WO2007079690A1 - Procede de polymerisation destine a la preparation de nano-microspheres composites monodispersees organiques/inorganiques - Google Patents

Procede de polymerisation destine a la preparation de nano-microspheres composites monodispersees organiques/inorganiques Download PDF

Info

Publication number
WO2007079690A1
WO2007079690A1 PCT/CN2007/000107 CN2007000107W WO2007079690A1 WO 2007079690 A1 WO2007079690 A1 WO 2007079690A1 CN 2007000107 W CN2007000107 W CN 2007000107W WO 2007079690 A1 WO2007079690 A1 WO 2007079690A1
Authority
WO
WIPO (PCT)
Prior art keywords
miniemulsion
organic
inorganic composite
preparing
inorganic
Prior art date
Application number
PCT/CN2007/000107
Other languages
English (en)
French (fr)
Inventor
Longlan Cui
Hong Xu
Hongchen Gu
Original Assignee
Shanghai Allrun Nano Science And Technology Co., Ltd.
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Allrun Nano Science And Technology Co., Ltd., Shanghai Jiaotong University filed Critical Shanghai Allrun Nano Science And Technology Co., Ltd.
Priority to EP07702039A priority Critical patent/EP1978037B1/en
Priority to DE602007013179T priority patent/DE602007013179D1/de
Priority to US12/160,802 priority patent/US8552110B2/en
Publication of WO2007079690A1 publication Critical patent/WO2007079690A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation

Definitions

  • the present invention relates to a method in the field of nanotechnology, and in particular to a method for preparing a single-dispersed organic/inorganic composite nanosphere. Background technique
  • inorganic/organic composite nanoparticles The preparation of inorganic/organic composite nanoparticles has always been a new material that people are working on, especially magnetic nanocomposite microspheres have become a hot research topic due to their potential applications in biology.
  • Commonly used methods for preparing inorganic/organic composite nanoparticles are: suspension polymerization, dispersion polymerization, emulsion polymerization, and miniemulsion polymerization.
  • Suspension polymerization and dispersion polymerization can prepare composite particles with larger particle size, but the particle size distribution is relatively wide; traditional emulsion polymerization reduces the degree of recombination of particles and the content of inorganic dispersed phase in the particles is not uniform due to the limitation of polymerization mechanism; Miniemulsion polymerization is a better method for preparing inorganic/organic composite microspheres, but since the fine emulsification process itself cannot obtain an absolutely monodisperse fine emulsion, the prepared microspheres have an uneven particle size distribution and are in the microspheres. The content of inorganic particles is difficult to increase.
  • the magnetic content of the magnetic polymer nanocomposite microspheres prepared by the conventional methods of dispersion, emulsion, suspension polymerization and the like is not higher than 35 wt%.
  • Lilliana P and Landfester et al. "Macrochemistry and Physics", 2003, Vol. 204, pp. 22-31, "Preparation of high magnetic content polystyrene magnetics by miniemulsion method.
  • the nano-microspheres are the first to propose a three-step miniemulsion polymerization (Lilliana P.
  • the present invention provides a polymerization method for preparing monodisperse organic/inorganic composite nanospheres, that is, a double-milk emulsion polymerization method, to prepare a high magnetic content, monodisperse inorganic/ Organic nanocomposite microspheres.
  • the compounding process is carried out in situ in the presence of inorganic nanoparticles. Any of the inorganic nanoparticles which have been modified to be dispersed in the organic dispersed phase can be used to prepare such composite microspheres.
  • the present invention has been achieved by the following technical solutions.
  • the present invention preliminarily prepares two different fine emulsion systems: a fine emulsion system A containing inorganic nanoparticles and a fine emulsion system containing a polymerizable monomer.
  • the mini-emulsion is pre-stirred by adding a free radical initiator until the initiator is dissolved in the aqueous phase, and then the fine emulsion B is added to stir until the system is uniformly mixed.
  • the mixed system can be reacted in a constant temperature water bath.
  • the invention is further illustrated below and includes three steps:
  • Surfactant-modified inorganic nanoparticles are dispersed in an organic solvent as an oil phase mixed with water and a surfactant, and ultrasonically formed into an o/w type fine emulsion.
  • the ultrasonic power can be adjusted from 200 to 800W, and the dispersed phase oil droplets containing inorganic nanoparticles can be controlled.
  • Both the miniemulsion A and the miniemulsion B must ensure the absence of empty micelles in the system.
  • the radical polymerization initiator was placed in the fine emulsion A, stirred and dissolved, and then added to the fine emulsion. B was mixed and stirred for half an hour, and then placed in a constant temperature water bath at 50 to 85 ° C for 5 hours or more.
  • the previously prepared fine emulsion A and miniemulsion B systems have at least one order of magnitude difference in dispersed phase oil droplet diameters, and the amounts differ by 10 4 .
  • the dispersion phase oil droplets containing inorganic particles in the miniemulsion A system ranged from 50 to 200 nm, while the droplet size of the dispersed phase monomer in the miniemulsion B system was greater than 1 ⁇ .
  • the inorganic nanoparticles are several or one of Fe 3 O 4 , FeCo alloy, metal and semiconductor nanocrystals, and Fe 2 O 3 .
  • the polymerized monomer is styrene or methyl methacrylate alone or copolymerized.
  • the surfactant used for preparing the double emulsion system is sodium dodecyl sulfate One of (SDS) and Tween 20.
  • the surfactant for modifying the inorganic nanoparticles is used in combination of one or both of oleic acid and undecylenic acid.
  • the organic solvent is one of n-octane and n-hexane.
  • the initiator is one of potassium persulfate (KPS), azobisisobutyronitrile (AIBN), and benzoyl peroxide (BPO).
  • KPS potassium persulfate
  • AIBN azobisisobutyronitrile
  • BPO benzoyl peroxide
  • the invention aims at the problem that the organic/inorganic composite microspheres have low inorganic particle content and uneven distribution of microspheres, and innovatively proposes a novel preparation method, which overcomes the inorganicity that has been faced by the traditional polymerization method for a long time.
  • the bottleneck is easy to agglomerate during the polymerization of the polymerized monomer, the degree of recombination is not high, and the system is difficult to control.
  • the present invention combines the stabilization mechanism of the fine emulsion with the polymerization mechanism of the emulsion polymerization.
  • the monomer droplets in the fine emulsion A containing inorganic nanoparticles are based on the advantages of large amount and large surface area as the main nucleation sites, similar to micelles in emulsion polymerization; micron-sized monomer droplets in miniemulsion B are treated as single
  • the body library which continuously supplies monomer to the nucleating latex particles, is similar to the monomer droplets in the emulsion polymerization.
  • the above polymerization mechanism utilizes the advantages of emulsion polymerization to facilitate the synthesis of monodisperse microspheres, and the use of fine emulsion droplet nucleation overcomes the drawbacks of micelle nucleation which is not conducive to the preparation of inorganic/organic composite particles, and prepares high magnetic content.
  • Monodisperse inorganic/organic nanocomposite microspheres The present invention is mainly used for the preparation of inorganic/organic composite nanomaterials containing two-phase or multi-phase components.
  • FIG. 1 is a view showing the effect of the Fe 3 0 4 /PS magnetic composite nano microspheres prepared by the present invention. Detailed description of the invention
  • Example 1 Monodisperse neodymium magnetic content (95 wt%) Preparation of magnetic polystyrene nanocomposite microspheres
  • the water bath was heated to 90 ° C and then kept warm for 1 hour, and the ammonia water was completely evaporated to complete the reaction.
  • the magnetic particles thus obtained were washed three times with water and absolute ethanol, and then dispersed with n-octane to obtain a Fe 3 O 4 octyl dispersion having a magnetic content of 50%.
  • Styrene 5g and hexadecane 0.08g were mixed and added to the SPG mold emulsifying device.
  • the pressure was 0.048Mpa
  • the mixture was extruded into a continuous phase containing SDS 0.10g and deionized water 80g to obtain a single particle with an average particle diameter of 5.126 ⁇ m.
  • Body dispersion of miniemulsion B was
  • the preparation of the magnetic nanoparticles was as described in Example 1-1.
  • the magnetic nanoparticles modified by oleic acid and undecylenic acid were repeatedly washed with water and absolute ethanol, and dispersed in n-octane to form a 10 wt% magnetic content of Fe 3 O 4 octane dispersion.
  • Methyl methacrylate 5g and hexadecane 0.08g were mixed and added to SPG's mold emulsifying device. When the pressure was 0.048Mpa, it was extruded into a continuous phase containing SDS 0.10g and deionized water 80g to obtain an average particle size of 4.923 ⁇ . Io n monomer dispersion emulsion 8.
  • the preparation and surface modification of the magnetic particles were as described in Example 1, except that the magnetic content of the Fe 3 O 4 octane dispersion was 30%.
  • the preparation of the miniemulsion A and the miniemulsion B was also the same as in Example 1, except that the ultrasonic power for preparing the miniemulsion (A) was 500 W, and the average particle diameter of the miniemulsion (A) was 155 nm.
  • the FeCo nanoalloy was prepared by a high temperature organic solvent method and dispersed in n-hexane to obtain a magnetic liquid having a magnetic content of 5 wt%.
  • the preparation method and the polymerization process of the miniemulsion A and the miniemulsion B are the same as in the first embodiment except that 50 wt% of the Fe 3 O 4 magnetic fluid is changed into 5 wt% of the FeCo magnetic fluid, and the initiator becomes benzoyl peroxide, and the polymerization is carried out.
  • the temperature was 85 ⁇ and finally a magnetic composite nanosphere having an average particle diameter of 157 nm was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Description

