WO2007083744A1 - 表示装置および電子機器 - Google Patents

表示装置および電子機器 Download PDF

Info

Publication number
WO2007083744A1
WO2007083744A1 PCT/JP2007/050792 JP2007050792W WO2007083744A1 WO 2007083744 A1 WO2007083744 A1 WO 2007083744A1 JP 2007050792 W JP2007050792 W JP 2007050792W WO 2007083744 A1 WO2007083744 A1 WO 2007083744A1
Authority
WO
WIPO (PCT)
Prior art keywords
latch
data
circuit
latch circuit
image data
Prior art date
Application number
PCT/JP2007/050792
Other languages
English (en)
French (fr)
Inventor
Masaaki Tonogai
Yoshiharu Nakajima
Yoshitoshi Kida
Masaki Murase
Daisuke Ito
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US12/223,011 priority Critical patent/US20090273593A1/en
Priority to EP07707080A priority patent/EP1980897A4/en
Publication of WO2007083744A1 publication Critical patent/WO2007083744A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0294Details of sampling or holding circuits arranged for use in a driver for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0297Special arrangements with multiplexing or demultiplexing of display data in the drivers for data electrodes, in a pre-processing circuitry delivering display data to said drivers or in the matrix panel, e.g. multiplexing plural data signals to one D/A converter or demultiplexing the D/A converter output to multiple columns
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the present invention relates to an active matrix display device such as a liquid crystal display device and an electronic apparatus using the same.
  • liquid crystal display device installed as the output display unit. This is because the liquid crystal display device has a characteristic that does not require power for driving in principle and is a display device with low power consumption.
  • the display area unit in which pixels are arranged in a matrix is digitally mounted on the same substrate.
  • the interface drive circuit tends to be integrated.
  • a horizontal drive system and a vertical drive system are arranged in the peripheral part (frame) of the effective display part, and these drive systems are formed on the same substrate together with the pixel area part using a low-temperature polysilicon TFT. It is integrally formed on the top.
  • FIG. 1 is a diagram showing a schematic configuration of a general drive circuit integrated display device (see, for example, Patent Document 1).
  • this liquid crystal display device has an effective display section 2 in which a plurality of pixels including liquid crystal cells are arranged in a matrix on a transparent insulating substrate, for example, a glass substrate 1 in FIG.
  • a reference voltage generation circuit (RERDRV) 5 and a data processing circuit (DATAPRC) 6 etc. for generating the reference voltage are integrated.
  • the drive circuit integrated display device of FIG. 1 has two horizontal drive circuits 3U and 3D.
  • the force placed on both sides of the effective pixel unit 2 is to drive the data lines by dividing them into odd lines and even lines.
  • FIG. 2 is a block diagram showing a configuration example of the horizontal drive circuits 3U and 3D in FIG. 1 that drive odd lines and even lines separately.
  • the horizontal drive circuit 3U for driving odd lines and the horizontal drive circuit 3D for driving even lines have the same configuration.
  • the shift register (HSR) group 3HSRU, 3HSR D which sequentially outputs shift pulses (sampling pulses) in synchronization with the horizontal transfer clock HCK (not shown), and the shift registers 31U, 31D Sampling latch circuit group 3SMPLU, 3SM PLD that sequentially samples and latches digital image data by given sampling pulse, and line sequential latch circuit group 3LTCU, 3LTCD, which serializes each latch data of sampling latch circuits 32U, 32D And digital Z analog conversion circuit (DAC) groups 3DACU and 3DACD for converting the digital image data line-sequentialed by the line-sequential latch circuits 33U and 33D into analog image signals.
  • HCK horizontal transfer clock
  • DAC digital Z analog conversion circuit
  • a level shift circuit is arranged at the input stage of DACs 34U and 34D, and the level-up data is input to DAC 34.
  • Patent Document 1 JP 2002-175033 A
  • An object of the present invention is to provide a type display device capable of narrowing a pitch, realizing a narrow frame, and further reducing power consumption, and an electronic device using the same.
  • a display device includes a display unit in which pixels are arranged in a matrix, and a vertical drive circuit that selects each pixel of the display unit in units of rows.
  • the first, second, and third digital image data is input, and the digital image data is supplied as an analog image signal to the data line to which each pixel in the row selected by the vertical drive circuit is connected.
  • a horizontal sampling circuit for sampling and latching the first digital image data, and a second sampling for sampling and latching the second digital image data.
  • a first latch series including a latch circuit, and a first latch circuit that latches each latch data of the first and second sampling latch circuits again, and the third latch
  • a second latch series including a third sampling latch circuit that samples and latches digital image data, and the first, second, and third digital image data latched in the first latch series and the second latch series
  • a digital-analog conversion circuit (DAC) that converts analog data during one horizontal period, and the first, second, and third analog image data converted into analog data by the DAC are time-divided within a predetermined period.
  • DAC digital-analog conversion circuit
  • the first latch series includes a second latch circuit that latches data latched in the first latch circuit
  • the second latch series includes the third sampling latch circuit.
  • a third latch circuit for re-latching the data latched in the second latch circuit, and further comprising a selection switch for selectively outputting the digital image data latched in the second latch circuit and the third latch circuit to the DAC. .
  • the first and second sampling latch circuits are cascade-connected, and the first latch circuit and the second latch are cascade-connected to the output of the second sampling latch circuit.
  • the first and second sampling latch circuits include a first digital image data and a second digital image with the same sampling pulse. The image data is stored, the second digital image data of the second sampling latch circuit is transferred to the second latch circuit through the first latch circuit, and then the first digital image of the first sampling latch circuit is transferred. Data is transferred to the second latch circuit through the second sampling latch circuit.
  • the third digital image data is data having an intermediate wavelength band among the three digital image data.
  • a second aspect of the present invention is an electronic apparatus including a display device, wherein the display device includes a display unit in which pixels are arranged in a matrix, and each pixel of the display unit in units of rows.
  • the vertical drive circuit to be selected and the first, second, and third digital image data are input, and the pixels in the row selected by the vertical drive circuit are connected using the digital image data as an analog image signal.
  • a horizontal driving circuit for supplying to the data line, the horizontal driving circuit sampling and latching the first digital image data and the second digital image data.
  • a first sampling latch circuit including a second sampling latch circuit that samples and latches the first latch circuit, and a first latch circuit that latches each latch data of the first and second sampling latch circuits again.
  • a second latch series including a third sampling latch circuit that samples and latches the third digital image data, and the first, second, and second latched latches in the first latch series and the second latch series (3)
  • a digital analog conversion circuit (DAC) that converts digital image data into analog data during one horizontal period, and the first, second, and third analog image data converted into analog data by the DAC.
  • DAC digital analog conversion circuit
  • a line selector that selects and outputs to the data line in a time-division manner within a predetermined period.
  • FIG. 1 is a diagram showing a schematic configuration of a general drive circuit integrated display device.
  • FIG. 2 is a block diagram showing a configuration example of the horizontal drive circuit of FIG. 1 that drives odd lines and even lines separately.
  • FIG. 3 is a diagram showing an arrangement configuration of the drive circuit integrated display device according to the first embodiment of the present invention.
  • FIG. 4 is a system block diagram showing circuit functions of the drive circuit integrated display device according to the first embodiment of the present invention.
  • FIG. 5 is a circuit diagram showing a configuration example of an effective display unit of a liquid crystal display device.
  • FIG. 6 is a block diagram showing a basic configuration example of first and second horizontal drive circuits of the present embodiment.
  • FIG. 7 is a circuit diagram showing a specific configuration of the first latch series of the horizontal drive circuit according to the second embodiment.
  • FIG. 8 is a circuit diagram showing a specific configuration of a second latch series of the horizontal drive circuit according to the second embodiment.
  • FIG. 9 is a diagram showing the relationship between the vertical frame size and the high-definition possible area of the existing system and the present invention system when the devices of FIG. 3 and FIG. 4 are realized by QVGA.
  • FIG. 10 is a diagram showing an arrangement configuration of a drive circuit integrated display device according to a third embodiment of the present invention.
  • FIG. 11 is a system block diagram showing a circuit function of a drive circuit integrated display device according to a third embodiment of the present invention.
  • FIG. 12 is an external view schematically showing a configuration of a mobile phone that is a mobile terminal according to an embodiment of the present invention.
  • 130SEL '''Latch output selection switch 13DAC''' Digital-analog conversion circuit, 13ABUD ' ⁇ ' Analog buffer, 13LSEL- ⁇ Line selector, 14 ⁇ 'Vertical drive circuit, 15 ⁇ ' Data processing circuit, 16 ⁇ 'Power supply circuit, 17''Interface circuit, 18 Timing generator.
  • FIG. 3 and 4 are schematic configuration diagrams showing a configuration example of the drive circuit integrated display device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram of the drive circuit according to the first embodiment.
  • FIG. 4 is a system block diagram showing the circuit functions of the drive circuit integrated display device according to the first embodiment.
  • the liquid crystal display device 10 includes an effective display unit (ACDSP) 12, in which a plurality of pixels including liquid crystal cells are arranged in a matrix on a transparent insulating substrate, for example, a glass substrate 11.
  • ACDSP effective display unit
  • FIG. 3 a pair of first and second horizontal drive circuits (H-Drino, HDRV) 13U and 13D arranged above and below the effective display unit 12 and in FIG.
  • V-Dryno ⁇ VDRV Drive circuit
  • DATAPRC Data processing circuit
  • DC-DC Power supply circuit
  • IGF Interface circuit
  • TG Timing generator
  • REFDRV reference voltage drive circuit
  • an input pad 20 such as data is formed on the edge of the glass substrate 11 in the vicinity of the arrangement position of the second horizontal drive circuit 13D.
  • the glass substrate 11 is disposed so as to face a first substrate on which a plurality of pixel circuits including active elements (for example, transistors) are arranged and formed in a matrix, and to face the first substrate with a predetermined gap. And a second substrate. A liquid crystal is sealed between the first and second substrates.
  • active elements for example, transistors
  • the circuit group formed on the insulating substrate is formed by a low-temperature polysilicon TFT process.
  • a horizontal drive system and a vertical drive system are arranged around the effective display section 12 (frame), and these drive systems use polysilicon TFTs. It is integrally formed on the same substrate together with the pixel area portion.
  • the driving circuit integrated liquid crystal display device 10 of the present embodiment has two horizontal driving circuits 13U and 13 3D arranged on both sides (up and down in FIG. 3) of the effective pixel unit 12. This is because the drive is divided into odd lines and even lines.
  • each of the three digital data is stored in the sampling latch circuit, and during one horizontal period (H), conversion processing to analog data is performed three times by the shared digital-analog conversion circuit.
  • the RGB selector method is adopted by selecting three analog data in a time division manner in the horizontal period and outputting them to the data line (signal line).
  • the digital R data is described as the first digital data
  • the digital B data is described as the second digital data
