WO2007088749A1 - 重合性ジアマンチルエステル化合物の製造方法 - Google Patents

重合性ジアマンチルエステル化合物の製造方法 Download PDF

Info

Publication number
WO2007088749A1
WO2007088749A1 PCT/JP2007/050943 JP2007050943W WO2007088749A1 WO 2007088749 A1 WO2007088749 A1 WO 2007088749A1 JP 2007050943 W JP2007050943 W JP 2007050943W WO 2007088749 A1 WO2007088749 A1 WO 2007088749A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamantyl
polymerizable
formula
ester compound
reaction
Prior art date
Application number
PCT/JP2007/050943
Other languages
English (en)
French (fr)
Inventor
Takayuki Maehara
Original Assignee
Tokuyama Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corporation filed Critical Tokuyama Corporation
Publication of WO2007088749A1 publication Critical patent/WO2007088749A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/12Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of esters of mineral acids
    • C07C29/124Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of esters of mineral acids of halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/90Ring systems containing bridged rings containing more than four rings

Definitions

  • the present invention relates to a method for producing a polymerizable dimantyl ester compound useful as a raw material monomer for producing a functional material or an electronic material.
  • a diamantane derivative has a carbon skeleton similar to an adamantane derivative having the characteristics of excellent heat resistance and high transparency. Since the diamantane skeleton has a larger number of condensed rings than the adamantane skeleton, the diamantane derivative is considered to have better physical properties such as heat resistance than the adamantane derivative. For this reason, diamantane derivatives are expected to be used as raw materials for highly functional materials such as heat-resistant polymers and electronic materials such as resists for semiconductors. Among the diamantane derivatives, the polymerizable diamantyl ester compound must be a very useful compound as a raw material monomer when producing a polymer material or a resist material alone or copolymerized with other monomers. There is expected.
  • the polymerizable diamantyl ester compound and the polymerizable adamantyl ester compound are similar in chemical structure.
  • the reactivity of raw materials used in the synthesis of these compounds solubility in organic solvents, melting point of the target polymerizable diamantyl ester compound and polymerizable diadamantyl ester compound, etc.
  • diamantane derivatives are less soluble in organic solvents than adamantane derivatives.
  • the reaction time using a diamantane derivative as a raw material is often longer than the case of using an adamantane derivative as a raw material.
  • a method for producing a polymerizable diamantyl ester compound there is a method in which diamantanol is reacted with methacrylic acid chloride in methylene chloride in the presence of triethylamine (see Patent Document 1).
  • Patent Document 1 For example, as an example of producing an adamantane derivative by a reaction similar to this reaction, an example is known in which 1-adamantanol is reacted with acrylic acid chloride in methylene chloride in the presence of pyridine (see Non-Patent Document 1). ing.
  • the solubility of diamantanol in an organic solvent is lower than the solubility of adamantanol in an organic solvent. Therefore, the reaction time using diamantanol is remarkably long. Specifically, the reaction time of the reaction using adamantanol is about ⁇ . In contrast, the reaction time for the reaction using diamantanol is more than 3 days.
  • Patent Document 1 which describes a method for producing the above polymerizable diamantyl ester compound, clearly shows the bonding position of the substituent bonded to the raw material compound or the product compound. It has not been. Therefore, the details of what specific compounds were produced are unclear. Furthermore, there is no description regarding the purification method.
  • Patent Document 1 International Publication No. WO2005Z036265 Pamphlet
  • Non-patent literature l The Journal of Organic Chemistry, 2001, 66, 4468
  • an object of the present invention is to provide a method for efficiently producing a polymerizable diamantyl ester compound.
  • the inventor has intensively studied to solve the above problems. As a result, when a 1-diamantanol compound and a polymerizable unsaturated carboxylic acid anhydride are reacted in the presence of a polymerization inhibitor and an acid catalyst, a polymerizable diamantyl ester compound is efficiently produced. And found that the present invention can be completed.
  • R 1 is a polymerizable unsaturated hydrocarbon group which may have a substituent
  • R 2 , R 3 and R 4 each independently represents a hydrogen atom or a carbon number of 1
  • R 2, R 3 and R 4 are each the formula in (1) have the same meanings as R 3 and R 4.
  • R 1 has the same meaning as R 1 in the formula (1).
  • a step of obtaining a crude product of the polymerizable diamantyl ester compound represented by the formula (1) by reacting the polymerizable unsaturated carboxylic acid anhydride represented by the formula (1) in the presence of a polymerization inhibitor and an acid catalyst is the method characterized by this.
  • a polymerizable diamantyl ester compound compound which is a target product can be efficiently produced in a short time.
  • the production method of the present invention has the following advantages over the conventional method. That is, as a first advantage, when the esterification reaction is performed at a relatively high temperature, the reaction time is greatly shortened. The reason is that the conventional method has a relatively high reactivity under basic conditions V, but is easily decomposed in a high temperature region above room temperature, and uses acid chloride as an esterifying agent. It cannot be reacted. As a result, it is necessary to lengthen the reaction time in order to increase the yield.
  • an acid anhydride is employed as the esterifying agent. The acid anhydride can exist stably under acidic conditions.
  • the reaction can be carried out in a high temperature region by carrying out the reaction under acidic conditions. As a result, the reaction time can be shortened.
  • the crude product of the polymerizable diamantyl ester compound obtained by this production method may be crystallized with a solvent containing at least an alcohol. .
  • a high-purity polymerizable diamantyl ester having a very low content of an impurity component having a molecular weight of about 300 to 5,000 (hereinafter, the impurity component is also referred to as “oligomer impurity”).
  • oligomer impurity is also referred to as “oligomer impurity”.
  • oligomeric impurities are difficult to confirm by gas chromatography (hereinafter simply referred to as GC) and can be confirmed by gel permeation chromatography (hereinafter simply referred to as GPC).
  • FIG. 1 is a proton nuclear magnetic resonance (H-NMR) spectrum of 1-diamantyl metatalylate obtained in Example 1.
  • FIG. 2 is a 13 C nuclear magnetic resonance ( 13 C NMR) spectrum of 1-diamantyl metatalylate obtained in Example 1.
  • a 1-diamantananol compound represented by the above formula (2) and a polymerizable unsaturated carboxylic acid anhydride represented by the above formula (3) are used as a polymerization inhibitor and By reacting in the presence of an acid catalyst, the polymerizable diamantyl ester compound represented by the formula (1) is produced.
  • reaction raw materials and catalysts used in the production method of the present invention reaction conditions, reaction procedures, products and the like will be described in detail.
  • a 1-diamantanoalkyl compound represented by the following formula (2) is used as a reaction raw material.
  • R 2 , R 3 and R 4 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • the alkyl group having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n butyl group, sec butyl group, t butyl group, n —Pentyl group, sec pentyl group, isopentyl group and the like.
  • R 2 , R 3 and R 4 are preferably a hydrogen atom or a methyl group because of easy availability of raw materials.
  • 1-diamantanol and 4,9 dimethyl-1-diamantanol are particularly preferred from the viewpoint of the usefulness of the product, and 1-diamantanol is preferred.
  • 1-promodiamantane is hydrolyzed in a mixed solvent of N, N dimethylformamide and 0.7N hydrochloric acid by the method described in The Journal of Organic Chemistry, 1983, pp. 48, 2975. .
  • 1-diamantanol can be selectively obtained.
  • bromine as a brominating agent also serves as a reaction solvent, and the amount of bromine used is relatively large. As a result, the yield of the kettle decreases and the post-treatment becomes complicated, so this method is not suitable for mass production.
  • the present inventor can use halogenated aliphatic hydrocarbons such as dichloromethane, chloroform, tetrasalt-carbon, and the like as a reaction solvent to reduce the amount of bromine. I thought it was preferable. By adopting this method, it is possible to avoid a method that is inappropriate for mass production when an odor is dropped onto a solid diamantane compound.
  • halogenated aliphatic hydrocarbons release a halogen atom or form a bond with a halogen atom by a radical reaction. Therefore, in the initial stage of developing a bromination method using a reaction solvent, the halogenated aliphatic hydrocarbons react with bromine to yield the desired 1-promodiamantane compound yield.
  • the present inventor considered that there is a potential S to greatly reduce the S. However, when a diamantane compound is used as a raw material, such a decrease in yield does not actually occur, and a 1-bromodiamantane compound can be obtained with a high selectivity and a high yield. Bromination methods using hydrocarbons have proven to be very useful bromination reactions.
