WO2007093880A2 - Novel pyrone-indole derivatives and process for their preparation - Google Patents
Novel pyrone-indole derivatives and process for their preparation Download PDFInfo
- Publication number
- WO2007093880A2 WO2007093880A2 PCT/IB2007/000330 IB2007000330W WO2007093880A2 WO 2007093880 A2 WO2007093880 A2 WO 2007093880A2 IB 2007000330 W IB2007000330 W IB 2007000330W WO 2007093880 A2 WO2007093880 A2 WO 2007093880A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- ring
- stereoisomer
- disorder
- salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 0 *C(OC=C1OCOc2ccc3[n]c(CCCCOc4ccc5[n]cc(CCNC(C(OC=C6O)=CC6=O)=O)c5c4)c(CCN)c3c2)=CC1=O Chemical compound *C(OC=C1OCOc2ccc3[n]c(CCCCOc4ccc5[n]cc(CCNC(C(OC=C6O)=CC6=O)=O)c5c4)c(CCN)c3c2)=CC1=O 0.000 description 3
- AUZCNXBFVCKKHV-UHFFFAOYSA-N OC(C(O1)=CC=CC1=O)=O Chemical compound OC(C(O1)=CC=CC1=O)=O AUZCNXBFVCKKHV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/12—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/351—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom not condensed with another ring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/404—Indoles, e.g. pindolol
- A61K31/4045—Indole-alkylamines; Amides thereof, e.g. serotonin, melatonin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/10—Drugs for disorders of the urinary system of the bladder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/08—Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/10—Drugs for genital or sexual disorders; Contraceptives for impotence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/06—Antimigraine agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/08—Antiepileptics; Anticonvulsants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/20—Hypnotics; Sedatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/22—Anxiolytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
- A61P25/36—Opioid-abuse
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/06—Antiglaucoma agents or miotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/48—Drugs for disorders of the endocrine system of the pancreatic hormones
- A61P5/50—Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/04—Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
Definitions
- the alpha and gamma-pyrones are classes of compounds shown to be linked to several behavioral and pharmacological characteristics including sedative, anxiolytic, neuroprotective and antioxidative effects.
- a gamma-pyrone derivative called maltol has been isolated from passion flower and shown to cause central nervous system (CNS) sedation and a reduction in caffeine-induced agitation and spontaneous motility in animals; these effects are mediated via activation of gamma-aminobutyric acid (GABA) receptors (Soulimani et al., J. Ethnopharmacology 57:11, 1997; Dhawan et al., J. Ethnopharmacology 78: 165-70, 2001).
- GABA gamma-aminobutyric acid
- Other members of this family, the gamma-pyrones comenic, meconic and chelidonic acids have been shown to exert sedative effects via interaction with opiod receptors (U.S.
- the GABA 3 receptor superfamily represents one of the classes of receptors through which the major inhibitory neurotransmitter, GABA, acts. Widely, although unequally, distributed through the mammalian brain, these receptors, and in particular a complex of proteins called the GABA a receptor, cause alterations in chloride conductance and membrane polarization (Mehta and Ticku, Brain Res. Brain Rev. 29:196-217, 1999).
- Benzodiazepine drugs exert their hypnotic, analgesic and anxiolytic actions by interacting with the benzodiazepine binding sites at the GABA 3 receptor, hi addition to the benzodiazepine-bindiiig site, the GABA a receptor contains several distinct sites of interaction with other classes of drugs that modulate GAB Aergic activities, including nonbenzodiazepine hypnotics (e.g. Zolpidem, zaleplon, indiplon, zopiclone) (Sanger, CNS Drugs 18 (Suppl. 1):9-15, 2004), steroids, pictrotoxin and barbiturates.
- nonbenzodiazepine hypnotics e.g. Zolpidem, zaleplon, indiplon, zopiclone
- steroids e.g. Zolpidem, zaleplon, indiplon, zopiclone
- the benzodiazepine and non-benzodiazepine binding sites in the GABAa receptor complex do not overlap with the GABA or any of the other drug binding sites (see, e.g., Cooper, et al., The Biochemial Basis of Neuropharmacology, 6th ed., pp. 145-148, Oxford University Press, New York, 1991). Electrophysiological studies indicate that the major action of the benzodiazepines and nonbenzodiazepines is enhancement of GAB Aergic inhibition of neuronal excitability. This is due to potentiation of the GABA-induced chloride influx into the cells and subsequently membrane hyperpolarization.
- GABA a receptors represent important therapeutic targets include anxiety disorders, cognitive disorders, epilepsies, mood disorders, schizophrenia, pain and sleep disorders.
- GABA receptor modulators are known to play an important role in sleep and positive allosteric modulators of GABA a receptors are widely used to promote and maintain sleep in a variety of primary and secondary sleep disorders (Sanger, CNS Drugs, 18 (Suppl. 1):9-15, 2004).
- benzodiazepines While benzodiazepines have a long history of pharmaceutical use as anxiolytics, these compounds often exhibit a number of unwanted side effects. These may include cognitive impairment, sedation, ataxia, potentiation of ethanol effects, increased risk of falls and a tendency for tolerance and drug dependence. An important aspect of these activities is the residual daytime effect resulting in impairment of daytime vigilance. Therefore new GABA receptor modulators with less untoward side effects are sought.
- Indole compounds specifically those related to serotonin (5- hydroxytryptamine; 5-HT) and melatonin (N-acetyl-5-methoxy-tryptamine) have profound CNS effects and thus impinge on sleep, wakefulness, appetite and mood.
- serotonin 5- hydroxytryptamine
- melatonin N-acetyl-5-methoxy-tryptamine
- psychiatric disorders may have underlying chronobiological etiologies (e.g. seasonal effective disorder) and are definite candidates for melatonin therapy (Miller, Altern. Med. Rev. 10:5-13, 2005). Melatonin also acts as a free radical scavenger and anti-oxidant (Pooggeler et al., J. Pineal Res. 14:151-168, 1993).
- melatonin specifically regulates sleep and wakefulness in humans.
- Melatonin has been administered to re-synchronize circadian rhythms that are out of phase with the local photoperiodical cycle.
- sleep/wake disorders caused by rapid crossing of time zones (jet lag), delayed sleep phase syndrome (DSPS) patients, shift work and total blindness, can be treated with melatonin or melatonin analogs (see U.S. Patents Nos. 4,600,723 and 4,666,086 of Short et al. and 5,242,941 of Lewy et al.).
- melatonin has direct sedative/hypnotic properties in both normal and insomniac human subjects (e.g., Luboshizsky et al., Sleep Med. Rev. 2:191-202, 1998; U.S. Patent No. 5,403,851 ofD'Orlando et al.). Sleep disorders in the elderly have been shown to respond to melatonin treatment (Garfmkel et al., Lancet 346:541-543, 1995; Pandi-Perumal et al., Exp. Gerontol. 40:911-25, 2005; U.S. Patent No. 5,498,423 of Zisapel).
- MT-I melatonin receptor subtypes
- MT-2 dihydronicotinamide riboside-quinone reductase 2 that is sometimes referred to as MT-3 or ML2 melatonin receptors
- MT-3 dihydronicotinamide riboside-quinone reductase 2
- ML2 melatonin receptors
- melatonin interacts with intracellular proteins such as calmodulin (Anton-Tay et al., J. Pineal Res. 24:35-42, 1998) and tubulin-associated proteins (Cardinali et al., J. Pineal Res. 23:32-9, 1997).
- Retention patterns of radioactive-melatonin injected into rats demonstrate melatonin accumulation in the brain, pituitary, lung, heart, gonads and accessory sex organs (Withyachumnarnkul et al., Life Sci. 12:1575-65,1986).
