WO2007091725A1 - 耐火用高強度圧延鋼材およびその製造方法 - Google Patents

耐火用高強度圧延鋼材およびその製造方法 Download PDF

Info

Publication number
WO2007091725A1
WO2007091725A1 PCT/JP2007/052658 JP2007052658W WO2007091725A1 WO 2007091725 A1 WO2007091725 A1 WO 2007091725A1 JP 2007052658 W JP2007052658 W JP 2007052658W WO 2007091725 A1 WO2007091725 A1 WO 2007091725A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
strength
steel
mass
rolled steel
Prior art date
Application number
PCT/JP2007/052658
Other languages
English (en)
French (fr)
Inventor
Teruhisa Okumura
Hiroshi Kita
Kohichi Yamamoto
Suguru Yoshida
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US12/223,690 priority Critical patent/US20090020190A1/en
Priority to JP2007557917A priority patent/JP5114743B2/ja
Priority to EP07708393A priority patent/EP1983069A4/en
Publication of WO2007091725A1 publication Critical patent/WO2007091725A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals

Definitions

  • the present invention relates to a fire-resistant high-strength rolled steel material used for a structural member of a building and a method for producing the same.
  • So-called refractory steel is steel for construction that has a predetermined strength even when a building encounters a fire and becomes hot. This section describes refractory steel that can maintain the strength at the temperature assuming that the temperature of the building at the time of fire is 600 ° C.
  • Well-known methods for strengthening steel materials are 1) refinement of ferrite crystal grain size, 2) solid solution strengthening method using alloy elements, 3) dispersion strengthening method using hardened phase, and 4) method using fine precipitates. It is. Microscopically, deformation of steel is covered by the movement of dislocations within the crystal grains, and either method is a method of strengthening the resistance against such movement of dislocations.
  • Such a method for strengthening the movement resistance is 1) a method for refining the ferrite crystal grain size. In general, the strength is evaluated by the following equation known as the Hall-Petch equation.
  • is the strength
  • ⁇ 0 is the base value
  • the proportionality constant k is also called the rocking parameter, and is an index indicating the resistance at the grain boundary
  • d is the crystal grain size.
  • alloy element slip surface resistance is present when solute atoms of different sizes such as alloy elements exist on the dislocation movement surface, which is called “slip surface” for dislocation movement. work.
  • an elastic stress field is formed by the distribution of alloying elements in steel, which acts as drag resistance against dislocation movement (hereinafter referred to as “drag resistance”). It is known that the drag resistance is affected by solute atom concentration, misfit caused by solute / solvent atom size, and diffusion coefficient of solute atoms.
  • the solid solution drag effect is a phenomenon in which solid solution Nb concentrates in lattice defects such as dislocations, and resistance to movement of the defects and dislocations increases the strength.
  • the inventors have found that the drag resistance due to this solid solution Nb is up to about 600 ° C.
  • the Nb-based refractory steel of the present invention has been discovered by finding the possibility of functioning effectively in the temperature range of the present invention. In order to complete a refractory steel with good properties, it was discovered that the following conditions must be satisfied. First, the amount of solute C must be low. This is because when the amount of solute C is high, NbC is formed and the amount of solute Nb decreases.
  • B needs to be added. Some of the Nb contained does not maintain a solid solution state, and some of the Nb is broken at the grain boundaries and cannot be concentrated into lattice defects such as dislocations.However, when B is added, B becomes a crystal grain instead of Nb. Pray to the world and help Nb maintain a solid solution.
  • solute N it is necessary to reduce the amount of solute N. This is because the added B reacts with N to form BN and loses the ability to segregate at the grain boundaries.
  • a means for reducing the amount of solute N by generating Ti by adding Ti is used.
  • the strength of a macro structure (multi-phase structure) in which a hard phase and a soft phase coexist varies with the volume fraction. This is due to the fact that the dislocations in the crystal grains of the hard phase are less likely to move than the soft phase, that is, the resistance required for deformation is large.
  • This method of strengthening by increasing the resistance based on the presence of the hard phase (hereinafter referred to as “hard phase resistance”) is called the dispersion strengthening method using the hardened phase.
  • precipitates When dislocations move within a crystal grain, if precipitates are distributed on the slip plane, they become an obstacle to dislocations and act to resist dislocation movement.
  • This The method of strengthening by increasing the resistance caused by precipitates (hereinafter referred to as “precipitate resistance”) is called 4) the method using fine precipitates.
  • Mo carbide is produced by adding Mo, and 4) a method using fine precipitates is used.
  • a refractory steel reinforced by a method using fine precipitates and a method for producing the same are disclosed in Japanese Patent Laid-Open No. 20 052 1 2 7 2 8 5 4 It is described in No. 9 publication.
  • the amount of C contained is as high as about 0.1%, so the alloy element does not dissolve in a solid form but uses the property of generating precipitates.
  • the inventors have conducted intensive research on a low-cost refractory steel using cheap Nb instead of expensive Mo as a solid solution element and a manufacturing method thereof.
  • the first problem is that when the drag effect of solute NM is applied to heavy refractory steel, problems arise in toughness if the added amounts of Ti and A1 are outside the specified range. Such toughness becomes a problem when manufacturing thick refractory steels when the steel sheet thickness is 7 mm or more, especially when the steel sheet thickness is 12 mm or more. .
  • the second challenge is to define an appropriate amount of dissolved C to obtain the Nb drag effect efficiently.
  • the third issue is the surface texture, especially the scale during reheating in a heating furnace. This is to regulate the amount of Si added to prevent surface flaws caused by defective peeling.
  • the present invention adjusts the Nb, B, and Ti component balance and the deoxidation element (S i, A1) content to achieve the desired yield strength at room temperature, high temperature strength, high toughness, and good surface properties. Is to achieve.
  • B is contained in the range of 0.0003 to 0.003%, and the content of A1 is limited to 0.005? To 0.03%. It has been found that the target toughness can be ensured by setting the T i / N in the range of 2 to 8 for the N content.
  • C-Nb is used in order to concentrate the solid solution Nb as a lattice defect such as dislocation by solid solution without precipitation as a carbide like NbC. / 7.
  • the value of 74 was found to be less than 0.02, for example. This corresponds to a solid solution C of 0.02 or less.
  • T i / N is set to an amount in the range of 2 to 8, to prevent the occurrence of scale wrinkles while ensuring the strength of the base metal, It was found that the content should be suppressed to less than 0.4%.
  • the solid solution C is 0.02% or less, it has been found that the “drag resistance” increases due to the solid solution of Nb, and a significant solid solution strengthening can be expected.
  • the drag resistance is affected by the solute atom concentration, the misfit caused by the solute / solvent atom size, and the diffusion coefficient of the solute atoms. Under these conditions, Nb was found to be highly effective. is there.
  • the strengthening effect due to the drag effect of solute Nb is about 5 to 8 times the strengthening effect of conventional refractory steel with the addition of Mo, and the same high-temperature strength can be secured by adding a smaller amount of alloy. I also found it possible.
  • the present invention by adjusting the component balance of C, Nb, B, Ti, Al, and Si, the desired yield strength at room temperature, high temperature strength, high toughness, and good surface properties can be achieved.
  • This high-strength rolled steel for fireproofing may further contain one or more of any of the following in terms of mass%: Cr: 0.4% or less, Cu: 1% or less, Ni: 1.0% or less .
  • C 0.005 ° or more and less than 0.04%
  • Mn 0.8 to 1.7%
  • Si 0.05 or more and less than 0.4%
  • Nb 0.02 to l o
  • Ti 0.005 to 0.02%
  • N 0.005% or less
  • B 0.0003-0.003%
  • A1 0.005% -0.03%
  • Ti / N is in the range of 2-8
  • C-Nb / Rolling was started after heating a piece of 7.74 of 0.02 or less and the balance consisting of Fe and inevitable impurities to a temperature range of 1250 to 1350 ° C, and the cumulative rolling reduction at 100 ° C or less was 30% or more.
  • a method for producing a high strength rolled steel material for fireproofing in which the ratio of 0.2% proof stress at 600 ° C and yield strength at room temperature is 0.50 or more.
  • C 0.005% or more and less than 0.04%
  • Mn 0.8 to 1.7%
  • Si 0.05 or more and less than 0.4%
  • Nb 0.02 to l%
  • Ti 0.005 to 0.02%
  • N 0.005% or less
  • B 0.0003 to 0.003%
  • Al 0.005% to 0.03%
  • TiZN is in the range of 2 to 8
  • C-Nb /7.74 is G.02 or less
  • the balance is made of Fe and inevitable impurities
  • the rolling is started after heating to a temperature range of 1250 to 1350 ° C.
  • the temperature range is 800 to 500:
  • the production method of high strength rolled steel for fireproofing with a ratio of 0.2% proof stress at 600 ° C and yield strength at room temperature of 0.50 or more is as follows. Provided If the yield strength at room temperature is unclear in these manufacturing methods, 0.2% resistance is applied.
  • the flakes further contain 1% or more of any of Cr: 0.4% or less, Cu: 1% or less, Ni: 1.0% or less, by mass%. May be.
  • refractory steel does not contain any commonly added Mo and solute Nb
  • Figure 1 shows the appropriate range for the relationship between Nb and C.
  • Figure 2 shows the proper range for the relationship between T i and N.
  • Fig. 3 is a diagram for explaining the drag effect of N b, (a) is a diagram when N b and B are added, and (b) is a diagram when N b alone is added alone. It is.
  • FIG. 4 is a schematic diagram showing an example of an arrangement of apparatuses for carrying out the method of the present invention.
  • FIG. 5 is a diagram showing a cross-sectional shape of an H-section steel and a sampling position of a mechanical test piece. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • the component ranges and control conditions for the component ranges in the refractory steel of the present invention are described below. Each component range is indicated by mass%.
  • C needs to be 0.005% or more in order to improve the hardenability and to obtain the strength required for structural steel.
  • the C content is 0.01% or more.
  • Mn needs to be added in an amount of 0.8% or more in order to increase the hardenability and ensure the strength and toughness of the base metal, but Mn is an element that causes central segregation when producing steel slabs in continuous forging. If the content exceeds 1.7%, the hardenability is excessively increased in the segregated portion and the toughness is deteriorated. In view of the above, the content range was set to 0.8% to 1.7%.
