WO2006101008A1 - エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、その製造方法、及び新規フェノール樹脂 - Google Patents

エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、その製造方法、及び新規フェノール樹脂 Download PDF

Info

Publication number
WO2006101008A1
WO2006101008A1 PCT/JP2006/305264 JP2006305264W WO2006101008A1 WO 2006101008 A1 WO2006101008 A1 WO 2006101008A1 JP 2006305264 W JP2006305264 W JP 2006305264W WO 2006101008 A1 WO2006101008 A1 WO 2006101008A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
group
carbon atoms
resin composition
formula
Prior art date
Application number
PCT/JP2006/305264
Other languages
English (en)
French (fr)
Inventor
Ichirou Ogura
Kunihiro Morinaga
Kazuo Arita
Yutaka Sato
Original Assignee
Dainippon Ink And Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink And Chemicals, Inc. filed Critical Dainippon Ink And Chemicals, Inc.
Priority to US11/908,464 priority Critical patent/US7718741B2/en
Priority to CN2006800081661A priority patent/CN101495533B/zh
Publication of WO2006101008A1 publication Critical patent/WO2006101008A1/ja
Priority to US12/615,459 priority patent/US8084567B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • the present invention is suitable as a resin composition for semiconductor devices, circuit board devices, etc., which exhibits an excellent cured product without using an additive-based flame retardant in the cured product, and also has excellent dielectric properties.
  • the present invention relates to an epoxy resin composition that can be used in the present invention, a cured product thereof, a novel epoxy resin used in the composition, a production method thereof, and a novel phenol resin that is an intermediate of the epoxy resin.
  • Epoxy resin is widely used in the electronics and high-performance paint fields because it provides a cured product with excellent low shrinkage during curing, dimensional stability of the cured product, electrical insulation and chemical resistance. It has been.
  • the electronics field such as semiconductor encapsulating materials, for example, the surface mounting of semiconductors for the purpose of increasing the density of electronic components in recent years, along with the miniaturization of the semiconductor itself, the moisture resistance of the encapsulating materials, especially The demand for non-cracking resistance after moisture resistance is becoming extremely high. Therefore, in response to such demands, there is a technology for increasing the number of aromatic nuclei in coconut resin to reduce the amount of secondary hydroxyl groups that appear during the curing reaction, thereby improving the moisture resistance and reducing stress of the cured product.
  • an epoxy resin composition that uses solid novolac resin having a reduced functional group concentration as a curing agent for epoxy resin by reaction of monostyrenated phenol with formaldehyde or paraformaldehyde (for example, Patent Document 1), and an epoxy resin composition (for example, see Patent Document 2) using a polyglycidyl ether of the solid novolak resin has been proposed.
  • Patent Document 1 an epoxy resin composition that uses solid novolac resin having a reduced functional group concentration as a curing agent for epoxy resin by reaction of monostyrenated phenol with formaldehyde or paraformaldehyde
  • Patent Document 2 an epoxy resin composition using a polyglycidyl ether of the solid novolak resin
  • Patent Document 1 Japanese Patent Laid-Open No. 05-132544 (pages 3-4)
  • Patent Document 2 Japanese Patent Laid-Open No. 05-140265 (Page 3-5)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 08-120039 (Pages 4-6)
  • the problem to be solved by the present invention is an epoxy resin composition capable of imparting extremely excellent flame retardancy and dielectric properties to a cured product, a novel epoxy resin and a novel phenol resin,
  • An object of the present invention is to provide a cured epoxy resin having both performance and a method for producing the epoxy resin.
  • the present invention has a polyaryleneoxy structure as a main skeleton, and the structure is excellent.
  • R and R are each independently a methyl group or a hydrogen atom; Ar is
  • a naphthylene group, n is an average number of repetitions of 0.1 to 4.
  • epoxy resin composition (I) having a molecular structure in which the structural parts represented by the formula (A) and the curing agent (B) are essential components.
  • the composition is abbreviated as “epoxy resin composition (I)”).
  • the present invention also relates to a cured product obtained by curing the epoxy resin composition.
  • the inorganic filler in addition to the epoxy resin (A) and the curing agent (B) in the epoxy resin composition, may further be 70 to 95% by mass in the composition.
  • the present invention relates to a semiconductor encapsulating material characterized in that the epoxy resin composition contained in
  • the present invention further has a polyaryleneoxy structure as a main skeleton, and the aromatic ring of the structure has a (methyl) glycidyloxy group and the following structural formula (1)
  • R and R are each independently a methyl group or a hydrogen atom; Ar is
  • a naphthylene group, n is an average number of repetitions of 0.1 to 4.
  • the present invention further provides a dihydroxy aromatic compound (al) and the following structural formula (2):
  • Ar Y structural formula (2) [Wherein, R and R are each independently a methyl group or a hydrogen atom, Ar is a phenyl group,
  • R, R and R are each independently a methyl group or a hydrogen atom;
  • Ar is a phenylene;
  • aralkylating agent (a2) selected from the compounds represented by the following formulas to react with phenol in the presence of an acid catalyst to obtain phenolic resin, and then the resulting phenolic resin, epino and rhohydrins (
  • the present invention relates to a method for producing an epoxy resin characterized by reacting with a3).
  • the present invention also has a polyaryleneoxy structure as a main skeleton, and the aromatic ring of the structure includes a phenolic hydroxyl group and the following structural formula (1)
  • R and R are each independently a methyl group or a hydrogen atom; Ar is
  • a naphthylene group, n is an average number of repetitions of 0.1 to 4.
  • epoxy resin composition comprising a phenolic resin ( ⁇ ′) having a molecular structure in which structural parts represented by The epoxy resin composition is abbreviated as “epoxy resin composition ( ⁇ )”).
  • the present invention also relates to a cured product obtained by curing the epoxy resin composition.
  • the present invention further provides an inorganic filler in the composition in addition to the epoxy resin ( ⁇ ') and the phenol resin ( ⁇ ') in the epoxy resin composition.
  • the present invention relates to a semiconductor encapsulating material comprising an epoxy resin composition contained at a ratio of
  • the present invention further has a polyaryleneoxy structure as a main skeleton, and the aromatic ring of the structure includes a phenolic hydroxyl group and the following structural formula (1)
  • R and R are each independently a methyl group or a hydrogen atom; Ar is
  • a naphthylene group, n is an average number of repetitions of 0.1 to 4.
  • an epoxy resin composition capable of imparting extremely excellent flame retardancy and dielectric properties to a cured product, a novel epoxy resin, a novel phenol resin, and the above-mentioned performances are combined.
  • a cured epoxy resin and a method for producing the epoxy resin can be provided.
  • the epoxy resin (A) used in the epoxy resin composition (I) of the present invention has a polyaryleneoxy structure as the main skeleton, and the aromatic ring of the structure has a (methyl) glycidyloxy group and
  • R and R are each independently a methyl group or a hydrogen atom; Ar is
  • a naphthylene group, n is an average number of repetitions of 0.1 to 4.
  • the epoxy resin (A) has a polyarylene oxide structure as a main skeleton in the molecular structure, the arylene group in the structure and the aralkyl represented by the structural formula (1) at the time of combustion.
  • a base is quickly formed by the group and exhibits excellent flame retardancy.
  • a pendant aralkyl group is present in an epoxy resin structure, in view of the difficulty of exhibiting a flame retardant effect, by introducing an aralkyl group into the resin structure in the present invention, It should be noted that it exhibits excellent flame retardancy.
  • the epoxy resin (A) of the present invention has a low concentration of (methyl) glycidyloxy group and a low dielectric constant of the cured product. Lower. Therefore, the epoxy resin (A) can have both excellent dielectric properties and flame retardancy.
  • the polyarylene oxide structure constituting the basic skeleton of the epoxy resin (A) includes a naphthylene oxide system such as a polynaphthylene oxide structure and a polynaphthylene oxide structure substituted with an alkyl group having 1 to 4 carbon atoms.
  • Structure and polyphenol Examples thereof include a side structure and a fulleroxide structure such as a polyphenylene oxide structure substituted with an alkyl group having 1 to 4 carbon atoms.
  • those having a naphthylene oxide structure have a more remarkable flame retardant effect, and also have a point power that lowers the dielectric loss tangent.
  • a polynaphthylene oxide structure or a methyl group-containing polynaphthylene oxide structure is preferable, particularly a polynaphthylene oxide structure.
  • R and R are each independently a methyl group or a hydrogen atom.
  • Ar is a phenylene group, a naphthylene group substituted with 1 to 3 alkyl groups having 1 to 4 carbon atoms, a naphthylene group, and an alkyl group having 1 to 4 carbon atoms.
  • a naphthylene group with nuclear replacement at ⁇ 3 group power is a divalent aromatic hydrocarbon group selected.
  • a phenylene group nucleus-substituted with 1 to 3 alkyl groups having 1 to 4 carbon atoms is a methyl phenylene group, an ethyl phenylene group, an i-propyl phenylene group, or a t-butyl phenylene group.
  • a naphthylene group substituted with one to three alkyl groups having 1 to 4 carbon atoms such as a methyl naphthylene group, an ethyl naphthylene group, an i propyl naphthylene group, and a t-butyl naphthylene group.
  • N is an average value of the number of repetitions and is 0.1 to 4.
  • R and R are both hydrogen atoms because they have excellent flame retardancy and excellent dielectric properties.
  • n is particularly preferably 0.1 to 2 from the viewpoint of flame retardancy and dielectric properties, and it is easy to obtain raw materials, and the viscosity of the epoxy resin (A) is low.
  • the divalent aromatic hydrocarbon group represented by "Ar" in the structural formula (1) is added in an amount of 0.1 to 0.1 per molecule of the epoxy resin (A). It is also preferable to have a ratio of four in which the flame retardant effect is remarkably improved.
  • the (methyl) glycidyloxy group in the molecular structure of the epoxy resin (A) is specifically a glycidyloxy group and a j8-methyldaricidyloxy group, In the present invention, a glycidyloxy group is particularly preferred because of the flame retardancy of the cured product and the availability of raw materials for industrial production of the epoxy resin (A).
  • the epoxy resin (A) used in the present invention has an epoxy resin whose melt viscosity at 150 ° C measured in accordance with ASTM D4287J is 0.1 to 3. OdPa's.
  • the fluidity point of (A) is also preferable, and when the epoxy resin (A) satisfies the above requirements, it becomes the novel epoxy resin of the present invention, where the epoxy resin (A) satisfies the above-mentioned melt viscosity conditions. When it is satisfied, the fluidity of the resin itself becomes good, and the epoxy resin composition of the present invention including the resin can be easily applied to electronic parts such as a semiconductor sealing material and an underfill material.
  • the epoxy resin (A) preferably forms a polyarylene oxide structure using a dihydroxy aromatic compound as a raw material in the production of the phenol resin that is a precursor thereof. Phenolic hydroxyl groups appear at both ends of the linear molecular structure Therefore, it is mainly obtained as a bifunctional epoxy resin. However, a polyfunctional phenolic resin having a molecular structure in which another hydroxynaphthalene ring is directly bonded to the naphthalene ring in the polynaphthylene oxide structure is partially epoxidized in the resin component. Since these are also included, the epoxy resin (A) is usually obtained as a polyfunctional epoxy resin.
  • the epoxy resin (A) when the epoxy resin (A) is applied to electronic component applications, it is preferable to further reduce the functional group concentration in the epoxy resin to improve the dielectric properties and moisture resistance after curing. On the other hand, if the molecular weight in the epoxy resin (A) becomes too large, the fluidity is lowered. Accordingly, the epoxy resin (A) is preferably in the range of its epoxy equivalent force S, 200 to 1, OOOg / eq., Particularly in the range of 200 to 400 g Zeq.
  • the epoxy resin (A) described in detail above preferably has a polynaphthyleneoxy structure as the polyarylene oxide structure.
  • the epoxy resin (A) is preferably represented by the following general formula (1). Can be expressed as
  • q is an integer of 1 to 7
  • p is independently an integer of 0 to 4, respectively.
  • the value of p is in the range of 1-4.
  • R ′ is a hydrogen atom or a methyl group
  • R is independently the following general formula (2),
  • n is an average value of repetitions of 0.1 to 4.
  • n is an average value of repetitions of 0.1 to 4.
  • q is preferably an integer of 1 to 3 from the viewpoint of good fluidity of the epoxy resin (A).
  • R ′ is preferably a hydrogen atom.
  • the bonding position to the naphthalene skeleton may be any of the two rings constituting the naphthalene ring.
  • specific examples of the epoxy resin represented by the general formula (1) include those represented by the following structural formula.
  • G represents a glycidyl group
  • the methylene bond bonded to the phthalene skeleton may be bonded to any of the two rings constituting the naphthalene ring.
  • another naphthalene ring is directly bonded to the naphthalene ring in the polynaphthylene oxide structure to form a branched structure. Furthermore, a structure in which an aralkyl group is introduced into the naphthalene ring introduced by this direct bond can also be adopted.
  • the number of aralkyl groups corresponding to the structural formula (1) needs to be present in an effective amount, but is too large. However, the effect of improving flame retardancy tends to decrease. On the other hand, if q is too high, the fluidity will be low. Therefore, the compound represented by the general formula (1) has a divalent aromatic hydrocarbon group represented by “Ar” in the general formula (1) as a 1 of the epoxy resin (A). It is preferable that the compound has a ratio of 0.1 to 4 per molecule and has a q value in the range of 1 to 4 in terms of excellent balance of performance.
  • the epoxy resin (A) described in detail above is prepared by, for example, using a dihydroxynaphthalene compound in advance and performing a dehydration etherification reaction to extend the molecular chain, and then reacting with an aralkylating agent described later. Thus, it can be produced by a method of introducing glycidyl ether after introducing a substituent into the naphthalene ring. However, in this case, as described above, the epoxy resin (A) increases the melt viscosity of the epoxy resin itself. It is preferable to produce the epoxy resin according to the present invention.
  • the method for producing an epoxy resin of the present invention comprises a dihydroxy aromatic compound (al) and the following structural formula (2):
  • R and R are each independently a methyl group or a hydrogen atom, Ar is a phenyl group,
  • R, R and R are each independently a methyl group or a hydrogen atom;
  • Ar is Groups, naphthylenes substituted with 1 to 3 of alkyl groups having 1 to 4 carbon atoms, naphthylene groups, naphthylene groups, or 1 to 3 of alkyl groups with 1 to 4 carbon atoms.
  • Step 1 the dihydroxy aromatic compound (al) and the aralkylating agent (a2) are reacted with the presence of an acid catalyst, whereby a polyarylene structure is used as a main skeleton.
  • a phenol resin having a phenolic hydroxyl group at both ends and a structure in which an aralkyl group is bonded in a pendant form on the aromatic nucleus of the polyarylene structure can be obtained.
  • the content of the aralkyl group in the target phenol resin can be adjusted by adjusting the amount of the aralkylating agent (a2) used. It becomes possible to adjust the melt viscosity itself of fat. That is, usually, the reaction ratio between the dihydroxy aromatic compound (al) and the aralkylating agent (a2) is the reaction ratio between the dihydroxy aromatic compound (al) and the aralkylating agent (a2) on a molar basis ( al) / (a2) is a force that can also select a range force where 1/0. 1 to 1Z10. In the present invention, as the amount of the aralkylating agent (a2) is decreased, the mass of the polyarylene oxide structure increases.
  • the reaction ratio (al) / (a2) between the dihydroxy aromatic compound (al) and the aralkylating agent (a2) on a molar basis should be in the range of ⁇ . 1 to: LZl. 0. Is preferred.
  • the melt viscosity at 150 ° C. measured in accordance with “ASTM D4287” of phenol resin when reacted in such a range is 0.1 to 4. OdPa ′s.
  • Dihydroxy aromatic compounds (al) that can be used here include, for example, catechol, resorci Dihydric phenols such as quinol and hydroquinone, and 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxysinaphthalene, 1,6-dihydroxynaphthalene, Examples include 1,7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, and 2,7-dihydroxynaphthalene.
  • catechol catechol
  • resorci Dihydric phenols such as quinol and hydroquinone
  • 1,2-dihydroxynaphthalene 1,3-dihydroxynaphthalene
  • 1,4-dihydroxynaphthalene 1,5-dihydroxysinaphthalene
  • the cured resin of phenol resin or the epoxy resin obtained with epoxy resin is particularly good in flame retardancy, and the dielectric loss tangent of the cured product is lowered, resulting in better dielectric properties.
  • dihydroxynaphthalene particularly 1,6-dihydroxynaphthalene or 2,7-dihydroxynaphthalene is preferred, and 2,7-dihydroxynaphthalene is particularly preferred.
  • R and R are each independently a methyl group or a hydrogen atom, Ar is a phenyl group,
  • Y is a halogen atom
  • the alkoxy group is preferably an alkoxy group having 1 to 4 carbon atoms.
  • the compound represented by the structural formula (2) is, for example, benzyl methyl ether, o- Methinolevenoremethinoreethenole, m-methenoleveninoremethinoleethenore, p-methylbenzylmethylether, p-ethylbenzylmethylether and their nuclear substitution isomers, benzylethylether, benzylpropylether Benzylisobutyl etherenole, benzinore n-butinoleethenore, p-methenolevenoremethinoleethenore, and its nuclear substitution isomers.
  • the compound represented by the structural formula (2) is, for example, benzyl alcohol monoole, o-methenoleveno enoanolenocore, m-methenoleveno enoenoreconole, p —Methylenobenzyl alcohol, p-ethylbenzyl alcohol, p-isopropylbenzil alcohol, p- tert-butinoleveno-leanoreconole, p-phenolino-reno-leanoreconole, a-naphthylcarbinol and these And nuclear substituted isomers, OC methylbenzyl alcohol, and (X, a-dimethylbenzyl alcohol).
  • R 4 examples of the compound represented by [0060] include styrene, o-methylstyrene, m-methylstyrene, P-methylstyrene, ⁇ -methylstyrene, j8-methylstyrene, and the like.
  • the aralkylating agent represented by the structural formula (2) is particularly preferred from the viewpoint of the flame retardant effect, and in particular, benzyl chloride, benzyl bromide, and benzyl alcohol are finally obtained. It is preferable because it has a more remarkable flame retardant effect on cured products of rosin or phenolic rosin.