  • the digital G data as the third digital data.
  • a plurality of pixels including liquid crystal cells are arranged in a matrix.
  • data lines and vertical scanning lines driven by the horizontal drive circuits 13U and 13D and the vertical drive circuit 14 are wired in a matrix.
  • FIG. 5 is a diagram showing an example of a specific configuration of the effective display unit 12.
  • a pixel arrangement of 3 rows (n ⁇ l rows to n + 1 rows) and 4 columns (m ⁇ 2 columns to m + 1 columns) is shown as an example.
  • the unit pixel 123 has a configuration including a thin film transistor TFT which is a pixel transistor, a liquid crystal cell LC, and a storage capacitor Cs.
  • the liquid crystal cell LC means a capacitance generated between a pixel electrode (one electrode) formed by a thin film transistor TFT and a counter electrode (the other electrode) formed facing the pixel electrode.
  • the gate electrode has a vertical scanning line ..., 121 ⁇ -1, 121 ⁇ , 121 n + 1, connected to source electrode force S data line ..., 122m-2, 122m-1, 122m, 122m + 1, ...
  • the pixel electrode is connected to the drain electrode of the thin film transistor TFT, and the counter electrode is connected to the common line 124.
  • the storage capacitor Cs is connected between the drain electrode of the thin film transistor TFT and the common line 124.
  • a predetermined AC voltage is applied to the common line 124 as a common voltage Vcom by the VCOM circuit 21 formed integrally with the drive circuit and the like on the glass substrate 11.
  • the vertical drive circuit 14 includes, for example, a shift register, and sequentially generates vertical selection pulses in synchronization with a vertical transfer clock V CK (not shown) to generate vertical scanning lines ..., 121 ⁇ -1, 121 ⁇ , 121 ⁇ + Perform vertical scanning by giving to 1,.
  • V CK vertical transfer clock
  • each of the data lines ..., 122m-1, 122m + 1, ... is connected to each output end of the corresponding column of the first horizontal drive circuit 13U shown in FIG.
  • the other end is connected to each output end of the corresponding column of the second horizontal drive circuit 13D shown in FIG.
  • the first horizontal drive circuit 13U stores three digital data of R data, B data, and G data in the sampling latch circuit, respectively, and converts it to analog data three times during one horizontal period (H). In this way, the three data are selected in a time-sharing manner within the horizontal period and output to the corresponding data line.
  • the first horizontal drive circuit 13U uses the first latch circuit in the time division manner and the second data latched by the first and second sampling latch circuits in time division.
  • the G data latched in the third sampling latch circuit during the time-sequential transfer processing of the R data and B data to the latch circuit is transferred to the third latch circuit, and then transferred to the second latch circuit.
  • R, B, and G data latched by the latch circuit and the third latch circuit are selectively output within one horizontal period and converted to analog data, and three analog data are selected in a time-division manner within the horizontal period. To the corresponding data line.
  • the RGB selector system is To achieve this, a first latch circuit series for two digital R and B data and a second latch circuit series for one digital G data are arranged in parallel, and a digital-to-analog conversion circuit (after the selector) (DACs, analog buffers, and line selectors are shared to achieve a narrow frame and lower power consumption.
  • DACs, analog buffers, and line selectors are shared to achieve a narrow frame and lower power consumption.
  • the second horizontal drive circuit 13D basically has the same configuration as the first horizontal drive circuit 13U.
  • FIG. 6 is a block diagram illustrating a basic configuration example of the first horizontal drive circuit 13U and the second horizontal drive circuit 13D of the present embodiment.
  • the horizontal drive circuit 13 will be described.
  • This horizontal drive circuit shows a basic configuration corresponding to three digital data, and actually, a plurality of similar configurations are arranged in parallel.
  • the horizontal drive circuit 13 includes a shift register (HSR) group 13HSR, a sampling latch circuit group 13SMPL, a latch output selection switch 130SEL, a digital-analog conversion circuit 13DAC, an analog buffer 13ABUF, and a line selector.
  • HSR shift register
  • SPL sampling latch circuit group
  • SEL latch output selection switch
  • DAC digital-analog conversion circuit
  • AUF analog buffer
  • LSEL line selector
  • the shift register group 13HSR outputs a shift pulse (sampling pulse) sequentially from each transfer stage corresponding to each column to the sampling latch circuit group 13 SMPL in synchronization with a horizontal transfer clock HCK (not shown). Shift register (HSR).
  • the sampling latch circuit group 13SMPL samples and latches the first sampling latch circuit 131 that sequentially samples and latches the R data that is the first digital data, and the B data that is the second digital data.
  • the second sampling latch circuit 132 that latches the R data latched in the first sampling latch circuit 131 at a predetermined timing
  • the third sampling latch circuit that sequentially samples and latches the G data that is the third digital data 133, the first latch circuit 134 for serially transferring the digital data R or B data latched in the second sampling latch circuit 132, and the higher digital R or B data latched in the first latch circuit 134
  • a second latch circuit 135 having a level shift function for converting and latching to a voltage amplitude
  • a third support And a third latch circuit 136 having a level shift function for latching the converted digital G data la Tutsi to pulling the latch circuit 133 to a higher voltage amplitude.
  • a first latch series 137 is formed by the first sampling latch circuit 131, the second sampling latch circuit 132, the first latch circuit 134, and the second latch circuit 135.
  • a second latch series 138 is formed by the three sampling latch circuits 133 and the third latch circuit 136.
  • data input from the data processing circuit 15 to the horizontal drive circuits 13U and 13D is supplied at a 0-3V (2.9V) level.
  • the level is raised to, for example, ⁇ 2.3 V to 4.8 V system by the level shift function of the second and third latch circuits 135 and 136 which are output stages of the sampling latch circuit group 13SMPL.
  • the latch output selection switch 130SEL selectively switches the output of the sampling latch circuit group 13SMPL and outputs it to the digital analog circuit 13DAC.
  • Digital-to-analog converter circuit 13DAC performs digital-to-analog conversion three times during one horizontal period. That is, the digital-analog conversion circuit 13DAC converts three digital R, B, and G data into analog data during one horizontal period.
  • the analog buffer 13ABUF buffers R, B, G data converted into analog signals by the digital-analog converter circuit 13DAC and outputs the data to the line selector 13LSEL.
  • the line selector 13LSEL has three analog R, B, Select G data and output to corresponding data line DTL—R, DTL—B, DTL—G.
  • the data in the second sampling latch circuit 132 is transferred during the horizontal blanking period.
  • the data is transferred to the first latch circuit 134 and immediately transferred to the second latch circuit 135 for storage.
  • the data in the first sampling latch circuit 131 is transferred to the second sampling latch 132, and immediately transferred to the first latch circuit 134 for storage.
  • the third sampling Data in the latch circuit 133 is transferred to the third latch circuit 136.
  • the data for the next horizontal line is sent to the first, second, and third sampling latch circuits 131, 132, 133.
  • the latch output selection switch 130SEL switches the data stored in the second latch circuit 135 and the third latch circuit 136 to the digital-analog conversion circuit 13DAC Output to.
  • the data stored in the first latch circuit 134 is transferred to and stored in the second latch circuit 135.
  • the data is output to the digital analog conversion circuit 13DAC when the latch output selection switch 130SEL is switched.
  • This sampling latch method outputs three pieces of digital data to the digital-to-analog converter circuit 13DAC, which makes it possible to achieve high definition and a narrow frame.
  • the 3rd digital data is not accompanied by transfer work while storing data for one horizontal line.
  • B (Blue) ⁇ G (Green) ⁇ R (Red) Because writing with a good power, such as the VT characteristics of the liquid crystal, color data that has the most influence on the human eye, that is, G data, makes it more resistant to variations in image quality.
  • the data processing circuit 15 includes a level shifter 151 that shifts the level of parallel digital R, G, B data input from the outside from 0—3V (2.9V) system to 6V system, and level-shifted R , G, B data serial-parallel conversion circuit 152 that converts serial data to parallel data in order to adjust phase and reduce frequency, downshift parallel data from 6V system to 0—3 V (2.9 V) system And down-converter 153 that outputs odd data (odd-data) to horizontal drive circuit 13U and outputs even-data (even-data) to horizontal drive circuit 13D.
  • a level shifter 151 that shifts the level of parallel digital R, G, B data input from the outside from 0—3V (2.9V) system to 6V system
  • level-shifted R , G, B data serial-parallel conversion circuit 152 that converts serial data to parallel data in order to adjust phase and reduce frequency
  • downshift parallel data from 6V system to 0—3 V (2.9 V) system
  • the power supply circuit 16 includes a DC-DC converter.
  • an external force liquid crystal voltage VDD1 eg, 2.9V
  • VDD1 an external force liquid crystal voltage
  • Hsync the horizontal synchronization signal supplied from the interface circuit 17.
  • Synchronous or built-in oscillation circuit the frequency is low (slow), and the clock with a variation in the oscillation frequency is corrected by a predetermined correction system and the horizontal synchronization Hsync is doubled 6V system
  • the internal panel voltage is boosted to VDD2 (for example, 5.8V) and supplied to each circuit inside the panel.
  • the power supply circuit 16 generates negative voltages VSS2 (for example, 1.1.9 V) and VSS3 (for example, 1.3.8 V) as internal panel voltages and supplies them to predetermined circuits (interface circuit, etc.) inside the panel. To do.
  • VSS2 for example, 1.1.9 V
  • VSS3 for example, 1.3.8 V
  • the interface circuit 17 shifts the level of the master clock MCK, the horizontal synchronization signal H sync, and the vertical synchronization signal Vsync, to which external power is also supplied, to the panel internal logic level (for example, VDD2 level).
  • the clock MCK, the horizontal synchronization signal Hsync, and the vertical synchronization signal Vsync are supplied to the timing generator 18, and the horizontal synchronization signal Hsync is supplied to the power supply circuit 16.
  • the interface circuit 17 does not supply the master clock MCK to the power supply circuit 16. Don't do that!
  • the master clock MCK supply line from the interface circuit 17 to the power supply circuit 16 may be left as it is, and the master clock MCK may not be used for boosting on the power supply circuit 16 side.
  • the timing generator 18 is synchronized with the master clock MCK, the horizontal synchronization signal Hsync, and the vertical synchronization signal Vsync supplied by the interface circuit 17, and a horizontal start pulse HST used as a clock for the horizontal drive circuits 13U and 13D.
  • Parallel digital data input from the outside is subjected to parallel conversion for phase adjustment and frequency reduction in the data processing circuit 15 on the glass substrate 11, and R data, B data, and G data are converted into data. It is output to the first and second horizontal drive circuits 13U and 13D.
  • the digital G data input from the data processing circuit 15 is sequentially sampled and held by the third sampling latch circuit 133 over 1H. Thereafter, the data is transferred to the third latch circuit 136 in the horizontal blanking period.
  • R data and B data are sampled separately over 1H and held in the first and second sampling latch circuits 131 and 132, and in the next horizontal blanking period, each first latch circuit is sampled. Forwarded to 134.
  • the data in the second sampling latch circuit 132 is transferred during the horizontal blanking period.
  • the data is transferred to the first latch circuit 134 and immediately transferred to the second latch circuit 135 and stored.
  • the data in the first sampling latch circuit 131 is transferred to the second sampling latch 132 and immediately transferred to the first latch circuit 134 for storage.
  • the data in the third sampling latch circuit 133 is transferred to the third latch circuit 136.
  • the data force latch output selection switch 130SEL is stored in the second latch circuit 135 and the third latch circuit 136, thereby switching the digital / analog conversion circuit 13DAC. Is output.