  • the Si content was set to 0.05% or more and less than 0.4%. In order to further improve the surface properties by preventing scale flaws, the Si content is preferably 0.2% or less.
  • Nb is an important element in the present invention.
  • Nb is an important element in the present invention.
  • the effect of the solid solution Nb necessary as a refractory steel can be maximized, so generally 0.1% or less, and 0.05% or less when other components are well balanced.
  • a sufficient effect can be obtained by adding Nb.
  • the amount of Nb added is specified, but the following conditions are necessary to obtain a sufficient amount of solute Nb.
  • Nb When Nb is in solid solution, the “drag resistance” due to the drag effect of the solid solution Nb improves and contributes to strengthening.
  • Nb is a strong carbide-forming element, so if C is present, it forms NbC, reducing the solute Nb and diminishing the strengthening mechanism by the drag effect.
  • C-Nb / 7.74 in order to obtain solid solution Nb sufficient for strengthening, C-Nb / 7.74 must be 0.02 mass% or less as a relation of the amount of Nb added to the amount of C added. I found out.
  • C-Nb / 7.74 when C-Nb / 7.74 is less than 0.02%, Nb and C decompose, and the necessary amount of Nb solid solution can be secured, contributing to the solid solution strengthening necessary for fire resistance. To do.
  • the appropriate amounts of Nb and C added and the balance of addition are as shown in Fig. 1.
  • the amount of C added must be 0.05% or more (b) to ensure strength and less than 0.04% to ensure toughness (c), and to ensure high temperature strength
  • the amount of Nb added is 0.02% or more (a)
  • the amount of Nb added to the amount of C added is Nb (C- 0.02).
  • Constraint (d) is required to be X 7.74 or higher.
  • N forms nitrides of NbN and BN, reduces the hardenability of Nb and B, and forms high-carbon island martensite at the lath boundary of the painite phase, thereby degrading toughness. Limited to less than%. In general, inevitable impurities contain N of about 20 to 30 ppm, so it is preferable to keep it to 0.003% or less.
  • A1 is added to deoxidize molten steel to obtain sufficient strength at room temperature and high temperature, and 0.005% or more must be added.
  • 0.005% or more must be added.
  • island-shaped martensite is formed and the toughness is deteriorated, and the high temperature strength of the weld is also adversely affected.
  • the reheat embrittlement characteristics of the weld are required, so it should be limited to 0.015% or less. An effect can be obtained.
  • the first is to reduce the solid solution by reducing the solute N by reducing the solute N by reducing the solute N due to TiN precipitation and increasing the amount of solute B and enhancing the hardenability of B. It is added for this purpose. This increases the yield strength and high temperature strength at room temperature. If the added amount is less than 0.005%, the amount of TiN deposited is insufficient, and these effects are not exhibited. Therefore, the lower limit of the Ti amount is set to 0.005%. Excess Ti exceeding 0,02% precipitates coarse Ti (CN) and is limited to 0.02% or less in order to deteriorate the toughness of the base metal and the weld heat affected zone.
  • the second is to reduce the amount of solute N that diminishes the drag effect of Nb.
  • TiZN the range of TiZN from 2 to 8 by mass% is appropriate. If Ti / N is less than 2, it is not sufficient to fix solute N as TiN. This is because when Ti / N exceeds 8, excess Ti forms coarse Ti (CN) and deteriorates toughness.
  • Ti / N it is possible to obtain the high-temperature strength as a refractory steel by making full use of the hardenability of B while ensuring sufficient toughness as a thick steel material. If it is 6 or less, more preferable characteristics can be obtained.
  • the range of proper addition amounts of Ti and Nb is as shown in Fig. 2. That is, the amount of Ti added must be 0.005% or more (a) to secure the amount of soot precipitation, and 0.02% or less to suppress the precipitation of coarse Ti (CN) (b), containing N The amount must be 0.005 or less (c), and Ti / N must be 2 or more (e) and S or less (d).
  • the first purpose is to further increase the hardenability and contribute to the strength by the combined addition with Nb.
  • the effect is not sufficient if it is less than 0.0003%, and if it exceeds 0.003%, iron-poron compounds are formed and the hardenability is reduced.
  • the second purpose is to maximize the drag effect of Nb.
  • Nb As shown in Fig. 3 (b), some of the Nb contained in the steel cannot maintain its solid solution state in the ferrite, and some of the Nb is prayed to the grain boundaries 8 and cannot exert the drag effect.
  • B when B is added, B preferentially segregates at the grain boundaries 8 instead of Nb and suppresses the segregation of Nb, and Nb is in a solid solution state in the ferrite. Because it helps maintain.
  • the B content should be 0,0003-0.003%.
  • Cu is effective in strengthening the base metal by improving the hardenability.
  • excessive addition exceeding 1% is harmful from the viewpoint of toughness and curability, so the upper limit was set to 1%.
  • Ni is effective in strengthening the base metal by improving the hardenability.
  • the upper limit was set at 1.0% from the economic viewpoint.
  • the amount of P and S contained as inevitable impurities is not particularly limited, but they should be reduced as much as possible because they cause weld cracking and toughness reduction due to solidification segregation.
  • the amount of P is desirably 0.03% or less, and the amount of S is desirably 0.02% or less.
  • Rolling is started after heating a piece having the above composition and the balance of Fe and inevitable impurities to a temperature range of 1250 to 1350 ° C.
  • the reason for reheating to a temperature range where the surface temperature of the piece is 1 250 to 1350 ° C is 1 250 ° C in order to obtain a solid solution Nb necessary for strengthening the base metal by solutionizing Nb in a short time. This is because the above heating is preferable, and in the production of the shape steel by hot working, heating at 1250 ° C. or higher is necessary to facilitate plastic deformation.
  • the upper limit of the heating temperature was set to 1350 ° C due to the performance and economy of the heating furnace.
  • the flakes heated to a surface temperature of 1250 to 1350 ° C in this way are hot-rolled.
  • rolling with a cumulative reduction ratio of 30% or higher at 1000 ° C or lower reduces the grain size based on work recrystallization, thereby increasing the toughness of the steel. High strength can be achieved.
  • cooling is performed at an average cooling rate of 0.1 to 10 ° C / sec in a temperature range of 800 to 500 ° C.
  • the reason for setting the cooling temperature range to 800-500 ° C is to secure solid solution Nb. Also, set the cooling rate to 0.1
  • ⁇ 10 / sec The reason for ⁇ 10 / sec is to quench when the average cooling rate is less than 0.rc / sec This is because if the average cooling rate is less than 10 / sec, martensite is generated and the base metal toughness is significantly reduced.
  • a feature of the steel component of the present invention is that sufficient hardenability can be ensured even at an average cooling rate of 0. C / sec.
  • the addition of B and Nb delays the start of transformation in the continuous cooling process, and by setting the above cooling rate, the untransformed T remains at a relatively low temperature while being supercooled.
  • the Nb diffusion rate decreases and NbC cannot be precipitated, and Nb becomes a solid solution with supersaturation.
  • the fire-resistant high-strength rolled steel material of the present invention is suitably used for structural members of buildings, and specifically, H-shaped steel, I-shaped steel, angle steel, grooved steel, unequal sides, unequal thicknesses. It is embodied as a shaped steel such as steel, or a thick steel plate with a thickness of 7 mm or more.
  • the flange plate thickness that is the most difficult to guarantee mechanical test characteristics in H-section steel is 1/2 part.
  • Width / part 2 has sufficient strength and toughness.
  • the steel pieces shown in Table 1 were heated and rolled. Specifically, prototype steel is melted in a converter, alloy components are added, then Ti and B are added, and continuous forging is performed. It was fabricated into a 240-300mm thick piece. After heating the slab, it was hot rolled into a H-shaped steel (web height 414 mm x flange width 405 mm x web thickness 18 mm x flange thickness 28 mm).
  • the material to be rolled (slab) 5 coming out of the heating furnace 1 was passed in the order of the roughing mill 2, the intermediate rolling mill 3, and the finishing rolling mill 4.
  • the steel was rolled into an H-section steel having an H-shaped cross section consisting of a web 6 and a pair of flanges 7.
  • water cooling devices are installed before and after the intermediate rolling mill 3, and spray cooling of the outer surface of the flange and reverse rolling are repeated, and accelerated cooling after rolling is finished with the finishing mill 4. Later, the outer surface of the flange was spray cooled with a cooling device installed on the rear surface.
  • the mechanical test characteristics of each steel include the yield strength at room temperature (21 ° C) (yield point stress YP (MPa), 0.2% strength resistance applied if unclear) and tensile strength ( TS (MPa)), 0.2% resistance at 600C (600YS (MPa)), resistance at 600 ° C (600YS) and yield strength at room temperature (21 ° C) (yield point stress YP) Ratio (600YSZYP ratio (%)), impact value (vE0 ° C (J)), and yield ratio (YR).
  • the tensile strength TS at room temperature (21 ° C) is 400 MPa or higher, and the yield strength (YP) is 235 MPa or higher, 0.2% resistance (600YS) at 600 ° C is the yield strength (yield point stress YP) at room temperature (21 ° C) 50?
  • Charpy impact absorption energy value (vEO) at 0 ° C is required to be 47J or more. This is because the acceptance criteria can be judged to be suitable for fireproof steel.
  • Table 1 shows the chemical composition values of the steel types used in the examples and the mechanical properties of the H-section steel.
  • All No. 1 to 14 H-section steels within the scope of the present invention satisfied the above acceptance criteria.
  • Each H-section steel within the scope of the present invention has a flange thickness of 1Z2t2, which is the most difficult to guarantee the mechanical test characteristics of the rolled section steel, and has sufficient strength and toughness even in the widened section. It had excellent toughness.
  • the average cooling rate is 0.05 ° C / sec to 1 5. 0 0. If it is out of the range of 0.1 to 10 ° C./second as in C / second, the characteristic criteria of the present invention cannot be satisfied.
  • the rolled steel targeted by the present invention is not limited to the H-shaped steel of the above-described example, but is also I-shaped steel, angle-shaped steel, channel-shaped steel, It can also be applied to steels such as various shape steels such as unequal unequal thickness angle steel, and thick plates, and can be manufactured even when the plate thickness is relatively large. Industrial applicability
  • a shape steel having fire resistance and toughness can be produced by rolling.
  • the refractory steel material of the present invention as a structural member of a building, a significant cost reduction can be realized by shortening the construction cost and construction period, and improving the reliability of large buildings and safety. Ensuring safety and improving economic efficiency.