- SSRI serotonin reuptake inhibitor
- the wide spectrum of different clinical conditions that have been reported to demonstrate a symptomatic response following SSRI treatment includes major depression, depression secondary to medical condition, post stroke depression, dysthymia, seasonal affective disorder, OCD, panic disorder, social phobia, borderline personality disorder, depersonalization syndrome, body dysmorphic syndrome, premenstrual syndrome, postpartum disorders, bulimia nervosa, post traumatic stress disorder, autistic disorder, attention deficit, hyperactivity disorder, Tourette's syndrome, trichotillomania, onychophagia, Prader-Willi syndrome, paraphilias and sexual addictions, premature ejaculation, migraine prophylaxis, diabetic neuropathy, pain syndromes, obesity, weight gain in smokers, alcoholism, emotional liability following brain injury, sleep paralysis, pathologic ashamedy, chronic schizophrenia, self-injurious behavior, arthritis, Raynaud's phenomenon, fibromyalgia, chronic fatigue syndrome, irritable bowel syndrome, upright tilt syncope, intention myoclonus and
- the preclinical data on 5 -HT indicate that the 5 -HT systems are predominantly modulatory and that most 5 -HT effects interact with the ongoing status of the other involved neurotransmitter systems.
- the neuroanatomy of the 5-HT system suggests that up to 60% or more of 5-HT released may not be at synapses.
- 5-HT effects would not be expected to be highly anatomically localized or demonstrate the properties associated with systems that more directly mediate neurotransmission.
- the modulatory nature of the 5-HT systems can be seen at the clinical level through interactions with other neurotransmitter systems, hi behaving animals, the activity of brain serotonergic neurons is closely tied to the sleepwake-arousal cycle: highest firing rate during active waking or arousal, intermediate level of discharge during quiescent states and slow wave sleep, and virtual silence during rapid-eye movement sleep.
- Some SSRI compounds are associated with untoward weight loss or excessive weight gain, insomnia and sexual dysfunction.
- Novel compounds related to melatonin or serotonin and pyrones are likely to be important new pharmaceuticals.
- U.S. Patent No. 5,403,851 which discloses the use of substituted tryptamines, phenylalkylamines and related compounds, in order to treat a number of pharmaceutical indications including sleep disorders, endocrine indications, immune-system disorders etc.
- PCT Patent Application No. WO 87/00432 describes compositions for treating or preventing psoriasis that contain melatonin or related compounds.
- 5,122,535 discloses the production of melatonin and analogs thereof for various therapeutic purposes, including the administration of melatonin in combination with an azidothymidine for the treatment of AIDS.
- Melatonin analogs based on the bioisosteric properties of the naphthalenic ring and the indole ring have been disclosed in J. Med. Chem. 1992, 35: 1484-1485, EP 662471 A2 950712 of Depreux et al., WO 9529173 Al 951102 of Ladlow et al, U.S. Patents Nos. 5,151,446 of Horn et al., 5,194,614 of Adrieux et al.
- Insulin resistance and non-insulin-dependent diabetes are prevalent in up to 35% of the population depending upon the age and nature of the subset. In the United States alone, 16 million people have type 2 diabetes and 13 million have impaired glucose tolerance. In fact, type 2 diabetes has reached epidemic proportions worldwide. By 2025, an estimated 300 million people will have diabetes, most of whom will inhabit China, India, and the United States.
- Insulin resistance usually occurs early in the development of type 2 diabetes. An altered balance in the autonomic nervous system and in certain endocrine and inflammatory pathways might contribute to the development of insulin resistance. In diabetes, hyperglycemia further aggravates insulin resistance as well as beta cell dysfunction but the mechanisms causing this phenomenon, i.e. glucotoxicity, are not fully understood. Insulin resistance can be demonstrated in healthy first-degree relatives of type 2 diabetes patients who also have a high risk of developing type 2 diabetes.
- the fasting hyperglycemia of type 2 diabetes exists in the presence of hyperinsulinemia; this reflects the presence of insulin resistance in the liver with resultant glycogenosis and gluconeogenesis.
- hyperinsulinemia reflects the presence of insulin resistance in the liver with resultant glycogenosis and gluconeogenesis.
- a decrease of insulin-mediated glucose uptake by muscle cells contributes (about 50%) to the resultant hyperglycemia.
- Insulin resistance with secondary hyperinsulinemia and/or hyperglycemia, contributes to many disorders associated with aging, i.e., hypertension, obesity, atherosclerosis, lipid abnormalities, coagulopathies and chronic metabolic-perturbations including type 2 diabetes.
- Insulin is one of the most important anabolic hormones in the body and it is critical for the control of carbohydrate, lipid and protein metabolism. Insulin is secreted from beta cells in the endocrine pancreas.
- insulin receptor substrates The main target tissues of insulin's metabolic action are muscle, liver and adipose tissue. Insulin stimulates glucose uptake in insulin sensitive tissues, mainly skeletal muscle, and it inhibits glucose production in the liver and promotes the storage of glycogen in liver and skeletal muscle. It promotes the delivery of non-esterified fatty acids (NEFA) to adipose tissue where they are stored as triglycerides and lipolysis in fat cells is inhibited. In general, overall protein synthesis is increased.
- NEFA non-esterified fatty acids
- TNF- ⁇ tumor necrosis factor- ⁇
- TNF- ⁇ tumor necrosis factor- ⁇
- TNF- ⁇ is an important regulator of the processes of apoptosis and thus modulates the volume of tumor, adipose and muscular tissues. It is produced not only by immunocompetent cells but also by adipocytes and muscle cells. This cytokine is activated in tumors and obesity, among other conditions.
- TNF- ⁇ By acting on the phosphorylation of IRS-I and phosphatidylinositol 3-kinase (PI-3), by modifying resistance through regulation of the synthesis of the insulin responsive glucose transporter GLUT4, and through interference with insulin signaling (perhaps via leptin), TNF- ⁇ promotes insulin resistance and anorexia.
- insulin resistance is associated with widespread and adverse effects on health. This is true even when glucose tolerance is only mildly impaired but not yet in the overt diabetic range. Notable among the adverse effects is the predisposition to vascular disease affecting large blood vessels and an association with hypertension and dyslipidemia (elevated triglycerides and decreased HDL). In fact, this combination of 1) glucose intolerance, 2) insulin resistance, 3) hypertension and 4) dyslipidemia is common enough to have acquired the name Syndrome X, the insulin resistance syndrome or Reaven's syndrome. Clinically it defines hundreds of millions of people worldwide. OBJECTIVES OF THE INVENTION
- pyrone-indole derivatives would be of therapeutic use for a variety of maladies and conditions, particularly those associated with melatonin, 5 -HT, insulin and GABAergic disregulation.
- the present invention addresses the need for more therapeutically advanced compounds than those aimed at modulating one of these classes alone.
- Such an agent acting as MT-I and MT-2 or serotonin receptor agonists/antagonists with additional GABA receptor modulation properties can provide new drags with, but not limited to, sedative efficacy with additional clinical benefits, such as sleep improvement with beneficial effects on daytime vigilance. Due to this unique mode of action, these agents will not display typical side effects related to benzodiazepines, such as tolerance and drug discontinuation symptoms.
- the present invention addresses the need for new melatoninergic derivatives affecting insulin resistance and type II diabetes.
- the invention relates to compounds having the formula (I):
- X represents -(CH 2 ),,- (wherein n is 0-6) in which the alkyl moiety is linear or branched,
- Y represents oxygen, sulphur, >NH or is absent
- Ar represents an indole nucleus ring system:
- Ar' represents an alpha-, beta- or gamma- pyrone nucleus ring system:
- each OfR 1-4 substitutes the ring Ar at any available position (including the N-position) and each of R 11-2 . substitutes the ring Ar' at any available position and wherein each OfR 14 and R 11-2 . independently represents hydrogen, oxygen, halo, halo-C 1-5 alkyl, aryl, acyl, a C 5 .