  • the data stored in the first latch circuit 134 is transferred to the second latch circuit 135 and stored.
  • the data is output to the digital-analog converter circuit 13DAC when the latch output selection switch 130SEL is switched.
  • R, B, G data converted into analog data by the digital-analog converter circuit 13DAC is held in the analog buffer 13ABUF, and each analog R, B, G data is divided into 3 parts in the 1H period. It is selectively output to the corresponding data line. Note that the processing order of G, R, and B can be changed.
  • the first digital data (R) and the second digital data (B) sampling latch circuits 131 and 132, the first latch circuit 134, and the second latch circuit 135 are connected in cascade to perform serial transfer.
  • Analog buffer circuit 13 ABUF selectively supports three analog data (R, B, G) during one horizontal period (H) Since the line selector 13LSEL for outputting to the data line is provided, the following effects can be obtained.
  • this system can realize a three-line selector system with high definition and a narrow frame on an insulating substrate, and a drive circuit integrated display device using the three-line selector system.
  • FIG. 7 is a circuit diagram showing a specific configuration of the first latch series of the horizontal drive circuit according to the second embodiment.
  • FIG. 8 is a circuit diagram showing a specific configuration of the second latch series of the horizontal drive circuit according to the second embodiment.
  • the first latch series 137 in FIG. 6 is denoted by reference numeral 200
  • the first sampling latch circuit 131 is denoted by reference numeral 210
  • the second sampling latch circuit 132 is denoted by reference numeral 220
  • the first latch circuit 1 34 is denoted by reference numeral 230.
  • the second latch circuit 135 is indicated by reference numeral 240.
  • the second latch series 138 in FIG. 6 is denoted by reference numeral 300
  • the third sampling latch circuit 133 is denoted by reference numeral 310
  • the third latch circuit 136 is denoted by reference numeral 320.
  • the circuit of FIG. 7 includes a first sampling latch circuit 210 that latches the first digital R data by a sampling pulse SP from a shift register (not shown), and a second digital B data by the same sampling pulse SP.
  • Second sampling latch circuit 220 to latch, its After that, a shift register (not shown), a first sampling latch circuit 210, which is composed of a first latch circuit 230 that transfers digital R data and B data in a batch, and a second latch circuit 240 that performs level shift of the transferred digital data
  • the second sampling latch circuit 220 and the first latch circuit 230 perform transfer and holding operations with the first power supply voltage VDD1 (VSS) of 0-3V (2.9V) system, and the second latch circuit 240 1. 12. 3 to 5.8 Changes to the second power supply voltage VH1 and VL1 of the 8V system and performs holding and data output operations.
  • the first and second latches constitute the R and B data output circuits of the sampling latch circuit group.
  • the first sampling latch circuit 210 includes n-channel transistors NT211 to NT218 and p-channel transistors PT211 to PT214.
  • the transistor NT211 constitutes an R data input transfer gate 211 in which a sampling pulse SP is supplied to the gate.
  • a latch 212 is configured by cross-coupling the inputs and outputs of the CMOS inverter composed of transistors PT211 and NT212, and ⁇ 212 and ⁇ 213.
  • the transistor NT214 is supplied with the inverted signal XSP of the sampling nors at the gate to constitute an equalize circuit 213 of the latch 212.
  • Transistors PT213 and NT215 constitute an output buffer 214 composed of a CMOS inverter.
  • Transistors PT214 and NT216 constitute an output buffer 215 comprising a CMOS inverter.
  • the transistor NT217 is supplied with the signal Oel at the gate to constitute an output transfer gate 216 to the second sampling latch circuit 220 of the output buffer 214, and the transistor NT218 is supplied with the signal Oel at the gate and output.
  • An output transfer gate 217 to the second sampling latch circuit 220 of the buffer 215 is configured.
  • the second sampling latch circuit 220 includes n-channel transistors NT221 to NT226 and p-channel transistors PT221 to PT223.
  • Transistor NT221 is supplied with sampling pulse SP at its gate.
  • a force transfer gate 221 is formed.
  • a latch 222 is configured by cross-coupling the inputs and outputs of the CMOS inverter composed of transistors PT221 and NT222 and PT222 and NT223.
  • the transistor NT224 is supplied with the inverted signal XSP of the sampling noise at the gate to constitute an equalizing circuit 223 of the latch 222.
  • Transistors PT223 and NT225 constitute an output buffer 224 composed of a CMOS inverter.
  • the transistor NT226 is supplied with the signal Oe2 at its gate, and constitutes an output transfer gate 216 to the first latch circuit 230 of the output buffer 224.
  • the first latch circuit 230 includes n-channel transistors NT231 to NT235 and p-channel transistors PT231 to PT233.
  • a latch 231 is configured by cross-coupling the input and output of the CMOS inverter composed of transistors ⁇ 231 and ⁇ 231 and ⁇ 232 and ⁇ 232.
  • the transistor NT233 is supplied with the inverted signal XOe3 of the signal Oe3 at its gate, and constitutes an equalize circuit 232 of the latch 231.
  • Transistors PT233 and NT234 constitute an output buffer 233 consisting of a CMOS inverter.
  • the transistor NT235 is supplied with the signal Oe3 at its gate to constitute an output transfer gate 234 to the second latch circuit 240 of the output buffer 233.
  • the second latch circuit 240 includes n-channel transistors NT241 to NT244 and p-channel transistors PT241 to PT244!
  • the latch 241 is configured by cross-coupling the inputs and outputs of the CMOS inverter composed of transistors 241 and 241 and 242 and 242.
  • the transistor NT243 is supplied with the signal XOe4 at the gate, and the transistor PT243 is supplied with the signal Oe4 at the gate to constitute the equalizing circuit 242 of the latch 241.
  • Transistors PT244 and NT244 constitute an output buffer 243 composed of a CMOS inverter.
  • the second latch circuit 240 is supplied with voltages VH1 and VL1, which are the second power supply voltage system. Operate.
  • the image data (R data or B data) in the first sampling latch circuit 210 is stored in the CMOS latch cell 212.
  • the second sampling latch circuit 220 stores different image data (B data or R data) in the CMOS latch cell 222.
  • the data in the CMOS latch cell 222 in the second sampling latch circuit 220 is stored in the horizontal blanking period. Transfer to the first latch circuit 230 and immediately store in the second latch circuit 240. At this time, the CMOS latch 231 structure is released so that the first latch circuit P230 is not held.
  • the data stored in the first sampling latch circuit 210 is transferred to the second sampling latch circuit 220 and immediately. Stored in the first latch circuit 230.
  • the first data stored in the second latch circuit 240 is output to the selection switch.
  • the second data stored in the first latch circuit 230 is input to the selection switch.
  • the third sampling latch circuit 310 includes n-channel transistors NT311 to NT316 and p-channel transistors PT311 to PT313!
  • the transistor NT311 constitutes the G data input transfer gate 311 whose sampling pulse SP is supplied to the gate.
  • a latch 312 is configured by cross-coupling the inputs and outputs of the CMOS inverter, which is composed of transistors ⁇ 311 and ⁇ 312, ⁇ 312 and ⁇ 313.
  • the transistor NT314 is supplied with an inverted signal XSP of the sampling noise at its gate to constitute an equalize circuit 313 of the latch 312.
  • Transistors PT313 and NT315 constitute an output buffer 314 composed of a CMOS inverter.
  • the transistor NT316 is supplied with a signal Oe5 at its gate to constitute an output transfer gate 315 to the third latch circuit 320 of the output buffer 314.
  • the third latch circuit 320 includes n-channel transistors NT321 to NT324 and p-channel transistors PT321 to PT324!
  • a latch 321 is configured by cross-coupling the inputs and outputs of the CMOS inverter consisting of transistors PT321 and NT321, and ⁇ 322 and ⁇ 322.
  • the transistor NT323 has a gate supplied with the signal XOe6, and the transistor PT323 has a gate supplied with the signal Oe6 to constitute an equalize circuit 322 of the latch 321.
  • Transistors PT324 and NT324 constitute an output buffer 323 composed of a CMOS inverter.
  • the third latch circuit 320 operates by being supplied with voltages VH2 and VL2 as the second power supply voltage system.
  • the third sampling latch circuit 310 samples the image data (G data) and stores it in the CMOS latch cell 312.
  • the data of the CMOS latch cell 312 in the first sampling latch circuit 310 is transferred to the third latch circuit 320 during the horizontal blanking period.
  • the data stored in the third latch circuit 320 is output to the selection switch.
  • the horizontal drive circuit requires a sampling latch circuit of Hdot number X 3 (RGB), DAC and analog buffer, or a sampling latch circuit of Hdot number X 2 Because it requires a DAC and an analog buffer, it has been an obstacle to realizing a narrow pitch.
  • three image data are processed by one sampling latch circuit group, latch output selection switch, DA converter circuit, analog buffer, and three selection switch. If it is arranged at (or below), one horizontal drive circuit should be arranged at two Hdot pitches. At this time, since the other horizontal drive circuit is arranged on the opposite side, high definition and a narrow frame can be realized. In addition, power consumption can be reduced because the number of circuits can be reduced compared to existing circuits.
  • FIG. 9 is a diagram showing the relationship between the vertical frame size and the high-definition possible area of the existing system and the system of the present invention when the devices of FIGS. 3 and 4 are realized by QVGA.
  • the system of the present invention has a three-line selector system with a high definition and a narrow frame on an insulating substrate, and a drive circuit integrated display using the system, compared to the existing system.
  • a device can be realized.
  • FIG. 10 and FIG. 11 are schematic configuration diagrams showing a configuration example of a drive circuit integrated display device according to the third embodiment of the present invention, and FIG. 10 shows a drive circuit integrated type according to the third embodiment.
  • FIG. 11 is a diagram showing an arrangement configuration of a display device, and FIG. 11 is a system block diagram showing a circuit function of a drive circuit integrated display device according to the third embodiment.
  • the third embodiment is different from the first and second embodiments described above in that a drive circuit integrated display device is realized by arranging a horizontal drive circuit only on one side.
  • an active matrix liquid crystal display device has been described as an example.
  • the present invention is not limited to this, and an electro-luminescence (EL) element is not limited to the electro-optic of each pixel.
  • EL electro-luminescence
  • an active matrix display device typified by the active matrix liquid crystal display device according to the above embodiment is a personal computer, a word processor, or the like.
  • a display for A devices and television receivers it is particularly suitable for use as a display unit for portable terminals such as portable telephones and PDAs that are becoming more compact and compact.
  • FIG. 12 is an external view schematically showing the configuration of a mobile terminal to which the present invention is applied, for example, a mobile phone.
  • the cellular phone 400 has a configuration in which a speaker unit 420, a display unit 430, an operation unit 440, and a microphone unit 450 are arranged in the order of the upper side force on the front side of the apparatus housing 410. .
  • a liquid crystal display device is used as the display unit 430, and the active matrix liquid crystal display device according to the above-described embodiment is used as the liquid crystal display device.
  • the mobile terminal such as a mobile phone
  • the active matrix liquid crystal display device according to the above-described embodiment as the display unit 430
  • the pitch can be narrowed, the frame can be narrowed, and the power consumption of the display device can be reduced. Therefore, the power consumption of the terminal body can be reduced.
  • the display device and the electronic device of the present invention can be narrowed in pitch, can be narrowed in frame, and can further reduce power consumption, OA such as personal computers and word processors can be used.
  • OA personal computers and word processors
  • it can be used as a display unit for portable terminals such as mobile phones and PDAs, which are especially compact and compact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)