Abstract

建造物の構造部材などに用いる耐火性と靭性の優れた耐火用高強度圧延鋼材であって、質量%で、C:0.005%以上0.04%未満、Mn:0.8~1.7%、Si:0.05以上0.4%未満、Nb:0.02~1%、Ti:0.005~0.02%、N:0.005%以下、B:0.0003~0.003%、Al:0.005%~0.03%、を含有し、且つ質量%で、Ti/Nが2~8の範囲内であり、C-Nb/7.74が0.02%以下であり、残部がFeおよび不可避不純物からなる、600℃での0.2%耐力と室温での降伏強度の比が0.50以上である耐火用高強度圧延鋼材。

Description

明 細 書 耐火用高強度圧延鋼材およびその製造方法 技術分野
本発明は、 建造物の構造部材などに用いられる耐火用高強度圧延 鋼材とその製造方法に関する。 背景技術
いわゆる耐火鋼とは、 建築物が火災等に遭遇して高温になった場 合においても、 所定の強度を有する建築用の鋼材のことである。 こ こでは、 火災時における建築物の温度を 600°Cと想定し、 当該温度 における強度を維持し得る耐火鋼について述べる。
さて、 鋼材を強化する方法には、 1 ) フェライ ト結晶粒径の微細 化方法、 2 ) 合金元素による固溶体強化方法、 3 ) 硬化相による分 散強化方法、 4 ) 微細析出物による方法が主流である。 鋼材の変形 は、 微視的に見ると結晶粒内での転位の移動により賄われており、 いずれの方法もそのような転位の移動に対する抵抗力を強化する方 法である。
そこで、 まず、 1 ) フェライ ト結晶粒径の微細化方法について述 ベる。
結晶粒内を移動した転位は粒界で一旦停止したのち、 隣の結晶粒 へ移動するので、 結晶粒界は転位の移動に対する抵抗 (以下、 「移 動抵抗」 という。 ) と して働く。 したがって、 結晶粒が細かくなる と、 移動する転位が結晶粒界に出会う頻度が高くなることから、 抵 抗力が増すことになる。 このような移動抵抗を強化する方法が 1 ) フェライ ト結晶粒径の微細化方法である。 なお、 一般には、 ホール · ぺツチの式として知られている下式に よって強度を評価している。
σ = σ 0 + k X d— 5
ここで、 σは強度であり、 σ 0 はベースの値であり、 比例定数 k は、 ロッキングパラメータとも云われ、 結晶粒界での抵抗力を示す 指標であり、 dは結晶粒径である。
次に、 2 ) 合金元素による固溶強化方法について述べる。
転位の移動に対して" すべり面" と称する転位の移動面上に合金 元素のような異なるサイズの溶質原子が存在する場合に抵抗 (以下 、 「合金元素すベり面抵抗」 という。 ) が働く。 また、 '合金元素が 鋼中に分布することにより弾性応力場が形成され、 転位の移動に対 する引摺り抵抗 (以下、 「引き摺り抵抗」 という。 ) として働く。 当該引摺り抵抗の大きさは、 溶質原子濃度、 溶質/溶媒原子サイズ に起因するミスフィ ッ ト、 溶質原子の拡散係数に影響されることが 知られている。
この 「合金元素すベり面抵抗」 あるいは 「引き摺り抵抗」 の増大 により強化する方法を 2 ) 合金元素による固溶強化方法といい、 「 合金元素すベり面抵抗」 を増大させる方法がよく知られている。
また、 「引き摺り抵抗」 の増大により強化する固溶強化方法とし て、 固溶 Nbの ドラッグ効果を利用する技術がある。 この固溶 Nbの ド ラッグ効果を利用する技術が、 薄手の耐火鋼の製造で用いられてお り、 例えば、 特開 2 0 0 0 — 0 5 4 0 6 1号公報ゃ特開平 2 0 0 0 一 2 4 8 3 3 5号公報に記載されている。
固溶 の ドラッグ効果とは、 固溶した Nbが転位などの格子欠陥に 濃化し、 欠陥や転位の移動の抵抗となり強度を向上させる現象であ る。
発明者らは、 この固溶 Nbによる ドラッグ抵抗が、 600°C程度まで の温度域で有効に機能する可能性を見出して本発明の Nb系耐火鋼の 開発に至ったものであるカ^ このような固溶 Nbの ドラッグ効果を十 分に機能させて、 十分な耐火性を有する耐火鋼を完成するためには 、 次のような条件を満たす必要があることを知見したものである。 第 1に、 固溶 Cの量を低い値にしなければならない。 固溶 Cの量が 高いと、 NbCを構成して固溶 Nbの量が減少するからである。
第 2 に、 Bを添加する必要がある。 含有した Nbの一部は固溶状態 を維持できずに結晶粒界に偏折して転位などの格子欠陥に濃化でき ないものが生ずるが、 Bを添加すると Bが Nbの代わり に結晶粒界に偏 祈して、 Nbが固溶状態を維持するのを助けるからである。
第 3 に、 固溶 N量を減少させる必要がある。 添加した Bは Nと反応 して BNを生成してしまい、 結晶粒界に偏析する能力を失うからであ る。 固溶 N量を減少させるためには、 T iを添加することにより T iNを 生成させて固溶 N量を減少させる手段が用いられる。
さ らに、 3 ) 硬化相による分散強化方法について述べる。
硬質相と軟質相が混在したマクロ組織 (複相組織) は、 一般に各 々の体積分率に応じて強度が変化する。 これは、 軟質相と比較して 、 硬質相の結晶粒内での転位が移動しにく いこと、 すなわち変形に 要する抵抗が大きいことに起因する。 この硬質相の存在に基づいた 抵抗 (以下、 「硬質相抵抗」 という。 ) を増加させることで強化す る方法を、 3 ) 硬化相による分散強化方法という。
例えば、 フェライ トとパーライ トで構成される複相の組織では硬 質相であるパーライ 卜の体積分率が増加すると相対的に軟質相であ るフェライ ト組織が低下し、 強度が上昇する。
最後に、 4 ) 微細析出物による方法について述べる。
結晶粒内の転位の移動に際し、 析出物がすべり面上に分布してい る場合、 転位の障害物となり、 転位の移動に対する抵抗が働く。 こ の、 析出物に起因する抵抗 (以下、 「析出物抵抗」 という。 ) を増 大させることで強化する方法を 4 ) 微細析出物による方法という。 従来の耐火鋼では、 Moの添加により Mo炭化物を生成して、 4 ) 微 細析出物による方法が用いられている。 Moを用いて 4 ) 微細析出物 による方法により強化された耐火鋼及びその製造方法等は、 特開 2 0 0 5一 2 7 2 8 5 4号公報ゃ特開平 0 9一 2 4 1 7 8 9号公報に 記載されている。
これらの従来の耐火鋼では、 含有する C量が 0. 1 %前後と高い値で あるため、 合金元素が固溶せず析出物を生成してしまう性質を利用 している。 - 発明の開示
しかし、 近年、 Mo価格の高騰により、 合金元素の固溶強化方法の 主役として Moを使用していたのでは、 価格競争力を失いはじめてき た。
そこで、 発明者らは、 固溶元素として高価な Moの代わりに安価な Nbを用いた低価格な耐火鋼及びその製造方法について鋭意研究を行 つてきた。 その結果、 Nbを固溶元素とする鋼を、 厚鋼材に使用でき る耐火鋼とするためには以下のような課題があることを見出した。 第 1 の課題は、 固溶 NMこよる ドラッグ効果を厚手の耐火鋼に適用 する場合には、 T i、 A 1の添加量が所定の範囲を外れると靭性に問題 を生じることである。 厚手の耐火鋼を製造する場合に、 このような 靭性が問題となるのは、 鋼板の厚さが 7 m m以上の場合であり、 特 に鋼板の厚さが 1 2 m m以上になると顕著となる。
第 2の課題は、 Nbのドラッグ効果を効率よく得るために適切な固 溶 C量を規定することである。
第 3の課題は、 表面性状、 特に加熱炉における再加熱時のスケー ル剥離不良に起因する表面疵を防止するため S i添加量を規制するこ とである。
