WO2007099670A1 - フェノール樹脂の製造方法、およびエポキシ樹脂の製造方法 - Google Patents

フェノール樹脂の製造方法、およびエポキシ樹脂の製造方法 Download PDF

Info

Publication number
WO2007099670A1
WO2007099670A1 PCT/JP2006/321840 JP2006321840W WO2007099670A1 WO 2007099670 A1 WO2007099670 A1 WO 2007099670A1 JP 2006321840 W JP2006321840 W JP 2006321840W WO 2007099670 A1 WO2007099670 A1 WO 2007099670A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
group
resin
phenol
compound
Prior art date
Application number
PCT/JP2006/321840
Other languages
English (en)
French (fr)
Inventor
Kazuo Arita
Ichirou Ogura
Kunihiro Morinaga
Original Assignee
Dic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006052537A external-priority patent/JP4285491B2/ja
Priority claimed from JP2006090758A external-priority patent/JP4259536B2/ja
Application filed by Dic Corporation filed Critical Dic Corporation
Priority to EP06822769A priority Critical patent/EP1992655B9/en
Priority to US12/280,941 priority patent/US20090088535A1/en
Priority to CN2006800532986A priority patent/CN101384642B/zh
Publication of WO2007099670A1 publication Critical patent/WO2007099670A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/063Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols

Definitions

  • the present invention relates to a method for producing a phenolic resin having a polyarylene ether structure by a simple method, and a method for producing an epoxy resin using this as a raw material.
  • Epoxy resin or phenol resin is widely used in the electronics field from the viewpoint of providing a cured product having low shrinkage during curing, dimensional stability of the cured product, and excellent electrical insulation and chemical resistance. Yes.
  • the electronics field such as semiconductor encapsulating materials
  • the surface mounting of semiconductors aimed at increasing the density of electronic components, the miniaturization of semiconductors themselves, or the reflow resistance associated with the shift to lead-free solder Due to demands for properties, etc.
  • higher thermal shock resistance is required for electronic component materials. For this reason, materials with low melt viscosity that can be filled with fillers are required.
  • an epoxy resin composition mainly composed of diglycidyl ether of dihydroxytri (phenol ether) is known (see below). Reference 1).
  • the diglycidyl ether precursor dihydroxytri (ferene ether)
  • dihydroxytri ferene ether
  • polyarylene ether is usually produced by reacting dihydroxybenzene in the presence of an acid catalyst.
  • dihydroxybenzene is subjected to a dehydration condensation reaction in the presence of such an acid catalyst, it usually becomes a high molecular weight polyphenylene ether having a number average molecular weight (Mn) of 5000 to 25000. It was difficult to apply to the sealing material of electronic parts and printed board materials because of its high point and high melt viscosity!
  • the environment represented by the dioxin problem is representative. It is indispensable to deal with environmental problems, and there is a demand for a so-called halogen-free flame retardant system in which a resin itself has a flame retardant effect without using an additive halogen flame retardant!
  • the polyphenylene ether is preferable.
  • the powerful polyphenylene ether has a high molecular weight during synthesis, and therefore, generally, the demand for high fluidity of the material is high, and it is difficult to apply it to the electronics field. It was. From such a viewpoint, for example, a method of reducing the molecular weight by reacting a high molecular weight polyarylene ether with a monofunctional phenol has been proposed (see, for example, Patent Document 2).
  • the modified polyarylene ether obtained by the low molecular weight method of the polyarylene ether can achieve a certain degree of molecular weight reduction, and although it can be used as a varnish composition in combination with a solvent, it is particularly useful for electronic components.
  • a molding temperature specifically 150 to 200 ° C.
  • the curing time is extremely slow, and a practical cured product can be obtained. It was the current situation.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-313025
  • Patent Document 2 JP 2003-160662 A
  • the problem to be solved by the present invention is to industrially produce a polyarylene ether having a low melt viscosity by an extremely simple method without requiring a special post-treatment after polymerization or a complicated multistage reaction.
  • Another object of the present invention is to provide a method for producing a possible phenolic resin and a method for producing an epoxy resin from the phenolic resin obtained by the production method.
  • the present invention is characterized in that a polyhydric hydroxy aromatic compound (A) having two or more phenolic hydroxyl groups in one molecule is subjected to a dehydration condensation reaction in the presence of a basic catalyst (B).
  • A polyhydric hydroxy aromatic compound having two or more phenolic hydroxyl groups in one molecule
  • B basic catalyst
  • the present invention relates to a method for producing phenolic resin having a polyarylene ether structure.
  • the present invention further provides a method for producing epoxy resin having a polyarylene ether structure, characterized by reacting phenol resin obtained by the above production method with (methyl) epino or rhohydrin. About.
  • a phenolic sol capable of industrially producing a polyarylene ether having a low melt viscosity by an extremely simple method without requiring a special post-treatment after polymerization or a complicated multistage reaction. It is possible to provide a method for producing an epoxy resin from a phenol resin obtained by the production method of a fat and the production method.
  • FIG. 1 is a GPC chart of phenolic resin obtained in Example 1.
  • FIG. 2 is an FT-IR chart of phenol resin obtained in Example 1.
  • FIG. 3 is a mass spectrum of phenol resin obtained in Example 1.
  • FIG. 4 is a trimethylsilylation mass spectrum of phenol resin obtained in Example 1.
  • FIG. 5 is a GPC chart of phenol resin obtained in Example 2.
  • FIG. 6 is a GPC chart of phenol resin obtained in Example 3.
  • FIG. 7 is a GPC chart of phenol resin obtained in Example 4.
  • FIG. 8 is a GPC chart of phenol resin obtained in Example 5.
  • the polyvalent hydroxyaromatic compound (A) having two or more phenolic hydroxyl groups in one molecule used in the production method of the present invention is, for example, 1,3-dihydroxynaphthalene, 1, Dihydroxynaphthalenes such as 6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,7-dihydroxynaphthalene (al), 1,3-dihydroxybenzene 1,4-dihydroxybenzene, 2, 3,5-trimethylenole 1,4-dihydroxybenzene, dihydroxybenzenes such as 5-phenolele 1,3-dihydroxybenzene (a2), 1,2,3-trihydroxynaphthalene, etc.
  • 1,3-dihydroxynaphthalene 1, Dihydroxynaphthalenes such as 6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 1,8-dihydroxynaphthal
  • trihydroxysinaphthalene (a3) 1, 2, 3-trihydroxybenzene, 1, 3, 6-trihydroxybenzene And trihydroxybenzenes such as (a4), and compounds (a5) having an alkyl group or furan group having 1 to 4 carbon atoms as a substituent in the aromatic nucleus of these compounds.
  • those having an orientation at a position adjacent to the phenolic hydroxyl group are particularly preferred for the aromatic nucleus formed by bonding a phenolic hydroxyl group.
  • Dihydroxynaphthalene, 1,6-Dihydroxynaphthalene, 1,8-Dihydroxynaphthalene, 2,7-Dihydroxynaphthalene, 1,3-Dihydroxybenzene, 5-Phenenole 1,3-Dihydroxybenzene, 1, 2, 3-Trihydroxy Benzene and 1,3,6-trihydroxybenzene are preferred.
  • dihydroxynaphthalenes (al) or dihydroxybenzenes (a2) are preferable from the viewpoint that the melt viscosity of the finally obtained phenol resin or epoxy resin, which is an epoxidized product thereof, can be lowered.
  • dihydroxynaphthalenes (al) selected from 1,6-dihydroxynaphthalene and 2,7-dihydroxynaphthalene are preferred, and epoxy resin that provides 2,7-dihydroxynaphthalene in particular.
  • the point power which is excellent in the balance between fluidity and flame retardancy is also preferable.
  • polyhydroxy hydroxy aromatic compound (A) having two or more phenolic hydroxyl groups in one molecule used in the production method of the present invention includes the dihydroxynaphthalene (al) and the dihydroxybenzene ( The mixture of a2) may be good!
  • the basic catalyst (B) used as a reaction catalyst in the production method of the present invention specifically includes alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, sodium carbonate, Examples thereof include alkali metal carbonates such as potassium carbonate and phosphorus compounds such as triphenylphosphine. These basic catalysts (B) can be used alone or in combination of two or more.
  • the amount of the basic catalyst (B) used may be appropriately selected depending on the type of the basic catalyst (B), the target reaction rate, and the like. In the case of using a metal hydroxide, 0.01 to 0.5 mol, preferably 0.01 to 0.1 is used per 1 mol of the phenolic hydroxyl group of the polyvalent hydroxyaromatic compound (A). Is preferred [0016] It should be noted here that when polyfunctional phenols are usually used, acid catalysts such as baratolene sulfonic acid and methanesulfonic acid are used. In this case, the degree of polymerization is controlled.
  • the melting point is very high, or the polymer has a high molecular weight that does not melt to the decomposition point, and it is difficult to apply to electronic component materials that require high fluidity.
  • the basic catalyst (B) as a reaction catalyst, the total number of nuclei is surprisingly 2 to 8, preferably 3 to 3, without any high molecular weight of the reaction product. This is in that 6 phenolic fats are obtained. Therefore, the phenol resin or an epoxy resin obtained by epoxidizing it is a material having both excellent flame retardancy and high fluidity.
  • the above reaction can be carried out in the absence of a solvent or in a soluble solvent that forms a homogeneous solution, depending on the characteristics of the polyvalent hydroxyaromatic compound (A) used. It is preferable to perform the reaction in the absence of a solvent because a solvent recovery step is unnecessary, but it is preferable to perform the reaction in the presence of a solvent in order to allow the reaction to proceed stably.
  • Examples of the soluble solvent include alcohols such as benzyl alcohol, cyclohexanol, and amyl alcohol, ethylene glycols such as ethylene glycol, diethylene glycol, triethylene glycol, and polyethylene glycol, and ethylene glycol monomethylol.
  • Etherenole ethylene glycol monoethanolino etherenole, ethylene glycol mononomonopropinoreatenore, diethyleneglycolenomonomonochinenoatenore, diethyleneglyconeremonotechinoreatenore, diethyleneglycolenomonopropenoatenore , Gethylenol Monobutinoleetenore, Ethylene Glycono Resin, Metinoreetenore, Ethylene Glico Receno Ethylene glycol, diethylene glycol, monoethylene or diether, black benzene, nitrobenzene, etc. Can be mentioned.
  • These organic solvents can be used alone or in combination of several kinds. By using such a soluble solvent, precipitation of the salt of the polyvalent hydroxyaromatic compound (A) is prevented, and a phenolic resin can be stably obtained.
  • the reaction may be carried out in the absence of a solvent or in the presence of the soluble solvent.
  • the basic catalyst (B) is dissolved in the divalent hydroxy aromatic compound (A), and the reaction can be carried out at a temperature of about 100 to 300 ° C, preferably about 150 to 250 ° C.
  • the reaction time is not particularly limited, but is preferably in a range where the temperature condition can be maintained for 1 to 10 hours.
  • water generated during the reaction is distilled out of the system by using a fractionating tube or the like in order to rapidly advance the reaction and improve productivity.
  • an antioxidant or a reducing agent may be added.
  • the antioxidant include hindered phenol compounds such as 2,6-dialkylphenol derivatives, divalent thio compounds, and phosphite compounds containing a trivalent phosphorus atom.
  • the reducing agent include hypophosphorous acid, phosphorous acid, thiosulfuric acid, sulfurous acid, hydrosulfite, and salts thereof.
  • the catalyst can be removed by neutralization treatment, water washing treatment or decomposition, and phenol resin can be separated by general operations such as extraction and distillation.
  • the neutralization treatment and the water washing treatment may be carried out in accordance with conventional methods.
  • acidic substances such as hydrochloric acid, oxalic acid, acetic acid, monobasic sodium phosphate, and carbon dioxide can be used.
  • the phenol resin having a polyarylene ether structure obtained in this way can be used for various applications as a mixture of a plurality of types. If necessary, further distillation can be used for column treatment, alkali treatment. Separation operations such as aqueous solution extraction can be added to reduce the content of the unreacted polyvalent hydroxyaromatic compound (A), and each product can be isolated as a single component. Good
  • the phenol resin obtained by the above production method has a structure in which an arylene structure is bonded to another arylene structure via an oxygen atom, and the arylene group per molecule is The total number of aromatic nuclei constituting is 2 to 8, and the aromatic nucleus has a molecular structure having a phenolic hydroxyl group as a substituent.
  • the phenolic resin has a polyaryleneoxy structure in which the arylene structure is bonded to another arylene structure via an oxygen atom in the molecular structure. Formation of the product promotes excellent flame retardancy and the resistance of the cured product. Thermal properties are also good. Furthermore, since the total number of aromatic nuclei per molecule is 2-8, preferably 3-6, it also has excellent fluidity.
  • the arylene group constituting the phenolic resin particularly has a flame retardant point of force such as naphthalene group, phenylene group, methyl group, ethyl group, propyl group, t-butyl group, etc.
  • a flame retardant point of force such as naphthalene group, phenylene group, methyl group, ethyl group, propyl group, t-butyl group, etc.
  • a flame retardant point power is preferably naphthalene group or phenylene group, and particularly preferably naphthalene group.
  • the phenolic resin specifically has a structure in which a naphthalene structure is bonded to another arylene structure via an oxygen atom, and the naphthalene structure and the arylene group per molecule. It is preferable that the total number of aromatic nuclei constituting 2 is 8 to 8, and that the aromatic nuclei further have a phenolic hydroxyl group as a substituent.
  • examples of the naphthalene structure constituting the phenol resin include naphthalene structures having two to three bonding positions of the oxy group.
  • the bonding position of the oxy group Specifically, it is preferable that the structure has two bonds, such as the bonding position force with the oxy group 1,3,1,6,1,7,1,8,2,3, The 2nd and 7th positions are preferred.
  • the 1st, 6th, 2nd and 7th positions are preferred from the viewpoint of easy production, and the 2nd and 7th positions are particularly favorable for fluidity and flame retardancy.
  • a point power excellent in balance is also preferable.
  • the naphthalene structure may have no substituent, or be a methyl group or a phenyl group, particularly from the viewpoint of flame retardant effect, regarding the substituent on the other aromatic nucleus of the oxy group. Preferred, especially preferred to be unsubstituted.
  • the phenol resin may form a molecular structure in which a plurality of arylene structures form a direct bond.
  • examples of other arylene structures bonded to the naphthalene structure through an oxygen atom in the phenol resin include the naphthalene structure and the phenol structure.
  • examples of the phenol structure include those having two or three bonding positions with the oxy group.
  • a methyl group, an ethyl group, or a propyl group is formed on the aromatic nucleus.
  • Group, t alkyl group or phenyl having 1 to 4 carbon atoms such as butyl group You may have a group.
  • a phenolic structure having two bonding positions of the oxy group is preferred.
  • the bonding positions of the oxy group are the 1, 3-position, 1, 4-position, and Forces that can be listed in the 1st and 5th positions.
  • the 1st and 3rd positions are preferred from the viewpoint of easy production.
  • the substituent on the aromatic nucleus of the other arylene structure it is particularly preferable that it does not have the substituent, or is a methyl group or a phenyl group, particularly from the viewpoint of flame retardancy. It preferably has no such substituent.
  • the other arylene structure also has the above-mentioned naphthalene group in terms of the flame retardant effect.
  • the strong phenol resin has a structure represented by the following general formula (1).
  • each Ar is independently a naphthylene group, a phenol group, or a naphthylene group or a phenyl group having an alkyl group or a phenyl group having 1 to 4 carbon atoms as a substituent.
  • Each of R 2 independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • n and m are each an integer of 0 to 2
  • R 1 represents a hydrogen atom or a hydroxy group-containing aromatic hydrocarbon group represented by the following general formula (12), provided that the total number of aromatic nuclei in the formula is 2-8.
  • the bonding position to the naphthalene skeleton may be any of the two rings constituting the naphthalene ring.
  • each Ar is independently a naphthylene group, a phenylene group, or carbon. It represents a naphthylene group or a phenylene group having an alkyl group or a phenyl group having 1 to 4 atoms as a substituent, and p is an integer of 1 or 2.
  • the bonding positions with the oxy group in the naphthalene structure are 1, 6 and 2, 7 positions
  • the bonding position with the oxy group in the phenylene group is 1,3-position.
  • R 2 is preferably a hydrogen atom. Therefore, specifically, the phenol resin preferably has the following structural formulas P-1 to P-17, assuming that the bonding position with the oxy group in the naphthalene structure is the 1,6-position.
  • a phenol resin having a bonding position with an oxy group at positions 2 and 7 has the following structural formula.
  • each of the above-mentioned compounds may be used alone, but may be used as a mixture.
  • the phenol resin described in detail above has a structure in which the naphthalene structure is bonded to another naphthalene structure via an oxygen atom, and the flame retardancy of the cured product is further improved.
  • the point power that provides good heat resistance is also preferable.
  • the strong phenol resin can be represented by, for example, the following general formula (2).
  • R 2 is independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • n or m is an integer of 0 to 2
  • either n or m One of them is an integer of 1 or more
  • R 1 is a hydrogen atom or the following general formula (2-2)
  • R 2 independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and p represents an integer of 1 or 2).
  • the total number of all aromatic nuclei is 2-8.
  • the bonding position to the naphthalene skeleton may be any of the two rings constituting the naphthalene ring.
  • R 2 is preferably a hydrogen atom, and specific examples thereof include those of the structural formulas P-1 to P-21.
  • the phenolic resin is usually obtained as a mixture of the compounds having the structures described above, and therefore the phenolic resin can be used as it is.
  • the reaction product also contains bifunctional phenols that are raw material components. Therefore, when using the phenol resin, it can be used as a mixture containing such raw material components.
  • the content of the bifunctional phenols in the mixture is preferably 5 to 80% in terms of area ratio as measured by GPC from the viewpoint of the fluidity of the epoxy resin composition.
  • the phenolic resin composition has a hydroxyl group equivalent in the range of 50 to 350 gZeq.
  • the resulting epoxy resin composition has good fluidity and excellent curability.
  • it is preferable that the molded cured product has excellent heat resistance.
  • the phenol resin detailed above can be used as a curing agent for epoxy resin, and can also be used as a raw material for epoxy resin.
  • epoxy resin curing agent for example, amine compounds, amide compounds, acid anhydride compounds, aminotriazine-modified phenolic resin (the phenol nucleus is linked with melamine, benzoguanamine, etc.). It can be used in combination with a curing agent such as a polyhydric phenol compound.
  • the epoxy resin when the phenol resin is used as a curing agent for epoxy resin includes, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type Epoxy resin, tetramethylbiphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, trimethane methane type epoxy resin, tetraphenol ether Type epoxy resin, dicyclopentagen monophenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthoaralkyl type epoxy resin, naphthol phenol co-condensed novolak type epoxy Examples thereof include resin, naphthol-cresol co-condensed novolak type epoxy resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, biphenyl-novolak type epoxy resin, and the like. These epoxy resins can be used alone or in combination.
  • biphenyl type epoxy resin, naphthalene type epoxy resin, phenol aralkyl type epoxy resin, biphenol novolac type epoxy resin and xanthene type epoxy resin are particularly suitable for flame retardancy and dielectric properties. It is especially preferred because of its excellent characteristics.
  • a curing accelerator can be used in combination as appropriate.
  • the curing accelerator include various powers that can be used, such as phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts.
  • the curing accelerator when used as a semiconductor encapsulating material, it is excellent in curability, heat resistance, electrical properties, moisture resistance reliability, etc., so that it is triphenylphosphine for phosphorus compounds and 1,8 diazabicyclo- [ 5. 4. 0 Wundesen (DBU) is preferred! / ⁇ .
  • the target epoxy resin can be produced by the method for producing an epoxy resin of the present invention described in detail below.
  • the method for producing an epoxy resin of the present invention is characterized in that a phenol resin having a polyarylene ether structure obtained by the above-described production method is reacted with (methyl) epoxyhalohydrin. .
  • Specific examples include a method of reacting phenol rosin and (methyl) ephalohydrin in the presence of a basic catalyst.
  • the charge ratio of phorol resin to (methyl) epino, rhohydrin is (methyl) epino, rhohydrin 2 to: 1 mol of aromatic hydroxyl group in phenolic resin.
  • the amount of the basic catalyst used be in the range of 0.9 to 2.0 mol per 1 mol of phenolic hydroxyl group in phenol resin. This is preferable from the viewpoint of reactivity and easy purification after completion of the reaction.
  • Specific reaction method in the production method Charge phenol resin, (methyl) epino, and rhohydrin into a reaction vessel at a predetermined ratio, and add the above basic catalyst all at once or gradually at a temperature of 20 to 120 ° C while adding 0.5 to 10 ° C. The method of making it react for time is mentioned.
  • the basic catalyst used here can be used as a solid or as an aqueous solution thereof.
  • the basic catalyst is continuously added, and water, (methyl) epino, and rhohydrin are continuously distilled from the reaction mixture under reduced pressure or normal pressure, and further separated.
  • Examples of the (methyl) epihalohydrin include, for example, epichlorohydrin, epip oral hydrhydrin, 13 methyl epichlorohydrin, and the like, and epicyclic hydrin is preferable because it is easily available industrially.
  • the reaction after the next batch is based on (methyl) epoxy halohydrin recovered from the crude reaction product and the amount consumed in the reaction. It is preferable to use a combination of new (methyl) epino and oral hydrin corresponding to the disappearance.
  • the basic catalyst include alkaline earth metal hydroxides, alkali metal carbonates, and alkali metal hydroxides.
  • alkali metal hydroxide is preferred because of its excellent catalytic activity for epoxy resin synthesis reaction.
  • these basic catalysts may be used in the form of an aqueous solution of about 10 to 55% by mass or in the form of a solid.
  • organic solvents include, but are not limited to, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol, ethanol, 1 propyl alcohol, isopropyl alcohol, 1-butanol, secondary butanol, and tertiary butanol.
  • the obtained epoxy resin is again dissolved in an organic solvent such as toluene, methyl isobutyl ketone, methyl ethyl ketone, and the like. Further reaction can be carried out by adding an aqueous solution of an alkali metal hydroxide such as sodium chloride.
  • a phase transfer catalyst such as quaternary ammonium salt crown ether may be present for the purpose of improving the reaction rate.
  • the amount used is preferably in the range of 0.1 to 3.0% by mass with respect to the total mass with the epoxy resin used.
  • the produced salt is removed by filtration, washing with water, etc., and further, a solvent such as toluene, methylisobutyl ketone, etc. is distilled off under heating and reduced pressure to obtain a high purity epoxy spirit.
  • the epoxy resin thus obtained has an arylene structure in which an arylene structure is bonded to another arylene structure via an oxygen atom as described above, and the naphthalene structure per molecule. And having a structure in which the total number of aromatic nuclei constituting the arylene group is 2 to 8 as a main skeleton. Therefore, since the cured product has an aryleneoxy structure as described above, the formation of a cheer during combustion of the cured product is promoted, and excellent flame retardancy is exhibited. On the other hand, since the total number of the aromatic nuclei per molecule is 2 to 8, it is an epoxy resin having excellent fluidity.
  • the arylene group constituting the epoxy resin particularly has a flame retardant point, such as naphthalene group, phenylene group, or carbon such as methyl group, ethyl group, propyl group, and t-butyl group.
  • a flame retardant point such as naphthalene group, phenylene group, or carbon such as methyl group, ethyl group, propyl group, and t-butyl group.
  • a flame retardant point power is preferably naphthalene group or phenylene group, and particularly preferably naphthalene group.
  • the epoxy resin specifically has a structure in which a naphthalene structure is bonded to another arylene structure via an oxygen atom, and the naphthalene structure and the arylene group per molecule. It is preferable that the total number of aromatic nuclei constituting is 2 to 8, and that the aromatic nuclei further have a (meth) glycidyloxy group as a substituent.
  • the naphthalene structure constituting the epoxy resin has two bonding positions of oxy groups.
  • a naphthalene structure having from 3 to 3 sites can be mentioned. More specifically, it is preferable to have a structure having two bonding positions of an oxy group from the viewpoint of the flowability of phenol resin. It is preferable that the force is 1,3,1,6,1,7,1,8,2,3,2,7.
  • the 1st, 6th, 2nd and 7th positions are preferred from the viewpoint of easy production, and the 2nd and 7th positions are particularly excellent because of a good balance between fluidity and flame retardancy. It is preferable.
  • the epoxy resin may form a molecular structure in which a plurality of arylene structures form a direct bond.
  • examples of the other arylene structure bonded to the above-described epoxy resin via an oxygen atom include the naphthalene structure and the fullerene structure.
  • the phenolic structure includes those having two or three bonding positions with the oxy group, and, in the same manner as in the case of the naphthalene structure, a methyl group, an ethyl group, a propyl group on the aromatic nucleus.
  • T having an alkyl group having 1 to 4 carbon atoms, such as a butyl group, or a phenyl group! /.
  • a phenolic structure having two bonding positions of oxy groups is preferred from the viewpoint of the fluidity of the phenol resin.
  • the bonding positions of the oxy groups are 1, 3, 1, 4 and 1 , 5th position is preferred
  • the 1st and 3rd positions are preferred from the viewpoint of easy production.
  • the substituent on the aromatic nucleus of the other arylene structure it is preferable that the substituent is not present, or that it is a methyl group or a phenyl group, particularly from the viewpoint of flame retardancy. In particular, it is preferable not to have the substituent.
  • the other arylene structure is the above-mentioned naphthalene group for the flame retardant effect.