- R 3 or R 4 further can include or represent a bond to B; wherein Ar can be bonded to B at any position on the Ar ring not substituted by R 1 and R 2 , including the N-position, and Ar' can be bonded to B at any carbon on the Ar' ring not substituted by R 1 , or R 2 .; or a pharmaceutically acceptable salt or stereoisomer thereof.
- aryl represents phenyl or naphthyl.
- the present invention also includes in its scope pharmaceutical compositions containing as an active substance a therapeutically effective amount of a compound of formula (I), or a pharmaceutically acceptable salt thereof as well as any stereoisomer, covered by formula (I), in association with one or more pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvants, excipients or carriers conventionally used in pharmaceutical and veterinary formulations.
- the present pharmaceutical formulation can be adopted for administration to humans and/or animals.
- the compounds of formula (I) are useful for treating and/or preventing, and/or minimizing insulin resistance and diabetes type ⁇ , neuronal loss associated with stroke, ischemia, central nervous system (CNS) trauma, CNS disorders including neurodegenerative diseases (such as Alzheimer's disease, amyotrophic lateral sclerosis (ALS), Huntington's disease, Parkinson's disease and Down's syndrome); treating or preventing the adverse consequences of the overstimulation of the excitatory amino acids; treating or preventing psychiatric disorders, epilepsy and other convulsive disorders, anxiety, sleep disorders including insomnia, psychiatric diseases (e.g., depression, psychosis), chronic pain (analgesia), glaucoma, cytomegalovirus (CMV) retinitis and urinary incontinence, and inducing anesthesia, as well as enhancing cognition, and preventing and treating opiate tolerance and withdrawal symptoms.
- CNS disorders including neurodegenerative diseases (such as Alzheimer's disease, amyotrophic
- conditions which it is presently contemplated may be amenable to treatment by administration of the present compounds, such conditions include impotence; cardiovascular disorders (including hypertension); blood coagulation disorders; inflammatory disorders; neuropathy; chronobiological-based disorders (e.g., jet lag); circadian sleep disorders (such as delayed sleep syndrome, shift-work problems, and season-related disorders e.g.
- SAD seasonal affective disorder
- endocrine indications e.g., contraception and infertility, precocious puberty, premenstrual syndrome, hyperprolactinemia, and growth hormone deficiency
- neoplastic diseases including cancer and other proliferative diseases (benign and tumor prostate growth)
- immune system disorders including AIDS; conditions associated with senescence; ophthalmological diseases; cluster headache; migraine; skin-protection; diabetes stabilization and weight gain disorders (leptin, obesity); to provide skin protection and as an aid to animal breeding (e.g., regulation of fertility, puberty and pelage color).
- This invention relates to compounds having the formula (I):
- X represents -(CH 2 ) n - (wherein n is 0-6), in which the alkyl moiety is linear or branched,
- Y represents oxygen, sulphur, >NH or is absent
- ring system Ar represents an indole nucleus:
- ring system Ar' represents an alpha-, beta- or gamma-pyrone nucleus:
- each of the R 1-4 substitutes the ring systems Ar at any available position (including the N-position) and each of the R 11-21 substitutes the ring system Ar' at any available position and wherein each OfR 1-4 and R 1 ⁇ 1 independently represents hydrogen, oxygen, halo, halo-C,_ 5 alkyl, aryl, acyl, a C 5.7 heterocyclic group containing
- 1-3 hetero atoms independently selected from nitrogen, oxygen and sulphur a C 6.8 heteroaryl group containing 1-3 hetero atoms independently selected from nitrogen, oxygen and sulphur; C 1-5 alkyl, C 2-5 alkenyl, C 2-5 alkynyl, aryl-C j . 5 alkyl, aryl-C 2 . 5 alkenyl, aryl-C 2 .
- heterocyclic group containing from 1-3 heteroatoms independently selected from nitrogen, oxygen and sulphur; a heteroaryl group containing from 1-3 hetero atoms independently selected from nitrogen, oxygen and sulphur; C , .5 alkyl, C 2.5 alkenyl, C 2 . 5 alkynyl, aryl-C 2.5 alkenyl, aryl-C 2 .
- R 3 or R 4 further can include or represent a bond to B; wherein Ar can be bonded to B at any position on the Ax ring not substituted by R 1 and
- R 2 including the N-position, and Ar' can be bonded to B at any carbon on the Ar' ring not substituted by R 1 . or R 2 .; or a pharmaceutically acceptable salt or stereoisomer thereof.
- aryl represents phenyl or naphthyl.
- X is -(CH 2 ),,-, wherein n is any of 0-6 and preferably any of 1-6, Y is >NH or >O and Z is >CO.
- Y is >NH or >O
- Ar is an indole containing a bond
- R 1 is methoxy on position 5 of the indole ring
- each of R 2 and R 4 is hydrogen
- Ar' is a gamma-pyrone bonded to Z at position 2 of the pyrone ring
- R 1 is hydrogen or a hydroxy group at position 5 of the pyrone ring
- R 2 is hydrogen or a carboxy group at position 6 of the gamma pyrone ring; or a pharmaceutically acceptable salt or stereoisomer thereof.
- Ar is as defined above and Ar' is an alpha-pyrone ring bonded to Z at position 5 of the alpha-pyrone ring and R 1 , and R 2 , are hydrogens; or a pharmaceutically acceptable salt or stereoisomer thereof.
- the present invention also includes within its scope the preparation of compositions containing a compound of formula (1) wherein the compositions are useful as medicaments.
- the pharmaceutical compositions contain as an active substance a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof as well as any stereoisomer covered by formula (I); in association with one or more pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvant, excipients and carriers conventionally used in pharmaceutical and veterinary formulations.
- the present pharmaceutical formulations can be adapted for administration to humans and/or animals.
- a pharmaceutical formulation according to the invention preferably is characterized by at least one of the following features:
- parenteral e.g., intramuscular, intraperitoneal, intravenous or subcutaneous injection, or implant
- nasal, vaginal, rectal, sublingual, or topical routes of administration and can be formulated in dosage forms appropriate for each route of administration;
- each unit dosage comprising an amount of at least one compound of formula (I) which is within the range of about 2.5 ⁇ g to 25 mg/kg body weight;
- Suitable pharmaceutically acceptable salts of the compounds of formula (I) of use in the present invention include salts which may, for example, be formed by mixing a solution of the compound with a solution of a pharmaceutically acceptable non-toxic acid, such as hydrochloric acid, fumaric acid, maleic acid, succinic acid, acetic acid, citric acid, tartaric acid, carbonic acid, phosphoric acid or sulphuric acid.
- a pharmaceutically acceptable non-toxic acid such as hydrochloric acid, fumaric acid, maleic acid, succinic acid, acetic acid, citric acid, tartaric acid, carbonic acid, phosphoric acid or sulphuric acid.
- Salts of amine groups may also comprise the quaternary ammonium salts in which the amino nitrogen atom carries an alkyl, alkenyl, alkynyl or aralkyl group.
- the present invention also contemplates salts thereof, preferably non-toxic pharmaceutically acceptable salts thereof, such as the sodium, potassium and calcium salts thereof.