本発明は、 Nb、 B、 T iの成分バランス、 および脱酸元素(S i、 A1 )含有量を調整することで、 目的とする、 室温における降伏強度 、 高温強度、 高靭性、 良表面性状を達成することにある。
発明者らは、 鋭意研究開発の結果、 上記課題を解決する方法を見 出した。
まず、 第 1 の課題に対しては、 Bを 0. 0003〜0. 003 %含有量させる とともに、 A 1の含有量を 0. 005 ? 〜 0. 03 %に制限し、 さらに、 T iと N の含有量について T i/Nを 2 〜 8の範囲の量にあるようにすれば、 目 的の靭性を確保できることを見出した。
次に、 第 2の課題に対しては、 固溶した Nbが NbCのような炭化物 となって析出せず、 固溶することにより、 転位などの格子欠陥に濃 化させるために、 C- Nb/7. 74の値を例えば 0. 02以下とすることの必 要性を見出した。 これは、 固溶 Cが 0. 02 以下であることに相当す る
最後に第 3の課題に対しては、 T i/Nを 2 〜 8の範囲の量とした場 合、 母材の強度を確保しつつ、 スケール疵の発生を抑制するには、 S iの含有量を 0. 4%未満に抑えれば良い事を見出した。
さらに、 固溶 Cが 0. 02 %以下である場合には、 Nbの固溶により 「 引き摺り抵抗」 が増大して大幅な固溶強化が望めることを見出した 。 当該 「引摺り抵抗」 は溶質原子濃度、 溶質/溶媒原子サイズに起 因するミスフィ ッ ト、 溶質原子の拡散係数に影響され、 当該条件の 下では、 Nbはその効果が大きいことを発見したのである。 加えて、 固溶 Nbのドラッグ効果による強化効果は、 従来の耐火鋼の Mo添加に よる強化効果の 5 〜 8倍程度であり、 より少量の合金添加により同 等の高温強度を確保することが可能となることも見出した。 以上、 本発明により、 C、 Nb、 B、 Ti、 Al、 Siの成分バランスを調 整することで、 目的の室温における降伏強度、 高温強度、 高靱性、 良表面性状を達成することができる。
かかる知見のもと、 本発明によれば、 質量%で、 C : 0.005 %以上 0.04%未満、 Mn : 0.8〜1.7%、 Si : 0.05以上 0.4%未満、 Nb: 0.02 〜1%、 Ti : 0.005〜0.02%、 N : 0.005 %以下、 B : 0.0003〜 0.003 %、 A1 : 0.005 %〜0.03¾、 を含有し、 且つ質量%>で、 TiZNが 2〜8 の範囲内であり、 C- Nb/7.74が 0.02以下であり、 残部が Feおよび不 可避不純物からなる、 600°Cでの 0.2 %耐力と室温での降伏強度の比 が 0.50以上である耐火用高強度圧延鋼材が提供される。 '
なお、 室温での降伏強度が不明瞭の場合は、 0.2%耐カを適用する が、 0.2%耐力の算出に当たっては、 JIS Z 2241 のオフセッ ト法 を用いる。
この耐火用高強度圧延鋼材は、 さ らに質量%で、 Cr : 0.4%以下 、 Cu: 1%以下、 Ni : 1.0%以下、 のいずれかの 1種または 2種以上 を含有しても良い。
また、 本発明によれば、 質量%で、 C: 0.005 °ο以上 0.04%未満、 Mn : 0.8〜 1.7%、 Si : 0.05以上 0.4%未満、 Nb : 0.02〜 l o、 Ti : 0. 005〜0.02%、 N : 0.005 %以下、 B: 0.0003〜 0.003 %、 A1 : 0.005 % 〜0.03%、 を含有し、 且つ質量%で、 Ti/Nが 2〜8の範囲内であり 、 C- Nb/7.74が 0.02以下であり、 残部が Feおよび不可避不純物から なる铸片を 1250〜 1350°Cの温度域に加熱した後に圧延を開始し、 10 00°C以下での累積圧下率が 30 %以上となる圧延を行う、 600°Cでの 0 .2%耐力と室温での降伏強度の比が 0.50以上である耐火用高強度圧 延鋼材の製造方法が提供される。
さ らに、 本発明によれば、 質量%で、 C: 0.005 %以上 0.04%未満 、 Mn : 0.8〜1.7%、 Si : 0.05以上 0.4%未満、 Nb : 0.02〜l%、 Ti : 0.005〜0.02%、 N : 0.005 %以下、 B : 0.0003〜 0.003 %、 Al : 0.005 %〜0.03%、 を含有し、 且つ質量%で、 TiZNが 2〜8の範囲内であ り、 C- Nb/7.74が G.02以下であり、 残部が Feおよび不可避不純物か らなる铸片を 1250〜 1350°Cの温度域に加熱した後に圧延を開始し、 前記圧延終了後 800〜 500 :の温度範囲において 0. 1〜 10°C/秒の平 均冷却速度で冷却する、 600°Cでの 0.2%耐力と室温での降伏強度の 比が 0.50以上である耐火用高強度圧延鋼材の製造方法が提供される なお、 これらの製造方法において室温での降伏強度が不明瞭の場 合は、 0.2%耐カを適用する。
これらの製造方法において、 前記铸片は、 さらに質量%で、 Cr : 0.4 %以下、 Cu : 1 %以下、 N i : 1.0 %以下、 のいずれかの 1種ま たは 2種以上を含有しても良い。
本発明によれば、 高強度、 高靱性を有し、 固溶 Nbのドラッグ効果 を最大限に発揮させることによって、 耐火鋼には一般的に添加され る Moを一切添加せず Nbの固溶だけによつて 600°Cでも室温の 1/2以上 の耐カを有する耐火性能に優れた鋼材を提供できる。 図面の簡単な説明
図 1 は、 N bと Cの関係において、 適正範囲を示す図である。 図 2 は、 T i と Nの関係において、 適正範囲を示す図である。 図 3は、 N bの ドラッグ効果を説明するための図であり、 ( a ) は N bと Bを添加した場合の図であり、 ( b ) は N bのみを単独に 添加した場合の図である。
. 図 4は、 本発明法を実施する装置配置例の一例を示す略図である 図 5は、 H形鋼の断面形状および機械試験片の採取位置を示す図 である。 発明を実施するための最良の形態
以下に、 本発明の耐火鋼における成分範囲と成分範囲の制御条件 について述べる。 なお、 各成分範囲は質量%で示す。
Cは、 焼き入れ性を高め、 構造用鋼材として必要な強度を得るた めに、 0.005 %以上が必要である。 望ましく は、 C含有量は、 0.01% 以上である。
しかしながら、 固溶 の ドラッグ効果による強化効果を得るため には、 0.04%未満である必要がある。 0.04%以上であると、 大量の Nbが NbCと して析出してしまい、 固溶強化に寄与する固溶 Nbの量が 減少してしまう可能性が高いからである。 固溶 Nbの ドラッグ効果に よる強化効果を得るためには、 0.02%以下であることが望ましい。 なお、 後述するように、 C-Nb/7.74が 0.02%以下の範囲であれば 、 固溶 Nbの量が確保される。 また、 C含有量を低減することで、 後 に加える Bにより、 Fe23 (CB)6の析出を防止する効果も有する。
Mnは、 焼入れ性を上昇させ、 母材の強度、 靭性の確保するために は 0.8%以上の添加が必要であるが、 Mnは連続铸造において鋼片を 製造する際、 中心偏析を引き起こす元素であり、 1.7%を超えて添 加すると、 偏析部において焼入れ性が過度に上昇し靱性が悪化する 。 以上を鑑み含有量の範囲を 0.8%以上 1.7%以下とした。
Siは、 0.4? 以上となると鍀片の再加熱中に低融点の Fe2Si04化合 物を生成し、 スケール剥離性を悪化させ表面疵を発生させるが、 母 材の強度を確保し、 後述のように A1の添加量を制限した場合におけ る溶鋼の予備脱酸のため 0.05%以上の添加が必要である。 後述の Ti /Nが 2〜 8の範囲の場合、 母材の強度確保しつつ、 スケール疵の発 生を抑制するには、 S iの含有量を 0.4 %未満とすればよいことから、 W