  • the diamantane compound as a raw material for synthesizing the 1-diamantanol compound is represented by the following formula (4
  • the diamantani compound represented by) can be used.
  • R 2, R 3 and R 4 are each the formula in (2) have the same meanings as R 3 and R 4.
  • Specific examples of diamantane compounds that can be suitably used include diamantane, 2-methyldiamantane, 4-methyldiamantane, 2 ethyldiamantane, 4-ethyldiamantane, 2,4-dimethyldiamantane, 2, 4 Examples include jetyldiamantane, 4,9-dimethyldiamantane, and 4,9-jetyldiamantane. Of these compounds, diamantane, which is preferred to diamantane and 4,9 dimethyldiamantane, is more preferred from the viewpoint of the usefulness of the product.
  • the halogenated aliphatic hydrocarbons used as the solvent include dichloromethane, chloroform, and tetrasalt carbon.
  • the amount of halogenated aliphatic hydrocarbons used is preferably from 0.1 to 15 times by mass based on the mass of the diamantani compound from the viewpoint of ease of post-treatment and high yield. -10 mass times is more preferable.
  • a method for adding bromine a method in which bromine is dropped into a mixture of a diamantane compound and a halogenated aliphatic hydrocarbon is preferable from the viewpoint of ease of operation.
  • the reaction time is not particularly limited, but a sufficient conversion can be obtained usually by reacting for 1 to 30 hours.
  • the reaction temperature is preferably -30 to 60 ° C, more preferably -10 to 40 ° C.
  • the reaction solution after completion of the reaction is cooled to room temperature or lower.
  • an aqueous sodium disulfite solution is dropped into the cooled reaction solution to reduce excess bromine.
  • halogenated aliphatic hydrocarbons are added to the reduced reaction solution.
  • the organic phase is washed with aqueous sodium hydroxide solution, followed by a water wash until the pH is neutral.
  • the organic solvent in the organic phase is concentrated to obtain a crude 1-bromodiamantane compound (usually, the 1-bromodiamantane compound, which is the target product in the crude product, has a GC purity. More than 90% is included.)
  • the resulting crude product can be dried under reduced pressure if necessary and used as it is as a raw material for the next hydrolysis reaction.
  • the obtained 1-bromodiamantane compound is represented by the following formula (5).
  • 1-bromodiamantane compounds that can be suitably used in the present invention include 1-bromodiamantane, 4-methyl-1-bromodiamantane, 6-methyl-1-bromodiamantane, 9-methyl- 1-Bromodiamantane, 4-Ethylou 1-Bromodiamantane, 6-Ethenolee 1-Bromodiamantane, 9-Ethenorelet 1-Bromodiamantane, 4,6 Dimethyl 1-Bromodiamantane, 4,6 Jetil 1-Bromodiamantane, 4, 9 Dimethyl 1- Examples thereof include bromodiamantane and 4, 9 jetyl-1 bromodiamantane. Among these compounds, 1-bromodiamantane and 4,9 dimethyl-1-bromodiamantane are preferred from the viewpoint of the usefulness of the final product. -Bromodiamantane
  • the polymerizable unsaturated carboxylic acid anhydride used as a raw material in the present invention is represented by the following formula (3).
  • R 1 has a substituent! /, But is a polymerizable unsaturated hydrocarbon group.
  • R 1 may be any of a linear, branched or cyclic polymerizable unsaturated hydrocarbon group.
  • Preferable specific examples of R 1 include butyl group, isopropyl group, aryl group, 1 probe group, 3 butyl group, 3-methyl-3 butyl group, 4 pentale group, 1 , 3 Butagel group and the like.
  • Examples of the substituent of R 1 include cyan groups; halogen atoms such as fluorine, chlorine, bromine and iodine; alkoxy groups having 1 to 5 carbon atoms such as methoxy groups and ethoxy groups.
  • polymerizable unsaturated carboxylic acid anhydrides that can be suitably used in the production method of the present invention include acrylic acid anhydride, methacrylic acid anhydride, vinyl acetic acid anhydride, crotonic acid anhydrous, Examples thereof include pentenoic anhydride, 4-methyl-4-pentenoic anhydride, 5-hexenoic anhydride, 2,4 pentagenic anhydride, and the like.
  • acrylic acid anhydride or methacrylic acid anhydride is particularly preferable from the viewpoint of usefulness of the final product.
  • the amount of the polymerizable unsaturated carboxylic acid anhydride used is not particularly limited, but from the viewpoint of high yield and ease of post-treatment, 1 mol of 1-diamantano-louis compound as a raw material is used. , 1
  • the 1-diamantanoyl complex and the polymerizable unsaturated carboxylic acid anhydride are reacted in the presence of an acid catalyst.
  • an acid catalyst a known acid known to function as an acid catalyst can be used.
  • Specific examples of the acid catalyst include sulfuric acid; sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, and p-toluenesulfonic acid; acetic acids such as trifluoroacetic acid, trichloroacetic acid, and tribromoacetic acid; and solid acids such as silica gel. It is done.
  • At least one selected from the group consisting of sulfuric acid, methanesulfonic acid, benzenesulfonic acid, and p-toluenesulfonic acid because of its high effect of suppressing the formation of by-products and low price and low price.
  • the acid is preferred.
  • the amount of the acid catalyst to be used is not particularly limited, but is preferably 0.01 to 10% by mass based on the mass of the 1-diamantanol compound used, and 0.1 to 5% by mass. More preferred. If the amount of the acid catalyst used is too small, the reaction rate becomes extremely slow, and if it is too large, the yield decreases due to side reaction.
  • the reaction is carried out in the presence of a polymerization inhibitor.
  • polymerization inhibitor a known polymerization inhibitor can be appropriately selected.
  • the polymerization inhibitor that can be suitably used in the present invention include phenol compounds such as hydroquinone, hydroquinone monomethyl ether, and 2,6 tert-butyl-4 methylphenol; quinone compounds such as benzoquinone and naphthoquinone; phenothiazine, Amine compounds such as A-phosphorus; -troxy radical compounds such as 2,2,6,6-tetramethylpiperidine-N-oxyl; copper compounds such as copper dithiocarbamate; thio compounds; phosphorus compounds; oxygen; Examples include Sumitomo Chemical Co., Ltd. product names “Sumilyzer 1 GM”, “Sumilyzer 1 TP-D”, and “Sumilyzer 1 WX—R”. Two or more of these polymerization inhibitors may be used in combination.
  • the amount of the polymerization inhibitor used is preferably from 0.01 to 10% by mass based on the mass of the 1-diamantanol compound from the viewpoint of suppressing the polymerization and preventing excessive use. A mass% is more preferred.
  • a 1-diamantanoic compound and a polymerizable unsaturated carboxylic acid anhydride are subjected to an esterification reaction in the presence of a polymerization inhibitor and an acid catalyst.
  • a polymerizable diamantyl ester compound represented by the formula (1) is produced.
  • the above reaction is preferably carried out in an organic solvent.
  • organic solvent known solvents that do not hinder the reaction can be used without limitation.
  • Ethers such as jetyl ether, di-n-propyl ether, diisopropyl ether, di-n-butyl ether, ethylene glycol dimethyl ether, tetrahydrofuran, dioxane and the like; hexane and heptane Aliphatic hydrocarbons such as hexane, octane and cyclohexane; Halogenated aliphatic hydrocarbons such as dichloromethane, chloroform and carbon tetrachloride; Aromatic hydrocarbons such as benzene, toluene and xylene are preferred. Among these, at least one kind in which group power consisting of heptane, benzene, toluene, and xylene is also selected is
  • Two or more kinds of organic solvents may be mixed and used.
  • the amount of the organic solvent to be used is not particularly limited, but from the viewpoint of ease of post-treatment, etc., based on the mass of 1-diamantano-louis compound, 0.5 to: LOO mass is preferred 1 to 50 mass Double is more preferred.
  • the esterification reaction proceeds, for example, by introducing a predetermined amount of each reaction raw material or solvent into the reaction vessel while stirring the temperature and stirring.
  • the order of introducing each reaction raw material is not particularly limited.
  • 1-diamantanol may decompose when the 1-diamantanoic compound and acid catalyst come into contact with each other at a high concentration for a long time. Therefore, it is preferable to add an acid catalyst to a solution containing a 1-diamantanol compound, a polymerizable unsaturated carboxylic acid anhydride, and a polymerization inhibitor.
  • the reaction can be carried out under pressure, under reduced pressure, or under normal pressure, but it is convenient to carry out the reaction under normal pressure.
  • the reaction system is sufficiently substituted with an inert gas such as nitrogen or argon and dried. It is preferable to carry out the reaction while venting the inert gas.
  • the reaction temperature is 0 ° C to 150 ° C. From the viewpoint of balancing the suppression of the formation of by-products and the completion of the reaction in a shorter time, 20 to 130 ° C is more The preferred temperature is 40-100 ° C.
  • the reaction is carried out under acidic conditions. Since an acid anhydride is relatively stable in the acidic region, it can be reacted in a high temperature region above room temperature.
  • the reaction time can be significantly shortened compared with the conventional method by carrying out the reaction in a high temperature region of room temperature or higher, particularly preferably 60 ° C. or higher.