- the compounds of formula (I) can be administered to mammals to treat and/or prevent insulin resistance and diabetes type II; neuronal loss associated with stroke; ischemia; central nervous system (CNS) trauma; CNS disorders including neurodegenerative diseases (such as Alzheimer's disease, amyotrophic lateral sclerosis (ALS) 5 Huntington's disease, Parkinson's disease and Down's syndrome); the adverse consequences of the overstimulation of the excitatory amino acids; psychiatric diseases; epilepsy and other convulsive disorders; anxiety; sleep disorders including insomnia; psychiatric diseases (e.g., depression, psychosis); chronic pain (analgesia); glaucoma; cytomegalovirus (CMV) retinitis; urinary incontinence; and opiate tolerance and withdrawal symptoms.
- the compounds also can be administered to induce anesthesia, as well as to enhance cognition.
- the compounds of the invention can be administered to a mammal to treat and/or prevent impotence; cardiovascular disorders (including hypertension, blood coagulation disorders); inflammation disorders; neuropathy; chronobiological-based disorders (e.g., jet lag); circadian sleep disorders (such as delayed sleep syndrome, shift- work problems, and seasonal-related disorders (e.g.
- SAD seasonal affective disorder
- endocrine indications e.g., contraception, infertility, precocious puberty, premenstrual syndrome, hyperprolactinemia, and growth hormone deficiency
- neoplastic diseases including cancer and other proliferative diseases (benign and tumor prostate growth)
- immune system disorders including AIDS; conditions associated with senescence; ophthalmo logical diseases; cluster headache; migraine; weight gain disorders (leptin, obesity); to provide skin protection and as an aid to animal breeding, e.g., regulation of fertility, puberty and pelage color.
- to treat means to alleviate or cure a disease, disorder or condition or to ease at least one symptom of the disease, disorder or condition.
- the disease or disorder is one suffered by humans and the compounds of the invention are administered to humans.
- the compounds of the invention can be administered alone or in combination with other agents known to be beneficial in treating the disease, disorder or condition to be treated.
- in combination means that the compound of formula (I) and the other agent can be co-administered, either in concomitant therapy or in a fixed physical combination, or they may be administered at separate times but so as to complement one another.
- compounds of formula (I) can be administered to alter circadian rhythms or to improve sleep quality, or to treat or prevent sleep disorders or sleep disturbances in a mammal, especially a human.
- the compounds of formula (I) can be administered to increase sleep efficiency and to augment sleep maintenance.
- Sleep disorders and sleep disturbances which can be treated or prevented through the administration of compounds of formula (I) include sleep problems associated with insomnia, hypersomnia, sleep apnea, narcolepsy, nocturnal myoclonus, REM sleep interruptions, jet-lag, shift workers' sleep disturbances, dysomnias, night terror, insomnias associated with depression or with emotional mood disorders and sleep walking and enuresis, as well as sleep disorders which accompany aging, conditions associated with circadian rhythmicity, mental and physical disorders associated with travel across time zones and with rotating shift-work schedules or syndromes such a fibromyalgia which are manifested by non-restorative sleep and muscle pain or sleep apnea which is associated with respiratory disturbances during sleep.
- the compound of formula (I) can be administered alone or in combination with other compounds known in the art to be useful for enhancing sleep quality and preventing and treating sleep disorders and sleep disturbances, including e.g., sedatives, hypnotics, anxiolytics, antipsychotics, antianxiety agents, minor tranquilizers, melatonin agonists and antagonists, melatonin, benzodiazepines, barbiturates, 5HT-2 antagonists, and the like, such as: adinazolam, allobarbital, alonimid, alprazolam, amitriptyline, amobarbital, amoxapine, bentazepam, benzoctamine, brotizolam, bupropion, busprione, butabarbital, butalbital, capuride, carbocloral, chloral betaine, chloral hydrate, chlordia
- Combinations of one or more of these known therapeutic agents with a compound of formula (I) will provide additional, complementary, and often synergistic effects to enhance the desirable properties of the known therapeutic agent.
- the compound of formula (I), alone or in combination with one of the aforementioned known therapeutic agents further can be administered in combination with physical treatment methods, such as light therapy (such as described in U.S. patents 5,447,527 and 5,562,719, both of which are incorporated herein by reference).
- compounds of formula (I) can be administered in combination with an antidiabetic agent, such as insulin, sulfonylureas, biguanides (such as metformin), alpha-glucosidase inhibitors (such as acarbose), peroxisome proliferator-activated receptor gamma (PPARgamma) agonists such as thiazolidinediones, including pioglitazone and rosiglitazone, cholesterol lowering agents such as HMG-CoA reductase inhibitors (lovastatin, simvastatin, pravastatin, fiuvastatin, atorvastatin, rivastatin, itavastatin, and other statins), sequestrants (cholestyramine, colestipol and dialkylaminoalkyl derivatives of a cross-linked dextran), nicotinyl alcohol, nicotinic acid or a salt thereof, PPARal
- a compound of formula (I) When a compound of formula (I) is administered in combination with another therapeutic agent, such as an anti-diabetic agent or an agent for treating a sleep disorder or circadian rhythm disorder, the compound of formula (I) and the known therapeutic agent can be administered independently in a daily dosage which ranges from one one-hundredth to one times the dosage levels which are effective when the compounds are administered alone.
- another therapeutic agent such as an anti-diabetic agent or an agent for treating a sleep disorder or circadian rhythm disorder
- the compound of formula (I) and the known therapeutic agent can be administered independently in a daily dosage which ranges from one one-hundredth to one times the dosage levels which are effective when the compounds are administered alone.
- parenteral e.g., intramuscular, intraperitoneal, intravenous or subcutaneous injection, or implant
- nasal, vaginal, rectal, sublingual or topical routes of administration can comprise one or more pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvants, excipients and/or carriers.
- Solid dosage forms for oral administration include capsules, tablets, pills, powders and granules.
- the active compound is admixed with at least one inert pharmaceutically acceptable earner such as sucrose, lactose, or starch.
- Such dosage forms can also comprise, as is normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate.
- Illustrative of the adjuvants which may be incorporated in tablets, capsules and the like are the following: a binder such as gum tragacanth, acacia, corn starch or gelatin; an excipient such as microcrystalline cellulose; a disintegrating agent such as corn starch, pregelatinized starch, alginic acid and the like; a lubricant such as magnesium stearate; a sweetening agent such as sucrose, lactose or saccharin; a flavoring agent such as peppermint, oil of wintergreen or cherry.
- the dosage forms may also comprise buffering agents.
- the dosage unit form When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier such as a fatty oil. Various other materials can be present as coatings or to otherwise modify the physical form of the dosage unit. Tablets and pills can additionally be prepared with enteric coatings and tablets may be coated with shellac, sugar or both.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs containing inert diluents commonly used in the art, such as water. Besides such inert diluents, compositions can also include adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents.
- a syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propyl parabens as preservatives, a dye and a flavoring such as cherry or orange flavor.
- Preparations according to this invention for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, or emulsions.
- Sterile compositions for injection can be formulated according to conventional pharmaceutical practice by dissolving or suspending the active substance in a vehicle such as water for injection, a naturally occurring vegetable oil like sesame oil, coconut oil, peanut oil, cottonseed oil, etc., or a synthetic fatty vehicle like ethyl oleate or the like. Buffers, preservatives, antioxidants and the like may be incorporated as required.
- non-aqueous solvents or vehicles examples include propylene glycol, polyethylene glycol, vegetable oils, such as olive oil and com oil, gelatin, and injectable organic esters such as ethyl oleate.
- Such dosage forms may also contain adjuvants such as preserving, wetting, emulsifying, and dispersing agents. They may be sterilized by, for example, filtration through a bacteria-retaining filter, by incorporating sterilizing agents into the compositions, by irradiating the compositions, or by heating the compositions. They can also be manufactured in the form of sterile solid compositions that can be dissolved in sterile water, or some other sterile injectable medium immediately before use.