S i含有量を 0. 05 %以上 0. 4 %未満とした。 スケール疵防止によるさ らなる表面性状改善のためには S i含有量は 0. 2%以下とすることが望 ましい。
Nbは、 本発明において重要な元素であり、 固溶 Nbと Bとの共存に よって著しく焼入性を上昇させることにより室温における降伏強度 を高め、 またドラッグ効果により高温強度を増加させる目的で 0. 02 %以上を添加する。 しかし、 1 %を超えると Nb添加の効果が飽和す るので、 上限を 1 %とした。 本発明では耐火鋼と'して必要な固溶 Nb の効果を最大限に引き出すことができるので、 一般には 0. 1%以下、 他の成分のバランスが良好な場合は 0. 05%以下の Nb添加量で十分な 効果が得られる。 Nbの ドラッグ効果によって十分な耐火性確保する ためには単に Nbの添加量を規定するだけではなく、 固溶 Nbとしての 量を十分に得るために以下の条件が必要となる。
Nbが固溶している場合には、 固溶 Nbの ドラッグ効果による 「引き 摺り抵抗」 が向上して強化に寄与する。 しかし、 Nbは強い炭化物形 成元素であるため Cが存在すると NbCを形成し、 固溶 Nbが減じ、 ドラ ッグ効果による強化機構が薄れてしまう。
本発明では、 強化に十分な固溶 Nbを得るためには、 C添加量に対 する Nbの添加量の関係として、 C-Nb/7. 74を 0. 02質量%以下としな ければならないことをつきとめた。 ここで、 C-Nb/7. 74が 0. 02 %以 下の範囲においては、 Nbと Cが分解し、 必要な Nb固溶量が確保でき 、 耐火性に必要な固溶強化に十分寄与する。
以上を整理すると Nbと Cの添加量および添加バランスの適正範囲 は図 1 に示す通りとなる。 つまり、 C添加量は、 強度確保のため 0. 0 05 %以上 ( b ) 、 かつ、 靱性確保のため 0. 04%未満である必要があ り ( c ) 、 高温強度確保のためには、 Nbの添加量は 0. 02 %以上であ り ( a ) 、 および、 C添加量に対する Nbの添加量は N bが (C- 0. 02 ) X 7.74以上となる制約 ( d ) が必要である。
Nは、 NbN、 BNの窒化物を生成し、 Nb、 Bの焼入れ性を減じ、 また ペイナイ ト相のラス境界に高炭素島状マルテンサイ トを形成させ靱 性を劣化させるため N含有量を 0.005 %以下に制限した。 なお、 不可 避的不純物の中に 2 0〜 3 0 p pm程度の Nが含まれてるのが一般 的であるので 0.003%以下に抑えるのが好ましい。
A1は、 溶鋼を脱酸し、 室温および高温の強度を十分に得るために 添加するもので、 0.005 %以上の添加が必要である。 しかし、 特に 形鋼や厚鋼板の場合、 0.03%を超えて添加した場合は、 島状マルテ ンサイ トを形成し靱性を悪化させ、 また溶接部の高温強度にも悪影 響を与えるため、 0.03%以下とする必要がある。 厚鋼材としてのさ らなる母材靱性ゃ溶接部の再熱脆化特性が求められる場合は 0.015 %以下に制限すると良く、 さらには 0.01%未満に制限すると A1添加 量の観点からは最大限の効果を得ることができる。
Tiを添加する効果は大きく 2つある。
第 1は、 TiNの析出によるァ細粒化のため、 及び、 固溶 Nの低減 により BN、 NbNの析出を抑制して固溶 B量を増加させ、 Bの焼入性上 昇効果を高めるために添加するものである。 これにより室温におけ る降伏強度 · 高温強度を上昇させる。 添加量が 0.005 %未満では TiN の析出量が不足し、 これらの効果を発揮しないため、 Ti量の下限値 を 0.005 %とした。 0, 02%を超える過剰な Tiは粗大な Ti (CN)を析出 し、 母材および溶接熱影響部の靭性を劣化させるため 0.02%以下に 限定した。
第 2は、 Nbのドラッグ効果を衰えさせる固溶 N量を低減すること にある。
鋭意研究の結果、 質量%で TiZNが 2〜8の範囲が適切であること がわかつた。 Ti/Nが 2未満では固溶 Nを TiNとして固定するのに不十 分であり、 Ti/Nが 8を超えると過剰 Tiが粗大 Ti (CN)を形成し靭性を 劣化させるからである。 この Ti/Nの限定により厚鋼材としての靱性 を十分に確保しながら、 Bによる焼き入れ性を最大限に活用して耐 火鋼としての高温強度を得ることができ、 Ti/Nを 2.5以上 6以下にす るとさらに好ましい特性を得ることができる。
以上を整理すると、 Ti、 Nbの適正添加量の範囲は図 2に示す通り となる。 即ち、 Ti添加量は、 ΠΝの析出量を確保するため 0.005%以 上 ( a ) 、 かつ、 粗大な Ti (CN)の析出抑制のため 0.02%以下である 必要があり ( b ) 、 N含有量は、 0.005以下である必要があり ( c ) 、 および、 Ti/Nが 2以上 ( e ) 、 S以下 ( d ) であることが必要で ある。
Bを添加する目的は 2つある。
第 1 の目的は、 Nbとの複合添加によってさらに焼入性を上昇させ 強度上昇に寄与することにある。 鋭意研究の結果、 0.0003 %未満で はその効果は十分ではなく、 また 0.003%を超えると鉄ポロン化合 物を生成し焼入性を低減させる。
第 2の目的は、 Nbの ドラッグ効果を最大限に引き出すことにある 。 図 3 ( b ) に示すように、 鋼に含有する Nbの一部はフェライ ト中 での固溶状態を維持できずに結晶粒界 8に偏祈して ドラッグ効果が 発揮できないものが生ずる。 しかし、 図 3 ( a ) に示すように、 B を添加すると Bが Nbの代わりに優先的に結晶粒界 8に偏析して Nbの 偏析を抑制し、 Nbがフェライ ト中で固溶状態を維持するのを助ける からである。 この目的でも B含有量を 0, 0003〜0.003 %とすべきであ る。
第 1 と第 2の目的を最大限に両立させる意味では、 0.001〜0.002 %の8添加が好ましい。
Crは、 焼き入れ性の向上により、 母材の強化に有効である。 しか し 0. 4 %を超える過剰の添加は、 靭性および硬化性の観点から有害 となるため、 上限を 0. 4 %とした。
Cuは焼き入れ性の向上により、 母材の強化に有効である。 しかし 1 %を超える過剰の添加は、 靭性および硬化性の観点から有害とな るため、 上限を 1 %とした。
N iは焼き入れ性の向上により、 母材の強化に有効である。 しかし 経済性の観点から上限を 1. 0 %とした。
不可避不純物として含有する P、 Sは、 その量について特に限定し ないが凝固偏析による溶接割れおよび靭性の低下を生じるので、 極 力低減すべきである。 P量は、 望ましくは 0. 03 %以下、 S量は、 望ま しくは 0. 02 %以下である。
上記の組成を有し、 残部が Feおよび不可避不純物からなる铸片を 表面温度が 1250〜 1350°Cの温度域に加熱した後に圧延を開始する。 銬片の表面温度が 1 250〜 1350°Cとなる温度域に再加熱する理由は、 短時間で Nbを溶体化させて母材強化に必要な固溶 Nbを得るためには 1 250°C以上の加熱が好ましく、 また、 熱間加工による形鋼の製造に は塑性変形を容易にするため 1250°C以上の加熱が必要だからである 。 なお、 加熱炉の性能、 経済性から加熱温度上限を 1350°Cとした。