Abstract

 狭ピッチ化が可能で、狭額縁化を実現でき、また、より低消費電力化が可能な型表示装置およびそれ用いた電子機器であって、2つの水平駆動回路13U、13Dにおいては、3つのデジタルデータを、サンプリングラッチ回路にそれぞれ格納し、一水平期間(H)中に共用のデジタルアナログ変換回路で3回アナログデータへの変換処理を行い、3つのアナログデータを水平期間内で時分割的に選択してデータライン(信号線)に出力することによりRGBセレクタ方式を採用している。

Description

表示装置および電子機器
技術分野
[0001] 本発明は、液晶表示装置等のアクティブマトリクス型表示装置およびそれを用いた 電子機器に関するものである。
背景技術
[0002] 近年、携帯電話機や PDA(Personal Digital Assistants)などの携帯端末の普及がめ ざましい。これら携帯端末の急速な普及の要因の一つとして、その出力表示部として 搭載されている液晶表示装置が挙げられる。その理由は、液晶表示装置が原理的に 駆動するための電力を要しない特性を持ち、低消費電力の表示デバイスであるため である。
[0003] 近年、画素のスイッチング素子としてポリシリコン TFT (Thin Film Transistor:薄膜ト ランジスタ)用いたアクティブマトリクス型表示装置において、画素がマトリクス状に配 置されてなる表示エリア部と同一基板上にデジタルインタフェース駆動回路を一体的 に形成する傾向にある。
この駆動回路一体型表示装置は、有効表示部の周辺部 (額縁)に水平駆動系ゃ垂 直駆動系が配され、これら駆動系が低温ポリシリコン TFTを用いて画素エリア部と共 に同一基板上に一体的に形成される。
[0004] 図 1は、一般的な駆動回路一体型表示装置の概略構成を示す図である(たとえば、 特許文献 1参照)。
[0005] この液晶表示装置は、図 1に示すように、透明絶縁基板、たとえばガラス基板 1上に 、液晶セルを含む複数の画素がマトリクス状に配置された有効表示部 2、図 1におい て有効表示部 2の上下に配置された一対の水平駆動回路 (Hドライバ) 3U, 3D、図 1 にお 、て有効表示部 2の側部に配置された垂直駆動回路 (Vドライバ) 4、複数の基 準電圧を発生する一つの基準電圧発生回路 (RERDRV)5、およびデータ処理回路( DATAPRC) 6等が集積されて!、る。
[0006] このように、図 1の駆動回路一体型表示装置は、 2つの水平駆動回路 3U, 3Dを有 効画素部 2の両サイド(図 1では上下)に配置している力 これは、データ線の奇数ラ インと偶数ラインとに分けて駆動するためである。
[0007] 図 2は、奇数ラインと偶数ラインとを別々に駆動する図 1の水平駆動回路 3U, 3Dの 構成例を示すブロック図である。
[0008] 図 2に示すように、奇数ライン駆動用の水平駆動回路 3Uと偶数ライン駆動用の水 平駆動回路 3Dは同様の構成を有している。
具体的には、水平転送クロック HCK (図示せず)に同期して各転送段力 順次シフ トパルス(サンプリングパルス)を出力するシフトレジスタ(HSR)群 3HSRU, 3HSR Dと、シフトレジスタ 31U, 31Dから与えられるサンプリングパルスによりデジタル画像 データを順次サンプリングしてラッチするサンプリングラッチ回路群 3SMPLU, 3SM PLDと、サンプリングラッチ回路 32U, 32Dの各ラッチデータを線順次化する線順次 化ラッチ回路群 3LTCU、 3LTCDと、線順次化ラッチ回路 33U, 33Dで線順次化さ れたデジタル画像データをアナログ画像信号に変換するデジタル Zアナログ変換回 路(DAC)群 3DACU, 3DACDと、を有する。
なお、通常、 DAC34U, 34Dの入力段には、レベルシフト回路が配置され、レベル アップさせたデータが DAC34に入力される。
特許文献 1 :特開 2002— 175033号公報
発明の開示
発明が解決しょうとする課題
[0009] し力しながら、上述した図 2の水平駆動回路においては、 1本のデータ線に対して、 1セットのサンプリングラッチ回路 32、線順次化ラッチ回路 33、および DAC34が必 要になるため、レイアウト的に許容される横幅が少ない。このため狭ピッチ化が困難 である。また、必要な回路数も多いため額縁が大きくなり、また消費電力が大きいとい ぅ不禾 IJ益がある。
図 2の水平駆動回路の場合、シリアルパラレルィ匕した R (赤)、 G (緑)、 B (青)データ をサンプリングする 3つのサンプリングラッチ回路を要する力 これでは狭ピッチ化、 狭額縁ィ匕の要望に対応することは困難である。
これを克服するために 、わゆる縦方向にレイアウトを延ばすことも考えられる力 こ れでは急激にレイアウト面積が増大し、狭額縁化を実現することは困難である。
[0010] 本発明は、狭ピッチ化が可能で、狭額縁化を実現でき、また、より低消費電力化が 可能な型表示装置およびそれ用いた電子機器を提供することにある。
課題を解決するための手段
[0011] 上記目的を達成するため、本発明の第 1の観点の表示装置は、画素がマトリクス状 に配置された表示部と、上記表示部の各画素を行単位で選択する垂直駆動回路と、 第 1、第 2、および第 3のデジタル画像データを入力とし、当該デジタル画像データを アナログ画像信号として上記垂直駆動回路によって選択された行の各画素が接続さ れたデータラインに対して供給する水平駆動回路と、を有し、水平駆動回路は、上記 第 1のデジタル画像データをサンプリングしてラッチする第 1サンプリングラッチ回路と 、第 2のデジタル画像データをサンプリングしてラッチする第 2サンプリングラッチ回路 と、上記第 1および第 2サンプリングラッチ回路の各ラッチデータを再度ラッチする第 1 ラッチ回路と、を含む第 1ラッチ系列と、上記第 3のデジタル画像データをサンプリン グしてラッチする第 3サンプリングラッチ回路を含む第 2ラッチ系列と、上記第 1ラッチ 系列および第 2ラッチ系列にラッチされた第 1、第 2、および第 3デジタル画像データ を一水平期間中にアナログデータに変換するデジタルアナログ変換回路 (DAC)と、 上記 DACによりアナログデータに変換された上記第 1、第 2、および第 3のアナログ 画像データを所定の期間内で時分割的に選択して上記データラインに出力するライ ンセレクタと、を含む。
[0012] 好適には、上記第 1ラッチ系列は、上記第 1ラッチ回路にラッチされたデータをラッ チする第 2ラッチ回路を有し、上記第 2ラッチ系列は、上記第 3サンプリングラッチ回 路にラッチされたデータを再度ラッチする第 3ラッチ回路を有し、上記第 2ラッチ回路 と上記第 3ラッチ回路にラッチされた各デジタル画像データを選択的に上記 DACに 出力する選択スィッチをさらに有する。
[0013] 好適には、上記水平駆動回路は、上記第 1および第 2のサンプリングラッチ回路は 縦続接続され、上記第 2サンプリングラッチ回路の出力に対して縦続接続された第 1 ラッチ回路および第 2ラッチ回路を含み、上記第 1および第 2のサンプリングラッチ回 路は、同一のサンプリングパルスで第 1のデジタル画像データおよび第 2のデジタル 画像データを格納し、上記第 2サンプリングラッチ回路の第 2のデジタル画像データ を上記第 1ラッチ回路を通して第 2ラッチ回路に転送し、次に、第 1のサンプリングラッ チ回路の第 1のデジタル画像データを第 2サンプリングラッチ回路を通して上記第 2ラ ツチ回路に転送する。
[0014] 好適には、上記第 3のデジタル画像データは、 3つのデジタル画像データのうち、 波長帯域が中間にあるデータである。
[0015] 本発明の第 2の観点は、表示装置を備えた電子機器であって、上記表示装置は、 画素がマトリクス状に配置された表示部と、上記表示部の各画素を行単位で選択す る垂直駆動回路と、第 1、第 2、および第 3のデジタル画像データを入力とし、当該デ ジタル画像データをアナログ画像信号として上記垂直駆動回路によって選択された 行の各画素が接続されたデータラインに対して供給する水平駆動回路と、を有し、水 平駆動回路は、上記第 1のデジタル画像データをサンプリングしてラッチする第 1サ ンプリングラッチ回路と、第 2のデジタル画像データをサンプリングしてラッチする第 2 サンプリングラッチ回路と、上記第 1および第 2サンプリングラッチ回路の各ラッチデ ータを再度ラッチする第 1ラッチ回路と、を含む第 1ラッチ系列と、上記第 3のデジタル 画像データをサンプリングしてラッチする第 3サンプリングラッチ回路を含む第 2ラッチ 系列と、上記第 1ラッチ系列および第 2ラッチ系列にラッチされた第 1、第 2、および第 3デジタル画像データを一水平期間中にアナログデータに変換するデジタルアナ口 グ変換回路 (DAC)と、上記 DACによりアナログデータに変換された上記第 1、第 2、 および第 3のアナログ画像データを所定の期間内で時分割的に選択して上記データ ラインに出力するラインセレクタと、を含む。
発明の効果
[0016] 本発明によれば、狭額縁で高精細までに対応でき、低消費電力な駆動回路一体 型表示装置を実現できる。
図面の簡単な説明
[0017] [図 1]図 1は、一般的な駆動回路一体型表示装置の概略構成を示す図である。
[図 2]図 2は、奇数ラインと偶数ラインとを別々に駆動する図 1の水平駆動回路の構成 例を示すブロック図である。 [図 3]図 3は、本発明の第 1の実施形態に係る駆動回路一体型表示装置の配置構成 を示す図である。
[図 4]図 4は、本発明の第 1の実施形態に係る駆動回路一体型表示装置の回路機能 を示すシステムブロック図である。
[図 5]図 5は、液晶表示装置の有効表示部の構成例を示す回路図である。
[図 6]図 6は、本実施形態の第 1および第 2の水平駆動回路の基本的な構成例を示 すブロック図である。
[図 7]図 7は、第 2の実施形態に係る水平駆動回路の第 1ラッチ系列の具体的な構成 を示す回路図である。
[図 8]図 8は、第 2の実施形態に係る水平駆動回路の第 2ラッチ系列の具体的な構成 を示す回路図である。
[図 9]図 9は、図 3および図 4の装置を QVGAにて実現するときの既存システムと本発 明システムの上下方向額縁サイズと高精細化可能領域の関係を示す図である。
[図 10]図 10は、本発明の第 3の実施形態に係る駆動回路一体型表示装置の配置構 成を示す図である。
[図 11]図 11は、本発明の第 3の実施形態に係る駆動回路一体型表示装置の回路機 能を示すシステムブロック図である。
[図 12]図 12は、本発明の実施形態に係る携帯端末である携帯電話機の構成の概略 を示す外観図である。
符号の説明
10, 10A- · ·液晶表示装置、 11·· 'ガラス基板、 12·· ·有効表示部、 13·· ·水平駆 動回路、 1311···第 1の水平駆動回路, 13D—第 2の水平駆動回路、 13SMPL'. 'サンプリングラッチ回路群、 131···第 1サンプリングラッチ回路、 132···第 2サンプ リングラッチ回路、 133···第 3サンプリングラッチ回路、 134···第 1ラッチ回路、 135 • · '第 2ラッチ回路、 136· · '第 3ラッチ回路、 137· · '第 1ラッチ系歹 U、 138· · '第 2ラッ チ系列。 130SEL'''ラッチ出力選択スィッチ、 13DAC'''デジタルアナログ変換 回路、 13ABUD' · 'アナログバッファ、 13LSEL- · 'ラインセレクタ、 14· · '垂直駆動 回路、 15· · 'データ処理回路、 16· · '電源回路、 17· · 'インタフェース回路、 18··· タイミングジェネレータ。
発明を実施するための最良の形態
[0019] 以下、本発明の実施の形態について図面に関連付けて詳細に説明する。
[0020] <第 1実施形態 >