  • the reaction time may be appropriately determined according to the reaction conditions! ⁇ . It is preferable to check the progress of the reaction and terminate the reaction when the desired conversion rate is reached. Usually, a sufficient rolling ratio can be obtained in 0.5 to 24 hours.
  • R 1 is a polymerizable unsaturated hydrocarbon group which may have a substituent
  • R 2 , R 3 and R 4 are each independently a hydrogen atom or a C 1-5 carbon atom.
  • Specific examples of the polymerizable diamantyl ester compound represented by the formula (1) include 1-diamantyl acrylate, 1-diamantyl methacrylate, 4 -Methyl-1-diamantyl acrylate, 4-methyl-1-diamantyl methacrylate, 6-methyl-1-diamantyl acrylate, 6-methyl-1-diamantyl methacrylate, 9-methyl-1-diamane Tyratalylate, 9-Methyl-1-diamantyl methacrylate, 4-ethyl-l-diamantyl atylate, 4-ethyl-l-mammayl methacrylate, 6-ethyl-1-diamantyl acrylate,
  • tilmetatalylate is preferable
  • 1-diamantyl acrylate and 1-diamantyl methacrylate are preferable.
  • the method for isolating the target polymerizable diamantyl ester compound from the reaction solution obtained in the above step is not particularly limited, but for example, it can be suitably isolated by the following method.
  • an aqueous alkaline solution is added to the reaction solution to hydrolyze and neutralize the polymerizable unsaturated carboxylic acid anhydride remaining in the reaction solution into an unsaturated carboxylic acid. Then, the reaction solution is washed with water several times until the aqueous phase becomes neutral. Then, if necessary, after adsorption treatment such as activated carbon treatment, silica treatment, alumina treatment, etc., the solvent is distilled off and further dried to give a crude product (usually the polymerizable diamantyl ester solution which is the target product). The compound contains 90% or more of GC purity).
  • the solvent in the reaction solution is replaced with another solvent, and then the adsorption treatment. May be performed.
  • the adsorption treatment is performed by exchanging the solvent, sufficient purification cannot be performed even if the adsorption treatment is performed with the solvent before the exchange.
  • it is preferable to perform the adsorption treatment with the solvent before replacement because the production process is not complicated.
  • a known solvent can be used without limitation, from a relatively low-polarity aliphatic hydrocarbon solvent such as heptane to a relatively high-polarity solvent such as methanol, acetonitrile, and water.
  • the obtained crude product can be further purified by a known method such as crystallization (recrystallization), distillation under reduced pressure, steam distillation, sublimation purification or the like to obtain a high-purity target product.
  • the crude product obtained by removing the solvent may be further purified by a crystallization method using an organic solvent. I like it.
  • the crystallization solvent used in the present invention a solvent containing at least an alcohol is used.
  • this solvent is used as a crystallization solvent.
  • the target polymerizable diamantyl ester compound is efficiently separated from unreacted 1-diamantanol and by-product oligomer impurities. That's right.
  • the alcohol used as a crystallization solvent in the present invention is not particularly limited as long as it dissolves the polymerizable diamantyl ester compound at room temperature or by heating, but considering the availability.
  • methanol, ethanol, n-propanol, isopropyl alcohol, n -butanol, n-octanol, cyclohexanol and the like are preferable.
  • methanol, ethanol, and isopropyl alcohol can be given as examples of the solvent that increases the degree of purification of the target polymerizable diamantyl ester compound. Two or more of these alcohols can be used in combination.
  • the alcohols and other organic solvents may be mixed and used.
  • an organic solvent used by mixing with an alcohol the compound is dissolved by adding a polymerizable diamantyl ester compound to the mixed solvent of the alcohol and the organic solvent and heating at room temperature or heating. Any solvent can be used.
  • halogenated aliphatic hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride; hexane, hept Aliphatic hydrocarbons such as tan, octane; ethers such as jetyl ether, diisopropyl ether, di n butyl ether, di t butyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; methyl acetate, ethyl acetate, acetic acid Ester such as propyl, isopropyl acetate, butyl acetate and isobutyl acetate, and aromatic hydrocarbon such as benzene, toluene and xylene can be suitably used.
  • ethers such as jetyl ether, diisopropyl ether, di n butyl ether, di t butyl ether
  • ketones such as ace
  • the solvent ratio when crystallization is performed by combining alcohols and other organic solvents is not particularly limited, but the ratio of organic solvents other than alcohols is small from the viewpoint of high purity of the purified product.
  • Organic solvents other than alcohols (mass) 1: 1 or less is preferred 1: 0.75 or less is more preferred 1: 0.5 or less is most preferred.
  • the amount of alcohols used as the crystallization solvent is not particularly limited, but is preferably 0.1 to 50 times the mass of the crude mass of the polymerizable diamantyl ester compound. 0.5 to 20 times by mass is more preferred. 1 to 15 times by mass is particularly preferred.
  • the amount of the organic solvent other than the alcohol used in the crystallization by further combining an organic solvent other than the alcohol is not particularly limited, but relative to the mass of the polymerizable diamantyl ester compound. 0.01 to 30 mass boost S is preferable, 0.05 to 20 mass boost S is more preferable, and 0.1 to 15 mass boost is particularly preferable.
  • reaction solution was returned to room temperature and stirred for 5 hours.
  • the reaction solution was a brown uniform solution.
  • Add 55.76 g of black mouth form and cool the reaction solution to 5 ° C. 628 g of an aqueous sodium sulfate solution was dropped and allowed to stand, followed by liquid separation.
  • the organic layer was washed twice with 55.8 g of a 10% aqueous sodium hydroxide solution and three times with 55.8 g of ion-exchanged water, and it was confirmed that the pH of the washing water became neutral.
  • the organic layer was dried over anhydrous magnesium sulfate, the solvent was concentrated under reduced pressure, and further dried under reduced pressure. 74.
  • a white solid (containing 97% of 1-promodiamantane) was obtained (92% yield in terms of diamantane).
  • the reaction mixture was analyzed by GC.
  • the starting material 1-diamantanol was 1%
  • the target 1-diamantyl metatalylate was 98%
  • the by-product of unknown structure was 1%. It was generated.
  • reaction solution was cooled to room temperature and washed twice with 20 g of a 10% aqueous sodium hydroxide solution and six times with ion-exchanged water.
  • Activated carbon was added to the washed reaction solution, and the mixture was stirred at room temperature for 1 hour. Activity The charcoal was filtered off to obtain an almost clear solution.
  • the solvent was distilled off under reduced pressure to obtain 10.69 g of a white solid crude product (containing 98% of 1-diamantyl methacrylate).
  • the obtained crude product was charged with 32.07 g of methanol (3 times by mass of the crude product) and 21.38 g of isopropyl alcohol (2 times by mass of the obtained crude product). That is, a total of 5 times mass was used as the alcohols with respect to the obtained crude product.
  • This was heated and stirred at 40 ° C for 30 minutes, a uniform solution was obtained.
  • the solution was cooled to 5 ° C and aged for 1 hour.
  • the precipitated solid was filtered off from the solution and dried under reduced pressure to obtain 7.37 g of a white solid (yield 55% in terms of 1-diamantanol).
  • This solid was analyzed by GC and GPC.
  • the content of solid 1-diamantyl methacrylate was 99% (GC purity), and the content of oligomeric impurities was 0.1% (polystyrene equivalent).
  • Fig. 1 shows the proton nuclear magnetic resonance (H-NMR) spectrum of the 1-diamantyl metatalylate obtained
  • Fig. 2 shows the 13 C nuclear magnetic resonance ( 13 C-NMR) spectrum.
  • Example 1 the same operation was performed except that the acid catalyst was changed to that shown in Table 1. The results are shown in Table 1.
  • Example 2 The same operation as in Example 1 was carried out except that the crystallization solvent was changed to those shown in Table 2. The results are shown in Table 2.
  • reaction solution was analyzed by GC.
  • the raw material 1-diamantanol was 1%, the target 1-diamantyl acrylate was 98%, and the by-product of unknown structure was 1%.
  • the reaction solution was cooled to room temperature, the reaction solution was washed twice with 20 g of 10% aqueous sodium hydroxide solution and six times with ion-exchanged water.
  • To the washed reaction solution was added 1 g of activated carbon, and the mixture was stirred at room temperature for 1 hour. The activated carbon was filtered off to obtain an almost transparent solution.
  • 0.2 g of hydroquinone monomethyl ether was added to this solution, the solvent was distilled off under reduced pressure to obtain 10.40 g of a white solid crude product (containing 98% of 1-diamantyl acrylate).
  • Example 1 the reaction was performed in the same manner except that the polymerization inhibitor phenothiazine was not added. After stirring for 6 hours at 80 ° C, insoluble matter that appeared to be oligomeric impurities or polymer impurities was observed, and the target product, 1-diamantyl metatalylate, was not isolated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明により、1-ジアマンタノール化合物と、メタクリル酸無水物等の重合性不飽和カルボン酸無水物とを、重合禁止剤及び濃硫酸等の酸触媒の存在下で反応させることにより、1-ジアマンチルメタクリレート等の重合性ジアマンチルエステル化合物を製造する方法が開示される。この重合性ジアマンチルエステル化合物は、耐熱性高分子等の高機能性材料や半導体用レジスト等の電子材料の製造用モノマーとして有用である。

Description

明 細 書
重合性ジアマンチルエステル化合物の製造方法
技術分野
[0001] 本発明は、機能性材料や電子材料製造用の原料モノマーとして有用な重合性ジァ マンチルエステルイ匕合物の製造方法に関する。 背景技術
[0002] ジアマンタン誘導体は、耐熱性に優れ、透明性が高 、と ヽぅ特徴を有するァダマン タン誘導体と、類似の炭素骨格を有している。ジアマンタン骨格はァダマンタン骨格 と比較して縮環数が多 、ので、ジアマンタン誘導体はァダマンタン誘導体以上に耐 熱性等の物性が優れていると考えられる。この理由で、ジアマンタン誘導体は、耐熱 性高分子等の高機能性材料や半導体用レジスト等の電子材料の原料に利用するこ とが期待されている。ジアマンタン誘導体の中でも、重合性ジアマンチルエステルイ匕 合物は、単独であるいは他のモノマーと共重合させて高分子材料やレジスト材料を 製造する際の原料モノマーとして、極めて有用な化合物となることが期待される。
[0003] 一般に、工業的又は試薬として入手可能なジアマンタン骨格を有する化合物 (ジァ マンタン化合物)の種類は限られている。重合性ジアマンチルエステル化合物を合成 する際には、これら限られた種類のジアマンタンィ匕合物を出発原料とする必要がある
[0004] 一方、重合性ジアマンチルエステル化合物と重合性ァダマンチルエステル化合物 とは化学構造上の類似性がある。しかし、これらの化合物を合成する際に使用する原 料の反応性や有機溶媒に対する溶解性、 目的とする重合性ジアマンチルエステル 化合物と重合性ジァダマンチルエステルイ匕合物との融点等には大きな違いがある。 従って、ァダマンタン化合物に対して有効な反応や精製方法が、そのままジァマンタ ン化合物に適用できるか否かは不明である。一般的傾向としては、ジアマンタン誘導 体は、ァダマンタン誘導体と比較して有機溶媒に対する溶解性が低い。その結果、 ジアマンタン誘導体を原料として用いてこれを反応をさせる場合は、ァダマンタン誘 導体を原料とする場合よりも長 ヽ反応時間を必要とする場合が多 ヽ。 [0005] たとえば、重合性ジアマンチルエステルイ匕合物の製造方法としては、ジアマンタノ ールを塩化メチレン中、トリェチルァミンの存在下で、メタクリル酸クロライドと反応させ る方法 (特許文献 1参照)が知られている。一方、この反応と類似の反応によりァダマ ンタン誘導体を製造する例として、 1—ァダマンタノールを塩化メチレン中、ピリジンの 存在下、アクリル酸クロライドと反応させる例 (非特許文献 1参照)が知られている。こ れらの反応を比較すると、ジァマンタノールの有機溶媒に対する溶解性は、ァダマン タノールの有機溶媒に対する溶解性よりも低 、ため、ジァマンタノールを用 、る反応 は反応時間が著しく長い。具体的には、ァダマンタノールを用いる反応の反応時間 はー晚程度である。これに対し、ジアマンタンノールを用いる反応の反応時間は 3日 以上である。
[0006] なお、上記重合性ジアマンチルエステルイ匕合物の製造方法が記載されている特許 文献 1には、原料ィ匕合物や生成化合物に結合している置換基の結合位置が明示さ れていない。従って、具体的にどのような化合物を製造したかの詳細は不明である。 更に、精製方法に関する記載もない。
特許文献 1:国際公開第 WO2005Z036265号パンフレット
非特許文献 l :The Journal of Organic Chemistry、 2001年、第 66卷、 4468 頁
発明の開示
発明が解決しょうとする課題
[0007] 上述のように、従来知られて!/ヽる重合性ジアマンチルエステルイ匕合物の製造方法 は、反応時間に長時間を要するという問題や、大量生産に適した精製方法がない問 題があり、これらの問題を解決する工業的に優位な製造方法が望まれている。
[0008] このような状況のもと、本発明は、重合性ジアマンチルエステルイ匕合物を効率良く 製造する方法を提供することを目的とする。
課題を解決するための手段
[0009] 本発明者は、上記課題を解決するべく鋭意検討を行った。その結果、 1—ジアマン タノール化合物と重合性不飽和カルボン酸無水物とを、重合禁止剤及び酸触媒の 存在下で反応させると、重合性ジアマンチルエステルイ匕合物を効率良く製造すること ができることを見出し、本発明を完成するに至った
[0010] 即ち、本発明は、下記式(1)
[0011] [化 1]
Figure imgf000004_0001
[0012] (式中、 R1は置換基を有していてもよい重合性不飽和炭化水素基であり、 R2、 R3及 び R4は、各々独立に、水素原子又は炭素数 1〜5のアルキル基である。 ) で示される重合性ジアマンチルエステルイ匕合物を製造する方法であって、下記式(2 )
[0013] [化 2]
Figure imgf000004_0002
{式中、 R2、 R3及び R4は、各々前記式(1)における 、 R3及び R4と同義である。 で示される 1ージアマンタノ一ルイ匕合物と下記式(3) [0015] [化 3]
Figure imgf000005_0001
[0016] {式中、 R1は前記式(1)における R1と同義である。 }
で示される重合性不飽和カルボン酸無水物を、重合禁止剤及び酸触媒の存在下で 反応させることにより、前記式(1)で示される重合性ジアマンチルエステル化合物の 粗体を得る工程を含むことを特徴とする方法である。
発明の効果
[0017] 本発明の製造方法によれば、短時間で効率よく目的物である重合性ジアマンチル エステルイ匕合物を製造することができる。
[0018] 更に詳述すれば、本発明の製造方法は、従来法と比べて次のような利点を有する 。即ち、第一の利点として、比較的高温でエステルイ匕反応を行う場合は、反応時間が 大幅に短縮される。その理由は、従来法は、塩基性条件下では比較的反応性が高 V、ものの、室温以上の高温領域で分解しやす 、酸クロライドをエステル化剤として使 用しているので、高温領域で反応させることができない。その結果、収率を上げるた めには反応時間を長くする必要がある。これに対し、本発明においては、エステル化 剤として酸無水物を採用している。酸無水物は酸性条件下で安定に存在し得る。本 発明方法に於いては、反応を酸性条件下で行うことにより、高温領域で反応させるこ とを可能にしている。その結果、反応時間が短縮できる。
[0019] 第二の利点として、酸クロライドを使用する製造方法の場合、ジアマンタンィ匕合物が 塩素化された化合物が副生し、これを分離することは困難を伴う。しかし、酸無水物 を使用する本製造方法の場合はそのような問題がない。従って、精製方法は簡便に なる。
[0020] 従来の技術においては、重合性ジアマンチルエステルイ匕合物の具体的な精製方 法は確立されていない。本発明においては、本製造方法で得られる重合性ジアマン チルエステルイ匕合物の粗体を、少なくともアルコール類を含む溶媒で晶析しても良い 。この晶析方法を採用することにより、分子量が 300〜5000程度の不純物成分 (以 下、該不純物成分を「オリゴマー不純物」ともいう)の含有量が極めて低ぐ高純度な 重合性ジアマンチルエステルイ匕合物を得ることができる。なお、オリゴマー不純物は、 ガスクロマトグラフィー(以下単に、 GCとする)で確認することは困難であり、ゲルパー ミエーシヨンクロマトグラフィー(以下単に、 GPCとする)により確認することができる。 図面の簡単な説明
[0021] [図 1]図 1は、実施例 1で得られた 1ージアマンチルメタタリレートのプロトン核磁気共 鳴 H— NMR)スペクトルである。
[図 2]図 2は、実施例 1で得られた 1—ジアマンチルメタタリレートの13 C核磁気共鳴 (13 C NMR)スペクトルである。
発明を実施するための最良の形態
[0022] 本発明の製造方法においては、前記式(2)で示される 1ージアマンタノ一ルイ匕合物 と、前記式(3)で示される重合性不飽和カルボン酸無水物を、重合禁止剤及び酸触 媒の存在下で反応させることにより、前記式(1)で示される重合性ジアマンチルエス テル化合物を製造する。
[0023] 以下、本発明の製造方法において使用する反応原料や触媒等、反応条件、反応 手順、生成物等について詳しく説明する。
[0024] 〔 1 ジァマンタノール化合物〕
本発明にお 、ては、反応原料として下記式(2)で示される 1ージアマンタノ一ルイ匕 合物を使用する。
[0025] [化 4]
Figure imgf000007_0001
[0026] 前記式(2)において、 R2、 R3及び R4は、各々独立に、水素原子又は炭素数 1〜5 のアルキル基である。上記炭素数 1〜5のアルキル基のうち好適な基を具体的に例 示すれば、メチル基、ェチル基、 n—プロピル基、イソプロピル基、 n ブチル基、 sec ブチル基、 t ブチル基、 n—ペンチル基、 sec ペンチル基、イソペンチル基等が 挙げられる。原料入手の容易さから、 R2、 R3及び R4は水素原子又はメチル基が好ま しい。
[0027] 本発明において、好適に使用できる 1ージアマンタノ一ルイ匕合物を具体的に例示 すれば、 1ージァマンタノール、 4ーメチルー 1ージァマンタノール、 6—メチルー 1 ジァマンタノール、 9ーメチルー 1ージァマンタノール、 4ーェチルー 1ージアマンタノ ール、 6 ェチルー 1ージァマンタノール、 9ーェチルー 1ージァマンタノール、 4, 6 ジメチルー 1ージァマンタノール、 4, 6 ジェチルー 1ージァマンタノール、 4, 9 ジメチルー 1ージァマンタノール、 4, 9 ジェチルー 1ージァマンタノール等を挙げる ことができる。これらの化合物の中でも生成物の有用性の観点から、 1—ジアマンタノ ール、 4, 9 ジメチルー 1ージァマンタノールが好ましぐ特に、 1ージァマンタノール が好ましい。
[0028] ジアマンタンはァダマンタンと比較して、分子内に 3級炭素部位を多く有し、且つ異 なる環境の 3級部位を有する。従って、一般論としては、特定の 3級炭素部位に水酸 基が導入されたジアマンタノ一ルイ匕合物を選択的に製造することは非常に困難であ る。し力しながら、次の方法により 1—ジァマンタノールを選択的に得ることが出来る。 即ち、まず、 The Journal of Organic Chemistry、 1974年、第 39卷、 2995頁 に記載の方法に従って、ジアマンタンと臭素とを室温で反応させ、選択的に 1 プロ モジアマンタンを得る。続いて、 The Journal of Organic Chemistry, 1983年 、第 48卷、 2975頁に記載の方法により、 N, N ジメチルホルムアミド及び 0. 7N塩 酸の混合溶媒中で、 1—プロモジアマンタンを加水分解する。この方法により、 1ージ アマンタノールを選択的に得ることが出来る。
[0029] しかし、前記文献に記載の 1ーブロモジアマンタンを得る方法においては、臭素化 剤である臭素が反応溶媒も兼ねており、使用する臭素の量が相対的に多くなる。そ の結果釜収量が低下し、且つ後処理が煩雑になるため、大量製産用には不適な方 法である。
[0030] 本発明者は、ジクロロメタン、クロ口ホルム、四塩ィ匕炭素等のハロゲンィ匕脂肪族炭化 水素類を反応溶媒として使用し、臭素の使用量を減らすことが、大量生産の観点か ら好ましいと考えた。この方法を採用することにより、固体のジアマンタン化合物に臭 素を滴下するといつた、大量製造に不適切な方法を回避することができる。
[0031] 通常、ハロゲンィ匕脂肪族炭化水素類はラジカル反応により、ハロゲン原子を放出し 又はハロゲン原子と結合を形成すると考えられている。従って、反応溶媒を使用する 臭素化方法を開発する初期段階に於!、ては、ハロゲン化脂肪族炭化水素類が臭素 と反応し、 目的とする 1—プロモジアマンタンィ匕合物の収率を大きく低下させる可能性 力 Sあると本発明者は考えた。しかし、ジアマンタン化合物を原料とする場合は、実際 にはそのような収率の低下は起きず、高選択率且つ高収率で 1-ブロモジアマンタン 化合物を得ることができ、このハロゲンィ匕脂肪族炭化水素類を用いる臭素化方法は 非常に有用な臭素化反応であることが判明した。
[0032] 以下、本発明に於いて採用できる 1ージアマンタノ一ルイ匕合物の製造方法につい て説明する。
[0033] 1ージァマンタノール化合物の合成原料のジアマンタン化合物としては、下記式(4
)で示されるジアマンタンィ匕合物が使用できる。
[0034] [化 5]
Figure imgf000009_0001
[0035] {式中、 R2、 R3及び R4は、各々前記式(2)における 、 R3及び R4と同義である。 } 好適に使用できるジアマンタン化合物を具体的に例示すれば、ジアマンタン、 2- メチルジアマンタン、 4ーメチルジアマンタン、 2 ェチルジアマンタン、 4ーェチルジ アマンタン、 2, 4ージメチルジアマンタン、 2, 4 ジェチルジアマンタン、 4, 9ージメ チルジアマンタン、 4, 9ージェチルジアマンタン等を挙げることができる。これらの化 合物の中でも生成物の有用性の観点から、ジアマンタン、 4, 9 ジメチルジァマンタ ンが好ましぐジアマンタンがより好ましい。
[0036] 臭素の使用量は、後処理の容易さと収率の高さの観点から、ジアマンタン化合物 1 モルに対し臭素分子(Br )を 0. 5〜20モル使用することが好ましぐ 1〜15モルを使
2
用することがより好ましい。
[0037] 溶媒として使用するハロゲンィ匕脂肪族炭化水素類としては、ジクロロメタン、クロロホ ルム、四塩ィ匕炭素が挙げられる。ハロゲン化脂肪族炭化水素類の使用量は、後処理 の容易さと収率の高さの観点から、ジアマンタンィ匕合物の質量を基準として、 0. 1〜 15質量倍が好ましぐ 0. 5〜10質量倍がより好ましい。
[0038] 臭素の添加方法としては、操作の容易さの観点より、ジアマンタンィ匕合物とハロゲン 化脂肪族炭化水素類との混合物に、臭素を滴下する方法が好ましい。反応時間は 特に制限はされないが、通常 1〜30時間反応させることにより十分の転化率が得ら れる。
[0039] 反応温度は、—30〜60°Cが好ましぐ—10〜40°Cがより好ましい。
[0040] 上記方法で製造した 1ーブロモジアマンタンィ匕合物の反応液から 1-ブロモジアマン タンィ匕合物を単離する方法は特に制限されないが、例えば次の方法がある。
[0041] 先ず、反応終了後の反応液を、室温以下まで冷却する。次 、で、冷却した反応液 に二亜硫酸ナトリウム水溶液を滴下して、過剰の臭素を還元処理する。その後、還元 処理した反応液に必要によりハロゲン化脂肪族炭化水素類を加える。有機相を水酸 化ナトリウム水溶液で洗浄し、続いて pHが中性になるまで水洗浄を行う。最後に、有 機相の有機溶媒を濃縮し、 1—プロモジアマンタンィ匕合物の粗体得る (通常、粗体中 に目的物である 1—ブロモジアマンタンィ匕合物が GC純度で 90%以上含まれている。 )。得られる粗体は、必要により減圧乾燥を行い、そのまま次の加水分解反応の原料 として使用することが出来る。
[0042] 得られる 1ーブロモジアマンタン化合物は下記式(5)で示される。
[0043] [化 6]
Figure imgf000010_0001
[0044] {式中、 R2、 R3及び R4は、各々前記式(2)における 、 R3及び R4と同義である。 } 本発明において、好適に使用できる 1 プロモジアマンタンィ匕合物を具体的に例示 すれば、 1ーブロモジアマンタン、 4ーメチルー 1ーブロモジアマンタン、 6—メチルー 1ーブロモジアマンタン、 9ーメチルー 1ーブロモジアマンタン、 4ーェチルー 1ーブロ モジアマンタン、 6 ェチノレー 1ーブロモジアマンタン、 9ーェチノレー 1ーブロモジァ マンタン、 4, 6 ジメチルー 1ーブロモジアマンタン、 4, 6 ジェチルー 1ーブロモジ アマンタン、 4, 9 ジメチルー 1ーブロモジアマンタン、 4, 9 ジェチルー 1 ブロモ ジアマンタン等が挙げられる。これらの化合物の中でも最終製品の有用性の観点か ら、 1ーブロモジアマンタン、 4, 9 ジメチルー 1ーブロモジアマンタンが好ましぐ 1 ーブロモジアマンタンがより好ましい。
[0045] このようにして得られる 1ーブロモジアマンタンィ匕合物を前記文献に開示されている 方法に準じて加水分解することにより、 1ージアマンタノ一ルイ匕合物を得ることができ る。
[0046] 〔重合性不飽和カルボン酸無水物〕
本発明で原料として使用する重合性不飽和カルボン酸無水物は下記式 (3)で示さ れる。
[0047] [化 7]
Figure imgf000011_0001
[0048] R1は、置換基を有して!/、てもよ 、重合性不飽和炭化水素基である。 R1としては、直 鎖状、分岐状、環状の重合性不飽和炭化水素基の何れでもよい。 R1の好ましい具体 例を示せれば、ビュル基、イソプロべ-ル基、ァリル基、 1 プロべ-ル基、 3 ブテ -ル基、 3—メチルー 3 ブテュル基、 4 ペンテ-ル基、 1, 3 ブタジェ-ル基等 を挙げることができる。
[0049] R1が有する置換基としては、シァノ基;フッ素、塩素、臭素、ヨウ素等のハロゲン原 子;メトキシ基、エトキシ基等の炭素数 1〜5のアルコキシ基等が挙げられる。
[0050] 本発明の製造方法で、好適に使用できる重合性不飽和カルボン酸無水物の具体 例としては、アクリル酸無水物、メタクリル酸無水物、ビニル酢酸無水物、クロトン酸無 水物、 4 ペンテン酸無水物、 4ーメチルー 4 ペンテン酸無水物、 5—へキセン酸 無水物、 2, 4 ペンタジェン酸無水物等を挙げることができる。これら化合物の中で も、最終製品の有用性の観点から、アクリル酸無水物またはメタクリル酸無水物が特 に好ましい。
[0051] 重合性不飽和カルボン酸無水物の使用量は特に制限はされないが、収率の高さと 後処理の容易さの観点から、原料である 1—ジアマンタノ一ルイ匕合物 1モルに対し、 1
〜10モルが好ましぐ 1〜5モルがより好ましい。 [0052] 〔酸触媒〕
本発明の製造方法にぉ 、て、 1ージアマンタノ一ルイ匕合物と重合性不飽和カルボ ン酸無水物とは、酸触媒の存在下で反応させる。酸触媒としては、酸触媒として機能 することが知られている公知の酸が使用できる。酸触媒の具体例としては、硫酸;メタ ンスルホン酸、ベンゼンスルホン酸、 p トルエンスルホン酸等のスルホン酸類;トリフ ルォロ酢酸、トリクロ口酢酸、トリブロモ酢酸等の酢酸類;シリカゲル等の固体酸が挙 げられる。これらの中でも副生成物の生成を抑制する効果が高ぐ価格も安価である という理由力ら、硫酸、メタンスルホン酸、ベンゼンスルホン酸及び p トルエンスルホ ン酸カもなる群より選ばれる少なくとも 1種の酸が好ましい。
[0053] 酸触媒の使用量は、特に制限されるものではないが、使用する 1ージアマンタノ一 ル化合物の質量を基準として 0. 01〜10質量%が好ましぐ 0. 1〜5質量%がより好 ましい。酸触媒の使用量が少なすぎると反応速度が極端に遅くなり、多すぎると副反 応により収率が低下する。
[0054] 〔重合禁止剤〕
通常、酸触媒の存在下における重合性不飽和カルボン酸のエステル化反応にお いては、オリゴマー不純物の生成が激しくなる。この問題を解決するため、本発明の 製造方法では、重合禁止剤の存在下で反応を行う。
[0055] 重合禁止剤としては、公知の重合禁止剤を適宜選択できる。本発明にお ヽて好適 に使用できる重合禁止剤を例示すれば、ヒドロキノン、ヒドロキノンモノメチルエーテル 、 2, 6 ジ tーブチルー 4 メチルフエノール等のフエノール系化合物;ベンゾキノン、 ナフトキノン等のキノン系化合物;フエノチアジン、ァ-リン等のアミン系化合物; 2, 2 , 6, 6—テトラメチルピペリジン—N—ォキシル等の-トロキシラジカル系化合物;ジ チォカルバミン酸銅等の銅化合物;ィォゥ化合物;リン化合物;酸素;住友化学 (株) 製商品名「スミライザ一 GM」、 「スミライザ一 TP— D」、 「スミライザ一 WX— R」等が挙 げられる。これら重合禁止剤は 2種以上組み合わせて使用してもよ 、。
[0056] 重合禁止剤の使用量は、重合の抑制効果と過剰使用防止との観点から、 1ージァ マンタノール化合物の質量を基準として 0. 01〜10質量%が好ましぐ 0. 01〜2質 量%がより好ましい。 [0057] 〔反応条件および反応手順〕
本発明にお 、ては、 1ージアマンタノ一ルイ匕合物と重合性不飽和カルボン酸無水 物とを、重合禁止剤及び酸触媒の存在下でエステル化反応をさせる工程を含む製 造方法により、前記式(1)で示される重合性ジアマンチルエステル化合物を製造する