こう して表面温度を 1250〜 1350°Cの温度域に加熱した铸片を熱間 圧延する。 その熱間圧延において 1000°C以下での累積圧下率が 3 0 %以上となる圧延を行う ことにより、 加工再結晶に基づいてァ粒が 細粒化され、 これによつて鋼の高靭性化、 高強度化を図ることがで きる。
この熱間圧延の終了後、 800〜 500°Cの温度範囲において 0. 1〜 10 °C /秒の平均冷却速度で冷却する。 冷却の温度範囲を 800〜 500°Cと する理由は、 固溶 Nbを確保するためである。 また、 冷却速度を 0. 1
〜 10で /秒とする理由は、 平均冷却速度が 0. rc /秒未満では焼き入 れ性が不足し、 平均冷却速度が 10で/秒を超えると、 マルテンサイ トを生成し母材靭性を著しく低下させてしまうからである。
本発明の鋼成分の特徴は平均冷却速度が 0. C /秒でも十分な焼き 入れ性が確保できる点にもあり、 厚手の鋼材、 例えばフランジ厚が
1 2 5 m m相当の極厚の H形鋼にも適用が可能である。 また、 本発 明にあっては、 B、 Nbの添加により、 連続冷却過程において変態開 始が遅らされ、 上記の冷却速度とすることにより未変態の Tが過冷 却のまま比較的低温まで保持され、 Nbの拡散速度が低下することに より NbCが析出できず Nbは過飽和で固溶することになる。
本発明の耐火用高強度圧延鋼材は、 建造物の構造部材などに好適 に用いられ、 具体的には、 H形鋼、 I 形鋼、 山形鋼、 溝形鋼、 不等 辺不等厚山形鋼等の形鋼や、 例えば板厚 7 m m以上の厚鋼板として 具現化される。
そして、 例えば上記の条件で、 本発明の耐火用高強度圧延鋼材の 一例として H形鋼を製造した場合、 H形鋼において機械試験特性の最 も保証しにく いフランジ板厚 1 / 2部、 幅し / 2部においても十分な強 度、 靭性を有する。
また、 固溶 Nbの ドラッグ効果に基づく強化効果により、 優れた耐 火性能および靭性を有する高強度耐火圧延 H形鋼を得ることができ る。 さ らに、 当該 H形鋼は、 高温特性に優れるので、 建築用の耐火 材に用いる場合、 被覆厚さが従来の 5 0 %以下で充分な耐火目的を 達成できる。 実施例
以下に実施例により さらに本発明の効果を示す。
表 1 に示す各鋼種の铸片を加熱し圧延を行った。 具体的には、 試 作鋼を転炉溶製し、 合金成分を添加後、 T i、 Bを添加し、 連続踌造 により 240〜 300mm厚铸片に铸造した。 铸片を加熱した後熱間圧延に より、 H形鋼 (ウェブ高 414mm Xフランジ幅 405mm Xウェブ厚 18 mm X フランジ厚 28mm) とした。
圧延にあたっては、 図 4に示すユニバーサル圧延装置列において 、 加熱炉 1 から出た被圧延材 (铸片) 5 を粗圧延機 2、 中間圧延機 3、 仕上圧延機 4の順に通した。
圧延機においては、 図 5 に示すように、 ウェブ 6 と一対のフラン ジ 7からなる H形の断面形状を有する H形鋼に圧延した。
なお、 圧延パス間での水冷にあたっては、 中間圧延機 3の前後に 水冷装置を設け、 フランジ外側面のスプレー冷却とリバース圧延の 繰り返しにより行い、 圧延後の加速冷却は仕上圧延機 4で圧延終了 後にその後面に設置した冷却装置でフランジ外側面をスプレー冷却 した。
各鋼材 (H形鋼) において、 フランジ 7 の板厚 t 2 の中心部 (1 /2 t 2 ) であり、 かつ、 フランジ幅全長 Bの半分の ( 1./2B) と なる位置でそれぞれ試験片を採集し、 機械的特性を調べた。
H形鋼の機械試験特性を評価する上で当該箇所が最適と判断した のは、 フランジし κ2Β部は H形鋼の機械的特性が最も低下すること を理由とする。
各鋼材 (Η形鋼) の機械試験特性として、 室温 (21°C) での降伏 強度 (降伏点応力 YP (M P a ) 、 不明瞭な場合は 0.2%耐カを適用 ) と引張り強さ (TS (M P a ) ) 、 600Cでの 0.2%耐カ ( 600YS ( M P a ) ) 、 600°Cでの耐カ ( 600YS) と室温 (21°C) での降伏強度 (降伏点応力 YP) との比 ( 600YSZYP比 (%) ) 、 衝撃値 (vE0°C ( J) ) 、 降伏比 (YR) をそれぞれ示す。
各機械試験特性の合格基準として、 室温 (21°C) での引張強さ TS が 400MPa以上、 降伏強度 (YP) が 235MPa以上の高強度で、 しかも、 600°Cでの 0.2%耐カ ( 600YS) が室温 (21°C) での降伏強度 (降伏 点応力 YP) の 5 0? 以上、 0°Cにおけるシャルピー衝撃吸収ェネル ギー値(vEO)が 47J以上を要求した。 この合格基準であれば、 耐火性 用鋼材として相応しいと判断できるからである。
表 1
Figure imgf000018_0001
表 1 には、 実施例に用いた各鋼種の化学成分値と、 H形鋼の機械 的特性を示す。
本発明の範囲内にある N o . 1〜 1 4の各H形鋼は、 いずれも上 記合格基準を満たした。 本発明範囲内の各 H形鋼は、 圧延形鋼の機 械試験特性の最も保証しにく いフランジ板厚 1Z2 t 2、 幅し 部 においても十分な強度、 靱性を有し、 耐火性及び靱性の優れたもの であった。
比較例 N o . 1 7 については、 機械試験特性は満足できたものの 加熱中に生成した 1次スケールが最終製品まで密着残留してスケー ル疵となり、 建築用鋼材としての使用に適さないレベルであった。
表 2
Figure imgf000020_0001
次に表 2 に記された実施例について説明する。
表 1 の No. 1、 1 3の鋼について加熱温度、 1 0 0 0 °C以下累積 圧下率を変更して H形鋼 (ウェブ高 414m mxフランジ幅 405mm、 ウェブ厚 18mm Xフランジ厚 28mm) と し、 機械試験特性を調べた 。 表 2の No. 1、 1 3は本発明の製造例であり、 本発明の特性基準 を満足している。
表 2の N o . 3 0、 3 1、 3 2、 3 3 に示す通り、 加熱温度が 1 2 5 0 °C未満の場合および、 1 0 0 0 °C以下の累積圧下率が 3 0 % 未満の場合について、 本発明の特性基準を満足できていない。
表 1 の No. 9、 1 4の鋼について、 加熱温度を 1 3.0 0 °Cと し、 圧延後、 8 0 0〜 5 0 0 °Cの温度範囲における平均冷却速度を変更 して H形鋼 (ゥェブ高 414mm Xフランジ幅 405mm xゥェブ厚 18m m Xフランジ厚 28mmおよびゥェブ高 608mm xフランジ幅 477mm xウェブ厚 90mm Xフランジ厚 125mm) とし、 機械試験特性を調 ベた。 表 2の No. 9、 1 4、 3 4、 3 5は本発明の製造例であり、 本発明の特性基準を満足している。
表 2の N o . 3 6、 3 7、 3 8、 3 9に示す通り、 平均冷却速度 が 0. 0 5 °C /秒ないし 1 5. 0 0。C /秒のよう に 0. 1〜 : 1 0 °C / 秒の範囲外の場合、 本発明の特性基準を満足できていない。
なお、 実施例では典型的な圧延鋼材 H形鋼について検証したが、 本発明が対象とする圧延鋼材は、 上記実施例の H形鋼に限らず、 I 形鋼、 山形鋼、 溝形鋼、 不等辺不等厚山形鋼等の各種形鋼、 厚板な どといった鋼材にも適用でき、 また板厚が比較的厚い場合でも製造 が可能である。 産業上の利用可能性
本発明によれば、 耐火性及び靱性を持つ形鋼などが圧延で製造可 能になり、 本発明の耐火鋼材を建造物の構造部材などに利用するこ とにより、 施工コス ト、 ェ期の短縮による大幅なコス ト削減が実現 され、 大型建造物の信頼性向上、 安全性の確保、 経済性等の向上が 達成される。