- compositions for rectal or vaginal administration are preferably suppositories that may contain, in addition to the active substance, excipients such as cocoa butter or a suppository wax.
- Compositions for nasal or sublingual administration are also prepared with standard excipients well known in the art.
- the dosage of active agent in compositions of this invention can vary, provided that a therapeutic amount is administered. Desirably the active agent is administered to a patient (human or animal) in need of such treatment in dosages that will provide optimal pharmaceutical efficacy. The selected dosage depends upon the nature and severity of the disease or disorder to be treated, desired therapeutic effect, the route of administration, and the duration of treatment. Dosage amount also can vary depending on the weight of the patient, and other factors.
- the effect of a compound of formula (I) that induces a phase shift in a central circadian pacemaker may be dependent on both the ambient and circadian time of administration.
- the same compound may induce a phase advance, a phase delay or have a minor effect on a particular circadian rhythm depending on the circadian time of administration.
- the dose will vary from patient to patient depending on the nature and severity of the disease, the patient's weight, special diets then being followed by the patient, concurrent medication, the bioavailability of the compound upon administration and other factors which those skilled in the art will recognize.
- an appropriate daily dosage level will generally be about 2.5 ⁇ g to 25 mg per kg patient body weight.
- the daily dosage amount can be administered in single or multiple doses per day.
- the dosage level will be about 2.5 ⁇ g to about 20 mg/kg patient body weight; more preferably about 2.5 ⁇ g to about 10 mg/kg patient body weight.
- a suitable dosage level is about 2.5 ⁇ g to 25 mg/kg patient body weight, preferably about 2.5 ⁇ g to 20 mg/kg patient body weight, and especially about 2.5 ⁇ g to 10 mg/kg patient body weight.
- a typical indicated daily dose for oral administration is about 0.2 to about 1000 mg.
- the daily oral dosage is within the range of about 0.5 to about 50 mg. and more preferably within the range of about 2.5 to about 20 mg.
- a preferred dosage level is about 2.5 ⁇ g to 5 mg/kg patient body weight, and especially about 2.5 ⁇ g to 1 mg/kg patient body weight, hi larger mammals, for example humans, a typical indicated dose is about 100 ⁇ g to 100 mg i.v.
- a compound can be administered in a regimen of once to several times per day, for example 1 to 4 times per day, preferably once or twice per day.
- Formulations of this invention can be in the form of immediate release, or, where appropriate, such as solid formulations for oral administration, can be in extended release forms.
- Extended release formulations include delayed-, sustained-, pulsed- or controlled-release formulations.
- Suitable extended release formulations useful for purposes of the present invention include the types of formulations described in U.S. Patents 6,106,864; 7,053,122; and 7,118,762, incorporated herein by reference. Details of other types of suitable release technologies, such as high energy dispersions and osmotic and coated particles can be found, for example, in Verma, R. and S. Garg, Pharmaceutical Technology On-Line, 25(2), 1-14 (2001), also incorporated herein by reference.
- the period of time in which an extended release formulation releases the compound varies based upon the indication and the target therapeutic levels.
- insomnia for example, it is desirable to limit the pharmacological effects of the compound administered to night-time, e.g. about 8 hours.
- anti-diabetes treatment it is desirable for the compound to have effect continuously, e.g., 12 hour effectiveness with administration of the formulation twice a day, morning and evening.
- the invention will be illustrated by the following Examples. The following examples are understood to be illustrative only and are not intended to limit the scope of the present invention in any way.
- Example 1 N-[2-(5-methoxy-indol-3-yl)-ethyl]-commenamide
- HOBt (1-hydroxybenxotriazole monohydrate, 535 mg, 1.1 equiv.)
- EDC 1 -(3 -dimethylaminopropyO-S-ethylcarbodiimide hydrochloride, 760 mg, 1.1 equiv.
- triethylamine (1.25 ml, 2.5 equiv.) were then added with magnetic stirring. The mixture was stirred for an additional 15 minutes at O 0 C and subsequently allowed to react for 48 h at room temperature. Water (25 ml) was then added and the mixture was extracted thoroughly with dichloromethane (6 x 30 ml). The combined organic phases were dried over Na 2 SO 4 and the solvent was removed by rotary evaporation.
- HOBt (1-hydroxybenxotriazole monohydrate, 640 mg, 1.1 equiv.), EDC (l-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, 900 mg, 1.1 equiv.) and triethylamine (1.5 ml, 2.5 equiv.) were then added under magnetic stirring. The mixture was stirred for an additional 15 minutes at O 0 C and subsequently allowed to react for 48 h at room temperature. The reaction course was followed by HPLC-MS. Water (40 ml) was then added and the mixture was extracted thoroughly with dichloromethane (6 x 30 ml).
- the phthalimido group was removed by treatment of aqueous methylamine in ethanol at room temperature.
- N-methylmorpholine was added to a solution of coumalic acid in dimethylformamide followed by 2-(lH-benzotriazol-l-yl)-l, 1,3,3- tetramethyluronium tetrafluoroborate (TBTU) under an atmosphere of nitrogen. After the reaction mixture stirred for 20 min at room temperature, 5-methoxytryptamine was added slowly and the mixture was stirred for 5 hr. DMF from the reaction mixture was removed under high vacuum. The solid product was dissolved in CH 2 Cl 2 and the resulting organic fraction was washed with 0.2N HCl, 0.2N NaHCO 3 and water and then dried (MgSO 4 ), filtered and concentrated under reduced pressure. The resulting product was purified with column chromatography.
- HOBt (1-hydroxybenxotriazole monohydrate, 530 mg, 1.1 equiv.)
- EDC 1 -(3 -dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, 750 mg, 1.1 equiv,
- triethylamine (1.25 ml, 2.5 equiv.) were then added under magnetic stirring. The mixture was stirred for an additional 15 minutes at O 0 C and subsequently allowed to react for 6 h at room temperature. The reaction course was followed by HPLC-MS. Water (50 ml) was then added and the mixture was extracted with dichloromethane (3 x 50 ml).
- HOBt (1-hydroxybenxotriazole monohydrate, 300 mg, 1.1 equiv.), EDC (l-(3-dimethylaminopropyl)-3- ethylcarbodiimide hydrochloride, 425 mg, 1.1 equiv.) and triethylamine (0.98 ml, 3.5 equiv.) were then added under magnetic stirring. The mixture was stirred for an additional 15 minutes at O 0 C and subsequently allowed to react for 16 h at room temperature. The reaction course was followed by HPLC-MS. Water (25 ml) was then added and the mixture was extracted with dichloromethane (2 x 30 ml). After a while a suspension appeared in the combined organic phases.
- Step 1 & 2 In a 100 ml four-necked round-bottom flask kept under an argon atmosphere, 5.0 g of diethyl oxalate (1 equiv.) were dissolved in 35 ml of dry toluene. Potassium ethoxide (2.9 g, 0.998 equiv.) was then added under magnetic stirring in small portions. The internal temperature reached 4O 0 C and the initial suspension slowly turned into an orange solution. After 2 hours, the solution was brought to O 0 C by means of an ice-bath and ethyl crotonate (4.3 ml, 1 equiv.) was added dropwise over a period of 10 minutes.
- ethyl crotonate 4.3 ml, 1 equiv.
- Step 3 In a 100 ml three-necked round-bottom flask kept under an argon atmosphere, 5-methoxytryptamine hydrochloride (430 mg, 1.1 equiv.) was suspended in 1,2-dimethoxyethane (DME, 15 ml). Pyridine was added (0.34 ml, 2.2 equiv.) and the suspension was stirred at room temperature for 30 minutes. 2-Pyrone-6-carboxylic acid (250 mg, 1 equiv.) was then added and the internal temperature brought to O 0 C by means of an ice-bath.