  • Examples of the acid catalyst that can be used in the reaction of the dihydroxy aromatic compound (al) and the aralkylating agent (a2) in Step 1 include inorganic acids such as phosphoric acid, sulfuric acid, and hydrochloric acid, oxalic acid, and benzenesulfonic acid. And organic acids such as toluenesulfonic acid, methanesulfonic acid, and fluoromethanesulfonic acid, and Friedel-Crafts catalysts such as aluminum chloride, aluminum chloride, zinc chloride, stannic chloride, ferric chloride, and jetyl sulfate.
  • inorganic acids such as phosphoric acid, sulfuric acid, and hydrochloric acid, oxalic acid, and benzenesulfonic acid.
  • organic acids such as toluenesulfonic acid, methanesulfonic acid, and fluoromethanesulfonic acid
  • Friedel-Crafts catalysts such as aluminum chloride
  • the amount of the acid catalyst used can be appropriately selected depending on the target modification rate, for example, in the case of an inorganic acid or an organic acid, 100 parts by weight of dihydroxy aromatic compound (al). 0.001 to 5.0 parts by mass, preferably 0.01 to 3.0 parts by mass, and in the case of a Friedel-Crafts catalyst, 0.2 to 0.2 mol per 1 mol of the dihydroxy aromatic compound (al). 3. It is preferable to be in the range of 0 monolith, preferably 0.5 to 2.0 monolith! / ⁇ .
  • the reaction of the dihydroxy aromatic compound (al) and the aralkylating agent (a2) in the step 1 may be carried out in the absence of a solvent, but is carried out in a solvent from the viewpoint of improving the uniformity in the reaction system. It's okay.
  • Examples of powerful solvents include ethylene glycol dimethyl ether, ethylene glycol nole chinenoateol, ethylene glycol nocile pinoleate nore, diethylene glycol dimethyl ether, diethylene glycol genyl ether, diethylene glycol nodule propenoleate nore, ethylene glycol nore mononole.
  • a specific method for carrying out the reaction of Step 1 is to dissolve the dihydroxy aromatic compound (al), the aralkylating agent (a2), and the acid catalyst in the absence of a solvent or in the presence of the solvent,
  • the reaction can be performed at a temperature of 60 to 180 ° C, preferably about 80 to 160 ° C.
  • the reaction time is not particularly limited, but is preferably 1 to 10 hours. Therefore, the reaction can be specifically performed by maintaining the temperature for 1 to 10 hours.
  • an antioxidant or a reducing agent may be added to the reaction system in order to suppress it.
  • the antioxidant include hindered phenol compounds such as 2,6-dialkylphenol derivatives, divalent thio compounds, and phosphite compounds containing a trivalent phosphorus atom.
  • the reducing agent include hypophosphorous acid, phosphorous acid, thiosulfuric acid, sulfurous acid, hydrated sulfate, and salts thereof.
  • the acid catalyst is removed by neutralization treatment, water washing treatment or decomposition, and the desired phenolic resin can be separated by general operations such as extraction and distillation.
  • Neutralization treatment and washing treatment can be carried out in accordance with conventional methods. For example, use of basic substances such as sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia, triethylenetetramine, and phosphorus as neutralizing agents. Can do.
  • the desired epoxy resin can be obtained by reacting the phenolic resin obtained in Step 1 with epihalohydrin (a3).
  • the reaction in Step 2 is carried out by adding 2 to 10 mol of epino and rhohydrins (a3) to 1 mol of phenolic hydroxyl group in the phenolic resin, and further adding 1 mol of phenolic hydroxyl group in the phenolic resin.
  • a method of reacting at a temperature of 20 to 120 ° C. for 0.5 to 10 hours while adding 0.9 to 2.0 mol of a basic catalyst at once or gradually adding the catalyst is carried out by adding 2 to 10 mol of epino and rhohydrins (a3) to 1 mol of phenolic hydroxyl group in the phenolic resin, and further adding 1 mol of phenolic hydroxyl group in the phenolic resin.
  • the basic catalyst used here can be used as a solid or as an aqueous solution thereof.
  • Water and epihalohydrins (a3) are continuously distilled from the reaction mixture under reduced pressure or normal pressure, and further separated to remove water, and epino and rhohydrins (a3) are continuously added to the reaction mixture. Adopt the method of returning.
  • Examples of the epihalohydrins (a3) include epichlorohydrin, epip oral hydrin, 13 methyl epichlorohydrin, and the like, and epipic hydrin is preferable because it is easily available industrially.
  • the reaction after the first batch of epoxy resin production after the first batch is consumed by the reaction with the epino and rhohydrins (a3) recovered from the crude reaction product. It is preferable to use in combination with new epinos and rhohydrins (a3) corresponding to the amount that disappears.
  • the basic catalyst include alkaline earth metal hydroxides, alkali metal carbonates, and alkali metal hydroxides.
  • alkali metal hydroxide is preferred because of its excellent catalytic activity for epoxy resin synthesis reaction.
  • these basic catalysts may be used in the form of an aqueous solution of about 10 to 55% by mass or in the form of a solid.
  • organic solvents include, but are not limited to, ketones such as acetone and methyl ethyl ketone, and alcohols such as methanol, ethanol, 1 propyl alcohol, isopropyl alcohol, 1-butanol, secondary butanol, and tertiary butanol.
  • Cellosolves such as methylcetosolve and ethylcetosolve, ether hydrofurans, ethers such as 1,4 dioxane, 1,3 dioxane and diethoxyethane, aprotic polar solvents such as acetonitrile, dimethyl sulfoxide and dimethylformamide It is done.
  • organic solvents may be used alone or in combination of two or more kinds as appropriate in order to adjust the polarity.
  • reaction product of the epoxidation reaction is washed with water, unreacted epihalohydrin and the organic solvent used in combination are distilled off by distillation under heating and reduced pressure.
  • an organic solvent such as toluene, methyl isobutyl ketone, methyl ethyl ketone, and the like.
  • Further reaction can be carried out by adding an aqueous solution of an alkali metal hydroxide such as sodium chloride. This At this time, a phase transfer catalyst such as quaternary ammonium salt or crown ether may be present for the purpose of improving the reaction rate.
  • the amount used is preferably in the range of 0.1 to 3.0% by mass with respect to the epoxy resin used.
  • the produced salt is removed by filtration, washing with water, and a high purity epoxy resin can be obtained by distilling off a solvent such as toluene and methyl isopropyl ketone under heating and reduced pressure.
  • the epoxy resin (A) may be used alone as an epoxy resin component, and the effects of the present invention can be achieved. Do not spoil!
  • the epoxy resin (A) may be used in combination with other epoxy resins within the range of / ⁇ .
  • the ratio of use is such that the ratio of the epoxy resin (A) in the total mass of the epoxy resin component is 30% by mass or more, particularly 40% by mass or more. I prefer that.
  • epoxy resins can be used, for example, bisphenol A type epoxy resins, bisphenol F type epoxy resins, biphenyl type epoxy resins. Oil, tetramethylbiphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentaene Reactive epoxy resin with phenol, phenol aralkyl epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl epoxy resin, naphthol phenol co-condensed nopolac type epoxy resin, naphthol-cresol co-condensation Novolac epoxy resin, aromatic hydrocarbon formaldehyde Modified phenol ⁇ epoxy ⁇ , Bifue - Le-modified novolac-type epoxy ⁇ the like.
  • these epoxy resins tetramethylbiphenol type epoxy resin, bi
  • the curing agent (B) used in the epoxy resin composition (I) of the present invention includes various known epoxy resin curing agents such as amine compounds, amide compounds, acid anhydride compounds, phenols. Curing agents such as ruthenium compounds can be used. Specifically, amine compounds are Nodiphenylenomethane, diethylenetriamine, triethylenetetramine, diaminodiphenylol sulfone, isophorone diamine, imidazole, BF-amine complex, guanidine derivatives, etc.
  • amide compounds include dicyandiamide and polyamide succinate synthesized from dimer of linolenic acid and ethylene diamine
  • acid anhydride compounds include anhydrous phthalic acid and trimellitic anhydride. Pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, etc.
  • phenol novolac resin cresol novolac resin
  • aromatic hydrocarbons are preferred.
  • the phenol resin has a structure in which a plurality of phenols are knotted with the structure represented by In the structural formula (i), X is an alkyl group having 1 to 4 carbon atoms or a hydrogen atom, and m is an integer of 0 to 3.
  • the blending amount of (B) is such that the obtained cured product has good mechanical properties and the like, and with respect to a total of 1 equivalent of epoxy groups in the epoxy resin containing the epoxy resin (A),
  • the amount of the active group in the hardener (B) is preferably in the range of 0.7 to 1.5 equivalents.
  • Another epoxy resin composition (II) of the present invention has a polyaryleneoxy structure as a main skeleton, and an aromatic ring of the structure has a phenolic hydroxyl group and the following structural formula (
  • R and R are each independently a methyl group or a hydrogen atom; Ar is
  • a naphthylene group, n is an average number of repetitions and is a number from 0.1 to 4.
  • a phenolic resin ( ⁇ ′) and an epoxy resin ( ⁇ ′) having a molecular structure in which structural parts represented by the formula are bonded are essential components.
  • the phenolic resin ( ⁇ ′) has the same structure as the phenolic resin that is a precursor of the epoxy resin ( ⁇ ) in the epoxy resin composition (I) described above.
  • the melt viscosity at 150 ° C measured in accordance with “ASTM D4287” of the phenol resin ( ⁇ ′) should be in the range of 0.1 to 4. OdPa's.
  • the above-described phenolic resin ( ⁇ ′) is the novel phenolic resin of the present invention.
  • the phenolic resin ( ⁇ ′) has a particularly strong balance between flame retardancy and fluidity, and the melt viscosity at 150 ° C. measured according to “ASTM D42 87” is 0.1. To 3. OdPa's, particularly preferably 0.1 to 2. OdPa's.
  • the phenolic rosin ( ⁇ ') has a polyallylene oxide structure having a functional number of the phenolic hydroxyl group as a raw material of a dihydroxy aromatic compound, as in the case of the epoxy rosin ( ⁇ ).
  • the phenolic hydroxyl group appears at both ends of the linear molecular structure, so that 1S obtained mainly as a bifunctional phenolic resin is partially contained in the resinous component.
  • polyfunctional phenolic resin having a molecular structure in which another hydroxynaphthalene ring is directly bonded to the naphthalene ring in the polynaphthylene oxide structure is also included.
  • the phenolic resin ( ⁇ ′) is usually obtained as a polyfunctional phenolic resin, and is excellent in improving the dielectric properties and moisture resistance after curing, and excellent in fluidity. It is preferable that the hydroxyl equivalent of the phenol resin ( ⁇ ′) is in the range of 130 to 800 gZ eq., Particularly in the range of 130 to 300 g / eq.
  • q is an integer of 1 to 7
  • p is independently an integer of 0 to 4, respectively.
  • the value of p is in the range of 1-4.
  • R is independently the following general formula (5),
  • n is an average value of repetitions of 0.1 to 4.
  • n is an average value of repetitions of 0.1 to 4.
  • q in the general formula (4) is preferably an integer of 1 to 3 from the viewpoint of good fluidity of the epoxy resin (A).
  • the bonding position to the naphthalene skeleton may be any of the two rings constituting the naphthalene ring.
  • phenolic resin represented by the general formula (4) examples include those represented by the following structural formula.
  • the methylene bond bonded to the naphthalene skeleton may be bonded to any of the two rings constituting the naphthalene ring.
  • a branched structure is formed by directly bonding another naphthalene ring to the naphthalene ring in the polynaphthylene oxide structure.
  • an aralkyl group is introduced into the naphthalene ring introduced by this direct bond. It may have an entered molecular structure.
  • the compound represented by the general formula (4) has a divalent aromatic hydrocarbon group represented by “Ar” in the general formula (4) in the epoxy resin (A). It has a ratio of 0.1 to 4 per molecule and has a value of q in the range of Sl to 4. A point power excellent in these performance balances is preferable.
  • the phenol resin ( ⁇ ′) detailed above is obtained by, for example, subjecting a dihydroxynaphthalene compound in advance to a dehydration etherification reaction to extend the molecular chain and then reacting with an aralkylating agent described later. It can be produced by a method of introducing a substituent into the naphthalene ring. However, as described above, this method causes excessive high molecular weight in the dehydration etherification reaction and causes thickening. Therefore, it is produced by step 1 in the method for producing epoxy resin of the present invention described above. Preferred.
  • the phenol resin ( ⁇ ′) may be used alone as a curing agent for epoxy resin ( ⁇ ′).
  • Other curing agents may be used in combination as long as the effects of the above are not impaired.
  • other curing agents can be used in combination so that the phenol resin is 30% by mass or more, preferably 40% by mass or more with respect to the total mass of the curing agent.
  • phenol rosin ( ⁇ ') of the present invention are not particularly limited, and examples thereof include amine compounds, amide compounds, acid anhydride compounds, and the above-described phenols. Examples include phenolic compounds other than rosin ( ⁇ ,), and polyhydric phenolic compounds of aminotriazine-modified phenolic resins (polyhydric phenolic compounds in which phenolic nuclei are linked with melamine, benzoguanamine, etc.).
  • phenol resins are highly aromatic and have a high hydroxyl group equivalent. It is preferable to use a compound such as an aminotriazine-modified phenol resin containing a nitrogen atom from the viewpoint of excellent flame retardancy and dielectric properties of the resulting cured product.
  • the epoxy resin ( ⁇ ′) used in the epoxy resin composition (II) of the present invention includes, for example, bisphenol-type epoxy resin, bisphenol F-type epoxy resin, biphenol- Type epoxy resin, tetramethyl biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, triphenylmethane type epoxy resin, Tetraphenol-type epoxy resin, dicyclopentagen monophenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, naphthol phenol Co-condensed novolac epoxy resin, naphthol-cresol co-condensed novolac epoxy resin, aroma Hydrocarbon formaldehyde ⁇ modified phenol ⁇ epoxy ⁇ , Bifue - novolac type epoxy ⁇ the like.
  • These epoxy resins can be used alone or in combination of two or more.
  • biphenyl type epoxy resin, naphthalene type epoxy resin, phenol aralkyl type epoxy resin, biphenyl novolac type epoxy resin and xanthene type epoxy resin are particularly suitable for flame retardancy and dielectric properties. Especially preferred because of its superiority.
  • the amount of the epoxy resin ( ⁇ ') and the curing agent in the epoxy resin composition ( ⁇ ) of the present invention is not particularly limited, but the obtained cured product has good properties. From a certain point, the amount of active groups in the curing agent containing the phenol resin ( ⁇ ′) is 0.7 to 1.5 equivalents with respect to a total of 1 equivalent of epoxy groups of the epoxy resin ( ⁇ ′). Is preferred.
  • a curing accelerator can be used in combination with the epoxy resin composition ( ⁇ ) of the present invention as appropriate.
  • Various curing accelerators can be used, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts.
  • DBU 1,8-diazabicyclo [5.4.0] -undecene
  • the epoxy resin composition (I) and (IV) of the present invention described in detail above are difficult to obtain because of the selection of the molecular structure of the epoxy resin or its curing agent. Since it has the effect of imparting flame retardancy, the flame retardancy of the hardened material will be good even if a conventionally used flame retardant is not blended. However, in order to exhibit a higher degree of flame retardancy, for example, in the field of semiconductor sealing materials, the moldability in the sealing process and the reliability of the semiconductor device should not be reduced! Do not contain halogen atoms! ⁇ Non-halogen flame retardant (C) may be added.
  • An epoxy resin composition formulated with such a non-halogen flame retardant (C) has a power that does not substantially contain a halogen atom, for example, 5000 ppm derived from epino and lohydrin contained in epoxy resin. Halogen atoms due to the following trace amounts of impurities may be included.
  • non-halogen flame retardant (C) examples include phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, and organic metal salt flame retardants. Even if it is used, it is not limited in any way, it can be used alone, or multiple flame retardants of the same system can be used. It is also possible to use a combination of flame retardants of different systems.
  • inorganic and organic can be used as the phosphorus-based flame retardant.
  • inorganic compounds include phosphorous ammonia such as red phosphorus, phosphoric acid monoammonium, phosphoric acid diammonum, phosphoric acid triammonum, and polyphosphoric acid ammonium.
  • inorganic nitrogen-containing phosphorus compounds such as phosphoric acid amides.
  • the red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like! /
  • a preferred surface treatment method is, for example, (i) magnesium hydroxide, A method of coating with an inorganic compound such as aluminum hydroxide, zinc hydroxide, titanium hydroxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof, (ii) magnesium hydrate, A method of coating with a mixture of an inorganic compound such as hydroxyaluminum hydroxide, zinc hydroxide and titanium hydroxide, and a thermosetting resin such as phenol resin, (iii) magnesium hydroxide, aluminum hydroxide hydroxide, Examples of the method include a method of performing a double coating treatment with a thermosetting resin such as phenol resin on a film of an inorganic compound such as zinc hydroxide or titanium hydroxide.
  • the organic phosphorus compound includes, for example, a phosphate ester compound, a phosphonic acid compound, a phosphinic acid compound, a phosphinoxide compound, a phosphorane compound, and an organic nitrogen-containing phosphorus compound.
  • the blending amount thereof is appropriately selected depending on the type of the phosphorus-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy.
  • Epoxy resin composition containing all additives, non-halogen flame retardants and other fillers, etc. (I) or (II) When using red phosphorus as a non-halogen flame retardant in 100 parts by mass
  • an organophosphorus compound that is preferably blended in the range of 0.1 to 2.0 parts by mass it is also preferable to blend in the range of 0.1 to L: 0.0 part by mass.
  • a noble mouth talcite, hydroxide magnesium, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, molybdenum are used as the phosphorus flame retardant.
  • Zinc acid, activated carbon or the like may be used in combination.
  • nitrogen-based flame retardant examples include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, phenothiazines, etc., among which triazine compounds and cyanuric acid compounds.
  • An isocyanuric acid compound is preferred.
