WO2007080308A2 - Emulsion huile dans eau thermoreversible - Google Patents

Emulsion huile dans eau thermoreversible Download PDF

Info

Publication number
WO2007080308A2
WO2007080308A2 PCT/FR2007/000030 FR2007000030W WO2007080308A2 WO 2007080308 A2 WO2007080308 A2 WO 2007080308A2 FR 2007000030 W FR2007000030 W FR 2007000030W WO 2007080308 A2 WO2007080308 A2 WO 2007080308A2
Authority
WO
WIPO (PCT)
Prior art keywords
emulsion
alkyl
group
emulsion according
polyoxyethylene
Prior art date
Application number
PCT/FR2007/000030
Other languages
English (en)
Other versions
WO2007080308A3 (fr
Inventor
Marie-Françoise KLUCKER
Jean Haensler
Patricia Probeck-Quellec
Pascal Chaux
Original Assignee
Sanofi Pasteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanofi Pasteur filed Critical Sanofi Pasteur
Priority to BRPI0706527-2A priority Critical patent/BRPI0706527A2/pt
Priority to AU2007204295A priority patent/AU2007204295B2/en
Priority to JP2008549901A priority patent/JP5226534B2/ja
Priority to CA002635724A priority patent/CA2635724A1/fr
Priority to EP07717813.5A priority patent/EP1976560B1/fr
Priority to MX2008009024A priority patent/MX2008009024A/es
Publication of WO2007080308A2 publication Critical patent/WO2007080308A2/fr
Priority to IL192475A priority patent/IL192475A/en
Publication of WO2007080308A3 publication Critical patent/WO2007080308A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/047Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates having two or more hydroxy groups, e.g. sorbitol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/245Herpetoviridae, e.g. herpes simplex virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16111Cytomegalovirus, e.g. human herpesvirus 5
    • C12N2710/16122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16111Cytomegalovirus, e.g. human herpesvirus 5
    • C12N2710/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16211Influenzavirus B, i.e. influenza B virus
    • C12N2760/16234Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the invention relates to an immunostimulatory composition in the form of a thermoreversible oil-in-water (BJB) emulsion containing a TLR4 agonist, called TLA4.
  • BJB thermoreversible oil-in-water
  • TLR4 (toll-like receptor type 4) is a receptor expressed by cells presenting antigen of the immune system; it is involved in early defense mechanisms against gram-bacterial infections.
  • the lipopolysaccharide of gram- (LPS) bacteria is the natural ligand of TLR4; it activates the receptor, resulting in a cascade of biochemical events, in particular the activation of the Nf-Kappa B transcription factor, and the production of pro-inflammatory cytokines.
  • Monophosphoryl lipid A from the hydrolysis of LPS is also a TLR4 ligand with the advantage of being less toxic than LPS.
  • WO20004 / 060396 discloses formulations in the form of O / W emulsions containing a phospholipid adjuvant.
  • the emulsions which have a sub-micron size are obtained by means of a high pressure homogenizer (microfluidizer).
  • the manufacturing process uses high mechanical energies to obtain shear forces large enough to reduce the size of the oil drops.
  • the emulsion obtained contains droplets whose size is about 500 nm.
  • the adjuvant formulation must be able to improve the effectiveness of vaccines, by increasing the immune response to an antigen, while not showing signs of toxicity that would harm its safe administration.
  • the object of the invention is:
  • An oil in water (O / W) emulsion comprising: i) a TLR4 agonist, called TLA4, whose chemical structure does not contain a sugar ring, ii) squalene, iii) an aqueous solvent, iv) a nonionic hydrophilic surfactant which is a polyoxyethylene alkyl ether, v) a surfactant hydrophobic nonionic and, which is thermoreversible.
  • the TLR4 agonist contained in the emulsion, according to the invention is not lipid A, or a derivative of lipid A or a molecule that mimics the structure of lipid A.
  • TLA4 is a chemical compound of formula I, II, III, or IV:
  • R 1 is selected from the group consisting of:
  • a and b are independently 0, 1, 2, 3 or 4;
  • d, d ', d ", e, e 1 and e" are independently 0, 1, 2, 3 or 4;
  • X 1 , X 2 , Y 1 and Y 2 are independently selected from the group consisting of nothing, oxygen, NH and N (C (O) C 1 -C 4 alkyl), and N (C 1 -C 4 alkyl) 4 ):
  • W 1 and W 2 are independently selected from the group consisting of carbonyl, methylene, sulfone and sulfoxide;
  • R 2 and R 5 are independently selected from the group consisting of:
  • Z is selected from the group consisting of O and NH
  • M and N are independently selected from the group consisting of alkyl, alkenyl, alkoxy, acyloxy, alkylamino and linear or branched chain acylamino. C 2 -C 20 ;
  • R 3 and R 6 are independently selected from the group consisting of C 2 -C 20 linear or branched chain alkyl and alkenyl optionally substituted with oxo or fluoro;
  • R 4 and R 7 are independently selected from the group consisting of C (O) -alkyl or alkenyl straight or branched chain C 2 -C 20 linear or branched chain C 2 -C 20 alkoxy linear or branched chain C 2 -C 20 , and linear or branched chain alkenyl C 2 -C 20 ; wherein said alkyl, alkenyl, or alkoxy moieties may be independently and optionally substituted with hydroxy, fluoro or C 1 -C 5 alkoxy;
  • G 1 , G 2 , G 3 and G 4 are independently selected from the group consisting of oxygen, methylene, amino, thiol, -C (O) NH-, -NHC (O) -, and -N ( C (O) C 1 -C 4 alkyl) -;
  • G 2 R 4 or G 4 R 7 may together be a hydrogen atom or a hydroxyl
  • a 'and b' are independently 2, 3, 4, 5, 6, 7 or 8, preferably 2;
  • Z 1 is selected from the group consisting of -OP (O) (OH) 2 , -P (O) (OH) 2 , -OP (O) (OR 8 ) (OH) where R 8 is a C -alkyl chain 1 -C 4 , -OS (O) 2 OH, -S (O) 2 OH 5 -CO 2 H, -OB (OH) 2 , -OH, -CH 3 , -NH 2 , and -NR 9 3 where R 9 is a C 1 -C 4 alkyl chain;
  • Z 2 is selected from the group consisting of -OP (O) (OH) 2 , -P (O) (OH) 2 , -OP (O) (OR 10 ) (OH) where R 10 is a C-alkyl chain 1 -C 4 , -OS (O) 2 OH, -S (O) 2 OH, -CO 2 H, -OB (OH) 2 , -OH, -CH 3 , -NH 2 , and -NR 11 where R 11 is a C 1 -C 4 alkyl chain;
  • R 2 is H or an alkyl chain C 1 -C 4 alkyl; or an acceptable pharmaceutical salt of the compound of formula I, II, III or IV.
  • the emulsion according to the invention is thermoreversible, which means that it passes from the O / W emulsion state to the W / O emulsion state when it is heated to a temperature at least equal to one.
  • Phase inversion temperature At the microscopic scale, the phase inversion temperature translates the passage from a curvature oriented towards the oily phase to a curvature oriented towards the aqueous phase, this transition necessarily implying the passage through a phase of zero mean curvature (the system being then related to either a lamellar phase or a microemulsion).
  • the emulsion according to the invention can be obtained by a phase inversion method by temperature variation, which provides a very large advantage from an industrial point of view since it is easily controllable and adapted to large production volumes. .
  • Such a process presents the guarantees of safety and profitability necessary for the pharmaceutical industry.
  • it is possible to obtain a monodisperse emulsion whose droplet size is small, which makes the emulsion easily filterable by means of sterilizing filters whose cutoff threshold is 200 nm.
  • At least 90% of the volume population of the oil droplets of the emulsion according to the invention have a size ⁇ 200 nm.
  • at least 50% of the population density of the oil droplets of these emulsions have a size of ⁇ 110 nm.
  • at least 90% of the population density of the oil droplets have a size ⁇ 180 nm and at least 50% of the population density of the droplets have a size ⁇ 1 10 nm.
  • thermoreversible emulsion according to the invention is homogeneous.
  • Homogeneous emulsion means an emulsion whose graphical representation of size distribution (granulogram) of the oil droplets is unimodal. Typically, this graphical representation is of the "Gaussian" type.
  • Measurement of the size of the droplets can be done by various means and especially by LASER diffraction granulometers, such as Beckman Coulter LS range (including the LS230) or Malvern Mastersizer range (including Mastersizer 2000). ).
  • the measuring principle of these devices is based on the analysis of the intensity of the light scattered by the particles according to the angle (detectors of large, medium and small angles) when the sample is illuminated by a laser beam . This analysis is done using mathematical models chosen according to the size and nature of the material used.
  • the lower wavelength blue light source coupled with wide-angle scattering and backscatter detectors, enhances the performance of sub-micron range analysis.
  • the phase inversion temperature of a thermoreversible emulsion according to the invention is a characteristic specific to each emulsion and varies according to the nature of its components and their relative concentrations.
  • the emulsion composition according to the invention is chosen so that the phase inversion occurs at a temperature between 45 ° C. and 80 ° C., preferably between 50 ° C. and 65 ° C. This temperature range is advantageous.
  • the emulsion will not change state if it is stored at a relatively high temperature ( ⁇ 37 ° C).
  • the heating of the components does not exceed 80 ° C., this contributes to the maintenance of the structural integrity of the components and in particular of TLA4.
  • the phase inversion temperature of the emulsion is high, especially when it is greater than or close to 80 ° C., it can usefully be lowered by adding to the emulsion composition an alditol which is usually chosen from sorbitol, mannitol, glycerol, xylitol or erythritol.
  • alditol When alditol is used in a concentration range of 0.1 to 10% (w / w), preferably in a concentration range of 1 to 10% (w / w) and particularly in a concentration range. ranging from 2 to 7% (w / w), it is possible to lower the phase inversion temperature of the emulsion by approximately 10 ° C. It is also possible to lower the phase inversion temperature of the emulsion by replacing the phase aqueous composition consisting solely of water with a buffered saline aqueous phase. Usually, a TRIS buffer, a phosphate buffer such as PBS, Dulbecco PBS buffer without Ca 2+ or Mg 2+ or a citrate buffer are used.
  • TLA4 is a chemical compound of formula I.
  • R1 is C (O) or C (O) - (Cm) n -C (O), n being 1, 2, 3 or 4 a, b, d, d ', d ", e, e', e" are independently 1 or 2, X 1 X 2, Y 1 and Y 2 are NH, W 1 and W 2 are C (O), R2 and R5 are independently selected from the group consisting of C1-C12 linear chain alkyl optionally substituted with oxo, C1-C15 straight chain NH-alkyl and,
  • M and N are independently C 2 -C 20 straight chain alkyl or alkenyl, R 3 and R 6 are C 5 -C 10 linear alkyl chains,
  • R4 and R7 are selected from the group consisting of C8-C12 straight chain C8-C12 linear hydrogen and C (O) -alkyl and C8-C12 straight chain C8-C12 alkenyl, G1 and G3 are oxygen or -NH ( CO) - G2 and G4 are oxygen;
  • TLA4 exerts immunostimulatory activity in vitro and / or in vivo.
  • the immunostimulatory activity in vitro is evaluated in particular:
  • the immunostimulatory activity in vivo results in an increase in the humoral response and / or the specific cellular response.
  • the production of specific antibodies directed against an antigen is measured.
  • TLA4 is considered to exert an immunostimulatory activity in vivo.
  • the immunostimulatory activity of TLA4 can also be evaluated using specific cell response assays that are well known to those skilled in the art, such as, for example, measuring cytotoxic T lymphocyte (CTL) activity or lymphoproliferation.
  • CTL cytotoxic T lymphocyte
  • TLA4 is chosen from the group consisting of the chemical compounds identified and described in US 2003/0153532 under the names ER803022, ER803058, ER803732, ER803789, ER804053,
  • the compounds can be in the form of diastereoisomers or in a racemic form (mixture of diastereoisomers) when the chemical structure comprises several asymmetric carbons.
  • ER804057 and ER804053 which have 4 asymmetric carbons are diastereoisomers of ER1 12066 which is the racemic form.
  • ER804057 is in an isomeric configuration of type (R 5 R 5 R 5 R) while ER804053 is in a configuration of type (R 5 S 5 S 5 R).
  • ER804058 which is in an isomeric configuration of the type (R 5 R 5 R 5 R) and ER804059 which is in an isomeric configuration of type (R 5 S 5 S 5 R) are diastereoisomers of ER13651 which is the racemic form.
  • ER803022 which is in a configuration (R 5 R 5 R 5 R) 5
  • ER803732 which is in a configuration (R 5 S 5 S 5 R) and ER803789 which is in a configuration (R 5 R 5 S 5 R) are also diastereoisomers of the same chemical molecule.
  • Diastereoisomers having a configuration of the R 5 R 5 R 5 R type that are generally more active than the other forms are preferably used.
  • ER804057 is particularly preferred.
  • the crude formula of the disodium salt is C 83 H 15 N 4 Na 2 O 19 P 2.
  • the TLR4 agonist according to the subject of the invention is an amphiphilic molecule.
  • Amphiphilic molecules exhibit both hydrophilic and hydrophobic behavior and tend to precipitate over time. They often dissolve incompletely in organic or aqueous solvents and are often at the origin of unstable solutions or difficult to reproduce. There is a need to improve the formulation of these molecules.
  • the emulsion as described in the invention meets this need by providing emulsions which are stable over time. An emulsion according to the invention which is stored for 6 months at
  • the ratio between the amount of TLA4 and the total amount of hydrophilic and hydrophobic surfactants of the emulsion is usually between 0,01x10 "and 5x10", more particularly between 5 Ixio O "2 and 2xlO" 2.
  • the amount of TLA4 is sufficiently low not to exert an influence on the emulsifying power of the surfactants but is sufficient to exert an immunostimulatory activity in vitro and / or in vivo.
  • the hydrophilic surfactant according to the invention has an HLB (hydrophilic / lipophilic balance)> 10 and belongs to the chemical group of polyoxyethylene alkyl ethers (PAE), also called polyoxyethylenated ethers of fatty alcohols.
  • PAE polyoxyethylene alkyl ethers
  • These nonionic surfactants are obtained by chemical condensation between a fatty alcohol and ethylene oxide. They have a general chemical formula of the type
  • R contains between 1 and 50 carbon atoms, preferably between 4 and 20 carbon atoms and particularly preferably between 10 and 20 carbon atoms, n is> 2, generally between 4 and 50.
  • the emulsion according to the invention usually comprises a single hydrophilic PAE. A mixture of several PAEs is also suitable as long as the overall HLB is> 10.
  • polyoxyethylenated ethers of fatty alcohols that are suitable for the purpose of the invention may be in liquid form or solid at room temperature.
  • solid compounds those which dissolve directly in the aqueous phase or which do not require significant heating are preferred.
  • the polyoxyethylenated ethers of lauric, myristic, cetyl, oleic and / or stearic alcohols are particularly suitable for the purpose of the invention. They can be found in the range of products known under the trade names of Brij ®, Eumulgin ® or Simulsol ⁇ .
  • a particularly preferred emulsion according to the invention contains as nonionic hydrophilic surfactant a polyoxyethylene alkyl ether selected from the group consisting of polyoxyethylene (12) cetostearyl ether (ceteareth-12) (marketed under the name Eumulgin® Bl), polyoxyethylene (20) cetostearyl ether (ceteareth-20) (Eumulgin ® B2), poyoxyethylene (21) stearyl ether (steareth-21) (Eumulgin ® S21), polyoxyethylene (20) cetyl ether (ceteth-20) (Simulsol ® 58 or Brij® 58), polyoxyethylene (10) cetyl ether (ceteth-10) (Brij®56), polyoxyethylene (10) stearyl ether (steareth-10) (Brij®76), polyoxyethylene (20) stearyl ether (steareth-20) (Brij®78), polyoxyethylene (10) oleyl ether (olerh-10) (Brij®96 or Bri
  • Eumulgin TM Bl ceteareth-12 supplied by the company COGNIS.
  • the emulsion according to the invention also contains a nonionic hydrophobic surfactant with HLB ⁇ 6.
  • the emulsion usually comprises a single nonionic hydrophobic surfactant.
  • a mixture of several nonionic hydrophobic surfactants is also suitable insofar as the overall HLB is ⁇ 6.
  • it is a hydrophobic sorbitan ester or a hydrophobic mannide ester.
  • the sorbitan esters are usually obtained by esterification reaction between a fatty acid and sorbitol, sorbitol monoanhydride, or sorbitol dianhydride.
  • the mannide esters are usually obtained by esterification reaction between a fatty acid and the monoanhydride or mannitol dianhydride.
  • it is mannide monooleate (sold by the company SIGMA, or supplied by the company SEPPIC under the name of Montanide 80 TM), or sorbitan monooleate marketed under the name Span ® 80, Dehymuls SMO TM (COGNIS) or montane 80 TM (SEPPIC)).
  • the emulsions according to the invention are generally homogeneous and often at least 90% of the volume population of the oil droplets have a size ⁇ 0.2 ⁇ m. These emulsions are also particularly stable.
  • the amounts of hydrophilic and hydrophobic surfactants in the squalene emulsion are preferably adjusted so that the HLB m is between 8.5 and 10 and more particularly between 8.6 and 9.6.
  • HLB m HLB 6 ⁇ M + HLB ⁇ e x (1 -M) in which,
  • HLB m corresponds to the HLB of the mixture which is preferably between 8.5 and 10, and more particularly between 8.6 and 9.6 HLB e corresponds to the HLB of the hydrophobic surfactant M corresponds to the percentage by mass of the hydrophobic surfactant in the mixture consisting of the hydrophobic surfactant and PAE HLB pae corresponds to the HLB of the PAE
  • Squalene which represents the oily phase of the emulsion, has the crude chemical formula C 3 oH 5O and comprises 6 double bonds. This oil is metabolizable and has the qualities required for use in an injectable pharmaceutical product. It comes from the shark liver (animal origin) but can also be extracted from olive oil (vegetable origin). In particular, good results have been obtained using squalene supplied by Fluka, which is of animal origin. Generally, the amount of squalene represents between 5 and 45% of the total weight of the emulsion.
  • the mass ratio between the amount of squalene and the total amount of surfactants in the emulsion according to the invention is usually between 2.0 and 4.0, preferably between 2.5 and 3.5.
  • composition of the emulsion according to the invention which is particularly preferred comprises:
  • a phosphate buffer or a citrate buffer as an aqueous solvent
  • the amount of squalene represents between 5 and 45% of the total weight of the emulsion.
  • the amount of the compound ER804057 is usually between 0.05% and 2% by weight of the two surfactants.
  • the amounts of ceteareth-12 and sorbitan monooleate are such that the HLB of the mixture of the two surfactants is between 8.5 and 10 and more particularly between 8.6 and 9.6.
  • the ratio between the amount of squalene and the total amount of ceteareth-12 and sorbitan monooleate is between 2.0 and 4.0, preferably between 2.5 and 3.5.
  • this composition may contain mannitol, the amount of which usually represents between 0.1% and 10% of the total weight of the emulsion.
  • the aqueous phase of the emulsion according to the invention may further contain a freeze-drying substrate containing one or more cryoprotectants.
  • Cryoprotectants are usually chosen from sugars such as sucrose, polyalcohols such as mannitol or sorbitol or sugar derivatives such as alkyl poly glycosides such as sodium decyl-D-galactoside uronate or dodecyl- ⁇ -maltoside.
  • a lyophilization substrate is usually used which contains sucrose, mannitol and dodecyl ⁇ maltoside as a mixture.
  • the emulsion according to the invention can then be lyophilized and stored in the form of lyophilisate. However, it retains all its characteristics because once it is recovered in the aqueous phase it becomes a milky, stable and fluid, thermoreversible emulsion with a oil droplet size distribution similar to that which pre-existed before lyophilization.
  • the emulsion according to the invention also plays the role of adjuvant of the immune response to an antigen.
  • antigen is intended to mean any antigen that may be used in a vaccine, whether it be a living whole organ, attenuated or killed, a seed extract or a form sub unitary. When it is in a unitary form, the nature of the antigen does not matter: it can be a peptide, a protein, a glycoprotein, a polysaccharide, a glycolipid, a lipopeptide or a nucleic acid.
  • antigens that are suitable for the purpose of the invention, mention is made of bacterial antigens originating from Clostridium tetani, Clostridium diphtheriae, Bordetella pertussis, Haemophilus influenzae type b, Streptococcus pneumoniae, Neisseria meningitidis, Shigella sp., Salmonella typhi, Staphylococcus aureus or Staphylococcus epidermidis, Mycobacterium tuberculosis, Chlamydia trachomatis or Streptococcus sp, viral antigens derived from hepatitis A, B, or C virus, influenza virus, Respiratory Syncytial, West Niii Virus, Rabies Virus, Poliovirus, HIV Virus, Dengue Virus, Japanese Encephalitis, Yellow Fever Virus, Cytomegalo Virus, Herpesviruses, parasitic antigens especially from Plasmodium sp.
  • the emulsion according to the invention acts on the humoral immunity by increasing the production of specific antibodies and / or on the specific cellular immunity by promoting in particular the proliferation of T lymphocytes, the development of a specific cytolytic response (CTL response ), and / or the production of cytokines, chemokines, growth factors, produced by activated lymphocytes.
  • CTL response cytolytic response
  • the invention also relates to the use of an emulsion according to the invention for the preparation of a vaccine composition.
  • the vaccine composition obtained proves to be more immunogenic, for example because the composition induces a stronger specific immune response whether it is of a humoral and / or cellular order, or because a smaller amount of antigen is necessary to obtain an immune response of the same intensity and of comparable duration.
  • the vaccine composition obtained from an emulsion according to the invention may be administered by any of the routes usually used or recommended for vaccines: parenterally, intradermally, subcutaneously, or intramuscularly or mucosally, and present itself in various forms, in particular liquid or freeze-dried. It can be administered by means of a syringe or by means of a needleless injector for intramuscular, subcutaneous or intradermal injection, or by means of a nasal spray.
  • the vaccine composition is generally in the form of a mixture of the antigen with an emulsion according to the invention. It can also be in the form of an extemporaneous formulation. In this case, the antigen and the emulsion are brought into contact just before or at the time of administration of the vaccine composition.
  • the antigen can be lyophilized and taken up by the emulsion just before administration or conversely, the emulsion can be in freeze-dried form and taken up with a solution of the antigen.
  • the vaccine composition may also be in a particular injection device such as the "bypass" syringe when it is not desired to mix the antigen with the emulsion.
  • the vaccine composition When the vaccine composition is in the form of a mixture obtained by diluting an emulsion according to the invention with an antigen solution, it is usually in the form of an O / W emulsion in which the amount of squalene represents in weight in general between 0.5 and 5% of the total weight of the vaccine composition. It may also be in the form of a thermoreversible O / W emulsion when the amount of squalene in the vaccine composition reaches or exceeds 5% (w / w). When the vaccine composition is a thermoreversible O / W emulsion, it may be, in particular, in a form in which at least 90% of the density population of the oil droplets has a size ⁇ 0.2 ⁇ m.
  • the emulsion according to the invention has a greater capacity to induce neutralizing antibodies than an O / W emulsion of the prior art obtained by microfluidization, the composition of which contains squalene, polyoxyethylene sorbitan monooleate (Tween® 80) and trioleate sorbitan (Span® 85) (O / W emulsion of the prior art)
  • Neutralizing antibodies are functional antibodies directed against an infectious germ, produced by an individual who has been immunized with, or has been in contact with, a related antigen or derivative of that germ, and which prevents infection of the cells by this germ. germ. They play a very important role in the prevention or treatment of infections caused by intracellular germs, particularly viruses and unicellular parasites, especially plasmodium sp. Antigens from the sporozoite form of
  • Plasmodium falciparum such as the major sporozoite protein (circumsporozoite protein), LS A3, or Pfs 16 antigen
  • antigens derived from the "merozoite" form of Plasmodium falciparum such as MSP1 antigen.
  • MSP2, MSP3, EBA-175, Rhop-1, Rhop-2, Rhop-3, RAP-I, RAP-2, RAP-3, Pfl55 / RESA or AMA-I induce neutralizing antibodies.
  • the use of an emulsion according to the invention for preparing a vaccine composition containing one or more antigens derived from sporozoites or merozoites of Plasmodium falciparum is indicated for amplifying the neutralizing immune response.
  • an emulsion according to the invention for preparing a vaccine composition
  • a vaccine composition comprising, as vaccine antigen, the LSA3 protein of Plasmodium falciparum.
  • the gene encoding this protein has been identified by Gardner et al. (Science (1998), 282, 1126-1132) and is on Plasmodium falciparum chromosome 2 (strain 3D7).
  • the entire gene sequence is 12240 base pairs long and encodes a protein of 1558 amino acids.
  • the nucleotide and protein sequences are described in the EMBL database under accession numbers AE001424 and uniprot 096275-PLAF7.
  • the entire protein as described, peptides or fragments of this protein, such as those described in WO 02/38176, may be used.
  • the entire protein which may contain one or more point mutations to account for variations between Plasmodium falciparum strains
  • a fragment of this protein whose amino acid sequence has an identity of at least 80% compared to the entire sequence described in uniprot 096275-PLAF7.
  • the efficacy of some antiviral vaccines is in some cases assessed on the basis of neutralizing antibodies they induce. This is the case of the influenza vaccine whose effectiveness is related to the level of antibodies inhibiting haemagglutination (HAI).
  • the emulsion according to the invention is used to prepare a vaccine composition for the treatment or prevention of infectious diseases in humans or animals
  • the vaccine composition can take different forms:
  • influenza vaccine contains one or more inactivated or "splitted" whole virus strains, or is in the form of a single unit vaccine containing purified hemagglutinin of one or more viral strains, or in the form of virosomes (Berna vaccine)
  • the vaccine composition is usually in the form of a mixture, an O / W emulsion or a thermoreversible O / W emulsion.
  • the vaccine composition is preferably in a syringe-by-pass type device, so that the live virus is not in direct contact with the emulsion.
  • the viral suspension and the emulsion according to the invention is in two separate compartments of the syringe.
  • Influenza vaccines are made from influenza viruses grown on eggs or cells according to methods well known to those skilled in the art and all include as an essential component the hemagglutinin of one or more viral strains.
  • the subject of the invention is therefore also the use of an emulsion according to the invention for the preparation of a vaccine composition comprising, as vaccine antigen, one or more influenza virus haemagglutinins.
  • This vaccine composition can be used to vaccinate:
  • populations of individuals who are seronegative for the influenza virus individuals who have never been in contact or sensitized with the influenza virus or its immunogenic components, or individuals who have never been in contact with a new strain of influenza virus that causes a pandemic;
  • populations of individuals who are seropositive to the influenza virus these are individuals who have already been in contact or sensitized with the influenza virus or its immunogenic components;
  • the emulsion according to the invention is also used to prepare a vaccine composition for the treatment or prevention of infectious diseases with herpesvirus (HSV1, HS V2, cytomegalovirus (CMV)).
  • Antigens of the viral envelope are generally used in the vaccine composition.
  • CMV infections antibodies that are directed against viral envelope proteins, mainly glycoprotein B (gB) and glycoprotein H (gH) and that neutralize viral infection, play a very important role in the development of the virus. protective immunity.
  • the use of an emulsion according to the invention in the preparation of a vaccine composition containing a protein of the CMV envelope has the effect of increasing the production of neutralizing antibodies.
  • the subject of the invention is therefore the use of an emulsion according to the invention for the preparation of a vaccine composition
  • a vaccine composition comprising, as vaccine antigen, an antigen of the CMV envelope.
  • the antigen is the glycoprotein gB and / or the glycoprotein gH. It may also be a peptide or a polypeptide derived from gB and / or gH comprising one or more neutralizing epitopes.
  • gB in its native form is a glycoprotein of 906 or 907 amino acids, depending on whether it is strain AD169 or strain Towne.
  • the protein sequences of these two strains are described in US 2002/0102562 ( Figure 2).
  • the native form of gB contains a signal sequence, followed by an extracellular domain containing an endoproteolytic cleavage site between the Arginine 460 and Serine 461 residues, a transmembrane domain and an intracellular domain.
  • Several antigenic domains have been described that induce neutralizing antibodies.
  • domains 461 and 680 of gp 130 These include the domain which lies between amino acid residues 461 and 680 of gp 130, this domain being subdivided into two discontinuous domains, the range between residues 461 and 619 and the range between residues 620 and 680 (US 5,547,834) . It is also the AD-I domain located between amino acid residues 552 and 635 or the AD-2 domain located between amino acid residues 50 and 77 (Journal of
  • polypeptide which comprises in its amino acid sequence a sequence homologous to one of the aforementioned domains is suitable for the object of the invention.
  • the polypeptide comprises, in its amino acid sequence, a sequence homologous to that which lies between residues 461 and 680 of gp130 or more specifically that which lies between residues 552 and 635.
  • homologous sequence means any amino acid sequence whose identity is at least 80% with the amino acid sequence of the relevant antigenic domain located on gp 130 of the Towne strain or AD169 (described in US 2002/0102562), Typically Sequence homology is based on an identity of at least 90%, and even more so, the sequence homology is based on a 100% sequence identity.
  • gp 55 As described in US Pat. No. 5,547,834. It is derived from the cleavage of gB at the endo-proteolytic cleavage site; its amino acid sequence corresponds to that which lies between the serine residues 461 and the C-terminus. It is also possible to use truncated forms of gp55, such as a gp 55 devoid of all or part of the transmembrane sequence and all or part of the domain.
  • Intra-cellular C-terminal for example a peptide having a sequence homologous to the amino acid sequence of gp130 between residues 461 and 646) or a gp 55 devoid of all or part of the intracellular C-terminal domain (For example a peptide having a sequence homologous to the amino acid sequence of gp130 between residues 461 and 680) which are described in US 5,547,834.
  • a CMV envelope antigen is particularly suitable for the purpose of the invention is a truncated form of gB devoid of all or part of the C-terminal domain and / or devoid of all or part of the transmembrane sequence and whose cleavage site is inoperative.
  • a particularly preferred truncated form of gB is that described in US 6,100,064, designated gBdTM; it carries three mutations at the cleavage site and a deletion at the transmembrane region between the amino acid residues Valine 677 and Arginine 752 so that the extracellular domain is directly related to the cytoplasmic domain.
  • the gB protein or the peptides derived therefrom are obtained by means of genetic recombination methods and purified according to methods well known to those skilled in the art. In particular, the methods described in US 6,100,064 and US 2002/0102562 incorporated by reference may be used. In order to increase their immunogenicity, they can be conjugated to a carrier protein or fused with other proteins, in particular proteins forming particles such as the hepatitis B surface antigen (HbS).
  • HbS hepatitis B surface antigen
  • the gB protein or the peptides derived from it may also be expressed by recombinant viruses, in particular by recombinant adenoviruses or recombinant poxviruses.
  • gB can be also presented by a strain of CMV which has been attenuated by successive passages on cell cultures, in particular the Towne strain which has already been tested for vaccine purposes.
  • the gH protein is encoded by the UL 75 CMV gene. It is a glycoprotein of 742 or 743 amino acids depending on whether it is the Towne strain or the strain AD169. The sequences are described in US 5,474,914 (Fig. 1) and US 6,610,295 (Fig. 5 (a)).
  • the protein sequence of the gH deduced from its nucleotide sequence contains a signal peptide followed by an extracellular domain having no endoproteolytic cleavage site, a domain transmembrane and a C-terminal cytoplasmic domain.
  • Neutralizing epitopes are in the extracellular domain, mainly in the N-terminal part of this domain, more specifically between amino acid residues 15 and 142 of the protein sequence of native gH and even more specifically between residues. of amino acids 33 and 142.
  • a major neutralizing epitope of strain AD 169 has been identified and is located between residues 33 and 43 of the sequence of gH and has the sequence LDPHAFHLLL (Urban M et al .: J. Virol (1992, vol 66/3, p. 303-1311)).
  • a polypeptide which comprises in its amino acid sequence a sequence homologous to the sequence LDPHAFHLLL or a sequence homologous to that which lies between residues 15 and 142 or between residues 33 and 142 of the protein sequence of gH is suitable for the object of the invention.
  • homologous sequence is meant an amino acid sequence whose identity is at least 80% with the amino acid sequence which is between residues 15 and 142, or between residues 33 and 142 of the amino acid sequence.
  • Sequence homology is based on an identity of at least 90%, and even more so, the sequence homology is based on a 100% sequence identity.
  • the gH devoid of all or part of its transmembrane region and / or free of all or part of its cytoplasmic region.
  • this corresponds to a gH protein which is deleted by at least 5 residues, preferably by at least 10 C-terminal residues and even more preferably between 20 and 34 residues of the C-terminal end of the amino acid sequence.
  • the gH protein, polypeptides or peptides derived therefrom are obtained by means of genetic recombination methods and purified according to methods well known to those skilled in the art, in particular those described in US Pat. No. 5,474,914 or US Pat. No. 5,314,800 incorporated by reference. reference. To increase their immunogenicity one can secondarily conjugate them to a carrier protein. They can also be produced in the form of fusion proteins as described in J. Virol (1992, vol 66/3, p1303-1311).
  • the gH protein, the polypeptides or the peptides derived from it may also be expressed by recombinant viruses, in particular by recombinant adenoviruses or recombinant poxviruses.
  • gH protein may also be presented by a strain of CMV. which has been attenuated by successive passages on cell cultures, notably the Towne strain which has already been tested for vaccine purposes.
  • a protein resulting from the fusion between the glycoprotein gB or the glycoprotein gH (or a truncated form thereof) and an HSV1 or HSV2 membrane protein (or a truncated form thereof) can also be used as a vaccine antigen.
  • the vaccine composition may be in various forms:
  • the antigen is a protein or a peptide
  • the vaccine composition may be in the form of a mixture, an emulsion H / E or a thermoreversible O / W emulsion. It can also be in the form of an extemporaneous preparation that is made just before administration.
  • the vaccine composition may also be within a device, such as a "bypass" syringe, which physically separates the antigen from the emulsion.
  • the antigen and the emulsion according to the invention are not usually directly in contact in the vaccine composition.
  • the antigen and emulsion may be within a device that physically separates them, such as a "bypass" syringe, but they are administered at the same time at the same site of administration.
  • the emulsion according to the invention also directs the specific CD4 + T cell response towards a ThI type profile by promoting the production of ThI type cytokines (IL2, IFN- ⁇ , ....) and / or by decreasing the production of Th2 cytokines (IL4, IL5, IL10, etc.) in response to an antigen presented in an MHC class IL context.
  • ThI type cytokines IL2, IFN- ⁇ , .
  • Th2 cytokines IL4, IL5, IL10, etc.
  • This effect is evaluated by measuring the IFN-gamma and IL5 levels produced after in vitro restimulation with an antigen related to that used for in vivo immunization and determining the IFN- ⁇ / IL5 ratio. The higher the ratio, the more the CD4 + response is ThI.
  • the profile of the CD4 + T cell response can also be evaluated indirectly by measuring the ratio between the specific IgG 1 / specific IgG1 level obtained after immunization of the
  • the emulsion according to the invention can therefore be used to correct an imbalance of the CD4 + T cell response which is observed in certain populations of individuals who have an immune deficiency or an impairment of the immune system.
  • individuals who have an immune deficiency or an impairment of the immune system include the elderly who are deficient in IFN-gamma production and / or IL2 following in vitro stimulation with antigens from intracellular organisms, especially with an influenza antigen (Ouyang et al ( Mechanisms of aging and development), 2000, vol 121, 131-137).
  • the subject of the invention is therefore the use of an emulsion according to the invention for the preparation of a vaccine composition intended for a population of individuals which have an imbalance in the level of the CD4 + T cell response.
  • the subject of the invention is also a process for preparing an O / W emulsion according to the invention, comprising a stage where an inverse W / O emulsion is obtained by raising the temperature and a stage where the inverse W / O emulsion is transformed into an O / W emulsion by lowering the temperature. This transformation occurs when the obtained W / O emulsion is lowered to a temperature below the phase inversion temperature of this emulsion.
  • the W / O emulsion is obtained by mixing in a first step an aqueous phase comprising an aqueous solvent, a polyoxyethylene alkyl ether and a TLR4 agonist with an oily phase comprising squalene and a hydrophobic surfactant. nonionic to obtain an O / W emulsion and by heating in a second step the O / W emulsion at a temperature which is at least the phase inversion temperature of the emulsion.
  • the aqueous phase comprising the aqueous solution (usually a buffered solution), the TLR4 agonist (if it is not in the oil phase) and the nonionic hydrophilic surfactant is incorporated into the oily phase comprising squalene, and the hydrophobic nonionic surfactant, or vice versa: the oily phase is incorporated in the aqueous phase.
  • This incorporation is under mechanical stirring.
  • a crude, uncalibrated and unstable (pre-emulsion) O / W emulsion is obtained.
  • This preemulsion is heated with mechanical stirring until a phase inversion is obtained, that is to say obtaining an W / O emulsion.
  • the transition or phase inversion can be followed by conductimetry.
  • the temperature at which the change in curvature resulting from the transition from one type of emulsion to another occurs is the phase inversion temperature.
  • this temperature is rather a temperature range than a very precise point value; indeed, it can be considered that this temperature is capable of a variation of one or two degrees, so that the entire emulsion undergoes the phenomenon of phase inversion.
  • the heating is stopped and the mixture is cooled.
  • the cooling can be carried out passively, simply by letting the temperature spontaneously return to room temperature or more actively, for example by quenching the emulsion in an ice bath.
  • the W / O emulsion will again be reversed at the phase inversion temperature to restore an O / W emulsion.
  • the emulsion can be stored as it is until it is diluted with a solution comprising the vaccine antigen. It is thermoreversible, which means that if it is brought again to a temperature at least equal to the phase inversion temperature, it will again become an emulsion W / H.
  • the phase inversion temperature is usually between 45 and 80 ° C, and typically between 50 and 65 ° C.
  • the components of the emulsion, in particular the TLR.4 agonist are thus subjected to heating. moderate which avoids evaporation of the aqueous phase or chemical degradation of the components.
  • the W / O emulsion is obtained by separately heating an aqueous phase comprising an aqueous solvent, a polyoxyethylene alkyl ether and a TLR4 agonist and an oily phase comprising squalene and a nonionic hydrophobic surfactant to a temperature which is at least equal to the phase inversion temperature of the emulsion and then mixing the aqueous phase with the oily phase while maintaining the temperature of the mixture at a temperature which is at least equal to the inversion temperature of the emulsion. phase.
  • the aqueous and oily phases are heated separately to a temperature slightly above the phase inversion temperature, before being mixed to give an inverse E / H emulsion which will then be cooled until the submicron emulsion is obtained.
  • HEY inverse E / H emulsion
  • the method consists in hot mixing the two aqueous and oily phases prepared separately, through a static thermostatic mixer, followed by in-line cooling through a refrigerated heat exchanger connected at the output of the static mixer, then the final recovery of the emulsion according to the invention in a suitable container (flask or reactor).
  • a static mixer consisting of a succession of mixing elements composed of crossed blades and inclined with respect to the axis of the tube into which they have been introduced has been used successfully.
  • the energy required for the mixing is supplied by the pumps which convey the fluids and the mixture is produced without moving parts, through the mixing elements by the separation, the displacement and the successive meeting of the constituents of the mixture.
  • the in-line manufacturing process is carried out as follows: the aqueous phase and the oily phase are prepared separately, as previously, in two flasks or reactors.
  • the two phases are heated with stirring at a temperature slightly above the phase inversion temperature.
  • the two phases are then introduced into a static mixer controlled by 2 pumps, whose flow rates are regulated so as to obtain the composition of the emulsion according to the invention.
  • the inverse W / O emulsion is obtained during the passage of the two phases in the static mixer.
  • the inverse emulsion is then cooled by passage in line through a refrigerated heat exchanger connected to the output of the static mixer.
  • the W / O emulsion will then be reversed through the refrigerated heat exchanger to give rise to an O / W emulsion, which will be received in a flask or reactor and whose characteristics are identical to those of the emulsion obtained. by a batch process.
  • the TLR4 agonist when it has a more hydrophobic than hydrophilic behavior, it is introduced into the oily phase rather than into the aqueous phase.
  • the TLR4 agonist can also be introduced once the mixture of the oily phase and the aqueous phase has been carried out, or when the emulsion has already been heated and is in a W / O emulsion form.
  • the aqueous phase may further contain an alditol.
  • the process for preparing the emulsion according to the invention may comprise several successive thermoinversion cycles.
  • the subject of the invention is also a method for preparing a vaccine composition, in which at least one vaccine antigen is mixed with an O / W emulsion containing a TLR4 agonist whose chemical structure does not contain a sweetened nucleus, characterized in that that the O / W emulsion containing the TLR4 agonist was prepared according to a phase inversion process comprising a step where an emulsion in the form of an inverse W / O emulsion is obtained by increasing the temperature and a step where the W / O emulsion is converted into an O / W emulsion by lowering the temperature.
  • a simple embodiment consists in mixing an aqueous solution of a vaccine antigen in a thermoreversible O / W emulsion obtained according to one of the embodiments which have just been described.
  • the vaccine composition obtained is in the form of an O / W emulsion or in the form of a thermoreversible O / W emulsion when the amount of squalene represents, by weight, at least 5% of the total weight of the vaccine composition.
  • the antigen can be mixed with the aqueous phase or the oil phase before preparing the emulsion. Such a procedure of course implies that they are antigens that are compatible with the thermoinversion process.
  • the antigen solutions may further contain inorganic salts and one or more buffers, as well as any other compound commonly used in vaccines such as stabilizers, preservatives, or possibly other adjuvants.
  • concentration of antigen in the aqueous solutions is generally between 1 ⁇ g / ml and 1 mg / ml.
  • the method according to the invention may also include a lyophilization step. Firstly, a liquid concentrated emulsion is prepared as described above, but preferably choosing water as an aqueous solution rather than a buffered solution. This emulsion is then diluted in a lyophilization substrate comprising an alditol, a sugar and an alkylpolyglycoside.
  • a lyophilization substrate usually employed includes mannitol, sucrose and dodecylmaltoside.
  • the diluted emulsion is then divided into samples (for example 0.5 ml) and subjected to a lyophilization cycle which can be carried out as follows:
  • a vaccine composition according to the invention can thus be prepared by taking up the lyophilized emulsion with an aqueous solution of antigens and then preserved in the state
  • Example I Preparation of a thermoreversible O / W emulsion concentrated at 32.4% squalene (w / w)
  • a stock suspension was prepared at 1000 ⁇ g / ml of the chemical compound ER804057 in a 50mM TRIS buffer. 390 ⁇ l of the ER804057 stock suspension was added to the Eumulgin TM Bl / mannitol mixture. In another vessel were mixed 0.073 g Dehymuls TM SMO and 0.484 g squalene which was homogenized by magnetic stirring for 5 minutes at 30 ° C.
  • the crude emulsion obtained was heated with mechanical stirring until the temperature reached 60 ° C. This temperature corresponds to the phase inversion temperature of this composition.
  • the emulsion is then in a form of inverse emulsion (W / O emulsion). The heating is then stopped but stirring is maintained until the temperature returns to room temperature of the laboratory ( ⁇ 20 ° C. ). The emulsion becomes again in the form of an O / W emulsion.
  • the amount of squalene in this adjuvant emulsion thus represents 32.4% of the total weight of the emulsion.
  • a mixture containing 50.5 g of a phosphate buffer, 6 g of mannitol, 6.18 g of Eumulgin TM Bl and 0.026 g of ER804057 was prepared in a beaker. This mixture was stirred at about 40 ° C;
  • the oil phase was prepared by mixing with magnetic stirring 32.5 g squalene with 4.8 g of deshymuls SMO until complete dissolution of deshymuls SMO.
  • the homogeneous phases were obtained, the incorporation of the aqueous phase in the oily phase, the steps of temperature rise followed by the temperature descent step were carried out as above.
  • a citrate buffer pH 6.04 prepared by mixing 0.83 mM citric acid monohydrate with 9.14 mM sodium citrate was used.
  • thermoreversible dilute O / W emulsions were derived by dilution in a phosphate buffer, in a Tris buffer, or in a citrate buffer. it was sterilized by filtration (see Example II). These thermoreversible dilute O / W emulsions are then mixed with one or more vaccine antigens (see Examples III, IV, and V).
  • Example II Study of the Stability of a Thermoreversible O / W Emulsion Diluted at 5% Squalene (w / w)
  • composition of the diluted emulsion designated PIT-ER804057 at 5%, was as follows: Squalene: 50 mg / ml Ceteareth-12 (Emulgin Bl): 9.5 mg / ml Sorbitan monooleate (dehymuls SMO): 7.4 mg / ml ml
  • thermoreversible emulsion was assessed the stability of this thermoreversible emulsion after storage for 6 months at a temperature of "+ 4 ° C by controlling the content of ER804057 in the emulsion and the emulsion size distribution.
  • ER804057 To assay was performed selective extraction of ER804057 from the emulsion followed by high performance liquid chromatography (HPLC) analysis coupled to a diode array detector (UV detection) . The ER804057 content of the emulsion to be tested was determined.
  • HPLC high performance liquid chromatography
  • UV detection diode array detector
  • the calibration range was made from a thermoreversible emulsion which has the same composition and prepared in the same way as the 5% PIT-ER804057 emulsion (see Example II) except that it did not contain ER804057 (5% PIT emulsion), to which a variable amount of ER804057 taken from a stock solution of ER804057 was added to 0.1 mg / ml of a mixture containing 2 volumes of chloroform per 1 volume of methanol (CM 2: 1 mixture), a fixed amount of one internal standard (10 ⁇ g) taken from a stock solution of an internal standard of 0.1 mg / ml of a CM 2: 1 mixture, which has been suitably diluted in water for injection (EPPI) )
  • the 5% PIT-ER804057 sample to be assayed was prepared by taking an aliquot of the 5% PIT-ER804057 emulsion, to which was added 10 ⁇ g of internal standard and which was diluted in PIPPE.
  • ER804057 Extraction of ER804057 from samples in the calibration range or samples of 5% PIT-ER804057 was performed as follows: The sample was solubilized by CM 2: 1. The two-phase system obtained is composed of a chloroform phase mainly containing ER804057 and an aqueous phase containing the other emulsion compounds. The chloroform phase was recovered and evaporated while hot under a stream of nitrogen. The dry extract obtained was taken up and solubilized again in the CM 2: 1 mixture. The mixture was deposited on an anion exchange cartridge previously equilibrated in the CM 2: 1 mixture. It selectively retained ER804057 and the internal standard which are negatively charged while the other components of the emulsion, uncharged, were removed.
  • ER804057 and the internal standard were eluted by means of a mixture containing 2 volumes of chloroform, 3 volumes of methanol, per 1 volume of 1M NaCl. The eluate was then dried under a stream of nitrogen. Finally, a final extraction with water and CM 2: 1 was carried out in order to eliminate the residual salts and to recover ER804057 as well as the internal standard in the chloroform phase which was finally evaporated under a stream of nitrogen while hot. The dry extract from each sample was stored at -20 ° C. before being analyzed by HPLC.
  • ER804057 and the internal standard were eluted using a gradient of ethanol at 2% H 3 PO 4 .
  • the eluate arrived at the level of the diode array detector and the molecules were detected at the wavelength of 215 nm.
  • the chromatogram obtained the surfaces of the 2 peaks (analyte and referent) were integrated and correlated:
  • the calibration curve was established between the ratio of the areas of the peaks corresponding to the couple ER804057 (quantified molecule) and ER803022 (internal standard) and the concentration ratio corresponding to ER 804057 and ER803022 (internal standard).
  • the amount of ER804057 present in the 5% PIT-ER804057 emulsion was determined by measuring the ratio of the areas of the ER804057 / internal standard peaks and comparison with the standard curve.
  • d10, d50, and d90 represent respectively the average particle diameter values below which are respectively 10%, 50% and 90% of the population density of the particles. droplets of oil.
  • Example III Vaccine composition against cvtomegalovirus infections prepared from an O / W emulsion according to the invention
  • Vaccine compositions comprising as a vaccine antigen a recombinant protein derived from CMV glycoprotein gB has been prepared.
  • This recombinant protein was produced by a recombinant CHO line transfected with a plasmid called pPRgB27clv4 which contains a modified gB gene.
  • the gB gene whose sequence is described in US Pat. No. 5,834,307 has been modified beforehand by deleting the part of the gene which codes for the transmembrane region of the gB protein corresponding to the sequence of amino acids between Valine 677 and Arginine 752 and introducing 3 point mutations at the cleavage site.
  • the protein produced by the CHO line, called gBdTM corresponds to a truncated gB protein devoid of a cleavage site and a transmembrane region.
  • the construction of the plasmid pPRgB27clv4 and the production of the truncated gBdTM protein by the recombinant CHO line are described in US 6,100,064.
  • the gBdTM protein produced in the culture medium is then purified by affinity chromatography using the 15D8 monoclonal antibody described by Rasmussen L et al. J. Virol (1985) 55: 274-280).
  • the purified protein was stored as a stock solution at 0.975 mg / ml of gBdTM in phosphate buffer.
  • Immunostimulatory compositions of gBdTM formulated with various O / W emulsion compositions or with an aluminum hydroxide suspension were prepared.
  • Composition No. 1 contained 2 ⁇ g of gBdTM in citrate buffer at pH 6 under 50 ⁇ l (gB group).
  • Composition No. 2 contained 2 ⁇ g of gBdTM, 1.075 mg of squalene, 0.133 mg of sorbitan trioleate (Montane TM VG 85) and 0.125 mg of Tween TM 80 in citrate buffer at pH 6 under 50 ⁇ l (gB + H-emulsion group). / E).
  • This composition was obtained by mixing volume to volume a solution of gB with an O / W emulsion of the prior art that was obtained by microfluidization.
  • Composition No. 3 contained 2 ⁇ g of gBdTM and 60 ⁇ g of aluminum hydroxide in phosphate buffer under 50 ⁇ l (gB + AL group)
  • Composition No. 4 contained 2 ⁇ g of gB, 1.25 mg of squalene, 0.187 mg of Dehymuls TM SMO, 0.237 mg of Eumulgin TM Bl and 0.225 mg of mannitol in PBS buffer at pH 7.4 under 50 ⁇ l. This composition was obtained by volume-to-volume mixing a solution of gB with a 5% squalene thermoreversible O / W emulsion (Group gB + PIT).
  • thermoreversible O / W emulsion for the preparation of this composition was obtained by diluting a 32.4% concentrated squalene (w / w) thermally inverted O / W emulsion which was prepared using the same method as that of Example 1 except that the aqueous phase did not contain ER804057.
  • Composition No. 5 contained 2 ⁇ g of gBdTM, 1 ⁇ g of ER804057, in citrate buffer pH 6 at 50 ⁇ l (gB + group ER804057).
  • Composition No. 6 contained 2 ⁇ g of gBdTM, 1.25 mg of squalene, 0.145 mg of Montane TM VG 85, 0.147 mg of Tween TM 80, 1 ⁇ g of ER804057 in citrate buffer at pH 6 under 50 ⁇ l (gB + group). O / W emulsion + ER804057). This composition was obtained by mixing volume to volume a solution of gB with a prior art O / W emulsion obtained by microfluidization to which ER804057 was added.
  • Composition No. 7 contained 2 ⁇ g of gBdTM, 1 ⁇ g of ER804057, 60 ⁇ g of aluminum hydroxide in phosphate buffer at 50 ⁇ l (gB + Al + ER804057 group).
  • Composition No. 8 contained 2 ⁇ g of gB, 1.25 mg of squalene, 0.189 mg of Dehymuls TM SMO, 0.240 mg of Eumulgin TM Bl and 0.211 mg of mannitol and 1 ⁇ g of ER804057 in PBS buffer at pH 7.4 under 50 ⁇ l. This composition was obtained by mixing volume-to-volume solution of gB with a thermionic O / W emulsion PIT-ER804057 at 5% squalene obtained by diluting the mother emulsion of Example 1 (Group gB + PIT / ER804057). .
  • MRC5 cells cultured in MEM medium containing 10% fetal calf serum were used between passages 28-38 for microneutralization assays.
  • CMV Towne strain (Wistar Institute, Philadelphia, US) purified and propagated on MRC5 cells, having a titer of about 2 x 10 6 PFU / ml, served as a strain of infection.
  • a source of complement obtained from mouse sera from Virion Ltd (Switzerland) was also used.
  • a mixture of human sera with a 1: 128 titer was used as a positive control, and was included in each microneutralization assay.
  • the sera to be tested were inactivated by heating at 56 ° C. for 30 minutes. To an aliquot of 15 .mu.l of each inactivated serum was added 105 .mu.l of culture medium (MEM + 10% fetal calf serum) in 96-well flat-bottom culture plates (1/8 dilution). Successive dilutions of reason 2 were then carried out. The control sera were tested in the same way. 60 ⁇ l of virus suspension containing 3000 PFU and 5 ⁇ l of mouse complement were added to each well. After incubation for 1 hour at 37 ° C. under CO 2 , 3-4x10 4 MRC5 cells were added in a volume of 150 ⁇ l of culture medium in each of the wells. Microcultures were grown for 4 days.
  • MEM + 10% fetal calf serum fetal calf serum
  • the cytopathic activity of the virus was 100% in the wells which did not contain the sera. In contrast, inhibition of virus cytopathic activity was observed in the wells which contained neutralizing sera.
  • the neutralizing antibody titre of a serum corresponds to the reverse of its dilution, which inhibits the cytopathic activity of the virus by more than 90%.
  • the immunostimulatory composition resulting from the mixing of a CMV envelope antigen with a thermoreversible O / W emulsion containing a TLR4 agonist as described in the invention is that which induces the highest level of neutralizing antibodies. in the mouse.
  • the PIT / ER804057 emulsion has a greater ability to stimulate the production of neutralizing antibodies than the other adjuvant compositions tested.
  • the PIT / ER804057 emulsion is more efficient (for its ability to stimulate the production of neutralizing antibodies) than a prior art O / W emulsion based on squalene, containing the same components as the MF59 emulsion.
  • Immunostimulatory compositions were prepared from an influenza vaccine composition comprising the 3 vaccine strains of the 2004 campaign (strain A).
  • New Caledonia H1N1
  • a / Wyoming strain H3N2
  • B / Jiangsu strain which is formulated with various O / W emulsion compositions or with an aluminum hydroxide suspension.
  • Composition No. 1 contained 0.3 ⁇ g of haemagglutinin (HA) of each of the viral strains in PBS buffer at 30 ⁇ l. (group 0.3 ⁇ g HA)
  • Composition No. 2 contained 6.3 ⁇ g of haemagglutinin (HA) of each of the viral strains in PBS buffer at 30 ⁇ l. (group 6.3 ⁇ g HA)
  • Composition No. 3 contained 0.3 ⁇ g of haemagglutinin (HA) from each of the viral strains 0.65 mg of squalene, 0.075 mg of sorbitan trioleate (Span TM 85) and 0.075 mg of Tween TM 80 in PBS buffer under 30 ⁇ l (group 0.3 ⁇ g HA + O / W emulsion).
  • This composition was obtained by mixing the influenza vaccine composition with a prior art O / W emulsion obtained by microfluidization.
  • Composition No. 4 contained 0.3 ⁇ g of haemagglutinin (HA) from each of the viral strains, 0.75 mg of squalene, 0.11 mg of Dehymuls TM SMO, 0.143 mg of Eumulgin TM Bl and 0.138 mg of mannitol. and 0.6 ⁇ g of ER804057 in PBS buffer at pH 7.4 under 30 ⁇ l
  • This composition was obtained by mixing the influenza vaccine composition with the inedible emulsion as described in Example 1 and which was previously diluted in PBS buffer.
  • hemagglutination-inhibiting antibody IHA
  • the principle of this assay is based on the ability of influenza viruses to agglutinate red blood cells while a serum that contains neutralizing antibodies directed specifically against the HA of the virus inhibits the activity. "Haemagglutinating" of the virus.
  • the nonspecific inhibitors contained in the sera were first eliminated by treating them with a Receptor Destroying Enzyme (RDE) enzyme provided by Sigma and then contacting them with a solution of 10% chicken red blood cells.
  • RDE Receptor Destroying Enzyme
  • the presence of hemagglutination inhibition resulted in the presence of a red dot at the bottom of the microwell while the presence of haemagglutination resulted in the presence of a pink halo in the microwells.
  • the IHA antibody titer is represented by the reciprocal of the last dilution where haemagglutination is not observed in the microwells.
  • the vaccine composition obtained by mixing a flu vaccine with a TLR4 agonist thermoreversible O / W emulsion is the one that induces the highest level of neutralizing antibodies in the mouse regardless of the vaccine strain tested compared to the other vaccine compositions.
  • the emulsion PIT / ER804057 is even slightly more efficient (for its capacity to stimulate the production of neutralizing antibodies) than an O / W emulsion of the prior art whose composition is similar to MF59.
  • the advantage of this emulsion is also that the amounts of antigen can be greatly reduced since the results obtained with a dose of 0.3 ⁇ g of hemagglutinin mixed with a PIT / ER804057 emulsion are better than those which the 20 mg of haemagglutinin is obtained.
  • Composition No. 1 contained 0.3 ⁇ g of haemagglutinin (HA) of each of the viral strains in PBS buffer at 30 ⁇ l. (group 0.3 ⁇ g HA).
  • Composition No. 2 contained 6.3 ⁇ g of haemagglutinin (HA) of each of the viral strains in PBS buffer at 30 ⁇ l. (group 6.3 ⁇ g HA).
  • Composition No. 3 contained 0.3 ⁇ g of haemagglutinin (HA) of each of the viral strains, 0.6 ⁇ g of ER804057 in an aqueous buffer at 30 ⁇ l (0.3 ⁇ g group)
  • Composition No. 4 contained 0.3 ⁇ g haemagglutinin (HA) from each of the viral strains, 0.30 mg squalene, 0.044 mg Dehymuls TM SMO, 0.057 mg Eumulgin TM
  • Composition No. 5 contained 0.3 ⁇ g haemagglutinin (HA) from each of the viral strains, 0.30 mg squalene, 0.044 mg Dehymuls TM SMO, 0.057 mg Eumulgin TM
  • Retro-orbital sinus samples were taken at days 23, J51 and J79 which were used to determine the levels of neutralizing antibodies specific to the strain H1N1. (haemagglutination inhibiting antibody (HAV)) obtained in each group of immunized mice. The results that have been obtained are summarized in the table below:
  • PIT-ER804057 emulsion for its ability to produce antibodies inhibiting hemagglutination of the influenza virus (protective antibodies) is the result of the combined action of the TLR4 emulsion and agonist; the performance of the PIT emulsion alone or ER804057 alone is lower.
  • Example V Influenza vaccine composition prepared from an emulsion according to the invention tested in a population of young or old mice already sensitized to the influenza virus.
  • influenza vaccine which would be administered to persons already sensitized to the influenza virus, either because these persons have already been in contact with the influenza virus. influenza virus, either because they have already been vaccinated with an influenza vaccine.
  • mice received one dose of a trivalent vaccine containing 1.5 ⁇ g of HA from each of the AJ New Caledonia / 20/99 (H1N1) A strains. / New York / 55/04 (H3N2) and B / Malaysia / 2506/04.
  • PBS group one group which was injected with a PBS buffer
  • all the other groups of mice received intradermally, in a volume of 30 ⁇ l, different vaccine compositions containing a vaccine. trivalent different from the one used for primary immunization (A / New Caledonia / 20/99 (HlNl), A / Wellington / 01/04 (H3N2) and B / Jiangsu / 10/03).
  • One group received a composition containing 0.3 ⁇ g HA of each of the strains in PBS buffer (0.3 ⁇ g HA group).
  • Another group received a composition containing 6.3 ⁇ g HA of each of the strains in PBS buffer (group 6.3 ⁇ g HA).
  • compositions containing 0.3 ⁇ g HA of each of the strains in PBS buffer in a 1% squalene O / W emulsion containing 0.3 mg squalene, 0.044 mg Dehymuls TM SMO, 0.057 mg d Eumulgin TM Bl and 0.055 mg mannitol in PBS buffer This composition which contained 1% squalene was prepared by mixing the influenza vaccine with an O / W emulsion obtained by diluting a concentrated thermoreversible soluble stock solution prepared by the same method as that described in Example 1 except that the aqueous phase did not contain ER804057 (group 0.3 ⁇ g HA + PIT 1%).
  • the last group received a composition containing 0.3 ⁇ g HA of each of the strains in PBS buffer in a 1% squalene O / W emulsion containing 0.3 mg of squalene, 0.044 mg of Dehymuls TM SMO, 0.057 mg of Eumulgin TM Bl and 0.055 mg of mannitol in PBS buffer and 0.6 ⁇ g of ER804057.
  • This composition which contained 1% squalene and 0.6 ⁇ g of ER804057 was prepared by mixing the influenza vaccine with an O / W emulsion obtained by diluting a concentrated heat-reversible stock solution prepared according to the same method as that described in US Pat.
  • Example 1 group 0.3 ⁇ g HA + PIT 1% / ER 804057
  • mice were euthanized to collect a blood sample and perform a spleen sample.
  • Each blood sample was assayed for HAI against AJ New Caledonia / 20/99 (HlNl), A / Wellington / 01/04 (H3N2) and B / Jiangsu / 10/03 strains.
  • HAI AJ New Caledonia / 20/99
  • H3N2 A / Wellington / 01/04
  • B / Jiangsu / 10/03 strains The results that have been obtained are summarized in the table below:
  • * represents the average value of the IHA titres obtained on the 10 sera of each group of mice
  • ELISPOT Cytometric Bead Array
  • 2 ⁇ 10 5 splenocytes were deposited in 200 ⁇ l of a culture medium (RPMI 1640, 10% fetal calf serum, 2mM glutamine, 5mM Mercaptoethanol ⁇ ) in the wells of previously sensitized nitro-cellulose microplates. with mouse anti mouse INF ⁇ antibody (Pharmingen ref: 551216) or with mouse anti IL5 rat antibody (Pharmingen erf: 554393).
  • influenza NP peptide TYQRTRALV
  • H1N1 A / New Caledonia / 20/99
  • H3N2 A / Wellington / 01/04
  • the microplates were then washed and the splenocytes which secreted IFN ⁇ or IL5 were detected by means of a mouse anti-FM ⁇ biotinylated rat antibody (Pharmingen ref: 554410) or a rat antibody. biotinylated against mouse IL5 (Pharmingen ref: 554393) and by means of streptavidin conjugated with peroxidase (Southern Biotechnology-ref 7100-05); After revelation with 3-amino-9-ethylcarbazole, the spots corresponding to the splenocytes which secrete PINF ⁇ or IL5 were counted by means of an automatic ELISPOT reader. The results were expressed as the number of cells secreting INF ⁇ or 1TL5 for 10 6 splenocytes. The positive detection threshold is 20 spots for 10 6 splenocytes.
  • CBA As regards the technical CBA was deposited in the culture wells micoplaques 4x10 5 spleen cells in 200 .mu.l of culture medium (RPMI 1640, 10% fetal calf serum, 2 mM glutamine, ⁇ Mercaptoethanol 5OmM).
  • the splenocytes were incubated for 5 days at 37 ° C. in the presence of the trivalent vaccine (at 1 ⁇ g / ml) or in the absence of stimulating agent to evaluate the nonspecific production of cytokine (middle control).
  • the INF ⁇ or IL5 content of the culture supernatants was then assayed by flow cytometry using the CBA mouse Th1 / Th2 kit (Becton Dickinson - ref: 551287).
  • the positive detection threshold was 2.5 ⁇ g / ml for INF ⁇ and 5 ⁇ g / ml for IL5.
  • the specific concentration of INF ⁇ or IL5 was calculated by subtracting from the result the level of MF ⁇ or IL5 that is nonspecifically produced.
  • * represents the average value of the number of splenocytes, secreting IL5 or IFN ⁇ by 10 6 splenocytes after stimulation with the tri valent vaccine; The average value is calculated on the basis of the ELISPOT results obtained on the 10 samples of spleen / group of mice
  • ** represents the average level ( ⁇ g / ml) of IL5 or IFN ⁇ calculated on the basis of the results obtained on the 10 samples of spleen / group of mice using the CBA technique.
  • the ratio represents the arithmetic mean of the IFN ⁇ / IL5 ratios in each group.
  • the IFN ⁇ / IL5 ratio was determined for each sample on the basis of the values of the specific concentrations of INF ⁇ and IL5 obtained according to the CBA method after culturing of the splenocytes and then the arithmetic mean of the 10 ratios obtained for each group of mouse.
  • ThI response is indeed stronger than that observed in the group of mice that received a 20-fold higher dose influenza vaccine (6.3 ⁇ g group). This emulsion is therefore recommended in populations of individuals who have a ThI deficiency response following an influenza vaccination, especially in the elderly.
  • * represents the average value of the IHA titres obtained on the 10 sera of each group of mice

