁弱め位相用 Ke指令の設定を解除し、一連の処理を終了する。
[0104] つまり、前輪側または後輪側の駆動輪のみの駆動状態では、非駆動状態のモータ 11を界磁弱め状態に設定することにより、このモータ 11の逆起電圧によって車両 10 に対する制動作用が生じてしまうことを抑制できる。
[0105] なお、上述した実施形態の第 1変形例においては、油圧制御部 62および油圧セン サ 81の代わりに、位相制御部および位相センサを備えてもよ!、。
この場合、位相制御部は、例えば誘起電圧定数差分算出部 84から出力される誘 起電圧定数差分 AKeに応じて、界磁弱め状態での内周側回転子 21と外周側回転 子 22との相対的な位相 Θを出力する。そして、位相制御装置 25は、位相制御部から 入力された位相 Θに応じて、内周側軸部材 36内部の複数の油路 40のうちの何れか 1つを選択し、選択した油路 40に対して位相制御装置 25から油圧を供給する。位相 センサは、例えば位相制御装置 25において油圧が供給される油路 40に応じて、界 磁弱め状態での内周側回転子 21と外周側回転子 22との相対的な位相 Θを検出す る。
[0106] なお、上述した実施形態において、ノ、イブリツド車両である車両 10は、例えば図 13 に示すように、ノ ッテリ(B) 18を直流電源とする PDU17により駆動および回生作動 が制御され、位相制御装置 25を具備するモータ (MZG) 11の回転軸 Oとクラッチ 13 を介して内燃機関 (E) 12のクランク軸 Qに接続されたトランスミッション TZMの入力 軸 Rとが動力伝達機構 14によって接続され、モータ (MZG) 11と内燃機関 (E) 12と の各駆動力がディファレンシャル 15を介して駆動輪 Wに伝達されるとした。しかしな 力 本願発明はこれに限定されず、例えば図 14に示す第 2変形例に係る車両 10の ように、クラッチ 13が省略されてもよい。
また、例えば図 15に示す第 3変形例に係る車両 10のように、内燃機関 (E) 12とクラ ツチ 13との間に、内燃機関 ) 12のクランク軸 Qおよびクラッチ 13に直列に接続され た回転軸を有する電動機 (MZG) 91を、車両 10の走行駆動源、あるいは内燃機関 (E) 12を始動させるスタータモータおよびオルタネータとして備えてもよい。
また、この第 3変形例において、例えば図 16に示す第 4変形例に係る車両 10のよう に、クラッチ 13および動力伝達機構 14を省略すると共に、モータ(M) 11の回転軸 O とトランスミッション TZMの入力軸 Rとを同軸に連結してもよい。この場合、内燃機関 (E) 12に直列に接続された電動機 (G) 91は、内燃機関 (E) 11の駆動力により発電 する。この発電により得られる発電エネルギーは、インバータ 92を介してバッテリ(B) 18に蓄電される。
[0107] なお、上述した実施形態、および、各第 2〜第 4変形例に係る車両 10においては、 例えば図 17〜図 20に示す各第 5〜第 8変形例に係る車両 10のように、トランスミツシ ヨン TZMが省略されてもよ!、。
[0108] また、上述した図 19に示す第 7変形例に係る車両 10においては、例えば図 21に 示す第 9変形例に係る車両 10のように、電動機 (G) 91に代わりに、内燃機関 (E) 12 の出力を、内燃機関 (E) 12のクランク軸 Qに同軸に連結されたロータ (R) 93aと、クラ ツチ 13を介して動力伝達機構 14に接続される出力軸 Sに連結されたステータ 93bと の間で分配するモータ 93を備えてもよい。
[0109] また、上述した図 20に示す第 8変形例に係る車両 10においては、例えば図 22に 示す第 10変形例に係る車両 10のように、内燃機関 (E) 12のクランク軸 Qと、モータ( M) 11の回転軸 Oと、電動機 (G) 91の回転軸 Tとを、プラネタリギア機構 (P) 94に接 続してちょい。
[0110] また、上述した実施形態に係る車両 10においては、例えば図 23に示す第 11変形 例に係る車両 10のように、クラッチ 13および動力伝達機構 14を省略すると共に、内 燃機関 (E) 12と、モータ (MZG)と、トランスミッション TZMとを直列に直結してもよ い。
[0111] また、上述した図 19に示す第 7変形例に係る車両 10においては、例えば図 24に 示す第 12変形例に係る車両 10のように、さらに、バッテリ(B) 18を直流電源とする第 2の PDU17により駆動および回生作動が制御され、第 2の位相制御装置 25を具備 する第 2のモータ(MZG) 11の駆動力が第 2のディファレンシャル 15を介して他の駆 動輪 Wに伝達されるように構成してもよ ヽ。
[0112] なお、上述した実施形態に係る車両 10においては、モータ 11を、内燃機関 ) 12 を始動させるスタータモータまたはオルタネータとして備えてもよい。
[0113] 以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定される ことはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびそ の他の変更が可能である。本発明は前述した説明によって限定されることはなぐ添 付のクレームの範囲によってのみ限定される。
産業上の利用可能性
[0114] 本発明のモータ装備車両によれば、車両を走行駆動あるいは内燃機関による車両 の走行駆動を補助するモータに対して、内周側ロータの磁石片と外周側ロータの磁 石片との相対位置を効率よく変更できる。これにより、外周側ロータの磁石片による界 磁磁束が固定子卷線を鎖交する鎖交磁束量を、内周側ロータの磁石片による界磁 磁束によって能動的に効率よく増大あるいは低減させることができ、外周側ロータの 磁石片の界磁磁束に対する内周側ロータの磁石片の界磁磁束による界磁強め状態 と界磁弱め状態との間の状態変化を連続的に設定でき、モータの誘起電圧定数を 適宜の値に連続的に変化させることができる。