  • the (methyl) glycidyloxy group in the molecular structure of the epoxy resin specifically includes a glycidyloxy group and a j8-methyldaricidyloxy group.
  • a glycidyloxy group is preferred because of the flame retardancy of the cured product and the availability of raw materials in industrial production of the epoxy resin.
  • the strong epoxy resin has a structure represented by the following general formula (3).
  • IT represents a hydrogen atom or a methyl group
  • Ar independently represents a naphthylene group, a phenol group, or an alkyl group or a phenyl group having 1 to 4 carbon atoms as a substituent.
  • R 2 represents each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, n and m are each an integer of 0 to 2, and n or m Either one is 1 or more, and R 1 represents a hydrogen atom or an epoxy group-containing aromatic hydrocarbon group represented by the following general formula (3-2), provided that the total number of aromatic nuclei in the formula is 2 to
  • the bonding position to the naphthalene skeleton may be any of the two rings constituting the naphthalene ring.
  • R 3 represents a hydrogen atom or a methyl group
  • Ar independently represents a naphthylene group, a phenylene group, or an alkyl group or a phenyl group having 1 to 4 carbon atoms. Represents a naphthylene group or a phenylene group having a group as a substituent, and P is an integer of 1 or 2.
  • the bonding positions with the oxy group in the naphthalene structure are 1, 6 and 2, 7 positions
  • the bonding position with the oxy group in the phenylene group is 1,3-position.
  • R 2 in the general formula (1) is A hydrogen atom is preferred. Therefore, among the epoxy resins (A), for example, those having a bonding position with the oxy group in the naphthalene structure at the 1,6-position are represented by the following structural formulas E-1 to E-17. Is Epoxy resin.
  • each of the above-mentioned compounds may be used alone, but may be used as a mixture.
  • the epoxy resin described in detail above has a structure in which the naphthalene structure is bonded to another naphthalene structure through an oxygen atom, so that the flame retardancy of the cured product is further improved.
  • a point force that also provides good heat resistance is preferable.
  • the strong epoxy resin can be represented by, for example, the following general formula (4).
  • R 1 is independently a methyl group or a hydrogen atom
  • R 2 is independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • n or m is Each is an integer of 0 to 2
  • either n or m is an integer of 1 or more
  • R 1 is a hydrogen atom or the following general formula (4 2)
  • R 3 independently represents a methyl group or a hydrogen atom
  • R 2 independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • p represents an integer of 1 or 2).
  • the total number of all aromatic nuclei is 2-8.
  • the bonding position to the naphthalene skeleton may be any of the two rings constituting the naphthalene ring.
  • R 2 is preferably a hydrogen atom, and specific examples thereof include those of the structural formulas E-1 to E-21. Further, among them, those having a bonding position with the oxy group represented by the structural formulas E-18 to E-21 are preferably 2 to 7 in view of excellent flame retardancy and heat resistance.
  • the use of a mixture of Formula E-18, Structural Formula E-19, and Structural Formula E-20 is preferable because of excellent balance between fluidity and flame retardancy.
  • the total number of all aromatic nuclei in the general formula (3) is particularly preferably 3 to 6 in terms of excellent balance of flame retardancy, heat resistance and fluidity.
  • the epoxy resin described in detail above is, for example, a dihydroxynaphthalene or a mixture of dihydroxycinaphthalenes and dihydroxybenzenes (hereinafter abbreviated as "bifunctional phenols") as an acid.
  • a catalyst After reacting in the presence of a catalyst, the low molecular weight substance is repeatedly extracted with an organic solvent, and the resulting phenolic resin can be obtained by glycidyl fermentation.
  • the reaction is performed in the presence of a basic catalyst. It is preferable to produce phenolic resin by squeezing it into a glycidyl oil, which is excellent in productivity of epoxy resin.
  • the epoxy resin thus obtained is usually obtained as a mixture of the compounds having the structures described above, the epoxy resin can be used as it is. Further, the reaction product contains a high molecular weight compound having a 2-hydroxypropylene group formed by a reaction between an epoxy group and a raw material phenol resin, and a raw material component. Also included are diglycidyl ethers of bifunctional phenols. Therefore, when using the epoxy resin of the present invention, it can be used as a mixture containing such a high molecular weight compound and raw material components. In the present invention, as described above, since the number of nuclei of epoxy resin can be kept low, the mixture is preferably used as a mixture of epoxy resin and diglycidyl ether of bifunctional phenols. . In addition, the diglycidyl ether content of the bifunctional phenols in the mixture is preferably 5 to 80% in terms of the area ratio as measured by GPC for the fluidity of the epoxy resin composition.
  • the epoxy resin described in detail above has an epoxy equivalent in the mixture of 100 to 4 OOg / eq., The resulting epoxy resin has good fluidity and excellent curability. An epoxy resin composition is obtained, and this is preferable from the viewpoint of excellent heat resistance of the molded cured product.
  • the melt viscosity of the epoxy resin may be 5.0 to 0. ImPa's at 150 ° C in the mixture, indicating that the resulting epoxy resin has good fluidity. This is preferable.
  • the epoxy resin may be used alone !, or may be used in combination with other epoxy resins within the range of V, which does not impair the effects of the present invention!
  • epoxy resins can be used, for example, bisphenol A type epoxy resins, bisphenol F type epoxy resins, biphenyl type epoxy resins. Oil, tetramethylbiphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentaene Reactive epoxy resin with phenol, phenol aralkyl epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl epoxy resin, naphthol phenol co-condensed nopolac type epoxy resin, naphthol-cresol co-condensation Novolac epoxy resin, aromatic hydrocarbon formaldehyde Modified phenol ⁇ epoxy ⁇ , Bifue - Le-modified novolac-type epoxy ⁇ the like.
  • these epoxy resins tetramethylbiphenol type epoxy resin,
  • the curing agent used in the epoxy resin obtained by the production method of the present invention is, for example, a hardener such as an amine compound, an amide compound, an acid anhydride compound, or a phenol compound.
  • a hardener such as an amine compound, an amide compound, an acid anhydride compound, or a phenol compound.
  • amine compounds include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF amine complexes, and guanidine derivatives.
  • Examples of the product include polyamide succinate synthesized from dimer of dicyandiamide and linolenic acid and ethylenediamine, and acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, Examples include maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydride oral phthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydric oral phthalic anhydride, etc. Phenolic compounds include phenol novolac resins.
  • Cresolol novolak resin aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin, naphthol aralkyl resin, trimethylol methane resin, tetraphenol-roll Ethane oil, naphthol novolac , Naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin (polyhydric phenol compound with phenol nucleus linked by bismethylene group), biphenyl-modified naphthol resin (Polyvalent naphtholic compounds in which phenolic nuclei are linked by bismethylene groups), aminotriazine-modified phenolic fats (polyvalent phenolic compounds in which phenolic nuclei are linked by melamine, benzoguanamine, etc.) Examples thereof include phenolic compounds and phenolic resins having a polyarylene
  • phenol novolac resin cresol novolac resin, aromatic hydrocarbon Formaldehyde oil-modified phenol resin, phenol aralkyl resin, naphthol aralkyl resin, naphthol novolak resin, naphthol phenol co-condensed novolac resin, naphthol-cresol co-condensed novolac resin, biphenol-modified phenol A resin, a biphenyl-modified naphthol resin, and an aminotriazine-modified phenol resin are preferable because of excellent flame retardancy.
  • An epoxy resin composition having a polyarylene ether structure obtained by the production method of the present invention described above in detail and having an epoxy resin as an essential resin component has been conventionally used. Even if the flame retardant is not added, the cured product has good flame retardancy. However, in order to exhibit a higher degree of flame retardancy, for example, in the field of semiconductor encapsulation materials! /, Do not reduce the moldability in the encapsulation process and the reliability of the semiconductor device! In the range, a non-halogen flame retardant containing substantially no halogen atom may be blended.
  • An epoxy resin composition containing a powerful non-halogen flame retardant contains substantially no halogen atom.
  • substantially no halogen atom For example, about 5000 ppm or less derived from epino and lohydrin contained in epoxy resin. Halogen atoms due to trace amounts of impurities may be included.
  • non-halogen flame retardant examples include phosphorus flame retardant, nitrogen flame retardant, silicone flame retardant, inorganic flame retardant, organometallic salt flame retardant and the like. It can be used alone or in combination with a plurality of flame retardants of the same system. It is also possible to use a combination of flame retardants of different systems.
  • inorganic and organic can be used as the phosphorus-based flame retardant.
  • inorganic compounds include phosphorous ammonia such as red phosphorus, phosphoric acid monoammonium, phosphoric acid diammonum, phosphoric acid triammonum, and polyphosphoric acid ammonium.
  • inorganic nitrogen-containing phosphorus compounds such as phosphoric acid amides.
  • the red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like! /
  • a surface treatment method for example, (i) magnesium hydroxide, A method of coating with an inorganic compound such as aluminum hydroxide, zinc hydroxide, titanium hydroxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof, (ii) magnesium hydrate, A method of coating with a mixture of an inorganic compound such as hydroxyaluminum hydroxide, zinc hydroxide and titanium hydroxide, and a thermosetting resin such as phenol resin, (iii) magnesium hydroxide, aluminum hydroxide hydroxide, Examples of the method include a method of performing a double coating treatment with a thermosetting resin such as phenol resin on a film of an inorganic compound such as zinc hydroxide or titanium hydroxide.
  • the organic phosphorus compound includes, for example, a phosphoric ester compound, a phosphonic acid compound, a phosphinic acid compound, a phosphinoxide compound, a phosphorane compound, and an organic nitrogen-containing phosphorus compound.
  • the blending amount thereof is appropriately selected depending on the type of the phosphorus-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy.
  • Epoxy resin composition containing 100 parts by weight of additives, non-halogen flame retardants and other fillers, etc.
  • red phosphorus as a non-halogen flame retardant in 100 parts by mass
  • 0.1 to 2.0 In the case of using an organophosphorus compound that is preferably blended in the range of parts by mass, 0.1 to L: It is particularly preferable to blend in the range of 0.0 part by mass, particularly 0.5 to 6.0. It is preferable to blend in the range of parts by mass.
  • a nodular talcite, hydroxide magnesium, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, molybdenum are used as the phosphorus flame retardant.
  • Zinc acid, activated carbon or the like may be used in combination.
  • nitrogen-based flame retardant examples include triazine compound, cyanuric acid compound, isocyanuric acid compound, phenothiazine and the like, among which triazine compound, cyanuric acid compound, isocyanuric acid compound Is preferred.
  • the triazine compound includes, for example, melamine, acetateguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, etc.
  • phenols such as phenol, cresol, xylenol, butylphenol, norphenol
  • melamines such as melamine, benzoguanamine, acetate guanamine, formaldehyde and formaldehyde
  • a mixture of the co-condensate of (ii) and a phenolic rosin such as a phenol formaldehyde condensate,
  • the above (ii) or (iii) is further added to paulownia oil, Examples thereof include those modified with coconut oil.
  • cyanuric acid compound examples include cyanuric acid, melamine cyanurate, and the like.
  • the amount of the nitrogen-based flame retardant is appropriately selected depending on the type of the nitrogen-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy.
  • a metal hydroxide, a molybdenum compound, or the like may be used in combination.
  • the silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.
  • the blending amount of the silicone flame retardant is appropriately selected depending on the type of the silicone flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. It is preferable to mix in the range of 0.05 to 20 parts by mass in 100 parts by mass of the epoxy resin composition containing all of epoxy resin, curing agent, non-halogen flame retardant and other fillers and additives. . Further, when using the silicone flame retardant, a molybdenum compound, alumina or the like may be used in combination.
  • Examples of the inorganic flame retardant include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low-melting glass.
  • metal hydroxide examples include, for example, aluminum hydroxide, magnesium hydroxide, dolomite, hydrated talcite, calcium hydroxide, barium hydroxide, and dinoleconium hydroxide. Can be mentioned.
  • the metal oxide include, for example, zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, and oxide.
  • examples include molybdenum, cobalt oxide, bismuth oxide, chromium oxide, nickel oxide, copper oxide, tungsten oxide.
  • metal carbonate compound examples include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, and titanium carbonate.
  • metal powder examples include aluminum, iron, titanium, manganese, zinc, molybdenum, conoleto, bismuth, chromium, nickel, copper, tungsten, tin, and the like.
  • boron compound examples include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.
  • low-melting glass examples include, for example, Seepri (Botasi Brown), hydrated glass SiO-MgO-H0, PbO-BO system, ZnO-PO-MgO system, PO-B.
  • glassy composites such as lead borosilicate.
  • the blending amount of the inorganic flame retardant is appropriately selected according to the kind of the inorganic flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy.
  • An epoxy resin composition containing all of epoxy resin, curing agent, non-halogen flame retardant, and other fillers, etc. In 100 parts by mass, it can be added in the range of 0.05 to 20 parts by mass. It is particularly preferable to blend in the range of 0.5 to 15 parts by mass.
  • organic metal salt-based flame retardant examples include Huesen, acetyl cetate metal complex, organic metal carbonyl compound, organic cobalt salt compound, organic sulfonic acid metal salt, Examples thereof include compounds in which a metal atom and an aromatic compound or heterocyclic compound are ion-bonded or coordinated.
  • the amount of the organometallic salt-based flame retardant is appropriately selected depending on the type of the organometallic salt-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. For example, in 100 parts by mass of an epoxy resin composition containing all of epoxy resin, curing agent, non-halogen flame retardant and other fillers and additives, 0.005 to: L0 parts by mass It is preferable to blend in a range.
  • the epoxy resin composition of the present invention may contain an inorganic filler as required.
  • the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide for semiconductor sealing materials, and silver powder and copper powder for conductive paste applications.
  • Examples include conductive fillers.
  • the epoxy resin composition when used as a semiconductor sealing material, it is inorganic.
  • the amount of filler used is usually 70 to 95% by mass in the composition. Among them, in order to improve flame resistance and moisture resistance, solder crack resistance, and lower linear expansion coefficient. 80 to 95% by mass is particularly preferable.
  • the inorganic filler when the inorganic filler is contained in the composition at a ratio of 80 to 95% by mass, the inorganic filler is preferably fused silica.
  • the fused silica can be used in either a crushed shape or a spherical shape.
  • a method of mixing thoroughly to obtain a melt-mixed epoxy resin composition is mentioned.
  • the semiconductor sealing material is cast, or molded using a transfer molding machine, injection molding machine, etc., and further heated at 50 to 200 ° C for 2 to 10 hours.
  • the epoxy resin composition is used for semiconductor sealing materials as described above, for example, an underfill material, a conductive paste, a resin composition used for laminates, electronic circuit boards, and the like, and resin casting It can be used for coating materials such as materials, adhesives, interlayer insulating materials for build-up substrates, and insulating paints. Among the various uses described above, it can be suitably used for a semiconductor sealing material and an underfill material, particularly a semiconductor sealing material, which are particularly used for electronic parts.
  • a resin composition for a pre-preda can be obtained.
  • the epoxy resin composition can be used without a solvent, but it is preferable to obtain a resin composition for a pre-preda by varnishing with an organic solvent.
  • the organic solvent it is preferable to use a polar solvent having a boiling point of 160 ° C. or lower, such as methyl ethyl ketone, acetone, dimethylformamide or the like, and it can also be used as a mixed solvent of two or more kinds.
  • the obtained varnish is impregnated into various reinforcing substrates such as paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth, and the heating temperature according to the solvent type used, preferably 50 ⁇ 170 ° C By heating with, a pre-preda that is a cured product can be obtained.
  • the mass ratio of the resin composition and the reinforcing substrate used at this time is not particularly limited, but it is usually preferable that the resin composition is prepared so that the resin content in the prepreg is 20 to 60% by mass.
  • the prepreg obtained as mentioned above is laminated
  • a copper-clad laminate can be obtained by thermocompression bonding at 170-250 ° C for 10 minutes to 3 hours under pressure.
  • the epoxy resin composition is used as a conductive paste, for example, a method of dispersing fine conductive particles in the epoxy resin composition to obtain a composition for anisotropic conductive film, room temperature And a liquid paste resin composition for circuit connection and an anisotropic conductive adhesive.
  • the curable resin composition appropriately blended with rubber, filler or the like is spray-coated on a wiring board on which a circuit is formed. After applying using the method, curtain coating, etc., cure. Then, after drilling a predetermined through-hole part, etc., if necessary, it is treated with a roughening agent, and the surface is washed with hot water to form irregularities, and a metal such as copper is applied.
  • the plating method is preferably electroless plating or electrolytic plating, and the roughening agent includes oxidizing agents, alkalis, organic solvents, and the like.
  • a buildup substrate can be obtained by alternately building up and forming the resin insulation layer and the conductor layer having a predetermined circuit pattern.
  • the through-hole portion is formed after the outermost resin insulation layer is formed.
  • a roughened surface is formed by hot-pressing a copper foil with a resin obtained by semi-curing the resin composition on a copper foil onto a wiring board on which a circuit is formed at 170 to 250 ° C. It is also possible to produce a build-up substrate by omitting the plating process.
  • the epoxy resin composition can also be used as a resist ink.
  • the epoxy resin is blended with a butyl monomer having an ethylenically unsaturated double bond and a cationic polymerization catalyst as a curing agent, and further added with a pigment, talc, and filler, and then a resist ink composition. Then, after applying on a printed circuit board by a screen printing method, there is a method of forming a resist ink cured product.
  • Various compounding agents such as a silane coupling agent, a release agent, a pigment, and an emulsifier can be appropriately added to the epoxy resin composition according to the various uses described above.
  • the epoxy resin yarn and composition can be cured by a conventional method according to the purpose or application to be used to obtain a cured product.
  • a method for obtaining a cured product is that a composition obtained by adding various blending components to the epoxy resin composition and further blending a curing accelerator as appropriate is obtained at a temperature of about 20 to 250 ° C. A method of heating in the range is preferred.
  • a molding method a general method of an epoxy resin composition can be adopted.
  • the cured product thus obtained forms a laminate, cast product, adhesive layer, coating film, film and the like.
  • 2,7-dihydroxynaphthalene represented by the formula 160g (l. 0 mol) was charged and nitrogen was blown. While stirring, the mixture was heated to 200 ° C. and melted. After melting, 23 g (0.2 mol) of 48% aqueous potassium hydroxide solution was added. Thereafter, water derived from a 48% aqueous solution of potassium hydroxide and potassium and water to be produced were extracted using a fractionating tube, and further reacted for 5 hours. After completion of the reaction, methyl isobutyl ketone lOOOOg was further added, dissolved, and transferred to a separatory funnel.
  • phenolic resin (1) was a brown solid, the hydroxyl group equivalent was 120 gZeq, and the melting point was 179 ° C.
  • phenol resin (a-1) is the content ratio of raw material 2,7 dihydroxynaphthalene, which is 64% of the total area ratio by SGPC.
  • 2,7-dihydroxynaphthalene trimer ether is a pentamer compound formed by dinuclear dehydration of 2,7-dihydroxynaphthalene
  • Example 1 147 g of phenol resin (a-2) was obtained in the same manner as in Example 1 except that 160 g of 2,7-dihydroxynaphthalene was changed to 160 g of 1,6-dihydroxynaphthalene.
  • the resulting phenolic resin (a-2) was a brown solid and had a hydroxyl group equivalent of 135 gZeq and a melting point of 137 ° C. From the GPC chart in Fig. 5, it was confirmed that the residual ratio of unreacted raw material (1,6-dihydroxynaphthalene) was 24% in terms of area ratio by GPC.
  • Example 1 In Example 1, except that 160 g of 2,7-dihydroxynaphthalene was changed to a mixture of 80 g (0.5 monole) of 2,7-dihydroxynaphthalene and 55 g (0.5 mol) of 1,3-dihydroxybenzene. In the same manner as in 1, 125 g of phenol rosin (a-3) was obtained. The obtained phenolic resin (a-3) is a brown solid with a hydroxyl equivalent weight of 101 gZeq and a melting point of 136 ° C. there were. Residual ratio of the unreacted raw materials from the GPC chart (2, total of 7 dihydroxynaphthalene and 1, 3 over dihydroxybenzene) in FIG. 6 was sure to be a 36% area ratio by GPC 0
  • Example 1 In Example 1, except that 160 g of 2,7-dihydroxynaphthalene was changed to 110 g of 1,3-dihydroxybenzen (l. 0 mol), the polyarylene ether compound of the present invention ( a — 4) I got lOOg. The obtained phenol rosin (a-4) was a brown solid and had a hydroxyl group equivalent of 85 gZeq and a melting point of 122 ° C. From the GPC chart, it was confirmed that the residual molar ratio of the unreacted raw material (1,3-dihydroxybenzene) was 36%.
  • [0141] [Chemical 21] 160 g (l. 0 monole) of 2,7-dihydroxynaphthalene represented by the following formula and 80 g of pendino rareno reconole were charged, heated to 200 ° C. with nitrogen being stirred and melted. After melting, 23 g (0.2 mol) of 48% aqueous potassium hydroxide solution was added. Thereafter, water derived from a 48% aqueous solution of potassium hydroxide and potassium and water produced were extracted using a fractionating tube, and then reacted for another 15 hours.
  • the polyarylene ether compound (a-5) of the present invention was a brown solid, the hydroxyl group equivalent was 154 gZeq, and the melting point was 182 ° C. From the GPC chart, it was confirmed that the residual molar ratio of the unreacted raw material (2, 7-dihydroxynaphthalene) was 32%.
  • a flask equipped with a thermometer, dropping funnel, condenser, and stirrer was purged with nitrogen gas while 120 g of phenol resin (a-l) obtained in Example 1 and 463 g of epichlorohydrin (5. 0 mol), 139 g of n-butanol, 2 g of tetraethylbenzylammonium chloride Charge and dissolve.
  • the pressure was reduced to an azeotropic pressure, and 90 g (l. 1 mol) of a 49% aqueous sodium hydroxide solution was added dropwise over 5 hours. Thereafter, stirring was continued for 0.5 hours under the same conditions.
  • epoxy resin (b-1) an epoxy resin (hereinafter referred to as “epoxy resin (b-1)”).
  • epoxy resin (b-1) has a melt viscosity at 150 ° C of 0.5 dPa's and an epoxy equivalent of 187 gZeq.
  • Example 1 In Example 1, except that 23 g (0.2 mol) of 48% aqueous solution of potassium hydroxide and potassium hydroxide was changed to 2 g of paratoluenesulfonic acid monohydrate, a comparative polyarylene for comparison was used. 145 g of ether compound (a, -1) was obtained. The obtained polyarylene ether compound (a, 1) was a brown solid, the hydroxyl group equivalent was 183 gZeq, the melting point could not be measured, and the decomposition point was 250 ° C.
  • Epoxy resin as Japan Epoxy Resin Co., Ltd. YX—4000H (tetramethyl biphenol type epoxy resin, epoxy equivalent: 195 g / eq), Nippon Kayaku Co., Ltd. NC — 3000 (bifuel-aralkyl epoxy resin, epoxy equivalent) : 277gZeq), EPICLON N-665- EXP (Talesol novolak type epoxy resin, epoxy equivalent: 203g / eq), manufactured by Dainippon Ink and Chemicals, Ltd.
  • Gel time Place 0.15 g of epoxy resin composition on a cure plate (made by TH ERMO ELECTRIC) heated to 175 ° C and start timing with a stopwatch. Stir the sample evenly at the tip of the rod and stop the stopwatch when the sample breaks into a string and remains on the plate. The time until this sample was cut and left on the plate was defined as the gel time.
  • Glass transition temperature Measured using a viscoelasticity measuring device (solid viscoelasticity measuring device RSAII manufactured by Rheometric Co., Ltd., double currant lever method; frequency 1 ⁇ , heating rate 3 ° CZmin).
  • a viscoelasticity measuring device solid viscoelasticity measuring device RSAII manufactured by Rheometric Co., Ltd., double currant lever method; frequency 1 ⁇ , heating rate 3 ° CZmin.
  • a phenolic resin that can industrially produce a polyarylene ether having a low melt viscosity by a very simple method without requiring a special post-treatment after polymerization or a complicated multistage reaction.
  • the method and the method of manufacturing an epoxy resin from the phenol resin obtained by this manufacturing method can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Polyethers (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 本発明は、重合後の特別な後処理や複雑な多段階反応を要することなく、極めて簡便な方法で低溶融粘度のポリアリーレンエーテルを工業的に生産することが可能なフェノール樹脂の製造方法、更に該製造方法によって得られたフェノール樹脂からエポキシ樹脂を製造する方法を提供する。本発明は、フェノール性水酸基を1分子中に2つ以上有する多価ヒドロキシ芳香族化合物(A)を、塩基性触媒(B)の存在下に脱水縮合反応させることを特徴とするポリアリーレンエーテル構造を有するフェノール樹脂の製造方法に関する。