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Pulmonology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dermatology (AREA)
  • Communicable Diseases (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

L'invention se rapporte à une emulsion huile dans eau, thermoréversible, comprenant : un agoniste du TLR4 dont la structure chimique ne comporte pas de noyau sucré, du squalène, un tensioactif non ionique appartenant au groupe chimique des polyoxyethylène alkyl éther, un tensioactif hydrophile, un solvant aqueux, et qui manifeste des propriétés immunostimulantes.

Description

EMULSION HUILE DANS EAU THERMOREVERSIBLE
L'invention est relative à une composition immunostimulante sous la forme d'une émulsion Huile dans Eau (BJB) thermoréversible contenant un agoniste du TLR4, dénommé TLA4.
TLR4 (toll-like receptor type 4) est un récepteur exprimé par des cellules présentatrices de l'antigène du système immunitaire ; il intervient dans les mécanismes de défense précoce contre les infections à bactéries gram-. Le lipopolysaccharide des bactéries gram- (LPS) est le ligand naturel du TLR4 ; il active le récepteur, ce qui entraîne une cascade d'événements biochimiques, en particulier l'activation du facteur de transcription Nf-Kappa B, et la production de cytokines pro-inflammatoires. Le monophosphoryl lipide A provenant de l'hydrolyse du LPS est également un ligand du TLR4 avec l'avantage d'être moins toxique que le LPS.
WO20004/060396 décrit des formulations sous la forme d'émulsions H/E contenant un adjuvant phospholipidique. Les émulsions qui ont une taille sub-micronique sont obtenues au moyen d'un homogénéiseur haute pression (microfluidiseur). Le procédé de fabrication met en œuvre de hautes énergies mécaniques afin d'obtenir des forces de cisaillement suffisamment importantes pour réduire la taille des gouttes d'huile. Selon cet enseignement, l' émulsion obtenue contient des gouttelettes dont la taille est d'environ 500 nm.
II est souhaitable de pouvoir disposer d'une formulation alternative à celle proposée dans cette demande de brevet, et surtout qui puisse être obtenue par un procédé plus simple
(ne nécessitant pas une technologie de cisaillement particulière), de basse énergie tout en étant reproductible, fiable et utilisable à une large échelle; en outre, la formulation adjuvante doit pouvoir améliorer l'efficacité des vaccins, en augmentant la réponse immune à un antigène, tout en ne présentant pas de signe de toxicité qui nuirait à son administration en toute sécurité.
A cet effet, l'invention a pour objet :
Une émulsion Huile dans eau (H/E) comprenant: i) un agoniste du TLR4, dénommé TLA4, dont la structure chimique ne comporte pas de noyau sucré, ii) du squalène, iii) un solvant aqueux, iv) un tensioactif hydrophile non ionique qui est un polyoxyethylène alkyl éther, v) un tensioactif hydrophobe non ionique et, qui est thermoréversible.
L'agoniste du TLR4 contenu dans Pémulsion, selon l'invention, n'est pas le lipide A, ou un dérivé du lipide A ou une molécule qui mime la structure du lipide A.
Typiquement TLA4 est un composé chimique de formule I, II, III, ou IV :
Composé de formule I
Figure imgf000003_0001
Figure imgf000003_0002
Composé de formule II
Figure imgf000004_0001
Composé de formule III
Figure imgf000005_0001
Composé de formule IV
Figure imgf000006_0001
dans laquelle pour chacune des formules I, II, III, ou FV, R1 est sélectionné dans le groupe consistant en :
a) C(O); b) C(O)-alkyle en C1-C14-C(O), dans lequel ledit alkyle en C1-C14 est facultativement substitué par un hydroxy, un alcoxy en C1-C5, un alkylènedioxy en C1-C5, un (alkyl en Ci-C^amino ou un (alkyle en Q-C^aryle, dans lequel ladite partie aryle dudit (alkyle en C1-C5)aryle est facultativement substituée par un alcoxy en C1-C5, un (alkyle en C1-C5) amino, un (alcoxy en C1-C5)EmInO5 un (alkyle en C1-C5)BmUiOaIcOXy en C1-C5, -O-(alkyle en C1-C5) aminoalcoxy en C1-C5, -O-(alkyle en C1-C5) amino-C(O)-alkyle en C1-C5-C(O)OH, ou -O-(alkyle en Ci-C5)amino-C(O)-a]kyle en Ci-C5-C(O)-alkyle en C1-C5; c) un alkyle à chaîne linéaire ou ramifiée en C2-C15 facultativement substitué par un hydroxy ou un alcoxy; et d) -C(O)-arylène en C6-C12-C(O)- dans lequel ledit arylène est facultativement substitué par un hydroxy, un halogène, un nitro ou un amino;
a et b sont indépendamment 0, 1, 2, 3 ou 4;
d, d', d", e, e1 et e" sont indépendamment 0, 1, 2, 3 ou 4 ;
X1, X2, Y1 et Y2 sont indépendamment sélectionnés dans le groupe consistant en rien, un oxygène, NH et N(C(O)alkyle en C1-C4), et N(alkyle en C1-C4):
W1 et W2 sont indépendamment sélectionnés dans le groupe consistant en un carbonyle, un méthylène, un sulfone et un sulfoxyde;
R2 et R5 sont indépendamment sélectionnés dans le groupe consistant en :
a) un alkyle à chaîne linéaire ou ramifiée en C2-C2O qui est facultativement substitué par un oxo, un hydroxy, ou un alcoxy, b) un alcényle ou un dialcényle à chaîne linéaire ou ramifiée en C2-C2O qui est facultativement substitué par un oxo, un hydroxy, ou un alcoxy; c) un alcoxy à chaîne linéaire ou ramifiée en C2-C20 qui est facultativement substitué par un oxo, un hydroxy, ou un alcoxy; d) NH-alkyle à chaîne linéaire ou ramifiée en C2-C2O, dans lequel ledit groupement alkyle est facultativement substitué par un oxo, un hydroxy, ou un alcoxy; et e)
Figure imgf000008_0001
dans laquelle Z est sélectionné dans le groupe consistant en un O et NH, et M et N sont indépendamment sélectionnés dans le groupe consistant en un alkyle, un alcényle, un alcoxy, un acyloxy, un alkylamino et un acylamino à chaîne linéaire ou ramifiée en C2-C20;
R3 et R6 sont indépendamment sélectionnés dans le groupe consistant en un alkyle et un alcényle à chaîne linéaire ou ramifiée en C2-C20 facultativement substitué par un oxo ou un fluoro;
R4 et R7 sont indépendamment sélectionnés dans le groupe consistant en un C(O)-alkyle ou alcényle à chaîne linéaire ou ramifiée en C2-C20, un alkyle à chaîne linéaire ou ramifiée en C2-C20, un alcoxy à chaîne linéaire ou ramifiée en C2-C20, et un alcényle à chaîne linéaire ou ramifiée en C2-C20; dans lequel lesdits groupements alkyle, alcényle, ou alcoxy peuvent être indépendamment et facultativement substitués par un hydroxy, un fluoro ou un alcoxy en C1-C5;
G1, G2, G3 et G4 sont indépendamment sélectionnés dans le groupe consistant en un oxygène, un méthylène, un amino, un thiol, -C(O)NH-, -NHC(O)-, et -N(C(O)alkyle en C1-C4)- ;
ou G2R4 ou G4R7 peuvent ensemble être un atome d'hydrogène ou un hydroxyle ;
et dans lequel pour la formule III: a' et b' sont indépendamment 2, 3, 4, 5, 6, 7 ou 8, de façon préférée 2 ; Z1 est sélectionné dans le groupe consistant en -OP(O)(OH)2, -P(O)(OH)2, -OP(O)(OR8)(OH) où R8 est une chaîne alkyke en C1-C4, -OS(O)2OH, -S(O)2OH5 -CO2H, -OB(OH)2, -OH, -CH3, -NH2, et -NR9 3 où R9 est une chaîne alkyle en C1-C4 ;
Z2 est sélectionné dans le groupe consistant en -OP(O)(OH)2, -P(O)(OH)2, -OP(O)(OR10)(OH) où R10 est une chaîne alkyle en C1-C4, -OS(O)2OH, -S(O)2OH, -CO2H, -OB(OH)2, -OH, -CH3, -NH2, et -NR11 où R11 est une chaîne alkyle en C1-C4 ;
et dans lequel pour la formule IV : Rl 2 est H ou une chaîne alkyle en C1-C4 ; ou un sel pharmaceutique acceptable du composé de formule I, II, III ou IV.
L'émulsion selon l'invention est thermoréversible, ce qui signifie qu'elle passe de l'état d'émulsion H/E à l'état d'émulsion E/H lorsqu'on la chauffe à une température au moins égale à une « température dite d'inversion de phase ». A l'échelle microscopique, la température d'inversion de phase traduit le passage d'une courbure orientée vers la phase huileuse à une courbure orientée vers la phase aqueuse, cette transition impliquant nécessairement le passage par une phase de courbure moyenne nulle (le système étant alors apparenté soit à une phase lamellaire soit à une microémulsion).
L'émulsion selon l'invention peut être obtenue par un procédé d'inversion de phase par variation de température, ce qui procure un très gros avantage d'un point de vue industriel car il est facilement contrôlable et adapté à des volumes de production importants. Un tel procédé présente les garanties de sécurité et de rentabilité nécessaires à l'industrie pharmaceutique. En outre grâce à ce procédé, il est possible d'obtenir une émulsion monodisperse dont la taille des gouttes est faible, ce qui rend l'émulsion facilement filtrable au moyen de filtres stérilisants dont le seuil de coupure est de 200 nm.
Avantageusement, au moins 90% de la population volumique des gouttelettes d'huile de l'émulsion selon l'invention ont une taille < 200 nm. En général, au moins 50% de la population volumique des gouttelettes d'huile de ces émulsions ont une taille < 110 nm. Selon une caractéristique particulière, au moins 90% de la population volumique des gouttelettes d'huile ont une taille < 180 nm et au moins 50% de la population volumique des gouttelettes ont une taille < 1 lOnm.
Généralement, Pémulsion thermoréversible selon l'invention est homogène. Par émulsion homogène, on entend une émulsion dont la représentation graphique de distribution de taille (granulogramme) des gouttelettes d'huile est unimodale. Typiquement, cette représentation graphique est de type « gaussien ».
La mesure de la taille des gouttelettes peut se faire par différents moyens et notamment par des granulomètres à diffraction LASER, tels que les appareils Beckman Coulter de la gamme LS (notamment le LS230) ou des appareils Malvern de la gamme Mastersizer (notamment le Mastersizer 2000). Le principe de mesure de ces appareils est basé sur l'analyse de l'intensité de la lumière diffusée par les particules en fonction de l'angle (détecteurs de grands, moyens et petits angles) lorsque l'échantillon est éclairé par un faisceau laser. Cette analyse se fait au moyen de modèles mathématiques choisis selon la taille et la nature du matériau utilisé. Dans le cas de la mesure de la taille de particules sub-microniques, il faut appliquer un modèle optique particulier (théorie de Mie) prenant en compte les indices de réfraction de la phase huileuse (ici 1,495 pour le squalène) et de la phase aqueuse (par exemple il est de 1,332 pour l'eau) ; il faut également être capable de détecter les faibles intensités émises par les particules très fines, ce qui nécessite une optimisation de l'analyse avec:
-une cellule supplémentaire de détection pour la mesure aux grands angles de la diffusion différentielle des intensités polarisées (système PIDS chez Coulter qui permet une mesure dès 40 nm).
-un système de détection combinant 2 longueurs d'onde, lumière bleue et rouge chez Malvern. La source de lumière bleue de plus basse longueur d'onde, associée à des détecteurs de diffusion aux larges angles et en rétrodiffusion renforce les performances de l'analyse de la gamme submicronique.
Selon les appareils utilisés, les mesures peuvent légèrement varier en fonction des composants de l'appareil et des logiciels de traitement de données utilisées. La température d'inversion de phase d'une émulsion thermoréversible selon l'invention est une caractéristique propre à chaque émulsion et varie en fonction de la nature de ses composants et de leurs concentrations relatives. Avantageusement, la composition de Pémulsion selon l'invention est choisie de sorte que l'inversion de phase se produit à une température entre 45°C et 800C, de façon préférée entre 50 et 650C. Cette gamme de température est avantageuse car Pémulsion ne risque pas de changer d'état si elle est stockée aune température relativement élevée (≈37°C). De plus, comme dans le procédé de préparation de l' émulsion thermoréversible, le chauffage des composants n'excède pas 800C, cela contribue au maintien de l'intégrité structurale des composants et en particulier du TLA4. Lorsque la température d'inversion de phase de Pémulsion est élevée, notamment lorsqu'elle est supérieure ou voisine de 800C, on peut utilement l'abaisser en ajoutant à la composition de Pémulsion un alditol qui est habituellement choisi parmi le sorbitol, le mannitol, le glycérol, le xylitol ou Pérythritol. Lorsque P alditol est utilisé dans une gamme de concentration allant de 0,1 à 10% (p/p), de préférence dans une gamme de concentration allant de 1 à 10% (p/p) et en particulier dans une gamme de concentration allant de 2 à 7% (p/p), on arrive à abaisser la température d'inversion de phase de Pémulsion d'environ 1O0C. On peut également abaisser la température d'inversion de phase de Pémulsion, en remplaçant la phase aqueuse constituée uniquement d'eau par une phase aqueuse saline tamponnée. Habituellement, on utilise un tampon TRIS, un tampon phosphate comme le PBS, le tampon Dulbecco PBS sans Ca2+ ni Mg2+ ou un tampon citrate.
Les composés chimiques de formule I, II, III, ou IV sont obtenus par voie de synthèse selon les procédés décrits notamment dans US 2003/0153532 ou dans US 2005/0164988.
En particulier, le TLA4 selon l'invention est un composé chimique de formule I.
Figure imgf000012_0001
H O P O P OH
Figure imgf000012_0002
ou un sel pharmaceutiquement acceptable de ce composé. Préférentiellement,
Rl est C(O) ou C(O)-(Cm)n-C(O), n étant 1, 2, 3 ou 4 a, b, d, d', d", e, e', e" sont indépendamment 1 ou 2, Xl5 X2, Yl et Y2 sont NH, Wl et W2 sont C(O), R2 et R5 sont indépendamment sélectionnés dans le groupe consistant en un alkyle à chaîne linéaire en ClO-Cl 5 facultativement substitué par un oxo, un NH-alkyle à chaîne linéaire en C10-C15 et,
Figure imgf000013_0001
dans lequel M et N sont indépendamment un alkyle ou un alcényle à chaîne linéaire en C2-C20, R3 et R6 sont des chaînes alkyles linéaires en C5-C10,
R4 et R7 sont sélectionnés dans le groupe consistant en un hydrogène, C(O)-alkyle à chaîne linéaire en C8-C12 et C(O) alcényle à chaîne linéaire en C8-C12, Gl et G3 sont un oxygène ou -NH(CO)- G2 et G4 sont un oxygène ;
TLA4 exerce une activité immunostimulante in vitro et/ou in vivo. L'activité immunostimulante in vitro est évaluée notamment :
1) en mesurant l'augmentation de la production de TNFα par les cellules du sang humain total ou, 2) en mesurant l'augmentation de la production de la phosphatase alcaline par une lignée THP-I transfectée par le gène de la phosphatase alcaline sous la dépendance du promoteur du TNFα ou, 3) en mesurant l'augmentation de la production de cytokines telles que PIL-IO et l'interféron γ par des splénocytes murins, ou 4) en mesurant l'augmentation de la production du TNFα par la lignée macrophagique murine RAW264 ou, 5) en mesurant l'augmentation de la production de l'IL-6 par Pastrocytome humainU373 ou,
6) en mesurant l'augmentation de Pactivation/la maturation de cellules dendritiques dérivées de monocytes humains sur la base de l'expression des marqueurs d'activation tels que CD25, CD80/CD83 par cytométrie de flux.
Tous ces tests de mesure sont bien connus de l'homme de métier et sont notamment décrits dans l'exemple 7 de US 2003/0153532 ou dans Journal of Biological Chemistry, (2001), vol 276/3, page 1873-1880.
L'activité immunostimulante in vivo se traduit par une augmentation de la réponse humorale et/ou de la réponse cellulaire spécifique. Pour évaluer la réponse humorale on mesure la production d'anticorps spécifiques dirigés contre un antigène. A titre d'exemple, on peut se référer aux tests qui sont décrits dans l'exemple 8 de US 2003/0153532 pour évaluer cette réponse. Lorsque la production d'anticorps spécifiques (que ce soit sous forme d'immunoglobulines totales ou d'un isotype particulier) observée à la suite de l'injection d'un antigène associé au TLA4 est supérieure à celle que l'on observe consécutivement à l'administration de la même quantité d'antigène seule, TLA4 est considéré comme exerçant une activité immunostimulante in vivo. On peut aussi évaluer l'activité immunostimulante du TLA4 en utilisant des tests de mesure de la réponse cellulaire spécifique qui sont bien connus de l'homme du métier, comme par exemple, en mesurant l'activité des lymphocytes T cytotoxiques (CTL) ou la lymphoprolifération.
Préférentiellement, TLA4 est choisit dans le groupe constitué par les composés chimiques identifiés et décrits dans US 2003/0153532 sous les dénominations de ER803022, ER803058, ER803732, ER803789, ER804053,
ER804057, ER804058, ER804059, ER804442, ER804764, ERl 11232, ERl 12022,
ER112048, ER 112065, ER112066, ERl 13651, ER118989, ER119327, ER119328.
Les composés peuvent être sous la forme de diastéréoisomères ou sous une forme racémique (mélange de diastéréoisomères) lorsque la structure chimique comporte plusieurs carbones asymétriques. Par exemple, ER804057 et ER804053 qui ont 4 carbones asymétriques sont des diastéréoisomères d'ERl 12066 qui est la forme racémique. ER804057 est dans une configuration isomérique de type (R5R5R5R) tandis que ER804053 est dans une configuration de type (R5S5S5R). De la même façon, ER804058 qui est dans une configuration isomérique de type (R5R5R5R) et ER804059 qui est dans une configuration isomérique de type (R5S5S5R) sont des diastéréoisomères de ERl 13651 qui est la forme racémique. ER803022 qui est dans une configuration de type (R5R5R5R)5 ER803732 qui est dans une configuration (R5S5S5R) et ER803789 qui est dans une configuration (R5R5S5R) sont également des diastéréoisomères d'une même molécule chimique. On utilise, de façon préférée, les diastéréoisomères qui ont une configuration de type R5R5R5R généralement plus actifs que les autres formes. Parmi ceux ci, ER804057 est particulièrement préféré. Il s'agit de l'acide dodecanoique (7i?,(5iî,22i?,27i?)-l527- diheptyl-9519-dihydroxy-9,19-dioxido-14-oxo-6522-bis[(l,3-dioxotetradecyl)amino]- 458510,18520524-hexaoxa-13515-diaza-9,19-dipliosphaheptacosane-l527-diyl ester ; II est sous forme d'acide libre ou sous .forme de sel. Le poids moléculaire de la forme acide libre est de 1579, celui du sel disodique est de 1624. La formule brute du sel disodique est C83Hl58N4Na2θl9P2.
Sur le plan structural, l'agoniste du TLR4 selon l'objet de l'invention est une molécule amphiphile. Les molécules amphiphiles, ont un comportement à la fois hydrophile et hydrophobe et ont tendance à précipiter au cours du temps. Elles se dissolvent souvent incomplètement dans les solvants organiques ou aqueux et sont souvent à l'origine de solutions instables ou difficilement reproductibles. H existe un besoin d'améliorer la formulation de ces molécules. L'émulsion telle que décrite dans l'invention répond à ce besoin en fournissant des émulsions qui sont stables au cours du temps. Une émulsion selon l'invention qui est conservée pendant 6 mois à
+4°C conserve les caractéristiques qu'elle avait initialement : la distribution de taille des gouttelettes d'huile ne varie pas d'une façon sensible; l'aspect laiteux, fluide et homogène de l'émulsion est conservé ; et de façon notoire, l'intégrité structurale du TLA4 n'est pas altérée comme le montre l'exemple IL On a même constaté qu'une émulsion selon l'invention pouvait être stockée à une température de -2°C pendant au moins 48 heures sans observer de variation notoire au niveau de la distribution de taille des gouttelettes d'huile. Par ailleurs, l'émulsion selon l'invention diminue le pouvoir pyrogène de certains agonistes du TLR4. Le ratio entre la quantité de TLA4 et la quantité totale de tensioactifs hydrophile et hydrophobe de Pémulsion est habituellement entre 0,01x10" et 5x10" , plus particulièrement entre O5IxIO"2 et 2xlO"2. Dans cette gamme de ratio, la quantité de TLA4 est suffisamment faible pour ne pas exercer d'influence sur le pouvoir émulsionnant des tensioactifs mais est en quantité suffisante pour exercer une activité immunostimulante in vitro et/ou iή vivo.
Le tensioactif hydrophile selon l'invention a une HLB (balance hydrophile/lipophile) > 10 et appartient au groupe chimique des polyoxyéthylène alkyl éthers (PAE), encore appelés éthers polyoxyéthylénés d'alcools gras. Ces tensioactifs non ioniques sont obtenus par condensation chimique entre un alcool gras et l'oxyde d'éthylène. Ils ont une formule chimique générale du type
R-(O-CH2-CH2)H -OH dans laquelle le radical R désigne habituellement un reste alkyl saturé ou insaturé et n désigne le nombre d'unités d'oxyde d'éthylène. Selon l'objet de l'invention, R contient entre 1 et 50 atomes de carbone, de façon préférée entre 4 et 20 atomes de carbone et de façon particulièrement préférée entre 10 et 20 atomes de carbone, n est > 2, généralement compris entre 4 et 50. L'émulsion selon l'invention comprend habituellement un seul PAE hydrophile. Un mélange de plusieurs PAE convient également dans la mesure ou l'HLB global est > 10.
Les éthers polyoxyéthylénés d'alcools gras convenant à l'objet de l'invention peuvent être sous une forme liquide ou solide à température ambiante. Parmi les composés solides, on préfère ceux qui se dissolvent directement dans la phase aqueuse ou qui ne nécessitent pas de chauffage important.
Dans la mesure où le nombre d'unités d'oxydes d'éthylènes est suffisant, les éthers polyoxyéthylénés d'alcools laurique, myristique, cétylique, oléique et/ou stéarique sont particulièrement appropriés à l'objet de l'invention. On peut notamment les trouver dans la gamme des produits connus sous les appellations commerciales de Brij ®, Eumulgin ® ou Simulsol ©. Une émulsion particulièrement préférée selon l'invention contient comme tensio actif hydrophile non ionique un polyoxyéthylène alkyl éther choisi dans le groupe constitué par du polyoxyéthylène (12) cétostearyl éther (ceteareth-12) (commercialisé sous la dénomination d'Eumulgin ® Bl), du polyoxyéthylène (20) cétostearyl éther (ceteareth-20) (Eumulgin ® B2), du poyoxyéthylène (21) stéaryl éther (steareth-21) (Eumulgin ® S21), du polyoxyéthylène (20) cétyl éther (ceteth- 20) (Simulsol ® 58 ou Brij ®58), du polyoxyéthylène (10) cétyl éther (ceteth-10) (Brij ®56), du polyoxyéthylène (10) stéaryl éther (steareth-10) (Brij ®76), du polyoxyéthylène (20) stéaryl éther (steareth-20) (Brij ®78), du polyoxyéthylène (10) oleyl éther (olerh-10) (Brij ®96 ou Brij ®97, du polyoxyéthylène (20) oléyl éther
(oleth-20) (Brij ®98 ou Brij ®99). Le nombre apposé à chaque nom chimique correspond au nombre d'unités d'oxyde d'éthylène dans la formule chimique.
Un composé particulièrement adapté et préféré en raison de son origine semi synthétique est l'Eumulgin ™ Bl (ceteareth-12) fourni par la société COGNIS.
L'émulsion selon l'invention contient également un tensioactif hydrophobe non ionique dont l'HLB est < 6. L'émulsion comprend habituellement un seul tensioactif hydrophobe non ionique. Un mélange de plusieurs tensioactifs hydrophobes non ioniques convient également dans la mesure où l'HLB global est < 6. Typiquement, il s'agit d'un ester hydrophobe du sorbitane ou d'un ester hydrophobe du mannide. Les esters de sorbitane sont habituellement obtenus par réaction d'estérification entre un acide gras et le sorbitol, le monoanhydre de sorbitol, ou le dianhydre de sorbitol. Les esters de mannide sont habituellement obtenus par réaction d'estérification entre un acide gras et le monoanhydre ou le dianhydre de mannitol. De façon préférée, il s'agit du mannide monooléate (commercialisé par la société SIGMA, ou fourni par la société SEPPIC sous la dénomination de Montanide 80 ™), ou du sorbitane monooléate commercialisé sous la dénomination de Span ®80, de Dehymuls SMO ™ (COGNIS) ou de montane 80 ™ (SEPPIC)).
Grâce à la sélection de ces tensioactifs particuliers parmi tous les tensioactifs proposés dans l'art antérieur pour préparer des émulsions, il a maintenant été trouvé que l'on pouvait très avantageusement produire une émulsion H/E adjuvante en utilisant un procédé d'inversion de phase facile à mettre en œuvre.
Lorsque les concentrations respectives en tensioactifs hydrophile et hydrophobe sont telles que l'HLB du mélange (HLBm) se situe entre 8,5 et 10, et plus particulièrement entre 8,6 et 9,6, les émulsions selon l'invention sont généralement homogènes et souvent au moins 90% de la population volumique des gouttelettes d'huile ont une taille < 0,2 μm. Ces émulsions sont par ailleurs particulièrement stables. Les quantités de tensioactifs hydrophile et hydrophobe dans l'émulsion de squalène sont ajustées de préférence pour que l'HLBm se situe entre
8,5 et 10, et plus particulièrement pour que l'HLBm se situe entre 8,6 et 9,6. Pour déterminer les concentrations respectives en tensioactifs hydrophile et hydrophobe dans la composition de l'émulsion on utilise la formule suivante :
HLBm = HLB6 x M+ HLB pae x (1 -M) dans laquelle,
HLBm correspond à l'HLB du mélange qui est de préférence entre 8,5 et 10, et plus particulièrement entre 8,6 et 9,6 HLBe correspond à l'HLB du tensioactif hydrophobe M correspond au pourcentage en masse du tensioactif hydrophobe dans le mélange constitué par le tensioactif hydrophobe et du PAE HLB pae correspond à l'HLB du PAE
Le squalène, qui représente la phase huileuse de l'émulsion, a pour formule chimique brute C3oH5O et comprend 6 double-liaisons. Cette huile est métabolisable et présente les qualités requises pour être utilisée dans un produit pharmaceutique injectable. Elle provient du foie de requin (origine animale) mais peut être extraite également de l'huile d'olive (origine végétale). On a notamment obtenu de bons résultats en utilisant le squalène fourni par la société Fluka qui est d'origine animale. Généralement, la quantité de squalène représente entre 5 et 45% du poids total de l'émulsion. Le ratio massique entre la quantité de squalène et la quantité totale de tensioactifs dans l'émulsion selon l'invention est habituellement compris ente 2,0 et 4,0, de façon préférée entre 2,5 et 3,5.
Une composition de l'émulsion selon l'invention particulièrement préférée comprend :
- du squalène,
- un tampon phosphate ou un tampon citrate comme solvant aqueux,
- le composé ER 804057 comme agoniste du TLR4, - le ceteareth-12 (Eumulgin ® Bl) comme tensioactif hydrophile,
- du monooléate de sorbitane comme tensioactif hydrophobe.
La quantité de squalène représente entre 5 et 45% du poids total de l'émulsion. La quantité du composé ER804057 représente habituellement entre 0,05% et 2% du poids des deux tensioactifs. De façon préférée, les quantités de ceteareth-12 et de monooléate de sorbitane sont telles que l'HLB du mélange des deux tensioactifs se situe entre 8,5 et 10 et plus particulièrement entre 8,6 et 9,6. Le ratio entre la quantité de squalène et la quantité totale de ceteareth-12 et de monooléate de sorbitane est compris entre 2,0 et 4,0, de façon préférée entre 2,5 et 3,5. En outre, cette composition peut contenir du mannitol dont la quantité représente habituellement entre 0,1% et 10% du poids total de l'émulsion.
La phase aqueuse de l'émulsion selon l'invention peut contenir en outre un substrat de lyophilisation contenant un ou plusieurs cryoprotecteurs. Les cryoprotecteurs sont habituellement choisis parmi les sucres comme le saccharose, les poly alcools comme le mannitol ou le sorbitol ou les dérivés de sucres tels que les alkyl poly glycosides comme le décyl-D galactoside uronate de sodium ou le dodécyl β maltoside. On utilise habituellement un substrat de lyophilisation qui contient en mélange du saccharose, du mannitol et du dodécyl β maltoside . L'émulsion selon l'invention peut être alors lyophilisée et conservée sous forme de lyophilisât. Elle conserve toutefois toutes ses caractéristiques car une fois reprise en phase aqueuse elle redevient une émulsion H/E laiteuse, stable et fluide, thermoréversible avec une distribution de taille de gouttelettes d'huile similaire à celle qui préexistait avant lyophilisation.
L'émulsion selon l'invention joue également le rôle d'adjuvant de la réponse immune à un antigène. Par antigène au sens de la présente invention, on entend tout antigène susceptible d'être utilisé dans un vaccin, qu'il s'agisse d'un germe entier vivant, atténué ou tué, d'un extrait de germe ou d'une forme sous unitaire. Lorsqu'il est sous une forme sous unitaire, la nature de l'antigène importe peu: il peut être un peptide, une protéine, une glycoprotéine, un polysaccharide, un glycolipide, un lipopeptide, un acide nucléique. Parmi les antigènes convenant à l'objet de l'invention, on cite les antigènes bactériens provenant de Clostridium tetani, de Clostridium diphteriae, de Bordetella pertussis, d Ηaemophilus influenzae type b, de Streptococcus pneumoniae, de Neisseria meningitidis, de Shigella sp., de Salmonella typhi, de Staphylococcus aureus ou de Staphylococcus epidermidis, de Mycobacterium tuberculosis, de Chlamydia trachomatis ou de Streptococcus sp, d'antigènes viraux provenant du virus de l'hépatite A, B, ou C, du virus de la grippe, du virus syncytial respiratoire, du virus West NiIe, du virus de la rage, du poliovirus, du virus HIV, du virus de la dengue, de l'encéphalite japonaise, du virus de la fièvre jaune, du cytomegalo virus, ou des herpès virus, d'antigènes parasitaires provenant notamment de Plasmodium sp. ou d'antigènes tumoraux. Ces antigènes peuvent être obtenus en utilisant des procédés de recombinaison génétique ou en utilisant des procédés d'extraction bien connus de l'homme du métier. L'émulsion selon l'invention agit sur l'immunité humorale en augmentant la production d'anticorps spécifiques et/ou sur l'immunité cellulaire spécifique en favorisant notamment la prolifération des lymphocytes T, le développement d'une réponse cytolytique spécifique (réponse CTL), et/ou la production de cytokines, chemokines, facteurs de croissance, produites par les lymphocytes activés.
C'est pourquoi l'invention a également pour objet l'utilisation d'une émulsion selon l'invention pour la préparation d'une composition vaccinale. La composition vaccinale obtenue s'avère plus immunogénique, par exemple parce que la composition induit une réponse immune spécifique plus forte qu'elle soit d'ordre humorale et/ou d'ordre cellulaire, ou parce qu'une quantité d'antigène plus faible est nécessaire pour obtenir une réponse immune de même intensité et de durée comparable. La composition vaccinale obtenue à partir d'une émulsion selon l'invention peut être administrée par toutes les voies habituellement utilisées ou préconisées pour les vaccins : voie parentérale, voie intradermique, voie sous cutanée, ou intra musculaire ou la voie mucosale, et se présenter sous diverses formes notamment liquide ou lyophilisée. Elle peut être administrée au moyen d'une seringue ou au moyen d'un injecteur sans aiguille pour injection intramusculaire, sous-cutanée ou intradermique, ou au moyen d'un spray nasal.
La composition vaccinale est généralement sous la forme d'un mélange de l'antigène avec une émulsion selon l'invention. Elle peut se présenter aussi sous la forme d'une formulation extemporanée. Dans ce cas, l'antigène et l' émulsion sont mis en contact juste avant ou au moment de l'administration de la composition vaccinale. Par exemple, l'antigène peut être lyophilisé et repris par l'émulsion juste avant l'administration ou à l'inverse, l'émulsion peut être sous une forme lyophilisée et repris par une solution de l'antigène. La composition vaccinale peut se trouver également dans un dispositif particulier d'injection comme la seringue « by pass » lorsque l'on ne souhaite pas mélanger l'antigène avec l'émulsion.
Lorsque la composition vaccinale est sous la forme d'un mélange obtenu par dilution d'une émulsion selon l'invention avec une solution d'antigène, elle est habituellement sous la forme d'une émulsion H/E dans laquelle la quantité de squalène représente en poids en général entre 0,5 et 5% du poids total de la composition vaccinale. Elle peut être également sous la forme d'une émulsion H/E thermoréversible lorsque la quantité de squalène dans la composition vaccinale atteint ou dépasse 5% (p/p). Lorsque la composition vaccinale est une émulsion H/E thermoréversible, elle peut être, en particulier, sous une forme dans laquelle au moins 90% de la population volumique des gouttelettes d'huile a une taille < 0,2 μm.
D'une façon surprenante, l'émulsion selon l'invention a une plus grande capacité à induire des anticorps neutralisants qu'une émulsion H/E de l'art antérieur obtenue par microfluidisation dont la composition renferme du squalène, du polyoxyéthylène sorbitane monooléate (Tween® 80) et du sorbitane trioleate (Span® 85) (émulsion H/E de l'art antérieur)
Les anticorps neutralisants sont des anticorps fonctionnels dirigés contre un germe infectieux, produits par un individu qui a été immunisé avec un antigène apparenté ou dérivé de ce germe ou qui a été en contact avec ce germe, et qui empêchent l'infection des cellules par ce germe. Ils jouent un rôle très important dans la prévention ou le traitement des infections causées par des germes intracellulaires, en particulier les virus et les parasites unicellulaires notamment plasmodium sp.. Des antigènes provenant de la forme « sporozoïte » de
Plasmodium falciparum, (tels que la protéine majeure de surface du sporozoïte (circumsporozoite protein), LS A3, ou l'antigène Pfs 16), ainsi que des antigènes provenant de la forme « mérozoïte » de Plasmodium falciparum (tels que l'antigène MSPl, MSP2, MSP3, EBA-175, Rhop-1, Rhop-2, Rhop-3, RAP-I, RAP-2, RAP-3, Pfl55/RESA ou AMA-I) induisent des anticorps neutralisants. L'utilisation d'une émulsion selon l'invention pour préparer une composition vaccinale contenant un ou plusieurs antigènes issus des sporozoïtes ou des mérozoïtes de Plasmodium falciparum est indiquée pour amplifier la réponse immune neutralisante. On peut en particulier utiliser une émulsion selon l'invention pour préparer une composition vaccinale comprenant comme antigène vaccinal la protéine LSA3 de Plasmodium falciparum. Le gène codant pour cette protéine a été identifié par Gardner et al., (Science (1998), 282, 1126-1132) et se trouve sur le chromosome 2 de Plasmodium falciparum (souche 3D7). La séquence entière du gène est longue de 12240 paires de bases et code pour une protéine de 1558 acides aminés. Les séquences nucléotidique et protéique sont décrites dans la banque de données EMBL sous les numéros d'accession AE001424 et uniprot 096275-PLAF7. Comme antigène vaccinal, on peut utiliser la protéine entière telle que décrite, des peptides, ou des fragments de cette protéine, comme ceux décrits dans WO 02/38176. Habituellement, on utilise la protéine entière (qui peut contenir une ou plusieurs mutations ponctuelles pour tenir compte des variations qui existent entre les souches de Plasmodium falciparum) ou un fragment de cette protéine dont la séquence d'acides aminés a une identité d'au moins 80% par rapport à la séquence entière décrite dans uniprot 096275-PLAF7. L'efficacité de certains vaccins antiviraux est dans certains cas évaluée sur la base du taux d'anticorps neutralisants qu'ils induisent. C'est le cas du vaccin contre la grippe dont l'efficacité est reliée au taux d'anticorps inhibant l'hémagglutination (IHA).
L'émulsion selon l'invention sert à préparer une composition vaccinale pour le traitement ou la prévention des maladies infectieuses chez l'homme ou l'animal
(oiseaux, cheval) liées au virus de la grippe. Selon la nature du vaccin contre la grippe la composition vaccinale peut se présenter sous différentes formes :
- Lorsque le vaccin grippal contient une ou plusieurs souches de virus entiers inactivés ou « splittés », ou est sous la forme d'un vaccin sous unitaire contenant de l'hémagglutinine purifiée d'une ou plusieurs souches virales, ou sous la forme de virosomes (vaccin Berna), la composition vaccinale, se présente habituellement sous la forme d'un mélange, d'une émulsion H/E ou d'une émulsion H/E thermoréversible.
- Lorsque le vaccin grippal contient une ou plusieurs souches de virus vivants atténués, la composition vaccinale se trouve de façon préférée dans un dispositif, type seringue by pass, de façon à ce que le virus vivant ne soit pas au contact direct de l'émulsion. La suspension virale et l'émulsion selon l'invention se trouve dans deux compartiments séparés de la seringue.
Les vaccins contre la grippe sont fabriqués à partir de virus grippaux cultivés sur œufs ou sur cellules selon des méthodes bien connues de l'homme du métier et comprennent tous comme composant essentiel l'hémagglutinine d'une ou plusieurs souches virales.
L'invention a donc également pour objet l'utilisation d'une émulsion selon l'invention pour la préparation d'une composition vaccinale comprenant comme antigène vaccinal une ou plusieurs hémagglutinines du virus grippal. Cette composition vaccinale peut être utilisée pour vacciner :
1) des populations d'individus qui sont séronégatives vis-à-vis du virus grippal : il s'agit d'individus qui n'ont jamais été en contact ou sensibilisés avec le virus grippal ou ses composants immunogéniques, ou d'individus qui n'ont jamais été en contact avec une nouvelle souche de virus grippal à l'origine de pandémie ; 2) des populations d'individus séropositifs vis-à-vis du virus grippal : il s'agit d'individus qui ont déjà été en contact ou sensibilisés avec le virus grippal ou ses composants immunogéniques ;
3) des populations d'individus âgés qui présentent souvent une altération de l'immunité cellulaire et/ou humorale qui s'observe notamment vis- à-vis du virus de la grippe.
L'émulsion selon l'invention sert également à préparer une composition vaccinale pour le traitement ou la prévention des maladies infectieuses à herpès virus (HSVl, HS V2, cytomégalovirus (CMV)). Les antigènes de l'enveloppe virale sont généralement utilisés dans la composition vaccinale. Dans les infections à CMV, les anticorps qui sont dirigés contre les protéines de l'enveloppe virale, principalement la glycoprotéine B (gB) et la glycoprotéine H (gH) et qui neutralisent l'infection virale, jouent un rôle très important dans le développement d'une immunité protectrice. L'utilisation d'une émulsion selon l'invention dans la préparation d'une composition vaccinale contenant une protéine de l'enveloppe du CMV a pour effet d'augmenter la production d'anticorps neutralisants.
L'invention a donc pour objet l'utilisation d'une émulsion selon l'invention pour la préparation d'une composition vaccinale comprenant comme antigène vaccinal un antigène de l'enveloppe du CMV. Typiquement, l'antigène est la glycoprotéine gB et/ou la glycoprotéine gH. Il peut s'agir également d'un peptide ou d'un polypeptide dérivé de la gB et/ou de la gH comprenant un ou plusieurs épitopes neutralisants.
gB dans sa forme native (gpl30), codée par le gène UL 55 du CMV, est une glycoprotéine de 906 ou 907 acides aminés, selon qu'il s'agit de la souche AD169 ou de la souche Towne. Les séquences protéiques de ces deux souches sont décrites dans US 2002/0102562 (figure 2). La forme native de la gB contient une séquence signal, suivie d'un domaine extracellulaire contenant un site de clivage endo- protéolytique entre les résidus Arginine 460 et Serine 461, d'un domaine transmembranaire et d'un domaine intracellulaire. On a décrit plusieurs domaines antigéniques induisant des anticorps neutralisants. Il s'agit notamment du domaine qui se situe entre les résidus d'acides aminés 461 et 680 de la gp 130, ce domaine se subdivisant en deux domaines discontinus, le domaine compris entre les résidus 461 et 619 et le domaine compris entre les résidus 620 et 680 (US 5,547,834). Il s'agit également du domaine AD-I localisé entre les résidus d'acides aminés 552 et 635 ou du domaine AD-2 localisé entre les résidus d'acides aminés 50 et 77 (Journal of
General Virology (1999), 80, 2183-2191 ; Journal of Virology (2005), 79, 4066- 4079). Par conséquent, un polypeptide qui comprend dans sa séquence d'acides aminés une séquence homologue à l'un des domaines cités convient à l'objet de l'invention. Typiquement, le polypeptide comprend dans sa séquence d'acides aminés, une séquence homologue à celle qui se situe entre les résidus 461 et 680 de la gpl30 ou plus spécifiquement à celle qui se situe entre les résidus 552 et 635. Par séquence homologue, on entend toute séquence d'acides aminés dont l'identité est d'au moins 80% avec la séquence d'acides aminés du domaine antigénique considéré situé sur la gp 130 de la souche Towne ou AD169 (décrites dans US 2002/0102562), Typiquement, Phomologie de séquence est basée sur une identité d'au moins 90%, et de façon encore plus particulière Phomologie de séquence est basée sur une identité de séquence de 100%.
Parmi les peptides ou polypeptides dérivés de gB convenant à l'objet de l'invention, on cite notamment la gp 55 telle que décrite dans US 5,547,834. Elle est issue du clivage de la gB au niveau du site de clivage endo-protéolytique ; sa séquence d'acides aminés correspond à celle qui se situe entre les résidus serine 461 et l'extrémité C-terminale. On peut également utiliser des formes tronquées de la gp55, telle qu'une gp 55 dépourvue de tout ou partie de la séquence transmembranaire et de tout ou partie du domaine
C-terminal intra-cellulaire (par exemple un peptide ayant une séquence homologue à la séquence d'acides aminés de la gpl30 comprise entre les résidus 461 et 646) ou une gp 55 dépourvue de tout ou partie du domaine C-terminal intra-cellulaire (par exemple un peptide ayant une séquence homologue à la séquence d'acides aminés de la gpl30 comprise entre les résidus 461 et 680) qui sont décrites dans US 5,547,834.
On peut aussi utiliser une forme mutée de la gB qui porte une ou plusieurs mutations au niveau du site de clivage endo-protéolytique de sorte que celui-ci est rendu inopérant. La(les) mutation(s) est (sont) localisée(s) entre les résidus 457 et 460 de la séquence de la gpl30 et plus particulièrement se situe(nt) au niveau de l'arginine 460 et/ou la lysine 459 et/ou l'arginine 457. Un antigène d'enveloppe du CMV convenant particulièrement à l'objet de l'invention est une forme tronquée de la gB dépourvue de tout ou partie du domaine C-terminal et/ou dépourvue de tout ou partie de la séquence transmembranaire et dont le site de clivage est inopérant. Une forme tronquée de la gB particulièrement préférée correspond à celle qui est décrite dans US 6,100,064, nommé gBdTM ; elle porte trois mutations au niveau du site de clivage et une délétion au niveau de la région transmembranaire entre les résidus d'acides aminés Valine 677 et Arginine 752 de sorte que le domaine extracellulaire est directement relié au domaine cytoplasmique.
La protéine gB ou les peptides, polypeptides dérivés de celle ci sont obtenus au moyen de procédés de recombinaison génétique et purifiés selon des méthodes bien connues de l'homme de l'art. On peut utiliser notamment les procédés décrits dans US 6,100,064 et dans US 2002/0102562 incorporés par référence. Pour augmenter leur immunogénicité on peut secondairement les conjuguer à une protéine porteuse ou les fusionner à d'autres protéines, notamment à des protéines formant des particules comme l'antigène de surface de l'hépatite B (HbS). La protéine gB ou les peptides dérivés de celle-ci peuvent également être exprimés par des virus recombinants, notamment par des adénovirus recombinants ou des poxvirus recombinants. Pour la préparation de ces vecteurs recombinants exprimant la gB ou des peptides dérivées, on utilise les méthodes qui sont décrites notamment dans US 6,162,620, US 5,866,383, US 5,552,143, US 6,183,750, US 5,338,683, WO 9215672 ou dans WO 9639491. La gB peut être également présentée par une souche de CMV qui a été atténuée par passages successifs sur des cultures cellulaires, notamment la souche Towne qui a déjà été testée à des fins vaccinales.
La protéine gH est codée par le gène UL 75 du CMV. C'est une glycoprotéine de 742 ou 743 acides aminés selon qu'il s'agit de la souche Towne ou de la souche AD169. Les séquences sont décrites dans US 5,474,914 (figure 1) et dans US 6,610,295 (figure 5(a)). La séquence protéique de la gH déduite de sa séquence nucléotidique contient un peptide signal suivi d'un domaine extracellulaire ne possédant pas de site de clivage endoprotéolytique, d'un domaine transmembranaire et d'un domaine cytoplasmique C-terminal. Les épitopes neutralisants se situent dans le domaine extracellulaire, principalement dans la partie N-terminale de ce domaine, plus spécifiquement entre les résidus d'acides aminés 15 et 142 de la séquence protéique de la gH native et de façon encore plus spécifique entre les résidus d'acides aminés 33 et 142. Un épitope majeur neutralisant de la souche AD 169 a été identifié et se situe entre les résidus 33 et 43 de la séquence de la gH et a pour séquence LDPHAFHLLL (Urban M et al. : J. Virol (1992, vol 66/3, pl303-1311)). Par conséquent, un polypeptide qui comprend dans sa séquence d'acides aminés une séquence homologue à la séquence LDPHAFHLLL ou une séquence homologue à celle qui se situe entre les résidus 15 et 142 ou entre les résidus 33 et 142 de la séquence protéique de la gH convient à l'objet de l'invention. Par séquence homologue, on entend une séquence d'acides aminés dont l'identité est d'au moins 80% avec la séquence d'acides aminés qui se situe soit entre les résidus 15 et 142, soit entre les résidus 33 et 142 de la séquence protéique de la gH de la souche AD 169, ou avec la séquence LDPHAFHLLL Plus particulièrement,
Phomologie de séquence est basée sur une identité d'au moins 90%, et de façon encore plus particulière Fhomologie de séquence est basée sur une identité de séquence de 100%.
Comme peptides ou polypeptides dérivés de la gH convenant à l'objet de l'invention on cite la gH dépourvue de tout ou partie de sa région transmembranaire et/ou dépourvue de tout ou partie de sa région cytoplasmique. Typiquement, cela correspond à une protéine gH qui est délétée d'au moins 5 résidus, de façon préférée d'au moins 10 résidus C-terminaux et de façon encore plus préférée entre 20 et 34 résidus de l'extrémité C-terminale de la séquence d'acides aminés.
La protéine gH, les polypeptides ou les peptides dérivés de celle-ci sont obtenues au moyen de procédés de recombinaison génétique et purifiées selon des méthodes bien connues de l'homme de l'art notamment celles décrites dans US 5,474,914 ou dans US 5,314,800 incorporés par référence. Pour augmenter leur immunogénicité on peut secondairement les conjuguer à une protéine porteuse. Ils peuvent être aussi produits sous la forme de protéines de fusion comme cela est décrit dans J. Virol (1992, vol 66/3, pl303-1311). La protéine gH, les polypeptides ou les peptides dérivés de celle-ci peuvent également être exprimés par des virus recombinants, notamment par des adénovirus recombinants ou des poxvirus recombinants. Pour la préparation de ces vecteurs recombinants exprimant la gH ou des formes dérivées, on utilise les méthodes qui sont décrites notamment dans US 6,162,620 , US 5,866,383, US 5,552,143, ou dans WO 9639491. La protéine gH peut être également présentée par une souche de CMV qui a été atténuée par passages successifs sur des cultures cellulaires, notamment la souche Towne qui a déjà été testée à des fins vaccinales.
On peut également utiliser comme antigène vaccinal une protéine résultant de la fusion entre la glycoprotéine gB ou la glycoprotéine gH (ou une forme tronquée de celles-ci) et une protéine de membrane de HSVl ou de HSV2 (ou une forme tronquée de celles-ci). A titre d'exemple, on cite les protéines de fusion décrites dans EP 0759995, en particulier gB 685* et gB 685** qui résultent de la fusion entre une portion de la glycoprotéine gB du CMV et une portion de la glycoprotéine gD de
HSV.
Selon la nature de l'antigène du CMV, la composition vaccinale peut se présenter sous différentes formes : - Lorsque l'antigène est une protéine ou un peptide, la composition vaccinale peut être sous la forme d'un mélange, d'une émulsion H/E ou d'une émulsion H/E thermoréversible. Elle peut être aussi sous la forme d'une préparation extemporanée que l'on réalise juste avant administration. La composition vaccinale peut également se trouver à l'intérieur d'un dispositif, tel qu'une seringue « bypass » qui sépare physiquement l'antigène de l'émulsion.
- Lorsque l'antigène du CMV est sous la forme d'un virus recombinant exprimant la gB, la gH ou un peptide dérivé de la gB ou de la gH, ou lorsqu'il est sous la forme d'une souche atténuée d'un CMV, l'antigène et l'émulsion selon l'invention ne sont pas habituellement directement en contact dans la composition vaccinale. L'antigène et l'émulsion peuvent se trouver à l'intérieur d'un dispositif qui les sépare physiquement, tel qu'une seringue « bypass », mais ils sont administrés au même moment sur le même site d'administration. L'émulsion selon l'invention oriente également la réponse cellulaire T CD4+ spécifique vers un profil de type ThI en favorisant la production de cytokines de type ThI (IL2, IFN-γ,....) et/ou en diminuant la production de cytokines de type Th2 (IL4, IL5, ILlO,...) en réponse à un antigène présenté dans un contexte MHC classe IL Cet effet est évalué en mesurant le taux d' IFN-γ et d'IL5 produits après restimulation in vitro avec un antigène apparenté à celui qui a servi à l'immunisation in vivo et en déterminant le ratio IFN-γ /IL5. Plus le ratio est élevé et plus la réponse CD4+ est de type ThI. On peut également évaluer indirectement le profil de la réponse cellulaire T CD4+ en mesurant le ratio entre le taux d'Ig2a spécifiques/ IgGl spécifiques obtenu après immunisation des souris avec une composition vaccinale selon l'invention.
L'émulsion selon l'invention peut donc être utilisée pour corriger un déséquilibre de la réponse cellulaire T CD4+ qui s'observe dans certaines populations d'individus qui présentent un déficit immunitaire ou une altération du système immunitaire. Il s'agit notamment des personnes âgées qui présentent un déficit en production d'IFN-γ et/ou en IL2 consécutivement à une stimulation in vitro avec un antigènes provenant de germes intracellulaires, notamment avec un antigène de la grippe ( Ouyang et al (Mechanisms of ageing and development), 2000, vol 121, 131-137).
L'invention a donc pour objet l'utilisation d'une émulsion selon l'invention pour la préparation d'une composition vaccinale destinée à une population d'individus qui présentent un déséquilibre au niveau de la réponse cellulaire T CD4+.
L'invention a également pour objet un procédé de préparation d'une émulsion H/E selon l'invention comprenant une étape où une émulsion inverse E/H est obtenue par élévation de température et une étape où l'émulsion inverse E/H est transformée en émulsion H/E par abaissement de température. Cette transformation se produit lorsque l'émulsion E/H obtenue est abaissée à une température inférieure à la température d'inversion de phase de cette émulsion. Selon un mode de réalisation du procédé, l'émulsion E/H est obtenue en mélangeant dans une première étape une phase aqueuse comprenant un solvant aqueux, un polyoxyéthylène alkyl éther et un agoniste du TLR4 avec une phase huileuse comprenant du squalène et un tensioactif hydrophobe non ionique pour obtenir une émulsion H/E et en chauffant dans une deuxième étape l'émulsion H/E à une température qui est au moins la température d'inversion de phase de l'émulsion.
On incorpore la phase aqueuse comprenant la solution aqueuse (habituellement une solution tamponnée), l'agoniste du TLR4 (s'il n'est pas dans la phase huileuse) et le tensioactif hydrophile non ionique, dans la phase huileuse comprenant le squalène, et le tensioactif non ionique hydrophobe, ou bien l'inverse : on incorpore la phase huileuse dans la phase aqueuse. Cette incorporation se fait sous- agitation mécanique. On obtient une émulsion H/E grossière, non calibrée et instable (pré-émulsion). On chauffe cette pré-émulsion sous agitation mécanique jusqu'à obtention d'une inversion de phase, c'est-à-dire l'obtention d'une émulsion E/H. La transition ou inversion de phase peut être suivie par conductimétrie. La température à laquelle se produit le changement de courbure traduisant le passage d'un type d'émulsion à un autre est la température d'inversion de phase. En réalité, cette température est plutôt un intervalle de température qu'une valeur ponctuelle très précise ; en effet, on peut considérer que cette température est susceptible d'une variation d'un ou deux degrés, ceci afin que la totalité de l'émulsion subisse le phénomène d'inversion de phase. Lorsque l'émulsion est sous la forme d'une émulsion E/H on observe une chute brutale de la conductivité. On arrête le chauffage et on refroidit le mélange. Le refroidissement peut être effectué de façon passive, en laissant simplement la température revenir spontanément à la température ambiante ou de manière plus active, en effectuant par exemple une trempe de l'émulsion dans un bain de glace. Lors de la descente en température, l'émulsion E/H va à nouveau s'inverser à la température d'inversion de phase pour redonner une émulsion H/E. L'émulsion peut être stockée en l'état en attendant d'être diluée par une solution comprenant l'antigène vaccinal. Elle est thermoréversible, ce qui signifie que si elle est portée à nouveau à une température au moins égale à la température d'inversion de phase, elle va redevenir une émulsion E/H. La température d'inversion de phase est habituellement entre 45 et 80 °C, et de façon typique entre 50 et 65°C. On soumet ainsi les composants de l'émulsion, notamment l'agoniste du TLR.4 à un chauffage modéré ce qui évite une évaporation de la phase aqueuse ou une dégradation chimique des composants.
Selon un autre mode de réalisation, l'émulsion E/H est obtenue en chauffant séparément une phase aqueuse comprenant un solvant aqueux, un polyoxyéthylène alkyl éther et un agoniste du TLR4 et une phase huileuse comprenant du squalène et un tensioactif hydrophobe non ionique à une température qui est au moins égale à la température d'inversion de phase de l'émulsion puis en mélangeant la phase aqueuse avec la phase huileuse tout en maintenant la température du mélange à une température qui est au moins égale à la température d'inversion de phase.
Dans ce cas on chauffe séparément les phases aqueuse et huileuse à une température légèrement supérieure à la température d'inversion de phase, avant de les mélanger pour donner une émulsion inverse E/H qui sera ensuite refroidie jusqu'à obtention de l'émulsion submicronique H/E. Ces opérations peuvent être réalisées dans des réservoirs séparés pour une préparation en lots.
Il est également possible d'utiliser un procédé de fabrication en ligne. Le procédé consiste à mélanger à chaud les deux phases aqueuse et huileuse préparées séparément, au travers d'un mélangeur statique thermostaté, suivi d'un refroidissement en ligne au travers d'un échangeur thermique réfrigéré connecté en sortie du mélangeur statique, puis de la récupération finale de l'émulsion selon l'invention dans un récipient approprié (flacon ou réacteur). On a utilisé avec succès un mélangeur statique constitué d'une succession d'éléments de mélange composés de lames croisées et inclinées par rapport à l'axe du tube dans lequel ils sont introduits. L'énergie nécessaire au mélange est fournie par les pompes qui véhiculent les fluides et le mélange est réalisé sans pièce mobile, au travers des éléments de mélange par la séparation, le déplacement et la réunion successive des constituants du mélange.
Le procédé de fabrication en ligne est mis en œuvre selon la manière suivante : on prépare séparément, comme précédemment la phase aqueuse et la phase huileuse dans deux flacons ou réacteurs. Les deux phases sont chauffées sous agitation à une température légèrement supérieure à la température d'inversion de phase. Les deux phases sont alors introduites dans un mélangeur statique thermostaté au moyen de 2 pompes, dont les débits sont régulés de manière à obtenir la composition de l'émulsion selon l'invention. L'émulsion inverse E/H est obtenue durant le passage des deux phases dans le mélangeur statique. L'émulsion inverse est ensuite refroidie par passage en ligne au travers d'un échangeur thermique réfrigéré connecté en sortie du mélangeur statique. L'émulsion E/H va alors s'inverser au travers de l'échangeur thermique réfrigéré pour donner lieu à une émulsion H/E, qui sera réceptionnée dans un flacon ou réacteur et dont les caractéristiques sont identiques à celles de l'émulsion obtenue par un procédé en lots.
Il existe des alternatives aux modes de réalisation du procédé qui viennent d'être décrits ; lorsque l'agoniste du TLR4 a un comportement plus hydrophobe qu'hydrophile, on l'introduit dans la phase huileuse plutôt que dans la phase aqueuse. L'agoniste du TLR4 peut également être introduit une fois que le mélange de la phase huileuse et la phase aqueuse a été réalisé, ou lorsque l'émulsion a déjà été chauffée et qu'elle se trouve sous une forme d'émulsion E/H. La phase aqueuse peut contenir en outre un alditol. Enfin le procédé de préparation l'émulsion selon l'invention peut comprendre plusieurs cycles de thermoinversion successifs.
L'invention a également pour objet un procédé de préparation d'une composition vaccinale, dans lequel on mélange au moins un antigène vaccinal avec une émulsion H/E contenant un agoniste du TLR4 dont la structure chimique ne comporte pas de noyau sucré, caractérisé en ce que l'émulsion H/E contenant l'agoniste du TLR4 a été préparée selon un procédé d'inversion de phase comprenant une étape où l'on obtient une émulsion sous la forme d'émulsion inverse E/H par augmentation de la température et une étape où l'on transforme l'émulsion E/H en émulsion H/E par abaissement de la température.
Un mode de réalisation simple consiste à mélanger une solution aqueuse d'un antigène vaccinal dans une émulsion thermoréversible H/E obtenue selon l'un des modes de réalisation qui viennent d'être décrits. La composition vaccinale obtenue est sous la forme d'une émulsion H/E ou sous la forme d'une émulsion H/E thermoréversible lorsque la quantité de squalène représente en poids au moins 5% du poids total de la composition vaccinale. De façon alternative, on peut mélanger l'antigène à la phase aqueuse ou à la phase huileuse avant de préparer l'émulsion. Une telle façon de procéder implique bien sûr qu'il s'agisse d'antigènes qui soient compatibles avec le procédé de thermoinversion. Les solutions d'antigènes peuvent en outre contenir des sels minéraux et un ou plusieurs tampons, ainsi que tout autre composé habituellement utilisé dans les vaccins tels que des stabilisants, des conservateurs, ou éventuellement aussi d'autres adjuvants. A titre indicatif, la concentration en antigène dans les solutions aqueuses est généralement comprise entre 1 μg/ml et 1 mg/ml.
Le procédé selon l'invention peut également inclure une étape de lyophilisation. On prépare tout d'abord une émulsion concentrée liquide comme cela vient d'être décrit mais en choisissant de préférence comme solution aqueuse de l'eau plutôt qu'une solution tamponnée. On dilue ensuite cette émulsion dans un substrat de lyophilisation comprenant un alditol, un sucre et un alkylpolyglycoside.
Un substrat de lyophilisation habituellement employé comprend du mannitol, du saccharose et du dodécylmaltoside. L' émulsion diluée est alors répartie en échantillons (par exemple 0,5ml) et soumise à un cycle de lyophilisation qui peut s'effectuer de la manière suivante :
- chargement des échantillons à +40C,
- environ 2 heures de congélation à une température de consigne de - 45°C, - 14 à 19 heures de dessiccation primaire à une température de consigne de 0°C,
3 heures 30 de dessiccation secondaire à une température de consigne de + 25°C. Le lyophilisât obtenu est généralement conservé à une température voisine de +4°C avant d'être mélangé à un ou plusieurs antigènes vaccinaux. Une composition vaccinale selon l'invention peut être ainsi préparée en reprenant Pémulsion lyophilisée au moyen d'une solution aqueuse d'antigènes puis conservée en l'état
(le. à l'état liquide), ou être soumise à un nouveau cycle de lyophilisation afin d'être conservée sous forme de lyophilisât, si la nature des antigènes le permet. De manière alternative, il est possible de diluer directement l'émulsion concentrée avec une solution aqueuse comprenant à la fois les antigènes vaccinaux ainsi que l' alditol, le sucre et l'alkylpolyglycoside, et de soumettre ensuite la composition obtenue à la lyophilisation. Une telle façon de procéder implique bien sûr qu'il s'agisse d'antigènes qui soient compatibles avec un procédé de lyophilisation. Les exemples qui suivent illustrent de façon non limitative différents modes de réalisation de l'invention
Exemple I : Préparation d'une émulsion H/E thermoréversible concentrée à 32,4% de squalène (p/p)
On a préparé une solution de mannitol à 18% en tampon phosphate (p/p) sous agitation mécanique à 400C. A 0,454g de cette solution on a rajouté 0,093g d'Eumulgin ™ Bl que l'on a homogénéisé sous agitation mécanique à 4O0C pendant
5 min.
On a préparé une suspension mère à lOOOμg/ml du composé chimique ER804057 dans un tampon TRIS 5OmM. On a ajouté 390μl de la suspension mère de ER804057 au mélange Eumulgin ™ Bl/mannitol. Dans un autre récipient on a mélangé 0,073 g de Dehymuls ™ SMO et 0,484g de squalène que l'on a homogénéisé par agitation magnétique pendant 5 minutes à 300C.
On a incorporé ensuite sous agitation à environ 300C le contenu de la phase aqueuse contenant ER804057 à la phase huileuse contenant le mélange Dehymuls ™ SMO /squalène.
On a chauffé l' émulsion brute obtenue, sous agitation mécanique, jusqu'à ce que la température atteigne 6O0C. Cette température correspond à la température d'inversion de phase de cette composition. L' émulsion est alors sous une forme d' émulsion inverse (émulsion E/H) On a cessé ensuite le chauffage mais on a maintenu l'agitation jusqu'à ce que la température revienne à la température ambiante du laboratoire (≈20°C). L' émulsion redevient sous la forme d'une émulsion H/E.
On a obtenu ainsi une émulsion H/E thermoréversible, homogène dont plus de 90% de la population volumique des gouttelettes d'huile ont une taille <200nm et dont la composition en pourcentage massique est la suivante :
32,4% de squalène, 6,2% de ceteareth-12 (Emulgin Bl), 4,9% de monooléate de sorbitane (dehymuls SMO), 5,5% de mannitol 0.026% de ER804057
La quantité de squalène dans cette émulsion adjuvante représente donc 32,4% du poids total de l' émulsion.
Dans une autre variante on a réalisé dans un bêcher, un mélange contenant 50,5 g d'un tampon phosphate, 6g de mannitol, 6,18g d'Eumulgin ™ Bl et 0,026g d'ER804057. Ce mélange a été maintenu sous agitation à environ 40°C ; Dans un autre récipient, on a préparé la phase huileuse en mélangeant sous agitation magnétique 32,5g de squalène avec 4,8g de deshymuls SMO jusqu'à dissolution complète du deshymuls SMO. Lorsque les phases homogènes ont été obtenues, l'incorporation de la phase aqueuse à la phase huileuse, les étapes de montée en température suivie de l'étape de descente en température ont été réalisées comme précédemment. On a obtenu une émulsion H/E thennoréversible, homogène dont plus de 90% de la population volumique des gouttelettes d'huile ont une taille <200nm et dont la composition en pourcentage massique est la suivante :
32,5% de squalène, 6,2% de ceteareth-12 (Emulgin Bl), 4,8% de monooléate de sorbitane (dehymuls SMO), 6% de mannitol 0.026% de ER804057
50,5% de PBS
Dans une autre variante du procédé, on a utilisé, à la place du tampon PBS, un tampon citrate pH 6,04 préparé en mélangeant 0,83mM d'acide citrique monohydraté avec 9,14 mM de citrate de sodium.
Cette émulsion concentrée en squalène a été utilisée en tant qu' émulsion « mère », à partir de laquelle on a dérivé des émulsions H/E diluées thermoréversibles par dilution dans un tampon phosphate, dans un tampon Tris, ou dans un tampon citrate puis que l'on a stérilisées par filtration (voir exemple II). Ces émulsions H/E diluées thermoréversibles sont ensuite mélangées avec un ou plusieurs antigènes vaccinaux (voir exemples III, IV, et V). Exemple II : Etude de la stabilité d'une émulsion H/E thermoréversible diluée à 5% de squalène (p/p)
On a dilué Pémulsion concentrée de l'exemple 1 dans un tampon phosphate 9,6 mM (pH=7,4) pour obtenir une émulsion diluée dont la quantité de squalène représente
5% du poids total de l'émulsion. La composition de Pémulsion diluée, dénommée PIT-ER804057 à 5%, était la suivante : Squalène : 50mg/ml Ceteareth-12 (Emulgin Bl): 9,5 mg/ml Monooléate de sorbitane (dehymuls SMO): 7,4 mg/ml
Mannitol : 9 mg/ml ER804057 : 40 μg/ml
On a évalué la stabilité de cette émulsion thermoréversible après une conservation de 6 mois à une température de" +4°C en contrôlant la teneur en ER804057 dans l'émulsion et la distribution de taille de l'émulsion. Pour doser ER804057 on a procédé à une extraction sélective de ER804057 de l'émulsion suivie d'une analyse par chrornatographie liquide haute performance (HPLC) couplée à un détecteur à barrette de diodes (détection UV). On a déterminé la teneur en ER804057 de l'émulsion à contrôler à partir d'une gamme d'étalonnage renfermant entre 5 et 25 μg/ml de ER804057. Pour pallier les variations des rendements d'extraction, on a introduit dans chaque échantillon à doser (y compris dans les échantillons de la gamme d'étalonnage) une quantité constante d'un standard interne dont la structure chimique est très proche de celle de ER804057. Il s'agit de la molécule chimique dénommée ER803022. La gamme d'étalonnage a été réalisée à partir d'une émulsion thermoréversible qui a la même composition et préparée de la même façon que l'émulsion PIT-ER804057 à 5% (cf exemple II) hormis le fait qu'elle ne contenait pas de ER804057 (émulsion PIT à 5%), à laquelle on a rajouté une quantité variable de ER804057 prélevée d'une solution stock de ER804057 à 0,lmg/ml d'un mélange contenant 2 volumes de chloroforme pour 1 volume de méthanol (mélange CM 2 :1), une quantité fixe d'un standard interne (lOμg) prélevée d'une solution stock d'un standard interne à 0,1 mg/ml d'un mélange CM 2 :1, que l'on a dilué à convenance dans de l'eau pour préparation injectable (EPPI) L5 échantillon de PIT-ER804057 à 5% à doser, a été préparé en prélevant une aliquote de Pémulsion PIT-ER804057 à 5% auquel on a rajouté lOμg de standard interne et que l'on a dilué dans de PEPPI.
L'extraction de ER804057 à partir des échantillons de la gamme d'étalonnage ou des échantillons de PIT-ER804057 à 5% a été réalisée de la façon suivante: On a solubilisé l'échantillon par du CM 2 :1. Le système biphasique obtenu est composé d'une phase chloroformique contenant majoritairement ER804057 et d'une phase aqueuse contenant les autres composés de Pémulsion. On a récupéré la phase chloroformique que l'on a évaporé à chaud sous un courant d'azote. L'extrait sec obtenu, a été repris et solubilisé à nouveau dans le mélange CM 2 :1. On a déposé le mélange sur une cartouche échangeuse d'anions préalablement équilibrée dans le mélange CM 2 :1. Elle a retenu sélectivement ER804057 et le standard interne qui sont chargés négativement tandis que les autres composants de Pémulsion, non chargés, ont été éliminés. On a élue ER804057 et le standard interne au moyen d'un mélange contenant 2 volumes de chloroforme, 3 volumes de méthanol, pour 1 volume de NaCl IM. L'éluat a ensuite été séché à chaud sous un courant d'azote. On a réalisé enfin une dernière extraction en eau et CM 2 :1 pour éliminer les sels résiduels et récupérer ER804057 ainsi que le standard interne dans la phase chloroformique qui a finalement été évaporée à chaud sous un courant d'azote. L'extrait sec issu de chaque échantillon a été conservé à -200C avant d'être analysé par HPLC.
L'extrait sec de chaque échantillon a été repris par 50μl de CM 4 :1, puis dilué au
1/2 dans le méthanol, puis au 1/10e dans le mélange acétonitrile 30%-EPPI. On a injecté 20 μl de la dilution dans un appareil à chromatographie liquide (HPLC Merck Hitachi, Lachrom série 7000) comprenant une colonne Waters XTerra™ RP8 préalablement équilibrée dans une phase mobile constituée d'un mélange à 80% de la phase A (eau PPI/éthanol 50/50 contenant 2% de H3PO4) et 20% de la phase B
(ethanol contenant 2% de H3PO4)On a élue ER804057 et le standard interne à l'aide d'un gradient d' ethanol à 2% de H3PO4. En sortie d'HPLC, l'éluat est arrivé au niveau du détecteur à barrette de diodes et les molécules ont été détectées à la longueur d'onde de 215 nm. Sur le chromatogramme obtenu les surfaces des 2 pics (analyte et réfèrent) ont été intégrées et corrélées: Pour corriger les variations liées à la préparation de l'échantillon, la courbe d'étalonnage a été établie entre le ratio des surfaces des pics correspondant au couple ER804057 (molécule quantifiée) et ER803022 (standard interne) et le ratio des concentrations correspondant à ER 804057 et ER803022 (standard interne). Une fois la courbe établie, on a déterminé la quantité de ER804057 présente dans l'émulsion PIT-ER804057 à 5% par mesure du ratio des surfaces des pics ER804057/standard interne et comparaison à la courbe étalon.
Figure imgf000038_0001
Les résultats mentionnés dans le tableau ci dessus montrent que ER804057 conserve son intégrité structurale et que sa concentration dans l'émulsion PIT-ER804057 à 5% n'a pas sensiblement varié après avoir conservé l'émulsion pendant 6 mois à + 4°C.
Les analyses de distribution de taille ont été réalisées après dilution de l'émulsion au l/100emβ avec le Mastersizer 2000, en utilisant les paramètres suivants : IR particule=1.495 ; IR milieu=1.332 ; valeur d'absorption=0 ; limite d'obscuration basse= 4% ; limite d'obscuration haute=7% ; modèle d'analyse « gênerai purpose ». Pour chaque analyse de distribution de taille, on a évalué les paramètres suivants : dlO, d50, et d90 qui représentent respectivement les valeurs des diamètres moyens de particule en dessous desquels se trouvent respectivement 10%, 50% et 90% de la population volumique des gouttelettes d'huile.
Figure imgf000038_0002
Ces résultats montrent que la distribution de taille de l'émulsion est stable à +4°C sur une période de temps d'au moins 6 mois.
Exemple III : Composition vaccinale contre les infections à cvtomégalovirus préparée à partir d'une émulsion H/E selon l'invention
On a préparé des compositions vaccinales comprenant à titre d'antigène vaccinal une protéine recombinante qui dérive de la glycoprotéine gB du CMV. Cette protéine recombinante a été produite par une lignée CHO recombinante transfectée par un plasmide dénommé pPRgB27clv4 qui contient un gène modifié de la gB. Pour faciliter la production de cette protéine recombinante par la lignée CHO le gène de la gB dont la séquence est décrite dans US 5,834,307 a été modifié au préalable en supprimant la partie du gène qui code pour la région transmembranaire de la protéine gB correspondant à la séquence d'acides aminés comprise entre la Valine 677 et l'Arginine 752 et en introduisant 3 mutations ponctuelles au niveau du site de clivage. La protéine produite par la lignée CHO, dénommée gBdTM correspond à une protéine gB tronquée dépourvue de site de clivage et de région transmembranaire.
La construction du plasmide pPRgB27clv4 et la production de la protéine gB tronquée (gBdTM) par la lignée CHO recombinante sont décrites dans US 6,100,064. La protéine gBdTM produite dans le milieu de culture est ensuite purifiée par chromatographie d'affinité en utilisant l'anticorps monoclonal 15D8 décrit par Rasmussen L et al. ( J. Virol. (1985) 55 : 274-280). La protéine purifiée a été stockée sous la forme d'une solution stock à 0,975 mg/ml de gBdTM en tampon phosphate.
On a préparé des compositions immunostimulantes de gBdTM formulées avec différentes compositions d'émulsions H/E ou avec une suspension d'hydroxyde d'aluminium.
La composition n°l renfermait 2 μg de gBdTM en tampon citrate à pH 6 sous 50 μl (groupe gB). La composition n°2 renfermait 2 μg de gBdTM, 1,075 mg de squalène, 0,133 mg de Trioléate de sorbitane (Montane™ VG 85) et 0,125 mg de Tween™80 en tampon citrate à pH 6 sous 50 μl (groupe gB+émulsion H/E). Cette composition a été obtenue en mélangeant volume à volume une solution de gB avec une émulsion H/E de l'art antérieur que l'on a obtenue par microfluidisation.
La composition n°3 renfermait 2 μg de gBdTM et 60μg d'hydroxyde d'aluminium en tampon phosphate sous 50μl (groupe gB+AL)
La composition n°4 renfermait 2 μg de gB, 1,25 mg de squalène, 0,187 mg de Dehymuls™ SMO, 0,237 mg d'Eumulgin™ Bl et 0,225 mg de mannitol en tampon PBS à pH 7,4 sous 50μl. Cette composition a été obtenue en mélangeant volume à volume une solution de gB avec une émulsion H/E thermoréversible à 5% de squalène (Groupe gB+PIT). L' émulsion H/E thermoréversible servant à la préparation de cette composition a été obtenue par dilution d'une émulsion H/E thermoréversible concentrée à 32,4% de squalène (p/p) qui a été préparée en utilisant le même procédé que celui de l'exemple 1 hormis le fait que la phase aqueuse ne contenait pas de ER804057 .
La composition n°5 renfermait 2μg de gBdTM, lμg de ER804057, dans un tampon citrate pH 6 sous 50μl (groupe gB+ER804057). La composition n°6 renfermait 2 μg de gBdTM, 1,25 mg de squalène, 0,145 mg de Montane™ VG 85, 0,147 mg de Tween™80, 1 μg de ER804057 en tampon citrate à pH 6 sous 50 μl (groupe gB+émulsion H/E+ER804057). Cette composition a été obtenue en mélangeant volume à volume une solution de gB avec une émulsion H/E de l'art antérieur obtenue par microfluidisation à laquelle on a ajouté ER804057. La composition n°7 renfermait 2 μg de gBdTM, 1 μg de ER804057, 60 μg d'hydroxyde d'aluminium dans un tampon phosphate sous 50 μl (groupe gB+Al+ER804057).
La composition n°8 renfermait 2 μg de gB, 1,25 mg de squalène, 0,189 mg de Dehymuls™ SMO, 0,240 mg d'Eumulgin™ Bl et 0,211 mg de mannitol et 1 μg de ER804057 en tampon PBS à pH 7,4 sous 50 μl. Cette composition a été obtenue en mélangeant volume à volume une solution de gB avec une émulsion H/E thermoréversible PIT-ER804057 à 5% de squalène obtenue par dilution de l'émulsion mère de l'exemple 1 (Groupe gB+PIT/ER804057). On a immunisé 8 groupes de 10 souris non consanguines OFl femelles, âgées de 8 semaines par voie sous-cutanée, aux jours JO et J21, avec les compositions indiquées ci-dessus (chaque groupe de souris a reçu 2 injections de la même composition). On a prélevé à J20 et J34 au sinus retro-orbital des échantillons sanguins qui ont été utilisés pour déterminer les concentrations en anticorps en IgGl et IgG2a spécifiques de gBdTM. Ces dosages ont été réalisés par ELISA en sensibilisant pendant une nuit à +40C les puits de microplaques de 96-ρuits Dynex avec 100 ng (100 μl) de gBdTM en solution de tampon carbonate 0,05 M à pH 9,6. Pour la détermination des anticorps neutralisants on a utilisé le protocole décrit par
Gonczol E. et al. dans J. Virological Methods, 14: 37-41 (1986). On a utilisé des cellules MRC5 cultivées dans un milieu MEM contenant 10% de sérum de veau fœtal, entre les passages 28 à 38, pour les analyses de microneutralisation. La souche CMV Towne (Wistar Institute, Philadelphie, US) purifiée et propagée sur cellules MRC5, ayant un titre d'environ 2 x 106 PFU/ml, a servi de souche d'infection. On a utilisé également une source de complément obtenu à partir des sérums de souris de l'institut Virion Ltd (Suisse). Un mélange de sérums humains ayant un titre au 1:128 a été utilisé comme contrôle positif, et a été inclus dans chaque test de microneutralisation. On a inactivé les sérums à tester par chauffage à 560C pendant 30 minutes. On a ajouté à une aliquote de 15 μl de chaque sérum inactivé, 105 μl de milieu de culture (MEM + 10% de sérum de veau foetal) dans des plaques de culture de 96 puits à fond plat (dilution au 1/8). Puis on a réalisé des dilutions successives de raison 2. Les sérums de contrôle ont été testés de la même façon. 60 μl de suspension de virus contenant 3000 PFU et 5 μl de complément de souris ont été ajoutés dans chaque puits. Après une incubation de 1 heure à 37°C sous CO2, on a ajouté 3-4xlO4 cellules MRC5 dans un volume de 150 μl de milieu de culture dans chacun des puits. Les microcultures ont été cultivées pendant 4 jours. L'activité cytopathique du virus était de 100% dans les puits qui ne contenaient pas xle sérums. Par contre, on a observé une inhibition de l'activité cytopathique du virus dans les puits qui renfermaient des sérums neutralisants. Le titre en anticorps neutralisants d'un sérum correspond à l'inverse de sa dilution qui inhibe à plus de 90% l'activité cytopathique du virus. Les résultats qui ont été obtenus pour chaque groupe de souris sont représentés dans les tableaux ci après :
Figure imgf000042_0001
* titre moyen des dilutions de sérums (exprimées en log10)
Ces résultats montrent que l'émulsion PIT/ER804057 a un pouvoir immunostimulant plus important que les autres adjuvants puisque les taux d'IgGl et d'IgG2a spécifiques obtenus dans le groupe de souris « gB+PIT/ER804057 » sont significativement plus élevés que ceux obtenus dans les groupes de souris « gB+AL » ou « gB+émulsion H/E ». Le pouvoir immunostimulant de l'émulsion selon l'invention n'est pas dû uniquement à l'émulsion thermoréversible (émulsion PIT) ou à l'agoniste du TLA4 mais à la combinaison des deux produits. Les taux d'IgGl et IgG2a spécifiques observés dans les groupes « gB+PIT » et « gB+ER804057 » sont en effet significativement plus faibles que ceux qui sont observés dans le groupe « gB+PIT/ER804057 ».
Tableau récapitulatif de la production d'anticorps neutralisants
Figure imgf000043_0001
** : inverse de la moyenne des dilutions sériques inhibant à plus de 90% l'effet cytopathique du virus.
Ces résultats montrent que la composition irnmunostimulante résultant du mélange d'un antigène d'enveloppe du CMV avec une émulsion H/E thermoréversible renfermant un agoniste du TLR4 telle que décrite dans l'invention est celle qui induit le plus fort taux d'anticorps neutralisants chez la souris. L' émulsion PIT/ER804057 a une plus grande capacité à stimuler la production d'anticorps neutralisants que les autres compositions adjuvantes testées. L' émulsion PIT/ER804057 s'avère plus performante (pour sa capacité à stimuler la production d'anticorps neutralisants) qu'une émulsion H/E de l'art antérieur à base de squalène, renfermant les mêmes composants que P émulsion MF59, considérée jusqu'à présent comme l'adjuvant de référence pour l'adjuvantation des protéines du CMV. On constate aussi que l'ajout d'un agoniste du TLR4 à l'émulsion H/E de l'art antérieur n'augmente pas la performance de cette émulsion (le titre en anticorps neutralisants reste le même) alors que la performance d'une émulsion thermoréversible (PIT) s'accroît lorsqu'elle contient un agoniste du TLR4 (le titre en anticorps neutralisants augmente). Exemple IV: Composition vaccinale contre la grippe préparée à partir d'une émulsion H/E selon l'invention
On a préparé des compositions immunostimulantes à partir d'une composition vaccinale antigrippale comprenant les 3 souches vaccinales de la campagne 2004 (la souche A
/New Caledonia (HlNl), la souche A/Wyoming (H3N2), et la souche B/Jiangsu que l'on formule avec différentes compositions d'émulsions H/E ou avec une suspension d'hydroxyde d'aluminium.
La composition n°l renfermait 0,3 μg d'hémagglutinine (HA) de chacune des souches virales en tampon PBS sous 30 μl. (groupe 0,3 μg HA)
La composition n°2 renfermait 6,3 μg d'hémagglutinine (HA) de chacune des souches virales en tampon PBS sous 30 μl. (groupe 6,3 μg HA)
La composition n°3 renfermait 0,3 μg d'hémagglutinine (HA) de chacune des souches virales 0,65 mg de squalène, 0,075 mg de trioléate de sorbitane (Span™ 85) et 0,075 mg de Tween™80 en tampon PBS sous 30 μl (groupe 0,3 μg HA+émulsion H/E). Cette composition a été obtenue en mélangeant la composition vaccinale antigrippale avec une émulsion H/E de l'art antérieur obtenue par microfluidisation.
La composition n°4 renfermait 0,3 μg d'hémagglutinine (HA) de chacune des souches virales, 0,75 mg de squalène, 0,11 mg de Dehymuls™ SMO, 0,143 mg d'Eumulgin™ Bl et 0,138 mg de mannitol et 0,6 μg de ER804057 en tampon PBS à pH 7,4 sous 30 μl
(Groupe 0,3 μg HA+PIT/ER804057). Cette composition a été obtenue en mélangeant la composition vaccinale antigrippale avec l'émulsion theπnoinversible telle que décrite dans l'exemple 1 et que l'on a préalablement dilué en tampon PBS.
On a immunisé 4 groupes de 8 souris BALB/c femelles, âgées de 8 semaines, à qui on a administré à JO par voie intradermique (face interne de l'oreille) une dose de 30 μl de l'une des compositions immunostimulantes indiquées ci-dessus.
On a prélevé à J21 au sinus retro-orbital des échantillons sanguins qui ont été utilisés pour déterminer les taux d'anticorps neutralisants spécifiques de chaque souche virale (anticorps inhibant Phémagglutination (IHA)) obtenus dans chaque groupe de souris immunisées. Le principe de ce dosage est basé sur la capacité des virus grippaux à agglutiner les globules rouges tandis qu'un sérum qui contient des anticorps neutralisants dirigés spécifiquement contre la HA du virus inhibe l'activité « hémagglutinante » du virus. On a éliminé dans un premier temps les inhibiteurs non spécifiques contenus dans les sérums en les traitant avec une enzyme RDE (Receptor destroying enzyme) fournie par Sigma puis en les mettant en contact avec une solution de globules rouges de poulet à 10%. On a obtenu un surnageant débarrassé d'inhibiteurs non spécifiques et qui correspondait à un sérum dilué au 1/10e. On a réalisé ensuite des dilutions successives de raison 2 du surnageant en tampon phosphate puis on a déposé 50μl de chacune des dilutions dans les puits d'une microplaque en V. On a ajouté dans chaque puits 50μl d'une suspension virale provenant d'un liquide allantoïque clarifié et titrant 4 unités hémagglutinantes (4HAU). On a laissé incuber pendant 1 heure à la température du laboratoire avant d'ajouter 50μl d'une solution de globules rouges de poulet ou de dinde dans chacun des puits. On a laissé reposer pendant 1 heure à +4°C avant d'effectuer la lecture du test. La présence d'une inhibition d'hémagglutination se traduisait par la présence d'un point rouge au fond du micropuits tandis que la présence d'une hémagglutination se traduisait par la présence d'un halo rosé dans le micropuits. Le titre en anticorps IHA est représenté par l'inverse de la dernière dilution où l'on n'observe pas d'hémagglutination dans le micropuits.
Les résultats qui ont été obtenus sont regroupés dans le tableau ci dessous :
Figure imgf000045_0001
*** moyenne des titres IHA obtenus sur les 8 sérums de chaque groupe de souris.
Ces résultats montrent que la composition vaccinale obtenue en mélangeant un vaccin antigrippal avec une émulsion H/E thermoréversible renfermant un agoniste du TLR4 est celle qui induit le plus fort taux d'anticorps neutralisants chez la souris quelle que soit la souche vaccinale testée comparativement aux autres compositions vaccinales. L'émulsion PIT/ER804057 s'avère même légèrement plus performante (pour sa capacité à stimuler la production d'anticorps neutralisants) qu'une émulsion H/E de l'art antérieur dont la composition est similaire à MF59. L'intérêt de cette émulsion réside aussi en ce que l'on peut réduire fortement les quantités d'antigène puisque les résultats obtenus avec une dose de 0,3 μg d'hémagglutinine mélangée avec une émulsion PIT/ER804057 sont meilleurs que ceux que l'on obtient avec une dose 20 fois plus forte d'hémagglutinine.
Dans un autre test, on a suivi l'évolution du taux des anticorps inhibant l'hémagglutination au cours du temps dans des groupes de souris immunisées avec différentes compositions immunostimulantes préparées à partir du même vaccin de la campagne 2004.
La composition n°l renfermait 0,3 μg d'hémagglutinine (HA) de chacune des souches virales en tampon PBS sous 30 μl. (groupe 0,3 μg HA). La composition n°2 renfermait 6,3 μg d'hémagglutinine (HA) de chacune des souches virales en tampon PBS sous 30 μl. (groupe 6,3 μg HA).
La composition n°3 renfermait 0,3 μg d'hémagglutinine (HA) de chacune des souches virales, 0,6 μg de ER804057 dans un tampon aqueux sous 30 μl (groupe 0,3 μg
HA+ER804057). La composition n°4 renfermait 0,3 μg d'hémagglutinine (HA) de chacune des souches virales, 0,30 mg de squalène, 0,044 mg de Dehymuls™ SMO, 0,057 mg d'Eumulgin™
Bl, 0,055 mg de mannitol en tampon PBS à pH 7,4 sous 30 μl (Groupe 0,3 μg HA+PIT à 1%)
La composition n°5 renfermait 0,3 μg d'hémagglutinine (HA) de chacune des souches virales, 0,30 mg de squalène, 0,044 mg de Dehymuls™ SMO, 0,057 mg d'Eumulgin™
Bl, 0,055 mg de mannitol et 0,6 μg de ER804057 en tampon PBS à pH 7,4 sous 30 μl
(Groupe 0,3 μg HA+PÎT à 1 %/ER804057).
On a immunisé 5 groupes de 5 souris BALB/c femelles, âgées de 8 semaines, à qui on a administré à JO par voie intradermique (face interne de l'oreille) une dose de 30 μl de l'une des compositions immunostimulantes indiquées ci-dessus.
On a prélevé au sinus retro-orbital des échantillons sanguins à J23, J51 et J79 qui ont été utilisés pour déterminer les taux d'anticorps neutralisants spécifiques de la souche HlNl (anticorps inhibant l'hémagglutination (IHA)) obtenus dans chaque groupe de souris immunisées. Les résultats qui ont été obtenus sont regroupés dans le tableau ci-dessous :
Figure imgf000047_0001
*** moyenne des titres IHA obtenus sur les 5 sérums de chaque groupe de souris.
La performance de Pémulsion PIT-ER804057 pour sa capacité à produire des anticorps inhibant l'hémagglutination du virus grippal (anticorps protecteurs) est le résultat de l'action combinée de l'émulsion et de l'agoniste du TLR4 ; les performances de Pémulsion PIT seule ou de ER804057 seule sont plus faibles.
Exemple V : Composition vaccinale contre la grippe préparée à partir d'une émulsion selon l'invention testée dans une population de souris jeunes ou âgées déjà sensibilisées au virus de la grippe.
On a testé l'efficacité de l'émulsion de l'invention dans le cas d'un vaccin contre la grippe qui serait administré à des personnes déjà sensibilisées au virus de la grippe, soit parce que ces personnes ont déjà été en contact avec le virus grippal, soit parce qu'elles ont déjà été vaccinées avec un vaccin anti-grippal.
Pour faire ce type d'évaluation, on peut, d'après Porter et al (Vaccine, 2003, 21 :940- 945), utiliser comme modèle animal non naïf vis-à-vis de la grippe des souris préalablement immunisées par voie intramusculaire (IM) avec un vaccin trivalent.
5 groupes de 10 souris C57B1/6 de 8-10 semaines ont reçu par voie EVI une dose d'un vaccin trivalent contenant d'l,5μg d'HA de chacune des souches AJ New Caledonia/20/99 (HlNl), A/New York/55/04 (H3N2) et B/Malaysia/2506/04. A J28, à l'exception d'un groupe (groupe PBS) qui a reçu une injection d'un tampon PBS, tous les autres groupes de souris ont reçu par voie intradermique, sous un volume de 30μl, différentes compositions vaccinales contenant un vaccin trivalent différent de celui qui a servi à la primo immunisation (A/ New Caledonia/20/99 (HlNl), A/Wellington/01/04 (H3N2) et B/Jiangsu/10/03).
Un groupe a reçu une composition renfermant 0,3 μg d'HA de chacune des souches en tampon PBS (groupe 0,3 μg HA).
Un autre groupe a reçu une composition renfermant 6,3 μg d'HA de chacune des souches en tampon PBS (groupe 6,3 μg HA).
Un autre groupe a reçu une composition renfermant 0,3 μg d'HA de chacune des souches en tampon PBS dans une émulsion H/E à 1% de squalène contenant 0,3 mg de squalène, 0,044 mgde Dehymuls ™ SMO, 0,057 mg d'Eumulgin ™ Bl et 0,055 mg de mannitol en tampon PBS. Cette composition qui contenait 1% de squalène a été préparée en mélangeant le vaccin antigrippal avec une émulsion H/E obtenue par dilution d'une solution mère thermoréversible concentrée préparée selon le même procédé que celui décrit dans l'exemple l~ hormis le fait que la phase aqueuse ne contenait pas de ER804057 (groupe 0,3 μg HA +PIT 1%). Enfin, le dernier groupe a reçu une composition renfermant 0,3 μg d'HA de chacune des souches en tampon PBS dans une émulsion H/E à 1% de squalène contenant 0,3 mg de squalène, 0,044mgde Dehymuls ™SMO, 0,057 mg d'Eumulgin ™ Bl et 0,055 mg de mannitol en tampon PBS et 0,6μg d'ER804057. Cette composition qui contenait 1% de squalène et 0,6μg d'ER804057 a été préparée en mélangeant le vaccin antigrippal avec une émulsion H/E obtenue par dilution d'une solution mère thermoréversible concentrée préparée selon le même procédé que celui décrit dans l'exemple 1 (groupe 0,3 μg HA+PIT 1%/ER 804057)
A J50, les souris ont été euthanasiées pour recueillir un échantillon sanguin et réaliser un prélèvement de rate. Sur chaque prélèvement de sang on a réalisé un dosage des IHA vis-à-vis des souches AJ New Caledonia/20/99 (HlNl), A/Wellington/01/04 (H3N2) et B/Jiangsu/10/03. Les résultats qui ont été obtenus sont regroupés dans le tableau ci-dessous :
Figure imgf000049_0001
* représente la valeur moyenne des titres IHA obtenus sur les 10 sérums de chaque groupe de souris
Ces résultats montrent que le taux d'IHA moyen dans le groupe de souris immunisées avec la composition vaccinale « HA +PIT 1%/ER8O4O57 » faiblement dosée en squalène (1%) et en agoniste du TLR4 (elle contient 0,6μg d'ER804057), est significativement plus élevé que les titres obtenus après immunisation des souris avec le vaccin antigrippal non adjuvé à dose équivalente en HA (groupe 0,3 μg HA) ou à dose 20 fois plus forte en HA (groupe 6,3 μg HA). Ces résultats montrent l'intérêt de l'émulsion PIT 1%/ER 804057, même au sein d'une population déjà sensibilisée au viras de la grippe, puisqu'on peut réduire d'un facteur 20 la quantité d'antigène grippal de chaque souche, tout en obtenant des taux d'anticorps protecteurs plus importants vis-à-vis des 3 souches de virus.
Sur chaque prélèvement de rate on a analysé la réponse imrnune cellulaire spécifique en utilisant la technique ELISPOT et la technique CBA(Cytometric Bead Array) pour le dosage de l'interferon γ et de FIL5 produits par les splénocytes après stimulation spécifique. En ce qui concerne la technique ELISPOT, on a déposé 2x105 splénocytes sous 200μl d'un milieu de culture (RPMI 1640, 10% de sérum de veau fœtal, glutamine 2mM, β Mercaptoéthanol 5OmM) dans les puits de microplaques de nitocellulose préalablement sensibilisées avec un anticorps de rat anti INFγ de souris (Pharmingen ref : 551216) ou avec un anticorps de rat anti IL5 de souris (Pharmingen erf : 554393). Les splénocytes ont été incubés pendant 1 nuit à 370C en présence d'IL-2 murine (Bohringer) (lOU/ml) et de différents antigènes grippaux à une concentration de lμg/ml. Pour l'analyse de la réponse cellulaire CD8+, on a utilisé un peptide NP de la grippe ( TYQRTRALV) reconnu dans le contexte H-2kd. Pour l'analyse de la réponse cellulaire CD4+ l'antigène grippal est représenté par le vaccin trivalent inactivé et splitté contenant les souches A/ New Caledonia/20/99 (HlNl), A/Wellington/01/04 (H3N2) et B/Jiangsu/ 10/03. Les microplaques ont ensuite été lavées et les splénocytes qui ont sécrétés de l'IFNγ ou de l'IL5 ont été détectés au moyen d'un anticorps de rat biotinylé anti MFγ de souris (Pharmingen ref : 554410) ou d'un anticorps de rat biotinylé anti IL5 de souris (Pharmingen ref : 554393) et au moyen de la streptavidine conjuguée à la peroxydase (Southern Biotechnology-ref 7100-05) ; Après révélation à l'aide du 3 Amino-9 éthyl- carbazole les spots correspondant aux splénocytes qui sécrètent de PINFγ ou de l'IL5 ont été comptabilisés au moyen d'un lecteur ELISPOT automatique. Les résultats ont été exprimés en nombre de cellules sécrétant de l'INFγ ou de 1TL5 pour 106 splénocytes. Le seuil positif de détection est de 20 spots pour 106 splénocytes.
En ce qui concerne la technique CBA, on a déposé dans les puits de micoplaques de culture 4x105 splénocytes sous 200μl d'un milieu de culture (RPMI 1640, 10% de sérum de veau foetal, glutamine 2mM, β Mercaptoéthanol 5OmM). Les splénocytes ont été incubés pendant 5 jours à 37°C en présence du vaccin trivalent (à lμg/ml) ou en l'absence d'agent stimulant pour évaluer la production non spécifique de cytokine (témoin milieu). Le contenu en INFγ ou en IL5 des surnageants de culture a ensuite été dosé par cytométrie de flux en utilisant le kit CBA mouse Thl/Th2 (Becton Dickinson — ref :551287). Le seuil positif de détection était de 2,5 pg/ml pour l'INFγ et de 5 pg/ml pour PIL5. Pour chaque prélèvement de rate, la concentration spécifique en INFγ ou en IL5 a été calculée en soustrayant du résultat le taux d'MFγ ou d'IL5 qui est produit de façon non spécifique. Les résultats des analyses de la réponse cellulaire sont regroupés dans le tableau ci- dessous :
Figure imgf000051_0001
* représente la valeur moyenne du nombre de splénocytes, sécrétant de l'IL5 ou de l'IFNγ par 106 splénocytes après stimulation avec le vaccin tri valent; La valeur moyenne est calculée sur la base des résultats ELISPOT obtenus sur les 10 prélèvements de rate/ groupe de souris
** représente le taux moyen (pg/ml) en IL5 ou en IFNγ calculé sur la base des résultats obtenus sur les 10 prélèvements de rate/groupe de souris en utilisant la technique CBA.
*** le ratio représente la moyenne arithmétique des ratios IFNγ/IL5 dans chaque groupe. On a déterminé le ratio IFNγ/IL5 pour chaque prélèvement sur la base des valeurs des concentrations spécifiques en INFγ et en IL5 obtenues selon la méthode CBA après mise en culture des splénocytes puis on a fait la moyenne arithmétique des 10 ratios obtenus pour chaque groupe de souris. Ces résultats montrent que l'émulsion PIT 1%/ER 804057 oriente fortement la réponse cellulaire CD4+ vers la production d'INFγ consécutivement à une restimulation spécifique des cellules avec le vaccin de la grippe. C'est dans le groupe de souris qui a reçu cette émulsion qu'on observe la réponse ThI la plus prononcée (ratio IFNγ/IL5 le plus élevé). La réponse ThI est en effet plus forte que celle qui est observée dans le groupe de souris qui a reçu un vaccin grippal 20 fois plus dosé (groupe 6,3 μg). Cette émulsion est donc recommandée dans les populations d'individus qui ont une réponse ThI déficitaire consécutivement à une vaccination antigrippale, notamment chez les personnes âgées.
On a reproduit le même protocole expérimental en utilisant des souris C57B16 mâles, âgées de 17 mois puis on a mesuré les taux d'IHA dirigés contre A/Wellington (H3N2). Les résultats qui ont été obtenus sont regroupés dans le tableau ci-dessous :
Figure imgf000052_0001
* représente la valeur moyenne des titres IHA obtenus sur les 10 sérums de chaque groupe de souris
Ces résultats montrent l'intérêt d'une composition vaccinale qui a été obtenue en mélangeant un vaccin antigrippal dans une émulsion H/E faiblement dosée en squalène (1%) et en agoniste du TLR4 (ER804057 à 0,6μg) pour vacciner une population d'individus âgés déjà sensibilisés au virus de la grippe puisqu'on peut réduire d'un facteur 20 la quantité d'antigène grippal de chaque souche, tout en ayant des taux d'anticorps protecteurs plus importants vis-à-vis des 3 souches de virus.

Claims

Revendications
1. Une émulsion Huile dans Eau (H/E) comprenant : i) un agoniste du TLR4, dénommé TLA4, dont la structure chimique ne comporte pas de noyau sucré, ii) du squalène, iii) un solvant aqueux, iv) un tensioactif hydrophile non ionique qui est un polyoxyethylène alkyl éther, v) un tensioactif hydrophobe non ionique et, qui est thermoréversible.
2. Une émulsion selon la revendication 1, dans laquelle TLA4 est un composé chimique de formule I, II, III ou IV:
Composé de formule I
Figure imgf000053_0001
Figure imgf000053_0002
Composé de formule II
Figure imgf000054_0001
Composé de formule III
Figure imgf000055_0001
10 Composé de formule IV
Figure imgf000056_0001
dans laquelle pour chacune des formules I, II, III, ou IV, R1 est sélectionné dans le groupe consistant en :
a) C(O); b) C(O)-alkyle en C1-C14-C(O), dans lequel ledit alkyle en C1-C14 est facultativement substitué par un hydroxy, un alcoxy en C1-C5, un alkylènedioxy en C1-C5, un (alkyl en Q-C^arnino, ou un (alkyle en C1-C5)BTyIe, dans lequel ladite partie aryle dudit (alkyle en C1-C5)aryle est facultativement substituée par un alcoxy en C1-C5, un (alkyle en C1-C5) amino, un (alcoxy en Ci-C5)amino, un (alkyle en C1-C5)aminoalcoxy en C1-Cs3 -O-(alkyle en C1-C5) aminoalcoxy en C1-C5, -O-(alkyle en Ci-C5) amino-C(O) - alkyle en C1-C5-C(O)OH, ou -O-(alkyle en C1-C5)amino-C(O)-alkyle en C1-C5- C(O)-alkyle en C1-C5; c) un alkyle à chaîne linéaire ou ramifiée en C2-C15 facultativement substitué par un hydroxy ou un alcoxy; et d) -C(O)-arylène en C6-C12-C(O)- dans lequel ledit arylène est facultativement substitué par un hydroxy, un halogène, un nitro ou un amino;
a et b sont indépendamment 0, 1, 2, 3 ou 4;
d, d', d", e, e' et e" sont indépendamment 0, 1, 2, 3 ou 4 ;
X 5 X 5 Y et Y sont indépendamment sélectionnés dans le groupe consistant en rien, un oxygène, NH et N (C(O)alkyle en C1-C4), et N(alkyle en Ci-C4) ;
W1 et W2 sont indépendamment sélectionnés dans le groupe consistant en un carbonyle, un méthylène, un sulfone et un sulfoxyde;
R2 et R5 sont indépendamment sélectionnés dans le groupe consistant en :
a) un alkyle à chaîne linéaire ou ramifiée en C2-C2O qui est facultativement substitué par un oxo, un hydroxy, ou un alcoxy, b) un alcényle ou un dialcényle à chaîne linéaire ou ramifiée en C2-C2O qui est facultativement substitué par un oxo, un hydroxy, ou un alcoxy; c) un alcoxy à chaîne linéaire ou ramifiée en C2-C2O qui est facultativement substitué par un oxo, un hydroxy, ou un alcoxy; d) NH-alkyle à chaîne linéaire ou ramifiée en C2-C2O5 dans lequel ledit groupement alkyle est facultativement substitué par un oxo, un hydroxy, ou un alcoxy; et e)
Figure imgf000058_0001
dans laquelle Z est sélectionné dans le groupe consistant en un O et NH, et M et N sont indépendamment sélectionnés dans le groupe consistant en un alkyle, un alcényle, un alcoxy, un acyloxy, un alkylamino et un acylamino à chaîne linéaire ou ramifiée en
C2-C20;
R3 et R6 sont indépendamment sélectionnés dans le groupe consistant en un alkyle et un alcényle à chaîne linéaire ou ramifiée en C2-C20 facultativement substitué par un oxo ou un fluoro;
R4 et R7 sont indépendamment sélectionnés dans le groupe consistant en un C(O)-alkyle ou alcényle à chaîne linéaire ou ramifiée en C2-C2O, un alkyle à chaîne linéaire ou ramifiée en C2-C20, un alcoxy à chaîne linéaire ou ramifiée en C2-C2O, et un alcényle à chaîne linéaire ou ramifiée en C2-C2o; dans lequel lesdits groupements alkyle, alcényle, ou alcoxy peuvent être indépendamment et facultativement substitués par un hydroxy, un fluoro ou un alcoxy en C1-C5;
Gi, G2, G3 et G4 sont indépendamment sélectionnés dans le groupe consistant en un oxygène, un méthylène, un amino, un thiol, -C(O)NH-, -NHC(O)-, et -N(C(O)alkyle en CrC4)- ;
ou G2R4 ou G4R7 peuvent ensemble être un atome d'hydrogène ou un hydroxyle ; et dans lequel pour la formule III: a' et b' sont indépendamment 2, 3, 4, 5, 6, 7, ou 8, de façon préférée 2 ; Z1 est sélectionné dans le groupe consistant en -OP(O)(OH)2, -P(O)(OH)2, -OP(O)(OR8)(OH) où R8 est une chaîne alkyke en C1-C4, -OS(O)2OH5 -S(O)2OH, -CO2H, -OB(OH)2, -OH, -CH3, -NH2, et -NR9 3 où R9 est une chaîne alkyle en C1-C4 ;
Z2 est sélectionné dans le groupe consistant en -OP(O)(OH)2, -P(O)(OH)2, - OP(O)(OR10XOH) où R10 est une chaîne alkyle en Ci-C4, -OS(O)2OH, -S(O)2OH, -CO2H, -OB(OH)2, -OH, -CH3, -NH2, et -NR11 où R11 est une chaîne alkyle en Ci-C4 ;
et dans lequel pour la formule IV :
R12 est H ou une chaîne alkyle en Ci-C4 ;
ou un sel pharmaceutiquement acceptable du composé de formule chimique I, II, III, ou IV ;
3. Une émulsion selon la revendication 1 ou 2, dans laquelle au moins 90% de la population volumique des gouttelettes d'huile ont une taille < 200 nm
4. Une émulsion selon l'une des revendications 1 à 3, dans laquelle au moins 50% de la population volumique des gouttelettes d'huile ont une taille < 110 nm.
5. Une émulsion selon l'une des revendications 1 à 4, dans laquelle l'inversion de phase se produit à une température comprise entre 450C et 800C, et de façon préférée entre 50°C et 65°C.
6. Une émulsion selon l'une des revendications 1 à 5, comprenant en outre au moins un alditol.
7. Une émulsion selon la revendication 6, dans laquelle l' alditol est le sorbitol, le mannitol, le glycerol, le xylitol ou Pérythritol.
8. Une émulsion selon l'une des revendications 1 à 1, dans laquelle la phase aqueuse est une solution saline tamponnée.
9. Une émulsion selon l'une des revendications 1 à 8, dans laquelle l'agoniste du TLR4 est un composé chimique de formule I:
Figure imgf000060_0001
Figure imgf000060_0002
ou un sel pharmaceutiquement acceptable de ce composé.
10. Une émulsion selon la revendication 9, dans laquelle : Rl est C(O) ou C(O)-(CH2)n-C(O), n étant 1, 2, 3 ou 4, a, b, d, d', d", e, e', e" sont indépendamment 1 ou 2, Xl, X2, Yl et Y2 sont NH, Wl et W2 sont C(O),
R2 et R5 sont indépendamment sélectionnés dans le groupe consistant en un alkyle à chaîne linéaire en ClO-Cl 5 facultativement substitué par un oxo, un NH-alkyle à chaîne linéaire en ClO-Cl 5 et,
Figure imgf000061_0001
dans lequel M et N sont indépendamment un alkyle ou un alcényle à chaîne linéaire en C2-C20, R3 et R6 sont des chaînes alkyles linéaires en C5-C10,
R4 et R7 sont sélectionnés dans le groupe consistant en un hydrogène, C(O)- alkyle à chaîne linéaire en C8-C12 et C(O) alcényle à chaîne linéaire en C8-C12, Gl et G3 sont un oxygène ou -NH(CO)- G2 et G4 sont un oxygène.
11. Une émulsion selon la revendication 9 ou 10, dans laquelle le composé chimique est choisi dans le groupe constitué par ER803022, ER8O3O58, ER803732, ER803789, ER804053, ER804057, ER804058, ER804059, ER804442, ER804764, ERl 11232, ERl 12022, ERl 12048, ERl 12065, ERl 12066, ERl 13651, ERl 18989, ERl 19327, ERl 19328.
12. Une émulsion selon l'une des revendications 1 à 11, dans laquelle le ratio entre la quantité d'agoniste du TLR4 et la quantité totale de surfactants hydrophile et hydrophobe non ioniques est entre 0,0IxIO"2 et 5xlO"2, de préférence entre 0,05xl0"2 et 2xl0"2.
13. Une émulsion selon l'une des revendications 1 à 12, dans laquelle le polyoxyethylène alkyl éther est choisi dans le groupe constitué par du polyoxyéthylène (12) cétostearyl éther (ceteareth-12), du polyoxyethylène (20) cétostéaryl éther (ceteareth-20), du poyoxyéthylène (21) stéaryl éther (steareth- 21), du polyoxyéthylène (20) cétyl éther (ceteth-20), du polyoxyéthylène (10) cétyl éther (ceteth-10), du polyoxyéthylène (10) stéaryl éther (steareth-10), du polyoxyéthylène (20) stéaryl éther (steareth-20), du polyoxyéthylène (10) oleyl éther (oleth-10), du polyoxyéthylène (20) oléyl éther (oleth-20).
14. Une émulsion selon l'une des revendications 1 à 13, dans laquelle le tensioactif hydrophobe est un ester du sorbitane ou un ester du mannide.
15. Une émulsion selon la revendication 14, dans laquelle le tensioactif hydrophobe est le mannide monooléate.
16. Une émulsion selon la revendication 14, dans laquelle le tensioactif hydrophobe est le sorbitane monooléate.
17. Une émulsion selon l'une des revendications 1 à 16, dans laquelle les quantités de tensioactifs hydrophile et hydrophobe sont telles que l'HLB global des tensioactifs est entre 8,5 et 10.
18. Une émulsion selon l'une des revendications 1 à 17, dans laquelle la quantité de squalène représente entre 5% et 45% du poids total de l'émulsion.
19. Une émulsion selon l'une des revendications 1 à 18, dans laquelle le ratio entre la quantité de squalène et la quantité de tensioactifs est entre 2,0 et 4,0, de préférence entre 2,5 et 3,5.
20. Une émulsion selon l'une des revendications 1 à 19, dans laquelle l'agoniste du TLR4 est le composé chimique ER804057, le tensioactif hydrophile non ionique est le polyoxyéthylène (12) cetostéaryl éther (ceteareth-12), le tensioactif hydrophobe non ionique est le sorbitane monooléate et le solvant aqueux un tampon phosphate ou un tampon citrate.
21. Une émulsion selon la revendication 20, dans laquelle : a. la quantité de squalène représente entre 5% et 45% du poids total de l' émulsion (poids/poids), b. le ratio entre la quantité de squalène et la quantité totale de polyoxyéthylène (12) cetostéaryl éther (ceteareth-12) et de sorbitane monooléate est entre 2,0 et 4,0, c. les quantités de ceteareth-12 et de sorbitane monoléate sont telles que l'HLB se situe entre 8,5 et 10 et d. le ratio entre la quantité d'ER 804057 et la quantité totale de polyoxyéthylène (12) cetostéaryl éther (ceteareth-12) et de sorbitane monooléate est entre 0,0IxIO"2 et 2xlO"2.
22. Une émulsion selon la revendication 21 , comprenant en outre du mannitol dont la quantité représente entre 0,1 et 10% du poids total de l' émulsion.
23. Une émulsion selon l'une des revendications 1 à 22, comprenant en outre un substrat de lyophilisation.
24. Une émulsion selon la revendication 23, dans laquelle le substrat de lyophilisation est une solution aqueuse de saccharose, de mannitol et de dodecyl maltoside.
25. Utilisation d'une émulsion selon l'une des revendications 1 à 24, pour la préparation d'une composition vaccinale.
26. Utilisation d'une émulsion selon l'une des revendications 1 à 24, pour la préparation d'une composition vaccinale comprenant comme antigène vaccinal au moins une hémagglutinine du virus grippal.
27. Utilisation d'une émulsion selon l'une des revendications 1 à 24, pour la préparation d'une composition vaccinale comprenant comme antigène vaccinal un antigène d'enveloppe du cytomegalovirus (CMV).
28. Utilisation d'une émulsion selon la revendication 27, dans laquelle l'antigène d'enveloppe du CMV est la protéine gB du CMV ou un dérivé de celle ci qui comprend au moins un épitope neutralisant.
29. Utilisation d'une émulsion selon la revendication 28, dans laquelle l'antigène d'enveloppe du CMV est la protéine gB délétée du domaine transmembranaire et dont le site de clivage est inopérant.
30. Un procédé de préparation d'une émulsion H/E selon l'une des revendications 1 à 24, comprenant une étape où une émulsion inverse E/H est obtenue par élévation de température et une étape où cette émulsion inverse E/H est transformée en une émulsion H/E par abaissement de température.
31. Un procédé selon la revendication 30, dans lequel l' émulsion E/H est obtenue en mélangeant dans une première étape une phase aqueuse comprenant un solvant aqueux, un polyoxyéthylène alkyl éther et un agoniste du TLR4 avec une phase huileuse comprenant du squalène et un tensioactif hydrophobe non ionique pour obtenir une émulsion H/E et en chauffant dans une seconde étape Pémulsion H/E à une température qui est au moins la température d'inversion de phase de l' émulsion.
32. Un procédé selon la revendication 30, dans lequel l'émulsion E/H est obtenue en chauffant séparément une phase aqueuse comprenant un solvant aqueux, un polyoxyéthylène alkyl éther et un agoniste du TLR4 et une phase huileuse comprenant du squalène et un tensioactif hydrophobe non ionique à une température qui est au moins la température d'inversion de phase de l'émulsion puis en mélangeant la phase aqueuse avec la phase huileuse tout en maintenant la température du mélange à une température qui est au moins la température d'inversion de phase.
33. Un procédé selon la revendication 31 ou 32, dans lequel l'agoniste du TLR4 est dans la phase huileuse au lieu d'être dans la phase aqueuse.
34. Un procédé selon l'une des revendications 31 à 33, dans lequel la phase aqueuse comprend également un alditol.
35. Un procédé selon l'une des revendications 31 à 34, dans lequel la température d'inversion de phase est comprise entre 45°C et 80°C, et de façon préférée entre 50°C et 650C.
36. Un procédé de préparation d'une composition vaccinale, dans lequel on mélange au moins un antigène vaccinal avec une émulsion H/E contenant un agoniste du TLR4 dont la structure chimique ne comporte pas de noyau sucré, caractérisé en ce que l'émulsion H/E contenant l'agoniste du TLR4 est préparée selon un procédé d'inversion de phase comprenant une étape où l'on obtient une émulsion sous la forme d' émulsion inverse E/H par augmentation de la température et une étape où l'on transforme l'émulsion E/H en émulsion H/E par abaissement de la température.
37. Un procédé selon la revendication 36, dans lequel l'émulsion H/E comprend : a) un agoniste du TLR4, tel que défini dans la revendication 2, b) du squalène, c) un solvant aqueux, d) un tensioactif hydrophile non ionique qui est un polyoxyethylène alkyl éther, et e) un tensioactif hydrophobe non ionique.
38. Un procédé selon l'une des revendications 30 à 37, comprenant en outre une étape de lyophilisation.
PCT/FR2007/000030 2006-01-13 2007-01-09 Emulsion huile dans eau thermoreversible WO2007080308A2 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BRPI0706527-2A BRPI0706527A2 (pt) 2006-01-13 2007-01-09 emulsão em óleo na água termorreversìvel
AU2007204295A AU2007204295B2 (en) 2006-01-13 2007-01-09 Thermoreversible oil-in-water emulsion
JP2008549901A JP5226534B2 (ja) 2006-01-13 2007-01-09 熱可逆性水中油滴型エマルション
CA002635724A CA2635724A1 (fr) 2006-01-13 2007-01-09 Emulsion huile dans eau thermoreversible
EP07717813.5A EP1976560B1 (fr) 2006-01-13 2007-01-09 Emulsion huile dans eau thermoreversible
MX2008009024A MX2008009024A (es) 2006-01-13 2007-01-09 Emulsion de aceite en agua termorreversible.
IL192475A IL192475A (en) 2006-01-13 2008-06-26 Oil-water lotion reversible in heat

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0600309A FR2896162B1 (fr) 2006-01-13 2006-01-13 Emulsion huile dans eau thermoreversible
FR0600309 2006-01-13

Publications (2)

Publication Number Publication Date
WO2007080308A2 true WO2007080308A2 (fr) 2007-07-19
WO2007080308A3 WO2007080308A3 (fr) 2009-09-24

Family

ID=37103105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/000030 WO2007080308A2 (fr) 2006-01-13 2007-01-09 Emulsion huile dans eau thermoreversible

Country Status (14)

Country Link
US (1) US9504659B2 (fr)
EP (1) EP1976560B1 (fr)
JP (1) JP5226534B2 (fr)
KR (1) KR20080091808A (fr)
CN (2) CN101636178A (fr)
AR (1) AR060018A1 (fr)
AU (1) AU2007204295B2 (fr)
BR (1) BRPI0706527A2 (fr)
CA (1) CA2635724A1 (fr)
FR (1) FR2896162B1 (fr)
IL (1) IL192475A (fr)
MX (1) MX2008009024A (fr)
WO (1) WO2007080308A2 (fr)
ZA (1) ZA200805651B (fr)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002058343A2 (fr) 2001-01-17 2002-07-25 Broadcom Corporation Systeme et procede pour mecanisme generalise de suppression d'en-tete de paquets
WO2011051445A1 (fr) 2009-10-30 2011-05-05 Glaxosmithkline Biologicals S.A. Procédé de préparation d'un virus de semence de la grippe pour la fabrication de vaccins
WO2011067672A2 (fr) 2009-12-03 2011-06-09 Novartis Ag Chambres d'interaction d'agencement et de contre-pression pour la microfluidisation
DE102009056884A1 (de) 2009-12-03 2011-06-09 Novartis Ag Impfstoff-Adjuvantien und verbesserte Verfahren zur Herstellung derselben
WO2011067673A2 (fr) 2009-12-03 2011-06-09 Novartis Ag Circulation de constituants lors de l'homogénéisation d'émulsions
WO2011067669A2 (fr) 2009-12-03 2011-06-09 Novartis Ag Filtration hydrophile pendant la fabrication d'adjuvants de vaccins
DE102009056883A1 (de) 2009-12-03 2011-06-09 Novartis Ag Impfstoff-Adjuvantien und verbesserte Verfahren zur Herstellung derselben
DE102009056871A1 (de) 2009-12-03 2011-06-22 Novartis AG, 4056 Impfstoff-Adjuvantien und verbesserte Verfahren zur Herstellung derselben
EP2455101A2 (fr) 2007-04-20 2012-05-23 GlaxoSmithKline Biologicals S.A. Vaccin contre la grippe avec adjuvant d'huile-en-eau
WO2012075428A1 (fr) 2010-12-03 2012-06-07 Sanofi Pasteur Limited Composition pour l'immunisation contre streptococcus pneumoniae
WO2012103421A1 (fr) 2011-01-27 2012-08-02 Novartis Ag Nanoémulsions d'adjuvant à inhibiteurs de cristallisation
WO2012117377A1 (fr) 2011-03-02 2012-09-07 Novartis Ag Vaccins combinés comprenant des doses inférieures d'antigène et/ou d'adjuvant
WO2012129483A1 (fr) 2011-03-24 2012-09-27 Novartis Ag Nanoémulsions adjuvantes avec des phospholipides
WO2013132041A2 (fr) 2012-03-08 2013-09-12 Novartis Ag Formulations à adjuvant de vaccins de rappel
WO2013184900A2 (fr) 2012-06-06 2013-12-12 Sanofi Pasteur Biologics, Llc Compositions immunogènes et procédés associés
WO2014016362A1 (fr) 2012-07-24 2014-01-30 Sanofi Pasteur Compositions de vaccin pour prévenir une infection provoquée par le virus de la dengue
WO2014016360A1 (fr) 2012-07-24 2014-01-30 Sanofi Pasteur Compositions de vaccin
WO2014037472A1 (fr) 2012-09-06 2014-03-13 Novartis Ag Vaccins combinatoires avec méningococcus de sérogroupe b et d/t/p
WO2014057132A1 (fr) 2012-10-12 2014-04-17 Novartis Ag Antigènes de pertussis acellulaires non réticulés pour leur utilisation dans des vaccins combinés
WO2014083194A1 (fr) 2012-11-30 2014-06-05 Sanofi Pasteur Procédés d'induction d'anticorps
WO2014095771A1 (fr) 2012-12-18 2014-06-26 Novartis Ag Conjugués de protection contre la diphtérie et/ou le tétanos
US9278127B2 (en) 2006-07-17 2016-03-08 Glaxosmithkline Biologicals, Sa Influenza vaccine
WO2017064190A1 (fr) 2015-10-13 2017-04-20 Sanofi Pasteur Compositions immunogènes contre s. aureus
US9730999B2 (en) 2005-03-23 2017-08-15 Glaxosmithkline Biologicals Sa Adjuvanted influenza virus compositions
WO2017137085A1 (fr) 2016-02-11 2017-08-17 Sanofi Pasteur Vaccins contre la méningite comprenant des subtilinases
WO2019052975A1 (fr) 2017-09-13 2019-03-21 Sanofi Pasteur Composition immunogène contre le cytomégalovirus humain
WO2022003560A1 (fr) 2020-06-30 2022-01-06 Seqirus UK Limited Filtration à froid d'adjuvants d'émulsion d'huile dans l'eau

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2680237C (fr) 2007-03-27 2018-11-06 Sea Lane Biotechnologies, Llc Constructions et bibliotheques comprenant des sequences de chaines legeres de substitution d'anticorps
GB0714963D0 (en) 2007-08-01 2007-09-12 Novartis Ag Compositions comprising antigens
JP5518041B2 (ja) 2008-03-18 2014-06-11 ノバルティス アーゲー インフルエンザウイルスワクチン抗原の調製における改良
EP2274334A2 (fr) 2008-03-28 2011-01-19 Sea Lane Biotechnologies,llc. Molécules neutralisantes d'antigènes viraux
NZ591876A (en) 2008-08-28 2013-05-31 Novartis Ag Production of squalene from hyper-producing yeasts
US20110236489A1 (en) 2008-09-18 2011-09-29 Novartis Ag Vaccine adjuvant combinations
AU2010212548A1 (en) 2009-02-10 2011-09-15 Novartis Ag Influenza vaccines with increased amounts of H3 antigen
KR101825697B1 (ko) 2009-02-10 2018-02-05 노파르티스 아게 감소된 양의 스쿠알렌을 포함하는 인플루엔자 백신
US20120093859A1 (en) 2009-02-10 2012-04-19 Novartis Ag Influenza vaccine regimens for pandemic-associated strains
SG2014014385A (en) * 2009-02-17 2014-04-28 Glaxosmithkline Biolog Sa Inactivated dengue virus vaccine with aluminium-free adjuvant
NZ612315A (en) 2009-04-14 2014-10-31 Novartis Ag Compositions for immunising against staphylococcus aureus
AU2010249046A1 (en) 2009-05-13 2011-12-01 Sea Lane Biotechnologies, Llc Neutralizing molecules to influenza viruses
EP2573184A1 (fr) 2009-05-21 2013-03-27 Novartis AG Génétique inverse utilisant des promoteurs POL I non endogènes
AU2010277310B2 (en) 2009-07-31 2015-01-15 Seqirus UK Limited Reverse genetics systems
US20110052633A1 (en) * 2009-09-02 2011-03-03 National Health Research Institutes Multi-phase emulsions based on amphiphilic block copolymers
ES2454815T3 (es) 2009-10-20 2014-04-11 Novartis Ag Métodos mejorados de genética inversa para la recuperación de virus
GB0918392D0 (en) 2009-10-20 2009-12-02 Novartis Ag Diagnostic and therapeutic methods
GB0919690D0 (en) 2009-11-10 2009-12-23 Guy S And St Thomas S Nhs Foun compositions for immunising against staphylococcus aureus
WO2012020326A1 (fr) 2010-03-18 2012-02-16 Novartis Ag Vaccins adjuvantés contre le méningocoque de sérogroupe b
EP2620423B2 (fr) 2010-05-12 2019-07-31 Novartis AG Procédés améliorés de préparation de squalène
AU2011254204B2 (en) 2010-05-21 2015-08-20 Seqirus UK Limited Influenza virus reassortment method
GB201009861D0 (en) 2010-06-11 2010-07-21 Novartis Ag OMV vaccines
CA2842860A1 (fr) 2011-07-28 2013-01-31 Sea Lane Biotechnologies, Llc Proteines se liant a sur dirigees contre erbb3
JP2014527969A (ja) 2011-09-19 2014-10-23 ジェンシア コーポレイション 改変クレアチン化合物
WO2013057715A1 (fr) 2011-10-20 2013-04-25 Novartis Ag Vaccins avec adjuvant contre le virus grippal b pour primo-vaccination pédiatrique
EP2793940B1 (fr) 2011-12-22 2018-11-14 i2 Pharmaceuticals, Inc. Protéines substitutives de liaison
WO2013092985A1 (fr) 2011-12-23 2013-06-27 Novartis Ag Compositions stables destinées à l'immunisation contre le staphylococcus aureus
LT2811981T (lt) * 2012-02-07 2019-06-10 Infectious Disease Research Institute Pagerintos adjuvanto kompozicijos, apimančios tlr4 agonistus, ir jų panaudojimo būdai
US9708562B2 (en) * 2012-02-10 2017-07-18 Soane Energy, Llc Rapidly inverting water-in-oil polymer emulsions
JP6054883B2 (ja) 2012-03-02 2016-12-27 ノバルティス アーゲー インフルエンザウイルスの再集合
JP2015526062A (ja) 2012-06-04 2015-09-10 ノバルティス アーゲー 改善された安全性試験
CN104582723A (zh) 2012-08-31 2015-04-29 诺华股份有限公司 用于针对金黄色葡萄球菌的免疫的稳定化的蛋白质
ES2737024T3 (es) 2012-08-31 2020-01-09 Glaxosmithkline Biologicals Sa Proteínas estabilizadas para inmunización contra Staphylococcus aureus
SG11201504258RA (en) 2012-11-30 2015-07-30 Glaxosmithkline Biolog Sa Pseudomonas antigens and antigen combinations
CN105120893B (zh) 2012-12-03 2018-11-13 诺华股份有限公司 流感病毒重配
SG11201507454XA (en) 2013-03-13 2015-10-29 Novartis Ag Influenza b virus reassortment
US20140335116A1 (en) 2013-05-10 2014-11-13 Novartis Ag Avoiding narcolepsy risk in influenza vaccines
DE202013005130U1 (de) 2013-06-05 2013-09-10 Novartis Ag Influenza Virus Reassortierung
DE202013005100U1 (de) 2013-06-05 2013-08-26 Novartis Ag Influenza Virus Reassortierung
KR20160014657A (ko) 2013-06-06 2016-02-11 노파르티스 아게 인플루엔자 바이러스 재배열
WO2014207708A2 (fr) 2013-06-28 2014-12-31 Auckland Uniservices Limited Conjugués acide aminé et peptide et procédé de conjugaison
KR102411781B1 (ko) 2013-12-31 2022-06-22 인펙셔스 디지즈 리서치 인스티튜트 (아이디알아이) 단일 바이알 백신 제형
AU2015238512B2 (en) 2014-03-26 2018-02-01 Glaxosmithkline Biologicals S.A. Mutant staphylococcal antigens
US10537860B2 (en) 2014-06-23 2020-01-21 Massachusetts Institute Of Technology Emulsions by condensation
KR20170094449A (ko) 2014-12-23 2017-08-17 마가렛 앤 브림블 아미노산 및 펩타이드 접합체 및 이들의 용도
WO2017005880A1 (fr) 2015-07-07 2017-01-12 Seqirus UK Limited Dosages de la puissance de la grippe
US9872832B2 (en) * 2015-10-23 2018-01-23 LG Bionano, LLC Nanoemulsions having reversible continuous and dispersed phases
US20200138939A1 (en) * 2015-12-16 2020-05-07 Huvet Bio, Inc. Vaccine adjuvant composition based on amphiphilic polyamino acid polymer, containing squalene
CA3014515A1 (fr) 2016-02-26 2017-08-31 Auckland Uniservices Limited Conjugues d'acides amines et de peptides et procede de conjugaison
JP6992057B2 (ja) 2016-06-10 2022-01-13 クラリティ コスメティックス インコーポレイテッド 非面皰形成性の毛髪および頭皮ケア製剤ならびにその使用方法
CN108159414B (zh) * 2018-01-15 2021-07-27 四川诺顺科技有限公司 动物疫苗用油包水佐剂及其制备方法和用途
MX2022006005A (es) 2019-11-18 2022-10-27 Seqirus Pty Ltd Metodo para producir virus de la influenza reagrupados.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030153532A1 (en) 1999-02-01 2003-08-14 Hawkins Lynn D. Immunomodulatory compounds and methods of use thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547834A (en) 1988-01-29 1996-08-20 Chiron Corporation Recombinant CMV neutralizing proteins
JPH0832638B2 (ja) 1989-05-25 1996-03-29 カイロン コーポレイション サブミクロン油滴乳剤を含んで成るアジュバント製剤
US5302401A (en) * 1992-12-09 1994-04-12 Sterling Winthrop Inc. Method to reduce particle size growth during lyophilization
US20020102562A1 (en) 1995-05-24 2002-08-01 Pasteur Merieux Serums Et Vaccines S.A. Recombinant CMV neutralizing proteins
US5718904A (en) * 1995-06-02 1998-02-17 American Home Products Corporation Adjuvants for viral vaccines
US5744062A (en) * 1996-08-29 1998-04-28 R.I.T.A. Corporation Balanced emulsifier blends for oil-in-water emulsions
US6787523B1 (en) 1997-12-02 2004-09-07 Neuralab Limited Prevention and treatment of amyloidogenic disease
US20040006242A1 (en) 1999-02-01 2004-01-08 Hawkins Lynn D. Immunomodulatory compounds and method of use thereof
KR100922031B1 (ko) 1999-04-19 2009-10-19 글락소스미스클라인 바이오로지칼즈 에스.에이. 백신
US20030129251A1 (en) 2000-03-10 2003-07-10 Gary Van Nest Biodegradable immunomodulatory formulations and methods for use thereof
DE10025671B4 (de) * 2000-05-24 2006-07-27 Cognis Ip Management Gmbh Emulgatoren
CA2511512C (fr) * 2002-12-27 2013-10-29 Chiron Corporation Immunogenes contenant des compositions de phospholipide
DE10318310A1 (de) * 2003-04-14 2004-11-25 Xaver Lipp Vorrichtung zum Öffnen eines Ventils, insbesondere eines Lufteinlaßventils oder Gasauslaßventils eines Gär-oder Faulbehälters
DE602004013331T2 (de) * 2003-07-24 2009-07-16 Merial Ltd. Vakzin-formulierungen mit einer öl-in-wasser-emulsion
US20050023729A1 (en) * 2003-07-31 2005-02-03 Smith Leslie E. Formation of wide paint film parts
DE10337451A1 (de) 2003-08-14 2005-03-17 Cognis Deutschland Gmbh & Co. Kg Verwendung von PIT-Emulsionen in enzymatischen Reaktionen
EP1863529A1 (fr) * 2005-03-23 2007-12-12 GlaxoSmithKline Biologicals S.A. Nouvelle composition
US7691368B2 (en) 2005-04-15 2010-04-06 Merial Limited Vaccine formulations
US20070292418A1 (en) * 2005-04-26 2007-12-20 Eisai Co., Ltd. Compositions and methods for immunotherapy
US8703095B2 (en) 2005-07-07 2014-04-22 Sanofi Pasteur S.A. Immuno-adjuvant emulsion
US20110180430A1 (en) * 2005-11-04 2011-07-28 Novartis Vaccines And Diagnostics Srl Adjuvanted influenza vaccines including cytokine-inducing agents
NZ567978A (en) 2005-11-04 2011-09-30 Novartis Vaccines & Diagnostic Influenza vaccine with reduced amount of oil-in-water emulsion as adjuvant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030153532A1 (en) 1999-02-01 2003-08-14 Hawkins Lynn D. Immunomodulatory compounds and methods of use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276/3, 2001, pages 1873 - 1880

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002058343A2 (fr) 2001-01-17 2002-07-25 Broadcom Corporation Systeme et procede pour mecanisme generalise de suppression d'en-tete de paquets
US9730999B2 (en) 2005-03-23 2017-08-15 Glaxosmithkline Biologicals Sa Adjuvanted influenza virus compositions
US11564984B2 (en) 2006-07-17 2023-01-31 Glaxosmithkline Biologicals Sa Influenza vaccine
US9943588B2 (en) 2006-07-17 2018-04-17 Glaxosmithkline Biologicals S.A. Influenza vaccine
US9278127B2 (en) 2006-07-17 2016-03-08 Glaxosmithkline Biologicals, Sa Influenza vaccine
EP2455101A2 (fr) 2007-04-20 2012-05-23 GlaxoSmithKline Biologicals S.A. Vaccin contre la grippe avec adjuvant d'huile-en-eau
US9452209B2 (en) 2007-04-20 2016-09-27 Glaxosmithkline Biologicals Sa Influenza vaccine
US9597389B2 (en) 2007-04-20 2017-03-21 Glaxosmithkline Biologicals Sa Oil-in-water emulsion influenza vaccine
US10016495B2 (en) 2007-04-20 2018-07-10 Glaxosmithkline Biologicals S.A. Oil-in-water emulsion influenza vaccine
US10548969B2 (en) 2007-04-20 2020-02-04 Glaxosmithkline Biologicals Sa Oil-in-water emulsion influenza vaccine
WO2011051445A1 (fr) 2009-10-30 2011-05-05 Glaxosmithkline Biologicals S.A. Procédé de préparation d'un virus de semence de la grippe pour la fabrication de vaccins
WO2011067669A2 (fr) 2009-12-03 2011-06-09 Novartis Ag Filtration hydrophile pendant la fabrication d'adjuvants de vaccins
EP2638895A2 (fr) 2009-12-03 2013-09-18 Novartis AG Circulation de composants pendant l'homogénéisation des émulsions
DE102009056871A1 (de) 2009-12-03 2011-06-22 Novartis AG, 4056 Impfstoff-Adjuvantien und verbesserte Verfahren zur Herstellung derselben
EP2343052A1 (fr) 2009-12-03 2011-07-13 Novartis AG Filtration hydrophile pendant la fabrication d'adjuvants de vaccins
DE102009056883A1 (de) 2009-12-03 2011-06-09 Novartis Ag Impfstoff-Adjuvantien und verbesserte Verfahren zur Herstellung derselben
EP2601933A1 (fr) 2009-12-03 2013-06-12 Novartis AG Filtration hydrophile pendant la fabrication dýadjuvants de vaccins
WO2011067673A2 (fr) 2009-12-03 2011-06-09 Novartis Ag Circulation de constituants lors de l'homogénéisation d'émulsions
DE102009056884A1 (de) 2009-12-03 2011-06-09 Novartis Ag Impfstoff-Adjuvantien und verbesserte Verfahren zur Herstellung derselben
EP2380558A1 (fr) 2009-12-03 2011-10-26 Novartis AG Agencement de chambres d'interaction et de contre-pression pour la microfluidisation
WO2011067672A2 (fr) 2009-12-03 2011-06-09 Novartis Ag Chambres d'interaction d'agencement et de contre-pression pour la microfluidisation
EP2356983A1 (fr) 2009-12-03 2011-08-17 Novartis AG Circulation de composants pendant l'homogénéisation d'émulsions
WO2012075428A1 (fr) 2010-12-03 2012-06-07 Sanofi Pasteur Limited Composition pour l'immunisation contre streptococcus pneumoniae
US10286056B2 (en) 2011-01-27 2019-05-14 Glaxosmithkline Biologicals S.A. Adjuvant nanoemulsions with crystallisation inhibitors
WO2012103421A1 (fr) 2011-01-27 2012-08-02 Novartis Ag Nanoémulsions d'adjuvant à inhibiteurs de cristallisation
WO2012117377A1 (fr) 2011-03-02 2012-09-07 Novartis Ag Vaccins combinés comprenant des doses inférieures d'antigène et/ou d'adjuvant
WO2012129483A1 (fr) 2011-03-24 2012-09-27 Novartis Ag Nanoémulsions adjuvantes avec des phospholipides
WO2013132041A2 (fr) 2012-03-08 2013-09-12 Novartis Ag Formulations à adjuvant de vaccins de rappel
WO2013184900A2 (fr) 2012-06-06 2013-12-12 Sanofi Pasteur Biologics, Llc Compositions immunogènes et procédés associés
EP3932422A1 (fr) 2012-07-24 2022-01-05 Sanofi Pasteur Compositions vaccinales pour la prévention des infections dues au virus de la dengue
WO2014016362A1 (fr) 2012-07-24 2014-01-30 Sanofi Pasteur Compositions de vaccin pour prévenir une infection provoquée par le virus de la dengue
WO2014016360A1 (fr) 2012-07-24 2014-01-30 Sanofi Pasteur Compositions de vaccin
WO2014037472A1 (fr) 2012-09-06 2014-03-13 Novartis Ag Vaccins combinatoires avec méningococcus de sérogroupe b et d/t/p
US9526776B2 (en) 2012-09-06 2016-12-27 Glaxosmithkline Biologicals Sa Combination vaccines with serogroup B meningococcus and D/T/P
WO2014057132A1 (fr) 2012-10-12 2014-04-17 Novartis Ag Antigènes de pertussis acellulaires non réticulés pour leur utilisation dans des vaccins combinés
EP3620172A1 (fr) 2012-10-12 2020-03-11 GlaxoSmithKline Biologicals SA Antigènes de pertussis acellulaires non réticulés pour leur utilisation dans des vaccins combinés
WO2014083194A1 (fr) 2012-11-30 2014-06-05 Sanofi Pasteur Procédés d'induction d'anticorps
WO2014095771A1 (fr) 2012-12-18 2014-06-26 Novartis Ag Conjugués de protection contre la diphtérie et/ou le tétanos
WO2017064190A1 (fr) 2015-10-13 2017-04-20 Sanofi Pasteur Compositions immunogènes contre s. aureus
WO2017137085A1 (fr) 2016-02-11 2017-08-17 Sanofi Pasteur Vaccins contre la méningite comprenant des subtilinases
WO2019052975A1 (fr) 2017-09-13 2019-03-21 Sanofi Pasteur Composition immunogène contre le cytomégalovirus humain
US11524069B2 (en) 2017-09-13 2022-12-13 Sanofi Pasteur Human cytomegalovirus immunogenic composition
US11207403B2 (en) 2017-09-13 2021-12-28 Sanofi Pasteur Human cytomegalovirus immunogenic composition
WO2022003560A1 (fr) 2020-06-30 2022-01-06 Seqirus UK Limited Filtration à froid d'adjuvants d'émulsion d'huile dans l'eau

Also Published As

Publication number Publication date
WO2007080308A3 (fr) 2009-09-24
FR2896162A1 (fr) 2007-07-20
US20070191314A1 (en) 2007-08-16
JP2009523158A (ja) 2009-06-18
CA2635724A1 (fr) 2007-07-19
BRPI0706527A2 (pt) 2011-03-29
EP1976560B1 (fr) 2014-01-08
FR2896162B1 (fr) 2008-02-15
CN101636178A (zh) 2010-01-27
US9504659B2 (en) 2016-11-29
MX2008009024A (es) 2009-03-05
KR20080091808A (ko) 2008-10-14
JP5226534B2 (ja) 2013-07-03
AU2007204295A1 (en) 2007-07-19
EP1976560A2 (fr) 2008-10-08
AU2007204295B2 (en) 2012-11-22
CN105709223A (zh) 2016-06-29
AR060018A1 (es) 2008-05-21
ZA200805651B (en) 2010-07-28
IL192475A (en) 2014-06-30
IL192475A0 (en) 2009-08-03

Similar Documents

Publication Publication Date Title
EP1976560B1 (fr) Emulsion huile dans eau thermoreversible
EP1904099B1 (fr) Emulsion immuno-adjuvante thermoréversible
Bungener et al. Virosome-mediated delivery of protein antigens in vivo: efficient induction of class I MHC-restricted cytotoxic T lymphocyte activity
Wu et al. Thermal-sensitive hydrogel as adjuvant-free vaccine delivery system for H5N1 intranasal immunization
Brunner et al. The ABC of clinical and experimental adjuvants—a brief overview
WO2010033274A2 (fr) Adjuvants de nanoémulsion
Vallecillo et al. Adjuvant activity of CpG-ODN formulated as a liquid crystal
Cibulski et al. IMXQB-80: A Quillaja brasiliensis saponin-based nanoadjuvant enhances Zika virus specific immune responses in mice
WO2014052971A1 (fr) Compositions immunogènes comprenant des nanoémulsions
BE1024160B9 (fr) Formulation immunogène
FR2888117A1 (fr) Composition vaccinale comprenant une emulsion thermoreversible
EP2531215B1 (fr) Utilisation d&#39;une huile minerale specifique pour la fabrication d&#39;un nouveau adjuvant
EP1817053A1 (fr) Nouvelle composition pharmaceutique utilisable dans le domaine des vaccins
WO2005005467A2 (fr) Compose adjuvant de l&#39;immunite comportant une sequence adenivirale ef

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780003005.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007204295

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2635724

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008549901

Country of ref document: JP

Ref document number: 3567/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2008/009024

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007204295

Country of ref document: AU

Date of ref document: 20070109

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2007204295

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007717813

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087019806

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0706527

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080714