  • the triazine compound includes, for example, melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylenedimelamine, melamine polyphosphate, triguanamine, and the like, for example, (i) guanylmelamine sulfate (Ii) phenols such as phenol, cresol, xylenol, butylphenol, norphenol, and melamines such as melamine, benzoguanamine, acetate guanamine, formaldehyde and formaldehyde (Iii) a mixture of the cocondensate of (ii) and a phenolic rosin such as a phenol formaldehyde condensate, (iv) (Ii) and (iii) may be further modified with paulownia oil, isomeric linseed oil, or the like.
  • guanylmelamine sulfate Ii) phenols such
  • cyanuric acid compound examples include cyanuric acid, melamine cyanurate, and the like.
  • the amount of the nitrogen-based flame retardant is appropriately selected depending on the type of the nitrogen-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy.
  • a metal hydroxide, a molybdenum compound, or the like may be used in combination.
  • the silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.
  • the amount of the silicone flame retardant is appropriately selected depending on the type of the silicone flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy.
  • molybdenum compound, alumina or the like may be used in combination.
  • Examples of the inorganic flame retardant include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low-melting glass.
  • metal hydroxide examples include, for example, aluminum hydroxide, magnesium hydroxide, dolomite, hydrated talcite, calcium hydroxide, barium hydroxide, and dinoleconium hydroxide. Can be mentioned.
  • metal oxide examples include, for example, zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, and oxide.
  • metal oxide examples include molybdenum, cobalt oxide, bismuth oxide, chromium oxide, nickel oxide, copper oxide, tungsten oxide.
  • metal carbonate compound examples include, for example, zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, and iron carbonate.
  • metal powder examples include aluminum, iron, titanium, manganese, zinc, molybdenum, conoleto, bismuth, chromium, nickel, copper, tungsten, tin and the like.
  • boron compound examples include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.
  • low-melting-point glass examples include, for example, Seepri (Botasi Brown), hydrated glass SiO-MgO-H0, PbO-BO-based, ZnO-PO-MgO-based, PO-B
  • glassy composites such as lead borosilicate.
  • the blending amount of the inorganic flame retardant is appropriately selected depending on the type of the inorganic flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy.
  • organometallic salt-based flame retardants examples include Huesen, acetyl cetate metal complex, organometallic carbonyl compound, organocobalt salt compound, organosulfonic acid metal salt, Examples thereof include compounds in which a metal atom and an aromatic compound or heterocyclic compound are ion-bonded or coordinated.
  • the amount of the organometallic salt flame retardant is appropriately selected depending on the type of the organometallic salt flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy.
  • epoxy resin composition containing all of epoxy resin, curing agent, non-halogen flame retardant and other fillers and additives (I) or (11) in 100 parts by mass. It is preferable to blend in the range of 005 to 10 parts by mass.
  • An inorganic filler can be mixed with the epoxy resin composition (I) or (IV) of the present invention as required.
  • the inorganic filler include fused silica, crystalline silica, Lumina, silicon nitride, aluminum hydroxide, etc. are mentioned.
  • fused silica When particularly increasing the blending amount of the inorganic filler, it is preferable to use fused silica.
  • the fused silica can be used in a crushed, spherical or misaligned form, but in order to increase the blending amount of the fused silica and to suppress the increase in the melt viscosity of the molding material, it is preferable to mainly use the spherical one. preferable.
  • the filling rate is particularly preferably 65% by mass or more based on the total amount of the epoxy resin composition (I) or (II) which is preferable.
  • electroconductive fillers such as silver powder and copper powder, can be used.
  • Various compounding agents such as a silane coupling agent, a release agent, a pigment, and an emulsifier can be added to the epoxy resin composition (I) or (II) of the present invention as necessary. .
  • the epoxy resin composition (I) or (II) of the present invention can be obtained by uniformly mixing the above-described components.
  • the epoxy resin composition of the present invention in which the epoxy resin of the present invention, a curing agent, and, if necessary, a curing accelerator are combined can be easily converted into a cured product by a method similar to a conventionally known method. it can.
  • Examples of the cured product include molded cured products such as a laminate, a cast product, an adhesive layer, a coating film, and a film.
  • the use of the epoxy resin composition (I) or (II) of the present invention is, for example, a resin composition used for semiconductor sealing materials, underfill materials, conductive pastes, laminates, electronic circuit boards, and the like. Power, resin casting materials, adhesives, interlayer insulation materials for build-up substrates, coating materials such as insulating paints, etc.
  • semiconductor sealing materials and underfill materials used for electronic parts In particular, it can be suitably used for a semiconductor sealing material.
  • the semiconductor encapsulating material of the present invention is the epoxy resin (A) and the curing agent (B) in the epoxy resin composition (I), or the epoxy resin.
  • an epoxy resin containing an inorganic filler in a proportion of 70 to 95% by mass in the composition is characterized by the composition.
  • the epoxy resin and the compounding agent such as a curing agent and an inorganic filler are made uniform using an extruder, a kneader, a roll or the like as necessary.
  • the filling ratio is within the range of 70 to 95% by mass of the inorganic filler based on the total mass of the epoxy resin composition. Among these, it is preferably 80 to 95% by mass in order to improve flame retardancy, moisture resistance, non-crack resistance, and decrease linear expansion coefficient.
  • a semiconductor device is manufactured from a strong semiconductor sealing material by molding a semiconductor package by molding the semiconductor sealing material using a casting, transfer molding machine, injection molding machine or the like, and further 50 to 200 ° C. And a method of obtaining a semiconductor device as a molded product by heating for 2 to 10 hours.
  • a resin composition for a pre-preda can be obtained.
  • a resin composition for a pre-preda by varnishing with an organic solvent.
  • the organic solvent it is preferable to use a polar solvent having a boiling point of 160 ° C. or less, such as methyl ethyl ketone, acetone, dimethylformamide, etc., and it can be used alone or as a mixed solvent of two or more kinds.
  • the obtained varnish is impregnated into various reinforcing substrates such as paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth, and the heating temperature according to the solvent type used, preferably By heating at 50 to 170 ° C., a prepreader that is a cured product can be obtained.
  • the mass ratio of the rosin composition used at this time and the reinforcing substrate is not particularly limited, but it is usually preferable to prepare so that the greave content in the prepreg is 20 to 60% by mass.
  • the pre-preda obtained as mentioned above is laminated
  • a copper-clad laminate can be obtained by thermocompression bonding at 170-250 ° C for 10 minutes to 3 hours under pressure.
  • the epoxy resin composition (I) or (II) of the present invention is used as a conductive paste, for example, fine conductive particles are dispersed in the epoxy resin composition and an anisotropic conductive film is used. And a method for preparing a paste resin composition for circuit connection that is liquid at room temperature and an anisotropic conductive adhesive.
  • the epoxy resin composition (I) or (i) of the present invention is an interlayer insulation material for build-up substrates.
  • the curable resin composition appropriately blended with rubber, filler or the like is applied to a wiring board on which a circuit is formed using a spray coating method, a curtain coating method, or the like, and then cured. Then, after drilling a predetermined through-hole portion as necessary, the surface is treated with a roughening agent, and the surface is washed with hot water to form irregularities, and a metal such as copper is applied.
  • the plating method is preferably electroless plating or electrolytic plating, and the roughening agent includes oxidizing agents, alkalis, organic solvents, and the like.
  • a build-up substrate can be obtained by alternately building up and forming a resin insulating layer and a conductor layer having a predetermined circuit pattern.
  • drilling of the through hole is performed after forming the outermost resin insulation layer.
  • a roughened surface is formed by thermocompression bonding at 170 to 250 ° C on a wiring board on which a circuit is formed, with a copper foil with a resin obtained by semi-curing the resin composition on a copper foil. It is also possible to produce a build-up board by omitting the mesh processing process.
  • the epoxy resin composition (I) of the present invention can also be used as a resist ink.
  • the epoxy resin (A) is blended with a vinyl monomer having an ethylenically unsaturated double bond and a cationic polymerization catalyst as the curing agent (B), and further, pigment, talc and filler are mixed.
  • a method of preparing a resist ink composition applying it on a printed circuit board by a screen printing method, and then forming a resist ink cured product.
  • the method for obtaining the cured product of the present invention may be based on a general method for curing an epoxy resin composition.
  • the heating temperature condition is appropriately selected depending on the type and application of the curing agent to be combined. What is necessary is just to heat the composition obtained by the above method in a temperature range of about 20 to 250 ° C!
  • a general method of an epoxy resin composition is used, and in particular, conditions specific to the epoxy resin composition of the present invention are not necessary.
  • Example 1 Synthesis of aralkyl group-containing dihydroxy (polyoxynaphthalylene)
  • the solvent was removed from the organic layer under heating and reduced pressure to obtain 240 g of aralkyl group-containing dihydroxy (polyoxynaphthalylene) (hereinafter referred to as “I ⁇ ”).
  • Compound (1) was a brown solid, having a hydroxyl group equivalent of 160 gZeq, a softening point of 77 ° C., and an ICI viscosity of 0.9 dPa's.
  • epoxy resin (A-1) epoxy resin having an aralkyl group bonded to the aromatic nucleus in the polynaphthylene oxide structure was obtained (hereinafter abbreviated as “epoxy resin (A-1)”).
  • Epoxy resin (A-1) epoxy resin having an aralkyl group bonded to the aromatic nucleus in the polynaphthylene oxide structure was obtained (hereinafter abbreviated as “epoxy resin (A-1)”).
  • the obtained epoxy resin had a soft soft point of 47 ° C, a melt viscosity at 150 ° C of 0.5 dPa's, and an epoxy equivalent of 231 gZeq.
  • Example 3 (Synthesis of aralkyl group-containing dihydroxy (polyoxynaphthalylene)) Execution column: U Kotei, 216 g of benzenoreanoreconole (2.0 monole)
  • 30 g of aralkyl group-containing dihydroxy (polyoxynaphthalylene) 3 was obtained (hereinafter referred to as “compound (2)”).
  • the obtained compound (2) was a brown solid, the hydroxyl group equivalent was 180 gZeq, the soft anchor point was 67 ° C, and the melt viscosity at 150 ° C was 0.5 dPa's.
  • Example 4 (Synthesis of aralkyl-modified poly (oxynaphthalene) type epoxy resin)
  • the compound (2) 180 g obtained in Example 3
  • glycidyloxy groups are present at both molecular ends, and an aralkyl group is present in the aromatic nucleus in the polynaphthylene oxide structure.
  • 228 g of bonded epoxy resin was obtained (hereinafter abbreviated as “epoxy resin (A-2)”).
  • the resulting epoxy resin has a softness point of 40.
  • the melt viscosity at C and 150 ° C was 0.4 dPa's, and the epoxy equivalent was 244 gZeq.
  • Example 5 (Synthesis of aralkyl group-containing dihydroxy (polyoxynaphthalylene)) Execution column: U Kotei, 108 g of benzenoreanolo reconole 92 g (0.85 monole) [other than changing this]
  • 30 g of aralkyl group-containing dihydroxy (polyoxynaphthalylene) 2 was obtained (hereinafter referred to as “compound (3)”).
  • the obtained compound (3) was a brown solid, the hydroxyl group equivalent was 164 gZeq, the soft anchor point was 80 ° C, and the melt viscosity at 150 ° C was 1.2 dPa's o
  • compound (3) was trimethylsilylated, and then from FD-MS. The following peaks a. And b. Were confirmed.
  • the compound (3) is a compound having a structure in which one mole of benzyl group is bonded to one mole of 2,7-dihydroxynaphthalene trimer ether compound,
  • 2, 7-dihydroxynaphthalene trimer ether compound Compound having a structure in which two moles of benzyl group are bonded per mole,
  • One mole of 2,7-dihydroxynaphthalene dimer ether is composed of 1 mole of 2,7-dihydroxynaphthalene and 1 mole of trimer compound formed by nuclear dehydration.
  • 2,7-dihydroxynaphthalene dimer ether 1 mol of 2,7-dihydroxynaphthalene 1 mol of trimer compound formed by nuclear dehydration 1 mol of benzyl group bonded to 1 mol It was confirmed to be a compound.
  • Example 2 the polynaphthylene oxide structure was changed to the main skeleton in the same manner as in Example 2 except that 164 g of the compound (3) obtained in Example 5 was used instead of 160 g of the compound (1) used as a raw material.
  • the resulting epoxy resin has a soft point of 54.
  • the melt viscosity at C and 150 ° C was 0.7 dPa's, and the epoxy equivalent was 235 gZeq.
  • Example 7 (Synthesis of aralkyl group-containing dihydroxy (polyoxynaphthalylene))
  • Example 1 Aralkyl group-containing dihydroxy (polyoxynaphthalylene) 21 Og was obtained (hereinafter referred to as “compound (4)”).
  • the obtained compound (4) was a brown solid, had a hydroxyl group equivalent of 156 gZeq, a soft melting point of 83 ° C., and a melt viscosity at 150 ° C. of 1.9 dPa's.
  • Example 8 Synthesis of aralkyl-modified poly (oxinaphthalene) type epoxy resin
  • Example 2 a polydihydroxynaphthalene compound (1) used as a raw material (1) was used in the same manner as in Example 2 except that 156 g of the compound (4) obtained in Example 7 was used instead of 160 g. 200 g of epoxy resin having a naphthylene oxide structure as a main skeleton, glycidyloxy groups at both ends of the molecule, and an aralkyl group bonded to an aromatic nucleus in the polynaphthylene oxide structure was obtained ( Hereinafter, this is abbreviated as “epoxy resin (A-4)”).
  • the soft epoxy point of the obtained epoxy resin was 66 ° C
  • the melt viscosity at 150 ° C was 1.3dPa's
  • the epoxy equivalent was 255gZeq o
  • Example 9 Synthesis of aralkyl group-containing dihydroxy (polyoxynaphthalylene)
  • Example 1 except that 160 g of 2,7-dihydroxynaphthalene was changed to 160 g of 1,6-dihydroxynaphthalene, 242 g of aralkyl group-containing dihydroxy (polyoxynaphthalylene) was obtained in the same manner as Example 1.
  • this is referred to as “I compound (5)”.
  • the obtained compound (5) was a brown solid, the hydroxyl group equivalent was 147 gZeq, the soft saddle point was 67 ° C, and the ICI viscosity was 0.5 dPa's.
  • Example 10 (Synthesis of aralkyl-modified poly (oxynaphthalene) type epoxy resin)
  • the compound (1) 160 g used as a raw material instead of the compound (1) 160 g used as a raw material, the compound (5) obtained in Example 9 147 g
  • the polynaphthylene oxide structure is a main skeleton
  • glycidyloxy groups are present at both molecular ends
  • an aralkyl group is present in the aromatic nucleus in the polynaphthylene oxide structure.
  • 21 lg of bonded epoxy resin was obtained (hereinafter abbreviated as “epoxy resin (A-5)”).
  • the resulting epoxy resin has a soft score of 43.
  • the melt viscosity at C and 150 ° C was 0.5 dPa's, and the epoxy equivalent was 211 gZeq.
  • Example 1 160 g (l. 0 mol) of 2,7-dihydroxynaphthalene was added to phenol novolak oligomer (manufactured by Showa Polymer Co., Ltd., trade name: BRG-555, softening point 69 ° C, hydroxyl group equivalent; 103 gZeq ICI viscosity Except 0.7dPa-s) 103g (l. 0 equivalents), and 432g (4.0 moles) of benzyl alcohol to 75.6g (0.7 moles) of benzyl alcohol.
  • Example 1 146 g of a polybenzyl ether phenol novolak oligomer compound for comparison (hereinafter abbreviated as “benzylated novolac rosin”) was obtained.
  • the resulting benzil novolac resin is a brown solid with a hydroxyl equivalent weight of 166 gZeq and a soft soft spot of 70.
  • C ICI viscosity was 0.7 dPa's.
  • 215 g of epoxy resin for comparison was obtained in the same manner as in Example 1 except that 166 g of benzil novolac resin was used instead of 160 g of compound (1) (hereinafter referred to as “this”).
  • epoxy resin ( ⁇ '-1) '') ⁇ The obtained epoxy resin has a soft melting point of 40 ° C, a melt viscosity of 150dC is 0.5dPa's, epoxy equivalent Was 245 gZeq.
  • An evaluation sample with a width of 12.7 mm, a length of 127 mm and a thickness of 1.6 mm was molded for 90 seconds at a temperature of 175 ° C using a transfer molding machine, and then post-cured at a temperature of 175 ° C for 5 hours. Created. Using the prepared test piece, a combustion test was conducted using five test pieces having a thickness of 1.6 mm in accordance with the UL-94 test method.
  • a sample for evaluation with a width of 25 mm, a length of 75 mm, and a thickness of 2.0 mm was formed by molding for 90 seconds at a temperature of 175 ° C using a transfer development machine and then post-curing at a temperature of 175 ° C for 5 hours.
  • the method according to JIS-C-6481 Dielectric constant and dielectric loss tangent at lOOMHz were measured with an impedance 'material' analyzer "HP4291B" manufactured by Gee Co., Ltd. after drying for 24 hours in a room at 23 ° C and 50% humidity. .
  • I compound (1) is the aralkyl group-containing dihydroxy (polyoxynaphthalene) obtained in Example 1, and the evaluation result shown as “self-extinguishing” is V— The flame retardancy required for 1 ( ⁇ F ⁇ 250 seconds and F ⁇ 30 seconds) is not satisfied, but the combustion (flame clamp reached) is at most max
  • FIG. 2 is a mass spectrum of aralkyl group-containing dihydroxy (polyoxynaphthylene) obtained in Example 1.
  • FIG. 3 is a 13 C-NMR spectrum of an aralkyl-modified poly (oxynaphthalene) type epoxy resin obtained in Example 2.
  • FIG. 4 is a mass spectrum of an aralkyl-modified poly (oxynaphthalene) type epoxy resin obtained in Example 2.
  • FIG. 5 is a mass spectrum of aralkyl group-containing dihydroxy (polyoxynaphthylene) obtained in Example 5.
  • FIG. 6 is an FD-MS spectrum of the aralkyl group-containing dihydroxy (polyoxynaphthylene) obtained in Example 5 by the trimethylsilylation method.
  • FIG. 7 is a mass spectrum of aralkyl group-containing dihydroxy (polyoxynaphthylene) obtained in Example 7.
  • FIG. 8 is a FD-MS spectrum of the aralkyl group-containing dihydroxy (polyoxynaphthylene) obtained in Example 7 by the trimethylsilylation method.
  • FIG. 9 is a 13 C NMR spectrum of aralkyl group-containing dihydroxy (polyoxynaphthylene) obtained in Example 9.
  • FIG. 10 is a mass spectrum of aralkyl group-containing dihydroxy (polyoxynaphthylene) obtained in Example 9.
  • FIG. 11 is a 13 C-NMR ⁇ vector of the aralkyl-modified poly (oxynaphthalene) type epoxy resin obtained in Example 10.
  • FIG. 12 is a mass spectrum of an aralkyl-modified poly (oxynaphthalene) type epoxy resin obtained in Example 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 本発明は、ポリナフチレンオキザイド等のポリアリーレンオキシ構造を主骨格としており、かつ、該構造の芳香環上に(メチル)グリシジルオキシ基とアラルキル基を導入した構造を有し、かつ、低粘度性のエポキシ樹脂を主剤として用いる。  本発明によれば、極めて優れた難燃性と、誘電特性とを硬化物に付与することができるエポキシ樹脂組成物、その硬化物、エポキシ樹脂、及び該エポキシ樹脂の中間体であるフェノール樹脂、並びに前記エポキシ樹脂の製造方法を提供できる。  