Claims

請求の範囲
[1] 蓄電装置力もの電源供給を受け、走行駆動あるいは内燃機関による車両の走行駆 動を補助するモータを備えるモータ装備車両であって、
前記モータは、
各磁石片を具備すると共に互いの回転軸が同軸に配置された内周側ロータおよび 外周側ロータと;
前記内周側ロータおよび前記外周側ロータの外周側または内周側に配置されたス テータと;
前記内周側ロータと前記外周側ロータとの相対的な位相を変更可能な位相変更手 段と;
を備えることを特徴とするモータ装備車両。
[2] 蓄電装置力もの電源供給を受け、走行駆動する内燃機関を始動させるモータを備 えるモータ装備車両であって、
前記モータは、
各磁石片を具備すると共に互いの回転軸が同軸に配置された内周側ロータおよび 外周側ロータと;
前記内周側ロータおよび前記外周側ロータの外周側または内周側に配置されたス テータと;
前記内周側ロータと前記外周側ロータとの相対的な位相を変更可能な位相変更手 段と;
を備えることを特徴とするモータ装備車両。
[3] 請求項 1または請求項 2に記載のモータ装備車両であって、
前記内周側ロータの前記磁石片および前記外周側ロータの前記磁石片は、前記 位相変更手段による少なくとも前記内周側ロータおよび前記外周側ロータの何れか 一方の回動により、前記回転軸に平行な方向に対する断面において、前記内周側口 ータの前記磁石片の長辺と前記外周側ロータの前記磁石片の長辺とが対向するよう に配置されてなるモータ装備車両。
[4] 請求項 1または請求項 2に記載のモータ装備車両であって、 前記位相変更手段は、前記モータ装備車両の運転状態に応じて前記内周側ロー タと前記外周側ロータとの相対的な位相を変更するモータ装備車両。
[5] 請求項 4に記載のモータ装備車両であって、
前記位相変更手段は、変速機の変速比に応じて前記内周側ロータと前記外周側口 ータとの相対的な位相を変更するモータ装備車両。
[6] 請求項 5に記載のモータ装備車両であって、
前記位相変更手段は、変速機の変速比が所定値未満となる場合に、前記内周側 ロータの前記磁石片による界磁磁束と前記外周側ロータの前記磁石片による界磁磁 束とによる相互の界磁弱め状態となるように、前記内周側ロータと前記外周側ロータ との相対的な位相を変更するモータ装備車両。
[7] 請求項 5に記載のモータ装備車両であって、
前記位相変更手段は、変速機の変速比の変化量が所定値以上となる場合に、前 記内周側ロータの前記磁石片による界磁磁束と前記外周側ロータの前記磁石片に よる界磁磁束とによる相互の界磁弱め状態となるように、前記内周側ロータと前記外 周側ロータとの相対的な位相を変更するモータ装備車両。
[8] 請求項 1または請求項 2に記載のモータ装備車両であって、
前記モータは、
前記内周側ロータに具備される内周側端面板の内部に設けられ、外部から油圧が 供給される一端部と前記内周側端面板の外周面上で開口する他端部とを具備する 油路と;
前記他端部に収容され、前記油圧によって前記他端部の開口端から外部に突出 可能とされた可動ピン部材と;
前記外周側ロータに具備される外周側端面板の内周面上に設けられ、前記内周側 端面板の外周面上力 突出する前記可動ピン部材の先端部を収容可能な収容穴と を備えるモータ装備車両。
[9] 請求項 1または請求項 2に記載のモータ装備車両であって、
前記モータは、 前記内周側ロータに具備される内周側端面板の内部に設けられ、外部から油圧が 供給される各一端部と前記内周側端面板の外周面上の周方向に沿った各位置で開 口する各他端部とを具備する複数の油路と;
前記各他端部に収容され、前記油圧によって前記各他端部の各開口端から外部 に突出可能とされた複数の可動ピン部材と;