図 3および図 4は、本発明の第 1の実施形態に係る駆動回路一体型表示装置の構 成例を示す概略構成図であって、図 3は本第 1の実施形態に係る駆動回路一体型 表示装置の配置構成を示す図であり、図 4は本第 1の実施形態に係る駆動回路一体 型表示装置の回路機能を示すシステムブロック図である。
ここでは、たとえば、各画素の電気光学素子として液晶セルを用いたアクティブマト リクス型液晶表示装置に適用した場合を例に採って説明する。
[0021] この液晶表示装置 10は、図 3に示すように、透明絶縁基板、たとえばガラス基板 11 上に、液晶セルを含む複数の画素がマトリクス状に配置された有効表示部 (ACDSP ) 12、図 3において有効表示部 12の上下に配置された一対の第 1および第 2の水平 駆動回路 (Hドライノ 、 HDRV) 13U, 13D、図 1において有効表示部 2の側部に配 置された垂直駆動回路 (Vドライノ^ VDRV) 14、データ処理回路(DATAPRC) 15 、 DC— DCコンバータにより形成された電源回路(DC— DC) 16、インタフェース回 路 (IZF) 17、タイミングジェネレータ (TG) 18、および複数の駆動基準電圧を水平 駆動回路 13U, 13D等に供給する基準電圧駆動回路 (REFDRV) 19等が集積され ている。
また、ガラス基板 11の第 2の水平駆動回路 13Dの配置位置の近傍の縁部にはデ ータ等の入力パッド 20が形成されて 、る。
[0022] ガラス基板 11は、能動素子 (たとえば、トランジスタ)を含む複数の画素回路がマトリ タス状に配置形成される第 1の基板と、この第 1の基板と所定の間隙をもって対向して 配置される第 2の基板とによって構成される。そして、これら第 1,第 2の基板間に液 晶が封入される。
絶縁基板に形成される回路群は、低温ポリシリコン TFTプロセスにより形成されて いる。すなわち、この駆動回路一体型表示装置 10は、有効表示部 12の周辺部 (額 縁)に水平駆動系や垂直駆動系が配され、これら駆動系がポリシリコン TFTを用いて 画素エリア部と共に同一基板上に一体的に形成される。
[0023] 本実施形態の駆動回路一体型液晶表示装置 10は、 2つの水平駆動回路 13U, 1 3Dを有効画素部 12の両サイド(図 3では上下)に配置している力 これは、データ線 の奇数ラインと偶数ラインとに分けて駆動するためである。
2つの水平駆動回路 13U、 13Dにおいては、 3つのデジタルデータを、サンプリン グラッチ回路にそれぞれ格納し、一水平期間 (H)中に共用のデジタルアナログ変換 回路で 3回アナログデータへの変換処理を行い、 3つのアナログデータを水平期間 内で時分割的に選択してデータライン (信号線)に出力することにより RGBセレクタ方 式を採用している。
本実施形態においては、 3つのデジタル画像データ R, G, Bのうち、デジタル Rデ 一タを第 1デジタルデータ、デジタル Bデータを第 2デジタルデータ、デジタル Gデー タを第 3デジタルデータとして説明する。
[0024] 以下、本実施形態の液晶表示装置 10の各構成要素の構成並びに機能について 順を追って説明する。
[0025] 有効表示部 12は、液晶セルを含む複数の画素がマトリクス状に配列されている。
そして、有効表示部 12は、水平駆動回路 13U, 13D、並びに垂直駆動回路 14に より駆動されるデータラインおよび垂直走査ラインがマトリクス状に配線されている。
[0026] 図 5は、有効表示部 12の具体的な構成の一例を示す図である。
ここでは、図面の簡略化のために、 3行(n—l行〜 n+ 1行) 4列(m—2列〜 m+ 1 列)の画素配列の場合を例に採って示して 、る。
図 4にお!/ヽて、表示咅 12に ίま、垂直走査ライン ···, 121η— 1, 121η, 121η+ 1, …と、データライン…, 122m— 2, 122m— 1, 122m, 122m+ l,…と力 ^マトリクス 状に配線され、それらの交点部分に単位画素 123が配置されている。
[0027] 単位画素 123は、画素トランジスタである薄膜トランジスタ TFT、液晶セル LCおよ び保持容量 Csを有する構成となっている。ここで、液晶セル LCは、薄膜トランジスタ TFTで形成される画素電極 (一方の電極)とこれに対向して形成される対向電極 (他 方の電極)との間で発生する容量を意味する。
[0028] 薄膜トランジスタ TFTは、ゲート電極が垂直走査ライン…, 121η— 1, 121η, 121 n+ 1,…に接続され、ソース電極力 Sデータライン…, 122m— 2, 122m— 1, 122m , 122m+ l,…に接続されている。
液晶セル LCは、画素電極が薄膜トランジスタ TFTのドレイン電極に接続され、対向 電極が共通ライン 124に接続されている。保持容量 Csは、薄膜トランジスタ TFTのド レイン電極と共通ライン 124との間に接続されて!ヽる。
共通ライン 124には、ガラス基板 11に駆動回路等と一体的に形成される VCOM回 路 21により所定の交流電圧がコモン電圧 Vcomとして与えられる。
[0029] 垂直走査ライン…, 121η— 1, 121η, 121η+ 1, …の各一端は、図 3に示す垂直 駆動回路 14の対応する行の各出力端にそれぞれ接続される。
垂直駆動回路 14は、たとえばシフトレジスタを含んで構成され、垂直転送クロック V CK (図示せず)に同期して順次垂直選択パルスを発生して垂直走査ライン…, 121 η- 1, 121η, 121η+ 1,…に与えることによって垂直走査を行う。
[0030] また、表示部 12において、たとえば、データライン…, 122m— 1, 122m+ l,…の 各一端が図 3に示す第 1の水平駆動回路 13Uの対応する列の各出力端に、各他端 が図 3に示す第 2の水平駆動回路 13Dの対応する列の各出力端にそれぞれ接続さ れる。
[0031] 第 1の水平駆動回路 13Uは、 Rデータ、 Bデータ、および Gデータの 3つのデジタル データを、サンプリングラッチ回路にそれぞれ格納し、一水平期間 (H)中に 3回アナ ログデータへの変換処理を行い、 3つのデータを水平期間内で時分割的に選択して 対応するデータラインに出力する。
第 1の水平駆動回路 13Uは、この RGBセレクタ方式の採用に伴い、第 1および第 2 サンプリングラッチ回路にラッチされた Rデータと Bデータを時分割的に第 1ラッチ回 路、さらには第 2ラッチ回路に転送し、この Rデータと Bデータのラッチ回路への時分 割的な転送処理の間に第 3サンプリングラッチ回路にラッチされた Gデータを第 3ラッ チ回路に転送し、第 2ラッチ回路および第 3ラッチ回路にラッチされる R, B, Gデータ を 1水平期間内で選択的に出力してアナログデータに変換し、 3つのアナログデータ を水平期間内で時分割的に選択して対応するデータラインに出力する。
すなわち、本実施形態の水平駆動回路 13Uにおいては、 RGBセレクタシステムを 実現するために、 2つのデジタル R, Bデータ用の第 1ラッチ回路系列と、 1つのデジ タル Gデータ用の第 2ラッチ回路系列とを並列的に配置し、セレクタ以降のデジタル アナログ変換回路 (DAC)、アナログバッファ、ラインセレクタを共有するように構成す ることにより、狭額縁化、低消費電力化を図っている。
第 2の水平駆動回路 13Dは、基本的には第 1の水平駆動回路 13Uと同様の構成 を有する。
[0032] 図 6は、本実施形態の第 1の水平駆動回路 13Uと第 2の水平駆動回路 13Dの基本 的な構成例を示すブロック図である。以下では水平駆動回路 13として説明する。 なお、この水平駆動回路は、 3つのデジタルデータに対応した基本的な構成を示し ており、実際には、同様の構成が並列的に複数配列される。
[0033] 水平駆動回路 13は、図 6に示すように、シフトレジスタ(HSR)群 13HSR、サンプリ ングラッチ回路群 13SMPL、ラッチ出力選択スィッチ 130SEL、デジタルアナログ変 換回路 13DAC、アナログバッファ 13ABUF、およびラインセレクタ 13LSELを有す る。
[0034] シフトレジスタ群 13HSRは、水平転送クロック HCK (図示せず)に同期して各列に 対応する各転送段から順次シフトパルス (サンプリングパルス)をサンプリングラッチ回 路群 13 SMPLに出力する複数のシフトレジスタ(HSR)を有する。
[0035] サンプリングラッチ回路群 13SMPLは、第 1デジタルデータである Rデータを順次 サンプリングしてラッチする第 1サンプリングラッチ回路 131と、第 2デジタルデータで ある Bデータを順次サンプリングしてラッチし、また、第 1サンプリングラッチ回路 131 にラッチされた Rデータを所定のタイミングでラッチする第 2サンプリングラッチ回路 13 2と、第 3デジタルデータである Gデータを順次サンプリングしてラッチする第 3サンプ リングラッチ回路 133と、第 2サンプリングラッチ回路 132にラッチされたデジタルデー タ Rまたは Bデータをシリアルに転送するための第 1ラッチ回路 134と、第 1ラッチ回路 134にラッチされデジタル Rまたは Bデータをより高い電圧振幅に変換してラッチする レベルシフト機能を有する第 2ラッチ回路 135と、第 3サンプリングラッチ回路 133にラ ツチされたデジタル Gデータをより高い電圧振幅に変換してラッチするレベルシフト機 能を有する第 3ラッチ回路 136と、を有する。 このような構成を有するサンプリングラッチ回路群 13SMPLにおいて、第 1サンプリ ングラッチ回路 131、第 2サンプリングラッチ回路 132、第 1ラッチ回路 134、および第 2ラッチ回路 135により第 1ラッチ系列 137が形成され、第 3サンプリングラッチ回路 1 33および第 3ラッチ回路 136により第 2ラッチ系列 138が形成されている。
[0036] 本実施形態においては、データ処理回路 15から各水平駆動回路 13U, 13Dに入 力されるデータは 0— 3V(2. 9V)系のレベルで供給される。
そして、サンプリングラッチ回路群 13SMPLの出力段である第 2および第 3ラッチ回 路 135, 136のレベルシフト機能により、たとえば— 2. 3V〜4. 8V系にレベルアップ される。
[0037] ラッチ出力選択スィッチ 130SELは、サンプリングラッチ回路群 13SMPLの出力を 選択的に切り替えてデジタルアナログ回路 13DACに出力する。
デジタルアナログ変換回路 13DACは、一水平期間中に 3回デジタル一アナログ変 換を行う。すなわち、デジタルアナログ変換回路 13DACは、一水平期間中に 3つの デジタル R, B, Gデータをアナログデータに変換する。
アナログバッファ 13ABUFは、デジタルアナログ変換回路 13DACでアナログ信号 に変換された R, B, Gデータをバッファリングしてラインセレクタ 13LSELに出力する ラインセレクタ 13LSELは、一水平期間において 3つのアナログ R, B, Gデータを 選択して、対応するデータライン DTL— R、 DTL— B、 DTL— Gに出力する。
[0038] ここで、水平駆動回路 13における動作について説明する。
[0039] 水平駆動回路 13において、連続する画像データをサンプリングする際、第 1、第 2、 および第 3サンプリングラッチ回路 131, 132, 133に格納する。
水平方向 1ラインすベてのデータの第 1、第 2、および第 3サンプリングラッチ回路 1 31〜133への格納が完了すると、水平方向ブランキング期間に第 2サンプリングラッ チ回路 132内のデータを第 1ラッチ回路 134に転送し、すぐに第 2ラッチ回路 135に 転送し格納する。