- DME 1,2-dimethoxyethane
- HOBt (1-hydroxybenxotriazole monohydrate, 260 mg, 1.1 equiv.), EDC (l-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, 370 mg, 1.1 equiv.) and triethylamine (0.34 ml, 1.4 equiv.) were then added under magnetic stirring. The mixture was stirred for an additional 15 minutes at O 0 C and subsequently allowed to react for 3 h at room temperature. The reaction course was followed by HPLC-MS. The obtained solution was concentrated under vacuum and the crude residue was purified by column chromatography, eluting with dichloromethanc / methanol 98 / 2. N-[2-(5-methoxy-indol-3-yl)-ethyl]- 2-Pyrone-6-carboxamide was recovered as a yellow solid (400 mg, 72% yield).
- CDl mice were divided randomly into groups of seven mice each. The mice in each group were administered intraperitoneally a dose of one of the following: 100 mg/kg of one of test substances O-[2-(5-methoxy-indol-3-yl)-ethyl]-cornenic ester, N-[2-(5-methoxyindol-3-yl)-ethyl]-commenamide, N-[2-(5-methoxy-indol-3-yl)-ethyl]-coumalylamide,
- the binding reaction was terminated and washed with 4 ml ice-cold 50 mM Tris-HCl buffer by vacuum filtration. Membranes were then collected, and the filters containing the bovind ligands were assayed for the amount of radioactivity in a b- counter. Non-specific binding was evaluated using a reaction with 10 ⁇ M metergoline (5-HT 1A ), 1 ⁇ M mianserin (5-HT 2A and 5-HT 2C ) or lO ⁇ M serotonin (5-HT 1B , 5-HT 2B 5- HT 4 , 5-HT 6 and 5-HT 7 ).
- N-[2-(5-methoxy-indol-3-yl)-ethyl]-comanilamide was shown to bind with a moderate affinity to the 5-HT IB receptor
- N-[2-(5-methoxy-indol-3-yl)-ethyl]-2- methoxy-commenamide was shown to bind with a moderate affinity to 5-HT 2B and 5-HT 7 receptors
- N-[2-(5-methoxy-indol-3-yl)-ethyl]-chelidonamide was shown to bind with a moderate affinity to 5-HT 1A , and 5-HT 1B receptors.
- Table 4 Effects of test compunds on binding to 5-HT receptors
- Hypnotic compounds cause a depression of locomotor activity, reduced rearing, hypothermia, and ataxia assessed on a rotarod in mice (Crabbe et al, Psychopharmacology, 161; 408-416, 2002).
- mice were starved for 16 hrs before treatment.
- Male CDl mice weighing 25-30 g, were treated intraperitoneally with melatonin, N-[2-(5-methoxy-indol- 3-yl)-ethyl]-comanilamide or N-[2-(5-methoxy-indol-3-yl)-ethyl]-commenamide in a dose of 100 mg/kg.
- the horizontal (i.e. locomotion) and vertical (i.e. rearing) movements were measured for 5 minutes two times, 30 and 60 min after treatment.
- Eight mice/group were used.
- the 4-channel activity meter is a square-shaped frame containing transparent infra-red permeable acrylic cages. The frames feature two pairs of light-beam strips for measuring horizontal movements, and two pairs for measuring rearing. Each strip is equipped with 16 infra-red sensors.
- N ⁇ [2-(5 ⁇ methoxy-indol-3-yl)-ethyl]- comanilamide and N-[2-(5-methoxy-indol-3-yl)-ethyl]-commenamide in the intraperitoneal dose of 100 mg/kg did not change significantly the motor activity and rearing measured between 30-35 min and 60-65 min after treatment (Table 5).
- N-[2-(5-methoxy-indol-3-yl)-ethyl]-coumalylamide in the intraperitoneal dose of 100 mg/kg significantly decreased both the motor activity and rearing in the two time intervals mentioned above.
- the rotarod apparatus is divided into five test zones, so that up to five mice may be tested at the same time.
- the rod has been specially machined to provide a suitable grip for the animal.
- the diameter of the rod is 3.5 cm.
- the rotation speed was
- test substances were administered intraperitoneally 15 min before testing.
- Adipocytes were glucose-starved for 1 h in Hepes-salt buffer containing 2% FFA-free BSA. FFA (free fatty acids) were then added to the cells at the indicated concentrations (300 ⁇ M) for the indicated times (3 h). 10 min before the end of the FFA treatment, the cells were stimulated with insulin (20 nM)/melatonin (10 nM)/ test compounds (1OnM) at 37 0 C. 2-[ 3 H]-deoxy-d-glucose at 1 ⁇ Ci/mL and 0.1 rnM unlabeled 2-deoxyglucose in KRP- HEPES buffer was added and cells were incubated for 10 min at room temperature.
- Non-specific glucose uptake was measured by parallel incubations in the presence of 10 ⁇ M cytochalasin B, which blocks transporter-mediated glucose uptake, and was subtracted from total uptake in each assay. Cells were then washed three times with ice-cold phosphate buffered saline (PBS) and solubilized in IM NaOH for 20 minutes. The sample was then counted using a scintillation counter. 2-[ 3 H]-deoxy-d-glucose uptake was assayed in triplicates for each condition in at least 3 independent experiments.
- PBS ice-cold phosphate buffered saline
- 3T3-L1 adipocytes were used as an in vitro model to assess the cellular effect of pyrone-indole derivatives and melatonin on insulin resistance initiated by high FFA treatment.