Description

明 細 書
エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、その製造方法、 及び新規フエノール樹脂
技術分野
[0001] 本発明は、その硬化物において添加系難燃剤を用いることなく優れた硬化物を発 現し、かつ、誘電特性にも優れる、半導体装置や回路基板装置等の榭脂組成物とし て好適に用いることが出来るエポキシ榭脂組成物、その硬化物、及びこれに用いる 新規エポキシ榭脂、その製造方法、並びに前記エポキシ榭脂の中間体である新規フ エノール榭脂に関する。
背景技術
[0002] エポキシ榭脂は、硬化時の低収縮性、硬化物の寸法安定性、電気絶縁性及び耐 薬品性などに優れた硬化物を与える点からエレクトロニクス分野や高機能塗料分野 などに広く用いられている。しかし、例えば半導体封止材料などのエレクトロニクス分 野では、近年、電子部品の高密度化を目的とする半導体の表面実装化、半導体自 体の小型化に伴 ヽ封止材料への耐湿性、とりわけ耐湿後の耐ノヽンダクラック性の要 求が極めて高くなつてきている。そこで、このような要求に対して、榭脂中の芳香核数 を増加させて硬化反応時に現れる 2級水酸基の量を低減し、硬化物の耐湿性の向 上と低応力化を図る技術が知られており、例えば、モノスチレン化フエノールとホルム アルデヒド又はパラホルムアルデヒドとの反応により、官能基濃度を低減した固形ノボ ラック榭脂をエポキシ榭脂用硬化剤として用いるエポキシ榭脂組成物(例えば、特許 文献 1参照。)、該固形ノボラック榭脂のポリグリシジルエーテルを用いたエポキシ榭 脂組成物 (例えば、特許文献 2参照。)が提案されている。また、同様に、ポリフエノー ルをベンジル化剤で変性することによって、官能基濃度を低減させて、硬化物の耐 湿性を向上させ、特に表面実装型半導体封止材料として耐パッケージクラック性を向 上させたベンジル化ポリフエノール及びそのポリグリシジルエーテルを用いたェポキ シ榭脂組成物が提案されて ヽる (例えば、特許文献 3参照)。
[0003] 力かるノボラック榭脂、ポリフエノール、及びそれらのエポキシ化物は、確かに官能 基濃度が十分に低く硬化物の耐湿性が良好なものとなり、エレクトロニクス分野や高 機能塗料分野にぉ ヽて良好な耐ノヽンダクラック性を発現し、近年の電子機器の高周 波化に伴う低誘電率ィ匕への要求に応え得る材料となる。
[0004] 然し乍ら、エレクトロニクス分野や高機能塗料分野に用いられる材料は、ダイォキシ ン問題に代表とする環境問題への対応が不可欠となっており、近年、添加系のハロ ゲン系難燃剤を用いることなぐ榭脂自体に難燃効果を持たせた所謂ハロゲンフリー の難燃システムの要求が高まっている。ところが、前記のノボラック榭脂、ポリフエノー ル、及びそれらのエポキシ化物は、誘電特性は良好になるものの、その分子構造内 に燃焼しやすいペンダント状の芳香族炭化水素基が多く含まれることになる為、硬化 物の難燃性に劣り、前記したハロゲンフリーの難燃システムを構築することが出来な いものであった。
[0005] 従って、これまで優れた誘電特性を具備し乍らも優れた難燃性を硬化物に与えるェ ポキシ榭脂は得られて 、な 、のが現状であった。
[0006] 特許文献 1:特開平 05— 132544号公報 (第 3— 4頁)
特許文献 2:特開平 05— 140265号公報 (第 3— 5頁)
特許文献 3:特開平 08 - 120039号公報 (第 4— 6頁)
発明の開示
発明が解決しょうとする課題
[0007] 本発明が解決しょうとする課題は、極めて優れた難燃性と、誘電特性とを硬化物に 付与することができるエポキシ榭脂組成物、新規エポキシ榭脂及び新規フエノール 榭脂、前記性能を兼備したエポキシ榭脂硬化物、並びに前記エポキシ榭脂の製造 方法を提供することにある。
課題を解決するための手段
[0008] 本発明者らは、前記課題を解決すべく鋭意検討した結果、榭脂構造の主骨格にポ リアリーレンォキシ構造を導入し、かつ、該ポリアリーレンォキシ構造に更にァラルキ ル構造を導入することにより誘電特性を低下させることなぐ難燃性を飛躍的に向上 させることができることを見いだし、本発明を完成するに至った。
[0009] 即ち、本発明は、ポリアリーレンォキシ構造を主骨格としており、かつ、該構造の芳 香環に、(メチル)グリシジルォキシ基及び下記構造式(1)
[0010] [化 1]
構造式 (1)
Figure imgf000004_0001
[式(1)中、 R及び Rは各々独立して、メチル基又は水素原子であり、 Arは、フ 二
1 2
レン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたフエ-レン基、ナフ チレン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたナフチレン基、 n は繰り返し数の平均値で 0. 1〜4である。 ]
で表される構造部位が結合した分子構造を有するエポキシ榭脂 (A)、並びに硬化剤 (B)を必須成分とすることを特徴とするエポキシ榭脂組成物に関する(以下、このェ ポキシ榭脂組成物を「エポキシ榭脂組成物(I)」と略記する)。
[0011] 本発明は、また、前記エポキシ榭脂組成物を硬化させて得られる硬化物に関する。
[0012] 本発明は、更に、前記エポキシ榭脂組成物における前記エポキシ榭脂 (A)及び前 記硬化剤(B)に加え、更に無機質充填材を組成物中 70〜95質量%となる割合で含 有するエポキシ榭脂組成物力 なることを特徴とする半導体封止材料に関する。
[0013] 本発明は、更に、ポリアリーレンォキシ構造を主骨格としており、かつ、該構造の芳 香環に、(メチル)グリシジルォキシ基及び下記構造式(1)
[0014] [化 2] 構造式 (1)
Figure imgf000005_0001
RRCII
[式(1)中、 R及び Rは各々独立して、メチル基又は水素原子であり、 Arは、フ 二
1 2
レン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたフエ-レン基、ナフ チレン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたナフチレン基、 n は繰り返し数の平均値で 0. 1〜4である。 ]
で表される構造部位が結合した分子構造を有し、かつ、「ASTM D4287Jに準拠し て測定される 150°Cにおける溶融粘度が 0. 1〜3. OdPa' sであることを特徴とする新 規エポキシ榭脂に関する。
[0015] 本発明は、更に、ジヒドロキシ芳香族化合物 (al)と、下記構造式 (2)
[0016] [化 3]
1
Ar Y 構造式 (2) 〔式中、 R、 Rは各々独立して、メチル基又は水素原子であり、 Arは、フエ二レン基、
1 2
炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたフエ-レン基、ナフチレン 基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたナフチレン基を、 Yは ハロゲン原子、アルコキシ基、又は水酸基を表す。〕で表される化合物、又は下記構 造式 (3)
[0017] [化 4]
Figure imgf000006_0001
Ar— C= C 構造式 (3)
Figure imgf000006_0002
〔式中、 R、 R、 Rは各々独立してメチル基又は水素原子であり、 Arは、フエ二レン
1 3 4
基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたフエ-レン基、ナフチレ ン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたナフチレン基を表す 。〕で表される化合物から選択されるァラルキル化剤 (a2)とを、酸触媒の存在下に反 応させてフエノール榭脂を得、次いで、得られたフ ノール榭脂とェピノ、ロヒドリン類( a3)とを反応させることを特徴とするエポキシ榭脂の製造方法に関する。
[0018] 本発明は、また、ポリアリーレンォキシ構造を主骨格としており、かつ、該構造の芳 香環に、フエノール性水酸基及び下記構造式(1)
[0019] [化 5] CR RII 構造式 (1)
[式(1)中、 R及び Rは各々独立して、メチル基又は水素原子であり、 Arは、フ 二
1 2
レン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたフエ-レン基、ナフ チレン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたナフチレン基、 n は繰り返し数の平均値で 0. 1〜4である。 ]
で表される構造部位を結合させた分子構造を有するフ ノール榭脂 (Β' )、及びェポ キシ榭脂 (Α' )を必須成分とすることを特徴とするエポキシ榭脂組成物(以下、このェ ポキシ榭脂組成物を「エポキシ榭脂組成物(Π)」と略記する)に関する。
[0020] 本発明は、また、前記エポキシ榭脂組成物を硬化させて得られる硬化物に関する。
[0021] 本発明は、更に、前記エポキシ榭脂組成物における前記エポキシ榭脂 (Α' )及び 前記フ ノール榭脂(Β' )に加え、更に無機質充填材を組成物中 70〜95質量%とな る割合で含有するエポキシ榭脂組成物からなることを特徴とする半導体封止材料に 関する。
[0022] 本発明は、更に、ポリアリーレンォキシ構造を主骨格としており、かつ、該構造の芳 香環に、フエノール性水酸基及び下記構造式(1)
[0023] [化 6] 構造式 (1)
Figure imgf000008_0001
[式(1)中、 R及び Rは各々独立して、メチル基又は水素原子であり、 Arは、フ 二
1 2
レン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたフエ-レン基、ナフ チレン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたナフチレン基、 n は繰り返し数の平均値で 0. 1〜4である。 ]
で表される構造部位を結合させた分子構造を有し、かつ、「ASTM D4287Jに準 拠して測定される 150°Cにおける溶融粘度が 0. 1〜4. OdPa' sであることを特徴とす る新規フエノール榭脂に関する。
発明の効果
[0024] 本発明によれば、極めて優れた難燃性と、誘電特性とを硬化物に付与することがで きるエポキシ榭脂組成物、新規エポキシ榭脂及び新規フエノール榭脂、前記性能を 兼備したエポキシ榭脂硬化物、並びに前記エポキシ榭脂の製造方法を提供できる。 発明を実施するための最良の形態
[0025] 以下、本発明を詳細に説明する。
本発明のエポキシ榭脂組成物(I)で用いるエポキシ榭脂 (A)は、ポリアリーレンォキ シ構造を主骨格としており、かつ、該構造の芳香環に、(メチル)グリシジルォキシ基 及び下記構造式(1)
[0026] [化 7] 構造式 (1)
Figure imgf000009_0001
[式(1)中、 R及び Rは各々独立して、メチル基又は水素原子であり、 Arは、フ 二
1 2
レン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたフエ-レン基、ナフ チレン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたナフチレン基、 n は繰り返し数の平均値で 0. 1〜4である。 ]
で表される構造部位を結合させた分子構造を有するものである。
[0027] 即ち、前記エポキシ榭脂 (A)は分子構造中にポリアリーレンオキサイド構造を主骨 格として有することから、燃焼時に該構造中のァリーレン基と前記構造式(1)で表さ れるァラルキル基とによってチヤ一が速やかに形成され、優れた難燃性を発現する。 前記したとおり、一般にエポキシ榭脂構造中にペンダント状のァラルキル基が存在す る場合、難燃効果を発現し難くなることに鑑みれば、本発明において榭脂構造中に ァラルキル基を導入することによって優れた難燃性を発現させる点は特筆すべきで ある。更に、本発明のエポキシ榭脂 (A)は、前記構造式(1)で表される構造を導入す ることにより、(メチル)グリシジルォキシ基の濃度が低くなり硬化物の低誘電率が低く なる。従って、当該エポキシ榭脂 (A)は、優れた誘電特性と難燃効果を兼備させるこ とがでさる。
[0028] 前記エポキシ榭脂 (A)の基本骨格を成すポリアリーレンオキサイド構造は、ポリナフ チレンオキサイド構造、及び炭素原子数 1〜4のアルキル基で置換されたポリナフチ レンオキサイド構造などのナフチレンオキサイド系構造、並びに、ポリフエ-レンォキ サイド構造、及び炭素原子数 1〜4のアルキル基で置換されたポリフエ-レンォキサイ ド構造などのフ -レンオキサイド系構造が挙げられる。これらのなかでも特に本発 明ではナフチレンオキサイド系構造を有するものが、難燃効果が一層顕著なものとな る他、誘電正接も低くなる点力も好ましい。更に、難燃効果の点から中でもポリナフチ レンオキサイド構造或いはメチル基含有ポリナフチレンォキシサイド構造が好ましぐ 特にポリナフチレンオキサイド構造であることが好ましい。
[0029] 次に、前記エポキシ榭脂 (A)の分子構造中に有する下記構造式(1)
[0030] [化 8]
構造式 (1)
Figure imgf000010_0001
で表される構造部位において、 R及び Rは各々独立してメチル基又は水素原子で
1 2
あり、 Arは、フエ-レン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換された フエ-レン基、ナフチレン基、及び、炭素原子数 1〜4のアルキル基の 1〜3つで核置 換されたナフチレン基力 なる群力 選択される二価の芳香族系炭化水素基である 。また、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたフエ-レン基とは、 メチルフエ-レン基、ェチルフエ-レン基、 i—プロピルフエ-レン基、又は t—ブチル フエ-レン基等が挙げられ、炭素原子数 1〜4のアルキル基の 1〜3つで核置換され たナフチレン基とは、メチルナフチレン基、ェチルナフチレン基、 i プロピルナフチレ ン基、及び t ブチルナフチレン基等が挙げられる。また、 nは繰り返し数の平均値で 0. 1〜4である。
[0031] これらの中でも、工業的生産において原料の入手が容易であり、得られる硬化物の 難燃性に優れ、かつ、誘電特性にも優れる点から R及び Rが共に水素原子であるこ
1 2
とが好ましい。また、 nの値は難燃効果及び誘電特性の点から特に 0. 1〜2であるこ とが好ましぐ原料の入手が容易でかつエポキシ榭脂 (A)の粘度が低くなる点から A rがフエ-レン基であることが好まし 、。
[0032] 更に、本発明では、前記構造式(1)中の「Ar」で表される二価の芳香族系炭化水 素基を前記エポキシ榭脂 (A)の 1分子あたり 0. 1〜4個の割合で有することが難燃効 果の改善が顕著なものとなる点力も好ましい。
[0033] また、前記エポキシ榭脂 (A)の分子構造中に有する (メチル)グリシジルォキシ基と は、具体的には、グリシジルォキシ基及び j8—メチルダリシジルォキシ基であるが、 本発明では特に硬化物の難燃性の点、及び、エポキシ榭脂 (A)を工業的生産する 際の原料入手が容易であることなどから、グリシジルォキシ基であることが好ま 、。
[0034] また、本発明で用いるエポキシ榭脂 (A)は、「ASTM D4287Jに準拠して測定さ れる 150°Cにおける溶融粘度が 0. 1〜3. OdPa' sであることがエポキシ榭脂(A)の 流動性の点力も好ましい。エポキシ榭脂 (A)が当該要件を具備する場合、本発明の 新規エポキシ榭脂となる。ここで、エポキシ榭脂 (A)は前記溶融粘度条件を満たす 場合、榭脂自体の流動性が良好となり、これを含む本発明のエポキシ榭脂組成物の 半導体封止材料やアンダーフィル材などの電子部品用途への適用が容易となる。こ こで、特筆すべきは、一般に酸触媒下にジヒドロキシ芳香族化合物を反応させてポリ エーテル化する場合、容易に高分子量ィ匕してしまい、電子部品への適用が困難にな るのに対し、本発明は、ジヒドロキシ芳香族化合物をポリエーテルィ匕する際に、ァラル キル化剤を併用することによって榭脂の高分子量ィ匕を防ぎ半導体封止材料やアンダ 一フィル材などの電子部品へ適用可能な榭脂粘度を実現できる点にある。前記溶融 粘度範囲のなかでも、前記流動性と難燃性とのバランスが良好となる点力 前記溶 融粘度は特に 0. 1〜2. OdPa' sであること、更に 0. 1〜1. 5dPa' sの範囲であること が好ましい。
[0035] 更に、前記エポキシ榭脂 (A)は、その前駆体であるフエノール榭脂の製造の際、ジ ヒドロキシ芳香族化合物を原料としてポリアリーレンオキサイド構造を形成させること が望ましぐこの場合、フ ノール性水酸基は直鎖状分子構造の両末端に出現する 為、主に 2官能性のエポキシ榭脂として得られる。然し乍ら、該榭脂成分中には、部 分的にポリナフチレンオキサイド構造中のナフタレン環に、他のヒドロキシナフタレン 環が直接結合によって結合した分子構造を持つ多官能フ ノール榭脂をエポキシィ匕 したものも含まれることから、前記エポキシ榭脂 (A)は、通常、多官能性のエポキシ榭 脂として得られる。ここで、前記エポキシ榭脂 (A)を電子部品用途へ適用する際には エポキシ榭脂中の官能基濃度をより一層低くして硬化後の誘電特性や耐湿性の改 善を図ることが好ましぐその一方で、前記エポキシ榭脂 (A)中の分子量が大きくなり 過ぎる場合には、流動性の低下を招くことになる。従って、前記エポキシ榭脂 (A)は 、そのエポキシ当量力 S、 200〜1, OOOg/eq.の範囲であること、特に 200〜400g Zeq.の範囲にあるものが好ましい。
[0036] 以上詳述したエポキシ榭脂 (A)は、前記した通り、中でもポリナフチレンォキシ構造 を前記ポリアリーレンオキサイド構造として有するものが好ましぐ具体的には下記一 般式(1)で表すことができる。
[0037] [化 9]
一般式 ( 1 )
Figure imgf000012_0001
[0038] ここで上記一般式(1)中、 qは 1〜7の整数であり、 pはそれぞれ独立的に 0〜4の整 数である。但し、一般式(1)中の Rの少なくとも一つについては、 pの値が 1〜4の範 囲となる。そして、 R'は水素原子又はメチル基、 Rはそれぞれ独立的に下記一般式( 2)、
[0039] [化 10]
Figure imgf000013_0001
(一般式(2)中、 nは繰り返しの平均値で 0. 1〜4である。 )
又は、下記一般式(3)
[0040] [化 11]
一般式 ( 3 )
Figure imgf000013_0002
(一般式(3)中、 nは繰り返しの平均値で 0. 1〜4である。 )
を表す。
[0041] 上記一般式(1)中の qは、エポキシ榭脂 (A)の流動性が良好となる点から 1〜3の 整数であることが好ましぐまた、難燃性及びエポキシ榭脂の製造の容易さの点から R'は水素原子であることが好ましい。なお、上記一般式(1)においてナフタレン骨格 への結合位置はナフタレン環を構成する 2つの環の何れであってもよい。 [0042] ここで、上記一般式(1)で表されるエポキシ榭脂は、具体的には下記の構造式であ らわされるものが挙げられる。
[0043] [化 12]
Figure imgf000014_0001
Figure imgf000014_0002
[0044] ここで、上記構造式 (A— 1)〜 (A— 5)にお 、て Gはグリシジル基を表し、また、ナ フタレン骨格に結合するメチレン結合は、ナフタレン環を構成する 2つの環の何れに 結合していてもよい。
[0045] 上記した通り、本発明においては、上記構造式 (A— 4)に示す様に、ポリナフチレ ンオキサイド構造中のナフタレン環に、他のナフタレン環が直接結合によって結合し て分岐構造を形成し、更に、この直接結合で導入されたナフタレン環にァラルキル基 が導入された構造も採りうる。
[0046] 上記一般式(1)で表される化合物の中でも前記したとおり、本発明では前記構造 式(1)に相当するァラルキル基の数は有効量存在する必要があるものの、多すぎる 場合には却って難燃性の改善効果が低下する傾向にある。他方、 qの値が高くなり 過ぎる場合、流動性が低くなる。従って、前記一般式(1)で表される化合物は、該ー 般式(1)中の「Ar」で表される二価の芳香族系炭化水素基を前記エポキシ榭脂 (A) の 1分子あたり 0. 1〜4個の割合で有し、かつ、 qの値が 1〜4となる範囲であることが これらの性能バランスに優れる点力も好ましい。
[0047] 以上詳述したエポキシ榭脂 (A)は、例えば、予めジヒドロキシナフタレンィ匕合物を用 Vヽて脱水エーテル化反応を行って分子鎖延長した後、後述するァラルキル化剤を反 応させてナフタレン環に置換基を導入した後グリシジルエーテルィ匕する方法によって 製造することができる。しカゝしながら、この場合、前記した通り、エポキシ榭脂 (A)自 体の溶融粘度の増大を招 、てしまう為、エポキシ榭脂 (A)の適正な溶融粘度を確保 する点から下記の本発明のエポキシ榭脂の製造方法によって製造することが好まし い。
[0048] 以下、本発明のエポキシ榭脂の製造方法について詳述する。
本発明のエポキシ榭脂の製造方法は、ジヒドロキシ芳香族化合物 (al)と、下記構 造式 (2)
[0049] [化 13] 構造式 (2)
Figure imgf000016_0001
〔式中、 R、 Rは各々独立して、メチル基又は水素原子であり、 Arは、フエ二レン基、
1 2
炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたフエ-レン基、ナフチレン 基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたナフチレン基を、 Yは ハロゲン原子、アルコキシ基、又は水酸基を表す。〕で表される化合物、又は下記構 造式 (3)
[化 14]
Ar 構造式 (3)
Figure imgf000016_0002
4
〔式中、 R、 R、 Rは各々独立してメチル基又は水素原子であり、 Arは、フエ-レン 基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたフエ-レン基、ナフチレ ン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたナフチレン基を表す 。〕で表される化合物から選択されるァラルキル化剤 (a2)とを、酸触媒の存在下に反 応させてフエノール榭脂を得る工程 (以下、この工程を「工程 1」と略記する。)、次い で、得られたフエノール榭脂をとェピノ、ロヒドリン類 (a3)とを反応させる工程 (以下、こ の工程を「工程 2」と略記する。 )とから構成されることを特徴とするものである。