Claims

1. 質量%で、
C: 0.005 %以上 0.04%未満、
Mn: 0.8〜 1.7%、
Si : 0.05以上 0.4%未満、
Nb: 0.02〜し0' ό、
Ti: 0.005〜0.02%、
N: 0.005 %以下、
B: 0.0003〜0.003 %、 ·
A1 : 0.005 %〜0.03%、
を含有し、 且つ質量%で、 Ti./Nが 2〜8の範囲内であり、 C-Nb/7.74 が 0.02? 以下であり、 残部が Feおよび不可避不純物からなる、 600 °Cにおける 0.2 %耐力の室温における降伏強度(降伏点が不明瞭な場 合は 0.2%耐カ)に対する比が 0.50以上であることを特徴とする耐火 用高強度圧延鋼材。
2. さらに質量%で、
Cr: 0.4%以下、
Cu: 1%以下、
Ni : 0.7%;以下、
のいずれかの 1種または 2種以上を含有する、 請求の範囲 1に記載 の耐火用高強度圧延鋼材。
3. 質量%で、
C: 0.005 %以上 0.04%未満、
Mn: 0.8〜 1.7%、
Si: 0.05以上 0.4%未満、
Nb: 0.02〜1%、 Ti: 0.005〜0.02%、
N: 0.005 %以下、
B: 0.0003〜 0.003 %、
Al : 0.005 %〜0.03%、
を含有し、 且つ質量%で、 TiZNが 2〜8の範囲内であり、 C-Nb/7.74 が 0.02%以下であり、 残部が Feおよび不可避不純物からなる銬片を 、 1250〜 1350°Cの温度域に加熱した後に圧延を開始し、 1000°C以下 での累積圧下率が 30%以上となる圧延を行う、 600°Cにおける 0.2% 耐力と室温における降伏強度(降伏点が不明瞭な場合は 0.2%耐カ)の 比が 0.50以上であることを特徴とする耐火用高強度圧延鋼材の製造 方法。
4. 前記铸片は、 さらに質量%で、
Cr: 0.4%以下、
Cu: 1%以下、
Ni: 0.7%以下、
のいずれかの 1種または 2種以上を含有する請求の範囲 3に記載の 耐火用高強度圧延鋼材の製造方法。
5. 質量 ¾で、
C: 0.005 %以上 0.04%未満、
Mn: 0.8〜 1.7%、
Si: 0.05以上 0.4%未満、
Nb: 0.02〜1%、
Ti: 0.005〜0.02%、
N: 0.005 %以下、
B: 0.0003〜0.003 %、
A1 : 0.005 %〜0.03%
を含有し、 且つ質量%で、 TiZNが 2〜8の範囲内であり、 C- Nb/7.74 が 0.02%以下であり、 残部が Feおよび不可避不純物からなる铸片を 、 1250〜1350°Cの温度域に加熱した後に圧延を開始し、 前記圧延終 了後 800〜 500°Cの温度範囲において 0.1〜 10°C/秒の平均冷却速度で 冷却する、 600°Cにおける 0.2%耐力と室温における降伏強度(降伏 点が不明瞭な場合は 0.2%耐カ)の比が 0.50以上であることを特徴と する耐火用高強度圧延鋼材の製造方法。
6. 前記鍀片は、 さらに質量%で、
Cr: 0.4%以下、
2
Cu: 1? 以下、 3 Ni: 0.7%以下、
のいずれかの 1種または 2種以上を含有する請求の範囲 5に記載の 耐火用高強度圧延鋼材の製造方法。
PCT/JP2007/052658 2006-02-08 2007-02-08 耐火用高強度圧延鋼材およびその製造方法 WO2007091725A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/223,690 US20090020190A1 (en) 2006-02-08 2007-02-08 Fire Resistant High Strength Rolled Steel Material and Method of Production of The Same
JP2007557917A JP5114743B2 (ja) 2006-02-08 2007-02-08 耐火用高強度圧延鋼材およびその製造方法
EP07708393A EP1983069A4 (en) 2006-02-08 2007-02-08 FIRE-RESISTANT ROLLED STEEL MATERIAL WITH HIGH STRENGTH AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-030962 2006-02-08
JP2006030962 2006-02-08

Publications (1)

Publication Number Publication Date
WO2007091725A1 true WO2007091725A1 (ja) 2007-08-16

Family

ID=38345311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052658 WO2007091725A1 (ja) 2006-02-08 2007-02-08 耐火用高強度圧延鋼材およびその製造方法

Country Status (6)