次に、第 1サンプリングラッチ回路 131内のデータを第 2サンプリングラッチ 132に転 送し、すぐに第 1ラッチ回路 134に転送し格納する。また同期間に第 3サンプリングラ ツチ回路 133内のデータを第 3ラッチ回路 136に転送する。
そして次の水平方向 1ラインのデータを、第 1、第 2、および第 3サンプリングラッチ 回路 131, 132, 133【こ格糸内して!/ヽく。
次の水平方向 1ラインのデータを格納している間に、第 2ラッチ回路 135および第 3 ラッチ回路 136に格納されているデータを、ラッチ出力選択スィッチ 130SELが切替 わることによりデジタルアナログ変換回路 13DACに出力する。
その後、第 1ラッチ回路 134に格納されているデータを第 2ラッチ回路 135に転送し 格納する。そのデータをラッチ出力選択スィッチ 130SELが切替わることによりデジ タルアナログ変換回路 13DACに出力する。
このサンプリングラッチ方式により、 3つのデジタルデータをデジタルアナログ変換 回路 13DACに出力するため、高精細化 ·狭額縁ィ匕を実現することが可能となる。 また、第 3デジタルデータは、水平方向 1ラインのデータを格納している間転送作業 を伴わな 、こと、 RGBセレクタ駆動の場合は B (Blue)→G (Green)→R (Red)の順で 書き込むことが、液晶の VT特性など力 良いことから、人間の眼に最も影響を与えや すい色のデータ、つまり Gデータにすることにより、画質ばらつきに強くなる。
[0040] データ処理回路 15は、外部より入力されたパラレルのデジタル R, G, Bデータのレ ベルを 0— 3V (2. 9V)系から 6V系にシフトするレベルシフタ 151、レベルシフトされ た R, G, Bデータを位相調整や周波数を下げるために、シリアルデータ力 パラレル データに変換するシリアル ·パラレル変換回路 152、パラレルデータを 6V系から 0— 3 V ( 2. 9 V)系にダウンシフトして奇数データ(odd— data)を水平駆動回路 13Uに 出力し、偶数データ (even— data)を水平駆動回路 13Dに出力するダウンコンパ一 タ 153を有する。
[0041] 電源回路 16は、 DC— DCコンバータを含み、たとえば外部力 液晶電圧 VDD1 ( たとえば 2. 9V)が供給され、この電圧をインタフェース回路 17から供給されるマスタ クロック MCKや水平同期信号 Hsyncに同期して、あるいは内蔵されている発振回路 により、周波数が低く(遅く)、発振周波数にばらつきのあるクロックを所定の補正シス テムで補正した補正クロックおよび水平同期 Hsyncに基づいて 2倍の 6V系の内部パ ネル電圧 VDD2 (たとえば 5. 8V)に昇圧し、パネル内部の各回路に供給する。 また、電源回路 16は、内部パネル電圧として負電圧である VSS2 (たとえば一 1. 9 V)、 VSS3 (たとえば一 3. 8V)を生成してパネル内部の所定回路 (インタフェース回 路等)に供給する。
[0042] インタフ ース回路 17は、外部力も供給されるマスタクロッ MCK、水平同期信号 H sync,垂直同期信号 Vsyncのレベルをパネル内部ロジックレベル(たとえば VDD2 レベル)までレベルシフトし、レベルシフト後のマスタクロック MCK、水平同期信号 Hs ync、垂直同期信号 Vsyncをタイミングジェネレータ 18に供給し、また、水平同期信 号 Hsyncを電源回路 16に供給する。
インタフェース回路 17は、電源回路 16がマスタクロックを用いずに内蔵の発振回路 のクロックを補正した補正クロックに基づいて昇圧を行う構成の場合には、マスタクロ ック MCKの電源回路 16への供給は行わな!/、ように構成可能である。あるいはインタ フェース回路 17から電源回路 16へマスタクロック MCKの供給ラインをそのままで、 電源回路 16側でマスタクロック MCKを昇圧に使用しないように構成することも可能 である。
[0043] タイミングジェネレータ 18は、インタフェース回路 17により供給されたマスタクロック MCK、水平同期信号 Hsync、垂直同期信号 Vsyncに同期して、水平駆動回路 13 U, 13Dのクロックとして用いられる水平スタートパルス HST、水平クロックパルス HC K (HCKX)、垂直駆動回路 14のクロックとして用いられる垂直スタートパルス VST、 垂直クロック VCK(VCKX)を生成し、水平スタートパルス HST、水平クロックパルス HCK (HCKX)を水平駆動回路 13U, 13Dに供給し、垂直スタートパルス VST、垂 直クロック VCK (VCKX)を垂直駆動回路 14に供給する。
[0044] 次に、上記構成による動作を説明する。
[0045] 外部より入力されたパラレルのデジタルデータは、ガラス基板 11上のデータ処理回 路 15で位相調整や周波数を下げるためのパラレル変換が行われ、 Rデータ、 Bデー タ、および Gデータが第 1および第 2の水平駆動回路 13U, 13Dに出力される。 第 1および第 2の水平駆動回路 13U, 13Dでは、データ処理回路 15より入力され たデジタル Gデータが第 3サンプリングラッチ回路 133で 1Hかけて順次サンプリング し保持される。その後、水平のブランキング期間に第 3ラッチ回路 136に転送される。 これと並行して、 Rデータと Bデータが別々に 1Hかけてサンプリングされて第 1およ び第 2サンプリングラッチ回路 131, 132に保持され、次の水平ブランキング期間に それぞれの第 1ラッチ回路 134に転送される。
水平方向 1ラインすベてのデータの第 1、第 2、および第 3サンプリングラッチ回路 1 31〜133への格納が完了すると、水平方向ブランキング期間に第 2サンプリングラッ チ回路 132内のデータが第 1ラッチ回路 134に転送され、すぐに第 2ラッチ回路 135 に転送され格納される。
次に、第 1サンプリングラッチ回路 131内のデータが第 2サンプリングラッチ 132に 転送され、すぐに第 1ラッチ回路 134に転送されて格納される。また同期間に第 3サ ンプリングラッチ回路 133内のデータが第 3ラッチ回路 136に転送される。
そして次の水平方向 1ラインのデータ力 第 1、第 2、および第 3サンプリングラッチ 回路 131, 132, 133【こ格糸内されて!ヽく。
次の水平方向 1ラインのデータを格納している間に、第 2ラッチ回路 135および第 3 ラッチ回路 136に格納されて 、るデータ力 ラッチ出力選択スィッチ 130SELが切替 わることによりデジタルアナログ変換回路 13DACに出力される。
その後、第 1ラッチ回路 134に格納されているデータが第 2ラッチ回路 135に転送さ れて格納される。そのデータがラッチ出力選択スィッチ 130SELが切替わることによ りデジタルアナログ変換回路 13DACに出力される。
次の 1H期間にデジタルアナログ変換回路 13DACでアナログデータに変換された R, B, Gデータがアナログバッファ 13ABUFに保持され、 1H期間が 3分割された形 態で各アナログ R, B, Gデータが対応するデータラインに選択的に出力される。 なお、 G、 R、 Bの処理の順番は切り替わっても実現可能である。
本実施形態によれば、第 1デジタルデータ (R)および第 2デジタルデータ (B)用の サンプリングラッチ回路 131, 132、第 1ラッチ回路 134、および第 2ラッチ回路 135を 縦続接続してシリアル転送する第 1ラッチ系列 137と、第 3デジタルデータ用のサンプ リングラッチ回路 133および第 3ラッチ回路 136を縦続接続した第 2ラッチ系列 138と を有し、共用のデジタルアナログ (DA)変換回路 13DAC、アナログバッファ回路 13 ABUF、一水平期間(H)中に 3つのアナログデータ (R, B, G)を選択的に対応する データラインに出力するラインセレクタ 13LSELを有することから、以下の効果を得る ことができる。
この構成にすることにより、既存システムよりも同ドットピッチの幅で必要となる DA変 換回路 ·アナログバッファ回路の数が減り、狭額縁化を実現することが可能となる。 また、第 1および第 2デジタルデータ用と第 3デジタルデータ用のサンプリングラッチ 回路力 データ処理回路を構成することにより、高精細化を実現することが可能とな る。
すなわち、本システムにより、絶縁基板上に高精細化と狭額縁ィ匕された 3ラインセレ クタシステム、およびこれを用いた駆動回路一体型表示装置を実現できる。
また、水平駆動回路の回路数を削減可能なため、低消費電力な 3ラインセレクタシ ステム、およびこれを用いた駆動回路一体型表示装置を実現できる。
さらに、 1水平期間中に 3分割して信号線に出力するため、高速動作となるが、画質 ばらつきに強 、3ラインセレクタシステム、およびこれを用いた駆動回路一体型表示 装置を実現できる。
[0047] <第 2実施形態 >
次に、第 2の実施形態として、本発明に係る駆動回路一体型液晶表示装置におけ る第 1および第 2の水平駆動回路のより好適な構成について説明する。
[0048] 図 7は、第 2の実施形態に係る水平駆動回路の第 1ラッチ系列の具体的な構成を 示す回路図である。また、図 8は、第 2の実施形態に係る水平駆動回路の第 2ラッチ 系列の具体的な構成を示す回路図である。
[0049] 図 7において、図 6の第 1ラッチ系列 137を符号 200で示し、第 1サンプリングラッチ 回路 131を符号 210、第 2サンプリングラッチ回路 132を符号 220、第 1ラッチ回路 1 34を符号 230、第 2ラッチ回路 135を符号 240でそれぞれ示している。
また、図 8において、図 6の第 2ラッチ系列 138を符号 300で示し、第 3サンプリング ラッチ回路 133を符号 310、第 3ラッチ回路 136を符号 320でそれぞれ示している。
[0050] 図 7の回路は、図示しないシフトレジスタからのサンプリングパル SPにより 1つ目の デジタル Rデータをラッチする第 1サンプリングラッチ回路 210、同じサンプリングパル ス SPで 2つ目のデジタル Bデータをラッチする第 2サンプリングラッチ回路 220、その あと一括にデジタル Rデータおよび Bデータを転送する第 1ラッチ回路 230、および 転送されたデジタルデータのレベルシフトを行う第 2ラッチ回路 240により構成される 図示しないシフトレジスタ、第 1サンプリングラッチ回路 210、第 2サンプリングラッチ 回路 220、第 1ラッチ回路 230は、 0— 3V(2. 9V)系の第 1の電源電圧 VDD1 (VS S)で転送および保持動作を行い、第 2ラッチ回路 240は、たとえば一 12. 3〜5. 8V 系の第 2電源電圧 VH1、VL1に変化して保持およびデータ出力動作を行う。
なお、第 1ラッチと第 2ラッチによりサンプリングラッチ回路群の R、 Bデータ用出力回 路が構成される。
[0051] 第 1サンプリングラッチ回路 210は、 nチャネルのトランジスタ NT211〜NT218、お よび pチャネルのトランジスタ PT211〜PT214を含んで構成されて!、る。
トランジスタ NT211は、ゲートにサンプリングパルス SPが供給される Rデータの入 力転送ゲート 211を構成している。
トランジスタ PT211と NT212, ΡΤ212と ΝΤ213で構成される CMOSインバータの 入出力同士を交差結合してラッチ 212が構成されている。また、トランジスタ NT214 は、ゲートにサンプリングノルスの反転信号 XSPが供給されて、ラッチ 212のィコライ ズ回路 213を構成している。
トランジスタ PT213と NT215により CMOSインバータからなる出力バッファ 214が 構成されている。
トランジスタ PT214と NT216により CMOSインバータからなる出力バッファ 215が 構成されている。