前記外周側ロータに具備される外周側端面板の内周面上に設けられ、前記内周側 端面板の外周面上から突出する各前記可動ピン部材の各先端部を収容可能な複数 の収容穴と;
を備えるモータ装備車両。
[10] 前輪側および後輪側の一方の駆動輪の駆動源とされる内燃機関と;
蓄電装置力 の電源供給により駆動され、他方の駆動輪の駆動源とされるモータと を備えるモータ装備車両であって、
前記モータは、
各磁石片を具備すると共に互いの回転軸が同軸に配置された内周側ロータおよび 外周側ロータと;
前記内周側ロータおよび前記外周側ロータの外周側または内周側に配置されたス テータと;
前記内周側ロータと前記外周側ロータとの相対的な位相を変更可能な位相変更手 段と;
を備えることを特徴とするモータ装備車両。
[11] 蓄電装置からの電源供給により駆動され、前輪側および後輪側の一方の駆動輪の 駆動源とされる第 1モータと;
蓄電装置力 の電源供給により駆動され、他方の駆動輪の駆動源とされる第 2モー タと;
を具備するモータ装備車両であって、
少なくとも前記第 1モータおよび前記第 2モータの何れか一方は、
各磁石片を具備すると共に互いの回転軸が同軸に配置された内周側ロータおよび 外周側ロータと;
前記内周側ロータおよび前記外周側ロータの外周側または内周側に配置されたス テータと;
前記内周側ロータと前記外周側ロータとの相対的な位相を変更可能な位相変更手 段と;
を備えることを特徴とするモータ装備車両。
[12] 蓄電装置力もの電源供給により駆動され、内燃機関と共に、前輪側および後輪側 の一方の駆動輪の駆動源とされる第 1モータと;
蓄電装置力 の電源供給により駆動され、他方の駆動輪の駆動源とされる第 2モー タと;
を具備するモータ装備車両であって、
少なくとも前記第 1モータおよび前記第 2モータの何れか一方は、
各磁石片を具備すると共に互いの回転軸が同軸に配置された内周側ロータおよび 外周側ロータと;
前記内周側ロータおよび前記外周側ロータの外周側または内周側に配置されたス テータと;
前記内周側ロータと前記外周側ロータとの相対的な位相を変更可能な位相変更手 段と;
を備えることを特徴とするモータ装備車両。
[13] 請求項 10から請求項 12の何れか 1つに記載のモータ装備車両であって、
前記位相変更手段は、前記前輪側および前記後輪側の前記駆動輪の駆動状態に おいて、前記内周側ロータの前記磁石片による界磁磁束と前記外周側ロータの前記 磁石片による界磁磁束とによる相互の界磁強め状態となるように、前記内周側ロータ と前記外周側ロータとの相対的な位相を変更し、
前記前輪側または前記後輪側の前記駆動輪の駆動状態にお!、て、前記内周側口 ータの前記磁石片による界磁磁束と前記外周側ロータの前記磁石片による界磁磁 束とによる相互の界磁弱め状態となるように、前記内周側ロータと前記外周側ロータ との相対的な位相を変更するモータ装備車両。
PCT/JP2007/052963 2006-02-28 2007-02-19 モータ装備車両 WO2007105415A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/281,108 US7755314B2 (en) 2006-02-28 2007-02-19 Electric-motor-equipped vehicle
EP07714489A EP1990896A4 (en) 2006-02-28 2007-02-19 MOTOR VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-052045 2006-02-28
JP2006052045A JP4975337B2 (ja) 2006-02-28 2006-02-28 モータを備える車両