Country Link
US (1) US20090020190A1 (ja)
EP (1) EP1983069A4 (ja)
JP (1) JP5114743B2 (ja)
KR (1) KR101018055B1 (ja)
CN (1) CN101379209A (ja)
WO (1) WO2007091725A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195991A (ja) * 2007-02-09 2008-08-28 Nippon Steel Corp 高温特性に優れた蒸気輸送配管用鋼板及び鋼管並びにそれらの製造方法
CN102400049A (zh) * 2010-09-07 2012-04-04 鞍钢股份有限公司 一种490级别建筑结构用耐火钢板及其制造方法
CN102851596A (zh) * 2011-06-28 2013-01-02 鞍钢股份有限公司 一种低成本490MPa级建筑结构用耐火钢板及其制造方法
WO2014175122A1 (ja) 2013-04-26 2014-10-30 新日鐵住金株式会社 H形鋼及びその製造方法
US9644372B2 (en) 2011-12-15 2017-05-09 Nippon Steel & Sumitomo Metal Corporation High-strength H-beam steel exhibiting excellent low-temperature toughness and method of manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004062739A1 (de) * 2004-12-27 2006-07-06 Degussa Ag Selbstreinigende Oberflächen mit durch hydrophobe Partikel gebildeten Erhebungen, mit verbesserter mechanischer Festigkeit
CN104561819B (zh) * 2014-11-26 2017-05-24 南京钢铁股份有限公司 一种q460级耐火耐候钢及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286233A (ja) * 1994-04-19 1995-10-31 Nippon Steel Corp 耐火性の優れた建築用低降伏比鋼材およびその製造方法
JP2000248335A (ja) * 1999-02-26 2000-09-12 Nippon Steel Corp 靭性に優れた低降伏比型耐火用熱延鋼板及び鋼管並びにそれらの製造方法
JP2000282167A (ja) * 1999-03-29 2000-10-10 Nippon Steel Corp 靱性に優れた低降伏比型鋼材及び鋼管並びにそれらの製造方法
JP2004360361A (ja) * 2003-06-06 2004-12-24 Nippon Steel Corp 無耐火被覆鉄骨構造物
JP2005194869A (ja) * 2003-12-10 2005-07-21 Nippon Steel Corp 耐火被覆を省略または削減可能な鉄骨構造物
JP2005272949A (ja) * 2004-03-25 2005-10-06 Jfe Steel Kk 耐火性に優れた低降伏比圧延h形鋼およびその製造法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877528A (ja) * 1981-10-31 1983-05-10 Nippon Steel Corp 低温靭性の優れた高張力鋼の製造法
JPH08333651A (ja) * 1995-06-06 1996-12-17 Nippon Steel Corp 耐haz硬化特性に優れた鋼材
JP3817064B2 (ja) * 1998-04-22 2006-08-30 新日本製鐵株式会社 低降伏比型耐火用熱延鋼板及び鋼管並びにそれらの製造方法
JP3559455B2 (ja) * 1998-08-10 2004-09-02 新日本製鐵株式会社 低降伏比型耐火用鋼材及び鋼管並びにそれらの製造方法
JP2001262225A (ja) * 2000-03-14 2001-09-26 Nkk Corp 極厚h形鋼の製造方法
JP4362219B2 (ja) * 2000-10-11 2009-11-11 新日本製鐵株式会社 高温強度に優れた鋼およびその製造方法
JP2002146484A (ja) 2000-11-10 2002-05-22 Sanyo Special Steel Co Ltd 高強度フェライト系耐熱鋼
JP2002294391A (ja) * 2001-03-29 2002-10-09 Kawasaki Steel Corp 建築構造用鋼及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286233A (ja) * 1994-04-19 1995-10-31 Nippon Steel Corp 耐火性の優れた建築用低降伏比鋼材およびその製造方法
JP2000248335A (ja) * 1999-02-26 2000-09-12 Nippon Steel Corp 靭性に優れた低降伏比型耐火用熱延鋼板及び鋼管並びにそれらの製造方法
JP2000282167A (ja) * 1999-03-29 2000-10-10 Nippon Steel Corp 靱性に優れた低降伏比型鋼材及び鋼管並びにそれらの製造方法
JP2004360361A (ja) * 2003-06-06 2004-12-24 Nippon Steel Corp 無耐火被覆鉄骨構造物
JP2005194869A (ja) * 2003-12-10 2005-07-21 Nippon Steel Corp 耐火被覆を省略または削減可能な鉄骨構造物
JP2005272949A (ja) * 2004-03-25 2005-10-06 Jfe Steel Kk 耐火性に優れた低降伏比圧延h形鋼およびその製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1983069A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195991A (ja) * 2007-02-09 2008-08-28 Nippon Steel Corp 高温特性に優れた蒸気輸送配管用鋼板及び鋼管並びにそれらの製造方法
CN102400049A (zh) * 2010-09-07 2012-04-04 鞍钢股份有限公司 一种490级别建筑结构用耐火钢板及其制造方法
CN102400049B (zh) * 2010-09-07 2014-03-12 鞍钢股份有限公司 一种490级别建筑结构用耐火钢板及其制造方法
CN102851596A (zh) * 2011-06-28 2013-01-02 鞍钢股份有限公司 一种低成本490MPa级建筑结构用耐火钢板及其制造方法
CN102851596B (zh) * 2011-06-28 2015-10-07 鞍钢股份有限公司 一种低成本490MPa级建筑结构用耐火钢板及其制造方法
US9644372B2 (en) 2011-12-15 2017-05-09 Nippon Steel & Sumitomo Metal Corporation High-strength H-beam steel exhibiting excellent low-temperature toughness and method of manufacturing same
WO2014175122A1 (ja) 2013-04-26 2014-10-30 新日鐵住金株式会社 H形鋼及びその製造方法

Also Published As

Publication number Publication date
EP1983069A4 (en) 2011-03-02
KR101018055B1 (ko) 2011-03-02
JP5114743B2 (ja) 2013-01-09
JPWO2007091725A1 (ja) 2009-07-02
EP1983069A1 (en) 2008-10-22
US20090020190A1 (en) 2009-01-22
CN101379209A (zh) 2009-03-04
KR20080077240A (ko) 2008-08-21

Similar Documents

Publication Publication Date Title
JP4538094B2 (ja) 高強度厚鋼板およびその製造方法
JP5277648B2 (ja) 耐遅れ破壊特性に優れた高張力鋼板並びにその製造方法
JP5228062B2 (ja) 溶接性に優れた高強度薄鋼板及びその製造方法
WO2013089156A1 (ja) 低温靭性に優れた高強度h形鋼及びその製造方法
JP5849846B2 (ja) 耐火鋼材及びその製造方法
WO2008126910A1 (ja) 高温特性と靱性に優れた鋼材及びその製造方法
WO2013089089A1 (ja) 高強度極厚h形鋼
WO2008126944A1 (ja) 高温強度、靭性に優れた鋼材並びにその製造方法
WO2007091725A1 (ja) 耐火用高強度圧延鋼材およびその製造方法
JP4072191B1 (ja) 高温強度、靭性及び耐再熱脆化特性に優れた耐火鋼材並びにその製造方法
JP2007191747A (ja) 低降伏比耐火鋼材
JP3602471B2 (ja) 溶接性に優れた高張力鋼板およびその製造方法
JP2007191746A (ja) 溶接性に優れた耐火鋼材
JP5103037B2 (ja) 母材および溶接熱影響部の靭性に優れた厚鋼板
JP4757858B2 (ja) 高温強度、靭性及び耐再熱脆化特性に優れた耐火鋼材並びにその製造方法
JP4433844B2 (ja) 耐火性および溶接熱影響部の靭性に優れる高張力鋼の製造方法
JP3863413B2 (ja) 高靭性高張力非調質厚鋼板およびその製造方法
JP4757857B2 (ja) 高温強度、靭性及び耐再熱脆化特性に優れた耐火鋼材並びにその製造方法
JP5223295B2 (ja) 耐再熱脆化特性に優れた耐火h形鋼及びその製造方法
JP2546954B2 (ja) 耐火性の優れた建築用高張力鋼の製造方法
JP2005272949A (ja) 耐火性に優れた低降伏比圧延h形鋼およびその製造法
JP2005307313A (ja) 耐震性と溶接性に優れた鋼板の製造方法
JP5494090B2 (ja) 耐再熱脆化性及び低温靭性に優れた耐火鋼材並びにその製造方法
JP2001089816A (ja) 高強度熱延鋼板の製造方法
JP2546953B2 (ja) 耐火性の優れた建築用高張力鋼の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007557917

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087016006

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2007708393

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007708393

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12223690

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780004868.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE