WO2007080917A1 - 回転センサ付き転がり軸受 - Google Patents

回転センサ付き転がり軸受 Download PDF

Info

Publication number
WO2007080917A1
WO2007080917A1 PCT/JP2007/050229 JP2007050229W WO2007080917A1 WO 2007080917 A1 WO2007080917 A1 WO 2007080917A1 JP 2007050229 W JP2007050229 W JP 2007050229W WO 2007080917 A1 WO2007080917 A1 WO 2007080917A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
rolling bearing
rotation
fixed
magnetic body
Prior art date
Application number
PCT/JP2007/050229
Other languages
English (en)
French (fr)
Inventor
Hiroyoshi Ito
Seiichi Takada
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006004357A external-priority patent/JP2007187492A/ja
Priority claimed from JP2006004407A external-priority patent/JP2007187496A/ja
Priority claimed from JP2006008640A external-priority patent/JP2007192249A/ja
Priority claimed from JP2006008620A external-priority patent/JP2007192247A/ja
Priority claimed from JP2006010792A external-priority patent/JP2007192653A/ja
Priority claimed from JP2006016592A external-priority patent/JP2007198475A/ja
Application filed by Ntn Corporation filed Critical Ntn Corporation
Priority to DE112007000136T priority Critical patent/DE112007000136T5/de
Priority to US12/086,642 priority patent/US7982455B2/en
Publication of WO2007080917A1 publication Critical patent/WO2007080917A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/60Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/80Manufacturing details of magnetic targets for magnetic encoders

Definitions

  • the present invention relates to a rolling bearing with a rotation sensor.
  • a rolling bearing with a rotation sensor may be used for a rolling bearing that supports a rotating shaft or the like of various rotating devices in order to detect the rotation speed (number of rotations).
  • This rolling bearing with a rotation sensor is equipped with a magnetic encoder in which an annular magnetic body magnetized with magnetic poles that are alternately different in the circumferential direction is fixed to a cored bar on the rotating side of the inner and outer rings.
  • a sensor element for detecting a change in the magnetic pole accompanying the rotation of the magnetic encoder is attached to the stationary side raceway to detect the rotation of the rotation side raceway.
  • the magnetic body of the magnetic encoder is generally made of a magnetic material such as ferrite using a thermoplastic resin rubber as a binder.
  • a raw material obtained by mixing a magnetic material and a binder is used for injection molding or the like. It is molded into a predetermined size and shape by a molding die.
  • those using thermoplastic resin as a binder are fixed to the core metal by press-fitting or adhesion, and those using rubber as a binder are fixed to the core metal by vulcanization adhesion (for example, (See Patent Document 1).
  • the molded magnetic body is magnetized to a desired number of magnetic poles using a magnetizing device before or after being fixed to the cored bar.
  • the sensor element is incorporated in a sensor case, and is attached to an annular cored bar that is press-fitted into an inner diameter surface or an outer diameter surface of a fixed-side raceway ring end, and is attached to the fixed-side raceway (for example, see Patent Document 2).
  • the sensor case is bonded to the core metal, and the convex portion formed on the core metal and the concave portion provided on the sensor case are engaged to fix the sensor case to the core metal.
  • Gold is pressed into the inner diameter surface of the end of the outer ring as a fixed raceway.
  • a sensor element board is also incorporated in the sensor case, and an electric circuit for processing the output signal of the sensor element is often mounted on the board.
  • a double row rolling bearing that supports a rotating part of a medical device, a robot, or the like, it faces the double-row raceway surface provided on the outer ring in order to suppress rattling and vibration of the rotating part.
  • An axial clearance is provided between the two split inner rings provided with the raceway surfaces of each row, and an annular pressing member is disposed on the side of the split one inner ring.
  • a preload is applied by reducing (see, for example, Patent Document 3).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-349556
  • Patent Document 2 JP 2002-295465 A
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2000-329143
  • a magnetic body using a thermoplastic resin rubber as a binder of a magnetic material is formed when the bearing size increases and the outer diameter size of the magnetic encoder also increases.
  • the equipment for injection molding and the like increases in size, which increases the manufacturing cost.
  • a magnetic body that uses rubber as a binder and is fixed to a core metal by vulcanization adhesion also requires a mold for holding the magnetic body in contact with the core metal. The molds and equipment for use will be enlarged.
  • an object of the present invention is to make it possible to manufacture a magnetic encoder at a low cost even if the outer diameter is large, and to make a sensor case incorporating a sensor element compact and easily removable.
  • a double-row rolling bearing with a rotation sensor provided with a preloading means is designed to reduce the number of parts and reduce the effort required for assembly.
  • the present invention provides a core metal with an annular magnetic body magnetized with magnetic poles that are alternately different in the circumferential direction on the rotation-side raceway of the inner and outer raceways.
  • a magnetic encoder that is fixed to the magnetic encoder is attached, and a sensor element that detects the change in magnetic pole accompanying rotation of the magnetic encoder is attached to the stationary raceway, and a rotation sensor that detects the rotation of the rotary raceway is provided.
  • the magnetic material is bonded to a magnetic material with rubber, and the magnetic material is fixed to the core metal with an adhesive.
  • the magnetic body of the magnetic encoder is made of rubber and bonded with a magnetic material, and this magnetic body is fixed to the core metal with an adhesive, thereby eliminating the need for a vulcanization bonding mold or equipment.
  • the rubber may be a high molecular compound that can bind magnetic materials and has elasticity, such as natural rubber and synthetic rubber.
  • the magnetic body is formed by vulcanization using a mold, and the shape vulcanized by the mold is larger than the area of the region that is enclosed when annularly fixed to the core metal.
  • the inner peripheral length of the magnetic body before being fixed to the cored bar is set as the core to which the magnetic body is fixed.
  • the magnetic body can be more firmly fixed to the outer peripheral surface of the core metal by the elastic force of the rubber in the magnetic body.
  • the magnetic body By forming a concave portion on the surface of the core metal to which the magnetic body is fixed, the magnetic body can be more firmly bonded to the core metal using the concave portion as an adhesive reservoir.
  • the present invention provides a magnetic encoder in which an annular magnetic body magnetized with magnetic poles alternately different in the circumferential direction is fixed to a core metal on a rotating side raceway of inner and outer raceways. Wear this In a rolling bearing with a rotation sensor that detects rotation of the rotating side race ring by mounting a sensor element that detects a change in magnetic pole accompanying rotation of the magnetic encoder on the stationary side race ring, the magnetic body is thermosetting. A configuration in which magnetic materials are combined by coagulation was also adopted.
  • the magnetic encoder has a molding jig installed with a gap from the surface of the core metal, and a magnetic material to be the magnetic body is formed in a gap between the surface of the core metal and the molding jig.
  • a material and a raw material containing a thermosetting resin are arranged, and the raw material arranged in the gap is heated to cure the thermosetting resin and to form the magnetic body.
  • the molding jig By forming the molding jig from silicone rubber, a raw material containing a magnetic material and a thermosetting resin is prevented from adhering to the molding jig, and a defective shape is generated in the molded magnetic body. The probability of performing can be reduced.
  • the manufacturing efficiency of the magnetic encoder can be increased.
  • the present invention provides a magnetic encoder in which an annular magnetic body magnetized with magnetic poles alternately different in the circumferential direction is fixed to a cored bar on a rotating side raceway of inner and outer raceways.
  • a sensor element that is mounted and detects the change of the magnetic pole accompanying the rotation of this magnetic encoder
  • the magnetic body is combined with a magnetic material by a thermoplastic resin, and the magnetic body is arranged in a plurality of directions in the circumferential direction.
  • a configuration was also adopted in which the segment was divided into segments and the segment divided into a plurality of portions in the circumferential direction was fixed to the core metal with an adhesive.
  • the magnetic body of the magnetic encoder is obtained by bonding a magnetic material with a thermoplastic resin, and the magnetic body is divided into a plurality of segments in the circumferential direction and divided into a plurality of parts in the circumferential direction.
  • the segment can be molded with a small molding die and small equipment, and the magnetic encoder is inexpensive even if the outer diameter is large. Can be manufactured.
  • Each of the divided segments may be formed by injection molding.
  • each segment can be molded with the same molding die.
  • the segment division position can be
  • the present invention provides a magnetic encoder in which an annular magnetic body magnetized with magnetic poles alternately different in the circumferential direction is fixed to a core metal on a rotating side raceway of inner and outer raceways.
  • a magnetic sensor is mounted in a rolling bearing with a rotation sensor that is mounted and a sensor element that detects a change in the magnetic pole accompanying rotation of the magnetic encoder is mounted on the stationary side raceway and detects the rotation of the rotation side raceway.
  • Also adopted was a configuration in which the magnetic material was bonded to the surface of the base material by thermal spraying.
  • the magnetic body of the magnetic encoder is obtained by bonding a magnetic material to the surface of the base material by thermal spraying, thereby eliminating the need for molding and vulcanization bonding molds and equipment, Even if the outer diameter is large, it can be manufactured at low cost.
  • the magnetic material may be a ferrite-based material mainly composed of inexpensive iron oxide.
  • the magnetic material may be a rare earth material such as an Sm-Co-based material or an Nd-Fe-B-based material.
  • the magnetic material is an alnico based material mainly composed of aluminum, nickel, cobalt, and iron.
  • the sensor element is threaded into a sensor case, and the sensor case is positioned at two positions on the fixed-side track ring and fixed to a tap hole provided on the fixed-side track ring with a screw. This eliminates the need for an annular metal core for mounting the sensor case, and allows the sensor case to be mounted on the fixed-side raceway so that it can be easily attached and detached with a compact.
  • the means for positioning at least one place is based on the engagement of the pin hole and the pin-like protrusion, thereby simplifying the sensor case. With this, it is possible to accurately position the fixed side raceway.
  • the pin hole in the fixed-side raceway By providing the pin hole in the fixed-side raceway and making the diameter of the pin hole equal to the pilot hole diameter of the tap hole, the pin hole without changing the drill and the pilot hole of the tap hole are exchanged. Can be efficiently and in a short time.
  • the sensor element is threaded into a sensor case, and the sensor case is positioned on an inner diameter surface of a flange portion or an outer diameter surface of a shoulder portion provided on the fixed-side track ring, and the fixed-side track is positioned. Attaching the sensor case to the stationary track ring so that it is compact and easily removable by eliminating the need for an annular metal core for mounting the sensor case, even if it is fixed to the tap hole on the ring with a screw. be able to.
  • the sensor case By setting the number of screws for fixing the sensor case to the stationary raceway to one, the sensor case can be easily attached to and detached from the stationary raceway in a short time.
  • the fixed-side raceway is provided with a double-row raceway surface
  • the rotation-side raceway is provided with a single-row raceway surface facing the double-row raceway surface.
  • An annular pressing member which is divided into two and provides an axial gap between the two divided rotating side races and reduces the axial gap to apply a preload, is divided into the two divided ones.
  • this annular pressing member is used as the core of the magnetic encoder, a separate core of the magnetic encoder is not required.
  • the double-row rolling bearing with a rotation sensor provided with the preload applying means can be made effortless in assembling with a small number of parts.
  • the annular pressing member is provided with a cylindrical portion protruding so as to be fitted to the radial surface opposite to the raceway surface of the one rotating side raceway, thereby opening a minute gap with the sensor element.
  • the magnetic encoders facing in the radial direction can be easily positioned.
  • the rolling bearing with a rotation sensor according to the present invention employs a configuration in which a magnetic material of a magnetic encoder is bonded to a magnetic material with rubber, and this magnetic material is fixed to a cored bar with an adhesive.
  • a magnetic encoder can be manufactured at low cost even if it has a large outer diameter without the need for a bonding die or equipment.
  • the magnetic body is obtained by vulcanization molding using a mold, and the shape vulcanized by the mold is larger than the area of the region that is enclosed when annularly fixed to the core metal.
  • the magnetic body When the magnetic body is fixed to the outer peripheral surface of the cored bar, before being fixed to the cored bar, the magnetic body is more firmly secured by the elastic force of the rubber in the magnetic body. It can stick to the surface.
  • the magnetic body By forming a recess in the surface to which the magnetic body of the core metal is fixed, the magnetic body can be more firmly bonded to the core metal using the recess as an adhesive reservoir.
  • the rolling bearing with a rotation sensor of the present invention employs a configuration in which a magnetic material of a magnetic encoder is combined with a thermosetting resin so that a large facility for injection molding or the like, vulcanization, or the like is used.
  • the magnetic encoder can be manufactured at low cost even if it has a large outer diameter, eliminating the need for bonding molds and equipment.
  • the magnetic encoder has a molding jig installed with a gap from the surface of the cored bar, and a magnetic material to be a magnetic body and a thermal material in the gap between the surface of the cored bar and the molding jig.
  • a molding jig installed with a gap from the surface of the cored bar, and a magnetic material to be a magnetic body and a thermal material in the gap between the surface of the cored bar and the molding jig.
  • the molding jig By forming the molding jig with silicone rubber, a raw material containing a magnetic material and a thermosetting resin is prevented from adhering to the molding jig, and a defective shape is generated in the molded magnetic body. The probability of performing can be reduced.
  • the manufacturing efficiency of the magnetic encoder can be increased.
  • the magnetic body of the magnetic encoder is obtained by combining a magnetic material with a thermoplastic resin, and the magnetic body is divided into a plurality of segments in the circumferential direction.
  • the segment divided into multiple pieces in the circumferential direction is fixed to the core with an adhesive, the divided segment can be molded with a small-size molding die and small equipment. Even if the encoder has a large outer diameter, it can be manufactured inexpensively. Togashi.
  • a gap is provided at least in one place in the circumferential direction, and the position of the gap is matched with the boundary position of different magnetic poles.
  • the divided segments can be firmly attached to the cored bar so as not to overlap with a margin in the gap, and the influence of the disturbance of the magnetic waveform generated at the position of the gap can be reduced.
  • each segment can be molded with the same molding die.
  • the rolling bearing with a rotation sensor of the present invention employs a configuration in which the magnetic material of the magnetic encoder is bonded to the surface of the base material by thermal spraying. Even if the magnetic encoder has a large outer diameter, it can be manufactured at low cost without using a mold or equipment.
  • the sensor element is incorporated in a sensor case, and the sensor case is positioned at two positions on the stationary raceway and fixed with screws in tap holes provided on the stationary raceway. Therefore, the sensor case can be attached to the stationary raceway so that it is compact and easily removable.
  • the means for positioning the sensor case on the stationary raceway in two places is based on the engagement of the pin hole and the pin-shaped protrusion, thereby simplifying the sensor case. With this, it is possible to accurately position the fixed side raceway.
  • the pin hole in the stationary race By providing the pin hole in the stationary race, and making the diameter of the pin hole equal to the pilot hole diameter of the tap hole, the pin hole without changing the drill and the pilot hole of the tap hole can be made efficient. It can be done in a short time.
  • the sensor element is incorporated into a sensor case, and the sensor case is positioned on the inner diameter surface of the flange portion or the outer diameter surface of the shoulder portion provided on the fixed-side raceway and provided on the fixed-side raceway.
  • the sensor case By setting the number of screws for fixing the sensor case to the stationary raceway to one, the sensor case can be easily attached to and detached from the stationary raceway in a short time.
  • the fixed-side raceway is provided with a double-row raceway surface
  • the rotation-side raceway is provided with a single-row raceway surface facing the double-row raceway surface.
  • An annular pressing member that is divided into two and provides an axial gap between the two divided rotating side race rings and reduces the axial gap to provide preload.
  • this annular holding member as a core bar of a magnetic encoder
  • a core bar of a separate magnetic encoder is not required.
  • a double-row rolling bearing with a rotation sensor provided with a preloading means can be made with less effort to assemble with a small number of parts.
  • the annular pressing member is provided with a cylindrical portion that protrudes so as to be fitted to the radial surface opposite to the raceway surface of one of the rotation side raceways, thereby opening a minute gap with the sensor element.
  • the magnetic encoders facing in the radial direction can be easily positioned.
  • FIG. 1 is a longitudinal sectional view showing a rolling bearing with a rotation sensor according to a first embodiment.
  • FIG. 2 a is a cross-sectional view taken along line II-II in FIG. 1, and b is a conceptual side view showing the magnetization state of the magnetic material of a.
  • FIG. 3 a is a plan view showing a mold for vulcanizing and molding the magnetic body of FIG. 1, and b is a plan view showing the magnetic body as molded with the mold of a compared to the state after being fixed.
  • FIG. 4 A longitudinal section explaining how to finish the magnetic body of Fig. 3 by fixing it to the holding member that also serves as the core