[0058] 反応条件の制御のし易さ及び収率向上の観点から、上記反応は、有機溶媒中で 行なうことが好ましい。有機溶媒としては、反応に支障のない公知のものが制限なく 使用できる。入手の容易さと目的物の取得量の多さの点から、ジェチルエーテル、ジ n—プロピルエーテル、ジイソプロピルエーテル、ジ n—ブチルエーテル、エチレング リコールジメチルエーテル、テトラヒドロフラン、ジォキサン等のエーテル類;へキサン 、ヘプタン、オクタン、シクロへキサン等の脂肪族炭化水素類;ジクロロメタン、クロロホ ルム、四塩化炭素等のハロゲン化脂肪族炭化水素類;ベンゼン、トルエン、キシレン 等の芳香族炭化水素類等が好適である。これらの中でも、ヘプタン、ベンゼン、トル ェン、キシレンよりなる群力も選ばれる少なくとも一種類が特に好ましい。
[0059] 有機溶媒は、 2種類以上混合して使用しても良い。有機溶媒の使用量は、特に制 限されないが、後処理の容易さ等から 1ージアマンタノ一ルイ匕合物の質量を基準にし て、 0. 5〜: LOO質量倍が好ましぐ 1〜50質量倍がより好ましい。
[0060] 上記エステルイ匕反応は、例えば、温度を制御しながら反応容器内に所定量の各反 応原料や溶媒を導入し、攪拌することにより進行する。各反応原料の導入順序は特 に限定されない。しかし、 1—ジアマンタノ一ルイ匕合物と酸触媒とが高濃度で長時間 接触すると、 1—ジァマンタノールが分解する場合がある。従って、 1—ジアマンタノ ール化合物と重合性不飽和カルボン酸無水物と重合禁止剤とを含む溶液に、酸触 媒を添加することが好まし 、。
[0061] 反応は、加圧下、減圧下、常圧下の何れの条件でも行なうことができるが、常圧下 で反応を行なうのが簡便である。なお、該反応においては、反応液中に水が混在す ると反応が停止する問題を生じるため、反応系内を窒素、アルゴン等の不活性ガスで 十分に置換して乾燥させた後、更に該不活性ガスを通気しながら反応を行なうことが 好ましい。 [0062] 反応温度は 0°C〜150°Cである力 副生成物の生成を抑制することと、より短時間 で反応を完結させることとのバランスの観点より、 20〜130°Cがより好ましぐ 40-10 0°Cが特に好ましい。
[0063] ジアマンタノ一ルイ匕合物と酸クロライドとを使用してエステルイ匕する従来の製造方法 においては、室温以上の高温領域で反応させると酸クロライドが分解しやすい。この 分解を避けるため、反応は低温で行われ、その結果反応に 3日以上の長時間を必要 としている。
[0064] 本製造方法は酸性条件下で反応を行って!/ヽる。酸無水物は、酸性領域で比較的 安定であるので、室温以上の高温領域で反応させることができる。本製造方法に於 いては、室温以上の、特に好ましくは 60°C以上の高温領域で反応を行うことにより、 従来の方法より大幅に反応時間を短縮できる。
[0065] 反応時間は、反応条件に応じて適宜決定すればよ!ヽ。反応進行程度を確認して、 所望の転ィ匕率になったところで反応を終了することが好ましい。通常 0. 5時間〜 24 時間で十分な転ィ匕率を得ることができる。
[0066] 〔重合性ジアマンチルエステル化合物〕
上記エステルィヒ反応を行うことにより、反応生成物として下記式(1)で示される重合 性ジアマンチルエステル化合物が得られる。
[0067] [化 8]
Figure imgf000014_0001
(式中、 R1は置換基を有していてもよい重合性不飽和炭化水素基であり、 R2、 R3及 び R4は、各々独立に、水素原子又は炭素数 1〜5のアルキル基である。 ) 前記式(1)で示される重合性ジアマンチルエステルイ匕合物の内、好適な化合物を 具体的に例示すれば、 1ージアマンチルアタリレート、 1ージアマンチルメタタリレート 、 4ーメチルー 1ージアマンチルアタリレート、 4ーメチルー 1ージアマンチルメタクリレ ート、 6—メチルー 1ージアマンチルアタリレート、 6—メチルー 1ージアマンチルメタク リレート、 9ーメチルー 1ージアマンチルアタリレート、 9ーメチルー 1ージアマンチルメ タクリレート、 4ーェチルー 1ージアマンチルアタリレート、 4ーェチルー 1ージアマンチ ルメタタリレート、 6 ェチルー 1ージアマンチルアタリレート、 6 ェチルー 1ージアマ ンチルメタタリレート、 9ーェチルー 1ージアマンチルアタリレート、 9ーェチルー 1ージ アマンチルメタタリレート、 4, 6 ジメチルー 1ージアマンチルアタリレート、 4, 6 ジメ チルー 1ージアマンチルメタタリレート、 4, 6 ジェチルー 1ージアマンチルアタリレー ト、 4, 6 ジェチルー 1ージアマンチルメタタリレート、 4, 9 ジメチルー 1ージアマン チルアタリレート、 4, 9 ジメチルー 1—ジアマンチルメタタリレート、 4, 9 ジェチル 1ージアマンチルアタリレート、 4, 9 ジェチルー 1ージアマンチルメタタリレート等 を挙げることができる。これらの化合物の中でも生成物の有用性の観点から、 1ージ アマンチルアタリレート、 1ージアマンチルメタタリレート、 4, 9 ジメチルー 1ージアマ ンチルアタリレート、 4, 9 ジメチルー 1ージアマンチルメタタリレートが好ましぐ特に 1ージアマンチルアタリレート、 1ージアマンチルメタタリレートが好ましい。
[0069] 〔単離精製方法〕
前記工程で得られる反応液から目的物の重合性ジアマンチルエステルイ匕合物を単 離する方法は特に限定されないが、例えば次のような方法により好適に単離すること ができる。
[0070] 先ず、アルカリ水溶液を反応液に加えて反応液中に残存する重合性不飽和カルボ ン酸無水物を不飽和カルボン酸に加水分解すると共に中和する。その後、水相が中 性になるまで反応液を複数回水洗浄する。次いで必要に応じて活性炭処理、シリカ 処理、アルミナ処理等の吸着処理を行なった後、溶媒を留去し、更に乾燥することに より粗体 (通常、 目的物である重合性ジアマンチルエステルイ匕合物が GC純度で 90 %以上含まれて 、る。)を得る。
[0071] なお、吸着処理においては、反応液中の溶媒を他の溶媒に交換した後、吸着処理 を行っても良い。溶媒を交換して吸着処理を行う場合は、交換前の溶媒で吸着処理 を行っても十分な精製が行えな 、場合である。通常は交換前の溶媒のままで吸着処 理を行った方が、製造工程が煩雑にならないので好ましい。交換する溶媒は、比較 的低極性のヘプタン等の脂肪族炭化水素系の溶媒から、比較的高極性のメタノール 、ァセトニトリル、水等の溶媒まで、公知の溶媒が制限なく使用できる。
[0072] 吸着処理を行なうことにより、極微量含まれる着色成分を効率よく除去することがで きる。
[0073] 得られる粗体は、晶析 (再結晶)、減圧蒸留、水蒸気蒸留、昇華精製等の公知の方 法で、さらに精製を行なうことにより、高純度の目的物を得ることができる。
[0074] 目的物が常温で固体である場合、吸着剤で処理する吸着処理工程の後、溶媒を 除去して得られた粗体を、有機溶媒を用いる晶析法により、さらに精製するのが好ま しい。
[0075] 本発明で使用する晶析溶媒は、少なくともアルコール類を含む溶媒を使用する。該 溶媒を晶析溶媒として使用することで、目的物である重合性ジアマンチルエステルイ匕 合物と、未反応の 1ージァマンタノール及び副生成するオリゴマー不純物とを効率よ く分離することがでさる。
[0076] 本発明で晶析溶媒として使用するアルコール類としては、重合性ジアマンチルエス テルィ匕合物を室温又は加熱することにより溶解するものであれば特に制限がないが 、入手の容易さを考慮すれば、メタノール、エタノール、 n—プロパノール、イソプロピ ルアルコール、 n—ブタノール、 n—ォクタノール、シクロへキサノール等が好ましい。 これらのうち、特に目的とする重合性ジアマンチルエステルイ匕合物の精製度が高くな る溶媒としては、メタノール、エタノール、イソプロピルアルコールが挙げられる。これ らアルコ一ル類は 2種類以上組み合わせて使用しても良 ヽ。
[0077] 更に、前記アルコール類と他の有機溶媒とを混合して使用しても良い。アルコール 類と混合して使用する有機溶媒としては、前記アルコール類と有機溶媒との混合溶 媒に重合性ジアマンチルエステルイ匕合物を添加して室温又は加熱することにより該 化合物が溶解するものであれば何れの溶媒でも良い。入手の容易さより、ジクロロメ タン、クロ口ホルム、四塩化炭素等のハロゲン化脂肪族炭化水素類;へキサン、ヘプ タン、オクタン等の脂肪族炭化水素類;ジェチルエーテル、ジイソプロピルエーテル、 ジ n ブチルエーテル、ジ t ブチルエーテル等のエーテル類;アセトン、メチルェチ ルケトン、メチルイソブチルケトン等のケトン類;酢酸メチル、酢酸ェチル、酢酸プロピ ル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル等のエステル類、ベンゼン、トル ェン、キシレン等の芳香族炭化水素類等が好適に使用できる。
[0078] アルコール類とそれ以外の有機溶媒を組み合わせて晶析を行う際の溶媒比は特に 制限されないが、精製物の純度の高さの観点から、アルコール類以外の有機溶媒の 比率は少な 、方が好まし!/、。アルコール類 (質量):アルコール類以外の有機溶媒 (質 量) = 1 : 1以下が好ましぐ 1 : 0. 75以下がより好ましぐ 1 : 0. 5以下が最も好ましい。
[0079] 晶析溶媒として使用するアルコール類の使用量は、特に制限はされないが、重合 性ジアマンチルエステルイ匕合物の粗体の質量に対し、 0. 1〜50質量倍が好ましぐ 0. 5〜20質量倍がより好ましぐ 1〜15質量倍が特に好ましい。また、アルコール類 以外の有機溶媒を更に組み合わせて晶析を行う場合のアルコール類以外の有機溶 媒の使用量は、特に制限はされないが、重合性ジアマンチルエステルイ匕合物の質量 に対し、 0. 01〜30質量倍力 S好ましく、 0. 05〜20質量倍力 Sより好ましく、 0. 1〜15 質量倍が特に好ましい。
実施例
[0080] 以下、実施例を挙げて本発明を更に具体的に説明する力 本発明はこれらの実施 例によって何ら制限されるものではない。
[0081] 実施例 1
1 プロモジアマンタンの製造 (製造例 1 )
1000mlの四つ口フラスコ内部に窒素気流を供給しながら、ジアマンタンを 55. 76 g (0. 299mol)、反応溶媒としてクロ口ホルムを原料であるジアマンタンと同質量(55 . 76g)加え、フラスコ内部を 5°Cに冷却した。フラスコ内の反応原料はスラリー状態で あった。そこへ、臭素 143. 36g (0. 897mol、原料であるジアマンタンの 3モル倍)を 注意深く滴下した。