Publications (1)

Publication Number Publication Date
WO2007105415A1 true WO2007105415A1 (ja) 2007-09-20

Family

ID=38509253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052963 WO2007105415A1 (ja) 2006-02-28 2007-02-19 モータ装備車両

Country Status (5)

Country Link
US (1) US7755314B2 (ja)
EP (1) EP1990896A4 (ja)
JP (1) JP4975337B2 (ja)
CN (1) CN101432948A (ja)
WO (1) WO2007105415A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006001741U1 (de) * 2006-02-04 2007-07-12 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg Verstellantrieb eines Kraftfahrzeugs
JP4556076B2 (ja) * 2008-04-22 2010-10-06 本田技研工業株式会社 電動機の制御装置
JP5404075B2 (ja) * 2009-01-30 2014-01-29 本田技研工業株式会社 電動機の制御装置
JP5218496B2 (ja) * 2010-08-04 2013-06-26 株式会社デンソー スタータ制御装置
JP2012125034A (ja) * 2010-12-08 2012-06-28 Hitachi Ltd 永久磁石式回転電機及びその回転子製造方法
JP6131691B2 (ja) * 2013-04-17 2017-05-24 株式会社ジェイテクト 回転電機
JP6162062B2 (ja) * 2014-03-14 2017-07-12 株式会社豊田中央研究所 回転電機の制御装置及び回転電機制御システム
JP6209469B2 (ja) * 2014-03-14 2017-10-04 株式会社豊田中央研究所 回転電機の制御装置及び回転電機制御システム
JP6349845B2 (ja) * 2014-03-26 2018-07-04 株式会社豊田中央研究所 回転電機の制御装置及び回転電機制御システム
DE102015211531B4 (de) 2015-06-23 2018-04-05 Schaeffler Technologies AG & Co. KG Elektrische Maschine mit variabler Motorkonstante, Aktor mit der elektrischen Maschine und Verfahren zur Variation der Motorkonstante der elektrischen Maschine
CN108944740B (zh) * 2018-07-10 2022-04-29 深圳市斗索科技有限公司 车辆控制方法和系统
JP2021079893A (ja) * 2019-11-22 2021-05-27 株式会社ジェイテクト 操舵制御装置
US11557988B2 (en) * 2020-01-28 2023-01-17 Goodrich Corporation Hybrid regeneration brake system
JP2022157088A (ja) 2021-03-31 2022-10-14 本田技研工業株式会社 回転電機のロータ
CN113949243B (zh) * 2021-04-07 2023-07-07 国家电投集团科学技术研究院有限公司 永磁齿轮变速装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147596A (ja) * 2000-08-30 2002-05-22 Honda Motor Co Ltd 電気自動車におけるインホイール変速機の制御装置
JP2002204541A (ja) 2000-11-01 2002-07-19 Shin Etsu Chem Co Ltd 永久磁石型回転電動機
JP2004169782A (ja) * 2002-11-19 2004-06-17 Honda Motor Co Ltd ハイブリッド車両のクラッチ制御装置
JP2005304182A (ja) * 2004-04-12 2005-10-27 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2006052045A (ja) 2004-08-11 2006-02-23 Kyocera Mita Corp 画像形成装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2863234B2 (ja) * 1989-12-27 1999-03-03 アイシン・エィ・ダブリュ株式会社 電動車両