  • FIG. 5 is a longitudinal sectional view showing a first modification of the rolling bearing with a rotation sensor according to the first embodiment.
  • FIG. 6 is a longitudinal sectional view showing a second modification of the rolling bearing with a rotation sensor according to the first embodiment.
  • FIG. 7 is a longitudinal sectional view showing a third modification of the rolling bearing with a rotation sensor according to the first embodiment.
  • FIG. 8 is a sectional view taken along line VIII-VIII in FIG.
  • FIG. 9 is a longitudinal sectional view showing a fourth modification of the rolling bearing with a rotation sensor according to the first embodiment.
  • FIG. 10 is a sectional view taken along line X—X in FIG.
  • FIG. 11 is a longitudinal sectional view showing a fifth modified example of the rolling bearing with a rotation sensor according to the first embodiment.
  • FIG. 12 is a sectional view taken along line XII—XII in FIG.
  • FIG. 13 is a longitudinal sectional view showing a rolling bearing with a rotation sensor according to a second embodiment.
  • FIG. 14 is a longitudinal sectional view for explaining a method for forming and fixing the magnetic body of FIG. 13 by thermosetting.
  • FIG. 15 is a longitudinal sectional view showing a rolling bearing with a rotation sensor according to a third embodiment.
  • FIG. 16 a is a conceptual side view showing the magnetized state of the magnetic body in FIG. 15, and b is a conceptual side view showing a segment of a.
  • FIG. 17 a is a graph showing the magnetic waveform detected by the sensor element of FIG. 15, and b is a graph showing the magnetic waveform at the position of the gap ⁇ in FIG.
  • FIG. 18 is a longitudinal sectional view showing a rolling bearing with a rotation sensor according to a fourth embodiment.
  • this rolling bearing with a rotation sensor is provided with two rows of raceway surfaces 2a and 2b on the inner diameter surface of the outer ring 1 as a fixed side raceway, and two divided inner races as a rotary raceway ring.
  • 3a and 3b are provided with one row of raceway surfaces 4a and 4b opposite to the raceway surfaces 2a and 2b of the outer ring 1, and the raceway surfaces 2a and 2b of the outer ring 1 and the inner rings 3a and 3b.
  • Double row ball bearings in which two rows of balls 5 as rolling elements are held by a cage 6 between the raceway surfaces 4a and 4b, and one inner ring 3a is an outer diameter step portion of the other inner ring 3b.
  • the outer clearance is provided with an axial clearance 7 and the axial pressing member 8 disposed on the side of the inner ring 3a is used to reduce the axial clearance 7 to apply a preload.
  • Bolt holes 9 for fixing to the housing or the like are provided in the outer peripheral portion of the outer ring 1, and seals 10 for sealing the inside of the bearing are attached to the inner diameter surfaces of both ends of the outer ring 1.
  • the holding member 8 is provided with a bolt hole 8a, and is fastened to the inner ring 3b with a bolt that passes through the bolt hole 8a.
  • the pressing member 8 also serves as a core of a magnetic encoder 11 constituting a rotation sensor, and an annular magnetic body 12 of the magnetic encoder 11 is bonded to the outer diameter surface thereof with an adhesive 13.
  • a cylindrical portion 8 b that protrudes so as to be fitted to the inner diameter surface of the inner ring 3 a is provided, and the axis of the magnetic encoder 11 is positioned.
  • a flange portion 8c for positioning the axial position of the magnetic body 12 of the magnetic encoder 11 is provided on the outer diameter surface of the pressing member 8 on the outer end surface side.
  • the magnetic body 12 of the magnetic encoder 11 is magnetized to a desired number of magnetic poles in which N and S poles exist alternately in the circumferential direction! / Speak.
  • the magnetic body 12 is obtained by bonding a magnetic material with rubber, and a magnetic material and a binder are connected to an endless concave portion 51a provided in a mold 51 as shown in FIG.
  • the vulcanized magnetic body 12a was fixed to the outer peripheral surface of the pressing member 8 in an annular shape.
  • the area surrounded by magnetic body 12 It has a partially bent shape so that the area of the surrounding region is narrower than the area of. Therefore, even when the outer diameter of the magnetic encoder 11 is large, the size of the vulcanization mold 51 can be reduced, and the manufacturing cost can be reduced.
  • the binder rubber includes heat-resistant tolyl rubber such as NBR (nitrile rubber), H—NBR (hydrogenated-tolyl rubber), ACM (acrylic rubber), AEM (ethylene acrylic rubber), and FKM ( It is preferable to use fluororubber).
  • heat-resistant tolyl rubber such as NBR (nitrile rubber), H—NBR (hydrogenated-tolyl rubber), ACM (acrylic rubber), AEM (ethylene acrylic rubber), and FKM ( It is preferable to use fluororubber).
  • the magnetic material ferrite, Sm—Co, Nd—Fe—B, and other rare earths, and aluminum, nickel, cobalt and iron as the main component can be used.
  • the blending ratio of the magnetic material is 70% by mass or more and 95% by mass or less, more preferably 75% by mass or more and 90% by mass or less.
  • the inner peripheral length of the vulcanized magnetic body 12a is formed to be shorter than the outer peripheral length of the annular pressing member 8, and to some extent when fixed to the outer peripheral surface of the pressing member 8. It will be stretched. Accordingly, the elastic force of the rubber forming the magnetic body 12 can be firmly and securely fixed to the outer peripheral surface of the pressing member 8.
  • the inner circumferential length of the magnetic body 12a is 0.5 times or more and less than 1.0 times the outer circumferential length of the pressing member 8, more preferably 0.7 times or more and 0.998 times or less. More preferably, it is 0.95 times or less.
  • the pressing member 8 having the magnetic body 12 fixed to the outer peripheral surface is fixed to a centering table 52 that rotates about a central axis 52a by a cylindrical portion 8b.
  • the outer peripheral surface of is ground with Neut 53 and finished so that its outer diameter becomes a predetermined dimension.
  • the magnetic body 12 is alternately turned into N and S poles in the circumferential direction by a separate magnetizing device as shown in Fig. 2 (b). Is magnetized.
  • the thickness of the magnetic body 12 is 0.5 mm or more and 10 mm or less, more preferably 0.7 mm or more and 3 mm or less.
  • the magnetizing process may be performed separately from the finishing caulking process. In this way, the centering table 52 for finishing caring is used as it is for magnetizing, thereby simplifying the manufacturing process. And the magnetization accuracy can be improved.
  • the sensor element 14 is assembled in a sensor case 15, and is fixed together with the substrate 16 with a mold grease 17, and the substrate 16 Sensor element
  • An output cable 18 for outputting the rotational speed of the inner rings 3a and 3b detected by the child 14 is connected.
  • the substrate 16 is a film-like flexible substrate or an epoxy resin substrate, and an electric circuit for processing the output signal of the sensor element 14 is mounted thereon.
  • the sensor case 15 engages pin-shaped protrusions 20 provided at both ends in the circumferential direction of its own side end face in pin holes 19 provided in two places in the circumferential direction of the end face of the outer ring 1.
  • the sensor element 14 is positioned so as to face the magnetic body 12 of the magnetic encoder 11 with a predetermined sensing gap, and the center portion is attached by the tap hole 21 provided on the end face of the outer ring 1 and one screw 22. It has been.
  • the diameter of each pin hole 19 provided on the end face of the outer ring 1 is made equal to the diameter of the pilot hole of the tap hole 21 so that it can be processed efficiently and in a short time without replacing the drill. ing.
  • the metal force bar 23 can be formed by press-forming a magnetic material such as a ferritic stainless steel plate or a mild steel plate, and is preferably integrated with the sensor case 15. Note that a nonmagnetic material may be used for the metal cover 23 and the surface of the magnetic material may be treated!
  • FIG. 5 shows a first modification of the first embodiment.
  • the inner rings 3a and 3b divided into two are externally fitted with an axial gap 7 on the outer diameter surface of a separate inner member 24, and the inner ring 3b is connected to the inner member 24.
  • the stepped portion 24a is positioned in the axial direction and the outer peripheral surface of the pressing member 8 that also serves as the core metal of the magnetic encoder 11 is formed with a recess 8d that serves as an adhesive reservoir.
  • the concave portion 8d serving as an adhesive reservoir is formed so that when the magnetic body 12 formed with the inner peripheral length shorter than the outer peripheral length of the pressing member 8 is bonded to the outer peripheral surface of the pressing member 8, the adhesive 13 is interposed between them. Prevents poor adhesion due to extrusion.
  • the recess 8d may be provided partially at intervals in the circumferential direction that does not necessarily need to be continuous in the form of a groove on the entire periphery of the pressing member 8.
  • FIG. 6 shows a second modification of the first embodiment.
  • the outer rings la and lb are also divided into two, and the outer ring la provided with the raceway surface 2a is fitted into the inner diameter step portion of the outer ring lb provided with the bolt hole 9, and the outer ring lb
  • the sensor case 15 attached to the side end surface with a screw 22 is prevented from coming off.
  • 7 and 8 show a third modification of the first embodiment.
  • the sensor case 15 engages a pin-shaped protrusion 20 provided at one end in the circumferential direction of the side end surface thereof with one pin hole 19 provided in the end surface of the outer ring 1.
  • the convex portion 25 provided on the outer diameter surface of the circumferential end opposite to the pin-shaped protrusion 20 is pressed against the inner diameter surface of the flange portion 26 provided on the end surface of the outer ring 1 to be positioned. Is different.
  • FIGS. 9 and 10 show a fourth modification of the first embodiment.
  • the outer diameter surface of the sensor case 15 is formed by an arc surface 27, and the outer diameter surface formed by the arc surface 27 is changed to the inner diameter surface of the flange portion 26 provided on the end surface of the outer ring 1.
  • the sensor case 15 is positioned differently.
  • FIG. 11 and FIG. 12 show a fifth modification of the first embodiment.
  • a flange portion 28 having an inner diameter surface formed by an arc surface is provided on the side end surface of the sensor case 15, and the inner diameter surface of the flange portion 28 formed by the arc surface is provided as an outer ring 1.
  • the sensor case 15 is positioned along the outer diameter surface of the shoulder 29 of the sensor.
  • FIG. 13 and FIG. 14 show a second embodiment.
  • the basic structure of this rolling bearing with a rotation sensor is the same as that of the first embodiment, and the magnetic body 12 of the magnetic encoder 11 converts the magnetic material into a thermosetting material.
  • the magnetic body 12 of the magnetic encoder 11 converts the magnetic material into a thermosetting material.
  • it is fixed to the outer peripheral surface of the pressing member 8 that also serves as a core metal, and the flange 8c of the pressing member 8 that positions the axial position of the magnetic body 12
  • the difference is that it is provided on the outer diameter surface on the inner end face side.
  • thermosetting resin urethane resin or epoxy resin can be used.
  • an annular molding jig 54 is placed with a gap from the outer peripheral surface of the holding member 8 that also serves as a core metal, and a magnetic material 12 containing a magnetic material and a thermosetting resin is placed in the gap.
  • the raw material 12b is placed, placed in a thermostatic bath, etc., heated and held at a predetermined temperature to cure the thermosetting resin, and the raw material 12b is formed as the magnetic body 12 and the pressing member. Adheres to the outer peripheral surface of 8.
  • the molding jig 54 is made of silicone rubber to which the raw material 12b does not adhere, and its outer peripheral side In this case, a permanent magnet 55 for applying a magnetic field is disposed in the gap in which the raw material 12b is disposed so that a magnetic material having a large specific gravity does not precipitate.
  • the heating temperature of the raw material 12b is 90 ° C or higher and 110 ° C or lower, more preferably 95 ° C or higher and 105 ° C or lower, and the holding time is 2 hours or longer and 4 hours or shorter, more preferably Is 2.5 hours or more and 3.5 hours or less.
  • the raw material 12b since the heating temperature of the raw material 12b is not so high, the raw material 12b may be heated using a hot plate or the like instead of being placed in a thermostatic bath or the like.
  • the molding jig 54 may be formed by applying a release agent containing fluororubber or fluorogrease on the surface of an arbitrary substrate which may be made of fluororubber or fluorogrease other than silicone rubber. May
  • the magnetic body 12 fixed to the outer peripheral surface of the pressing member 8 is separated into an N pole and an S pole in the circumferential direction using a separate magnetizing device.
  • a magnetizing yoke with a magnetizing coil wound around the outer peripheral surface of the forming jig 54 is provided to heat the raw material 12b and simultaneously magnetize the magnetic body 12 with the magnetizing yoke. You can also.
  • FIGS. 15 to 17 show a third embodiment.
  • this rolling bearing with a rotation sensor has the same basic configuration as that of the second embodiment, and the magnetic body 12 of the magnetic encoder 11 is made of thermoplastic material.
  • Figs. 16 (a) and 16 (b) they are equally divided into fan-shaped segments 12c with a division number n of 10, as shown in Figs.
  • Each segment 12c is fixed to the outer peripheral surface of the pressing member 8 which also serves as a core metal.
  • thermoplastic resin polyamide, polyphenylene sulfide, etc. are used, and each segment 12c is formed by injection molding. Therefore, each of the divided segments 12c can be formed with a small-size molding die and small equipment, and the outer diameter can be increased, and the magnetic encoder 11 can be manufactured at low cost.
  • the magnetic body 12 divided into the ten segments 12c is bonded to the outer peripheral surface of the pressing member 8 by providing a gap ⁇ at one circumferential position so that the adjacent segments 12c do not overlap each other. After being bonded, they are magnetized by using a magnetizing device so that the total number ⁇ of negative and S poles alternately present in the circumferential direction is 50. Therefore, split
  • the segment 12c with a number ⁇ of 10 is magnetized with 5 magnetic poles, and the position of the gap ⁇ is
  • each included segment 12c matches the boundary position of the magnetic pole.
  • Magnetic material 1 The magnetization of 2 may be performed for each segment 12c before being fixed to the pressing member 8.
  • the total number of magnetic poles n and the number of divisions n of segments 12c are the outer diameter dimensions of the magnetic encoder 11, etc.
  • Each segment 12c is not necessarily divided equally. For example, some segments 12c can be subdivided.
  • FIG. 17A shows a magnetic waveform detected by the sensor element 14 when the magnetic body 12 of the magnetic encoder 11 rotates together with the inner rings 3a and 3b.
  • the magnetic waveform is such that every time the N pole and S pole of the magnetic body 12 pass alternately, the magnetic flux changes in a wave shape to the N pole side and the S pole side, and the electric circuit mounted on the substrate 16 is When the change in the magnetic flux detected by the sensor element 14 becomes larger than the threshold values W and W on the N pole side and the S pole side, the rotation is counted.
  • the magnetic waveform generates a disturbance at the position of the gap ⁇ . Since the position of the gap ⁇ coincides with the boundary position of the magnetic pole, the disturbance of the magnetic waveform is Occurs in the middle of the waveform that does not exceed the threshold values W and W on the pole and S pole sides. So this magnetic wave
  • the electrical circuit mounted on the substrate 16 of the sensor element 14 does not erroneously count the rotation due to the shape disturbance. Note that the force that causes a small disturbance in the magnetic waveform even at the division position of each segment 12c without gap ⁇ . As described above, the division position of each segment 12c matches the boundary position of the magnetic pole. Disturbances also have a waveform that does not exceed the thresholds W and W.
  • FIG. 18 shows a fourth embodiment.
  • This rolling bearing with a rotation sensor has the same basic configuration as that of the first embodiment.
  • An annular groove 8e is provided on the outer diameter surface of the pressing member 8, and a magnetic material is provided in the annular groove 8e.
  • the difference is that 12d is thermally sprayed and bonded to the pressing member 8 as a base material to form a magnetic encoder 11. Therefore, it is possible to manufacture a magnetic encoder 11 having a large outer diameter at a low cost without using a mold or equipment for molding or vulcanization, and lead time for mold production even for small lot production. Can be manufactured in a short period of time.
  • Thermally sprayed magnetic material 12d is composed mainly of ferritic materials mainly composed of iron oxide, rare earth materials such as Sm-Co and Nd-Fe-B, and aluminum, nickel, conoleto and iron. Alnico type is used, and after spraying, it is magnetized alternately with N pole and S pole in the circumferential direction using a magnetizing device.
  • the double-row ball bearing in which the rolling bearing is an inner ring is a rotating side race.
  • the force by which the magnetic encoder of the rotation sensor and the sensor element are opposed to each other in the radial direction The rolling bearing with a rotation sensor according to the present invention is also applicable to other types of rolling bearings such as a single row ball bearing and a roller bearing. be able to.
  • the present invention can also be applied to a rolling bearing in which the outer ring is a rotating side race.
  • the magnetic encoder of the rotation sensor may be mounted on the outer ring side and the sensor element may be mounted on the inner ring side.
  • the magnetic encoder and the sensor element are opposed in the axial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