[0082] 滴下終了後、反応液を室温に戻して 5時間攪拌した。反応液は茶色の均一な溶液 となっていた。クロ口ホルムを 55. 76gカ卩え、反応液を 5°Cまで冷却した後、 30%二亜 硫酸ナトリウム水溶液を 628g滴下して静置し、その後分液を行った。有機層を 10% 水酸化ナトリウム水溶液 55. 8gで 2回、イオン交換水 55. 8gで 3回洗浄し、洗浄水の pHが中性になって 、ることを確認した。有機層を無水硫酸マグネシウムで乾燥後、 溶媒を減圧濃縮し、更に減圧乾燥した。 74. lg (l—プロモジアマンタンを 97%含有 )の白色固体を得た(ジアマンタン換算の収率 92%)。
[0083] 1ージァマンタノールの製造(製造例 2)
500mlの四つ口フラスコ内部に窒素気流を供給しながら、製造例 1で得た 1—プロ モジアマンタンを 40g (0. 150mol)、0. 7N塩酸を 60ml、 N, N ジメチルホルムァ ミドを 52mlカ卩え、 80°Cで 5時間加熱攪拌を行った。反応液を室温まで冷却後、ろ過 し、固体を得た。この固体をイオン交換水 240mlで 2回洗浄後、減圧乾燥を行い 21 . 82g (l ジァマンタノールを 95%含有)の白色固体を得た。この固体にトルエンを 65. 5g混合し、 100°Cで 1時間加熱攪拌を行った。トルエンの混合液はスラリー状態 を呈していた。トルエンの混合液を 5°Cまで冷却後、 1時間攪拌を行った。トルエンの 混合液をろ過し、濾別した固体を減圧乾燥を行い、 20. 65g (l ジァマンタノールを 99 %含有)の白色固体を得た( 1 ブロモジアマンタン換算の収率 68%)。
[0084] 1ージアマンチルメタクリレートの製诰
200mlの四つ口フラスコ内部に窒素気流を供給しながら、製造例 2で得た 1—ジァ マンタノールを 10g (0. 0489mol)、フエノチアジンを 0. 05g (重合禁止剤、原料で ある 1—ジァマンタノールの 0. 5質量0 /0)、トルエンを 30g (溶媒、原料である 1—ジァ マンタノールの 3質量倍)、重合性不飽和カルボン酸無水物としてメタクリル酸無水物 を 9. 42g (0. 0587mol、原料である 1—ジアマンタノ一ノレの 1. 2モノレ倍)カロえ、 80 °Cに加熱した。そこへ、酸触媒として濃硫酸を 0. lg (原料である 1ージアマンタノ一 ルの 1質量%)加え、 80°Cで 6時間攪拌した。
[0085] 攪拌後、反応液を GCで分析した結果、原料である 1 ジァマンタノールが 1 %、 目 的物である 1ージアマンチルメタタリレートが 98%、構造不明の副生成物が 1%生成 していた。
[0086] 反応液を室温まで冷却し、 10%水酸ィ匕ナトリウム水溶液 20gで 2回、イオン交換水 で 6回洗浄した。洗浄した反応液に活性炭を 加え、室温で 1時間攪拌した。活性 炭を濾別し、ほぼ透明の溶液を得た。ヒドロキノンモノメチルエーテルを 0. lg加えた 後、溶媒を減圧留去し、 10.69gの白色固体状の粗体(1—ジアマンチルメタクリレー トを 98%含有)を得た。
[0087] 皿
得られた粗体にメタノールを 32.07g (粗体の 3質量倍)、イソプロピルアルコールを 21.38g (得られた粗体の 2質量倍)をカ卩えた。即ち、得られた粗体に対し、アルコー ル類として合計 5質量倍を使用した。これを 40°Cで 30分加熱攪拌したところ、均一な 溶液となった。該溶液を 5°Cまで冷却し、 1時間熟成した。析出した固体を該溶液から 濾別し、これを減圧乾燥し、 7.37gの白色固体(1—ジァマンタノール換算の収率 55 %)を得た。この固体を GC及び GPCにより分析した。固体の 1ージアマンチルメタタリ レートの含有量は 99% (GC純度)であり、オリゴマー不純物の含有量は 0.1% (ポリ スチレン換算;)であった。
[0088] 得られた 1ージアマンチルメタタリレートのプロトン核磁気共鳴 H—NMR)スぺタト ルを図 1に、 13C核磁気共鳴(13C—NMR)スペクトルを図 2に示す。
[0089] マススペクトル(EI法):分子量 272 (M+)
— NMR(TMS基準、 CDC1中): δ 1.46〜: L 49、 2.01〜2.04(Η、 Η、 d
3 g h
、4H)、 δ 1.60〜: L 62、 1.69〜: L 76(H、H 、d、4H)、 δ 1.69〜: L 76(H、
1 m f
H、 H、 m、 4H)、 δ 1.92 (H、 s、 3H)、 δ 2.00〜2.04 (H、 m、 2H)、 δ 2.07 i j c e
〜2. 10 (H、 m、 1H)、 δ 2.19〜2.20 (H、 d、 2H)、 δ 2.39 (H、 s、 2H) δ 5.
n k d
48、 6.04(H、 H、 m、 2H)
a b
13C-NMR(CDC1中): δ 18.5(C )、 δ 25.1(C ), δ 30.2(C), δ 32.8(C
3 b h η
)、 δ 36.8(C), δ 37.3、 38.0(C、 C )、 δ 40.2、40.3(C、C )、 δ 40.6(C i j k m f g 1
)、 δ 83.9(C), δ 124.2(C), δ 138.2(C), δ 166.3(C )
e a c d
実施例 2〜4
実施例 1にお ヽて、酸触媒を表 1に示すものに変更した以外は同様に操作を行つ た。結果を表 1に示す。
[0090] [表 1] 表 1
Figure imgf000020_0001
[0091] 実施例 5〜7
実施例 1において、晶析溶媒を表 2に示すものに変更した以外は同様に操作を行 つた。結果を表 2に示す。
[0092] [表 2]
表 2
Figure imgf000021_0001
[0093] 実施例 8
200mlの四つ口フラスコ内部に窒素気流を供給しながら、製造例 2で得た 1—ジァ マンタノールを 10g (0. 0489mol)、重合禁止剤としてフエノチアジンを 0. 05g (原料 である 1ージァマンタノールの 0. 5質量0 /0)、溶媒としてトルエンを 30g (原料である 1 ージァマンタノールの 3質量倍)、重合性不飽和カルボン酸無水物としてアクリル酸 無水物を 7. 71g (0. 0587mol、原料である 1—ジァマンタノールの 1. 2モル倍)カロ え、 70°Cに加熱した。フラスコ内に、酸触媒として濃硫酸を 0. lg (原料である 1—ジ アマンタノールの 1質量0 /0)加え、 70°Cで 6時間攪拌した。
[0094] 攪拌後、反応液を GCにより分析した。原料である 1—ジァマンタノールが 1%、 目 的物である 1ージアマンチルアタリレートが 98%、構造不明の副生成物が 1%生成し ていた。反応液を室温まで冷却した後、反応液を 10%水酸化ナトリウム水溶液 20g で 2回、イオン交換水で 6回洗浄した。洗浄した反応液に活性炭を lg加え、室温で 1 時間攪拌した。活性炭を濾別し、ほぼ透明の溶液を得た。この溶液にヒドロキノンモノ メチルエーテルを 0. 2gカ卩えた後、溶媒を減圧留去し、 10. 40gの白色固体状の粗 体(1—ジアマンチルアタリレートを 98%含有)を得た。
[0095] 得られた粗体にメタノールを 31. 2g (粗体の 3質量倍)、イソプロピルアルコールを 1 0. 40g (得られた粗体と同質量)を加えた。即ち、得られた粗体に対し、アルコール 類として合計 4質量倍を加えた。この混合物を 40°Cで 30分間加熱攪拌したところ、 均一な溶液となった。この均一な溶液を 5°Cまで冷却し、その温度で 1時間熟成した 。析出した固体をろ過した。固体を減圧乾燥し、 7. 09gの白色固体(1—ジアマンタノ ール換算の収率 56%)を得た。この固体を GC及び GPCにより分析した。固体の 1 ジアマンチルアタリレートの含有量は 99% (GC純度)であり、オリゴマー不純物の含 有量は 0. 2% (ポリスチレン換算)であった。
[0096] 比較例 1
200mlの四つ口フラスコ内を十分に窒素ガスで置換し、窒素ガスを通気し続けた。 製造例 2で得た 1ージァマンタノールを 10g (0. 0489mol)、重合禁止剤としてフエノ チアジンを 0. 05g (原料である 1ージァマンタノールの 0. 5質量0 /0)、溶媒としてトル ェンを 30g (原料である 1—ジァマンタノールの 3質量倍)、トリェチルァミンを 5. 93g ( 0. 0587mol、原料である 1—ジァマンタノールの 1. 2モル倍)をフラスコに加え、 80 °Cに加熱した。
[0097] フラスコに、メタクリル酸クロライドを 6. 33g (0. 0587mol、原料である 1—ジアマン タノールの 1. 2モル倍)を加え、 80°Cで 6時間攪拌した。
[0098] その後、 GCによる分析を行ったところ、原料である 1ージァマンタノールが 20%、 目的物である 1ージアマンチルメタタリレートが 70%、構造不明の副生成物が 10% 生成して 、た。メタクリル酸クロライドがトリェチルァミンの存在下の高温雰囲気で分 解したためと思われるが、反応は完結していな力つた。更に、晶析を行なっても、 GC 純度 97%以上、オリゴマー量が 1%以下の高純度品として目的物を得ることはできず 、 1ージアマンチルメタタリレートの単離には至らなかった。この原因は、粗体の GC純 度が低力つたこと、及び GCでは検出されないオリゴマー等が多数生成したためと思 われる。
[0099] 比較例 2
実施例 1にお 、て、重合禁止剤であるフエノチアジンを添加しな 、以外は同様に反 応を行った。 80°Cで 6時間攪拌後、オリゴマー不純物やポリマー不純物と思われる 不溶物が見られ、 目的物である 1ージアマンチルメタタリレートの単離には至らなかつ た。
[0100] 参考例 1
1—ジアマンチルメタタリレートの粗体を得るまでの操作は、実施例 1と同様に行つ た。得られた粗体に、ヘプタンを粗体の 2質量倍加え、 40°Cで 30分加熱攪拌したと ころ、均一な溶液となっていた。 5°Cまで冷却し、 1時間熟成後、ろ過、減圧乾燥を行 い、 1. 2gの白色固体(1ージァマンタノール換算の収率 9%)で得た。この固体を GC 及び GPCにより分析した結果、 1ージアマンチルメタタリレートの含有量は GC純度 9 8%であり、オリゴマー不純物のポリスチレン換算の含有量は、 0. 2%であった。 1 ジアマンチルメタタリレートのヘプタンに対する溶解性が高すぎたために、低収率に なったものと思われる。