Description

明 細 書
フエノール樹脂の製造方法、およびエポキシ樹脂の製造方法
技術分野
[0001] 本発明は簡便な方法でポリアリーレンエーテル構造を有するフエノール榭脂の製造 方法、及び、これを原料とするエポキシ榭脂の製造方法に関する。
背景技術
[0002] エポキシ榭脂或いはフエノール榭脂は、硬化時の低収縮性、硬化物の寸法安定性 、電気絶縁性及び耐薬品性などに優れた硬化物を与える点からエレクトロニクス分野 に広く用いられている。しかし、例えば半導体封止材料などのエレクトロニクス分野で は、近年、電子部品の高密度化を目的とする半導体の表面実装化、半導体自体の 小型化、或いは、鉛フリーハンダへの移行に伴う耐リフロー性等の要求から、電子部 品材料に対してより高い耐熱衝撃性が求められており、そのためフィラーの高充填可 能な溶融粘度の低 、材料が求められて 、る。
[0003] このような要求特性を満たす低粘度タイプのエポキシ榭脂としては、例えばジヒドロ キシトリ(フエ-レンエーテル)のジグリシジルエーテルを主剤とするエポキシ榭脂組 成物が知られている(下記、参考文献 1参照)。
[0004] 然し乍ら、前記ジグリシジルエーテルの前駆体であるジヒドロキシトリ(フエ-レンェ 一テル)は、通常、工業的生産が極めて困難なものであった。即ち、通常、ポリアリー レンエーテルはジヒドロキシベンゼンを酸触媒下に反応させることによって製造されて いる。ところが、このような酸触媒下にジヒドロキシベンゼンを脱水縮合反応させた場 合、通常、数平均分子量(Mn)が 5000〜25000の高分子量化したポリフエ-レンェ 一テルになってしま、、高軟ィ匕点かつ高溶融粘度と!/、つた特性力も電子部品の封止 材料やプリント板材料への適用が困難なものであった。よって、ジヒドロキシトリ(フエ 二レンエーテル)を製造するには高分子量ィヒした反応精製物から低分子量体のみを 選択的に分離するか、或いは、実験室レベルで多段階の合成手段に依拠しなけれ ばならず、工業的生産は難 、と 、う問題があった。
一方、近年、上記したエレクトロニクス分野では、ダイォキシン問題を代表とする環 境問題への対応が不可欠であり、添加系のハロゲン系難燃剤を使用することなぐ榭 脂自体に難燃効果を持たせた所謂ハロゲンフリーの難燃システムが要求されて!、る 。これに応える合成樹脂としては前記ポリフエ-レンエーテルが良好である。しかし乍 ら、前記した通り、力かるポリフエ-レンエーテルは合成時に高分子量ィ匕してしまう為 に、一般に材料への高流動性の要求が高 、エレクトロニクス分野への適用は困難な ものであった。かかる観点から、例えば高分子量のポリアリーレンエーテルを 1官能性 フ ノールと反応させることにより低分子量ィ匕する方法 (例えば、特許文献 2参照。 ) が提案されている。
然し乍ら、このポリアリーレンエーテルの低分子量ィ匕法によって得られる変性ポリア リーレンエーテルは、ある程度の分子量低減ィ匕を実現でき、溶剤を併用するワニス組 成物としては使用可能であるものの特に電子部品の封止材のように溶融成形する場 合、成形温度 (具体的には 150〜200°C)で流動しないため、硬化時間が極めて遅く 、実用的な硬化物は得られて 、な 、のが現状であった。
特許文献 1:特開平 6 - 313025号公報
特許文献 2 :特開 2003— 160662号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明が解決しょうとする課題は、重合後の特別な後処理や複雑な多段階反応を 要することなぐ極めて簡便な方法で低溶融粘度のポリアリーレンエーテルを工業的 に生産することが可能なフ ノール榭脂の製造方法、更に該製造方法によって得ら れたフエノール榭脂からエポキシ榭脂を製造する方法を提供することにある。
課題を解決するための手段
[0006] 本発明者らは、上記課題を解決すべく鋭意検討した結果、多価ヒドロキシ芳香族化 合物を塩基性触媒の存在下に脱水縮合反応させることにより、得られる生成物が高 分子量化することなぐ選択的に低溶融粘度の化合物となることを見出し、本発明を 完成するに至った。
[0007] 即ち、本発明はフエノール性水酸基を 1分子中に 2つ以上有する多価ヒドロキシ芳 香族化合物 (A)を、塩基性触媒 (B)の存在下に脱水縮合反応させることを特徴とす るポリアリーレンエーテル構造を有するフエノール榭脂の製造方法に関する。
[0008] 本発明は、更に、前記製造方法によって得られたフエノール榭脂を、(メチル)ェピ ノ、ロヒドリンと反応させることを特徴とするポリアリーレンエーテル構造を有するェポキ シ榭脂の製造方法に関する。
発明の効果
[0009] 本発明によれば、重合後の特別な後処理や複雑な多段階反応を要することなぐ 極めて簡便な方法で低溶融粘度のポリアリーレンエーテルを工業的に生産すること が可能なフエノール榭脂の製造方法、更に該製造方法によって得られたフエノール 榭脂からエポキシ榭脂を製造する方法を提供できる。 図面の簡単な説明
[0010] [図 1]実施例 1で得られたフエノール榭脂の GPCチャートである。
[図 2]実施例 1で得られたフエノール榭脂の FT— IRチャートである。
[図 3]実施例 1で得られたフエノール榭脂のマススペクトルである。
[図 4]実施例 1で得られたフエノール榭脂のトリメチルシリルイ匕法マススペクトルである
[図 5]実施例 2で得られたフエノール榭脂の GPCチャートである。
[図 6]実施例 3で得られたフエノール榭脂の GPCチャートである。
[図 7]実施例 4で得られたフエノール榭脂の GPCチャートである。
[図 8]実施例 5で得られたフエノール榭脂の GPCチャートである。
発明を実施するための最良の形態
[0011] 本発明の製造方法にお!、て用いるフエノール性水酸基を 1分子中に 2つ以上有す る多価ヒドロキシ芳香族化合物 (A)は、例えば、 1, 3—ジヒドロキシナフタレン、 1, 6 ージヒドロキシナフタレン、 1, 7—ジヒドロキシナフタレン、 1, 8—ジヒドロキシナフタレ ン、 2, 3—ジヒドロキシナフタレン、 2, 7—ジヒドロキシナフタレン等のジヒドロキシナフ タレン類(al)、 1, 3—ジヒドロキシベンゼン、 1, 4ージヒドロキシベンゼン、 2, 3, 5— トリメチノレー 1, 4ージヒドロキシベンゼン、 5—フエニノレー 1, 3—ジヒドロキシベンゼン 等のジヒドロキシベンゼン類(a2)、 1, 2, 3—トリヒドロキシナフタレン等のトリヒドロキ シナフタレン(a3)、 1, 2, 3—トリヒドロキシベンゼン、 1, 3, 6—トリヒドロキシベンゼン 等のトリヒドロキシベンゼン類 (a4)、およびこれらの化合物の芳香核に炭素原子数 1 〜4のアルキル基又はフ 二ル基を置換基として有する化合物(a5)等が挙げられる
[0012] これらの中でも特にフエノール性水酸基が結合して ヽる芳香核にお!ヽて該フエノー ル性水酸基に隣接する位置に配向性を有するものが好ましぐ具体的には、 1, 3— ジヒドロキシナフタレン、 1 , 6—ジヒドロキシナフタレン、 1, 8—ジヒドロキシナフタレン 、 2, 7—ジヒドロキシナフタレン、 1, 3—ジヒドロキシベンゼン、 5—フエニノレー 1, 3— ジヒドロキシベンゼン、 1, 2, 3—トリヒドロキシベンゼン、 1, 3, 6—トリヒドロキシベン ゼンなどが好ましい。
[0013] また、最終的に得られるフエノール榭脂、或いはそのエポキシ化物であるエポキシ 榭脂の溶融粘度を低くできる点からジヒドロキシナフタレン類 (al)、或いは、ジヒドロ キシベンゼン類 (a2)が好ましい。特に難燃性の点から、 1, 6—ジヒドロキシナフタレ ン、 2, 7—ジヒドロキシナフタレンから選択されるジヒドロキシナフタレン類(al)が好ま しぐとりわけ 2, 7—ジヒドロキシナフタレンが得られるエポキシ榭脂の流動性と難燃 性とのバランスに優れる点力も好ましい。
また、本発明の製造方法にぉ 、て用いるフエノール性水酸基を 1分子中に 2つ以上 有する多価ヒドロキシ芳香族化合物 (A)は、前記ジヒドロキシナフタレン類 (al)およ び前記ジヒドロキシベンゼン類 (a2)の混合物でも良!、。
[0014] 本発明の製造方法において反応触媒として用いられる塩基性触媒 (B)は、具体的 には水酸ィ匕ナトリウム、水酸ィ匕カリウムなどのアルカリ金属水酸ィ匕物、炭酸ナトリウム、 炭酸カリウムなどのアルカリ金属炭酸塩、トリフエ-ルホスフィンなどのリン系化合物が 挙げられる。これらの塩基性触媒 (B)は単独または 2種以上を併用して用いることも できる。
[0015] また、前記塩基性触媒 (B)の使用量は、該塩基性触媒 (B)の種類や目標とする反 応率などにより、適宜選択すればよいが、例えば前記塩基性触媒としてアルカリ金属 水酸化物を用いる場合の場合は多価ヒドロキシ芳香族化合物 (A)のフエノール性水 酸基 1モルに対し、 0. 01〜0. 5モル、好ましくは 0. 01〜0. 1使用するのが好ましい [0016] ここで特筆すべきは、通常、 2官能性フエノール類をポリエールイ匕する場合、バラト ルエンスルホン酸やメタンスルホン酸などの酸触媒が用いられて 、るが、この場合、 重合度が制御できず、融点が非常に高いか、あるいは分解点まで溶融しないような 高分子量体となってしまい、高流動性が要求される電子部品材料への適用が困難な ものであった。これに対し、本発明では塩基性触媒 (B)を反応触媒として用いること によって、驚くべきことに反応生成物が何等高分子量ィ匕することなぐ総核体数が 2 〜8、好ましくは 3〜6のフエノール榭脂が得られる点にある。従って、当該フエノール 榭脂或いはこれをエポキシィ匕したエポキシ榭脂は優れた難燃性と高流動性とを兼備 した材料となる。
[0017] 上記反応は、用いる多価ヒドロキシ芳香族化合物 (A)の特性に応じて、無溶媒下ま たは均一溶液を形成する可溶性溶媒下に行うことができる。無溶媒下で行えば、溶 剤回収工程などが不必要となるため好ましいが、反応を安定的に進行させるために は溶媒存在下で行うのが好ま 、。
[0018] 上記可溶性溶媒としては、例えば、ベンジルアルコールや、シクロへキサノール、ァ ミルアルコールなどのアルコール類、エチレングリコール、ジエチレングリコール、トリ エチレングリコール、ポリエチレングリコールなどのエチレングリコール類やエチレング リコーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、エチレングリコ 一ノレモノプロピノレエーテノレ、ジエチレングリコーノレモノメチノレエーテノレ、ジエチレング リコーノレモノェチノレエーテノレ、ジエチレングリコーノレモノプロピノレエーテノレ、ジェチレ ングリコーノレモノブチノレエーテノレ、エチレングリコーノレジメチノレエーテノレ、エチレング リコーノレジェチノレエーテノレ、エチレングリコーノレジブ口ピノレエーテノレ、ジエチレングリ コーノレジメチノレエーテノレ、ジエチレングリコーノレジェチノレエーテノレ、ジエチレングリコ ールジプロピノレエ一テルなどのエチレングリコーノレゃジエチレングリコーノレのモノ又 はジエーテル、クロ口ベンゼン、ニトロベンゼンなどを挙げることができる。また、これら の有機溶剤は単独で、あるいは数種類を混合して用いることが出来る。このような可 溶性溶媒を使用することにより、多価ヒドロキシ芳香族化合物 (A)の塩の析出が防止 され、安定的にフエノール榭脂を得ることができる。
[0019] また、前記反応は、たとえば無溶媒下または前記可溶性溶媒の存在下に、前記多 価ヒドロキシ芳香族化合物 (A)に前記塩基性触媒 (B)を溶解させ、 100〜300°C、 好ましくは 150〜250°C程度の温度条件で行うことができる。反応時間は特に限定さ れないが、前記温度条件を 1〜10時間維持できる範囲であることが好ましい。更に、 工程 1の反応において、反応中に生成する水を系外に分留管などを用いて留去する ことが反応を速やかに進行し生産性が向上する点力 好ましい。
[0020] また、得られるフ ノール榭脂の着色が大き!/ヽ場合は、酸化防止剤や還元剤を添 加しても良い。酸化防止剤は、例えば、 2, 6—ジアルキルフエノール誘導体などのヒ ンダードフエノール系化合物や 2価のィォゥ系化合物や 3価のリン原子を含む亜リン 酸エステル系化合物などが挙げられる。還元剤は、例えば次亜リン酸、亜リン酸、チ ォ硫酸、亜硫酸、ハイドロサルファイトまたはこれら塩などが挙げられる。
[0021] 反応終了後は、そのまま固型化して取り出す力 あるいはェピノ、ロヒドリンを添加し て、引き続き工程 2であるグリシジルイ匕反応を行うことができる。あるいは触媒を中和 処理、水洗処理あるいは分解することにより除去し、抽出、蒸留などの一般的な操作 により、フ ノール榭脂を分離することができる。中和処理や水洗処理は常法に従つ て行えばよぐ例えば塩酸、シユウ酸、酢酸、第一リン酸ソーダ、炭酸ガス等の酸性物 質を用いることができる。
[0022] このようにして得られたポリアリーレンエーテル構造を有するフエノール榭脂は複数 の種類の混合物のまま各種用途に使用することができるが、必要に応じて、さらに蒸 留ゃカラム処理、アルカリ水溶液抽出等の分別操作を加え、未反応物である多価ヒド ロキシ芳香族化合物 (A)の含有量を低減させてもよ!、し、各生成物を単一の成分に 単離してもよい
[0023] 上記製造方法によって得られたフエノール榭脂は、具体的には、ァリーレン構造が 酸素原子を介して他のァリーレン構造と結合した構造を有し、かつ、 1分子あたりの 前記ァリーレン基を構成する芳香核の総数が 2〜8であって、更に、前記芳香核にフ ェノール性水酸基を置換基として有する分子構造を有するものとなる。
[0024] また、前記フ ノール榭脂は、分子構造中にァリーレン構造が酸素原子を介して他 のァリーレン構造と結合したポリアリーレンォキシ構造を有することから、硬化物の燃 焼時におけるチヤ一の形成が促進され優れた難燃性を発現すると共に、硬化物の耐 熱性も良好となる。更に、 1分子あたりの総芳香核数が 2〜8、好ましくは 3〜6である ことから優れた流動性をも兼備するものとなる。
[0025] また、前記フ ノール榭脂を構成するァリーレン基は、特に難燃性の点力もナフタレ ン基、フエ二レン基、又は、メチル基、ェチル基、プロピル基、 t—ブチル基などの炭 素原子数 1〜4のアルキル基若しくはフエ二ル基を置換基として有するナフタレン基 若しくはフ -レン基が挙げられる。これらの中でも特に難燃性の点力もナフタレン基 、フエ-レン基が好ましぐとりわけナフタレン基であることが好ましい。
[0026] よって、前記フ ノール榭脂は、具体的には、ナフタレン構造が酸素原子を介して 他のァリーレン構造と結合した構造を有し、かつ、 1分子あたりの前記ナフタレン構造 及び前記ァリーレン基を構成する芳香核の総数が 2〜8であって、更に、前記芳香核 にフエノール性水酸基を置換基として有するものであることが好ましい。
[0027] ここで、前記フエノール榭脂を構成するナフタレン構造は、ォキシ基の結合位置を 2 箇所乃至 3箇所有するナフタレン構造が挙げられるが、フエノール榭脂の流動性の 点からォキシ基の結合位置を 2箇有する構造であることが好ましぐ具体的には、ォ キシ基との結合位置力 1, 3位、 1, 6位、 1, 7位、 1, 8位、 2, 3位、 2, 7位であること が好ましい。
[0028] これらのなかでも、製造が容易である点から 1, 6位、 2, 7位であることが好ましぐと りわけ 2, 7位であることが流動性と難燃性とのバランスに優れる点力も好ましい。また 、前記ナフタレン構造はォキシ基の他の芳香核上の置換基に関しては、特に難燃効 果の点から、当該置換基を有していないか、或いはメチル基又はフエ-ル基であるこ とが好ましぐ特に非置換であることが好ま 、。
[0029] また、前記フエノール榭脂は、複数のァリーレン構造が直接結合を形成した分子構 造を形成していてもよい。
[0030] 更に、前記フエノール榭脂において、上記したナフタレン構造と酸素原子を介して 結合する他のァリーレン構造は、前記ナフタレン構造及びフエ-レン構造が挙げられ る。ここで、フエ-レン構造はォキシ基との結合位置を 2箇所又は 3箇所有するものが 挙げられ、また、前記ナフタレン構造の場合と同様にその芳香核上にメチル基、ェチ ル基、プロピル基、 t ブチル基などの炭素原子数 1〜4のアルキル基又はフエ-ル 基を有して 、てもよ 、。然し乍ら前記フエノール榭脂の流動性の点からォキシ基の結 合位置を 2箇所有するフエ-レン構造が好ましぐこの際のォキシ基の結合位置は、 1 , 3位、 1, 4位、及び 1, 5位が挙げられる力 製造が容易である点から 1, 3位である ことが好ましい。また、当該他のァリーレン構造の芳香核上の置換基に関しては、特 に難燃効果の点から、当該置換基を有していないか、或いはメチル基又はフエニル 基であることが好ましぐ特に当該置換基を有していないことが好ましい。但し当該他 のァリーレン構造は難燃効果の点力も前記ナフタレン基であることが好ましい。
[0031] 力かるフエノール榭脂は、具体的には、下記一般式(1)で表される構造のものであ ることが難燃効果の点力も好ま U、。
[0032] [化 1]
Figure imgf000009_0001
(一般式(1)中、 Arはそれぞれ独立的にナフチレン基、フエ-レン基、又は炭素原 子数 1〜4のアルキル基若しくはフエ-ル基を置換基として有するナフチレン基若しく はフエ-レン基を表し、 R2はそれぞれ独立的に水素原子又は炭素原子数 1〜4のァ ルキル基を表し、 n及び mはそれぞれ 0〜2の整数であって、かつ n又は mの何れか 一方は 1以上であり、 R1は水素原子又は下記一般式(1 2)で表されるヒドロキシ基 含有芳香族炭化水素基を表す。但し、式中の全芳香核数は 2〜8である。なお、上 記一般式(1)においてナフタレン骨格への結合位置はナフタレン環を構成する 2つ の環の何れであってもよい。 )
[0033] [化 2]
一般式 (1— 2 )
Figure imgf000009_0002
(一般式(1— 2)中、 Arはそれぞれ独立的にナフチレン基、フエ二レン基、又は炭素 原子数 1〜4のアルキル基若しくはフエ二ル基を置換基として有するナフチレン基若 しくはフエ-レン基を表し、 pは 1又は 2の整数である。 )
[0034] 上記一般式(1)で表されるフ ノール榭脂のなかでも、前記した通り、ナフタレン構 造中のォキシ基との結合位置が 1, 6位、 2, 7位のもの、また、前記他のァリーレン構 造がフエ-レン基である場合には、該フエ-レン基中のォキシ基との結合位置が 1, 3 位のものが好ましぐまた、一般式(1)における R2は水素原子であることが好ましい。 従って、前記フエノール榭脂は、具体的には、ナフタレン構造中のォキシ基との結合 位置が 1, 6位であるものとして、下記の構造式 P—1〜P— 17のものが好ましい。
[0035] [化 3]
Figure imgf000010_0001
[0036] [化 4]
Figure imgf000011_0001
[0037] 次に、たとえば、ォキシ基との結合位置が 2, 7位のフエノール樹脂は、下記構造式
P—18〜P— 25のものが挙げられる。
[0038] [化 5]
Figure imgf000011_0002
[0039] [化 6]
Figure imgf000012_0001
Figure imgf000012_0002
[0040] 前記フエノール榭脂は上記した各化合物を単独で用いてもよ!、が、複数の混合物 として用いても良い。
[0041] 以上詳述したフエノール榭脂は、前記した通り、ナフタレン構造が酸素原子を介し て他のナフタレン構造と結合した構造を有するものであることが硬化物の難燃性が一 層良好になる他、耐熱性も良好なものとなる点力も好ましい。力かるフエノール榭脂 は、具体的には、例えば下記一般式(2)で表すことができる。
[0042] [化 7]
一般式(2 )
Figure imgf000012_0003
ここで一般式 (2)中、 R2はそれぞれ独立的に水素原子又は炭素原子数 1〜4のアル キル基を、 n又は mはそれぞれ 0〜2の整数であって、 n又は mの何れか一方は 1以 上の整数であり、 R1は水素原子又は下記一般式 (2— 2)
[化 8]
Figure imgf000012_0004
(R2はそれぞれ独立的に水素原子又は炭素原子数 1〜4のアルキル基を、 pは 1又 は 2の整数を表す。)を表す。但し、上記一般式(2)において全芳香核の総数は 2〜 8である。なお、上記一般式(2)においてナフタレン骨格への結合位置はナフタレン 環を構成する 2つの環の何れであってもよ 、。
[0044] 前記一般式(2)の中でも R2は水素原子であることが好ましぐその具体例は前記構 造式 P— 1〜P— 21のものが挙げられる。
[0045] 前記フエノール榭脂は、前述した通り、通常、上述した各構造の化合物の混合物と して得られる為、前記フエノール榭脂は、このような混合物のまま用いることができる。 更に、反応生成物中には、原料成分である 2官能性フエノール類も含まれる。従って 、前記フエノール榭脂を使用する際、このような原料成分を含んだ混合物として用い ることができる。また、前記混合物中の 2官能性フエノール類の含有率は、エポキシ榭 脂組成物の流動性の点から GPCによる測定における面積比で 5〜80%であることが 好ましい。
[0046] また、前記フエノール榭脂は、前記混合物における水酸基当量が 50〜350gZeq .の範囲であることが、得られるフエノール榭脂の流動性が良好で、硬化性により優 れるエポキシ榭脂組成物が得られ、更にその成形された硬化物の耐熱性に優れる点 力 好ましい。
[0047] 以上詳述したフエノール榭脂は、エポキシ榭脂用硬化剤として用いることができる 他、エポキシ榭脂原料として用いることができる。
[0048] 前者のエポキシ榭脂用硬化剤として用いる場合、例えばアミン系化合物、アミド系 化合物、酸無水物系化合物、アミノトリアジン変性フ ノール榭脂 (メラミンやべンゾグ アナミンなどでフエノール核が連結された多価フエノールイ匕合物)等の硬化剤と併用 することちでさる。
[0049] また、前記フエノール榭脂をエポキシ榭脂用硬化剤として用いる場合の当該ェポキ シ榭脂としては、例えば、ビスフエノール A型エポキシ榭脂、ビスフエノール F型ェポ キシ榭脂、ビフエニル型エポキシ榭脂、テトラメチルビフエニル型エポキシ榭脂、フエ ノールノボラック型エポキシ榭脂、クレゾ一ルノボラック型エポキシ榭脂、ビスフエノー ル Aノボラック型エポキシ榭脂、トリフエ-ルメタン型エポキシ榭脂、テトラフエ-ルエタ ン型エポキシ榭脂、ジシクロペンタジェン一フエノール付加反応型エポキシ榭脂、フ エノールァラルキル型エポキシ榭脂、ナフトールノボラック型エポキシ榭脂、ナフトー ルァラルキル型エポキシ榭脂、ナフトール フエノール共縮ノボラック型エポキシ榭 脂、ナフトールークレゾール共縮ノボラック型エポキシ榭脂、芳香族炭化水素ホルム アルデヒド榭脂変性フエノール榭脂型エポキシ榭脂、ビフエ-ルノボラック型エポキシ 榭脂等が挙げられる。またこれらのエポキシ榭脂は単独で用いてもよぐ 2種以上を 混合してちょい。
[0050] これらのなかでも特にビフエ-ル型エポキシ榭脂、ナフタレン型エポキシ榭脂、フエ ノールァラルキル型エポキシ榭脂、ビフエ-ルノボラック型エポキシ榭脂及びキサン テン型エポキシ榭脂が、難燃性や誘電特性に優れる点から特に好まし ヽ。
[0051] また必要に応じて硬化促進剤を適宜併用することもできる。前記硬化促進剤として は種々のものが使用できる力 例えば、リン系化合物、第 3級ァミン、イミダゾール、有 機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として 使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン 系化合物ではトリフエ-ルフォスフィン、第 3級ァミンでは 1, 8 ジァザビシクロ— [5. 4. 0] ゥンデセン(DBU)が好まし!/ヽ。
[0052] 一方、前記フエノール榭脂をエポキシ榭脂原料として用いる場合、以下に詳述する 本発明のエポキシ榭脂の製造方法によって目的とするエポキシ榭脂を製造すること ができる。
[0053] 即ち、本発明のエポキシ榭脂の製造方法は、前記製造方法によって得られたポリ ァリーレンエーテル構造を有するフエノール榭脂を、(メチル)ェピハロヒドリンと反応 させることを特徴とするものである。具体的には、フエノール榭脂と (メチル)ェピハロヒ ドリンとを塩基性触媒の存在下に反応させる方法が挙げられる。ここで、当該製造方 法におけるフ ノール榭脂と (メチル)ェピノ、ロヒドリンとの仕込み割合は、フ ノール 榭脂中の芳香族性水酸基 1モルに対し、(メチル)ェピノ、ロヒドリン 2〜: LOモルとなる 割合であることが好ましぐまた、塩基性触媒の使用量は、フエノール榭脂中のフエノ ール性水酸基 1モルに対し 0. 9〜2. 0モルとなる範囲であることが反応性や反応終 了後の精製が容易となる点から好ましい。当該製造方法における具体的な反応方法 は、フエノール榭脂と (メチル)ェピノ、ロヒドリンとを反応容器に所定割合で仕込み、前 記塩基性触媒を一括添加または徐々に添加しながら 20〜120°Cの温度で 0. 5〜1 0時間反応させる方法が挙げられる。
[0054] ここで用いる塩基性触媒は固形として、或いはその水溶液として使用することがで きる。前記塩基性触媒を水溶液として使用する場合は、連続的に添加すると共に、 反応混合物中から減圧下または常圧下に連続的に水及び (メチル)ェピノ、ロヒドリン を留出せしめ、更に分液して水は除去し (メチル)ェピノ、ロヒドリンは反応混合物中に 連続的に戻す方法を採用してもょ 、。
[0055] 前記(メチル)ェピハロヒドリンは、例えばェピクロルヒドリン、ェピブ口モヒドリン、 13 メチルェピクロルヒドリン等が挙げられ、なかでも工業的入手が容易なことからェピク 口ルヒドリンが好ましい。なお、工業生産を行う際、エポキシ榭脂生産の初バッチでの 反応終了後の次バッチ以降の反応では、粗反応生成物力 回収された (メチル)ェピ ハロヒドリンと、反応で消費される分で消失する分に相当する新しい (メチル)ェピノ、口 ヒドリンとを併用することが好ましい。
[0056] また、前記塩基性触媒は、具体的には、アルカリ土類金属水酸化物、アルカリ金属 炭酸塩及びアルカリ金属水酸化物等が挙げられる。特にエポキシ榭脂合成反応の 触媒活性に優れる点からアルカリ金属水酸化物が好ましぐ例えば水酸化ナトリウム
、水酸ィ匕カリウム等が挙げられる。使用に際しては、これらの塩基性触媒を 10〜55 質量%程度の水溶液の形態で使用してもよいし、固形の形態で使用しても構わない
。また、有機溶媒を併用することにより、エポキシ榭脂の合成における反応速度を高 めることができる。このような有機溶媒としては特に限定されないが、例えば、アセトン 、メチルェチルケトン等のケトン類、メタノール、エタノール、 1 プロピルアルコール、 イソプロピルアルコール、 1ーブタノール、セカンダリーブタノール、ターシャリーブタノ ール等のアルコール類、メチルセ口ソルブ、ェチルセ口ソルブ等のセロソルブ類、テト ラヒドロフラン、 1、 4 ジォキサン、 1、 3 ジォキサン、ジエトキシェタン等のエーテル 類、ァセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性 溶媒等が挙げられる。これらの有機溶媒は、それぞれ単独で使用してもよいし、また 、極性を調整するために適宜二種以上を併用してもょ ヽ。 [0057] 前述のエポキシ化反応の反応物を水洗後、加熱減圧下、蒸留によって未反応のェ ピハロヒドリンや併用する有機溶媒を留去する。また更に加水分解性ハロゲンの少な いエポキシ榭脂とするために、得られたエポキシ榭脂を再びトルエン、メチルイソブチ ルケトン、メチルェチルケトンなどの有機溶媒に溶解し、水酸化ナトリウム、水酸化カリ ゥムなどのアルカリ金属水酸ィ匕物の水溶液をカ卩えてさらに反応を行うこともできる。こ の際、反応速度の向上を目的として、 4級アンモ-ゥム塩ゃクラウンエーテル等の相 関移動触媒を存在させてもよい。相関移動触媒を使用する場合のその使用量は、用 いるエポキシ榭脂との合計質量に対して 0. 1〜3. 0質量%の範囲であることが好ま しい。反応終了後、生成した塩を濾過、水洗などにより除去し、更に、加熱減圧下ト ルェン、メチルイソプチルケトンなどの溶剤を留去することにより高純度のエポキシ榭 月旨を得ることができる。
[0058] このようにして得られたエポキシ榭脂は、前記した通り、ァリーレン構造が酸素原子 を介して他のァリーレン構造と結合したァリーレンォキシ構造を有し、かつ、 1分子あ たりの前記ナフタレン構造及び前記ァリーレン基を構成する芳香核の総数が 2〜8で ある構造を主骨格として有することを特徴としている。よって、その硬化物は、前記し たように、ァリーレンォキシ構造を形成していることから、硬化物の燃焼時におけるチ ヤーの形成が促進され優れた難燃性を発現する。一方、 1分子あたりの前記芳香核 の総数が 2〜8であることから優れた流動性をも兼備したエポキシ榭脂となる。
[0059] また、前記エポキシ榭脂を構成するァリーレン基は、特に難燃性の点力もナフタレ ン基、フエ二レン基、又は、メチル基、ェチル基、プロピル基、 t—ブチル基などの炭 素原子数 1〜4のアルキル基若しくはフエ二ル基を置換基として有するナフタレン基 若しくはフ -レン基が挙げられる。これらの中でも特に難燃性の点力もナフタレン基 、フエ-レン基が好ましぐとりわけナフタレン基であることが好ましい。
[0060] よって、前記エポキシ榭脂は、具体的には、ナフタレン構造が酸素原子を介して他 のァリーレン構造と結合した構造を有し、かつ、 1分子あたりの前記ナフタレン構造及 び前記ァリーレン基を構成する芳香核の総数が 2〜8であって、更に、前記芳香核に (メタ)グリシジルォキシ基を置換基として有するものであることが好ま 、。
[0061] ここで、前記エポキシ榭脂を構成するナフタレン構造は、ォキシ基の結合位置を 2 箇所乃至 3箇所有するナフタレン構造が挙げられるが、フエノール榭脂の流動性の 点からォキシ基の結合位置を 2箇有する構造であることが好ましぐ具体的には、ォ キシ基との結合位置力 1, 3位、 1, 6位、 1, 7位、 1, 8位、 2, 3位、 2, 7位であること が好ましい。これらのなかでも、製造が容易である点から 1, 6位、 2, 7位であることが 好ましぐとりわけ 2, 7位であることが流動性と難燃性とのバランスに優れる点から好 ましい。
[0062] また、前記エポキシ榭脂は、複数のァリーレン構造が直接結合を形成した分子構 造を形成していてもよい。
[0063] 一方、前記エポキシ榭脂にお 、て上記したナフタレン構造と酸素原子を介して結 合する他のァリーレン構造は、前記ナフタレン構造及びフエ-レン構造が挙げられる 。ここで、フエ-レン構造はォキシ基との結合位置を 2箇所又は 3箇所有するものが挙 げられ、また、前記ナフタレン構造の場合と同様にその芳香核上にメチル基、ェチル 基、プロピル基、 t ブチル基などの炭素原子数 1〜4のアルキル基又はフエ-ル基 を有して!/、てもよ 、。然し乍ら前記フエノール榭脂の流動性の点からォキシ基の結合 位置を 2箇所有するフエ-レン構造が好ましぐこの際のォキシ基の結合位置は、 1, 3位、 1, 4位、及び 1, 5位が挙げられる力 製造が容易である点から 1, 3位であるこ とが好ましい。また、当該他のァリーレン構造の芳香核上の置換基に関しては、特に 難燃効果の点から、当該置換基を有していないか、或いはメチル基又はフエ-ル基 であることが好ましぐ特に当該置換基を有していないことが好ましい。但し当該他の ァリーレン構造は難燃効果の点力 前記ナフタレン基であることが好ましい。
[0064] また、前記エポキシ榭脂の分子構造中に有する (メチル)グリシジルォキシ基とは、 具体的には、グリシジルォキシ基及び j8—メチルダリシジルォキシ基である力 本発 明では特に硬化物の難燃性の点、及び、当該エポキシ榭脂の工業的生産において 原料入手が容易であることなどから、グリシジルォキシ基であることが好ま 、。
[0065] 力かるエポキシ榭脂は、具体的には、下記一般式(3)で表される構造のものである ことが難燃効果の点力も好ま 、。
[0066] [化 9] —般式 ( 3 )
Figure imgf000018_0001
(式中、 ITは水素原子又はメチル基を表し、 Arはそれぞれ独立的にナフチレン基、 フエ-レン基、又は炭素原子数 1〜4のアルキル基若しくはフエ-ル基を置換基とし て有するナフチレン基若しくはフエ-レン基を表し、 R2はそれぞれ独立的に水素原子 又は炭素原子数 1〜4のアルキル基を表し、 n及び mはそれぞれ 0〜2の整数であつ て、かつ n又は mの何れか一方は 1以上であり、 R1は水素原子又は下記一般式(3— 2)で表されるエポキシ基含有芳香族炭化水素基を表す。但し、式中の全芳香核数 は 2〜8である。また、一般式(3)においてナフタレン骨格への結合位置はナフタレン 環を構成する 2つの環の何れであってもよい。 )
[0067] [化 10]
Figure imgf000018_0002
(一般式 (3— 2)中、 R3は水素原子又はメチル基を表し、 Arはそれぞれ独立的にナ フチレン基、フエ-レン基、又は炭素原子数 1〜4のアルキル基若しくはフエ-ル基を 置換基として有するナフチレン基若しくはフエ-レン基を表し、 Pは 1又は 2の整数で ある。)
[0068] 上記一般式(3)で表されるエポキシ榭脂のなかでも、前記した通り、ナフタレン構造 中のォキシ基との結合位置が 1, 6位、 2, 7位のもの、また、前記他のァリーレン構造 がフエ-レン基である場合には、該フエ-レン基中のォキシ基との結合位置が 1, 3位 のものが好ましぐまた、一般式(1)における R2は水素原子であることが好ましい。従 つて、前記エポキシ榭脂 (A)のうち好ましいものとして、例えば、ナフタレン構造中の ォキシ基との結合位置が 1, 6位であるものは下記の構造式 E— 1〜E— 17で表され るエポキシ榭脂が挙げられる。
[0069] [化 11]
Figure imgf000019_0001
[0070] [化 12]
Figure imgf000020_0001
[0073] [化 14]
Figure imgf000021_0001
Figure imgf000021_0002
[0074] なお、上記構造式 E— 1〜E— 25にお!/、て「G」はグリシジル基を表す。
[0075] 前記エポキシ榭脂は上記した各化合物を単独で用いてもよ!、が、複数の混合物と して用いても良い。
[0076] 以上詳述したエポキシ榭脂は、前記した通り、ナフタレン構造が酸素原子を介して 他のナフタレン構造と結合した構造を有するものであることが硬化物の難燃性が一層 良好になる他、耐熱性も良好なものとなる点力も好ましい。力かるエポキシ榭脂は、 具体的には、例えば下記一般式 (4)で表すことができる。
[0077] [化 15]
Figure imgf000021_0003
ここで一般式 (4)中、 R1はそれぞれ独立的にメチル基または水素原子を、 R2はそれ ぞれ独立的に水素原子又は炭素原子数 1〜4のアルキル基を、 n又は mはそれぞれ 0〜2の整数であって、 n又は mの何れか一方は 1以上の整数であり、 R1は水素原子 又は下記一般式 (4 2)
[0078] [化 16] —般式 (4— 2 )
Figure imgf000022_0001
(R3はそれぞれ独立的にメチル基または水素原子を、 R2はそれぞれ独立的に水素 原子又は炭素原子数 1〜4のアルキル基を、 pは 1又は 2の整数を表す。)を表す。伹 し、上記一般式 (4)において全芳香核の総数は 2〜8である。なお、上記一般式 (4) においてナフタレン骨格への結合位置はナフタレン環を構成する 2つの環の何れで あってもよい。
[0079] 前記一般式 (4)の中でも R2は水素原子であることが好ましぐその具体例は前記構 造式E—1〜E— 21のものが挙げられる。更に、それらのなかでも前記構造式 E— 18 〜E— 21で表されるォキシ基との結合位置が 2, 7位のものが難燃効果や耐熱性に 優れる点から好ましぐ特に、構造式 E— 18、構造式 E— 19、及び構造式 E— 20の 混合物として用いることが流動性と難燃性とのバランスに優れる点カゝら好ましい。また 、上記一般式 (3)における全芳香核の総数は 3〜6であることが難燃効果、耐熱性及 び流動性のバランスに優れる点力 特に好ましい。
[0080] 以上詳述したエポキシ榭脂は、例えば、ジヒドロキシナフタレン類或いはジヒドロキ シナフタレン類とジヒドロキシベンゼン類との混合物(以下、これらを「2官能性フエノ ール類」と略記する。)を酸触媒の存在下に反応させたのち、低分子量体を有機溶媒 で繰り返し抽出し、得られたフエノール榭脂をグリシジルイ匕して得ることができる力 本 発明では、塩基性触媒の存在下に反応させてフエノール榭脂を得、更にこれをグリシ ジルイ匕することによって製造することがエポキシ榭脂の生産性に優れる点力 好まし い。
[0081] このようにして得られるエポキシ榭脂は、通常、上述した各構造の化合物の混合物 として得られる為、前記エポキシ榭脂は、このような混合物のまま用いることができる。 更に、反応生成物中には、エポキシ基と、原料フエノール榭脂との反応によって形成 される 2—ヒドロキシプロピレン基を有する高分子量化合物や、また、原料成分である 2官能性フエノール類のジグリシジルエーテルも含まれる。従って、本発明のエポキシ 榭脂を使用する際、このような高分子量化合物や原料成分を含んだ混合物として用 Vヽることができる。本発明では前記した通りエポキシ榭脂の核体数を低く抑えることが 可能であることから、当該混合物は、エポキシ榭脂と、 2官能性フエノール類のジグリ シジルエーテルとの混合物として用いることが好ましい。また、前記混合物中の 2官 能性フエノール類のジグリシジルエーテルの含有率は、エポキシ榭脂組成物の流動 性の点力も GPCによる測定における面積比で 5〜80%であることが好ましい。
[0082] 以上詳述した前記エポキシ榭脂は、前記混合物におけるエポキシ当量が 100〜4 OOg/eq.の範囲であることが、得られるエポキシ榭脂の流動性が良好で、硬化性に より優れるエポキシ榭脂組成物が得られ、更にその成形された硬化物の耐熱性に優 れる点から好ましい。
[0083] また、前記エポキシ榭脂の溶融粘度は、前記混合物における 150°Cのときの値が 5 . 0〜0. ImPa' sであることが、得られるエポキシ榭脂の流動性が良好となる点から 好ましいものである。
[0084] また、前記エポキシ榭脂は、それ単独で用いてもよ!、し、本発明の効果を損なわな V、範囲で他のエポキシ榭脂とを併用してもよ!/、。
[0085] ここで併用され得る他のエポキシ榭脂は、種々のエポキシ榭脂を使用することがで き、例えば、ビスフエノール A型エポキシ榭脂、ビスフエノール F型エポキシ榭脂、ビフ ェニル型エポキシ榭脂、テトラメチルビフエニル型エポキシ榭脂、フエノールノボラック 型エポキシ榭脂、クレゾ一ルノボラック型エポキシ榭脂、トリフエニルメタン型エポキシ 榭脂、テトラフエニルェタン型エポキシ榭脂、ジシクロペンタジェン一フエノール付カロ 反応型エポキシ榭脂、フエノールァラルキル型エポキシ榭脂、ナフトールノボラック型 エポキシ榭脂、ナフトールァラルキル型エポキシ榭脂、ナフトール フエノール共縮ノ ポラック型エポキシ榭脂、ナフトールークレゾール共縮ノボラック型エポキシ榭脂、芳 香族炭化水素ホルムアルデヒド榭脂変性フエノール榭脂型エポキシ榭脂、ビフエ- ル変性ノボラック型エポキシ榭脂等が挙げられる。これらのエポキシ榭脂の中でも、 特に難燃性に優れる硬化物が得られる点から、テトラメチルビフエノール型エポキシ 榭脂、ビフエニルァラルキル型エポキシ榭脂、ノボラック型エポキシ榭脂を用いること が好ましい。
[0086] また、本発明の製造方法で得られたエポキシ榭脂に用いられる硬化剤は、例えば アミン系化合物、アミド系化合物、酸無水物系化合物、フ ノール系化合物などの硬 ィ匕剤が挙げられる。具体的には、アミン系化合物としてはジアミノジフエニルメタン、ジ エチレントリァミン、トリエチレンテトラミン、ジアミノジフエニルスルホン、イソホロンジァ ミン、イミダゾール、 BF アミン錯体、グァ-ジン誘導体等が挙げられ、アミド系化合
3
物としては、ジシアンジアミド、リノレン酸の 2量体とエチレンジァミンとより合成される ポリアミド榭脂等が挙げられ、酸無水物系化合物としては、無水フタル酸、無水トリメリ ット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒド 口無水フタル酸、無水メチルナジック酸、へキサヒドロ無水フタル酸、メチルへキサヒド 口無水フタル酸等が挙げられ、フエノール系化合物としては、フエノールノボラック榭 脂、クレゾ一ルノボラック榭脂、芳香族炭化水素ホルムアルデヒド榭脂変性フエノール 榭脂、ジシクロペンタジェンフエノール付加型榭脂、フエノールァラルキル榭脂、ナフ トールァラルキル榭脂、トリメチロールメタン榭脂、テトラフエ-ロールエタン榭脂、ナ フトールノボラック榭脂、ナフトールーフェノール共縮ノボラック榭脂、ナフトールーク レゾール共縮ノボラック榭脂、ビフエ-ル変性フエノール榭脂(ビスメチレン基でフエノ ール核が連結された多価フエノールイ匕合物)、ビフエニル変性ナフトール榭脂(ビスメ チレン基でフエノール核が連結された多価ナフトールイ匕合物)、アミノトリアジン変性フ エノール榭脂 (メラミンやべンゾグアナミンなどでフエノール核が連結された多価フエノ ール化合物)等の多価フエノールイ匕合物、或 、は本発明の製造方法で得られるポリ ァリーレンエーテル構造を有するフエノール榭脂が挙げられる。
[0087] これらの中でも、特に芳香族骨格を分子構造内に多く含むものが難燃効果の点か ら好ましぐ具体的には、フエノールノボラック榭脂、クレゾ一ルノボラック榭脂、芳香 族炭化水素ホルムアルデヒド榭脂変性フエノール榭脂、フエノールァラルキル榭脂、 ナフトールァラルキル榭脂、ナフトールノボラック榭脂、ナフトール フエノール共縮ノ ボラック榭脂、ナフトールークレゾール共縮ノボラック榭脂、ビフエ-ル変性フエノール 榭脂、ビフエ-ル変性ナフトール榭脂、アミノトリアジン変性フエノール榭脂が難燃性 に優れることから好ましい。 [0088] 以上詳述した本発明の製造方法によって得られたポリアリーレンエーテル構造を有 するフ ノール榭脂又はエポキシ榭脂を必須の榭脂成分とするエポキシ榭脂組成物 は、従来用いられている難燃剤を配合しなくても、硬化物の難燃性が良好なものとな る。然し乍ら、より高度な難燃性を発揮させるために、例えば半導体封止材料の分野 にお!/、ては、封止工程での成形性や半導体装置の信頼性を低下させな!/、範囲で、 実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合してもよい。
[0089] 力かる非ハロゲン系難燃剤を配合したエポキシ榭脂組成物は、実質的にハロゲン 原子を含有しな 、ものであるが、例えばエポキシ榭脂に含まれるェピノ、ロヒドリン由来 の 5000ppm以下程度の微量の不純物によるハロゲン原子は含まれていても良い。
[0090] 前記非ハロゲン系難燃剤は、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系 難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際して も何等制限されるものではなぐ単独で使用しても、同一系の難燃剤を複数用いても 良ぐまた、異なる系の難燃剤を組み合わせて用いることも可能である。
[0091] 前記リン系難燃剤は、無機系、有機系のいずれも使用することができる。無機系化 合物としては、例えば、赤リン、リン酸一アンモ-ゥム、リン酸二アンモ-ゥム、リン酸 三アンモ-ゥム、ポリリン酸アンモ-ゥム等のリン酸アンモ-ゥム類、リン酸アミド等の 無機系含窒素リンィ匕合物が挙げられる。
[0092] また、前記赤リンは、加水分解等の防止を目的として表面処理が施されて!/、ること が好ましぐ表面処理方法としては、例えば、(i)水酸ィ匕マグネシウム、水酸化アルミ 二ゥム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸ィ匕ビスマス、硝酸ビスマス又 はこれらの混合物等の無機化合物で被覆処理する方法、 (ii)水酸ィ匕マグネシウム、 水酸ィ匕アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフエノール榭 脂等の熱硬化性榭脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水 酸ィ匕アルミニウム、水酸化亜鉛、水酸ィ匕チタン等の無機化合物の被膜の上にフエノ 一ル榭脂等の熱硬化性榭脂で二重に被覆処理する方法等が挙げられる。
[0093] 前記有機リン系化合物は、例えば、リン酸エステル化合物、ホスホン酸ィ匕合物、ホス フィン酸ィ匕合物、ホスフィンォキシドィ匕合物、ホスホラン化合物、有機系含窒素リンィ匕 合物等の汎用有機リン系化合物の他、 9, 10 ジヒドロー 9 ォキサ一 10 ホスファ フエナントレン = 10—ォキシド、 10- (2, 5—ジヒドロォキシフエ-ル)一 10H— 9— ォキサ 10 ホスファフェナントレン = 10—ォキシド、 10— (2, 7 ジヒドロォキシナ フチル) - 10H— 9—ォキサ 10 ホスファフェナントレン = 10—ォキシド等の環状 有機リンィ匕合物、及びそれをエポキシ榭脂ゃフエノール榭脂等の化合物と反応させ た誘導体等が挙げられる。
[0094] それらの配合量は、リン系難燃剤の種類、エポキシ榭脂組成物の他の成分、所望 の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ榭脂、硬化 剤、非ハロゲン系難燃剤及びその他の充填材ゃ添加剤等全てを配合したエポキシ 榭脂組成物 100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は 0. 1 〜2. 0質量部の範囲で配合することが好ましぐ有機リン化合物を使用する場合は 同様に 0. 1〜: L0. 0質量部の範囲で配合することが好ましぐ特に 0. 5〜6. 0質量 部の範囲で配合することが好ま 、。
[0095] また前記リン系難燃剤を使用する場合、該リン系難燃剤にノヽイド口タルサイト、水酸 ィ匕マグネシウム、ホウ化合物、酸ィ匕ジルコニウム、黒色染料、炭酸カルシウム、ゼオラ イト、モリブデン酸亜鉛、活性炭等を併用してもよい。
[0096] 前記窒素系難燃剤は、例えば、トリアジンィ匕合物、シァヌル酸ィ匕合物、イソシァヌル 酸化合物、フエノチアジン等が挙げられ、中でもトリアジンィ匕合物、シァヌル酸ィ匕合物 、イソシァヌル酸化合物が好ましい。
[0097] 前記トリアジンィ匕合物は、例えば、メラミン、ァセトグアナミン、ベンゾグアナミン、メロ ン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等 の他、例えば、(i)硫酸グァニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリ ァジン化合物、(ii)フエノール、クレゾール、キシレノール、ブチルフエノール、ノ-ル フエノール等のフエノール類と、メラミン、ベンゾグアナミン、ァセトグアナミン、ホルム グアナミン等のメラミン類およびホルムアルデヒドとの共縮合物、(iii)前記 (ii)の共縮 合物とフエノールホルムアルデヒド縮合物等のフエノール榭脂類との混合物、 (iv)前 記 (ii)又は (iii)を更に桐油、異性ィ匕アマ二油等で変性したもの等が挙げられる。
[0098] 前記シァヌル酸ィ匕合物の具体例としては、例えば、シァヌル酸、シァヌル酸メラミン 等を挙げることができる。 [0099] 前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、エポキシ榭脂組成物 の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、ェ ポキシ榭脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材ゃ添加剤等全てを 配合したエポキシ榭脂組成物 100質量部中、 0. 05〜: L0質量部の範囲で配合する ことが好ましぐ特に 0. 1〜5質量部の範囲で配合することが好ましい。
[0100] また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデンィ匕合物等を併用 してちよい。
[0101] 前記シリコーン系難燃剤としては、ケィ素原子を含有する有機化合物であれば特に 制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン榭脂等が 挙げられる。
[0102] 前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、エポキシ 榭脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが 、例えば、エポキシ榭脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材ゃ添加 剤等全てを配合したエポキシ榭脂組成物 100質量部中、 0. 05〜20質量部の範囲 で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化 合物、アルミナ等を併用してもよい。
[0103] 前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩ィ匕 合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。
[0104] 前記金属水酸ィ匕物の具体例としては、例えば、水酸ィ匕アルミニウム、水酸化マグネ シゥム、ドロマイト、ハイド口タルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジ ノレコニゥム等を挙げることができる。
[0105] 前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン 、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸 化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロ ム、酸ィ匕ニッケル、酸化銅、酸ィ匕タングステン等を挙げることができる。
[0106] 前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、 炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄 、炭酸コバルト、炭酸チタン等を挙げることができる。 [0107] 前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、 モリブデン、コノ レト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げるこ とがでさる。
[0108] 前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホ ゥ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。
[0109] 前記低融点ガラスの具体例としては、例えば、シープリ一(ボタスィ ·ブラウン社)、水 和ガラス SiO -MgO-H 0、 PbO-B O系、 ZnO— P O— MgO系、 P O— B
2 2 2 3 2 5 2 5 2
O— PbO— MgO系、 P— Sn— O— F系、 PbO— V O— TeO系、 Al O— H O系
3 2 5 2 2 3 2
、ホウ珪酸鉛系等のガラス状ィ匕合物を挙げることができる。
[0110] 前記無機系難燃剤の配合量としては、無機系難燃剤の種類、エポキシ榭脂組成物 の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、ェ ポキシ榭脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材ゃ添加剤等全てを 配合したエポキシ榭脂組成物 100質量部中、 0. 05〜20質量部の範囲で配合する ことが好ましぐ特に 0. 5〜 15質量部の範囲で配合することが好ましい。
[0111] 前記有機金属塩系難燃剤としては、例えば、フエ口セン、ァセチルァセトナート金属 錯体、有機金属カルボ二ルイ匕合物、有機コバルト塩ィ匕合物、有機スルホン酸金属塩 、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合 物等が挙げられる。
[0112] 前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、ェポ キシ榭脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであ る力 例えば、エポキシ榭脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材ゃ 添加剤等全てを配合したエポキシ榭脂組成物 100質量部中、 0. 005〜: L0質量部の 範囲で配合することが好まし 、。
[0113] 本発明のエポキシ榭脂組成物には、必要に応じて無機質充填材を配合することが できる。前記無機質充填材としては、例えば、半導体封止材料用途では溶融シリカ、 結晶シリカ、アルミナ、窒化珪素、水酸ィ匕アルミ等が挙げられ、また、導電ペースト用 途では、銀粉や銅粉等の導電性充填剤が挙げられる。
[0114] 本発明では、前記エポキシ榭脂組成物を半導体封止材料に用いる場合、無機質 充填材の使用量は、通常、組成物中 70〜95質量%となる割合であるが、中でも、難 燃性や耐湿性ゃ耐ハンダクラック性の向上、線膨張係数の低下を図るためには、 80 〜95質量%であることが特に好ましい。また、無機質充填材を組成物中 80〜95質 量%となる割合で含有する場合、前記無機充填材は溶融シリカであることが好ま 、 。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合 量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に 用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度 分布を適当に調整することが好まし ヽ。
[0115] 前記エポキシ榭脂組成物から本発明の半導体封止材料を製造する方法は、前記 各成分、及び、更にその他の配合剤を、押出機、ニーダ、ロール等を用いて均一に なるまで充分に混合して溶融混合型のエポキシ榭脂組成物とする方法が挙げられる 。また、半導体パッケージ成形としては、該半導体封止材料を注型、或いはトランスフ ァー成形機、射出成形機などを用いて成形し、さらに 50〜200°Cで 2〜10時間にカロ 熱することにより成形物である半導体装置を得る方法が挙げられる。
[0116] 前記エポキシ榭脂組成物は、上記した半導体封止材料用途の他、例えば、アンダ 一フィル材、導電ペースト、積層板や電子回路基板等に用いられる榭脂組成物、榭 脂注型材料、接着剤、ビルドアップ基板用層間絶縁材料、絶縁塗料等のコーティン グ材料等に用いることができる。前記した各種用途のなかでも特に電子部品用途で ある半導体封止材料及びアンダーフィル材、特に半導体封止材料に好適に用いるこ とがでさる。
[0117] 前記エポキシ榭脂組成物をプリント回路基板用組成物に加工するには、例えばプリ プレダ用榭脂組成物とすることができる。該エポキシ榭脂組成物の粘度によっては無 溶媒で用いることもできるが、有機溶剤を用いてワニス化することでプリプレダ用榭脂 組成物とすることが好ましい。前記有機溶剤としては、メチルェチルケトン、アセトン、 ジメチルホルムアミド等の沸点が 160°C以下の極性溶剤を用いることが好ましぐ単 独でも 2種以上の混合溶剤としても使用することができる。得られた該ワニスを、紙、 ガラス布、ガラス不織布、ァラミド紙、ァラミド布、ガラスマット、ガラスロービング布など の各種補強基材に含浸し、用いた溶剤種に応じた加熱温度、好ましくは 50〜170°C で加熱することによって、硬化物であるプリプレダを得ることができる。この時用いる榭 脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレダ中 の榭脂分が 20〜60質量%となるように調製することが好ま 、。また該エポキシ榭脂 組成物を用いて銅張り積層板を製造する場合は、上記のようにして得られたプリプレ グを、常法により積層し、適宜銅箔を重ねて、 1〜: LOMPaの加圧下に 170〜250°C で 10分〜 3時間、加熱圧着させることにより、銅張り積層板を得ることができる。
[0118] 前記エポキシ榭脂組成物を導電ペーストとして使用する場合には、例えば、微細導 電性粒子を該エポキシ榭脂組成物中に分散させ異方性導電膜用組成物とする方法 、室温で液状である回路接続用ペースト榭脂組成物や異方性導電接着剤とする方 法が挙げられる。
[0119] 前記エポキシ榭脂組成物からビルドアップ基板用層間絶縁材料を得る方法として は例えば、ゴム、フィラーなどを適宜配合した当該硬化性榭脂組成物を、回路を形成 した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布し た後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った 後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅など の金属をめつき処理する。前記めつき方法としては、無電解めつき、電解めつき処理 が好ましぐまた前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。こ のような操作を所望に応じて順次繰り返し、榭脂絶縁層及び所定の回路パターンの 導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることが できる。但し、スルーホール部の穴あけは、最外層の榭脂絶縁層の形成後に行う。ま た、銅箔上で当該榭脂組成物を半硬化させた榭脂付き銅箔を、回路を形成した配線 基板上に、 170〜250°Cで加熱圧着することで、粗化面を形成、メツキ処理の工程を 省き、ビルドアップ基板を作製することも可能である。
[0120] また、前記エポキシ榭脂組成物は、更にレジストインキとして使用することも可能で ある。この場合、前記エポキシ榭脂に、エチレン性不飽和二重結合を有するビュル系 モノマーと、硬化剤としてカチオン重合触媒を配合し、更に、顔料、タルク、及びフィ ラーを加えてレジストインキ用組成物とした後、スクリーン印刷方式にてプリント基板 上に塗布した後、レジストインキ硬化物とする方法が挙げられる。 [0121] 前記エポキシ榭脂組成物は、上記した各種用途に応じて、適宜、シランカップリン グ剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。
[0122] 前記エポキシ榭脂糸且成物は、目的或いは使用する用途に応じて常法により硬化さ せて硬化物とすることができる。この際、硬化物を得る方法は、前記エポキシ榭脂組 成物に、各種の配合成分を加え、更に適宜硬化促進剤を配合して得られた組成物 を、 20〜250°C程度の温度範囲で加熱する方法が好ましい。成形方法などもェポキ シ榭脂組成物の一般的な方法を採用することができる。このようにして得られる硬化 物は、積層物、注型物、接着層、塗膜、フィルム等を形成する。
実施例
[0123] 次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び 「%」は特に断わりのない限り質量基準である。尚、 150°Cにおける溶融粘度及び軟 化点測定、 GPC測定、 MSスペクトルは以下の条件にて測定した。
[0124] 1) 150°Cにおける溶融粘度: ASTM D4287に準拠
2)融点測定法:メトラー製 DSC822e 昇温速度: 3°CZ分
3) GPC :
'装置:東ソー株式会社製 HLC-8220 GPC、カラム:東ソー株式会社製 TSK - GEL G2000HXL + G2000HXL +G3000HXL + G4000HXL
'溶媒:テトラヒドロフラン
'流速: lmlz mm
•検出器: RI
4) MS :日本電子株式会社製 二重収束型質量分析装置 AX505H (FD505H) [0125] 実施例 1 〔フエノール榭脂(a— 1)の合成〕
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、下記式
[0126] [化 17]
Figure imgf000031_0001
で表される 2, 7—ジヒドロキシナフタレン 160g (l. 0モル)を仕込み、窒素を吹き込み つつ攪拌しながら 200°Cに加熱し、溶融させた。溶融後、 48%水酸ィ匕カリウム水溶 液 23g (0. 2モル)を添加した。その後、分留管を用いて 48%水酸ィ匕カリウム水溶液 由来の水および生成する水を抜き出した後、更に 5時間反応させた。反応終了後、 更にメチルイソブチルケトン lOOOgをカ卩え、溶解後、分液ロートに移した。次いで洗 浄水が中性を示すまで水洗後、有機層から溶媒を加熱減圧下に除去し、フ ノール 榭脂(1) 150gを得た。得られたフエノール榭脂 (a- 1)は褐色固体であり、水酸基当 量は 120gZeq、融点は 179°Cであった。
[0127] 図 1に示す GPCチャートより未反応の原料(2, 7 ジヒドロキシナフタレン)の残存 率は GPCによる面積比で 64%であることを確認した。
[0128] 図 2に示す FT— IRチャートの結果より、原料(2, 7 ジヒドロキシナフタレン)と比較 して芳香族エーテル由来の吸収(1250cm_ 1)が新たに生成したことが確認され、水 酸基同士が脱水エーテル化反応したことが推定された。
[0129] 図 3に示す FD— MSチャートの結果より、 2, 7 ジヒドキシナフタレンが 3分子間脱 水して生成した 2, 7 ジヒドロキシナフタレン 3量体構造(Mw: 444)および 5分子間 脱水して生成した 2, 7 ジヒドロキシナフタレン 5量体構造(Mw: 728)を確認した。
[0130] 更に図 4に示すトリメチルシリル化法による FD— MSより 2, 7 ジヒドロキシナフタレ ン 3量構造(Mw: 444)に、トリメチルシリル基分の分子量(Mw: 72)が 2個(M + = 5 88)、 3個(M+ =660)付いたピークを確認した。
更に 2, 7 ジヒドキシナフタレンが 5分子間脱水して生成した 2, 7 ジヒドロキシナフ タレン 5量構造(Mw: 728)に、トリメチルシリル基分の分子量(Mw: 72)力 ¾個(M +
= 945)、 4個(M+ = 1018)付!、たピークを確認した。
[0131] 以上より、フエノール榭脂(a— 1)は、原料の 2, 7 ジヒドロキシナフタレンの含有率 力 SGPCによる面積比で全体の 64%であり、その他は、下記構造式
[0132] [化 18]
Figure imgf000032_0001
で表される 2, 7 ジヒドロキシナフタレン 3量体エーテル化合物、
[0133] 下記構造式 [0134] [化 19]
Figure imgf000033_0001
で表される 2, 7—ジヒドロキシナフタレン 2量体エーテルに 2, 7—ジヒドロキシナフタ レンが 1分子核脱水して生成した 3量体ィ匕合物、及び
[0135] 下記構造式
[0136] [化 20]
Figure imgf000033_0002
で表される 2, 7—ジヒドロキシナフタレン 3量体エーテルに 2, 7—ジヒドロキシナフタ レンが 2分子核脱水して生成した 5量体ィ匕合物
となって!/ヽることが解析された。
[0137] 実施例 2 〔フエノール榭脂(a— 2)の合成〕
実施例 1において、 2, 7—ジヒドロキシナフタレン 160gを 1, 6—ジヒドロキシナフタ レン 160gに変更する以外は実施例 1と同様にして、フエノール榭脂(a— 2) 147gを 得た。得られたフ ノール榭脂(a— 2)は褐色固体であり、水酸基当量は 135gZeq 、融点は 137°Cであった。図 5の GPCチャートより未反応の原料(1, 6—ジヒドロキシ ナフタレン)の残存率は GPCによる面積比で 24%であることを確認した。
[0138] 実施例 3〔フエノール榭脂(a— 3)の合成〕
実施例 1において、 2, 7—ジヒドロキシナフタレン 160gを 2, 7—ジヒドロキシナフタ レン 80g (0. 5モノレ)と 1, 3—ジヒドロキシベンゼン 55g (0. 5モル)の混合物に変更 する以外は実施例 1と同様にして、フエノール榭脂(a— 3) 125gを得た。得られたフ エノール榭脂(a— 3)は褐色固体であり、水酸基当量は 101gZeq、融点は 136°Cで あった。図 6の GPCチャートより未反応の原料(2, 7—ジヒドロキシナフタレンと 1, 3 ージヒドロキシベンゼンの合計)の残存率は GPCによる面積比で 36%であることを確 した 0
[0139] 実施例 4〔ポリアリーレンエーテルィ匕合物(a— 4)の合成〕
実施例 1において、 2, 7—ジヒドロキシナフタレン 160gを 1, 3—ジヒドロキシベンゼ ン 110g (l. 0モル)に変更する以外は実施例 1と同様にして、本発明のポリアリーレ ンエーテルィ匕合物(a— 4) lOOgを得た。得られたフエノール榭脂 (a-4)は褐色固体 であり、水酸基当量は 85gZeq、融点は 122°Cであった。 GPCチャートより未反応の 原料(1, 3—ジヒドロキシベンゼン)の残存モル率は 36%であることを確認した。
[0140] 実施例 5〔ポリアリーレンエーテルィ匕合物(a— 5)の合成〕
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、下記式
[0141] [化 21]
Figure imgf000034_0001
で表される 2, 7—ジヒドロキシナフタレン 160g (l. 0モノレ)とペンジノレアノレコーノレ 80g を仕込み、窒素を吹き込みつつ攪拌しながら 200°Cに加熱し、溶融させた。溶融後、 48%水酸ィ匕カリウム水溶液 23g (0. 2モル)を添加した。その後、分留管を用いて 48 %水酸ィ匕カリウム水溶液由来の水および生成する水を抜き出した後、更に 15時間反 応させた。反応終了後、更に水 lOOOgを加え、沈殿物を濾別、水洗後、減圧条件下 にて乾燥し、本発明のポリアリーレンエーテルィ匕合物(a— 5) 147gを得た。得られた 化合物(a— 5)は褐色固体であり、水酸基当量は 154gZeq、融点は 182°Cであった 。 GPCチャートより未反応の原料(2, 7—ジヒドロキシナフタレン)の残存モル率は 32 %であることを確認した。
[0142] 実施例 6 エポキシ榭脂 (b— 1)の合成
温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに、窒素ガスパージを施 しながら、実施例 1で得られたフエノール榭脂(a— l) 120g、ェピクロルヒドリン 463g ( 5. 0モル)、 n—ブタノール 139g、テトラエチルベンジルアンモ -ゥムクロライド 2gを 仕込み溶解させた。 65°Cに昇温した後、共沸する圧力まで減圧して、 49%水酸ィ匕 ナトリウム水溶液 90g (l. 1モル)を 5時間かけて滴下した。その後、同条件で 0. 5時 間撹拌を続けた。この間、共沸によって留出してきた留出分をディーンスタークトラッ プで分離し、水層を除去し、油層を反応系内に戻しながら、反応を行った。その後、 未反応のェピクロルヒドリンを減圧蒸留によって留去させた。それで得られた粗ェポ キシ榭脂にメチルイソブチルケトン 432gと n—ブタノール 130gとをカ卩ぇ溶解した。更 にこの溶液に 10%水酸ィ匕ナトリウム水溶液 10gを添加して 80°Cで 2時間反応させた 後に洗浄液の PHが中性となるまで水 150gで水洗を 3回繰り返した。次いで共沸に よって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して、エポキシ榭 脂 170gを得た(以下、これを「エポキシ榭脂 (b— 1)」と略記する。 ) 0得られたェポキ シ榭脂(b— 1)の 150°Cの溶融粘度は 0. 5dPa' s、エポキシ当量は 187gZeqであ つた o
[0143] 比較例 1 〔ポリアリーレンエーテルィ匕合物(a,一l)の合成〕
実施例 1において、 48%水酸ィ匕カリウム水溶液 23g (0. 2モル)をパラトルエンスル ホン酸 · 1水和物 2gに変更する以外は、実施例 1と同様にして、比較用ポリアリーレン エーテル化合物(a, - 1) 145gを得た。得られたポリアリーレンエーテルィ匕合物(a, 1)は褐色固体であり、水酸基当量は 183gZeq、融点は測定できず、分解点は 25 0°Cであった。
[0144] 実施例 7〜14、と比較例 2〜6
エポキシ榭脂としてジャパンエポキシレジン株式会社製 YX—4000H (テトラメチル ビフエノール型エポキシ榭脂、エポキシ当量: 195g/eq)、 日本化薬株式会社製 NC — 3000 (ビフエ-ルァラルキル型エポキシ榭脂、エポキシ当量: 277gZeq)、大日 本インキ化学工業株式会社製 EPICLON N— 665— EXP (タレゾールノボラック型 エポキシ榭脂、エポキシ当量: 203g/eq)、及び上記エポキシ榭脂 (b— 1)、硬化剤 として上記フエノール榭脂 a— l〜a— 5、 a, 1及び、三井化学製ミレックス XLC— 3 L (フエノールァラルキル榭脂 水酸基当量: 172g/eq)を用い、硬化促進剤としてト リフエ-ルホスフィン (TPP)、難燃剤として縮合燐酸エステル (大八化学工業株式会 社製 PX— 200)、水酸化マグネシウム(エア ·ウォーター株式会社製エコーマグ Z— 1 0)、無機充填材として球状シリカ (株式会社マイクロン製 S— COL)、シランカップリン グ剤として γ—グリシドキシトリエトキシキシシラン (信越ィ匕学工業株式会社製 KBM — 403)、カルナゥバワックス(株式会社セラリカ野田製 PEARL WAX No. l— P) 、カーボンブラックを用いて表 1〜2に示した組成で配合し、 2本ロールを用いて 100 °Cの温度で 10分間溶融混練して目的の組成物を得た。得られたエポキシ榭脂組成 物について、下記手法によりゲルタイムを測定し、硬化性を試験した。また、これを 18 0°Cで 10分間プレス成形し、その後 180°Cで 5時間さらに硬化せしめた後に、 UL— 94試験法に準拠した厚さ 1. 6mmの試験片を作成し、下記方法により、硬化物の物 性を確認した。
[0145] ゲルタイム: エポキシ榭脂組成物 0. 15gを 175°Cに加熱したキュアプレート(TH ERMO ELECTRIC社製)上に載せ、ストップウォッチで計時を開始する。棒の先 端にて試料を均一に攪拌し、糸状に試料が切れてプレートに残るようになった時、ス トップウォッチを止める。この試料が切れてプレートに残るようになるまでの時間をゲ ルタイムとした。
[0146] 難燃性: UL— 94試験法に準拠し、厚さ 1. 6mmの試験片 5本を用いて、燃焼試 験を行った。
ガラス転移温度:粘弾性測定装置 (レオメトリック社製 固体粘弾性測定装置 RSAII 、二重カレンチレバー法;周波数 1Ηζ、昇温速度 3°CZmin)を用いて測定した。
[0147] [表 1]
表 1 エポキシ樹脂 成物配合表 〈部 > 莰び WB結果
Figure imgf000037_0001
2]
表 2 ポキシ樹脂組成物配合表 (部〉 及び 価結果
Figure imgf000037_0002
表 1の脚注:
* 1: 1回の接炎における最大燃焼時間 (秒) * 2:試験片 5本の合計燃焼時間 (秒)
自消: V— 1に要求される難燃性 (∑ F≤ 250秒且つ Fmax≤ 30秒)は満たさな!/ヽが 、燃焼 (炎のクランプ到達)には至らず消火。
産業上の利用可能性
本発明によれば、重合後の特別な後処理や複雑な多段階反応を要することなぐ 極めて簡便な方法で低溶融粘度のポリアリーレンエーテルを工業的に生産すること が可能なフエノール榭脂の製造方法、更に該製造方法によって得られたフエノール 榭脂からエポキシ榭脂を製造する方法を提供できる。

Claims

請求の範囲
[1] フエノール性水酸基を 1分子中に 2つ以上有する多価ヒドロキシ芳香族化合物 (A)を
、塩基性触媒 (B)の存在下に脱水縮合反応させることを特徴とするポリアリーレンェ 一テル構造を有するフエノール榭脂の製造方法。
[2] 前記フ ノール性水酸基を 1分子中に 2つ以上有する多価ヒドロキシ芳香族化合物(
A)力 フエノール性水酸基が結合している芳香核において該フエノール性水酸基に 隣接する位置に配向性を有するものである請求項 1記載の製造方法。
[3] 前記フ ノール性水酸基を 1分子中に 2つ以上有する多価ヒドロキシ芳香族化合物(
A)が、ジヒドロキシナフタレン類 (al)である請求項 1記載の製造方法。
[4] 前記フ ノール性水酸基を 1分子中に 2つ以上有する多価ヒドロキシ芳香族化合物(
A)が、ジヒドロキシベンゼン類 (a2)である請求項 1記載の製造方法。
[5] 前記フ ノール性水酸基を 1分子中に 2つ以上有する多価ヒドロキシ芳香族化合物(
A)力 ジヒドロキシナフタレン類(al)とジヒドロキシベンゼン類(a2)との混合物である 請求項 1記載の製造方法。
[6] 前記脱水縮合反応を、 100〜300°Cの温度条件下に行う請求項 1記載の製造方法
[7] 請求項 1〜6の何れか 1つの製造方法によって得られたフエノール榭脂を、(メチル) ェピノ、ロヒドリンと反応させることを特徴とするポリアリーレンエーテル構造を有するェ ポキシ榭脂の製造方法。
PCT/JP2006/321840 2006-02-28 2006-11-01 フェノール樹脂の製造方法、およびエポキシ樹脂の製造方法 WO2007099670A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06822769A EP1992655B9 (en) 2006-02-28 2006-11-01 Method of producing phenol resin and method of producing epoxy resin
US12/280,941 US20090088535A1 (en) 2006-02-28 2006-11-01 Method of producing phenol resin and method of producing epoxy resin
CN2006800532986A CN101384642B (zh) 2006-02-28 2006-11-01 酚树脂的制造方法和环氧树脂的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-052537 2006-02-28
JP2006052537A JP4285491B2 (ja) 2006-02-28 2006-02-28 エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、新規フェノール樹脂、及び半導体封止材料
JP2006090758A JP4259536B2 (ja) 2006-03-29 2006-03-29 フェノール樹脂の製造方法、およびエポキシ樹脂の製造方法
JP2006-090758 2006-03-29

Publications (1)

Publication Number Publication Date
WO2007099670A1 true WO2007099670A1 (ja) 2007-09-07

Family

ID=38458793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321840 WO2007099670A1 (ja) 2006-02-28 2006-11-01 フェノール樹脂の製造方法、およびエポキシ樹脂の製造方法

Country Status (6)

Country Link
US (1) US20090088535A1 (ja)
EP (1) EP1992655B9 (ja)
KR (1) KR100975846B1 (ja)
MY (1) MY154545A (ja)
TW (1) TWI399390B (ja)
WO (1) WO2007099670A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098488A1 (ja) * 2014-12-15 2016-06-23 Dic株式会社 熱硬化性樹脂組成物、その硬化物、及びこれに用いる活性エステル樹脂

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI540170B (zh) * 2009-12-14 2016-07-01 Ajinomoto Kk Resin composition
EP2532710B1 (en) * 2010-02-03 2018-08-22 DIC Corporation Phenol resin composition, curable resin composition, cured products thereof, and printed circuit board
KR20130061132A (ko) * 2010-04-16 2013-06-10 발스파 소싱 인코포레이티드 패키징 용품을 위한 코팅 조성물 및 코팅 방법
JP5120520B2 (ja) * 2010-07-02 2013-01-16 Dic株式会社 熱硬化性樹脂組成物、その硬化物、活性エステル樹脂、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
BR112013020026B1 (pt) 2011-02-07 2021-03-02 Swimc Llc artigo, composição de revestimento, e, método
WO2012132923A1 (ja) * 2011-03-29 2012-10-04 三菱瓦斯化学株式会社 プリプレグ、及び金属箔張り積層板、並びにプリント配線板
JP5716963B2 (ja) * 2011-07-22 2015-05-13 Dic株式会社 ポリヒドロキシ化合物、エポキシ樹脂、熱硬化性樹脂組成物、その硬化物及び半導体封止材料
WO2013141848A1 (en) * 2012-03-20 2013-09-26 Empire Technology Development Llc Two-component lignosulfonate adhesives and methods for their preparation
ES2849526T3 (es) 2012-08-09 2021-08-19 Swimc Llc Composiciones para contenedores y otros artículos y métodos de utilización de los mismos
WO2014025411A1 (en) 2012-08-09 2014-02-13 Valspar Sourcing, Inc. Container coating system
CN103113735B (zh) * 2013-02-04 2015-05-20 厦门大学 一种纳米贵金属/含poss聚合物杂化微球及其制备方法
EP3131965B1 (en) 2014-04-14 2024-06-12 Swimc Llc Methods of preparing compositions for containers and other articles and methods of using same
US20170082923A1 (en) * 2014-06-12 2017-03-23 Dic Corporation Photosensitive composition for permanent films, resist material and coating film
TWI614275B (zh) 2015-11-03 2018-02-11 Valspar Sourcing Inc 用於製備聚合物的液體環氧樹脂組合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236223A (ja) * 1990-06-26 1992-08-25 Ciba Geigy Ag 直鎖状ポリマー
JPH06313025A (ja) * 1993-04-28 1994-11-08 Nippon Steel Chem Co Ltd 新規エポキシ樹脂及びその製造方法並びにそれを用いたエポキシ樹脂組成物
JP2004027000A (ja) * 2002-06-25 2004-01-29 Matsushita Electric Works Ltd エポキシ樹脂組成物、プリプレグ及び積層板
JP2004059714A (ja) * 2002-07-29 2004-02-26 Mitsubishi Chemicals Corp エポキシ樹脂及びそれを用いたエポキシ樹脂組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB788887A (en) * 1955-01-31 1958-01-08 Bataafsche Petroleum Improvements in or relating to the production of glycidyl ethers of polyhydric phenols
US3514418A (en) * 1963-11-19 1970-05-26 Shell Oil Co Epoxy ethers,their preparation and cured products obtained therefrom
US3450772A (en) * 1964-12-04 1969-06-17 Mobil Oil Corp Polyphenyl ethers
DE2237762A1 (de) * 1972-08-01 1974-02-14 Union Rheinische Braunkohlen Verfahren zur herstellung von dihydroxydiphenylaethern
US4107106A (en) * 1976-11-22 1978-08-15 Union Carbide Corporation Phenol-aldehyde-amine resin/glycol curatives for energy absorbing polyurethanes
JPS6025946A (ja) * 1983-07-21 1985-02-08 Mitsui Petrochem Ind Ltd ヒドロキシジフエニルエ−テル類の製造方法
EP0388358B1 (de) * 1989-03-17 1996-09-25 Sumitomo Chemical Company Limited Neue Polyarylenether
US5334674A (en) * 1991-06-19 1994-08-02 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polyhydroxy aromatic compounds, epoxy resins derived therefrom and epoxy resin compositions
EP0528266A3 (en) * 1991-08-20 1993-05-05 Basf Aktiengesellschaft Method for the production of polyarylethers
JP3132610B2 (ja) * 1993-03-22 2001-02-05 日本化薬株式会社 ナフタレン環含有樹脂、樹脂組成物及びその硬化物
JP2003335718A (ja) * 2002-05-21 2003-11-28 Dainippon Ink & Chem Inc 4,4′−ジヒドロキシジフェニルエーテル類の製造法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236223A (ja) * 1990-06-26 1992-08-25 Ciba Geigy Ag 直鎖状ポリマー
JPH06313025A (ja) * 1993-04-28 1994-11-08 Nippon Steel Chem Co Ltd 新規エポキシ樹脂及びその製造方法並びにそれを用いたエポキシ樹脂組成物
JP2004027000A (ja) * 2002-06-25 2004-01-29 Matsushita Electric Works Ltd エポキシ樹脂組成物、プリプレグ及び積層板
JP2004059714A (ja) * 2002-07-29 2004-02-26 Mitsubishi Chemicals Corp エポキシ樹脂及びそれを用いたエポキシ樹脂組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098488A1 (ja) * 2014-12-15 2016-06-23 Dic株式会社 熱硬化性樹脂組成物、その硬化物、及びこれに用いる活性エステル樹脂
JP6098766B2 (ja) * 2014-12-15 2017-03-22 Dic株式会社 熱硬化性樹脂組成物、その硬化物、及びこれに用いる活性エステル樹脂
JPWO2016098488A1 (ja) * 2014-12-15 2017-04-27 Dic株式会社 熱硬化性樹脂組成物、その硬化物、及びこれに用いる活性エステル樹脂

Also Published As

Publication number Publication date
KR100975846B1 (ko) 2010-08-16
EP1992655A1 (en) 2008-11-19
US20090088535A1 (en) 2009-04-02
TW200732368A (en) 2007-09-01
EP1992655B1 (en) 2011-12-28
KR20080094723A (ko) 2008-10-23
EP1992655A4 (en) 2009-09-02
TWI399390B (zh) 2013-06-21
MY154545A (en) 2015-06-30
EP1992655B9 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP4285491B2 (ja) エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、新規フェノール樹脂、及び半導体封止材料
JP4259536B2 (ja) フェノール樹脂の製造方法、およびエポキシ樹脂の製造方法
JP5245199B2 (ja) エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、その製造方法、及び新規フェノール樹脂
WO2007099670A1 (ja) フェノール樹脂の製造方法、およびエポキシ樹脂の製造方法
KR101246187B1 (ko) 경화성 수지 조성물, 그 경화물, 프린트 배선 기판, 에폭시 수지, 및 그 제조 방법
WO2006101008A1 (ja) エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、その製造方法、及び新規フェノール樹脂
WO2012023435A1 (ja) エポキシ化合物、硬化性組成物、及びその硬化物
WO2006093203A1 (ja) エポキシ樹脂組成物、その硬化物、半導体封止材料、新規フェノール樹脂、および新規エポキシ樹脂
JP5002897B2 (ja) 多価ヒドロキシ化合物、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及び硬化物
WO2012043563A1 (ja) 硬化性樹脂組成物、その硬化物、フェノール樹脂、エポキシ樹脂、及び半導体封止材料
JP5760794B2 (ja) ポリヒドロキシ化合物、エポキシ樹脂、熱硬化性樹脂組成物、その硬化物及び半導体封止材料
JP5257725B2 (ja) エポキシ樹脂,エポキシ樹脂組成物,硬化物,半導体装置,エポキシ樹脂の製造法
JP5689230B2 (ja) エポキシ樹脂組成物、その硬化物、半導体封止材料、半導体装置、及びエポキシ樹脂
JP5246481B2 (ja) 硬化性樹脂組成物、その硬化物、新規エポキシ樹脂、及びその製造方法
JP2009203427A (ja) エポキシ樹脂組成物、半導体封止材料及び半導体装置
JP5233858B2 (ja) エポキシ樹脂組成物、その硬化物、及び半導体装置
JP2012077120A (ja) 硬化性樹脂組成物、その硬化物、フェノール樹脂、エポキシ樹脂、及び半導体封止材
JP4961663B2 (ja) エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂及びその製造方法
JP5590416B2 (ja) 硬化性樹脂組成物、その硬化物、フェノール樹脂、エポキシ樹脂、及び半導体封止材料
JP5011683B2 (ja) 多価ヒドロキシ化合物、エポキシ樹脂、及びそれらの製造法、エポキシ樹脂組成物と硬化物
JP5035604B2 (ja) エポキシ樹脂組成物、その硬化物、および新規エポキシ樹脂
JP5082492B2 (ja) 2官能性ヒドロキシ化合物、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物、その硬化物、及び半導体封止材料
JP4984432B2 (ja) 多価ヒドロキシ化合物、エポキシ樹脂、及びそれらの製造法、エポキシ樹脂組成物と硬化物
JP2008231238A (ja) エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 200680053298.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087022275

Country of ref document: KR

Ref document number: 2006822769

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12280941

Country of ref document: US