 磁気エンコーダを外径寸法が大きいものであっても安価に製造可能とすることと、センサ素子を組み込んだセンサケースをコンパクトで容易に着脱可能とすることと、予圧付与手段を設けた回転センサ付きの複列転がり軸受を、部品点数を少なくして組立てに手間がかからないようにすることである。  磁気エンコーダ11の磁性体12をゴムによって磁性材料を結合したものとし、この磁性体12を芯金を兼ねる環状の押さえ部材8に接着剤13で接着することにより、加硫接着用の金型や設備を不要として、磁気エンコーダ11を外径寸法が大きいであっても安価に製造可能とした。

Description

明 細 書
回転センサ付き転がり軸受
技術分野
[0001] 本発明は、回転センサ付き転がり軸受に関する。
背景技術
[0002] 各種回転機器の回転軸等を支持する転がり軸受には、その回転速度(回転数)を 検出するために回転センサ付き転がり軸受が使用されることがある。この回転センサ 付き転がり軸受は、内外輪の軌道輪のうちの回転側軌道輪に、円周方向で交互に異 なる磁極に着磁された環状の磁性体を芯金に固着した磁気エンコーダを装着し、こ の磁気エンコーダの回転に伴う磁極の変化を検出するセンサ素子を固定側軌道輪 に装着して、回転側軌道輪の回転を検出するものである。
[0003] 前記磁気エンコーダの磁性体は、フェライト等の磁性材料を熱可塑性榭脂ゃゴムを 結合剤として用いたものが一般的であり、磁性材料と結合剤を混合した原料を射出 成形等の成形用金型によって所定の寸法形状に成形して 、る。成形された磁性体 は、熱可塑性榭脂を結合剤としたものは圧入や接着によって芯金に固着され、ゴム を結合剤としたものは加硫接着によって芯金に固着されている(例えば、特許文献 1 参照)。なお、成形された磁性体は、芯金に固着される前、または芯金に固着された 後に、着磁装置を用いて、所望の磁極数に着磁される。
[0004] 通常、前記センサ素子はセンサケースに組み込まれ、固定側軌道輪端部の内径面 または外径面に圧入される環状の芯金に取り付けて、固定側軌道輪に装着されてい る(例えば、特許文献 2参照)。特許文献 2に記載されたものでは、センサケースを芯 金に接着するとともに、芯金に形成した凸部とセンサケースに設けた凹部を係合させ て、センサケースを芯金に固定し、芯金を固定側軌道輪としての外輪の端部の内径 面に圧入している。センサケースにはセンサ素子の基板も組み込まれ、基板にはセ ンサ素子の出力信号を処理する電気回路が実装されることが多い。
[0005] また、医療機器やロボット等の回転部を支持する複列転がり軸受には、回転部のが たつきや振動を抑えるために、外輪に設けられた複列の軌道面と対向するように、 1 列ずつの軌道面が設けられた 2分割の内輪間に軸方向隙間を設け、 2分割された一 方の内輪の側方に環状の押さえ部材を配設して、この押さえ部材で軸方向隙間を縮 小させることにより、予圧を付与するようにしたものがある (例えば、特許文献 3参照)。 このように医療機器やロボット等の回転部を支持する複列転がり軸受では、回転部の 回転を検出するために、回転センサを取り付けることが望まれて 、る。
[0006] 特許文献 1:特開 2002— 349556号公報
特許文献 2:特開 2002— 295465号公報
特許文献 3:特開 2000— 329143号公報
発明の開示
発明が解決しょうとする課題
[0007] 特許文献 1に記載されたように、磁性材料の結合剤に熱可塑性榭脂ゃゴムを用い た磁性体は、軸受寸法が大きくなつて磁気エンコーダの外径寸法も大きくなると、成 形用金型のサイズが大きくなるとともに、射出成形用等の設備も大型化し、製造コスト が高くなる問題がある。また、ゴムを結合剤として用い、加硫接着によって芯金に固 着される磁性体は、芯金に磁性体を接触させた状態で保持するための金型も必要で あり、この加硫接着用の金型や設備も大型化する。
[0008] また、特許文献 2に記載されたように、センサ素子を組み込んだセンサケースは、セ ンサ素子の出力信号を処理する電気回路を実装した基板も組み込まれることが多い ので、磁気エンコーダよりも振動等によって故障する可能性が高い。このため、セン サケースを取り付けた環状の芯金を固定側軌道輪端部の内径面または外径面に圧 入した従来の回転センサ付き転がり軸受は、このような故障が発生したときに、センサ ケースを容易に取り外すことができず、分解修理や部品の交換を行うのが難しい問 題がある。環状の芯金のために余分なスペースを必要とし、コンパクトな設計が阻害 される問題もある。
[0009] さらに、特許文献 3に記載されたような予圧付与手段を設けた複列転がり軸受に、 特許文献 1に記載されたような回転センサを取り付けると、もとより部品点数が多い複 列転がり軸受に、回転センサの磁気エンコーダやセンサ素子を装着することになり、 さらに、部品点数が多くなつて組立てに手間が力かる問題がある。 [0010] そこで、本発明の課題は、磁気エンコーダを外径寸法が大きいものであっても安価 に製造可能とすることと、センサ素子を組み込んだセンサケースをコンパクトで容易に 着脱可能とすることと、予圧付与手段を設けた回転センサ付きの複列転がり軸受を、 部品点数を少なくして組立てに手間が力からな 、ようにすることである。
課題を解決するための手段
[0011] 上記の課題を解決するために、本発明は、内外輪の軌道輪のうちの回転側軌道輪 に、円周方向で交互に異なる磁極に着磁された環状の磁性体を芯金に固着した磁 気エンコーダを装着し、この磁気エンコーダの回転に伴う磁極の変化を検出するセン サ素子を固定側軌道輪に装着して、前記回転側軌道輪の回転を検出する回転セン サ付き転がり軸受にお ヽて、前記磁性体をゴムによって磁性材料を結合したものとし 、この磁性体を前記芯金に接着剤で固着した構成を採用した。
[0012] すなわち、磁気エンコーダの磁性体をゴムによって磁性材料を結合したものとし、こ の磁性体を前記芯金に接着剤で固着することにより、加硫接着用の金型や設備を不 要として、磁気エンコーダを外径寸法が大きいものであっても安価に製造可能とした 。なお、前記ゴムは、天然ゴムや合成ゴム等、磁性材料を結合できて弾性を有する高 分子化合物であればよい。
[0013] 前記磁性体が金型を用いて加硫成形されたものであり、この金型で加硫成形され る形状を、前記芯金に環状に固着されたときに囲む領域の面積よりも、その囲む領 域の面積が狭くなるように部分的に屈曲した形状とすることにより、加硫成形用の金 型のサイズを小さくして、製造コストをより低減することができる。
[0014] 前記磁性体が前記芯金の外周面に固着されるものである場合は、前記芯金に固着 される前の前記磁性体の内周長を、この磁性体が固着される前記芯金の外周長より も短くすること〖こより、磁性体中のゴムの弾性力によって、磁性体をより強固に芯金の 外周面に固着することができる。
[0015] 前記芯金の前記磁性体が固着される表面に凹部を形成することにより、この凹部を 接着剤溜まりとして、磁性体をより強固に芯金に接着することができる。
[0016] また、本発明は、内外輪の軌道輪のうちの回転側軌道輪に、円周方向で交互に異 なる磁極に着磁された環状の磁性体を芯金に固着した磁気エンコーダを装着し、こ の磁気エンコーダの回転に伴う磁極の変化を検出するセンサ素子を固定側軌道輪 に装着して、前記回転側軌道輪の回転を検出する回転センサ付き転がり軸受におい て、前記磁性体を熱硬化性榭脂によって磁性材料を結合したものとした構成も採用 した。
[0017] すなわち、磁気エンコーダの磁性体を熱硬化性榭脂によって磁性材料を結合した ものとすることにより、射出成形用等の大がかりな設備や、加硫接着用の金型や設備 を不要として、磁気エンコーダを外径寸法が大き 、ものであっても安価に製造可能と した。
[0018] 前記磁気エンコーダは、前記芯金の表面と間隙を隔てて成形用治具を設置し、こ の芯金の表面と成形用治具の間の間隙に、前記磁性体となるべき磁性材料と熱硬 化性榭脂を含む原料を配置し、この間隙に配置された原料を加熱することにより、前 記熱硬化性榭脂を硬化させて前記磁性体を成形するとともに、この磁性体を前記芯 金の表面に固着させたものとすることができ、熱硬化性榭脂を硬化させる程度の低い 温度で加熱すればよ!ヽので、榭脂等からなる成形用治具を用いて成形することがで き、加硫接着する際に必要な金属製の金型や加圧設備を不要とすることができる。
[0019] 前記成形用治具をシリコーンゴムで形成することにより、磁性材料と熱硬化性榭脂 を含む原料が成形用治具に付着しないようにして、成形される磁性体に形状不良が 発生する確率を低減することができる。
[0020] 前記原料に磁界を印加した状態で、前記原料を加熱することにより、原料中の熱硬 化性榭脂が熱硬化する際に、比重の大きい磁性材料が重力によって下方に沈殿す るのを防止して、磁性材料が均一に分散した磁性体を成形することができる。したが つて、磁性体を着磁する際の着磁精度を向上させることができ、磁性体表面から生じ る磁束密度にムラのないものとすることができる。
[0021] 前記磁性体を成形すると同時に、この磁性体を着磁することにより、磁気ェンコ一 ダの製造効率を高めることができる。
[0022] また、本発明は、内外輪の軌道輪のうちの回転側軌道輪に、円周方向で交互に異 なる磁極に着磁された環状の磁性体を芯金に固着した磁気エンコーダを装着し、こ の磁気エンコーダの回転に伴う磁極の変化を検出するセンサ素子を固定側軌道輪 に装着して、前記回転側軌道輪の回転を検出する回転センサ付き転がり軸受におい て、前記磁性体を熱可塑性榭脂によって磁性材料を結合したものとして、この磁性体 を円周方向で複数のセグメントに分割し、この円周方向で複数に分割されたセグメン トを前記芯金に接着剤で固着した構成も採用した。
[0023] すなわち、磁気エンコーダの磁性体を熱可塑性榭脂によって磁性材料を結合した ものとして、この磁性体を円周方向で複数のセグメントに分割し、この円周方向で複 数に分割されたセグメントを芯金に接着剤で固着することにより、分割されたセグメン トを小寸法の成形用金型と小型の設備で成形できるようにし、磁気エンコーダを外径 寸法が大きいものであっても安価に製造可能とした。
[0024] 前記分割された各セグメントは、射出成形で成形するとよい。
[0025] 前記芯金に固着される複数のセグメントに分割された磁性体に、円周方向の少なく とも 1箇所で隙間を設け、この隙間の位置を前記異なる磁極の境界位置と合致させる ことにより、分割されたセグメントを、隙間で余裕代を持たせて重なり合わないように芯 金に密着させて固着でき、この隙間の位置で発生する磁気波形の乱れの影響を小さ くすることがでさる。
[0026] 後の図 17 (b)に示すように、前記隙間の位置では磁気波形の乱れが発生するが、 隙間の位置を磁極の境界位置と合致させることにより、磁気波形の乱れを、センサ素 子で検出される磁束の変化の N極側と S極側の各閾値 W、Wを越えない波形の中
N S
腹部で発生させ、この磁気波形の乱れによる回転センサの誤検出を防止することが できる。
[0027] 前記磁性体のセグメントを円周方向で等分割されたものとすることにより、各セグメ ントを同じ成形用金型で成形することができる。
[0028] 前記磁性体の一周の全磁極数 nと、前記等分割されたセグメントの分割数 nとの
P S
比 n Znが整数となるようにすることにより、セグメントの分割位置を異なる磁極の境
P S
界位置に合致させて、セグメントの分割位置で発生する磁気波形の乱れの影響を小 さくすることができる。
[0029] 前記セグメントの分割位置でも、前記隙間の位置ほどではな 、が磁気波形の乱れ が発生する。したがって、セグメントの分割位置を磁極の境界位置に合致させること により、この磁気波形の乱れも、センサ素子で検出される磁極の変化の N極側と S極 の各閾値 W 、Wを越えない波形の中腹部で発生させ、回転センサの誤検出を防止
N S
することができる。
[0030] また、本発明は、内外輪の軌道輪のうちの回転側軌道輪に、円周方向で交互に異 なる磁極に着磁された環状の磁性体を芯金に固着した磁気エンコーダを装着し、こ の磁気エンコーダの回転に伴う磁極の変化を検出するセンサ素子を固定側軌道輪 に装着して、前記回転側軌道輪の回転を検出する回転センサ付き転がり軸受におい て、前記磁性体を、前記磁性材料を溶射によって基材の表面に結合したものとした 構成も採用した。
[0031] すなわち、磁気エンコーダの磁性体を、磁性材料を溶射によって基材の表面に結 合したものとすることにより、成形用や加硫接着用の金型や設備を不要として、磁気 エンコーダを外径寸法が大きいものであっても安価に製造可能とした。
[0032] 前記磁性材料は、安価な酸化鉄を主成分とするフェライト系のものとすることができ る。
[0033] 前記磁性材料は、 Sm—Co系ゃNd—Fe— B系等の希土類系のものとすることもで きる。
[0034] 前記磁性材料は、アルミニウム、ニッケル、コバルトと鉄を主成分とするアルニコ系 のちのとすることちでさる。
[0035] 前記センサ素子をセンサケースに糸且み込み、このセンサケースを、前記固定側軌 道輪に 2箇所で位置決めして、前記固定側軌道輪に設けたタップ穴にねじで固定す ることにより、センサケース取り付け用の環状の芯金を不要として、センサケースをコ ンパタトで容易に着脱できるように固定側軌道輪に装着することができる。
[0036] 前記センサケースを固定側軌道輪に 2箇所で位置決めする手段のうち、少なくとも 1箇所で位置決めする手段を、ピン穴とピン状突起の係合によるものとすることにより 、センサケースを簡単で精度よく固定側軌道輪に位置決めすることができる。
[0037] 前記ピン穴を前記固定側軌道輪に設け、このピン穴の径寸法を前記タップ穴の下 穴径寸法と等しくすることにより、ドリルを交換することなぐピン穴とタップ穴の下穴を 効率よく短時間でカ卩ェすることができる。 [0038] 前記センサ素子をセンサケースに糸且み込み、このセンサケースを、前記固定側軌 道輪に設けた鍔部の内径面または肩部の外径面で位置決めして、前記固定側軌道 輪に設けたタップ穴にねじで固定することによつても、センサケース取り付け用の環 状の芯金を不要として、センサケースをコンパクトで容易に着脱できるように固定側軌 道輪に装着することができる。
[0039] 前記センサケースを固定側軌道輪に固定するねじの本数を 1本とすることにより、セ ンサケースをより容易に短時間で固定側軌道輪に着脱することができる。
[0040] 前記転がり軸受が、前記固定側軌道輪に複列の軌道面が設けられ、前記回転側 軌道輪がこれらの複列の軌道面と対向する 1列ずつの軌道面が設けられるように 2分 割され、これらの 2分割された回転側軌道輪の間に軸方向隙間を設けて、この軸方 向隙間を縮小させて予圧を付与する環状の押さえ部材を、前記 2分割された一方の 回転側軌道輪の側方に配設した複列転がり軸受である場合は、この環状の押さえ部 材を前記磁気エンコーダの芯金とすることにより、別途の磁気エンコーダの芯金を不 要として、予圧付与手段を設けた回転センサ付きの複列転がり軸受を、部品点数が 少なぐ組立てに手間が力からないものとすることができる。
[0041] 前記環状の押さえ部材に、前記一方の回転側軌道輪の軌道面と反対側の径面に 嵌合されるように突出する筒部を設けることにより、センサ素子と微小な隙間を開けて 半径方向で対向する磁気エンコーダを容易に位置決めすることができる。
発明の効果
[0042] 本発明の回転センサ付き転がり軸受は、磁気エンコーダの磁性体をゴムによって磁 性材料を結合したものとし、この磁性体を芯金に接着剤で固着した構成を採用した ので、加硫接着用の金型や設備を不要として、磁気エンコーダを外径寸法が大きい ものであっても安価に製造することができる。
[0043] 前記磁性体が金型を用いて加硫成形されたものであり、この金型で加硫成形され る形状を、芯金に環状に固着されたときに囲む領域の面積よりも、その囲む領域の面 積が狭くなるように部分的に屈曲した形状とすることにより、加硫成形用の金型のサイ ズを小さくして、製造コストをより低減することができる。
[0044] 前記磁性体が芯金の外周面に固着されるものである場合は、芯金に固着される前 の磁性体の内周長を、この磁性体が固着される芯金の外周長よりも短くすることによ り、磁性体中のゴムの弾性力によって、磁性体をより強固に芯金の外周面に固着す ることがでさる。
[0045] 前記芯金の磁性体が固着される表面に凹部を形成することにより、この凹部を接着 剤溜まりとして、磁性体をより強固に芯金に接着することができる。
[0046] また、本発明の回転センサ付き転がり軸受は、磁気エンコーダの磁性体を熱硬化 性榭脂によって磁性材料を結合した構成も採用したので、射出成形用等の大がかり な設備や、加硫接着用の金型や設備を不要として、磁気エンコーダを外径寸法が大 き!、ものであっても安価に製造することができる。
[0047] 前記磁気エンコーダは、芯金の表面と間隙を隔てて成形用治具を設置し、この芯 金の表面と成形用治具の間の間隙に、磁性体となるべき磁性材料と熱硬化性榭脂を 含む原料を配置し、この間隙に配置された原料を加熱することにより、熱硬化性榭脂 を硬化させて磁性体を成形するとともに、この磁性体を芯金の表面に固着させたもの として、榭脂等力もなる成形用治具を用いて成形することができ、加硫接着する際に 必要な金属製の金型や加圧設備を不要とすることができる。
[0048] 前記成形用治具をシリコーンゴムで形成することにより、磁性材料と熱硬化性榭脂 を含む原料が成形用治具に付着しないようにして、成形される磁性体に形状不良が 発生する確率を低減することができる。
[0049] 前記原料に磁界を印加した状態で、原料を加熱することにより、磁性材料が均一に 分散した磁性体を成形して、磁性体を着磁する際の着磁精度を向上させることがで き、磁性体表面から生じる磁束密度にムラのないものとすることができる。
[0050] 前記磁性体を成形すると同時に、この磁性体を着磁することにより、磁気ェンコ一 ダの製造効率を高めることができる。
[0051] また、本発明の回転センサ付き転がり軸受は、磁気エンコーダの磁性体を熱可塑 性榭脂によって磁性材料を結合したものとして、この磁性体を円周方向で複数のセ グメントに分割し、この円周方向で複数に分割されたセグメントを芯金に接着剤で固 着した構成も採用したので、分割されたセグメントを小寸法の成形用金型と小型の設 備で成形でき、磁気エンコーダを外径寸法が大き 、ものであっても安価に製造するこ とがでさる。
[0052] 前記芯金に固着される複数のセグメントに分割された磁性体に、円周方向の少なく とも 1箇所で隙間を設け、この隙間の位置を異なる磁極の境界位置と合致させること により、分割されたセグメントを、隙間で余裕代を持たせて重なり合わないように芯金 に密着させて固着でき、この隙間の位置で発生する磁気波形の乱れの影響を小さく することができる。
[0053] 前記磁性体のセグメントを円周方向で等分割されたものとすることにより、各セグメ ントを同じ成形用金型で成形することができる。
[0054] 前記磁性体の一周の全磁極数 nと、等分割されたセグメントの分割数 nとの比 n
P S P
Znが整数となるようにすることにより、セグメントの分割位置を異なる磁極の境界位
S
置に合致させて、セグメントの分割位置で発生する磁気波形の乱れの影響を小さく することができる。
[0055] また、本発明の回転センサ付き転がり軸受は、磁気エンコーダの磁性体を、磁性材 料を溶射によって基材の表面に結合した構成も採用したので、成形用や加硫接着用 の金型や設備を不要として、磁気エンコーダを外径寸法が大き 、ものであっても安価 に製造することができる。
[0056] 前記センサ素子をセンサケースに組み込み、このセンサケースを、固定側軌道輪に 2箇所で位置決めして、固定側軌道輪に設けたタップ穴にねじで固定することにより 、センサケース取り付け用の環状の芯金を不要として、センサケースをコンパクトで容 易に着脱できるように固定側軌道輪に装着することができる。
[0057] 前記センサケースを固定側軌道輪に 2箇所で位置決めする手段のうち、少なくとも 1箇所で位置決めする手段を、ピン穴とピン状突起の係合によるものとすることにより 、センサケースを簡単で精度よく固定側軌道輪に位置決めすることができる。
[0058] 前記ピン穴を固定側軌道輪に設け、このピン穴の径寸法をタップ穴の下穴径寸法 と等しくすることにより、ドリルを交換することなぐピン穴とタップ穴の下穴を効率よく 短時間でカ卩ェすることができる。
[0059] 前記センサ素子をセンサケースに組み込み、このセンサケースを、固定側軌道輪に 設けた鍔部の内径面または肩部の外径面で位置決めして、固定側軌道輪に設けた タップ穴にねじで固定することによつても、センサケース取り付け用の環状の芯金を 不要として、センサケースをコンパクトで容易に着脱できるように固定側軌道輪に装 着することができる。
[0060] 前記センサケースを固定側軌道輪に固定するねじの本数を 1本とすることにより、セ ンサケースをより容易に短時間で固定側軌道輪に着脱することができる。
[0061] 前記転がり軸受が、固定側軌道輪に複列の軌道面が設けられ、回転側軌道輪がこ れらの複列の軌道面と対向する 1列ずつの軌道面が設けられるように 2分割され、こ れらの 2分割された回転側軌道輪の間に軸方向隙間を設けて、この軸方向隙間を縮 小させて予圧を付与する環状の押さえ部材を、 2分割された一方の回転側軌道輪の 側方に配設した複列転がり軸受である場合は、この環状の押さえ部材を磁気ェンコ 一ダの芯金とすることにより、別途の磁気エンコーダの芯金を不要として、予圧付与 手段を設けた回転センサ付きの複列転がり軸受を、部品点数が少なぐ組立てに手 間が力からないものとすることができる。
[0062] 前記環状の押さえ部材に、一方の回転側軌道輪の軌道面と反対側の径面に嵌合 されるように突出する筒部を設けることにより、センサ素子と微小な隙間を開けて半径 方向で対向する磁気エンコーダを容易に位置決めすることができる。
図面の簡単な説明
[0063] [図 1]第 1の実施形態の回転センサ付き転がり軸受を示す縦断面図
[図 2]aは図 1の II II線に沿った断面図、 bは aの磁性体の着磁状態を示す概念側面 図
[図 3]aは図 1の磁性体を加硫成形する金型を示す平面図、 bは aの金型で成形され たままの磁性体を固着後の状態と比較して示す平面図
[図 4]図 3の磁性体を芯金を兼ねる押さえ部材に固着して仕上げ加工する方法を説 明する縦断面図
[図 5]第 1の実施形態の回転センサ付き転がり軸受の第 1変形例を示す縦断面図 [図 6]第 1の実施形態の回転センサ付き転がり軸受の第 2変形例を示す縦断面図 [図 7]第 1の実施形態の回転センサ付き転がり軸受の第 3変形例を示す縦断面図 [図 8]図 7の VIII— VIII線に沿った断面図 [図 9]第 1の実施形態の回転センサ付き転がり軸受の第 4変形例を示す縦断面図 [図 10]図 9の X— X線に沿った断面図
[図 11]第 1の実施形態の回転センサ付き転がり軸受の第 5変形例を示す縦断面図 [図 12]図 11の XII— XII線に沿った断面図
[図 13]第 2の実施形態の回転センサ付き転がり軸受を示す縦断面図
[図 14]図 13の磁性体を熱硬化で成形、固着する方法を説明する縦断面図
[図 15]第 3の実施形態の回転センサ付き転がり軸受を示す縦断面図
[図 16]aは図 15の磁性体の着磁状態を示す概念側面図、 bは aのセグメントを示す概 念側面図
[図 17]aは図 15のセンサ素子で検出される磁気波形を示すグラフ、 bは図 16 (a)の隙 間 δの位置での磁気波形を示すグラフ
[図 18]第 4の実施形態の回転センサ付き転がり軸受を示す縦断面図
符号の説明
1、 la、 lb 外輪
2a、 2b 軌道面
3a, 3b 内輪
4a、 4b 軌道面
5 ボーノレ
6 保持器
7 軸方向隙間
8 押さえ部材
8a ボノレ卜孑し
8b 筒部
8c 鍔部
8d 凹部
8e 環状溝
9 ボルト孔
10 シール 磁気エンコーダ 、 12a 磁性体b 原料c セグメントd 磁性材料 接着剤 センサ素子 センサケース 基板 モールド樹脂 出力ケープノレ ピン穴 ピン状突起 タップ穴 ねじ 金属カバー 内方部材a L 段差部 凸部 鍔部
円弧面 鳄部
肩部
金型
a 無端凹部 芯出しテーブルa 中心軸 バイト 54 成形用治具
55 永久磁石
発明を実施するための最良の形態
[0065] 以下、図面に基づき、本発明の実施形態を説明する。図 1乃至 4は、第 1の実施形 態を示す。この回転センサ付き転がり軸受は、図 1に示すように、固定側軌道輪として の外輪 1の内径面に 2列の軌道面 2a、 2bが設けられ、回転軌道輪としての 2分割さ れた内輪 3a、 3bの外径面に、外輪 1の各軌道面 2a、 2bと対向する軌道面 4a、 4bが 1列ずつ設けられて、これらの外輪 1の各軌道面 2a、 2bと内輪 3a、 3bの各軌道面 4a 、 4bの間に、転動体としての 2列のボール 5が保持器 6で保持された複列玉軸受であ り、一方の内輪 3aが他方の内輪 3bの外径段差部に軸方向隙間 7を設けて外嵌され 、内輪 3aの側方に配設された環状の押さえ部材 8で軸方向隙間 7を縮小させて予圧 を付与するようになって!/、る。外輪 1の外周部にはハウジング等への固定用のボルト 孔 9が設けられ、外輪 1の両端部の内径面には軸受内部をシールするシール 10が取 り付けられている。
[0066] 図 1および図 2 (a)に示すように、前記押さえ部材 8にはボルト孔 8aが設けられ、ボ ルト孔 8aに通されるボルトで内輪 3bに締め付けられて、内輪 3aの側面を押圧するこ とにより、軸方向隙間 7を縮小させて予圧が付与される。押さえ部材 8は、回転センサ を構成する磁気ェンコーダ 11の芯金を兼ね、その外径面に磁気ェンコーダ 11の環 状の磁性体 12が接着剤 13で接着されている。押さえ部材 8の内端面側には、内輪 3 aの内径面に嵌合するように突出する筒部 8bが設けられ、磁気エンコーダ 11の軸心 を位置決めするようになっている。また、押さえ部材 8の外端面側の外径面には、磁 気エンコーダ 11の磁性体 12の軸方向位置を位置決めする鍔部 8cが設けられている 。磁気エンコーダ 11の磁性体 12は、図 2 (b)に示すように、周方向に N極と S極が交 互に存在する所望の磁極数に着磁されて!/ヽる。
[0067] 前記磁性体 12は磁性材料をゴムで結合したものであり、図 3 (a)に示すような金型 5 1に設けられた屈曲して連なる無端凹部 51aに、磁性材料と結合剤としてのゴムを含 む原料を流し込んで加硫成形され、図 3 (b)に示すように、加硫成形されたままの磁 性体 12aは、押さえ部材 8の外周面に環状に固着されたときに磁性体 12が囲む領域 の面積よりも、その囲む領域の面積が狭くなるように、部分的に屈曲した形状となって いる。したがって、磁気エンコーダ 11の外径寸法が大きい場合であっても、加硫成形 用の金型 51のサイズを小さくして、製造コストを低減することができる。
[0068] 前記結合剤のゴムとしては、 NBR (二トリルゴム)、 H— NBR (水素添加-トリルゴム )等の耐熱性-トリルゴム、 ACM (アクリルゴム)、 AEM (エチレンアクリルゴム)およ び FKM (フッ素ゴム)等を用いることが好ましい。また、磁性材料としては、フェライト 系、 Sm—Co系ゃNd—Fe— B系等の希土類系、アルミニウム、ニッケル、コバルトと 鉄を主成分とするアルニコ系のものを用いることができ、これらの磁性材料の配合割 合は、 70質量%以上で 95質量%以下、より好ましくは 75質量%以上で 90質量%以 下とするのがよい。
[0069] 前記加硫成形されたままの磁性体 12aの内周長は、環状の押さえ部材 8の外周長 よりも短く形成されており、押さえ部材 8の外周面に固着されたときに、ある程度伸ば された状態となる。したがって、磁性体 12を形成するゴムの弾性力によって、押さえ 部材 8の外周面に強固で確実に固着することができる。なお、磁性体 12aの内周長 は、押さえ部材 8の外周長の 0. 5倍以上で 1. 0倍未満とするのがよぐより好ましくは 0. 7倍以上で 0. 98倍以下、さらに好ましくは 0. 95倍以下とするのがよい。
[0070] 前記磁性体 12を外周面に固着された押さえ部材 8は、図 4に示すように、中心軸 5 2aの回りに回転する芯出しテーブル 52に筒部 8bで固定され、磁性体 12の外周面が ノイト 53によって研削されて、その外径寸法が所定の寸法となるように、仕上げ加工 される。こののち、押さえ部材 8を同じ芯出しテーブル 52に固定したまま、磁性体 12 が別途の着磁装置によって、図 2 (b)に示したように、周方向で N極と S極とに交互に 着磁される。なお、磁性体 12の厚みは、 0. 5mm以上で 10mm以下、より好ましくは 0. 7mm以上で 3mm以下とされる。また、着磁工程は仕上げカ卩ェ工程と別に行って もよいが、このように、仕上げカ卩ェ用の芯出しテーブル 52をそのまま着磁用に用いる ことにより、製造工程を簡略ィ匕して短縮できるとともに、着磁精度を向上させることが できる。
[0071] 図 1および図 2 (a)に示したように、前記センサ素子 14はセンサケース 15に組み込 まれ、その基板 16と一緒にモールド榭脂 17で固定されており、基板 16にはセンサ素 子 14で検出される内輪 3a、 3bの回転速度を出力する出力ケーブル 18が接続されて いる。基板 16は、フィルム状のフレキシブル基板やエポキシ榭脂製基板とされ、セン サ素子 14の出力信号を処理する電気回路が実装されている。
[0072] 前記センサケース 15は、外輪 1の端面の円周方向で 2箇所に設けられたピン穴 19 に、自身の側端面の円周方向両端部に設けられたピン状突起 20を係合させて、セン サ素子 14が磁気エンコーダ 11の磁性体 12と所定のセンシングギャップで対向する ように位置決めされ、外輪 1の端面に設けられたタップ穴 21と 1本のねじ 22で中央部 を取り付けられている。なお、外輪 1の端面に設けられた各ピン穴 19の径寸法は、タ ップ穴 21の下穴径寸法と等しくされ、ドリルを交換することなく効率よく短時間で加工 されるようになつている。
[0073] また、前記センサケース 15の外周面と外側面は、センサ素子 14が外部磁界の影響 を受けて誤作動することを防止するために、金属カバー 23で覆われている。金属力 バー 23は、例えば、フェライト系ステンレス鋼板や軟鋼板等の磁性材をプレス成形し て形成することができ、センサケース 15と一体とすることが好ましい。なお、金属カバ 一 23に非磁性材を用い、その表面に磁性材の表面処理を施してもよ!ヽ。
[0074] 図 5は、第 1の実施形態の第 1変形例を示す。この第 1変形例は、前記 2分割された 内輪 3a、 3bが、別体の内方部材 24の外径面に軸方向隙間 7を設けて外嵌され、内 輪 3bが内方部材 24の段差部 24aで軸方向を位置決めされている点と、磁気ェンコ ーダ 11の芯金を兼ねる押さえ部材 8の外周面に、接着剤溜まりとなる凹部 8dが形成 されている点とが異なる。接着剤溜まりとなる凹部 8dは、前記内周長が押さえ部材 8 の外周長よりも短く成形された磁性体 12を押さえ部材 8の外周面に接着するときに、 接着剤 13がこれらの間から押し出されて接着不良が生じるのを防止する。なお、凹 部 8dは必ずしも押さえ部材 8の全周に溝状に連なる必要はなぐ円周方向で間隔を 開けて部分的に設けられたものとしてもよい。
[0075] 図 6は、第 1の実施形態の第 2変形例を示す。この第 2変形例は、外輪 la、 lbも 2分 割され、軌道面 2aが設けられた外輪 laが、ボルト孔 9を設けられた外輪 lbの内径段 差部に内嵌され、外輪 lbの側端面にねじ 22で取り付けられたセンサケース 15によつ て抜け止めされている点が異なる。 [0076] 図 7および図 8は、第 1の実施形態の第 3変形例を示す。この第 3変形例は、前記セ ンサケース 15が、その側端面の円周方向一端部に設けられたピン状突起 20を、外 輪 1の端面に設けられた 1つのピン穴 19に係合させるとともに、ピン状突起 20と反対 側の円周方向端部の外径面に設けられた凸部 25を、外輪 1の端面に設けられた鍔 部 26の内径面に押し当てて、位置決めされている点が異なる。
[0077] 図 9および図 10は、第 1の実施形態の第 4変形例を示す。この第 4変形例は、前記 センサケース 15の外径面が円弧面 27で形成され、この円弧面 27で形成された外径 面を外輪 1の端面に設けられた鍔部 26の内径面に沿わせて、センサケース 15が位 置決めされている点が異なる。
[0078] 図 11および図 12は、第 1の実施形態の第 5変形例を示す。この第 5変形例は、前 記センサケース 15の側端面に、内径面が円弧面で形成された鍔部 28が設けられ、 この円弧面で形成された鍔部 28の内径面を、外輪 1の肩部 29の外径面に沿わせて 、センサケース 15が位置決めされている点が異なる。
[0079] 図 13および図 14は、第 2の実施形態を示す。この回転センサ付き転がり軸受は、 図 13に示すように、基本的な構成は第 1の実施形態のものと同じであり、前記磁気ェ ンコーダ 11の磁性体 12が、磁性材料を熱硬化性榭脂で結合したものとされ、成形さ れると同時に、芯金を兼ねる押さえ部材 8の外周面に固着されている点と、磁性体 12 の軸方向位置を位置決めする押さえ部材 8の鍔部 8cが内端面側の外径面に設けら れている点が異なる。このため、射出成形用等の大がかりな設備や、加硫接着用の 金型や設備を不要として、外径寸法の大きい磁気エンコーダ 11を安価に製造するこ とができる。なお、熱硬化性榭脂としては、ウレタン榭脂ゃエポキシ榭脂等を用いるこ とがでさる。
[0080] 以下に、前記磁気エンコーダ 11を製造する方法を説明する。図 14に示すように、 芯金を兼ねる押さえ部材 8の外周面と間隙を隔てて環状の成形用治具 54を設置し、 この間隙に磁性材料と熱硬化性榭脂を含む磁性体 12の原料 12bを配置して、これら を恒温槽等に入れ、所定の温度に加熱、保持することにより、熱硬化性榭脂を硬化さ せて、原料 12bを磁性体 12として成形するとともに、押さえ部材 8の外周面に固着す る。成形用治具 54は原料 12bが付着しないシリコーンゴムで形成され、その外周側 には、比重の大きい磁性材料が沈殿しないように、原料 12bが配置された間隙に磁 界を印加する永久磁石 55が配設されて 、る。
[0081] 前記原料 12bの加熱温度は 90°C以上で 110°C以下、より好ましくは 95°C以上で 1 05°C以下とされ、その保持時間は 2時間以上で 4時間以下、より好ましくは 2. 5時間 以上で 3. 5時間以下とされる。このように、原料 12bの加熱温度はあまり高くないので 、恒温槽等に入れる替りに、ホットプレート等を用いて原料 12bを加熱してもよい。ま た、成形用治具 54は、シリコーンゴム以外にフッ素ゴムやフッ素榭脂等で形成しても よぐ任意の基材の表面にフッ素ゴムやフッ素榭脂等を含む離型剤を塗布してもよい
[0082] 前記押さえ部材 8の外周面に固着された磁性体 12は、第 1の実施形態のものと同 様に、別途の着磁装置を用いて、周方向で N極と S極とに交互に着磁されるが、成形 用治具 54の外周面に着磁コイルを巻いた着磁ヨークを設け、原料 12bの加熱を行う と同時に、着磁ヨークによって磁性体 12を着磁することもできる。
[0083] 図 15乃至図 17は、第 3の実施形態を示す。この回転センサ付き転がり軸受は、図 1 5に示すように、基本的な構成は第 2の実施形態のものと同じであり、前記磁気ェンコ ーダ 11の磁性体 12が、磁性材料を熱可塑性榭脂で結合したものとされ、図 16 (a)、 (b)に示すように、分割数 nを 10個とした扇形のセグメント 12cに等分割され、これら
S
の各セグメント 12cが、芯金を兼ねる押さえ部材 8の外周面に固着されている点が異 なる。熱可塑性榭脂としては、ポリアミド、ポリフエ-レンサルファイド等が用いられ、各 セグメント 12cは射出成形で成形されている。したがって、分割された各セグメント 12 cを小寸法の成形用金型と小型の設備で成形でき、外径寸法の大き!、磁気ェンコ一 ダ 11を安価に製造することができる。
[0084] 前記 10個のセグメント 12cに分割された磁性体 12は、隣接するセグメント 12c同士 が重なり合わないように、円周方向の 1箇所で隙間 δを設けて押さえ部材 8の外周面 に接着剤で接着されており、接着された後に着磁装置を用いて、周方向に交互に存 在する Ν極と S極の全磁極数 ηが 50となるように着磁されている。したがって、分割
Ρ
数 ηが 10個とされたセグメント 12cは 5個ずつの磁極数に着磁され、隙間 δの位置を
S
含む各セグメント 12cの分割位置が磁極の境界位置と合致している。なお、磁性体 1 2への着磁は、押さえ部材 8に固着する前に、各セグメント 12c毎に行なってもよい。 また、全磁極数 nとセグメント 12cの分割数 nは、磁気エンコーダ 11の外径寸法等
P S
に応じて任意に設定することができ、各セグメント 12cは必ずしも等分割する必要は なぐ例えば、一部のセグメント 12cを細分割することもできる。
[0085] 図 17 (a)は、前記磁気エンコーダ 11の磁性体 12が内輪 3a、 3bと一緒に回転した ときに、前記センサ素子 14で検出される磁気波形を示す。磁気波形は、磁性体 12の N極と S極が交互に通過する毎に、磁束が N極側と S極側へ波状に変化するものとな り、前記基板 16に実装された電気回路は、センサ素子 14で検出される磁束の変化 が N極側と S極側の各閾値 W 、Wよりも大きくなつたときに、回転をカウントする。
N S
[0086] 図 17 (b)に示すように、前記磁気波形は隙間 δの位置で乱れを生じる力 隙間 δ の位置は磁極の境界位置と合致して ヽるので、この磁気波形の乱れは Ν極側と S極 側の各閾値 W 、 Wを越えない波形の中腹部で発生する。したがって、この磁気波
N S
形の乱れによってセンサ素子 14の基板 16に実装された電気回路が回転を誤カウン トすることはない。なお、隙間 δのない各セグメント 12cの分割位置でも小さな磁気波 形の乱れが発生する力 上述したように、各セグメント 12cの分割位置は磁極の境界 位置と合致しているので、この磁気波形の乱れも各閾値 W 、Wを越えない波形の
N S
中腹部で発生する。
[0087] 図 18は、第 4の実施形態を示す。この回転センサ付き転がり軸受は、基本的な構 成は第 1の実施形態のものと同じであり、前記押さえ部材 8の外径面に環状溝 8eが 設けられ、この環状溝 8e内に磁性材料 12dが溶射され、押さえ部材 8を基材として結 合されて、磁気エンコーダ 11とされている点が異なる。したがって、成形用や加硫接 着用の金型や設備を不要として、外径寸法の大きい磁気エンコーダ 11を安価に製 造することができるとともに、小ロット生産のものでも、金型製作のリードタイムをなくし て、短期間に製造することができる。溶射される磁性材料 12dとしては、酸化鉄を主 成分とするフェライト系、 Sm— Co系や Nd— Fe— B系等の希土類系、およびアルミ ユウム、ニッケル、コノ レトと鉄を主成分とするアルニコ系のものが用いられ、溶射後 に着磁装置を用いて、周方向で N極と S極とに交互に着磁されて 、る。
[0088] 上述した各実施形態では、転がり軸受を内輪が回転側軌道輪とされた複列玉軸受 とし、回転センサの磁気エンコーダとセンサ素子を半径方向で対向させた力 本発明 に係る回転センサ付き転がり軸受は、単列の玉軸受ゃころ軸受等の他のタイプの転 がり軸受にも適用することができる。また、外輪が回転側軌道輪とされた転がり軸受に も適用でき、この場合は、回転センサの磁気エンコーダを外輪側に、センサ素子を内 輪側に装着すればよい。さらに、磁気エンコーダとセンサ素子を軸方向で対向させる ことちでさる。