Claims

請求の範囲 下記式(1)
[化 1]
Figure imgf000024_0001
(式中、 R1は置換基を有していてもよい重合性不飽和炭化水素基であり、 R2、 R3及 び R4は、各々独立に、水素原子又は炭素数 1〜5のアルキル基である。 ) で示される重合性ジアマンチルエステルィヒ合物の製造方法であって、下記式(2) [化 2]
Figure imgf000024_0002
{式中、 R2、 R3及び R4は、各々前記式(1)における 、 R3及び R4と同義である。 で示される 1ージアマンタノ一ルイ匕合物と下記式(3)
[化 3]
Figure imgf000025_0001
{式中、 R1は前記式(1)における R1と同義である。 }
で示される重合性不飽和カルボン酸無水物を、重合禁止剤及び酸触媒の存在下で 反応させることにより、前記式(1)で示される重合性ジアマンチルエステル化合物の 粗体を得る工程を含むことを特徴とする重合性ジアマンチルエステル化合物の製造 方法。
[2] 式(2)で示される 1—ジァマンタノール化合物力 1—ジァマンタノール又は 4, 9-ジ メチルー 1ージァマンタノールである請求の範囲第 1項に記載の重合性ジアマンチル エステル化合物の製造方法。
[3] 重合性不飽和カルボン酸無水物力 アクリル酸無水物又はメタクリル酸無水物である 請求の範囲第 1項に記載の重合性ジアマンチルエステルイ匕合物の製造方法。
[4] 反応温度が、 40〜100°Cである請求の範囲第 1項に記載の重合性ジアマンチルェ ステル化合物の製造方法。
[5] 前記式(1)で示される重合性ジアマンチルエステルイ匕合物を含む粗体を、少なくとも アルコール類を含む溶媒を使用して晶析する晶析工程を更に含む請求の範囲第ェ 項に記載の製造方法。
[6] 下記式 (2)
[化 4]
Figure imgf000026_0001
{式中、 R2、 R3及び R4は、各々前記式(1)における 、 R3及び R4と同義である。 で示される 1ージアマンタノ一ルイ匕合物力 下記式 (4)
[化 5]
Figure imgf000026_0002
{式中、 R2、 R3及び R4は、各々前記式(1)における 、 R3及び R4と同義である。 } で示されるジアマンタンィ匕合物と臭素とを、ハロゲン化脂肪族炭化水素溶媒の存在 下で反応させて下記式 (5)
[化 6]
Figure imgf000027_0001
{式中、 R2、 R3及び R4は、各々前記式(1)における 、 R3及び R4と同義である。 } で示される 1 プロモジアマンタンィ匕合物を得、次 、でこれを加水分解して製造した ものである請求の範囲第 1項に記載の重合性ジアマンチルエステルイ匕合物の製造方 法。
PCT/JP2007/050943 2006-01-31 2007-01-23 重合性ジアマンチルエステル化合物の製造方法 WO2007088749A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-022474 2006-01-31
JP2006022474 2006-01-31

Publications (1)

Publication Number Publication Date
WO2007088749A1 true WO2007088749A1 (ja) 2007-08-09

Family

ID=38327328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050943 WO2007088749A1 (ja) 2006-01-31 2007-01-23 重合性ジアマンチルエステル化合物の製造方法

Country Status (1)

Country Link
WO (1) WO2007088749A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161068A (ja) * 2000-09-14 2002-06-04 Mitsubishi Rayon Co Ltd (メタ)アクリル酸無水物の製造方法および(メタ)アクリル酸エステルの製造方法
US20050074690A1 (en) * 2003-10-01 2005-04-07 Shenggao Liu Photoresist compositions comprising diamondoid derivatives
JP2005179348A (ja) * 2003-11-26 2005-07-07 Central Glass Co Ltd α−置換アクリル酸ノルボルナニル類の製造方法
JP2007041200A (ja) * 2005-08-02 2007-02-15 Fujifilm Corp ポジ型感光性組成物及びそれを用いたパターン形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161068A (ja) * 2000-09-14 2002-06-04 Mitsubishi Rayon Co Ltd (メタ)アクリル酸無水物の製造方法および(メタ)アクリル酸エステルの製造方法
US20050074690A1 (en) * 2003-10-01 2005-04-07 Shenggao Liu Photoresist compositions comprising diamondoid derivatives
JP2005179348A (ja) * 2003-11-26 2005-07-07 Central Glass Co Ltd α−置換アクリル酸ノルボルナニル類の製造方法
JP2007041200A (ja) * 2005-08-02 2007-02-15 Fujifilm Corp ポジ型感光性組成物及びそれを用いたパターン形成方法

Similar Documents

Publication Publication Date Title
JP2002193887A (ja) ヨードニウム塩化合物の製造方法
JP4896040B2 (ja) 重合性ヒドロキシジアマンチルエステル化合物の製造方法
JPH11140019A (ja) ハイドロキノンジエステル誘導体及びその製造方法
JP2007231002A (ja) 重合性ジアマンチルエステル化合物の製造方法
JP5359052B2 (ja) 含フッ素モノマーの製造方法
WO2007088749A1 (ja) 重合性ジアマンチルエステル化合物の製造方法
JP4668066B2 (ja) 重合性不飽和カルボン酸アダマンチルエステル類の製造方法
JP4065689B2 (ja) 2−アダマンタノンの製造方法
JP4362270B2 (ja) トリオルガノシリル不飽和カルボキシレートの製造法
JP4618412B2 (ja) 脂環式テトラカルボン酸化合物及びその製造法
JP4511093B2 (ja) 脂環式モノオレフィンカルボン酸の製造方法
JP3993427B2 (ja) 脂環式ヒドロキシカルボン酸の製造方法
JP4210824B2 (ja) 脂環式テトラカルボン酸二無水物の製造法
JP2008105955A (ja) (メタ)アクリル酸エステルの製造方法
JPH0321537B2 (ja)
JP2008074805A (ja) 高純度(メタ)アクリル酸エステルの製造方法
JP5403280B2 (ja) 脂環式テトラカルボン酸化合物の製造法
JPH08119939A (ja) 高純度エーテル型ビスマレイミドの製造方法
JP2003183204A (ja) アダマンタノール類の製造方法
JP2008143849A (ja) 新規なエポキシテトラシクロドデカンカルボン酸類及びその製造方法
JP2004026718A (ja) 新規なヒドロキシアルキル基置換架橋環式炭化水素モノ(メタ)アクリレートとその製造方法
JPH01163154A (ja) テトラヒドロフタルイミド系化合物の製造法、その中間体および該中間体の製造法
JP2005298378A (ja) 1,3−ジアダマンチルエステル類の製造方法
JP2005060257A (ja) 光学活性ノルボルネンカルボン酸類の製造方法
JP2005272404A (ja) 2−アルキル−2−アダマンチル(メタ)アクリレートの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707206

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)