- FFA treatment impaired insulin signaling and melatonin/ pyrone-indole derivatives improved glucose transport. Therefore, melatonin and pyrone-indole derivatives could ameliorate insulin resistance initiated by FFA.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Diabetes (AREA)
- Endocrinology (AREA)
- Psychiatry (AREA)
- Epidemiology (AREA)
- Reproductive Health (AREA)
- Pain & Pain Management (AREA)
- Hematology (AREA)
- Addiction (AREA)
- Ophthalmology & Optometry (AREA)
- Urology & Nephrology (AREA)
- Obesity (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Gynecology & Obstetrics (AREA)
- Anesthesiology (AREA)
- Dermatology (AREA)
- Hospice & Palliative Care (AREA)
- Child & Adolescent Psychology (AREA)
- Rheumatology (AREA)
- Vascular Medicine (AREA)
- Immunology (AREA)
- Psychology (AREA)
Priority Applications (16)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PL07733884T PL1991541T3 (pl) | 2006-02-15 | 2007-02-13 | Nowe pochodne pironowo-indolowe i sposób ich otrzymywania |
| HK09105568.2A HK1126760B (en) | 2006-02-15 | 2007-02-13 | Novel pyrone-indole derivatives and process for their preparation |
| UAA200808838A UA104988C2 (uk) | 2006-02-15 | 2007-02-13 | Похідні піроніндолу та спосіб їх отримання |
| DK07733884.6T DK1991541T3 (da) | 2006-02-15 | 2007-02-13 | Nye pyron-indolderivater samt fremgangsmåde til deres fremstilling |
| SI200731333T SI1991541T1 (sl) | 2006-02-15 | 2007-02-13 | Novi piron-indolinski derivati in postopek za njihovo pripravo |
| CA2642465A CA2642465C (en) | 2006-02-15 | 2007-02-13 | Novel pyrone-indole derivatives and process for their preparation |
| CN2007800039654A CN101374833B (zh) | 2006-02-15 | 2007-02-13 | 新型吡喃酮-吲哚衍生物及其制备方法 |
| BRPI0706992A BRPI0706992C8 (pt) | 2006-02-15 | 2007-02-13 | composto de fórmula (i) e formulação farmacêutica |
| EA200801580A EA015605B1 (ru) | 2006-02-15 | 2007-02-13 | Производные пирониндола, фармацевтическая композиция и способы лечения |
| NZ569797A NZ569797A (en) | 2006-02-15 | 2007-02-13 | Novel pyrone-indole derivatives and process for their preparation |
| JP2008554868A JP5248332B2 (ja) | 2006-02-15 | 2007-02-13 | 新規ピロン誘導体及びそれらの合成方法 |
| ES07733884T ES2428873T3 (es) | 2006-02-15 | 2007-02-13 | Derivados novedosos de pirona-indol y proceso para su preparación |
| AU2007216226A AU2007216226B2 (en) | 2006-02-15 | 2007-02-13 | Novel pyrone-indole derivatives and process for their preparation |
| EP07733884.6A EP1991541B1 (en) | 2006-02-15 | 2007-02-13 | Novel pyrone-indole derivatives and process for their preparation |
| IL193236A IL193236A (en) | 2006-02-15 | 2008-08-04 | Derivatives of pyrone-indole, the process for their preparation and medicinal preparations containing them |
| NO20083905A NO339826B1 (no) | 2006-02-15 | 2008-09-12 | Nye pyron-indol-derivater og farmasøytiske formuleringer inneholdende disse. |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US77332206P | 2006-02-15 | 2006-02-15 | |
| US60/773,322 | 2006-02-15 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2007093880A2 true WO2007093880A2 (en) | 2007-08-23 |
| WO2007093880A3 WO2007093880A3 (en) | 2007-11-01 |
Family
ID=38283075
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2007/000330 Ceased WO2007093880A2 (en) | 2006-02-15 | 2007-02-13 | Novel pyrone-indole derivatives and process for their preparation |
Country Status (21)
| Country | Link |
|---|---|
| US (3) | US7635710B2 (OSRAM) |
| EP (1) | EP1991541B1 (OSRAM) |
| JP (1) | JP5248332B2 (OSRAM) |
| KR (1) | KR101207736B1 (OSRAM) |
| CN (1) | CN101374833B (OSRAM) |
| AU (1) | AU2007216226B2 (OSRAM) |
| BR (1) | BRPI0706992C8 (OSRAM) |
| CA (1) | CA2642465C (OSRAM) |
| DK (1) | DK1991541T3 (OSRAM) |
| EA (1) | EA015605B1 (OSRAM) |
| ES (1) | ES2428873T3 (OSRAM) |
| IL (1) | IL193236A (OSRAM) |
| NO (1) | NO339826B1 (OSRAM) |
| NZ (1) | NZ569797A (OSRAM) |
| PL (1) | PL1991541T3 (OSRAM) |
| PT (1) | PT1991541E (OSRAM) |
| SI (1) | SI1991541T1 (OSRAM) |
| TW (1) | TWI501960B (OSRAM) |
| UA (1) | UA104988C2 (OSRAM) |
| WO (1) | WO2007093880A2 (OSRAM) |
| ZA (1) | ZA200806799B (OSRAM) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103319467A (zh) * | 2013-06-15 | 2013-09-25 | 湖南科技大学 | 一种4-[5-羟基-4-吡喃酮-2-基亚甲氨基]-3-巯基-1,2,4-三唑化合物及用途 |
| WO2016138138A1 (en) * | 2015-02-25 | 2016-09-01 | The Regents Of The University Of California | 5ht agonists for treating disorders |
| WO2018037295A1 (en) | 2016-08-23 | 2018-03-01 | Neurim Pharmaceuticals (1991) Ltd. | Method for treating pruritus and/or itch |
| WO2021229566A1 (en) * | 2020-05-11 | 2021-11-18 | B. G. Negev Technologies And Applications Ltd., At Ben-Gurion University | Compositions of tryptophol derivatives and 4-ethyl-phenol derivatives, and methods of using same |
| WO2022238905A1 (en) | 2021-05-11 | 2022-11-17 | Neurim Pharmaceuticals (1991) Ltd. | Method for diagnosing and treating subjects having single nucleotide polymorphisms in chromosome 2, 2:107,510,000-107,540,000 locus |
| US11666888B2 (en) | 2018-02-05 | 2023-06-06 | Bio-Rad Laboratories, Inc. | Chromatography resin having an anionic exchange-hydrophobic mixed mode ligand |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6262118B1 (en) * | 1999-06-04 | 2001-07-17 | Metabolex, Inc. | Use of (-) (3-trihalomethylphenoxy) (4-halophenyl) acetic acid derivatives for treatment of insulin resistance, type 2 diabetes and hyperlipidemia |
| US7576131B2 (en) * | 1999-06-04 | 2009-08-18 | Metabolex, Inc. | Use of (-) (3-trihalomethylphenoxy) (4-halophenyl) acetic acid derivatives for treatment of insulin resistance, type 2 diabetes, hyperlipidemia and hyperuricemia |
| ES2694049T3 (es) * | 2014-01-14 | 2018-12-17 | Astellas Pharma Inc. | Compuesto de indol |
| RU2561045C1 (ru) * | 2014-07-15 | 2015-08-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный университет" (ФГБОУ ВПО "КубГУ") | Нейропротекторное фармакологическое средство |
| US9567510B2 (en) | 2014-09-11 | 2017-02-14 | Halliburton Energy Services, Inc. | Cyanamide-based carbon dioxide and/or hydrogen sulfide scavengers and methods of use in subterranean operations |
| KR20200047557A (ko) | 2017-08-04 | 2020-05-07 | 오비드 테라퓨틱스 인크. | 당뇨병 및 관련 질환들의 치료에서 가복사돌의 사용 |
| CA3113644A1 (en) | 2018-09-20 | 2020-03-26 | Ovid Therapeutics Inc. | Use of gaboxadol for the treatment of tourette syndrome, tics and stuttering |
| MX2021007224A (es) | 2018-12-17 | 2021-09-23 | Ovid Therapeutics Inc | Uso de gaboxadol para el tratamiento del trastorno del sue?o vigilia que no es de 24 horas. |
| KR20250133774A (ko) | 2023-01-13 | 2025-09-08 | 뉴림 파머슈티칼스(1991) 리미티드 | Rem 수면 무긴장증의 상실과 관련된 사건수면을 치료하기 위한 피로멜라틴 |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA222247A (en) | 1922-08-15 | Hubert Rogers Reginald | Pocket container for confections | |
| IT1196849B (it) | 1986-02-16 | 1988-11-25 | Rotta Research Lab | Nuovi derivati degli acidi 5 pentilammino 5 oxo pentaoico e 4 pentilammino 4 oxo butanoico ad attivita antagonista della colecistochinina e procedimento per la loro preparazione |
| WO1992007829A1 (en) | 1990-11-02 | 1992-05-14 | The Upjohn Company | Indole-3-methanamines useful as anti-diabetic, anti-obesity and anti-atherosclerotic agents |
| US5789440A (en) * | 1993-11-19 | 1998-08-04 | Warner-Lambert Company | 5,6-dihydropyrone derivatives as protease inhibitors and antiviral agents |
| CN1215835C (zh) * | 1996-03-27 | 2005-08-24 | 东丽株式会社 | 酮衍生物及其在医学上的应用 |
| IL130169A (en) * | 1999-05-27 | 2006-08-20 | Neurim Pharma 1991 | Indole derivatives, and pharmaceutical preparations, skin protection preparations, and cosmetics containing them |
| US6861419B2 (en) * | 2000-04-18 | 2005-03-01 | Cytovia, Inc. | Substituted 1, 4-thiazepine and analogs as activators of caspases and inducers of apoptosis and the use thereof |
| PE20060303A1 (es) | 2004-06-23 | 2006-05-19 | Wyeth Corp | Metabolitos de indolilalquilamina como ligandos de 5-hidroxitriptamina-6 |
| US7834050B2 (en) * | 2006-03-29 | 2010-11-16 | Duke University | Small molecule insulin mimetics absent quinones |
-
2007
- 2007-02-12 US US11/705,030 patent/US7635710B2/en active Active
- 2007-02-13 ES ES07733884T patent/ES2428873T3/es active Active
- 2007-02-13 SI SI200731333T patent/SI1991541T1/sl unknown
- 2007-02-13 DK DK07733884.6T patent/DK1991541T3/da active
- 2007-02-13 NZ NZ569797A patent/NZ569797A/en unknown
- 2007-02-13 AU AU2007216226A patent/AU2007216226B2/en active Active
- 2007-02-13 EP EP07733884.6A patent/EP1991541B1/en active Active
- 2007-02-13 EA EA200801580A patent/EA015605B1/ru unknown
- 2007-02-13 UA UAA200808838A patent/UA104988C2/uk unknown
- 2007-02-13 KR KR1020087022304A patent/KR101207736B1/ko active Active
- 2007-02-13 JP JP2008554868A patent/JP5248332B2/ja active Active
- 2007-02-13 WO PCT/IB2007/000330 patent/WO2007093880A2/en not_active Ceased
- 2007-02-13 BR BRPI0706992A patent/BRPI0706992C8/pt active IP Right Grant
- 2007-02-13 CN CN2007800039654A patent/CN101374833B/zh active Active
- 2007-02-13 PL PL07733884T patent/PL1991541T3/pl unknown
- 2007-02-13 CA CA2642465A patent/CA2642465C/en active Active
- 2007-02-13 PT PT77338846T patent/PT1991541E/pt unknown
- 2007-02-26 TW TW096106545A patent/TWI501960B/zh active
-
2008
- 2008-08-04 IL IL193236A patent/IL193236A/en active IP Right Grant
- 2008-08-06 ZA ZA200806799A patent/ZA200806799B/xx unknown
- 2008-09-12 NO NO20083905A patent/NO339826B1/no unknown
-
2009
- 2009-11-04 US US12/612,001 patent/US8242163B2/en active Active
-
2012
- 2012-07-13 US US13/549,181 patent/US8569355B2/en active Active
Non-Patent Citations (1)
| Title |
|---|
| None |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103319467B (zh) * | 2013-06-15 | 2015-10-14 | 湖南科技大学 | 一种4-[5-羟基-4-吡喃酮-2-基亚甲氨基]-3-巯基-1,2,4-三唑化合物及用途 |
| CN103319467A (zh) * | 2013-06-15 | 2013-09-25 | 湖南科技大学 | 一种4-[5-羟基-4-吡喃酮-2-基亚甲氨基]-3-巯基-1,2,4-三唑化合物及用途 |
| US11648237B2 (en) | 2015-02-25 | 2023-05-16 | The Regents Of The University Of California | 5HT agonists for treating disorders |
| WO2016138138A1 (en) * | 2015-02-25 | 2016-09-01 | The Regents Of The University Of California | 5ht agonists for treating disorders |
| US10874643B2 (en) | 2015-02-25 | 2020-12-29 | The Regents Of The University Of California | 5HT agonists for treating disorders |
| US12447144B2 (en) | 2015-02-25 | 2025-10-21 | The Regents Of The University Of California | 5HT agonists for treating disorders |
| WO2018037295A1 (en) | 2016-08-23 | 2018-03-01 | Neurim Pharmaceuticals (1991) Ltd. | Method for treating pruritus and/or itch |
| AU2017315265C1 (en) * | 2016-08-23 | 2021-06-10 | Neurim Pharmaceuticals (1991) Ltd. | Method for treating pruritus and/or itch |
| AU2017315265B2 (en) * | 2016-08-23 | 2021-03-11 | Neurim Pharmaceuticals (1991) Ltd. | Method for treating pruritus and/or itch |
| US11666888B2 (en) | 2018-02-05 | 2023-06-06 | Bio-Rad Laboratories, Inc. | Chromatography resin having an anionic exchange-hydrophobic mixed mode ligand |
| US12194432B2 (en) | 2018-02-05 | 2025-01-14 | Bio-Rad Laboratories, Inc. | Chromatography resin having an anionic exchange-hydrophobic mixed mode ligand |
| WO2021229566A1 (en) * | 2020-05-11 | 2021-11-18 | B. G. Negev Technologies And Applications Ltd., At Ben-Gurion University | Compositions of tryptophol derivatives and 4-ethyl-phenol derivatives, and methods of using same |
| US12478610B2 (en) | 2020-05-11 | 2025-11-25 | Orit MALKA | Compositions of tryptophol derivatives and 4-ethyl-phenol derivatives, and methods of using same |
| WO2022238905A1 (en) | 2021-05-11 | 2022-11-17 | Neurim Pharmaceuticals (1991) Ltd. | Method for diagnosing and treating subjects having single nucleotide polymorphisms in chromosome 2, 2:107,510,000-107,540,000 locus |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8242163B2 (en) | Pyrone-indole derivatives and process for their preparation | |
| US9101613B2 (en) | Methods for treating neurological disease | |
| TWI374141B (en) | Spiro-oxindole compounds and their uses as therapeutic agents | |
| JPH09500904A (ja) | ジアザビシクロニューロキニンアンタゴニスト | |
| AU2015336458B2 (en) | KCNQ2-5 channel activator | |
| JPH09502177A (ja) | 5ht1dレセプター拮抗薬用インドールおよびインドリン誘導体 | |
| TW201103922A (en) | 2-carboxamide-7-piperazinyl-benzofuran derivatives | |
| JP2001512727A (ja) | 5ht−1受容体のリガンドとしてのニ環式化合物 | |
| EA022776B1 (ru) | Арилсульфонамиды для лечения заболеваний цнс | |
| NL7907800A (nl) | Nieuwe 6,7-benzomorfanderivaten en zuuradditiezouten daarvan, farmaceutische preparaten die een dergelijke verbinding bevatten, alsmede werkwijze voor het bereiden van deze verbindingen en de farmaceutische preparaten. | |
| JP6943239B2 (ja) | Kcnq2〜5チャネル活性化剤 | |
| TW202214574A (zh) | 經取代之(呔-1-基甲基)脲類、經取代之n-(呔-1-基甲基)醯胺類及其類似物 | |
| KR20230044252A (ko) | 인플루엔자를 치료 또는 예방하기 위한 폴리시클릭 캡-의존성 엔도뉴클레아제 억제제 | |
| JP2000507254A (ja) | アザスピロ誘導体 | |
| HK1126760B (en) | Novel pyrone-indole derivatives and process for their preparation | |
| CZ198396A3 (en) | Pharmaceutical preparation for treating neurogenous inflammations | |
| JPWO2002042297A1 (ja) | ピペリジン化合物およびその医薬用途 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2007216226 Country of ref document: AU |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 3485/CHENP/2008 Country of ref document: IN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 569797 Country of ref document: NZ |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 200801580 Country of ref document: EA |
|
| ENP | Entry into the national phase |
Ref document number: 2007216226 Country of ref document: AU Date of ref document: 20070213 Kind code of ref document: A |
|
| WWP | Wipo information: published in national office |
Ref document number: 2007216226 Country of ref document: AU |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 200780003965.4 Country of ref document: CN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 193236 Country of ref document: IL |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2008554868 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2008/010406 Country of ref document: MX |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2642465 Country of ref document: CA |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020087022304 Country of ref document: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: A200808838 Country of ref document: UA Ref document number: 2007733884 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: PI0706992 Country of ref document: BR Kind code of ref document: A2 Effective date: 20080811 |