[0051] 即ち、本発明では、先ず工程 1において前記ジヒドロキシ芳香族化合物 (al)と、前 記ァラルキル化剤 (a2)とを酸触媒の存在に反応させることにより、ポリアリーレン構造 を主骨格としてその両末端にフエノール性水酸基を有し、かつ、該ポリアリーレン構 造の芳香核上にァラルキル基がペンダント状に結合した構造のフエノール榭脂を得 ることができる。ここで、特筆すべきは、一般に、ジヒドロキシ芳香族化合物 (al)を酸 触媒下にァリーレンエーテルィ匕した場合、前記した通り、分子量の調節は極めて困 難で、高分子量のポリアリーレンオキサイドとなるのに対し、本発明は、前記ァラルキ ル化剤 (a2)を併用することによって、このような高分子量ィ匕を抑制でき、半導体封止 材料に適用な榭脂を得ることができる。
[0052] 更に、本発明では、前記ァラルキル化剤 (a2)の使用量を調節することによって、 目 的とするフエノール榭脂中のァラルキル基の含有率を調節できることにカ卩え、フエノー ル榭脂の溶融粘度自体も調節することが可能となる。即ち、通常、前記ジヒドロキシ 芳香族化合物 (al)と、前記ァラルキル化剤 (a2)との反応割合は、モル基準で前記 ジヒドロキシ芳香族化合物 (al)とァラルキル化剤 (a2)との反応比率 (al) / (a2)が 1 /0. 1〜1Z10となる範囲力も選択することができる力 本発明ではァラルキル化剤 (a2)の使用量を少なくするに従い、ポリアリーレンオキサイド構造部分の質量が増大 する結果、フエノール榭脂の難燃性がより良好なものとなる。従って、モル基準で前 記ジヒドロキシ芳香族化合物 (al)とァラルキル化剤 (a2)との反応比率 (al) / (a2) は ΙΖΟ. 1〜: LZl. 0となる範囲となる範囲であることが好ましい。また、かかる範囲 で反応させた際のフエノール榭脂の「ASTM D4287」に準拠して測定される 150 °Cにおける溶融粘度は 0. 1〜4. OdPa ' sとなる。
[0053] ここで使用し得るジヒドロキシ芳香族化合物(al)は、例えば、カテコール、レゾルシ ノール、及びハイドロキノン等の 2価フエノール類、並びに、 1, 2—ジヒドロキシナフタ レン、 1, 3—ジヒドロキシナフタレン、 1, 4ージヒドロキシナフタレン、 1, 5—ジヒドロキ シナフタレン、 1, 6—ジヒドロキシナフタレン、 1, 7—ジヒドロキシナフタレン、 1, 8— ジヒドロキシナフタレン、 2, 3—ジヒドロキシナフタレン、 2, 6—ジヒドロキシナフタレン 、 2, 7—ジヒドロキシナフタレン等のジヒドロキシナフタレンが挙げられる。これらの中 でも特に得られるフエノール榭脂或いはそのエポキシィ匕したエポキシ榭脂の硬化物 の難燃性が一層良好なものとなり、また、該硬化物の誘電正接も低くなつて誘電特性 が良好になる点からジヒドロキシナフタレン、中でも 1, 6—ジヒドロキシナフタレン又は 2, 7—ジヒドロキシナフタレンが好ましぐ特に 2, 7—ジヒドロキシナフタレンが好まし い。
[0054] 次に、前記ァラルキル化剤 (a2)のうち、下記構造式(2)
[0055] [化 15]
構造式 (2)
Figure imgf000018_0001
〔式中、 R、 Rは各々独立して、メチル基又は水素原子であり、 Arは、フエ二レン基、
1 2
炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたフエ-レン基、ナフチレン 基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたナフチレン基を表す。〕 で表される化合物としては、例えば、 Yがハロゲン原子の場合、ベンジルクロライド、 ベンジルブロマイド、ベンジルアイオダイト、 o—メチルベンジルクロライド、 m—メチル ベンジルクロライド、 p—メチルベンジルクロライド、 p—ェチルベンジルクロライド、 p— イソプロピルべンジルクロライド、 p— tert ブチルベンジルクロライド、 p—フエ-ルべ ンジルクロライド、 5 クロロメチルァセナフチレン、 2 ナフチルメチルクロライド、 1 クロロメチルー 2—ナフタレン及びこれらの核置換異性体、 α メチルベンジルクロラ イド、並びに (X , aージメチルベンジルクロライド等が挙げられる。
[0056] Yがアルコキシ基の場合、該アルコシキ基は炭素数 1〜4のアルコキシ基であること が好ましぐ前記構造式(2)で表される化合物は、例えば、ベンジルメチルエーテル 、 o—メチノレべンジノレメチノレエーテノレ、 m—メチノレべンジノレメチノレエーテノレ、 p—メチ ルベンジルメチルエーテル、 p ェチルベンジルメチルエーテル及びこれらの核置換 異性体、ベンジルェチルエーテル、ベンジルプロピルエーテル、ベンジルイソブチル エーテノレ、ベンジノレ n—ブチノレエーテノレ、 p—メチノレべンジノレメチノレエーテノレ及びそ の核置換異性体等が挙げられる。
[0057] Yが水酸基の場合、前記構造式(2)で表される化合物は、例えば、ベンジルアルコ 一ノレ、 o—メチノレべンジノレアノレコーノレ、 m—メチノレべンジノレアノレコーノレ、 p—メチノレべ ンジルアルコール、 p ェチルベンジルアルコール、 p—イソプロピルべンジルアルコ 一ノレ、 p— tert ブチノレべンジノレアノレコーノレ、 p フエ二ノレべンジノレアノレコーノレ、 a ナフチルカルビノール及びこれらの核置換異性体、 OC メチルベンジルアルコー ル、及び (X , aージメチルベンジルアルコール等が挙げられる。
[0058] 前記ァラルキル化剤 (a2)のうち、下記構造式(3)
[0059] [化 16]
Figure imgf000019_0001
Ar— C= C 構造式 (3)
R4 [0060] で表される化合物としては、例えば、スチレン、 o—メチルスチレン、 m—メチルスチ レン、 P—メチルスチレン、 α—メチルスチレン、 j8—メチルスチレン等が挙げられる。
[0061] これらの中でも、特に難燃効果の点から前記構造式 (2)で表されるァラルキル化剤 が好ましぐとりわけベンジルクロライド、ベンジルブロマイド、及びべンジルアルコー ルが、最終的に得られるエポキシ榭脂又はフエノール榭脂の硬化物にぉ 、て難燃効 果が一層顕著なものとなる点から好まし 、。
[0062] 前記工程 1におけるジヒドロキシ芳香族化合物(al)とァラルキル化剤 (a2)との反応 において使用し得る酸触媒は、例えばリン酸、硫酸、塩酸などの無機酸、シユウ酸、 ベンゼンスルホン酸、トルエンスルホン酸、メタンスルホン酸、フルォロメタンスルホン 酸等の有機酸、塩ィ匕アルミニウム、塩化亜鉛、塩化第 2錫、塩化第 2鉄、ジェチル硫 酸などのフリーデルクラフツ触媒が挙げられる。
[0063] また、上記した酸触媒の使用量は、 目標とする変性率などにより適宜選択すること ができる力 例えば無機酸や有機酸の場合はジヒドロキシ芳香族化合物(al) 100質 量部に対し、 0. 001-5. 0質量部、好ましくは 0. 01〜3. 0質量部なる範囲であり、 フリーデルクラフツ触媒の場合はジヒドロキシ芳香族化合物(al) lモルに対し、 0. 2 〜3. 0モノレ、好ましくは 0. 5〜2. 0モノレとなる範囲であること力好まし!/ヽ。
[0064] 前記工程 1におけるジヒドロキシ芳香族化合物(al)とァラルキル化剤 (a2)との反応 は、無溶媒下に行ってもよいが、反応系内の均一性を高める点から溶媒下に行って もよい。力かる溶媒としては、例えば、エチレングリコールジメチルエーテル、エチレン グリコーノレジェチノレエーテノレ、エチレングリコーノレジブ口ピノレエーテノレ、ジエチレング リコールジメチルエーテル、ジエチレングリコールジェチルエーテル、ジエチレングリ コーノレジプロピノレエーテノレ、エチレングリコーノレモノメチノレエーテノレ、エチレングリコ 一ノレモノェチノレエーテノレ、エチレングリコーノレモノプロピノレエーテノレ、ジエチレングリ コーノレモノメチノレエーテノレ、ジエチレングリコーノレモノェチノレエーテノレ、ジエチレング リコーノレモノプロピノレエーテノレ、ジエチレングリコーノレモノブチノレエーテノレなどのェチ レングリコールやジエチレングリコールのモノ又はジエーテル、ジメチルホルムアミド やジメチルスルホキシド等の非プロトン性極性溶媒、及びクロ口ベンゼン等が挙げら れる。
[0065] 前記工程 1の反応を行う具体的方法は、無溶媒下に、或いは前記溶媒存在下にジ ヒドロキシ芳香族化合物 (al)、ァラルキル化剤 (a2)、及び前記酸触媒を溶解させ、 60〜180°C、好ましくは 80〜160°C程度の温度条件下に行うことができる。また、反 応時間は特に限定されるものではないが、 1〜10時間であることが好ましい。よって、 当該反応は、具体的には、前記温度を 1〜10時間保持することによって行うことがで きる。また、反応中に生成するハロゲンィ匕水素、水、或いはアルコール類などは系外 に分留管などを用いて留去することが、反応が速やかに進行して生産性が向上する 点から好ましい。
[0066] また、得られるジヒドロキシナフタレンィ匕合物の着色が大き 、場合は、それを抑制す るために、反応系に酸化防止剤や還元剤を添加しても良い。酸化防止剤としては、 例えば 2, 6—ジアルキルフエノール誘導体などのヒンダードフエノール系化合物や 2 価のィォゥ系化合物や 3価のリン原子を含む亜リン酸エステル系化合物等が挙られ る。還元剤としては例えば次亜リン酸、亜リン酸、チォ硫酸、亜硫酸、ハイド口サルフ アイトまたはこれらの塩などが挙げられる。
[0067] 反応終了後は、酸触媒を中和処理、水洗処理あるいは分解することにより除去し、 抽出、蒸留などの一般的な操作により、目的とするフエノール榭脂を分離することが できる。中和処理や水洗処理は常法に従って行えばよぐ例えば、水酸化ナトリウム、 水酸ィ匕カリウム、炭酸ナトリウム、アンモニア、トリエチレンテトラミン、ァ-リン等の塩基 性物質を中和剤として用いることができる。
[0068] 次に、前記工程 2として、工程 1で得られたフエノール榭脂と、ェピハロヒドリン(a3) とを反応させること〖こより目的とするエポキシ樹月旨を得ることができる。工程 2における 反応は、前記フエノール榭脂中のフエノール性水酸基 1モルに対し、ェピノ、ロヒドリン 類(a3) 2〜10モルを添カ卩し、更に、前記フエノール榭脂中のフエノール性水酸基 1 モルに対し 0. 9〜2. 0モルの塩基性触媒を一括添加または徐々に添カ卩しながら 20 〜120°Cの温度で 0. 5〜10時間反応させる方法が挙げられる。
[0069] ここで用いる塩基性触媒は固形として、或いはその水溶液として使用することがで きる。前記塩基性触媒を水溶液として使用する場合は、連続的に添加すると共に、 反応混合物中から減圧下または常圧下に連続的に水及びェピハロヒドリン類 (a3)を 留出せしめ、更に分液して水は除去しェピノ、ロヒドリン類 (a3)は反応混合物中に連 続的に戻す方法を採用してもょ 、。
[0070] 前記ェピハロヒドリン類(a3)は、例えばェピクロルヒドリン、ェピブ口モヒドリン、 13 メチルェピクロルヒドリン等が挙げられ、なかでも工業的入手が容易なことからェピク 口ルヒドリンが好ましい。なお、工業生産を行う際、エポキシ榭脂生産の初バッチでの 反応終了後の次バッチ以降の反応では、粗反応生成物から回収されたェピノ、ロヒド リン類 (a3)と、反応で消費される分で消失する分に相当する新しいェピノ、ロヒドリン 類 (a3)とを併用することが好ま 、。
[0071] また、前記塩基性触媒は、具体的には、アルカリ土類金属水酸化物、アルカリ金属 炭酸塩及びアルカリ金属水酸化物等が挙げられる。特にエポキシ榭脂合成反応の 触媒活性に優れる点からアルカリ金属水酸化物が好ましぐ例えば水酸化ナトリウム
、水酸ィ匕カリウム等が挙げられる。使用に際しては、これらの塩基性触媒を 10〜55 質量%程度の水溶液の形態で使用してもよいし、固形の形態で使用しても構わない
。また、有機溶媒を併用することにより、エポキシ榭脂の合成における反応速度を高 めることができる。このような有機溶媒としては特に限定されないが、例えば、アセトン 、メチルェチルケトン等のケトン類、メタノール、エタノール、 1 プロピルアルコール、 イソプロピルアルコール、 1ーブタノール、セカンダリーブタノール、ターシャリーブタノ ール等のアルコール類、メチルセ口ソルブ、ェチルセ口ソルブ等のセロソルブ類、テト ラヒドロフラン、 1、 4 ジォキサン、 1、 3 ジォキサン、ジエトキシェタン等のエーテル 類、ァセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性 溶媒等が挙げられる。これらの有機溶媒は、それぞれ単独で使用してもよいし、また 、極性を調整するために適宜二種以上を併用してもょ ヽ。
[0072] 前述のエポキシ化反応の反応物を水洗後、加熱減圧下、蒸留によって未反応のェ ピハロヒドリンや併用する有機溶媒を留去する。また更に加水分解性ハロゲンの少な いエポキシ榭脂とするために、得られたエポキシ榭脂を再びトルエン、メチルイソブチ ルケトン、メチルェチルケトンなどの有機溶媒に溶解し、水酸化ナトリウム、水酸化カリ ゥムなどのアルカリ金属水酸ィ匕物の水溶液をカ卩えてさらに反応を行うこともできる。こ の際、反応速度の向上を目的として、 4級アンモ-ゥム塩ゃクラウンエーテル等の相 関移動触媒を存在させてもよい。相関移動触媒を使用する場合のその使用量として は、用いるエポキシ榭脂に対して 0. 1〜3. 0質量%の範囲が好ましい。反応終了後 、生成した塩を濾過、水洗などにより除去し、更に、加熱減圧下トルエン、メチルイソ プチルケトンなどの溶剤を留去することにより高純度のエポキシ榭脂を得ることができ る。
[0073] また、本発明のエポキシ榭脂組成物 (I)にお 、ては、エポキシ榭脂成分として前記 エポキシ榭脂 (A)を単独で用いてもよ!ヽし、本発明の効果を損なわな!/ヽ範囲で前記 エポキシ榭脂 (A)と他のエポキシ榭脂とを併用してもよい。他のエポキシ榭脂を併用 する場合、これらの使用割合は、エポキシ榭脂成分の総質量に占める前記エポキシ 榭脂 (A)の割合が 30質量%以上、特に 40重量%以上となる範囲であることが好まし い。
[0074] ここで併用され得る他のエポキシ榭脂は、種々のエポキシ榭脂を使用することがで き、例えば、ビスフエノール A型エポキシ榭脂、ビスフエノール F型エポキシ榭脂、ビフ ェニル型エポキシ榭脂、テトラメチルビフエニル型エポキシ榭脂、フエノールノボラック 型エポキシ榭脂、クレゾ一ルノボラック型エポキシ榭脂、トリフエニルメタン型エポキシ 榭脂、テトラフエニルェタン型エポキシ榭脂、ジシクロペンタジェン一フエノール付カロ 反応型エポキシ榭脂、フエノールァラルキル型エポキシ榭脂、ナフトールノボラック型 エポキシ榭脂、ナフトールァラルキル型エポキシ榭脂、ナフトール フエノール共縮ノ ポラック型エポキシ榭脂、ナフトールークレゾール共縮ノボラック型エポキシ榭脂、芳 香族炭化水素ホルムアルデヒド榭脂変性フエノール榭脂型エポキシ榭脂、ビフエ- ル変性ノボラック型エポキシ榭脂等が挙げられる。これらのエポキシ榭脂の中でも、 特に難燃性に優れる硬化物が得られる点から、テトラメチルビフエノール型エポキシ 榭脂、ビフエニルァラルキル型エポキシ榭脂、ノボラック型エポキシ榭脂を用いること が好ましい。
[0075] 本発明のエポキシ榭脂組成物(I)に用いる硬化剤 (B)は、公知の各種エポキシ榭 脂用硬化剤、例えばアミン系化合物、アミド系化合物、酸無水物系化合物、フ ノー ル系化合物などの硬化剤を使用できる。具体的には、アミン系化合物としてはジアミ ノジフエ二ノレメタン、ジエチレントリァミン、トリエチレンテトラミン、ジアミノジフエニノレス ルホン、イソホロンジァミン、イミダゾ—ル、 BF—アミン錯体、グァ-ジン誘導体等が
3
挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の 2量体とエチレンジ ァミンとより合成されるポリアミド榭脂等が挙げられ、酸無水物系化合物としては、無 水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フ タル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、へキサヒドロ無水フ タル酸、メチルへキサヒドロ無水フタル酸等が挙げられ、フエノール系化合物としては 、フエノールノボラック榭脂、クレゾ一ルノボラック榭脂、芳香族炭化水素ホルムアル デヒド榭脂変性フエノール榭脂、ジシクロペンタジェンフエノール付加型榭脂、フエノ ールァラルキル榭脂、ナフトールァラルキル榭脂、トリメチロールメタン榭脂、テトラフ ェ-ロールエタン榭脂、ナフトールノボラック榭脂、ナフトールーフェノール共縮ノボラ ック榭脂、ナフトールークレゾール共縮ノボラック榭脂、ビフエ-ル変性フエノール榭 脂(ビスメチレン基でフエノール核が連結された多価フエノールイ匕合物)、ビフエ二ル 変性ナフトール榭脂(ビスメチレン基でフエノール核が連結された多価ナフトールイ匕 合物)、アミノトリアジン変性フエノール榭脂 (メラミンやべンゾグアナミンなどでフエノー ル核が連結された多価フエノールイ匕合物)等の多価フエノールイ匕合物が挙げられる。
[0076] これらの中でも、特に芳香族骨格を分子構造内に多く含むものが難燃効果の点か ら好ましぐ具体的には、フエノールノボラック榭脂、クレゾ一ルノボラック榭脂、芳香 族炭化水素ホルムアルデヒド榭脂変性フエノール榭脂、フエノールァラルキル榭脂、 ナフトールァラルキル榭脂、ナフトールノボラック榭脂、ナフトール フエノール共縮ノ ボラック榭脂、ナフトールークレゾール共縮ノボラック榭脂、ビフエ-ル変性フエノール 榭脂、ビフエ-ル変性ナフトール榭脂、アミノトリアジン変性フエノール榭脂が難燃性 に優れることから好ましい。
[0077] しかし乍ら、本発明では、難燃性の向上が顕著なものとなり、また、優れた誘電特性 を発現する点から、とりわけフ ノールァラルキル榭脂、具体的には、下記構造式 (i)
[0078] [化 17] 構造式 (i)
Figure imgf000025_0001
で表される構造を結節基として複数のフエノール類が結節した構造を有するフエノー ル榭脂であることが好ましい。なお、ここで構造式 (i)中、 Xは、炭素原子数 1〜4のァ ルキル基又は水素原子、 mは 0〜3の整数である。
[0079] 本発明のエポキシ榭脂組成物 (I)における前記エポキシ榭脂 (A)及び前記硬化剤
(B)の配合量は、得られる硬化物の機械的物性等が良好なものとなる点から、前記 エポキシ榭脂 (A)を含むエポキシ榭脂中のエポキシ基の合計 1当量に対して、前記 硬ィ匕剤(B)中の活性基が 0. 7〜1. 5当量の範囲となる量であることが好ましい。
[0080] 次に、本発明のもう一つのエポキシ榭脂組成物(II)は、ポリアリーレンォキシ構造を 主骨格としており、かつ、該構造の芳香環に、フエノール性水酸基及び下記構造式(
1)
[0081] [化 18]
構造式ひ)
Figure imgf000025_0002
[式(1)中、 R及び Rは各々独立して、メチル基又は水素原子であり、 Arは、フ 二
1 2
レン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたフエ-レン基、ナフ チレン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたナフチレン基、 n は繰り返し数の平均値で 0. 1〜4の数である。 ]
で表される構造部位が結合した分子構造を有するフ ノール榭脂(Β' )及びエポキシ 榭脂 (Α' )を必須成分とするものである。
[0082] ここで、前記フエノール榭脂 (Β' )は前記したエポキシ榭脂組成物 (I)におけるェポ キシ榭脂 (Α)の前駆体であるフ ノール榭脂と同一構造である。また、当該フエノー ル榭脂(Β' )の「ASTM D4287」に準拠して測定される 150°Cにおける溶融粘度は 0. 1〜4. OdPa' sの範囲であることが榭脂自体の流動性の点から好ましぐこの場合 、前記フエノール榭脂 (Β' )は本発明の新規フエノール榭脂となる。また、前記フエノ 一ル榭脂(Β' )は特に難燃効果と流動性とのバランスの点力も特に、「ASTM D42 87」に準拠して測定される 150°Cにおける溶融粘度が 0. 1〜3. OdPa' sであること、 特に 0. 1〜2. OdPa' sであることが好ましい。
[0083] 更に、前記フエノール榭脂 (Β' )は、そのフ ノール性水酸基の官能数は、前記ェ ポキシ榭脂 (Α)の場合と同様に、ジヒドロキシ芳香族化合物を原料としてポリアリーレ ンオキサイド構造を形成させることが望ましぐこの場合、フエノール性水酸基は直鎖 状分子構造の両末端に出現する為、主に 2官能性のフ ノール榭脂として得られる 1S 該榭脂成分中に、部分的にポリナフチレンオキサイド構造中のナフタレン環に、 他のヒドロキシナフタレン環が直接結合によって結合した分子構造を持つ多官能フエ ノール榭脂も含まれる。よって、前記フエノール榭脂(Β' )は、通常、多官能性のフエ ノール榭脂として得られるが、硬化後の誘電特性や耐湿性の改善効果に優れ、かつ 、流動性に優れる点から、前記フエノール榭脂(Β' )の水酸基当量が 130〜800gZ eq.の範囲、特に 130〜300g/eq.の範囲にあるちの力 ^好まし!/、。
[0084] 上記したフエノール榭脂(Β' )は、中でもポリナフチレンォキシ構造を前記ポリアリー レンオキサイド構造として有するものが優れた難燃効果を発現し、また、誘電正接も 低くなる点から好ましぐ具体的には、下記一般式 (4)で表すことができる。 [0085] [化 19]
Figure imgf000027_0001
[0086] ここで上記一般式 (4)中、 qは 1〜7の整数であり、 pはそれぞれ独立的に 0〜4の整 数である。但し、一般式 (4)中の Rの少なくとも一つについては、 pの値が 1〜4の範 囲となる。そして、 Rはそれぞれ独立的に下記一般式 (5)、
[0087] [化 20]
Figure imgf000027_0002
(一般式(5)中、 nは繰り返しの平均値で 0. 1〜4である。 )
又は、下記一般式 (6)
[0088] [化 21] 一般式 (6 )
Figure imgf000028_0001
(一般式(6)中、 nは繰り返しの平均値で 0. 1〜4である。 )