Claims

請求の範囲
[1] 内外輪の軌道輪のうちの回転側軌道輪に、円周方向で交互に異なる磁極に着磁さ れた環状の磁性体を芯金に固着した磁気ェンコーダを装着し、この磁気ェンコーダ の回転に伴う磁極の変化を検出するセンサ素子を固定側軌道輪に装着して、前記 回転側軌道輪の回転を検出する回転センサ付き転がり軸受において、前記磁性体 をゴムによって磁性材料を結合したものとし、この磁性体を前記芯金に接着剤で固着 したことを特徴とする回転センサ付き転がり軸受。
[2] 前記磁性体が金型を用いて加硫成形されたものであり、この金型で加硫成形され る形状を、前記芯金に環状に固着されたときに囲む領域の面積よりも、その囲む領 域の面積が狭くなるように部分的に屈曲した形状とした請求項 1に記載の回転センサ 付き転がり軸受。
[3] 前記磁性体が前記芯金の外周面に固着されるものであり、前記芯金に固着される 前の前記磁性体の内周長を、前記芯金の外周面の外周長よりも短くした請求項 1ま たは 2に記載の回転センサ付き転がり軸受。
[4] 前記芯金の前記磁性体が固着される表面に凹部を形成した請求項 1乃至 3のいず れかに記載の回転センサ付き転がり軸受。
[5] 内外輪の軌道輪のうちの回転側軌道輪に、円周方向で交互に異なる磁極に着磁さ れた環状の磁性体を芯金に固着した磁気ェンコーダを装着し、この磁気ェンコーダ の回転に伴う磁極の変化を検出するセンサ素子を固定側軌道輪に装着して、前記 回転側軌道輪の回転を検出する回転センサ付き転がり軸受において、前記磁性体 を熱硬化性榭脂によって磁性材料を結合したものとしたことを特徴とする回転センサ 付き転がり軸受。
[6] 前記磁気エンコーダが、前記芯金の表面と間隙を隔てて成形用治具を設置し、こ の芯金の表面と成形用治具の間の間隙に、前記磁性体となるべき磁性材料と熱硬 化性榭脂を含む原料を配置し、この間隙に配置された原料を加熱することにより、前 記熱硬化性榭脂を硬化させて前記磁性体を成形するとともに、この磁性体を前記芯 金の表面に固着させたものである請求項 5に記載の回転センサ付き転がり軸受。
[7] 前記成形用治具をシリコーンゴムで形成した請求項 6に記載の回転センサ付き転 がり軸受。
[8] 前記原料に磁界を印加した状態で、前記原料を加熱するようにした請求項 6または 7に記載の回転センサ付き転がり軸受。
[9] 前記磁性体を成形すると同時に、この磁性体を着磁するようにした請求項 6乃至 8 の!、ずれかに記載の回転センサ付き転がり軸受。
[10] 内外輪の軌道輪のうちの回転側軌道輪に、円周方向で交互に異なる磁極に着磁さ れた環状の磁性体を芯金に固着した磁気ェンコーダを装着し、この磁気ェンコーダ の回転に伴う磁極の変化を検出するセンサ素子を固定側軌道輪に装着して、前記 回転側軌道輪の回転を検出する回転センサ付き転がり軸受において、前記磁性体 を熱可塑性榭脂によって磁性材料を結合したものとして、この磁性体を円周方向で 複数のセグメントに分割し、この円周方向で複数に分割されたセグメントを前記芯金 に接着剤で固着したことを特徴とする回転センサ付き転がり軸受。
[11] 前記分割された各セグメントを、射出成形で成形した請求項 10に記載の回転セン サ付き転がり軸受。
[12] 前記芯金に固着される複数のセグメントに分割された磁性体に、円周方向の少なく とも 1箇所で隙間を設け、この隙間の位置を前記異なる磁極の境界位置と合致させ た請求項 10または 11に記載の回転センサ付き転がり軸受。
[13] 前記磁性体のセグメントを円周方向で等分割されたものとした請求項 10乃至 12の V、ずれかに記載の回転センサ付き転がり軸受。
[14] 前記磁性体の一周の全磁極数 nと、前記等分割されたセグメントの分割数 nとの
P S
比 n Znが整数となるようにした請求項 13に記載の回転センサ付き転がり軸受。
P S
[15] 内外輪の軌道輪のうちの回転側軌道輪に、円周方向で交互に異なる磁極に着磁さ れた環状の磁性体を芯金に固着した磁気ェンコーダを装着し、この磁気ェンコーダ の回転に伴う磁極の変化を検出するセンサ素子を固定側軌道輪に装着して、前記 回転側軌道輪の回転を検出する回転センサ付き転がり軸受において、前記磁性体 を、前記磁性材料を溶射によって基材の表面に結合したものとしたことを特徴とする 回転センサ付き転がり軸受。
[16] 前記磁性材料をフェライト系のものとした請求項 15に記載の回転センサ付き転がり 軸受。
[17] 前記磁性材料を希土類系のものとした請求項 15に記載の回転センサ付き転がり軸 受。
[18] 前記磁性材料をアルニコ系のものとした請求項 15に記載の回転センサ付き転がり 軸受。
[19] 前記センサ素子をセンサケースに糸且み込み、このセンサケースを、前記固定側軌 道輪に 2箇所で位置決めして、前記固定側軌道輪に設けたタップ穴にねじで固定し た請求項 1乃至 18の 、ずれかに記載の回転センサ付き転がり軸受。
[20] 前記センサケースを固定側軌道輪に 2箇所で位置決めする手段のうち、少なくとも 1箇所で位置決めする手段を、ピン穴とピン状突起の係合によるものとした請求項 19 に記載の回転センサ付き転がり軸受。
[21] 前記ピン穴を前記固定側軌道輪に設け、このピン穴の径寸法を前記タップ穴の下 穴径寸法と等しくした請求項 19または 20に記載の回転センサ付き転がり軸受。
[22] 前記センサ素子をセンサケースに糸且み込み、このセンサケースを、前記固定側軌 道輪に設けた鍔部の内径面または肩部の外径面で位置決めして、前記固定側軌道 輪に設けたタップ穴にねじで固定した請求項 1乃至 18のいずれかに記載の回転セ ンサ付き転がり軸受。
[23] 前記センサケースを固定側軌道輪に固定するねじの本数を 1本とした請求項 19乃 至 22の 、ずれかに記載の回転センサ付き転がり軸受。
[24] 前記転がり軸受が、前記固定側軌道輪に複列の軌道面が設けられ、前記回転側 軌道輪がこれらの複列の軌道面と対向する 1列ずつの軌道面が設けられるように 2分 割され、これらの 2分割された回転側軌道輪の間に軸方向隙間を設けて、この軸方 向隙間を縮小させて予圧を付与する環状の押さえ部材を、前記 2分割された一方の 回転側軌道輪の側方に配設した複列転がり軸受であり、この環状の押さえ部材を前 記磁気エンコーダの芯金とした請求項 1乃至 23のいずれかに記載の回転センサ付 き転がり軸受。
[25] 前記環状の押さえ部材に、前記一方の回転側軌道輪の軌道面と反対側の径面に 嵌合されるように突出する筒部を設けた請求項 24に記載の回転センサ付き転がり軸
ZZ0S0/.00Zdf/X3d SS .Ϊ6080/.00Ζ OAV
PCT/JP2007/050229 2006-01-12 2007-01-11 回転センサ付き転がり軸受 WO2007080917A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112007000136T DE112007000136T5 (de) 2006-01-12 2007-01-11 Rolllager mit einem Drehgeschwindigkeitssensor
US12/086,642 US7982455B2 (en) 2006-01-12 2007-01-11 Rolling bearing with rotational speed sensor