そして、トランジスタ NT217は、ゲートに信号 Oelが供給されて、出力バッファ 214 の第 2サンプリングラッチ回路 220への出力転送ゲート 216を構成し、トランジスタ NT 218は、ゲートに信号 Oelが供給されて、出力バッファ 215の第 2サンプリングラッチ 回路 220への出力転送ゲート 217を構成している。
[0052] 第 2サンプリングラッチ回路 220は、 nチャネルのトランジスタ NT221〜NT226、お よび pチャネルのトランジスタ PT221〜PT223を含んで構成されている。
トランジスタ NT221は、ゲートにサンプリングパルス SPが供給される Βデータの入 力転送ゲート 221を構成している。
トランジスタ PT221と NT222, PT222と NT223で構成される CMOSインバータの 入出力同士を交差結合してラッチ 222が構成されている。また、トランジスタ NT224 は、ゲートにサンプリングノ ルスの反転信号 XSPが供給されて、ラッチ 222のィコライ ズ回路 223を構成している。
トランジスタ PT223と NT225により CMOSインバータからなる出力バッファ 224が 構成されている。
そして、トランジスタ NT226は、ゲートに信号 Oe2が供給されて、出力バッファ 224 の第 1ラッチ回路 230への出力転送ゲート 216を構成している。
[0053] 第 1ラッチ回路 230は、 nチャネルのトランジスタ NT231〜NT235、および pチヤネ ルのトランジスタ PT231〜PT233を含んで構成されている。
トランジスタ ΡΤ231と ΝΤ231 , ΡΤ232と ΝΤ232で構成される CMOSインバータの 入出力同士を交差結合してラッチ 231が構成されている。また、トランジスタ NT233 は、ゲートに信号 Oe3の反転信号 XOe3が供給されて、ラッチ 231のィコライズ回路 2 32を構成している。
トランジスタ PT233と NT234により CMOSインバータからなる出力バッファ 233が 構成されている。
そして、トランジスタ NT235は、ゲートに信号 Oe3が供給されて、出力バッファ 233 の第 2ラッチ回路 240への出力転送ゲート 234を構成して 、る。
[0054] 第 2ラッチ回路 240は、 nチャネルのトランジスタ NT241〜NT244、および pチヤネ ルのトランジスタ PT241〜PT244を含んで構成されて!、る。
ランジスタ ΡΤ241と ΝΤ241 , ΡΤ242と ΝΤ242で構成される CMOSインバータの 入出力同士を交差結合してラッチ 241が構成されている。また、トランジスタ NT243 はゲートに信号 XOe4が供給され、トランジスタ PT243はゲートに信号 Oe4が供給さ れて、ラッチ 241のィコライズ回路 242を構成している。
トランジスタ PT244と NT244により CMOSインバータからなる出力バッファ 243が 構成されている。
この第 2ラッチ回路 240は、第 2の電源電圧系である電圧 VH1, VL1が供給されて 動作する。
[0055] 図 7の回路においては、連続する画像データをサンプリングする際、第 1サンプリン グラッチ回路 210にある画像データ(Rデータまたは Bデータ)を CMOSラッチセル 2 12に格納する。それと同時に第 2サンプリングラッチ回路 220に上と異なる画像デー タ(Bデータまたは Rデータ)を CMOSラッチセル 222に格納する。
水平方向 1ラインすベてのデータの第 1サンプリングラッチ回路 210、第 2サンプリン グラッチ回路 220への格納が完了すると、水平方向ブランキング期間に第 2サンプリ ングラッチ回路 220内の CMOSラッチセル 222のデータを第 1ラッチ回路 230に転 送し、すぐに第 2ラッチ回路 240に格納する。このとき、第 1ラッチ回路 P230は保持し な 、ように CMOSラッチ 231構造を解除する。
第 2サンプリングラッチ回路 220内のデータを第 2ラッチ回路 230に転送が終了した ら、次に第 1サンプリングラッチ回路 210に格納しているデータを第 2サンプリングラッ チ回路 220に転送し、すぐに第 1ラッチ回路 230に格納する。
次の水平方向 1ラインのデータを第 1サンプリングラッチ回路 210、第 2サンプリング ラッチ回路 220に格納する間に、第 2ラッチ回路 240に格納されている 1つ目のデー タを選択スィッチに出力する。 1つ目のデータが選択スィッチに転送が終わると第 1ラ ツチ回路 230に格納されている 2つ目のデータが選択スィッチに入力される。
[0056] このサンプリングラッチ方式により 2つのデジタルデータを 1つのサンプリングラッチ 回路で動作させるため Hdotピッチの小型化を実現できるものであり、これにより高解 像度化が可能となる。
[0057] 第 3サンプリングラッチ回路 310は、 nチャネルのトランジスタ NT311〜NT316、お よび pチャネルのトランジスタ PT311〜PT313を含んで構成されて!、る。
トランジスタ NT311は、ゲートにサンプリングパルス SPが供給される Gデータの入 力転送ゲート 311を構成して ヽる。
トランジスタ ΡΤ311と ΝΤ312, ΡΤ312と ΝΤ313で構成される CMOSインバータの 入出力同士を交差結合してラッチ 312が構成されている。また、トランジスタ NT314 は、ゲートにサンプリングノ ルスの反転信号 XSPが供給されて、ラッチ 312のィコライ ズ回路 313を構成している。 トランジスタ PT313と NT315により CMOSインバータからなる出力バッファ 314が 構成されている。
そして、トランジスタ NT316は、ゲートに信号 Oe5が供給されて、出力バッファ 314 の第 3ラッチ回路 320への出力転送ゲート 315を構成している。
[0058] 第 3ラッチ回路 320は、 nチャネルのトランジスタ NT321〜NT324、および pチヤネ ルのトランジスタ PT321〜PT324を含んで構成されて!、る。
ランジスタ PT321と NT321, ΡΤ322と ΝΤ322で構成される CMOSインバータの 入出力同士を交差結合してラッチ 321が構成されている。また、トランジスタ NT323 はゲートは信号 XOe6が供給され、トランジスタ PT323はゲートに信号 Oe6が供給さ れて、ラッチ 321のィコライズ回路 322を構成している。
トランジスタ PT324と NT324により CMOSインバータからなる出力バッファ 323が 構成されている。
この第 3ラッチ回路 320は、第 2の電源電圧系である電圧 VH2, VL2が供給されて 動作する。
[0059] 図 8の回路においては、連続する画像データをサンプリングする際、第 3サンプリン グラッチ回路 310に画像データ(Gデータ)をサンプリングして CMOSラッチセル 312 に格納する。
水平方向 1ラインのデータの第 3サンプリングラッチ回路 310への格納が完了すると 、水平方向ブランキング期間に第 1サンプリングラッチ回路 310内の CMOSラッチセ ル 312のデータを第 3ラッチ回路 320に転送する。
次の水平方向 1ラインのデータを第 3サンプリングラッチ回路 310に格納する間に、 第 3ラッチ回路 320に格納されているデータを選択スィッチに出力する。
[0060] この回路構成により、既存の方式力 データをサンプリングに必要なサンプリングラ ツチ回路数が減少し、 Hdotピッチの狭ピッチ化に寄与している。また、既存型のサン プリングラッチ回路力 新方式のサンプリングラッチ回路に変えることにより低消費電 力化を可能としている。
[0061] すなわち、既存の方式では水平駆動回路は Hdot数 X 3(RGB)のサンプリングラッチ 回路と DACとアナログバッファを必要、もしくは Hdot数 X 2のサンプリングラッチ回路 と DACとアナログバッファを必要なため,狭ピッチ化の実現に障害となっていた。 これに対して、本実施形態においては、 1つのサンプリングラッチ回路群とラッチ出 力選択スィッチと DA変換回路とアナログバッファと 3選択スィッチで、 3つの画像デー タを処理するため、表示エリアの上 (もしくは下)に配置すると 2つの Hdotピッチに 1つ の水平駆動回路を配置すればよい。このとき、もう 1つの水平駆動回路は反対側に配 置するため、高精細化,狭額縁ィ匕を実現できる。また、既存の回路よりも回路数を削 減できるため消費電力を抑えることが可能である。
[0062] 図 9は、図 3および図 4の装置を QVGAにて実現するときの既存システムと本発明 システムの上下方向額縁サイズと高精細化可能領域の関係を示す図である。
図 9から分力るように、本発明システムは、既存システムに比較して、絶縁基板上に 高精細化と狭額縁ィ匕された 3ラインセレクタシステム、およびこれを用いた駆動回路一 体型表示装置を実現できる。
[0063] <第 3実施形態 >
図 10および図 11は、本発明の第 3の実施形態に係る駆動回路一体型表示装置の 構成例を示す概略構成図であって、図 10は本第 3の実施形態に係る駆動回路一体 型表示装置の配置構成を示す図であり、図 11は本第 3の実施形態に係る駆動回路 一体型表示装置の回路機能を示すシステムブロック図である。
[0064] 本第 3の実施形態が上述した第 1および第 2の実施形態と異なる点は、水平駆動回 路を片側のみに配置して駆動回路一体型表示装置を実現したことにある。
この方式にすると Hdot数の配置可能ピッチが半分になるため、図 3および図 4に比 ベて高精細化はできな 、が、水平駆動回路を配置しな!、辺の狭面積化を実現するこ とが可能である。
[0065] なお、上記実施形態では、アクティブマトリクス型液晶表示装置に適用した場合を 例に採って説明したが、これに限定されるものではなぐエレクト口ルミネッセンス (EL )素子を各画素の電気光学素子として用いた EL表示装置などの他のアクティブマトリ タス型表示装置にも同様に適用可能である。
[0066] またさらに、上記実施形態に係るアクティブマトリクス型液晶表示装置に代表される アクティブマトリクス型表示装置は、パーソナルコンピュータ、ワードプロセッサ等の O A機器やテレビジョン受像機などのディスプレイとして用いられる外、特に装置本体の 小型化、コンパクトィ匕が進められている携帯電話機や PDAなどの携帯端末の表示部 として用いて好適なものである。
[0067] 図 12は、本発明が適用される携帯端末、たとえば携帯電話機の構成の概略を示す 外観図である。
[0068] 本例に係る携帯電話機 400は、装置筐体 410の前面側に、スピーカ部 420、表示 部 430、操作部 440、およびマイク部 450が上部側力 順に配置された構成となって いる。
このような構成の携帯電話機において、表示部 430にはたとえば液晶表示装置が 用いられ、この液晶表示装置として、先述した実施形態に係るアクティブマトリクス型 液晶表示装置が用いられる。
[0069] このように、携帯電話機などの携帯端末において、先述した実施形態に係るァクテ イブマトリクス型液晶表示装置を表示部 430として用いることにより、この液晶表示装 置に搭載される各回路において、狭ピッチ化が可能で、狭額縁化を実現でき、また 表示装置の低消費電力化を図ることができ、よって端末本体の低消費電力化が可能 になる。
産業上の利用可能性
[0070] 本発明の表示装置および電子機器は、狭ピッチ化が可能で、狭額縁化を実現でき 、また、より低消費電力化が可能であることから、パーソナルコンピュータ、ワードプロ セッサ等の OA機器やテレビジョン受像機などのディスプレイとして用いられる外、特 に装置本体の小型化、コンパクトィ匕が進められている携帯電話機や PDAなどの携帯 端末の表示部として適用可能である。