を表す。
[0089] 上記一般式 (4)中の qは、エポキシ榭脂 (A)の流動性が良好となる点から 1〜3の 整数であることが好ましい。また、上記一般式 (4)においてナフタレン骨格への結合 位置はナフタレン環を構成する 2つの環の何れであってもよい。
[0090] ここで、上記一般式 (4)で表されるフ ノール榭脂は、具体的には下記の構造式で 表されるものが挙げられる。
[0091] [化 22]
Figure imgf000029_0001
Figure imgf000029_0002
ここで、上記構造式 (P— 1)〜(P— 5)において、ナフタレン骨格に結合するメチレ ン結合は、ナフタレン環を構成する 2つの環の何れに結合していてもよい。また、上 記した通り、本発明においては、上記構造式 (P— 4)に示す様に、ポリナフチレンォ キサイド構造中のナフタレン環に、他のナフタレン環が直接結合によって結合して分 岐構造を形成し、更に、この直接結合で導入されたナフタレン環にァラルキル基が導 入された分子構造を有してもょ ヽ。
[0093] 上記一般式(2)で表される化合物の中でも、前記構造式(1)に相当するァラルキル 基の数が多すぎる場合には却って難燃性の改善効果が低下する傾向にある。他方、 qの値は、高い程難燃性は向上するものの流動性が低くなる。従って、前記一般式( 4)で表される化合物は、該一般式 (4)中の「Ar」で表される二価の芳香族系炭化水 素基を前記エポキシ榭脂 (A)の 1分子あたり 0. 1〜4個の割合で有し、かつ、 qの値 力 Sl〜4の範囲であること力 これらの性能バランスに優れる点力 好ましい。
[0094] 以上詳述したフエノール榭脂 (Β' )は、例えば、予めジヒドロキシナフタレンィ匕合物 を用いて脱水エーテル化反応を行って分子鎖延長した後、後述するァラルキル化剤 を反応させてナフタレン環に置換基を導入する方法によって製造することができる。 しかしながら、前記した通り、この方法では、脱水エーテル化反応で過度な高分子量 化を招き、増粘を引き起こしてしまうため、前記した本発明のエポキシ榭脂の製造方 法における工程 1によって製造することが好ま 、。
[0095] 本発明のエポキシ榭脂組成物(II)にお 、て前記フエノール榭脂(Β' )は単独でェポ キシ榭脂 (Α' )の硬化剤として用いてもよいが、本発明の効果を損なわない範囲で他 の硬化剤を併用してもよい。具体的には、硬化剤の全質量に対して前記フエノール 榭脂が 30質量%以上、好ましくは 40質量%以上となる範囲で他の硬化剤を併用す ることがでさる。
[0096] 本発明のフエノール榭脂 (Β' )と併用されうる他の硬化剤としては、特に制限される ものではなぐ例えばアミン系化合物、アミド系化合物、酸無水物系化合物、前記し たフエノール榭脂(Β,)以外のフエノ一ル系化合物、アミノトリアジン変性フエノール榭 脂 (メラミンやべンゾグアナミンなどでフエノール核が連結された多価フエノールイ匕合 物)の多価フ ノール化合物挙げられる。
[0097] これらの中でも、フエノールノボラック榭脂、クレゾ一ルノボラック榭脂、芳香族炭化 水素ホルムアルデヒド榭脂変性フエノール榭脂、フエノールァラルキル榭脂、ナフトー ルァラルキル榭脂、ナフトールノボラック榭脂、ナフトール フエノール共縮ノボラック 榭脂、ナフトールークレゾール共縮ノボラック榭脂、ビフエ-ル変性フエノール榭脂、 ビフエ-ル変性ナフトール榭脂、アミノトリアジン変性フエノール榭脂が難燃性に優れ ることから好ましぐ特にフエノールァラルキル榭脂、ナフトールァラルキル榭脂、ビフ ェニル変性フエノール榭脂、ビフ 二ル変性ナフトール榭脂等の高芳香族性、高水 酸基当量のフエノール榭脂ゃ窒素原子を含有するアミノトリアジン変性フエノール榭 脂等の化合物を用いることが、得られる硬化物の難燃性や誘電特性が優れる点から 好ましい。
[0098] 次に、本発明のエポキシ榭脂組成物(II)で用いるエポキシ榭脂 (Α' )としては、例 えば、ビスフエノール Α型エポキシ榭脂、ビスフエノール F型エポキシ榭脂、ビフエ- ル型エポキシ榭脂、テトラメチルビフエ-ル型エポキシ榭脂、フエノールノボラック型 エポキシ榭脂、クレゾ一ルノボラック型エポキシ榭脂、ビスフエノール Aノボラック型ェ ポキシ榭脂、トリフエニルメタン型エポキシ榭脂、テトラフエ-ルェタン型エポキシ榭脂 、ジシクロペンタジェン一フエノール付加反応型エポキシ榭脂、フエノールァラルキル 型エポキシ榭脂、ナフトールノボラック型エポキシ榭脂、ナフトールァラルキル型ェポ キシ榭脂、ナフトール フエノール共縮ノボラック型エポキシ榭脂、ナフトールークレ ゾール共縮ノボラック型エポキシ榭脂、芳香族炭化水素ホルムアルデヒド榭脂変性フ エノール榭脂型エポキシ榭脂、ビフエ-ルノボラック型エポキシ榭脂等が挙げられる。 またこれらのエポキシ榭脂は単独で用いてもよぐ 2種以上を混合してもよ 、。
[0099] これらのなかでも特にビフエニル型エポキシ榭脂、ナフタレン型エポキシ榭脂、フエ ノールァラルキル型エポキシ榭脂、ビフエ-ルノボラック型エポキシ榭脂及びキサン テン型エポキシ榭脂が、難燃性や誘電特性に優れる点から特に好まし ヽ。
[0100] 本発明のエポキシ榭脂組成物 (Π)におけるエポキシ榭脂 (Α' )と硬化剤の配合量と しては、特に制限されるものではないが、得られる硬化物特性が良好である点から、 エポキシ榭脂 (Α' )のエポキシ基の合計 1当量に対して、前記フエノール榭脂(Β' )を 含む硬化剤中の活性基が 0. 7〜1. 5当量になる量が好ましい。
[0101] また必要に応じて本発明のエポキシ榭脂組成物 (Π)に硬化促進剤を適宜併用する こともできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系ィ匕 合物、第 3級ァミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げら れる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特 性、耐湿信頼性等に優れる点から、リン系化合物ではトリフエ-ルフォスフィン、第 3 級ァミンでは 1, 8—ジァザビシクロ一 [5. 4. 0]—ゥンデセン(DBU)が好ましい。
[0102] 以上詳述した本発明のエポキシ榭脂組成物 (I)及び (Π)は、エポキシ榭脂又はそ の硬化剤について、その分子構造の選択によっては、当該榭脂自体が優れた難燃 性付与効果を有するものである為、従来用いられている難燃剤を配合しなくても、硬 化物の難燃性が良好なものとなる。しかしながら、より高度な難燃性を発揮させるため に、例えば半導体封止材料の分野においては、封止工程での成形性や半導体装置 の信頼性を低下させな!/ヽ範囲で、実質的にハロゲン原子を含有しな!ヽ非ハロゲン系 難燃剤 (C)を配合してもよい。
[0103] かかる非ハロゲン系難燃剤 (C)を配合したエポキシ榭脂組成物は、実質的にハロ ゲン原子を含有しな ヽものである力 例えばエポキシ榭脂に含まれるェピノ、ロヒドリン 由来の 5000ppm以下程度の微量の不純物によるハロゲン原子は含まれて 、ても良 い。
[0104] 前記非ハロゲン系難燃剤 (C)は、例えば、リン系難燃剤、窒素系難燃剤、シリコー ン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に 際しても何等制限されるものではなぐ単独で使用しても、同一系の難燃剤を複数用 いても良ぐまた、異なる系の難燃剤を組み合わせて用いることも可能である。
[0105] 前記リン系難燃剤は、無機系、有機系のいずれも使用することができる。無機系化 合物としては、例えば、赤リン、リン酸一アンモ-ゥム、リン酸二アンモ-ゥム、リン酸 三アンモ-ゥム、ポリリン酸アンモ-ゥム等のリン酸アンモ-ゥム類、リン酸アミド等の 無機系含窒素リンィ匕合物が挙げられる。
[0106] また、前記赤リンは、加水分解等の防止を目的として表面処理が施されて!/、ること が好ましぐ表面処理方法としては、例えば、(i)水酸ィ匕マグネシウム、水酸化アルミ 二ゥム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸ィ匕ビスマス、硝酸ビスマス又 はこれらの混合物等の無機化合物で被覆処理する方法、 (ii)水酸ィ匕マグネシウム、 水酸ィ匕アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフエノール榭 脂等の熱硬化性榭脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水 酸ィ匕アルミニウム、水酸化亜鉛、水酸ィ匕チタン等の無機化合物の被膜の上にフエノ 一ル榭脂等の熱硬化性榭脂で二重に被覆処理する方法等が挙げられる。 [0107] 前記有機リン系化合物は、例えば、リン酸エステル化合物、ホスホン酸ィ匕合物、ホス フィン酸ィ匕合物、ホスフィンォキシドィ匕合物、ホスホラン化合物、有機系含窒素リンィ匕 合物等の汎用有機リン系化合物の他、 9, 10 ジヒドロー 9 ォキサ一 10 ホスファ フエナントレン = 10—ォキシド、 10- (2, 5—ジヒドロォキシフエ-ル)一 10H— 9— ォキサ 10 ホスファフェナントレン = 10—ォキシド、 10— (2, 7 ジヒドロォキシナ フチル) - 10H— 9—ォキサ 10 ホスファフェナントレン = 10—ォキシド等の環状 有機リンィ匕合物、及びそれをエポキシ榭脂ゃフエノール榭脂等の化合物と反応させ た誘導体等が挙げられる。
[0108] それらの配合量は、リン系難燃剤の種類、エポキシ榭脂組成物の他の成分、所望 の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ榭脂、硬化 剤、非ハロゲン系難燃剤及びその他の充填材ゃ添加剤等全てを配合したエポキシ 榭脂組成物 (I)又は (II) 100質量部中、赤リンを非ハロゲン系難燃剤として使用する 場合は 0. 1〜2. 0質量部の範囲で配合することが好ましぐ有機リン化合物を使用 する場合は同様に 0. 1〜: L0. 0質量部の範囲で配合することが好ましぐ特に 0. 5
〜6. 0質量部の範囲で配合することが好ましい。
[0109] また前記リン系難燃剤を使用する場合、該リン系難燃剤にノヽイド口タルサイト、水酸 ィ匕マグネシウム、ホウ化合物、酸ィ匕ジルコニウム、黒色染料、炭酸カルシウム、ゼオラ イト、モリブデン酸亜鉛、活性炭等を併用してもよい。
[0110] 前記窒素系難燃剤は、例えば、トリアジンィ匕合物、シァヌル酸ィ匕合物、イソシァヌル 酸化合物、フエノチアジン等が挙げられ、中でもトリアジンィ匕合物、シァヌル酸ィ匕合物
、イソシァヌル酸化合物が好ましい。
[0111] 前記トリアジンィ匕合物は、例えば、メラミン、ァセトグアナミン、ベンゾグアナミン、メロ ン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等 の他、例えば、(i)硫酸グァニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリ ァジン化合物、(ii)フエノール、クレゾール、キシレノール、ブチルフエノール、ノ-ル フエノール等のフエノール類と、メラミン、ベンゾグアナミン、ァセトグアナミン、ホルム グアナミン等のメラミン類およびホルムアルデヒドとの共縮合物、(iii)前記 (ii)の共縮 合物とフエノールホルムアルデヒド縮合物等のフエノール榭脂類との混合物、 (iv)前 記 (ii)、 (iii)を更に桐油、異性ィ匕アマ二油等で変性したもの等が挙げられる。
[0112] 前記シァヌル酸ィ匕合物の具体例としては、例えば、シァヌル酸、シァヌル酸メラミン 等を挙げることができる。
[0113] 前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、エポキシ榭脂組成物 の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、ェ ポキシ榭脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材ゃ添加剤等全てを 配合したエポキシ榭脂組成物 (I)又は(II) 100質量部中、 0. 05〜10質量部の範囲 で配合することが好ましぐ特に 0. 1〜5質量部の範囲で配合することが好ましい。
[0114] また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデンィ匕合物等を併用 してちよい。
[0115] 前記シリコーン系難燃剤としては、ケィ素原子を含有する有機化合物であれば特に 制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン榭脂等が 挙げられる。
[0116] 前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、エポキシ 榭脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが 、例えば、エポキシ榭脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材ゃ添加 剤等全てを配合したエポキシ榭脂組成物 (I)又は(II) 100質量部中、 0. 05〜20質 量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、 モリブデンィ匕合物、アルミナ等を併用してもよい。
[0117] 前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩ィ匕 合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。
[0118] 前記金属水酸ィ匕物の具体例としては、例えば、水酸ィ匕アルミニウム、水酸化マグネ シゥム、ドロマイト、ハイド口タルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジ ノレコニゥム等を挙げることができる。
[0119] 前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン 、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸 化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロ ム、酸ィ匕ニッケル、酸化銅、酸ィ匕タングステン等を挙げることができる。 [0120] 前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、 炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄
、炭酸コバルト、炭酸チタン等を挙げることができる。
[0121] 前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、 モリブデン、コノ レト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げるこ とがでさる。
[0122] 前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホ ゥ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。
[0123] 前記低融点ガラスの具体例としては、例えば、シープリ一(ボタスィ ·ブラウン社)、水 和ガラス SiO -MgO-H 0、 PbO-B O系、 ZnO— P O— MgO系、 P O— B
2 2 2 3 2 5 2 5 2
O— PbO— MgO系、 P— Sn— O— F系、 PbO— V O— TeO系、 Al O— H O系
3 2 5 2 2 3 2
、ホウ珪酸鉛系等のガラス状ィ匕合物を挙げることができる。
[0124] 前記無機系難燃剤の配合量としては、無機系難燃剤の種類、エポキシ榭脂組成物 の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、ェ ポキシ榭脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材ゃ添加剤等全てを 配合したエポキシ榭脂組成物 (I)又は(II) 100質量部中、 0. 05〜20質量部の範囲 で配合することが好ましぐ特に 0. 5〜 15質量部の範囲で配合することが好ましい。
[0125] 前記有機金属塩系難燃剤としては、例えば、フエ口セン、ァセチルァセトナート金属 錯体、有機金属カルボ二ルイ匕合物、有機コバルト塩ィ匕合物、有機スルホン酸金属塩 、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合 物等が挙げられる。
[0126] 前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、ェポ キシ榭脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであ る力 例えば、エポキシ榭脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材ゃ 添加剤等全てを配合したエポキシ榭脂組成物 (I)又は(11) 100質量部中、 0. 005〜 10質量部の範囲で配合することが好ま 、。
[0127] 本発明のエポキシ榭脂組成物 (I)又は (Π)には、必要に応じて無機質充填材を配 合することができる。前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、ァ ルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に 大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状 の 、ずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘 度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリ 力の配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好まし い。その充填率は難燃性を考慮して、高い方が好ましぐエポキシ榭脂組成物 (I)又 は(II)の全体量に対して 65質量%以上が特に好ま 、。また導電ペーストなどの用 途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。
[0128] 本発明のエポキシ榭脂組成物 (I)又は (II)には、必要に応じて、シランカップリング 剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。
[0129] 本発明のエポキシ榭脂組成物 (I)又は (II)は、上記した各成分を均一に混合するこ とにより得られる。本発明のエポキシ榭脂、硬化剤、更に必要により硬化促進剤の配 合された本発明のエポキシ榭脂組成物は従来知られている方法と同様の方法で容 易に硬化物とすることができる。該硬化物としては積層物、注型物、接着層、塗膜、フ イルム等の成形硬化物が挙げられる。
[0130] 本発明のエポキシ榭脂組成物 (I)又は (II)が用いられる用途は、例えば半導体封 止材料、アンダーフィル材、導電ペースト、積層板や電子回路基板等に用いられる 榭脂組成物、榭脂注型材料、接着剤、ビルドアップ基板用層間絶縁材料、絶縁塗料 等のコーティング材料等が挙げられる力 これらの中でも、電子部品用途である半導 体封止材料及びアンダーフィル材、特に半導体封止材料に好適に用いることができ る。
[0131] ここで、本発明の半導体封止材料は、前記した通り、前記エポキシ榭脂組成物 (I) における前記エポキシ榭脂 (A)及び前記硬化剤 (B)、或いは、前記エポキシ榭脂組 成物(II)における前記エポキシ榭脂 (Α' )及び前記フエノール榭脂 (Β' )に加え、更 に無機質充填材を組成物中 70〜95質量%となる割合で含有するエポキシ榭脂組 成物からなることを特徴としている。本発明の半導体封止材料をを作製するためには 、前記したエポキシ榭脂と硬化剤、無機質充填剤等の配合剤とを必要に応じて押出 機、ニーダ、ロール等を用いて均一になるまで充分に混合して溶融混合型のェポキ シ榭脂組成物を得ればよい。その際、無機質充填剤としては、通常シリカが用いられ るが、その充填率は、前記した通り、エポキシ榭脂組成物の全質量を基準に無機質 充填剤を 70〜95質量%となる範囲が用いることが好ましぐ中でも、難燃性や耐湿 性ゃ耐ノヽンダクラック性の向上、線膨張係数の低下を図るためには、 80〜95質量% であることが好ま 、。力かる半導体封止材料から半導体パッケージ成形によって半 導体装置を製造する方法は、該半導体封止材料を注型、或いはトランスファー成形 機、射出成形機などを用いて成形し、さらに 50〜200°Cで 2〜10時間に加熱するこ とにより成形物である半導体装置を得る方法が挙げられる。
[0132] 本発明のエポキシ榭脂組成物 (I)又は (II)をプリント回路基板用組成物に加工する には、例えばプリプレダ用榭脂組成物とすることができる。該エポキシ榭脂組成物の 粘度によっては無溶媒で用いることもできるが、有機溶剤を用いてワニス化することで プリプレダ用榭脂組成物とすることが好ましい。前記有機溶剤としては、メチルェチル ケトン、アセトン、ジメチルホルムアミド等の沸点が 160°C以下の極性溶剤を用いるこ とが好ましぐ単独でも 2種以上の混合溶剤としても使用することができる。得られた 該ワニスを、紙、ガラス布、ガラス不織布、ァラミド紙、ァラミド布、ガラスマット、ガラス ロービング布などの各種補強基材に含浸し、用いた溶剤種に応じた加熱温度、好ま しくは 50〜170°Cで加熱することによって、硬化物であるプリプレダを得ることができ る。この時用いる榭脂組成物と補強基材の質量割合としては、特に限定されないが、 通常、プリプレダ中の榭脂分が 20〜60質量%となるように調製することが好ましい。 また該エポキシ榭脂組成物を用いて銅張り積層板を製造する場合は、上記のように して得られたプリプレダを、常法により積層し、適宜銅箔を重ねて、 1〜: LOMPaの加 圧下に 170〜250°Cで 10分〜 3時間、加熱圧着させることにより、銅張り積層板を得 ることがでさる。