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2006-004407 2006-01-12
JP2006004357A JP2007187492A (ja) 2006-01-12 2006-01-12 回転センサ付軸受、磁気エンコーダおよび回転センサ付軸受の製造方法
JP2006-004357 2006-01-12
JP2006004407A JP2007187496A (ja) 2006-01-12 2006-01-12 回転センサ付軸受
JP2006008640A JP2007192249A (ja) 2006-01-17 2006-01-17 複列転がり軸受
JP2006-008640 2006-01-17
JP2006008620A JP2007192247A (ja) 2006-01-17 2006-01-17 回転センサ付き転がり軸受
JP2006-008620 2006-01-17
JP2006010792A JP2007192653A (ja) 2006-01-19 2006-01-19 回転センサ付き転がり軸受
JP2006-010792 2006-01-19
JP2006016592A JP2007198475A (ja) 2006-01-25 2006-01-25 回転センサ付き転がり軸受
JP2006-016592 2006-01-25

Publications (1)

Publication Number Publication Date
WO2007080917A1 true WO2007080917A1 (ja) 2007-07-19

Family

ID=38256322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050229 WO2007080917A1 (ja) 2006-01-12 2007-01-11 回転センサ付き転がり軸受

Country Status (3)

Country Link
US (1) US7982455B2 (ja)
DE (1) DE112007000136T5 (ja)
WO (1) WO2007080917A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110805613A (zh) * 2019-11-29 2020-02-18 徐州九鼎锻造科技有限公司 一种具有降噪功能的回转支撑轴承

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2959569B1 (fr) * 2010-04-30 2012-11-02 Snr Roulements Sa Assemblage instrumente pour fusee d'essieu et procede de montage
JP5496840B2 (ja) * 2010-09-14 2014-05-21 愛三工業株式会社 センサ取付構造
JP5223899B2 (ja) * 2010-09-15 2013-06-26 株式会社デンソー 回転角検出装置
DE102011082221A1 (de) * 2011-09-07 2013-03-07 Schaeffler Technologies AG & Co. KG Wälzlager
WO2014174615A1 (ja) 2013-04-24 2014-10-30 三菱電機株式会社 磁気エンコーダ
JP2014215156A (ja) * 2013-04-25 2014-11-17 愛三工業株式会社 回転角検出装置
WO2016053332A1 (en) * 2014-10-01 2016-04-07 Ge Oil & Gas Esp, Inc. Orifice plate bearing lubrication system
DE102015203861B4 (de) * 2015-03-04 2018-07-12 Schaeffler Technologies AG & Co. KG Sensoreinrichtung für ein Wälzlager sowie Wälzlageranordnung mit einer derartigen Sensoreinrichtung
EP3273077B1 (de) * 2016-07-21 2020-06-03 Aktiebolaget SKF Wälzlager mit montageflansch
WO2018067707A1 (en) * 2016-10-04 2018-04-12 New Way Machine Components, Inc. Long travel air bearing linear stage
US10113593B1 (en) * 2017-08-05 2018-10-30 Hiwin Mikrosystem Corp. Encoder with oil gas prevention structure
CN109884333B (zh) * 2019-03-04 2021-01-08 浙江工业职业技术学院 一种异纤机用棉速测量装置
DE102019216422A1 (de) 2019-10-24 2021-04-29 Aktiebolaget Skf Wälzlager mit einem Ultraschallabstandssensor
DE102019216610A1 (de) 2019-10-29 2021-04-29 Aktiebolaget Skf Lager mit optischem Sensor und zugehöriger Nut
DE102019217788A1 (de) 2019-11-19 2021-05-20 Aktiebolaget Skf Lager mit Abstandssensoren und konischer Nut
DE102019217789A1 (de) 2019-11-19 2021-05-20 Aktiebolaget Skf Lager mit Abstandssensoren und konischen Nuten
DE102019218144A1 (de) 2019-11-25 2021-05-27 Aktiebolaget Skf Lager mit einem Abstandsmesssystem und zugehöriger Nut
DE102019218143A1 (de) * 2019-11-25 2021-05-27 Aktiebolaget Skf Lager mit einem gleitendem Zielobjekt und zugehörigem Sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075194A (ja) * 2001-09-03 2003-03-12 Koyo Seiko Co Ltd パルサリングの着磁方法
JP2004138597A (ja) * 2002-08-20 2004-05-13 Uchiyama Mfg Corp 磁気エンコーダ
JP2005140797A (ja) * 2005-01-26 2005-06-02 Uchiyama Mfg Corp 磁性エンコーダの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2330417B (en) * 1997-10-17 1999-09-08 Nsk Ltd Rolling bearing unit with rotational speed sensor
JP3892989B2 (ja) 1999-05-20 2007-03-14 Ntn株式会社 超薄肉形転がり軸受およびその保持器
JP3998430B2 (ja) 2001-03-28 2007-10-24 Ntn株式会社 回転センサ付き転がり軸受
JP2002349556A (ja) 2001-05-25 2002-12-04 Ntn Corp 回転センサ付き軸受
US20050007226A1 (en) 2003-05-22 2005-01-13 Uchiyama Manufacturing Corp. Magnetic encoder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075194A (ja) * 2001-09-03 2003-03-12 Koyo Seiko Co Ltd パルサリングの着磁方法
JP2004138597A (ja) * 2002-08-20 2004-05-13 Uchiyama Mfg Corp 磁気エンコーダ
JP2005140797A (ja) * 2005-01-26 2005-06-02 Uchiyama Mfg Corp 磁性エンコーダの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110805613A (zh) * 2019-11-29 2020-02-18 徐州九鼎锻造科技有限公司 一种具有降噪功能的回转支撑轴承

Also Published As

Publication number Publication date
US7982455B2 (en) 2011-07-19
US20090256551A1 (en) 2009-10-15
DE112007000136T5 (de) 2008-11-20

Similar Documents

Publication Publication Date Title
WO2007080917A1 (ja) 回転センサ付き転がり軸受
JP4893648B2 (ja) 組み合わせシールリング付転がり軸受ユニット
JP2013117455A (ja) 回転速度検出装置付き車輪用軸受装置
JP2007316024A (ja) 転がり軸受
US8054064B2 (en) Sensor holder with a wheel bearing apparatus incorporated with a wheel speed detecting apparatus including an annular fitting member in the sensor holder and a seal positioned between the annular fitting member and an outer circumference of an inner ring
JP4682919B2 (ja) 転がり軸受の製造方法
JP2012107753A (ja) 転がり軸受装置の組立て方法
JP2006313117A (ja) エンコーダの製造方法
JP2007333142A (ja) 転がり軸受
JP4821123B2 (ja) 磁気エンコーダ及び転がり軸受ユニット
JP5144960B2 (ja) エンコーダの着磁方法及び着磁装置
JP2005214874A (ja) エンコーダ及び当該エンコーダを備えた転がり軸受
JP2010019423A (ja) 転がり軸受装置
JP2007333184A (ja) 転がり軸受
JP2009025088A (ja) 磁気エンコーダ
JP2007187492A (ja) 回転センサ付軸受、磁気エンコーダおよび回転センサ付軸受の製造方法
JP2011174796A (ja) 回転速度検出装置付き車輪用軸受装置
JP2007192247A (ja) 回転センサ付き転がり軸受
JP5274041B2 (ja) 回転検出装置付き車輪用軸受装置
JP2010032303A (ja) 回転検出装置付き車輪用軸受装置
WO2014002746A1 (ja) 回転センサ付軸受
JP2008224697A (ja) 磁気エンコーダの製造方法
WO2010013411A1 (ja) 回転検出装置付き車輪用軸受装置
JP2007192653A (ja) 回転センサ付き転がり軸受
JP2023045295A (ja) 回転センサ付軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12086642

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120070001364

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112007000136

Country of ref document: DE

Date of ref document: 20081120

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706576

Country of ref document: EP

Kind code of ref document: A1