WO2007082835A1 - Verfahren zur kontinuierlichen bestimmung der zugkraft f in einem seil einer feststellbremse - Google Patents

Verfahren zur kontinuierlichen bestimmung der zugkraft f in einem seil einer feststellbremse Download PDF

Info

Publication number
WO2007082835A1
WO2007082835A1 PCT/EP2007/050270 EP2007050270W WO2007082835A1 WO 2007082835 A1 WO2007082835 A1 WO 2007082835A1 EP 2007050270 W EP2007050270 W EP 2007050270W WO 2007082835 A1 WO2007082835 A1 WO 2007082835A1
Authority
WO
WIPO (PCT)
Prior art keywords
tensile force
intermediate part
magnetic sensor
drive spindle
cable
Prior art date
Application number
PCT/EP2007/050270
Other languages
English (en)
French (fr)
Inventor
Johannes Ante
Juergen Ehret
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to DE502007006835T priority Critical patent/DE502007006835D1/de
Priority to KR1020087019655A priority patent/KR101337103B1/ko
Priority to AT07703812T priority patent/ATE503986T1/de
Priority to EP07703812A priority patent/EP1979729B1/de
Priority to CN2007800033075A priority patent/CN101375145B/zh
Priority to US12/161,782 priority patent/US7994779B2/en
Publication of WO2007082835A1 publication Critical patent/WO2007082835A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/04Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
    • G01L5/10Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means
    • G01L5/103Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means using sensors fixed at one end of the flexible member
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/04Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
    • G01L5/10Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means

Definitions

  • the invention relates to a method for the continuous determination of the tensile force F in a rope of a parking brake.
  • Methods for continuously determining the tensile force in ropes of parking brakes are known.
  • DE 10 2004 025 361 Al an electromechanically actuated parking brake for motor vehicles is described.
  • According to the method described therein for determining the tensile force in the rope it is provided that at least part of the force-measuring device is integrated in at least one brake cable such that the transmission of the tensile force takes place via the part. It is disadvantageous that the rope must be divided into several sections between which force measuring devices are then located.
  • the invention is therefore based on the object to provide a method for the continuous determination of the tensile force in a rope of a parking brake in which the rope does not have to be interrupted. On the arrangement of force measuring devices directly inside the rope to be completely dispensed with.
  • the object underlying the invention is achieved by a method for the continuous determination of the tensile force F in a rope of a parking brake in which the tensile force F is transmitted to a cable sheath, which faces away from a drive spindle end of a meandering intermediate part with a magnet or a Magnetic sensor is positioned, which undergoes a change in length in the direction of its longitudinal axis by the tensile force F, wherein the change in length causes a relative movement between the magnet and the magnetic sensor, whereby the signal voltage of the Magnetic sensor is changed, and the tensile force F is then determined from the respective signal voltage.
  • the drive spindle which has for example a circular cross-section, the tensile force F is applied.
  • the drive spindle is connected to a drive in connection.
  • the meandering intermediate part is at least partially undulating in cross section. As a rule, it consists of a metallic material. However, it is also possible to manufacture the meander-shaped intermediate part of a plastic.
  • the meandering intermediate part is firmly connected either to a magnet or to a magnetic sensor. If the meander-shaped intermediate part is now subjected to a change in length, either the magnet or the magnetic sensor shifts in the longitudinal direction in a corresponding manner, depending on whether the magnet or the magnetic sensor is firmly positioned on the meander-shaped intermediate part. The magnet and the magnetic sensor are thus in a functional relationship to each other. If the magnet is attached to the meander-shaped intermediate part, then the magnetic sensor is directly adjacent to the meandering
  • Magnetic sensor is moved in the magnetic field of the magnet, which directly affects the signal voltage of the magnetic sensor.
  • the signal voltage of the magnetic sensor is thus in a functional relationship to the applied tensile force F in the rope. From the change in the signal voltage can thus be calculated directly the tensile force F, which is usually done with the help of computers.
  • Hall sensors are used, for example, with which an accurate determination of the tensile force F while minimizing space is possible.
  • the positioning of the cable nozzle on the output spindle facing away from the end of the meandering intermediate part can be done, for example, a positive fit.
  • the meandering intermediate part is usually made in one piece in the region of its wave structure. However, this is not mandatory. It has surprisingly been found that a continuous determination of the tensile force F can be carried out in this way particularly advantageous, it being ensured that no force measuring devices must be arranged directly within the rope.
  • a preferred embodiment of the invention is that the tensile force F is introduced into a meander-shaped intermediate part, which has 3 to 4 waves in cross section. In this way, the tensile force F can be determined with a relatively high accuracy, at the same time the space is optimally reduced.
  • the tensile force F is transmitted to a cable grommet having an extension in the direction of the drive spindle, which is guided by an opening of the meandering intermediate part and whose end is connected to the drive spindle.
  • the extension is usually carried out in one piece. It does not necessarily have to consist of the same material as the cable bushing. It is also possible to make the extension of the material from which the rope is made. It may thus also be possible for the extension itself to be formed from a part of the rope, with the rope grommet then firmly enclosing the rope.
  • the extension is designed and dimensioned so that it is not subjected to the tensile force F in normal operation. It has no function for the normal operation of the method, but is intended only for emergency, if the meandering
  • the end of the extension which may be formed enlarged, for example, is positioned in a particularly advantageous manner in a bore of the drive spindle and connected in this way with the drive spindle.
  • the tensile force F is introduced into a meander-shaped intermediate part, which is connected by welding to the drive spindle. This advantageously increases the reliability of the process.
  • Fig. 1 shows the rope, the meandering intermediate part and the drive spindle in three-dimensional form.
  • Fig. 2 shows the rope, the meandering intermediate part and the drive spindle in an alternative embodiment in three-dimensional form.
  • Fig. 1 the rope 1, the meandering intermediate part 4 and the drive spindle 3 are shown in three-dimensional form.
  • the cable 1 has at its end a cable nozzle 2, which is positioned on the, the drive spindle 3 remote from the end 4 '' of a meandering intermediate part 4.
  • the meander-shaped intermediate part 4 has a magnet 5.
  • the meandering intermediate part undergoes a change in length in the direction of its longitudinal axis, in which there is a relative movement between the magnet 5 and a magnetic sensor 6 which is arranged adjacent to the meandering intermediate part 4.
  • the magnet 5 and the magnetic sensor 6, which is arranged on a support 6a stand in functional interaction with one another.
  • the carrier 6a may be attached to a housing (not shown).
  • the meandering intermediate part 4 has 3 waves Wl, W2, W3 and has at its, the
  • the tensile force F is first introduced through the drive spindle 3 and transmitted to the cable nozzle 2.
  • the meander-shaped intermediate part 4 undergoes a change in length in the direction of its longitudinal axis. This change in length leads to a relative movement between the magnet 5 and the magnetic sensor 6, whereby the signal voltage of the magnetic sensor 6 is changed. From the respective signal voltage then the tensile force F is determined, which is usually done by computer (not shown).
  • Magnetic sensor 6 thus has corresponding connections for the supply voltage and the signal voltage (not shown).
  • the cable 1, the meandering intermediate part 4 and the drive spindle 3 are also shown in three dimensions in an alternative embodiment.
  • the cable nozzle 2 has in the direction of the drive spindle 3 an extension Ia, which is guided through an opening 4a of the meandering intermediate part 4 and whose end Ib, which is made thicker in cross-section than the actual extension Ia, is connected to the drive spindle 3.
  • the magnetic sensor and the carrier analogous to FIG. 1 was omitted here for reasons of clarity. Should the meander-shaped intermediate part 4 break in an accident, it is ensured that the drive spindle 3 extends beyond the extension 1a and the cable bushing 2 is still connected to the cable 1, so that the function of the parking brake is not completely canceled.
  • the extension Ia which is usually designed to be elastic, subjected to the tensile force F.
  • Such a damage of the meandering intermediate part 4 is then immediately registered in the method for the continuous determination of the tensile force F, so that countermeasures can be initiated.

Abstract

Bei dem Verfahren wird die Zugkraft F auf eine Seiltülle (2) übertragen, die an einem, einer Antriebsspindel (3) abgewandten Ende (4´´) eines mäanderförmigen Zwischenteils (4) mit einem Magneten (5) oder einem Magnetsensor (6) positioniert ist. Das mäanderförmige Zwischenteil (4) erfährt durch die Zugkraft F eine Längenänderung in Richtung seiner Längsachse, die eine Relativbewegung zwischen dem Magneten (5) und dem Magnetsensor (6) bewirkt, wodurch die Signalspannung des Magnetsensors (6) verändert wird. Die Zugkraft F wird dann aus der jeweiligen Signalspannung ermittelt.

Description

Beschreibung
Verfahren zur kontinuierlichen Bestimmung der Zugkraft F in einem Seil einer Feststellbremse
Die Erfindung bezieht sich auf ein Verfahren zur kontinuierlichen Bestimmung der Zugkraft F in einem Seil einer Feststellbremse. Verfahren zur kontinuierlichen Bestimmung der Zugkraft in Seilen von Feststellbremsen sind bekannt. In der DE 10 2004 025 361 Al wird eine elektromechanisch betätigbare Feststellbremse für Kraftfahrzeuge beschrieben. Nach dem dort beschriebenen Verfahren zur Bestimmung der Zugkraft im Seil ist es vorgesehen, dass zumindest ein Teil der Kraftmesseinrichtung in mindestens einem Bremsseil derart integriert ist, dass die Übertragung der Zugspannkraft über das Teil erfolgt . Dabei ist nachteilig, dass das Seil in mehrere Abschnitte aufgeteilt werden muss, zwischen denen sich dann Kraftmesseinrichtungen befinden.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur kontinuierlichen Bestimmung der Zugkraft in einem Seil einer Feststellbremse zu schaffen, bei dem das Seil nicht unterbrochen werden muss. Auf die Anordnung von Kraftmesseinrichtungen direkt innerhalb des Seiles soll dabei vollständig verzichtet werden.
Die der Erfindung zugrunde liegende Aufgabe wird durch ein Verfahren zur kontinuierlichen Bestimmung der Zugkraft F in einem Seil einer Feststellbremse gelöst, bei dem die Zugkraft F auf eine Seiltülle übertragen wird, die an einem, einer Antriebsspindel abgewandten Ende eines mäanderförmigen Zwischenteils mit einem Magneten oder einem Magnetsensor positioniert ist, das durch die Zugkraft F eine Längenänderung in Richtung seiner Längsachse erfährt, bei dem die Längenänderung eine Relativbewegung zwischen dem Magneten und dem Magnetsensor bewirkt, wodurch die Signalspannung des Magnetsensors verändert wird, und die Zugkraft F dann aus der jeweiligen Signalspannung ermittelt wird. Durch die Antriebsspindel, die beispielsweise einen kreisrunden Querschnitt aufweist, wird die Zugkraft F aufgebracht. Die Antriebsspindel steht dazu mit einem Antrieb in Verbindung. Das mäanderförmige Zwischenteil ist im Querschnitt mindestens teilweise wellenförmig ausgebildet. In der Regel besteht es aus einem metallischen Werkstoff. Es ist jedoch auch möglich, das mäanderförmige Zwischenteil aus einem Kunststoff zu fertigen. Das mäanderförmige Zwischenteil ist entweder mit einem Magneten oder mit einem Magnetsensor fest verbunden. Wird das mäanderförmige Zwischenteil nun einer Längenänderung ausgesetzt, so verschiebt sich entweder der Magnet oder der Magnetsensor in Längsrichtung in entsprechender Weise, je nachdem, ob der Magnet oder der Magnetsensor am mäanderförmigen Zwischenteil fest positioniert ist. Der Magnet und der Magnetsensor stehen somit in einem funktionellen Zusammenhang zueinander. Ist der Magnet am mäanderförmigen Zwischenteil befestigt, so wird der Magnetsensor direkt benachbart zum mäanderförmigen
Zwischenteil im Bereich des Magnetfelds des Magneten angeordnet beziehungsweise umgekehrt. Durch die Zugkraft F und die damit verbundene Längenänderung des mäanderförmigen Zwischenteils erfahren somit Magnet und Magnetsensor eine Relativbewegung zueinander. Dies bedeutet, dass der
Magnetsensor im Magnetfeld des Magneten verschoben wird, was sich direkt auf die Signalspannung des Magnetsensors auswirkt. Die Signalspannung des Magnetsensors steht somit in einem funktionellen Zusammenhang zur aufgebrachten Zugkraft F im Seil. Aus der Änderung der Signalspannung kann somit die Zugkraft F direkt berechnet werden, was in der Regel mit Hilfe von Rechnern erfolgt. Als bevorzugte Magnetsensoren werden beispielsweise Hallsensoren eingesetzt, mit denen eine genaue Bestimmung der Zugkraft F bei gleichzeitig minimalem Bauraum möglich ist. Die Positionierung der Seiltülle am der Abtriebsspindel abgewandeten Ende des mäanderförmigen Zwischenteils kann beispielsweise formschlüssig erfolgen. Es ist auch möglich, je nach Werkstoffauswahl, die Seiltülle mit dem mäanderförmigen Zwischenteil zu verschweißen oder gegebenenfalls als Einzelteil zu fertigen. Das mäanderförmige Zwischenteil ist im Bereich seiner Wellenstruktur in der Regel einteilig gefertigt. Dies ist jedoch nicht zwingend erforderlich. Es hat sich in überraschender Weise gezeigt, dass eine kontinuierliche Bestimmung der Zugkraft F auf diese Weise besonders vorteilhaft durchgeführt werden kann, wobei sichergestellt ist, dass keine Kraftmesseinrichtungen direkt innerhalb des Seiles angeordnet werden müssen.
Eine bevorzugte Ausgestaltung der Erfindung besteht darin, dass die Zugkraft F in ein mäanderförmiges Zwischenteil eingebracht wird, das im Querschnitt 3 bis 4 Wellen aufweist. Auf diese Weise lässt sich die Zugkraft F mit einer relativ hohen Genauigkeit bestimmen, wobei gleichzeitig der Bauraum in optimaler Weise verkleinert wird.
Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung ist vorgesehen, dass die Zugkraft F auf eine Seiltülle übertragen wird, die in Richtung auf die Antriebsspindel eine Verlängerung aufweist, die durch einen Durchbruch des mäanderförmigen Zwischenteils geführt wird und deren Ende mit der Antriebsspindel verbunden ist. Die Verlängerung ist in der Regel einteilig ausgeführt. Sie muss nicht zwingend aus dem gleichen Werkstoff wie die Seiltülle bestehen. Es ist auch möglich, die Verlängerung aus dem Werkstoff zu fertigen, aus dem das Seil hergestellt wird. Es kann somit auch möglich sein, dass die Verlängerung selbst aus einem Teil des Seiles gebildet wird, wobei die Seiltülle das Seil dann fest umschließt. In jedem Fall wird die Verlängerung so ausgestaltet und dimensioniert, dass sie im Normalbetrieb nicht mit der Zugkraft F beaufschlagt wird. Sie hat für den Normalbetrieb des Verfahrens keinerlei Funktion, sondern ist nur für den Notfall vorgesehen, wenn das mäanderförmige
Zwischenteil beschädigt wird. Dabei ist vorteilhaft, dass für den Fall, dass das mäanderförmige Zwischenteil beispielsweise mittig reißt, die Funktion der Feststellbremse nicht vollständig aufgehoben wird. Gleichzeitig wird man im Betrieb der Feststellbremse in diesem Notfall während der Bestimmung der Zugkraft F durch das Verfahren auf das Reißen des mäanderförmigen Zwischenteils sofort aufmerksam. Das Ende der Verlängerung, das beispielsweise vergrößert ausgebildet sein kann, wird dabei in besonders vorteilhafter Weise in einer Bohrung der Antriebsspindel positioniert und auf diese Weise mit der Antriebsspindel verbunden.
Nach einer weiteren bevorzugten Ausgestaltung der Erfindung wird die Zugkraft F in ein mäanderförmiges Zwischenteil eingebracht, das durch Schweißen mit der Antriebsspindel verbunden ist. Dies erhöht in vorteilhafter Weise die Betriebssicherheit des Verfahrens.
Die Erfindung wird nachfolgend anhand der Zeichnung (Fig. 1, Fig. 2) näher und beispielhaft erläutert.
Fig. 1 zeigt das Seil, das mäanderförmige Zwischenteil und die Antriebsspindel in dreidimensionaler Form.
Fig. 2 zeigt das Seil, das mäanderförmige Zwischenteil sowie die Antriebsspindel in einer alternativen Ausgestaltung in dreidimensionaler Form.
In Fig. 1 sind das Seil 1, das mäanderförmige Zwischenteil 4 und die Antriebsspindel 3 in dreidimensionaler Form dargestellt. Das Seil 1 weist an seinem Ende eine Seiltülle 2 auf, die an dem, der Antriebsspindel 3 abgewandten Ende 4 ' ' eines mäanderförmigen Zwischenteils 4 positioniert ist. Das mäanderförmige Zwischenteil 4 weist einen Magneten 5 auf. Durch das Einwirken der Zugkraft F erfährt das mäanderförmige Zwischenteil eine Längenänderung in Richtung seiner Längsachse, bei der es zu einer Relativbewegung zwischen dem Magneten 5 und einem Magnetsensor 6 kommt, der benachbart zum mäanderförmigen Zwischenteil 4 angeordnet ist. Der Magnet 5 und der Magnetsensor 6, der an einem Träger 6a angeordnet ist, stehen dabei im funktionellem Wechselspiel zueinander. Der Träger 6a kann beispielsweise an einem Gehäuse befestigt sein (nicht dargestellt) . Das mäanderförmige Zwischenteil 4 weist 3 Wellen Wl, W2, W3 auf und besitzt an seinem, der
Antriebsspindel 3, zugewandten Ende ein Anschlussstück 4', an dem die Antriebsspindel 3 fest verbunden ist. Dies kann beispielsweise durch Schweißen erfolgen, sofern das mäanderförmige Zwischenteil 4 und die Antriebsspindel 3 aus einem entsprechenden metallischen Werkstoff bestehen. Bei dem Verfahren zur kontinuierlichen Bestimmung der Zugkraft F in dem Seil 1 einer Feststellbremse wird die Zugkraft F zunächst durch die Antriebsspindel 3 eingebracht und auf die Seiltülle 2 übertragen. Dadurch erfährt das mäanderförmige Zwischenteil 4 eine Längenänderung in Richtung seiner Längsachse. Diese Längenänderung führt zu einer Relativbewegung zwischen dem Magneten 5 und dem Magnetsensor 6, wodurch die Signalspannung des Magnetsensors 6 verändert wird. Aus der jeweiligen Signalspannung wird dann die Zugkraft F ermittelt, was in der Regel durch Rechner (nicht dargestellt) erfolgt. Der
Magnetsensor 6 weist somit entsprechende Anschlüsse für die Versorgungsspannung und die Signalspannung (nicht dargestellt) auf.
In Fig. 2 sind das Seil 1, das mäanderförmige Zwischenteil 4 und die Antriebsspindel 3 in einer alternativen Ausgestaltung ebenfalls dreidimensional dargestellt. Die Seiltülle 2 weist in Richtung auf die Antriebsspindel 3 eine Verlängerung Ia auf, die durch einen Durchbruch 4a des mäanderförmigen Zwischenteils 4 geführt wird und deren Ende Ib, das im Querschnitt dicker ausgeführt ist als die eigentliche Verlängerung Ia, mit der Antriebsspindel 3 verbunden ist. Auf die Darstellung des Magnetsensors und des Trägers analog Fig. 1 wurde hierbei aus Gründen der Übersichtlichkeit verzichtet. Sollte es in einem Störfall zum Reißen des mäanderförmigen Zwischenteils 4 kommen, so ist sichergestellt, dass die Antriebsspindel 3 über die Verlängerung Ia und der Seiltülle 2 mit dem Seil 1 dennoch in Verbindung steht, so dass die Funktion der Feststellbremse nicht vollständig aufgehoben wird. Nur wenn dieser Notfall eintritt, wird die Verlängerung Ia, die in der Regel elastisch ausgebildet ist, mit der Zugkraft F beaufschlagt . Ein solcher Schaden des mäanderförmigen Zwischenteils 4 wird dann auch bei dem Verfahren zur kontinuierlichen Bestimmung der Zugkraft F umgehend registriert, so dass Gegenmaßnahmen eingeleitet werden können.

Claims

Patentansprüche
1. Verfahren zur kontinuierlichen Bestimmung der Zugkraft F in einem Seil (1) einer Feststellbremse, bei dem die Zugkraft F auf eine Seiltülle (2) übertragen wird, die an einem, einer Antriebsspindel (3) abgewandten Ende {4"") eines mäanderförmigen Zwischenteils (4) mit einem Magneten (5) oder einem Magnetsensor (6) positioniert ist, das durch die Zugkraft F eine Längenänderung in Richtung seiner Längsachse erfährt, bei dem die Längenänderung eine Relativbewegung zwischen dem Magneten (5) und dem Magnetsensor (6) bewirkt, wodurch die Signalspannung des Magnetsensors (6) verändert wird, und die Zugkraft F dann aus der jeweiligen Signalspannung ermittelt wird.
2. Verfahren nach Anspruch 1, bei dem die Zugkraft F in ein mäanderförmiges Zwischenteil (4) eingebracht wird, das im Querschnitt 3 bis 4 Wellen (Wl, W2, W3) aufweist.
3. Verfahren nach Anspruch 1 oder Anspruch 2, bei dem die Zugkraft F auf eine Seiltülle (2) übertragen wird, die in Richtung auf die Antriebsspindel (3) eine Verlängerung (Ia) aufweist, die durch einen Durchbruch (4a) des mäanderförmigen Zwischenteils (4) geführt wird und deren Ende (Ib) mit der Antriebsspindel (3) verbunden ist .
4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem die Zugkraft F in ein mäanderförmiges Zwischenteil (4) eingebracht wird, das durch Schweißen mit der Antriebsspindel (3) verbunden ist.
PCT/EP2007/050270 2006-01-23 2007-01-12 Verfahren zur kontinuierlichen bestimmung der zugkraft f in einem seil einer feststellbremse WO2007082835A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE502007006835T DE502007006835D1 (de) 2006-01-23 2007-01-12 Verfahren zur kontinuierlichen bestimmung der zugkraft f in einem seil einer feststellbremse
KR1020087019655A KR101337103B1 (ko) 2006-01-23 2007-01-12 주차 브레이크의 케이블 내의 인장력(f)을 연속적으로 판단하기 위한 방법
AT07703812T ATE503986T1 (de) 2006-01-23 2007-01-12 Verfahren zur kontinuierlichen bestimmung der zugkraft f in einem seil einer feststellbremse
EP07703812A EP1979729B1 (de) 2006-01-23 2007-01-12 Verfahren zur kontinuierlichen bestimmung der zugkraft f in einem seil einer feststellbremse
CN2007800033075A CN101375145B (zh) 2006-01-23 2007-01-12 用于连续确定在驻车制动器的钢丝索中的拉力f的方法
US12/161,782 US7994779B2 (en) 2006-01-23 2007-01-12 Method for continuously determining the tensile force F in a cable of a parking brake

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006003173.3 2006-01-23
DE102006003173A DE102006003173A1 (de) 2006-01-23 2006-01-23 Verfahren zur kontinuierlichen Bestimmung der Zugkraft F in einem Seil einer Feststellbremse

Publications (1)

Publication Number Publication Date
WO2007082835A1 true WO2007082835A1 (de) 2007-07-26

Family

ID=38219715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/050270 WO2007082835A1 (de) 2006-01-23 2007-01-12 Verfahren zur kontinuierlichen bestimmung der zugkraft f in einem seil einer feststellbremse

Country Status (7)

Country Link
US (1) US7994779B2 (de)
EP (1) EP1979729B1 (de)
KR (1) KR101337103B1 (de)
CN (1) CN101375145B (de)
AT (1) ATE503986T1 (de)
DE (2) DE102006003173A1 (de)
WO (1) WO2007082835A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008034745B4 (de) * 2007-07-25 2012-11-15 Al-Ko Kober Ag Seilzug

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5899516B2 (ja) * 2011-07-29 2016-04-06 パナソニックIpマネジメント株式会社 モータ駆動回路、モータ装置、および移動体
CN105329233A (zh) * 2015-10-28 2016-02-17 武汉天运汽车电器有限公司 电子驻车制动系统的驻车力测量装置
KR101779144B1 (ko) * 2015-12-23 2017-10-10 주식회사 인팩 주차브레이크의 케이블효율 측정장치
CN111795831B (zh) * 2020-06-02 2022-06-24 一汽奔腾轿车有限公司 拉线式epb测试负载箱
CN115184003B (zh) * 2022-09-08 2023-01-24 山东嘉通专用汽车制造有限公司 一种汽车拉索检测机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056633A1 (de) * 1997-06-09 1998-12-17 Küster & Co. Gmbh Feststellbremsanlage für fahrzeuge
DE102004025361A1 (de) * 2003-06-12 2005-03-17 Continental Teves Ag & Co. Ohg Elektromechanisch betätigbare Feststellbremse für Kraftfahrzeuge

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6254267B1 (en) * 1997-11-06 2001-07-03 Hydrotreat, Inc. Method and apparatus for mixing dry powder into liquids
US6194856B1 (en) * 1999-01-25 2001-02-27 Hitachi, Ltd. Motor driving apparatus including a modularized current control circuit and method of controlling the same
CN2483402Y (zh) * 2001-01-21 2002-03-27 姜宜宽 在线细纱张力传感器
JP4483432B2 (ja) * 2004-06-30 2010-06-16 株式会社アドヴィックス 力センサおよび同力センサを用いた電動パーキングブレーキ装置
DE102005044669B4 (de) * 2005-09-19 2016-12-08 Robert Bosch Gmbh Feststellbremse für ein Fahrzeug mit selbstständiger Verriegelung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056633A1 (de) * 1997-06-09 1998-12-17 Küster & Co. Gmbh Feststellbremsanlage für fahrzeuge
DE102004025361A1 (de) * 2003-06-12 2005-03-17 Continental Teves Ag & Co. Ohg Elektromechanisch betätigbare Feststellbremse für Kraftfahrzeuge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008034745B4 (de) * 2007-07-25 2012-11-15 Al-Ko Kober Ag Seilzug

Also Published As

Publication number Publication date
EP1979729A1 (de) 2008-10-15
KR101337103B1 (ko) 2013-12-05
DE502007006835D1 (de) 2011-05-12
EP1979729B1 (de) 2011-03-30
ATE503986T1 (de) 2011-04-15
KR20080101898A (ko) 2008-11-21
US20100301848A1 (en) 2010-12-02
US7994779B2 (en) 2011-08-09
CN101375145B (zh) 2011-08-03
DE102006003173A1 (de) 2007-07-26
CN101375145A (zh) 2009-02-25

Similar Documents

Publication Publication Date Title
EP1979729B1 (de) Verfahren zur kontinuierlichen bestimmung der zugkraft f in einem seil einer feststellbremse
DE10102685A1 (de) Betätigungsmechanismus mit Kraftsensor für eine Bremse
EP3148860B1 (de) Lenkwelle für eine kraftfahrzeuglenkung
DE19533152C1 (de) Lenkventil
EP3253644B1 (de) Vorrichtung zur einbringung eines hilfsdrehmoments in eine lenkwelle und elektro-mechanische hilfskraftlenkung
DE102006036522A1 (de) Antriebseinheit und Bausatz für ein Verstellsystem in einem Kraftfahrzeug sowie Verfahren zur Bereitstellung einer Kopplung zwischen einem Antriebsmotor und einem Abtriebselement eines Verstellsystems in einem Kraftfahrzeug
DE102011075611B4 (de) Stelleinheit sowie rechtsverseilter Bowdenzug mit Linksgewindeendstück nebst Verfahren
DE102018100318B4 (de) Lenksäule für ein fahrzeug
DE102015002686B4 (de) Einteilige Eingangswelle
WO2017102576A1 (de) Statorhalter, statorbaugruppe, verfahren zum zusammenbau einer statorbaugruppe, drehmomentsensorvorrichtung mit einer statorbaugruppe und einem statorhalter und kraftfahrzeug mit einer drehmomentsensorvorrichtung
DE102006020671B4 (de) In seiner Breite verstellbarer Sitz, insbesondere für Kraftfahrzeuge
DE102019218515A1 (de) Steer-by-Wire Lenksystem für ein Kraftfahrzeug
DE102020104136A1 (de) Elektromechanische Hilfskraftlenkung mit einteiliger Sensorwelle und magnetoelastischem Drehmomentsensor
EP1949041A1 (de) Beschleunigungssensor und stossfängerverkleidung
EP2455623A1 (de) Vorrichtung zum verspannenden Verbinden von mit Abstand hintereinander liegenden Bauteilen
DE102011007251A1 (de) Schaltvorrichtung für ein Getriebe
DE102009058956A1 (de) Scharnier für eine Tür, eine Klappe oder dgl. eines Kraftfahrzeugs
DE102009038285A1 (de) Lenksäulenbaueinheit für ein Kraftfahrzeug
DE102010052776A1 (de) Verfahren zum Lagern einer Welle, Lageranordnung für eine Welle und Scheibenwischerantrieb
DE102006042387B4 (de) Servolenkung
DE102007021775A1 (de) Kraftfahrzeug und Brückenelement für ein Getriebegehäuse
DE102016013700A1 (de) Schweißmutter
DE102020103246A1 (de) Vorrichtung zum Rückstellen einer Kraftfahrzeugkomponente nach einem Aufprall und damit ausgestattetes Kraftfahrzeug
DE102013010363A1 (de) Zahnstangenlenkung mit zwei Ritzeln
EP3798401A2 (de) Antrieb

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007703812

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780003307.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087019655

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12161782

Country of ref document: US