[0133] 本発明のエポキシ榭脂組成物 (I)又は (II)を導電ペーストとして使用する場合には 、例えば、微細導電性粒子を該エポキシ榭脂組成物中に分散させ異方性導電膜用 組成物とする方法、室温で液状である回路接続用ペースト榭脂組成物や異方性導 電接着剤とする方法が挙げられる。
[0134] 本発明のエポキシ榭脂組成物 (I)又は (Π)力ゝらビルドアップ基板用層間絶縁材料を 得る方法としては例えば、ゴム、フィラーなどを適宜配合した当該硬化性榭脂組成物 を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等 を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等 の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を 形成させ、銅などの金属をめつき処理する。前記めつき方法としては、無電解めつき、 電解めつき処理が好ましぐまた前記粗化剤としては酸化剤、アルカリ、有機溶剤等 が挙げられる。このような操作を所望に応じて順次繰り返し、榭脂絶縁層及び所定の 回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基 盤を得ることができる。但し、スルーホール部の穴あけは、最外層の榭脂絶縁層の形 成後に行う。また、銅箔上で当該榭脂組成物を半硬化させた榭脂付き銅箔を、回路 を形成した配線基板上に、 170〜250°Cで加熱圧着することで、粗化面を形成、メッ キ処理の工程を省き、ビルドアップ基板を作製することも可能である。
[0135] また、本発明のエポキシ榭脂組成物 (I)は、更にレジストインキとして使用することも 可能である。この場合、前記エポキシ榭脂 (A)に、エチレン性不飽和二重結合を有 するビニル系モノマーと、硬化剤(B)としてカチオン重合触媒を配合し、更に、顔料、 タルク、及びフィラーをカ卩えてレジストインキ用組成物とした後、スクリーン印刷方式に てプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。
[0136] 本発明の硬化物を得る方法としては、一般的なエポキシ榭脂組成物の硬化方法に 準拠すればよいが、例えば加熱温度条件は、組み合わせる硬化剤の種類や用途等 によって、適宜選択すればよいが、上記方法によって得られた組成物を、 20〜250 °C程度の温度範囲で加熱すればよ!、。成形方法などもエポキシ榭脂組成物の一般 的な方法が用いられ、特に本発明のエポキシ榭脂糸且成物に特有の条件は不要であ る。
[0137] 従って、前記エポキシ榭脂 (A)又はフエノール榭脂(B,)を用いることによって、ノヽ ロゲン系難燃剤を使用しなくても高度な難燃性を発現する環境性に優れるエポキシ 榭脂組成物を得ることができる。また、これらの硬化物における優れた誘電特性は、 高周波デバイスの高速演算速度化を実現できる。また、該フエノール榭脂は、本発明 の製造方法にて容易に効率よく製造する事が出来、 目的とする前述の性能のレベル に応じた分子設計が可能となる。
実施例
[0138] 次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び 「%」は特に断わりのない限り質量基準である。尚、 150°Cにおける溶融粘度及び軟 化点測定、 GPC測定、 NMR、 MSスペクトルは以下の条件にて測定した。
[0139] 1) 150°Cにおける溶融粘度: ASTM D4287に準拠した。
2)軟化点測定法: JIS K7234に準拠した。
3) GPC :
•装置:東ソー株式会社製「HLC— 8220 GPCJにより下記の条件下に測定した。 カラム:東ソー株式会社製 TSK-GEL G2000HXL + G2000HXL
+ G3000HXL + G4000HXL
溶媒:テトラヒドロフラン
流速: lml/ mm
検出器: RI
4) NMR:日本電子株式会社製「NMR GSX270」により測定した。
5) MS :日本電子株式会社製 二重収束型質量分析装置「AX505H (FD505H) 」により測定した。
[0140] 実施例 1 (ァラルキル基含有ジヒドロキシ (ポリオキシナフタレチレン)の合成) 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、下記式 [0141] [化 23]
Figure imgf000039_0001
で表される 2, 7—ジヒドロキシナフタレン 160g (l. 0モノレ)、ペンジノレアノレコーノレ 108 g (l. 0モル)を仕込み、室温下、窒素を吹き込みながら撹拌した。パラトルエンスル ホン酸 · 1水和物 2. 7gを添加した。その後、油浴中で発熱に注意しながら 150°Cま で加熱し、分留管を用いて生成する水を抜き出した後、更に 5時間反応させた。反応 終了後、更にメチルイソプチルケトン lOOOgを加え、溶解後、分液ロートに移した。次 いで洗浄水が中性を示すまで水洗後、有機層から溶媒を加熱減圧下に除去し、ァラ ルキル基含有ジヒドロキシ (ポリオキシナフタレチレン) 240gを得た(以下、これを「ィ匕 合物(1)」とする)。得られたィ匕合物(1)は褐色固体であり、水酸基当量は 160gZeq 、軟化点は 77°C、 ICI粘度は 0. 9dPa' sであった。
[0142] FT— IRチャートの結果より、原料(2, 7—ジヒドロキシナフタレン)と比較して水酸基 由来の吸収(3700〜3400cm_1)が小さいこと、また、芳香族エーテル由来の吸収( 1250cm_1)が新たに生成したことが確認できた。この結果から、水酸基同士が脱水 エーテル化反応したことが推定された。
[0143] 13C—NMRチャートの結果より、ベンジル基が導入された結果のメチレン結合が確 認され、仕込んだベンジルアルコール 1. 0モルの内、ナフタレン環への導入された ベンジル基は約 0. 55モル(即ち、加えたベンジルアルコールの約 55%がナフタレン 環と結合した)、残りの約 0. 45モル(即ち、加えたベンジルアルコールの約 45%)が 生成したベンジルに更にべンジル基として結合した構造となっていることが解析され た。
[0144] FD— MSチャートの結果より、 2, 7—ジヒドキシナフタレンの分子量(Mw: 160)に 、ベンジル基分の分子量(Mw: 90)が 1個(M+ = 250)、 2個(M+ = 340)、 3個(M + =430)、 4個(M+ = 520)付いたピークが確認されていること、更に 2, 7—ジヒドキ シナフタレンが 2分子間脱水して生成した 2, 7—ジヒドロキシナフタレン 2量体エーテ ル構造(Mw: 302)に、ベンジル基分の分子量(Mw: 90)が 1個(M+ = 392)、 2個( M+ =482)、 3個(M+ = 572)、 4個(M+ = 662)付いたピークが確認されていること 、更に 2, 7—ジヒドキシナフタレンが 3分子間脱水して生成した 2, 7—ジヒドロキシナ フタレン 3量体エーテル構造(Mw: 444)に、ベンジル基分の分子量(Mw: 90)が 1 個(M+ = 534)、 2個(M+ = 624)、 3個(M+ = 714)、 4個(M+ = 804)付いたピー クが確認されていることも確認した。従って、上記化学式において存在する平均 6p + 6個の空位部位のうち、 0. 55個にベンジル基が結合し、更に 0. 45個(q = 0. 45)が ベンジル基導入された構造となっていることが解析された。
[0145] 実施例 2 (ァラルキル変性ポリ(ォキシナフタレン)型エポキシ榭脂の合成)
温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに、窒素ガスパージを施 しながら、実施例 1で得られた化合物(l) 160g、ェピクロルヒドリン 463g (5. 0モル) 、 n—ブタノール 139g、テトラエチルベンジルアンモ -ゥムクロライド 2gを仕込み溶解 させた。 65°Cに昇温した後、共沸する圧力まで減圧して、 49%水酸ィ匕ナトリウム水溶 液 90g (l . 1モル)を 5時間かけて滴下した。その後、同条件で 0. 5時間撹拌を続け た。この間、共沸によって留出してきた留出分をディーンスタークトラップで分離し、水 層を除去し、油層を反応系内に戻しながら、反応を行った。その後、未反応のェピク 口ルヒドリンを減圧蒸留によって留去させた。それで得られた粗エポキシ榭脂にメチ ルイソブチルケトン 432gと n—ブタノール 130gとをカ卩ぇ溶解した。更にこの溶液に 10 %水酸ィ匕ナトリウム水溶液 10gを添加して 80°Cで 2時間反応させた後に洗浄液の P Hが中性となるまで水 150gで水洗を 3回繰り返した。次 、で共沸によって系内を脱 水し、精密濾過を経た後に、溶媒を減圧下で留去して、ポリナフチレンォキシド構造 を主骨格とし、分子両末端にグリシジルォキシ基を有し、かつ、前記ポリナフチレンォ キシド構造中の芳香核にァラルキル基が結合したエポキシ榭脂 210gを得た(以下、 これを「エポキシ榭脂 (A- 1)」と略記する)。得られたエポキシ榭脂の軟ィ匕点は 47°C 、 150°Cの溶融粘度は 0. 5dPa' s、エポキシ当量は 231gZeqであった。
[0146] 実施例 3 (ァラルキル基含有ジヒドロキシ (ポリオキシナフタレチレン)の合成) 実施 ί列: Uこお ヽて、ベンジノレアノレコーノレ 108gを 216g (2. 0モノレ)【こ変更する以外 は実施例 1と同様にして、ァラルキル基含有ジヒドロキシ (ポリオキシナフタレチレン) 3 30gを得た (以下、これを「化合物(2)」とする)。得られた化合物(2)は褐色固体であ り、水酸基当量は 180gZeq、軟ィ匕点は 67°C、 150°Cの溶融粘度は 0. 5dPa' sであ つた o [0147] 実施例 4 (ァラルキル変性ポリ(ォキシナフタレン)型エポキシ榭脂の合成) 実施例 2において、原料として用いる化合物(1) 160gの代わりに実施例 3で得られ た化合物(2) 180gを用いる以外は実施例 1と同様にして、ポリナフチレンォキシド構 造を主骨格とし、分子両末端にグリシジルォキシ基を有し、かつ、前記ポリナフチレン ォキシド構造中の芳香核にァラルキル基が結合したエポキシ榭脂 228gを得た (以下 、これを「エポキシ榭脂 (A- 2)」と略記する)。得られたエポキシ榭脂の軟ィ匕点は 40 。C、 150°Cの溶融粘度は 0. 4dPa' s、エポキシ当量は 244gZeqであった。
[0148] 実施例 5 (ァラルキル基含有ジヒドロキシ (ポリオキシナフタレチレン)の合成) 実施 ί列: Uこお ヽて、ベンジノレアノレコーノレ 108gを 92g (0. 85モノレ)【こ変更する以外 は実施例 1と同様にして、ァラルキル基含有ジヒドロキシ (ポリオキシナフタレチレン) 2 30gを得た (以下、これを「化合物(3)」とする)。得られた化合物(3)は褐色固体であ り、水酸基当量は 164gZeq、軟ィ匕点は 80°C、 150°Cの溶融粘度は 1. 2dPa' sであ つた o
化合物(3)の FD— MS及び13 C— NMRによる構造解析を行うと共に、更に、トリメ チルシリルイ匕法による FD— MSの測定に用いるため、化合物(3)をトリメチルシリル 化し、次いで、 FD— MSより以下の a.及び b.のピークを確認した。
a. 2, 7—ジヒドロキシナフタレン 3量体(Mw: 444)に、ベンジル基(分子量 Mw: 9 0)が 1個付カ卩し(Mw: 534)、更に、これにトリメチルシリル基(分子量 Mw: 72)が 2 個付カ卩したピーク(M+ = 678)及び 3個付加したピーク(M+ = 751)。
b. 2, 7—ジヒドロキシナフタレン 3量体(Mw: 444)に、ベンジル基分(分子量 Mw: 90)力 ¾個付カ卩し(Mw: 624)、更に、これにトリメチルシリル基(分子量 Mw: 72)が 2 個付カ卩したピーク(M+ = 768)及び 3個付加したピーク(M+ = 841)。
従って、化合物(3)は、 2, 7—ジヒドロキシナフタレン 3量体エーテル化合物 1モル あたりべンジル基が 1モル結合した構造の化合物、
2, 7—ジヒドロキシナフタレン 3量体エーテル化合物 1モルあたりべンジル基が 2モ ル結合した構造の化合物、
2, 7—ジヒドロキシナフタレン 2量体エーテルの 1モルに 2, 7—ジヒドロキシナフタレ ンが 1モル核脱水して生成した構造の 3量体ィ匕合物 1モルにベンジル基が 1モル結 合した構造の化合物、及び、
2, 7—ジヒドロキシナフタレン 2量体エーテルの 1モルに 2, 7—ジヒドロキシナフタレ ンが 1モル核脱水して生成した構造の 3量体化合物 1モルにベンジル基が 2モル結 合した構造の化合物であることが確認できた。
[0149] 実施例 6 (ァラルキル変性ポリ(ォキシナフタレン)型エポキシ榭脂の合成)
実施例 2において、原料として用いる化合物(1) 160gの代わりに実施例 5で得られ た化合物(3) 164gを用いる以外は実施例 2と同様にして、ポリナフチレンォキシド構 造を主骨格とし、分子両末端にグリシジルォキシ基を有し、かつ、前記ポリナフチレン ォキシド構造中の芳香核にァラルキル基が結合したエポキシ榭脂 210gを得た (以下 、これを「エポキシ榭脂 (A- 3)」と略記する)。得られたエポキシ榭脂の軟ィ匕点は 54 。C、 150°Cの溶融粘度は 0. 7dPa' s、エポキシ当量は 235gZeqであった。
[0150] 実施例 7 (ァラルキル基含有ジヒドロキシ (ポリオキシナフタレチレン)の合成) 実施例 1において、ベンジルアルコール 108gを 76g (0. 7モル)に変更する以外は 実施例 1と同様にして、ァラルキル基含有ジヒドロキシ (ポリオキシナフタレチレン) 21 Ogを得た (以下、これを「化合物 (4)」とする)。得られた化合物 (4)は褐色固体であり 、水酸基当量は 156gZeq、軟ィ匕点は 83°C、 150°Cの溶融粘度は 1. 9dPa' sであつ た。
次いで、実施例 5と同様にトリメチルシリルイ匕法による FD— MSの測定に用いるた め、化合物(3)をトリメチルシリルイ匕した。
[0151] 実施例 8 (ァラルキル変性ポリ(ォキシナフタレン)型エポキシ榭脂の合成)
実施例 2において、原料として用いる変性ジヒドロキシナフタレンィ匕合物(1) 160g の代わりに実施例 7で得られたィ匕合物 (4) 156gを用いる以外は実施例 2と同様にし て、ポリナフチレンォキシド構造を主骨格とし、分子両末端にグリシジルォキシ基を有 し、かつ、前記ポリナフチレンォキシド構造中の芳香核にァラルキル基が結合したェ ポキシ榭脂 200gを得た (以下、これを「エポキシ榭脂 (A-4)」と略記する)。得られ たエポキシ榭脂の軟ィ匕点は 66°C、 150°Cの溶融粘度は 1. 3dPa' s、エポキシ当量 は 255gZeqであった o
[0152] 実施例 9 (ァラルキル基含有ジヒドロキシ (ポリオキシナフタレチレン)の合成) 実施例 1において、 2, 7—ジヒドロキシナフタレン 160gを 1, 6—ジヒドロキシナフタ レン 160gに変更する以外は実施例 1と同様にして、ァラルキル基含有ジヒドロキシ( ポリオキシナフタレチレン) 242gを得た (以下、これを「ィ匕合物(5)」とする)。得られた 化合物(5)は褐色固体であり、水酸基当量は 147gZeq、軟ィ匕点は 67°C、 ICI粘度 は 0. 5dPa' sであった。
[0153] 実施例 10 (ァラルキル変性ポリ(ォキシナフタレン)型エポキシ榭脂の合成) 実施例 2において、原料として用いる化合物(1) 160gの代わりに実施例 9で得られ た化合物(5) 147gを用いる以外は実施例 2と同様にして、ポリナフチレンォキシド構 造を主骨格とし、分子両末端にグリシジルォキシ基を有し、かつ、前記ポリナフチレン ォキシド構造中の芳香核にァラルキル基が結合したエポキシ榭脂 21 lgを得た (以下 、これを「エポキシ榭脂 (A- 5)」と略記する)。得られたエポキシ榭脂の軟ィ匕点は 43 。C、 150°Cの溶融粘度は 0. 5dPa' s、エポキシ当量は 211gZeqであった。
[0154] 比較例 1 (ベンジル化ノボラック樹脂の合成及びそのエポキシ榭脂化)
実施例 1において、 2, 7—ジヒドロキシナフタレン 160g (l. 0モル)をフエノールノボ ラックオリゴマー(昭和高分子株式会社製 商品名: BRG— 555 軟化点 69°C、水酸 基当量; 103gZeq ICI粘度は 0. 7dPa- s) 103g (l. 0当量)に変更し、更にべンジ ルアルコール 432g (4. 0モル)をべンジルアルコール 75. 6g (0. 7モル)に変更する 以外は、実施例 1と同様にして、比較用ポリベンジルイ匕フエノールノボラックオリゴマ 一化合物(以下、「ベンジル化ノボラック榭脂」と略記する。) 146gを得た。得られたベ ンジルイ匕ノボラック榭脂は褐色固体であり、水酸基当量は 166gZeq、軟ィ匕点は 70 。C、 ICI粘度は 0. 7dPa' sであった。更に、実施例 1において化合物(1) 160gの代 わりに前記べンジルイ匕ノボラック榭脂 166gを用いた以外は、実施例 1と同様にして比 較用のエポキシ榭脂 215gを得た(以下、これを「エポキシ榭脂 (Α' - 1)」と略記する ) ο得られたエポキシ榭脂の軟ィ匕点は 40°C、 150°Cの溶融粘度は 0. 5dPa' s、ェポ キシ当量は 245gZeqであった。
[0155] 実施例 11〜19、及び比較例 2〜4
エポキシ榭脂として実施例で得られたエポキシ榭脂 (A— 1)〜 (A— 5)、エポキシ 榭脂 (A, - 1)、及びジャパンエポキシレジン株式会社製「YX— 4000H」(テトラメチ ルビフエノール型エポキシ榭脂、エポキシ当量: 195g/eq)、 日本化薬株式会社製「 NC— 3000」(ビフエ-ルァラルキル型エポキシ榭脂、エポキシ当量: 277g/eq)、 大日本インキ化学工業株式会社製「N— 665— EXP」(タレゾールノボラック型ェポキ シ榭脂、エポキシ当量: 203gZeq)、硬化剤フエノール榭脂として三井ィ匕学株式会 社製「ミレックス XLC— LL」(フエノールァラルキル榭脂 水酸基当量: 176g/eq)を 用い、硬化促進剤としてトリフエニルホスフィン (TPP)、難燃剤として縮合燐酸エステ ル (大八化学工業株式会社製「PX— 200」 )、水酸化マグネシウム (エア ·ウォーター 株式会社製「エコーマグ Z— 10」)、無機充填材として球状シリカ (株式会社マイクロ ン製「S— COL」)、シランカップリング剤として γ—グリシドキシトリエトキシキシシラン (信越ィ匕学工業株式会社製「ΚΒΜ— 403」)、カルナゥバワックス (株式会社セラリカ 野田製「PEARL WAX No. 1 P」)、カーボンブラックを用いて表 1に示した組成 で配合し、 2本ロールを用いて 85°Cの温度で 5分間溶融混練して目的の組成物を得 た。硬化物の物性は、上記組成物を用いて、評価用サンプルを下記の方法で作成し 、難燃性、誘電特性を下記の方法で測定し結果を表 1に示した。
[0156] [ゲルタイム]
エポキシ榭脂組成物 0. 15gを 175°Cに加熱したキュアプレート(THERMO ELE CTRIC社製)上に載せ、ストップウォッチで計時を開始し、棒の先端にて試料を均一 に攪拌し、糸状に試料が切れてプレートに残るようになった時、ストップウォッチを止 めた。この試料が切れてプレートに残るようになるまでの時間をゲルタイムとした。
[0157] [難燃性]
幅 12. 7mm、長さ 127mm、厚み 1. 6mmの評価用サンプルを、トランスファ一成 形機を用い 175°Cの温度で 90秒成形した後、 175°Cの温度で 5時間後硬化して作 成した。作成した試験片を用い UL— 94試験法に準拠し、厚さ 1. 6mmの試験片 5 本を用いて、燃焼試験を行った。
[0158] [誘電特性の測定]
幅 25mm、長さ 75mm、厚み 2. 0mmの評価用サンプルを、トランスファ一成开機 を用い 175°Cの温度で 90秒成形した後、 175°Cの温度で 5時間後硬化して作成した 。作成した試験片を用い、 JIS— C— 6481に準拠した方法により、アジレント'テクノロ ジー株式会社製インピーダンス 'マテリアル 'アナライザ「HP4291B」により、絶乾後 、 23°C、湿度 50%の室内に 24時間保管した後の硬化物の周波数 lOOMHzにおけ る誘電率と誘電正接を測定した。
[表 1]
表 1 エポキシ^脂組成物配合表 (部) 及ひ ' iar 果
Figure imgf000046_0001
表 1の脚注:
* 1: 1回の接炎における最大燃焼時間 (秒)
* 2:試験片 5本の合計燃焼時間 (秒)
尚、表 1中、「ィ匕合物(1)」とは実施例 1で得られたァラルキル基含有ジヒドロキシ (ポ リオキシナフタレン)であり、「自消」で示した評価結果は、 V—1に要求される難燃性( ∑ F≤ 250秒且つ F ≤ 30秒)は満たさな 、が、燃焼(炎のクランプ到達)には至ら max
ず消火したレベルである。 図面の簡単な説明
[図 1]実施例 1で得られたァラルキル基含有ジヒドロキシ (ポリオキシナフチレン)の13 C NMRスペクトルである。
[図 2]実施例 1で得られたァラルキル基含有ジヒドロキシ (ポリオキシナフチレン)のマ ススペクトルである。
[図 3]実施例 2で得られたァラルキル変性ポリ(ォキシナフタレン)型エポキシ榭脂の13 C— NMRスペクトルである。
[図 4]実施例 2で得られたァラルキル変性ポリ(ォキシナフタレン)型エポキシ榭脂の マススペクトルである。
[図 5]実施例 5で得られたァラルキル基含有ジヒドロキシ (ポリオキシナフチレン)のマ ススペクトルである。
[図 6]実施例 5で得られたァラルキル基含有ジヒドロキシ (ポリオキシナフチレン)のトリ メチルシリル化法による FD— MSのスペクトルである。
[図 7]実施例 7で得られたァラルキル基含有ジヒドロキシ (ポリオキシナフチレン)のマ ススペクトルである。
[図 8]実施例 7で得られたァラルキル基含有ジヒドロキシ (ポリオキシナフチレン)のトリ メチルシリル化法による FD— MSのスペクトルである。
[図 9]実施例 9で得られたァラルキル基含有ジヒドロキシ (ポリオキシナフチレン)の13 C NMRスペクトルである。
[図 10]実施例 9で得られたァラルキル基含有ジヒドロキシ (ポリオキシナフチレン)のマ ススペクトルである。
[図 11]実施例 10で得られたァラルキル変性ポリ(ォキシナフタレン)型エポキシ榭脂 の13 C— NMR ^ベクトルである。
[図 12]実施例 10で得られたァラルキル変性ポリ(ォキシナフタレン)型エポキシ榭脂 のマススぺクトノレである。