Claims

請求の範囲
[1] 画素がマトリクス状に配置された表示部と、
上記表示部の各画素を行単位で選択する垂直駆動回路と、
第 1、第 2、および第 3のデジタル画像データを入力とし、当該デジタル画像データ をアナログ画像信号として上記垂直駆動回路によって選択された行の各画素が接続 されたデータラインに対して供給する水平駆動回路と、を有し、
水平駆動回路は、
上記第 1のデジタル画像データをサンプリングしてラッチする第 1サンプリングラッ チ回路と、第 2のデジタル画像データをサンプリングしてラッチする第 2サンプリングラ ツチ回路と、上記第 1および第 2サンプリングラッチ回路の各ラッチデータを再度ラッ チする第 1ラッチ回路と、を含む第 1ラッチ系列と、
上記第 3のデジタル画像データをサンプリングしてラッチする第 3サンプリングラッ チ回路を含む第 2ラッチ系列と、
上記第 1ラッチ系列および第 2ラッチ系列にラッチされた第 1、第 2、および第 3デ ジタル画像データを一水平期間中にアナログデータに変換するデジタルアナログ変 換回路 (DAC)と、
上記 DACによりアナログデータに変換された上記第 1、第 2、および第 3のアナ口 グ画像データを所定の期間内で時分割的に選択して上記データラインに出力するラ インセレクタと、を含む
表示装置。
[2] 上記第 1ラッチ系列は、上記第 1ラッチ回路にラッチされたデータをラッチする第 2ラ ツチ回路を有し、
上記第 2ラッチ系列は、上記第 3サンプリングラッチ回路にラッチされたデータを再 度ラッチする第 3ラッチ回路を有し、
上記第 2ラッチ回路と上記第 3ラッチ回路にラッチされた各デジタル画像データを選 択的に上記 DACに出力する選択スィッチをさらに有する
請求項 1記載の表示装置。
[3] 上記水平駆動回路は、上記第 1および第 2のサンプリングラッチ回路は縦続接続さ れ、
上記第 2サンプリングラッチ回路の出力に対して縦続接続された第 1ラッチ回路およ び第 2ラッチ回路を含み、
上記第 1および第 2のサンプリングラッチ回路は、同一のサンプリングノ ノレスで第 1 のデジタル画像データおよび第 2のデジタル画像データを格納し、
上記第 2サンプリングラッチ回路の第 2のデジタル画像データを上記第 1ラッチ回路 を通して第 2ラッチ回路に転送し、次に、第 1のサンプリングラッチ回路の第 1のデジ タル画像データを第 2サンプリングラッチ回路を通して上記第 2ラッチ回路に転送す る
請求項 2記載の表示装置。
[4] 上記水平駆動回路は、水平方向 1ラインのデータを格納している間は上記第 3のデ ジタル画像データの転送処理は行わな ヽ
請求項 1記載の表示装置。
[5] 上記水平駆動回路は、水平方向 1ラインのデータを格納している間は上記第 3のデ ジタル画像データの転送処理は行わな ヽ
請求項 3記載の表示装置。
[6] 上記第 3のデジタル画像データは、 3つのデジタル画像データのうち、波長帯域が 中間にあるデータである
請求項 1記載の表示装置。
[7] 表示装置を備えた電子機器であって、
上記表示装置は、
画素がマトリクス状に配置された表示部と、
上記表示部の各画素を行単位で選択する垂直駆動回路と、
第 1、第 2、および第 3のデジタル画像データを入力とし、当該デジタル画像デー タをアナログ画像信号として上記垂直駆動回路によって選択された行の各画素が接 続されたデータラインに対して供給する水平駆動回路と、を有し、
水平駆動回路は、
上記第 1のデジタル画像データをサンプリングしてラッチする第 1サンプリングラ ツチ回路と、第 2のデジタル画像データをサンプリングしてラッチする第 2サンプリング ラッチ回路と、上記第 1および第 2サンプリングラッチ回路の各ラッチデータを再度ラ ツチする第 1ラッチ回路と、を含む第 1ラッチ系列と、
上記第 3のデジタル画像データをサンプリングしてラッチする第 3サンプリングラ ツチ回路を含む第 2ラッチ系列と、
上記第 1ラッチ系列および第 2ラッチ系列にラッチされた第 1、第 2、および第 3 デジタル画像データを一水平期間中にアナログデータに変換するデジタルアナログ 変換回路 (DAC)と、
上記 DACによりアナログデータに変換された上記第 1、第 2、および第 3のアナ ログ画像データを所定の期間内で時分割的に選択して上記データラインに出力する ラインセレクタと、を含む
電子機器。
[8] 上記第 1ラッチ系列は、上記第 1ラッチ回路にラッチされたデータをラッチする第 2ラ ツチ回路を有し、
上記第 2ラッチ系列は、上記第 3サンプリングラッチ回路にラッチされたデータを再 度ラッチする第 3ラッチ回路を有し、
上記第 2ラッチ回路と上記第 3ラッチ回路にラッチされた各デジタル画像データを選 択的に上記 DACに出力する選択スィッチをさらに有する
請求項 7記載の電子機器。
[9] 上記水平駆動回路は、上記第 1および第 2のサンプリングラッチ回路は縦続接続さ れ、
上記第 2サンプリングラッチ回路の出力に対して縦続接続された第 1ラッチ回路およ び第 2ラッチ回路を含み、
上記第 1および第 2のサンプリングラッチ回路は、同一のサンプリングノ ノレスで第 1 のデジタル画像データおよび第 2のデジタル画像データを格納し、
上記第 2サンプリングラッチ回路の第 2のデジタル画像データを上記第 1ラッチ回路 を通して第 2ラッチ回路に転送し、次に、第 1のサンプリングラッチ回路の第 1のデジ タル画像データを第 2サンプリングラッチ回路を通して上記第 2ラッチ回路に転送す る
請求項 8記載の電子機器。
[10] 上記水平駆動回路は、水平方向 1ラインのデータを格納している間は上記第 3のデ ジタル画像データの転送処理は行わな ヽ
請求項 7記載の電子機器。
[11] 上記水平駆動回路は、水平方向 1ラインのデータを格納している間は上記第 3のデ ジタル画像データの転送処理は行わな ヽ
請求項 9記載の電子機器。
[12] 上記第 3のデジタル画像データは、 3つのデジタル画像データのうち、波長帯域が 中間にあるデータである
請求項 7記載の電子機器。
PCT/JP2007/050792 2006-01-20 2007-01-19 表示装置および電子機器 WO2007083744A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/223,011 US20090273593A1 (en) 2006-01-20 2007-01-19 Display Device and Electronic Device
EP07707080A EP1980897A4 (en) 2006-01-20 2007-01-19 DISPLAY DEVICE AND ELECTRONIC APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-013127 2006-01-20
JP2006013127A JP2007193237A (ja) 2006-01-20 2006-01-20 表示装置および携帯端末

Publications (1)

Publication Number Publication Date
WO2007083744A1 true WO2007083744A1 (ja) 2007-07-26

Family

ID=38287695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050792 WO2007083744A1 (ja) 2006-01-20 2007-01-19 表示装置および電子機器

Country Status (7)

Country Link
US (1) US20090273593A1 (ja)
EP (1) EP1980897A4 (ja)
JP (1) JP2007193237A (ja)
KR (1) KR20080093035A (ja)
CN (1) CN101405640A (ja)
TW (1) TW200741638A (ja)
WO (1) WO2007083744A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007140511A (ja) * 2005-11-17 2007-06-07 Toppoly Optoelectronics Corp 駆動電圧をディスプレイパネルに提供するシステム、及び、方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101277975B1 (ko) * 2006-09-07 2013-06-27 엘지디스플레이 주식회사 쉬프트 레지스터 및 이를 구비한 데이터 드라이버,액정표시장치
US7957589B2 (en) * 2007-01-25 2011-06-07 Qualcomm Mems Technologies, Inc. Arbitrary power function using logarithm lookup table
JP6320679B2 (ja) * 2013-03-22 2018-05-09 セイコーエプソン株式会社 表示装置のラッチ回路、表示装置及び電子機器
KR20150120620A (ko) * 2014-04-18 2015-10-28 삼성전자주식회사 디스플레이 드라이버 ic와 이를 포함하는 디스플레이 시스템
KR20160020650A (ko) * 2014-08-13 2016-02-24 삼성디스플레이 주식회사 데이터 드라이버 및 이의 구동 방법
KR20220094668A (ko) * 2020-12-29 2022-07-06 엘지디스플레이 주식회사 먹스를 포함하는 표시장치 및 그 구동방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452684A (ja) * 1990-06-20 1992-02-20 Nec Kansai Ltd 液晶表示パネルの駆動方法
JP2002132221A (ja) * 2000-10-19 2002-05-09 Sharp Corp データ信号線駆動回路およびそれを備える画像表示装置
JP2002175033A (ja) 2000-12-06 2002-06-21 Sony Corp アクティブマトリクス型表示装置およびこれを用いた携帯端末
JP2002333866A (ja) * 2001-05-09 2002-11-22 Sanyo Electric Co Ltd 駆動回路および表示装置
JP2005275115A (ja) * 2004-03-25 2005-10-06 Casio Comput Co Ltd 表示駆動装置及び駆動制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747623B2 (en) * 2001-02-09 2004-06-08 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method of driving the same
JP4085323B2 (ja) * 2003-01-22 2008-05-14 ソニー株式会社 フラットディスプレイ装置及び携帯端末装置
TW591593B (en) * 2003-05-15 2004-06-11 Au Optronics Corp Digital data driver and LCD

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452684A (ja) * 1990-06-20 1992-02-20 Nec Kansai Ltd 液晶表示パネルの駆動方法
JP2002132221A (ja) * 2000-10-19 2002-05-09 Sharp Corp データ信号線駆動回路およびそれを備える画像表示装置
JP2002175033A (ja) 2000-12-06 2002-06-21 Sony Corp アクティブマトリクス型表示装置およびこれを用いた携帯端末
JP2002333866A (ja) * 2001-05-09 2002-11-22 Sanyo Electric Co Ltd 駆動回路および表示装置
JP2005275115A (ja) * 2004-03-25 2005-10-06 Casio Comput Co Ltd 表示駆動装置及び駆動制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1980897A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007140511A (ja) * 2005-11-17 2007-06-07 Toppoly Optoelectronics Corp 駆動電圧をディスプレイパネルに提供するシステム、及び、方法

Also Published As

Publication number Publication date
US20090273593A1 (en) 2009-11-05
CN101405640A (zh) 2009-04-08
EP1980897A4 (en) 2010-04-28
TW200741638A (en) 2007-11-01
JP2007193237A (ja) 2007-08-02
EP1980897A1 (en) 2008-10-15
KR20080093035A (ko) 2008-10-17

Similar Documents

Publication Publication Date Title
KR101236484B1 (ko) 표시장치 및 휴대단말
KR100531417B1 (ko) 액정패널의 구동장치 및 그 구동방법
KR20050002428A (ko) 액정표시장치와 그 구동방법
KR20060054811A (ko) 표시장치용 구동칩과, 이를 갖는 표시장치
WO2007083744A1 (ja) 表示装置および電子機器
CN100356417C (zh) 数据驱动器及电子光学装置
JP2004046054A (ja) 表示装置及び半導体装置
US7973783B2 (en) Power circuit, display device and mobile terminal implementing a boosting circuit
WO2007083742A1 (ja) 発振回路、電源回路、表示装置、および電子機器
US7522147B2 (en) Source driver and data switching circuit thereof
KR20050008628A (ko) 데이터 처리 회로, 표시 장치 및 휴대 단말기
KR100930154B1 (ko) 타이밍 발생 회로, 표시 장치 및 휴대 단말기
KR101312656B1 (ko) 표시장치 및 전자기기
KR100964048B1 (ko) 로직 회로, 타이밍 발생 회로, 표시 장치 및 휴대 단말기
JP4062877B2 (ja) アクティブマトリクス型表示装置およびこれを用いた携帯端末
JP4947167B2 (ja) 表示装置および携帯端末
JP2004226435A (ja) 表示装置および携帯端末
KR20070080719A (ko) 액정 표시 장치 및 그 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087018958

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007707080

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780010179.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12223011

Country of ref document: US