JP4473448B2 (ja) 1998-07-21 2010-06-02 株式会社東京アールアンドデー ハイブリッド車両
JP3468726B2 (ja) 1999-09-01 2003-11-17 株式会社日立製作所 ハイブリッド車及び回転電機
JP4029592B2 (ja) * 2001-09-05 2008-01-09 株式会社日立製作所 補助駆動装置およびこれを搭載した自動車
FR2831345A1 (fr) * 2001-10-24 2003-04-25 Renault Machine electrique a defluxage mecanique
JP4225001B2 (ja) * 2002-08-09 2009-02-18 株式会社エクォス・リサーチ 電動機
JP2004260970A (ja) 2003-02-27 2004-09-16 Toyota Motor Corp 電動機および電動機システム
JP4886624B2 (ja) * 2007-07-11 2012-02-29 株式会社日立製作所 永久磁石式回転電機、及び永久磁石式回転電機システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147596A (ja) * 2000-08-30 2002-05-22 Honda Motor Co Ltd 電気自動車におけるインホイール変速機の制御装置
JP2002204541A (ja) 2000-11-01 2002-07-19 Shin Etsu Chem Co Ltd 永久磁石型回転電動機
JP2004169782A (ja) * 2002-11-19 2004-06-17 Honda Motor Co Ltd ハイブリッド車両のクラッチ制御装置
JP2005304182A (ja) * 2004-04-12 2005-10-27 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2006052045A (ja) 2004-08-11 2006-02-23 Kyocera Mita Corp 画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1990896A4

Also Published As

Publication number Publication date
US20090001914A1 (en) 2009-01-01
JP2007236049A (ja) 2007-09-13
EP1990896A1 (en) 2008-11-12
US7755314B2 (en) 2010-07-13
CN101432948A (zh) 2009-05-13
EP1990896A4 (en) 2009-04-01
JP4975337B2 (ja) 2012-07-11

Similar Documents

Publication Publication Date Title
WO2007105415A1 (ja) モータ装備車両
EP2139106B1 (en) Controller for motor
US8040093B2 (en) Motor controller
EP1928084B1 (en) Motor control method and motor control apparatus
EP3021477B1 (en) Inverter device and electric vehicle
US7898200B2 (en) Controller of electric motor
US7872440B2 (en) Controller of electric motor
US7898199B2 (en) Controller for motor
JP4971039B2 (ja) モータ制御装置
US7741792B2 (en) Motor control device
JP4643508B2 (ja) 電動機の制御装置
JP2008062688A (ja) モータの制御装置
JP2007195387A (ja) インバータ
JP2017175759A (ja) 自動車
JP4805128B2 (ja) モータ制御装置
JP2009166652A (ja) ハイブリッド車両の制御装置
JP2008067499A (ja) 回転電機を具備する車両
Liu et al. A wide-range adjustable speed control method for multi-motor drive systems
JP2009005453A (ja) モータ駆動車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07714489

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007714489

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12281108

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200780015211.0

Country of ref document: CN