Claims

請求の範囲
ポリアリーレンォキシ構造を主骨格としており、かつ、該構造の芳香環に、(メチル)グ リシジルォキシ基及び下記構造式(1)
[化 1]
構造式 (1)
Figure imgf000048_0001
[式(1)中、 R及び Rは各々独立して、メチル基又は水素原子であり、 Arは、フ 二
1 2
レン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたフエ-レン基、ナフ チレン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたナフチレン基、 n は繰り返し数の平均値で 0. 1〜4である。 ]
で表される構造部位が結合した分子構造を有するエポキシ榭脂 (A)、並びに硬化剤
(B)を必須成分とすることを特徴とするエポキシ榭脂組成物。
[2] 前記エポキシ榭脂(A)が、「ASTM D4287」に準拠して測定される 150°Cにおける 溶融粘度が 0. 1〜3. OdPa' sである請求項 1記載のエポキシ榭脂組成物。
[3] 前記エポキシ榭脂(A) 1S エポキシ当量 200〜1, 000g/eq.の範囲にあるもので ある請求項 1又は 2記載のエポキシ榭脂組成物。
[4] 前記一般式(1)中の R及び Rが共に水素原子である請求項 1記載のエポキシ榭脂
1 2
組成物。
[5] 前記硬化剤 (B)が、下記構造式 (i)
[化 2] 構造式 (i)
Figure imgf000049_0001
[構造式 (i)中、 Xは、炭素原子数 1〜4のアルキル基又は水素原子、 mは 0〜3の整 数である。 ]
で表される構造を結節基として複数のフエノール類が結節した構造を有するフエノー ル榭脂である請求項 1記載のエポキシ榭脂組成物。
[6] 請求項 1〜5の何れか 1つ記載のエポキシ榭脂組成物を硬化させて得られる硬化物
[7] 請求項 1〜5の何れか 1つに記載のエポキシ榭脂組成物における前記エポキシ榭脂
(A)及び前記硬化剤(B)に加え、更に無機質充填材を組成物中 70〜95質量%とな る割合で含有するエポキシ榭脂組成物からなることを特徴とする半導体封止材料。
[8] ポリアリーレンォキシ構造を主骨格としており、かつ、該構造の芳香環に、(メチル)グ リシジルォキシ基及び下記構造式(1)
[化 2]
構造式 (1)
Figure imgf000049_0002
[式(1)中、 R及び Rは各々独立して、メチル基又は水素原子であり、 Arは、フエ二
1 2
レン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたフエ-レン基、ナフ チレン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたナフチレン基、 n は繰り返し数の平均値で 0. 1〜4である。 ]
で表される構造部位を結合させた分子構造を有し、かつ、「ASTM D4287Jに準 拠して測定される 150°Cにおける溶融粘度が 0. 1〜3. OdPa' sであることを特徴とす る新規エポキシ榭脂。
ジヒドロキシ芳香族化合物 (al)と、下記構造式 (2)
[化 3]
Ar— C——Y 構造式 (2)
R2
〔式中、 R、 Rは各々独立して、メチル基又は水素原子であり、 Arは、フエ二レン基、
1 2
炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたフエ-レン基、ナフチレン 基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたナフチレン基を、 Yは ハロゲン原子、アルコキシ基、又は水酸基を表す。〕で表される化合物、又は下記構 造式 (3)
[化 4] 構造式 (3)
Figure imgf000051_0001
〔式中、 R、 R、 Rは各々独立してメチル基又は水素原子であり、 Arは、フエ二レン
1 3 4
基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたフエ-レン基、ナフチレ ン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたナフチレン基を表す o ]
で表される化合物から選択されるァラルキル化剤 (a2)とを、酸触媒の存在下に反応 させてフエノール榭脂を得、次いで、得られたフエノール榭脂とェピノ、ロヒドリン類 (a3
)とを反応させることを特徴とするエポキシ榭脂の製造方法。
[10] 前記ジヒドロキシ芳香族化合物 (al)と前記ァラルキル化剤 (a2)との反応比率 (al)
Z(a2)がモル比で 1Z0. 1〜: LZ1. 0となる範囲である請求項 8記載の製造方法。
[11] ポリアリーレンォキシ構造を主骨格としており、かつ、該構造の芳香環に、フエノール 性水酸基及び下記構造式 (1)
[化 5]
Figure imgf000052_0001
[式(1)中、 R及び Rは各々独立して、メチル基又は水素原子であり、 Arは、フ 二
1 2
レン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたフエ-レン基、ナフ チレン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたナフチレン基、 n は繰り返し数の平均値で 0. 1〜4である。 ]
で表される構造部位が結合した分子構造を有するフ ノール榭脂(Β' )、及びェポキ シ榭脂 (Α' )を必須成分とすることを特徴とするエポキシ榭脂組成物。
[12] 請求項 11記載のエポキシ榭脂組成物を硬化させて得られる硬化物。
[13] 請求項 11記載のエポキシ榭脂組成物における前記エポキシ榭脂 (Α' )及び前記フ ノール榭脂 (Β' )に加え、更に無機質充填材を組成物中 70〜95質量%となる割合 で含有するエポキシ榭脂組成物からなることを特徴とする半導体封止材料。
[14] ポリアリーレンォキシ構造を主骨格としており、かつ、該構造の芳香環に、フエノール 性水酸基及び下記構造式 (1)
[化 6]
Figure imgf000053_0001
[式(1)中、 R及び Rは各々独立して、メチル基又は水素原子であり、 Arは、フエ二
1 2
レン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたフエ-レン基、ナフ チレン基、炭素原子数 1〜4のアルキル基の 1〜3つで核置換されたナフチレン基、 n は繰り返し数の平均値で 0. 1〜4である。 ]
で表される構造部位を結合させた分子構造を有し、かつ、「ASTM D4287Jに準 拠して測定される 150°Cにおける溶融粘度が 0. 1〜4. OdPa' sであることを特徴とす る新規フ ノール榭脂。
PCT/JP2006/305264 2005-03-18 2006-03-16 エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、その製造方法、及び新規フェノール樹脂 WO2006101008A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/908,464 US7718741B2 (en) 2005-03-18 2006-03-16 Epoxy resin composition and cured article thereof, novel epoxy resin and production method thereof, and novel phenol resin
CN2006800081661A CN101495533B (zh) 2005-03-18 2006-03-16 环氧树脂组合物、其固化物、新型环氧树脂、其制造方法和新型酚树脂
US12/615,459 US8084567B2 (en) 2005-03-18 2009-11-10 Epoxy resin composition and cured article thereof, novel epoxy resin and production method thereof, and novel phenol resin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005079223 2005-03-18
JP2005-079223 2005-03-18
JP2005-097866 2005-03-30
JP2005097866 2005-03-30

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US11/908,464 A-371-Of-International US7718741B2 (en) 2005-03-18 2006-03-16 Epoxy resin composition and cured article thereof, novel epoxy resin and production method thereof, and novel phenol resin
US12/210,442 Continuation US8344419B2 (en) 2006-03-16 2008-09-15 Compound semiconductor device and manufacturing method of the same
US12/615,459 Division US8084567B2 (en) 2005-03-18 2009-11-10 Epoxy resin composition and cured article thereof, novel epoxy resin and production method thereof, and novel phenol resin

Publications (1)

Publication Number Publication Date
WO2006101008A1 true WO2006101008A1 (ja) 2006-09-28

Family

ID=37023669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305264 WO2006101008A1 (ja) 2005-03-18 2006-03-16 エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、その製造方法、及び新規フェノール樹脂

Country Status (5)

Country Link
US (2) US7718741B2 (ja)
CN (1) CN101495533B (ja)
MY (1) MY143372A (ja)
TW (1) TWI366575B (ja)
WO (1) WO2006101008A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099049A (ja) * 2009-11-06 2011-05-19 Dic Corp エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、新規フェノール樹脂、プリプレグ、及び回路基板
JP2014037486A (ja) * 2012-08-16 2014-02-27 Dic Corp 硬化性樹脂組成物、硬化物、及びプリント配線基板
JP2014037487A (ja) * 2012-08-16 2014-02-27 Dic Corp 硬化性樹脂組成物、硬化物、及びプリント配線基板
JP2015164991A (ja) * 2014-03-03 2015-09-17 Dic株式会社 (メタ)アクリロイル基含有樹脂、(メタ)アクリロイル基含有樹脂の製造方法、硬化性樹脂材料、その硬化物、及びレジスト材料
JP2015168775A (ja) * 2014-03-07 2015-09-28 Dic株式会社 酸基含有(メタ)アクリレート樹脂、酸基含有(メタ)アクリレート樹脂の製造方法、硬化性樹脂材料、その硬化物、及びレジスト材料
JP2015168776A (ja) * 2014-03-07 2015-09-28 Dic株式会社 酸基含有(メタ)アクリレート樹脂、酸基含有(メタ)アクリレート樹脂の製造方法、硬化性樹脂材料、その硬化物、及びレジスト材料
WO2016098488A1 (ja) * 2014-12-15 2016-06-23 Dic株式会社 熱硬化性樹脂組成物、その硬化物、及びこれに用いる活性エステル樹脂
JP2018104534A (ja) * 2016-12-26 2018-07-05 Dic株式会社 ポリアリーレンスルフィド樹脂組成物、成形品及び製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101008A1 (ja) * 2005-03-18 2006-09-28 Dainippon Ink And Chemicals, Inc. エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、その製造方法、及び新規フェノール樹脂
JP4285491B2 (ja) * 2006-02-28 2009-06-24 Dic株式会社 エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、新規フェノール樹脂、及び半導体封止材料
US9545668B2 (en) * 2009-11-27 2017-01-17 Tokusen Kogyo Co., Ltd. Fine metal particle-containing composition
EP2589625B1 (en) 2010-07-02 2016-10-26 DIC Corporation Thermosetting resin composition, cured product thereof, active ester resin, semiconductor sealing material, prepreg, printed circuit board, and build-up film
EP2599812A4 (en) * 2010-07-30 2015-03-18 Dainippon Ink & Chemicals CURABLE RESIN COMPOSITION, CURED PRODUCT OBTAINED THEREFROM, PHENOLIC RESIN, EPOXY RESIN, AND SEMICONDUCTOR SEALING MATERIAL
MY156450A (en) 2010-09-29 2016-02-26 Dainippon Ink & Chemicals Curable resin composition, cured product thereof, phenolic resin, epoxy resin, and semiconductor sealing material
SG10201509881VA (en) * 2011-01-20 2016-01-28 Mitsubishi Gas Chemical Co Resin composition, prepreg, and laminate
JP5716963B2 (ja) * 2011-07-22 2015-05-13 Dic株式会社 ポリヒドロキシ化合物、エポキシ樹脂、熱硬化性樹脂組成物、その硬化物及び半導体封止材料
TWI572665B (zh) * 2012-10-17 2017-03-01 Dainippon Ink & Chemicals 活性酯樹脂、環氧樹脂組成物、其硬化物、預浸體、 電路基板以及積層膜
CN105121495A (zh) 2013-02-15 2015-12-02 英派尔科技开发有限公司 酚类环氧化合物
EP3008125A4 (en) 2013-06-13 2016-12-07 Empire Technology Dev Llc MULTIFUNCTIONAL PHENOLIN RESINS
US10000046B2 (en) * 2013-10-07 2018-06-19 Rohr, Inc. Methods for creating thick laminate structures
EP3077364A4 (en) 2013-12-02 2017-11-08 Empire Technology Development LLC Novel gemini surfactants and their use
JP6896591B2 (ja) * 2017-11-14 2021-06-30 Eneos株式会社 プリプレグ、繊維強化複合材料及び成形体
CN110128780B (zh) * 2018-02-08 2023-07-14 衡所华威电子有限公司 一种低介电常数环氧树脂组合物
EP3904417A4 (en) * 2018-12-27 2022-11-02 Sumitomo Bakelite Co., Ltd. RESIN COMPOSITION FOR SEALING, SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE
RU2749277C1 (ru) * 2019-12-25 2021-06-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ получения лаковых полимерных композиций для окраски консервной тары

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132544A (ja) * 1991-11-14 1993-05-28 Toto Kasei Kk エポキシ樹脂組成物
JPH08120039A (ja) * 1994-10-20 1996-05-14 Mitsui Toatsu Chem Inc ベンジル化ポリフェノール、そのエポキシ樹脂、それらの製造方法および用途
JP2004059714A (ja) * 2002-07-29 2004-02-26 Mitsubishi Chemicals Corp エポキシ樹脂及びそれを用いたエポキシ樹脂組成物

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1054930A (ja) 1963-05-01 Ciba Ltd
JPH02227418A (ja) 1989-02-28 1990-09-10 Dainippon Ink & Chem Inc エポキシ樹脂組成物およびそれにより封止された半導体
EP0467826A3 (en) * 1990-06-26 1992-10-07 Ciba-Geigy Ag Linear polymers
JPH04359919A (ja) * 1991-06-07 1992-12-14 Yuka Shell Epoxy Kk エポキシ樹脂、同樹脂の製造法及び同樹脂組成物
JP3146320B2 (ja) 1991-11-18 2001-03-12 東都化成株式会社 エポキシ樹脂組成物
JP2669247B2 (ja) 1992-02-13 1997-10-27 信越化学工業株式会社 熱硬化性樹脂組成物
JP3125059B2 (ja) 1992-04-28 2001-01-15 新日鐵化学株式会社 電子部品封止用エポキシ樹脂組成物
JPH06263839A (ja) 1993-03-16 1994-09-20 Dainippon Ink & Chem Inc エポキシ樹脂の製造法、エポキシ樹脂組成物及び半導体封止材料
JPH07304846A (ja) 1994-05-09 1995-11-21 Yuka Shell Epoxy Kk エポキシ樹脂組成物
JP3214266B2 (ja) 1994-11-01 2001-10-02 信越化学工業株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置
JP3579959B2 (ja) 1995-04-17 2004-10-20 大日本インキ化学工業株式会社 半導体封止材料
JP4713753B2 (ja) * 2001-03-29 2011-06-29 太陽ホールディングス株式会社 光硬化性熱硬化性樹脂組成物及びその硬化物
JP3953854B2 (ja) 2002-03-22 2007-08-08 太陽インキ製造株式会社 光硬化性・熱硬化性樹脂組成物
JP4661033B2 (ja) 2003-06-27 2011-03-30 Dic株式会社 エポキシ樹脂組成物、半導体封止材料及び半導体装置
JP5245199B2 (ja) 2005-03-18 2013-07-24 Dic株式会社 エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、その製造方法、及び新規フェノール樹脂
WO2006101008A1 (ja) 2005-03-18 2006-09-28 Dainippon Ink And Chemicals, Inc. エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、その製造方法、及び新規フェノール樹脂
JP4285491B2 (ja) 2006-02-28 2009-06-24 Dic株式会社 エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、新規フェノール樹脂、及び半導体封止材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132544A (ja) * 1991-11-14 1993-05-28 Toto Kasei Kk エポキシ樹脂組成物
JPH08120039A (ja) * 1994-10-20 1996-05-14 Mitsui Toatsu Chem Inc ベンジル化ポリフェノール、そのエポキシ樹脂、それらの製造方法および用途
JP2004059714A (ja) * 2002-07-29 2004-02-26 Mitsubishi Chemicals Corp エポキシ樹脂及びそれを用いたエポキシ樹脂組成物

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099049A (ja) * 2009-11-06 2011-05-19 Dic Corp エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、新規フェノール樹脂、プリプレグ、及び回路基板
JP2014037486A (ja) * 2012-08-16 2014-02-27 Dic Corp 硬化性樹脂組成物、硬化物、及びプリント配線基板
JP2014037487A (ja) * 2012-08-16 2014-02-27 Dic Corp 硬化性樹脂組成物、硬化物、及びプリント配線基板
JP2015164991A (ja) * 2014-03-03 2015-09-17 Dic株式会社 (メタ)アクリロイル基含有樹脂、(メタ)アクリロイル基含有樹脂の製造方法、硬化性樹脂材料、その硬化物、及びレジスト材料
JP2015168775A (ja) * 2014-03-07 2015-09-28 Dic株式会社 酸基含有(メタ)アクリレート樹脂、酸基含有(メタ)アクリレート樹脂の製造方法、硬化性樹脂材料、その硬化物、及びレジスト材料
JP2015168776A (ja) * 2014-03-07 2015-09-28 Dic株式会社 酸基含有(メタ)アクリレート樹脂、酸基含有(メタ)アクリレート樹脂の製造方法、硬化性樹脂材料、その硬化物、及びレジスト材料
WO2016098488A1 (ja) * 2014-12-15 2016-06-23 Dic株式会社 熱硬化性樹脂組成物、その硬化物、及びこれに用いる活性エステル樹脂
JP6098766B2 (ja) * 2014-12-15 2017-03-22 Dic株式会社 熱硬化性樹脂組成物、その硬化物、及びこれに用いる活性エステル樹脂
JPWO2016098488A1 (ja) * 2014-12-15 2017-04-27 Dic株式会社 熱硬化性樹脂組成物、その硬化物、及びこれに用いる活性エステル樹脂
JP2018104534A (ja) * 2016-12-26 2018-07-05 Dic株式会社 ポリアリーレンスルフィド樹脂組成物、成形品及び製造方法

Also Published As

Publication number Publication date
US7718741B2 (en) 2010-05-18
TWI366575B (en) 2012-06-21
US20100056747A1 (en) 2010-03-04
TW200700452A (en) 2007-01-01
CN101495533A (zh) 2009-07-29
US8084567B2 (en) 2011-12-27
US20090069490A1 (en) 2009-03-12
MY143372A (en) 2011-04-29
CN101495533B (zh) 2012-02-29

Similar Documents

Publication Publication Date Title
JP5245199B2 (ja) エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、その製造方法、及び新規フェノール樹脂
WO2006101008A1 (ja) エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、その製造方法、及び新規フェノール樹脂
JP4285491B2 (ja) エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、新規フェノール樹脂、及び半導体封止材料
JP4259536B2 (ja) フェノール樹脂の製造方法、およびエポキシ樹脂の製造方法
EP1992655B1 (en) Method of producing phenol resin and method of producing epoxy resin
WO2006093203A1 (ja) エポキシ樹脂組成物、その硬化物、半導体封止材料、新規フェノール樹脂、および新規エポキシ樹脂
TWI472559B (zh) 熱硬化性樹脂組成物、其硬化物、酚系樹脂、環氧樹脂及半導體封裝材料
WO2006025429A1 (ja) エポキシ樹脂組成物、その硬化物、半導体封止材料、新規フェノール樹脂、新規エポキシ樹脂、新規フェノール樹脂の製造方法、および新規エポキシ樹脂の製造方法
WO2012043563A1 (ja) 硬化性樹脂組成物、その硬化物、フェノール樹脂、エポキシ樹脂、及び半導体封止材料
JP5380763B2 (ja) エポキシ樹脂組成物、その硬化物、半導体封止材料、新規フェノール樹脂、新規エポキシ樹脂、新規フェノール樹脂の製造方法、および新規エポキシ樹脂の製造方法
KR102088237B1 (ko) 변성 페놀 수지, 변성 페놀 수지의 제조 방법, 변성 에폭시 수지, 변성 에폭시 수지의 제조 방법, 경화성 수지 조성물, 그 경화물, 및 프린트 배선 기판
JP5605629B2 (ja) 硬化性樹脂組成物、その硬化物、フェノール樹脂、エポキシ樹脂、及び半導体封止材
JP5626566B2 (ja) 硬化性樹脂組成物、その硬化物、フェノール樹脂、エポキシ樹脂、及び半導体封止材料
JP2009286949A (ja) 硬化性樹脂組成物、その硬化物、新規エポキシ樹脂、及びその製造方法
JP4961663B2 (ja) エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂及びその製造方法
JP6040725B2 (ja) フェノキシ樹脂、硬化性樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム
JP4363048B2 (ja) エポキシ樹脂組成物及びその硬化物
JP5590416B2 (ja) 硬化性樹脂組成物、その硬化物、フェノール樹脂、エポキシ樹脂、及び半導体封止材料
JP5011683B2 (ja) 多価ヒドロキシ化合物、エポキシ樹脂、及びそれらの製造法、エポキシ樹脂組成物と硬化物
JP5987262B2 (ja) 硬化性樹脂組成物、硬化物、及びプリント配線基板
JP5668987B2 (ja) 硬化性樹脂組成物、その硬化物、フェノール樹脂、エポキシ樹脂、及び半導体封止材料
JP5035604B2 (ja) エポキシ樹脂組成物、その硬化物、および新規エポキシ樹脂
JP5082492B2 (ja) 2官能性ヒドロキシ化合物、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物、その硬化物、及び半導体封止材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680008166.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11908464

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729257

Country of ref document: EP

Kind code of ref document: A1