制备单分散有机 /无机复合纳米微球的聚合方法
技术领域
本发明涉及一种纳米技术领域的方法,具体说是涉及一种制备单分 散有机 /无机复合纳米微球的聚合方法。 背景技术
无机 /有机复合纳米微粒的制备一直都是人们致力于开发的新型材 料,特别是磁性纳米复合微球由于其在生物学领域的潜在应用成为目前 研究的热点。 用于制备无机 /有机复合纳米微粒的方法常用的有: 悬浮 聚合、分散聚合、乳液聚合以及细乳液聚合等。悬浮聚合和分散聚合能 够制备粒径较大的复合粒子,但其粒度分布相对较宽;传统的乳液聚合 由于其聚合机理的限制使粒子的复合程度降低而且微粒中无机分散相 的含量不均一;细乳液聚合是制备无机 /有机复合微球一种较好的方法, 但是由于细乳化过程本身不能得到绝对单分散的细乳液,从而导致制备 的微球粒径分布不均勾, 并且微球中无机颗粒含量难以提高。
经对现有技术的文献检索发现, 采用传统的分散、乳液、悬浮聚合 等方法制备的磁性聚合物纳米复合微球磁含量不高于 35 wt %。 为了制 备高磁含量的复合微球, Lilliana P和 Landfester等人在 《大分子化学 与物理》 2003年第 204卷 22页到 31也发表的 "用细乳液方法制备高 磁含量的聚苯乙烯磁性纳米微球"一文中首次提出三步法细乳液聚合 (Lilliana P. Ramirez, Katharina Landfester, " Magnetic Polystyrene Nanoparticles with a High Magnetite Content Obtained by Miniemulsion Processes ", Macromolecular Chemistry and Physics 2003. 204. 22-31) , 将磁性聚苯乙烯的磁含量提高到 40 Wt%。但是, 这种三步法细乳液聚 合制得的磁性聚苯乙烯微球粒径分布较宽, 形貌不够理想。 发明概述 '
为了克服现有技术的不足, 本发明提供一种制备单分散有机 /无机 复合纳米微球的聚合方法, 即双细乳体系乳液聚合方法,使其制备出高 磁含量、 单分散性的无机 /有机纳米复合微球。 所述的复合过程是在无 机纳米粒子存在的条件下进行原位聚合。凡经过修饰能均勾分散在有机 分散相中的无机纳米粒子均可用于制备此类复合微球。
本发明是通过以下技术方案实现的,本发明预先制备两种不同的细 乳液体系: 含无机纳米粒子的细乳液体系 A和含聚合单体的细乳液体 系 Β。'细乳液 Α中加入自由基引发剂预搅拌直到引发剂溶解在水相中, 然后再加入细乳液 B搅拌直到体系混合均匀。 混合好的体系置于恒温 水浴中反应即可。
以下对本发明作进一步说明, 包括三个步骤:
( 1 ) 经表面活性剂修饰的无机纳米粒子分散在一种有机溶剂中作 为油相与水和表面活性剂混合,超声后形成 o/w型细乳液人。超声功率 可调范围为 200〜800W, 可控的形成含有无机纳米颗粒的分散相油滴。
(2) 水和同种表面活性剂配成 0.1-0.2wt%的水溶液。 聚合单体从 SPG模乳化装置中挤出,形成均一的细乳液 B。在此体系中聚合单体在 水相中形成微米级单分散的油滴。
( 3 )细乳液 A和细乳液 B均必须保证体系无空胶束存在。 向细乳 液 A中放入自由基聚合引发剂搅拌溶解后加入细乳液 B混合搅拌半小 时, 放入 50〜85°C的恒温水浴中反应 5小时以上。
所述的预先制备的细乳液 A和细乳液 B两个体系的分散相油滴直 径存在至少一个数量级的差别, 且数量相差 104。细乳液 A体系中含有 无机颗粒的分散相油滴直径范围在 50~200nm, 而细乳液 B体系中分散 相单体液滴直径大于 1 μ ηι。
所述的无机纳米粒子为 Fe3O4、 FeCo合金、 金属及半导体纳米晶、 Fe2O3中的几种或一种。
所述的聚合单体为苯乙烯、 甲基丙烯酸甲酯单独聚合或者共聚。 所述的用于制备双细乳液体系的表面活性剂为十二垸基硫酸钠 ( SDS)、 吐温 20中的一种。
所述的用于修饰无机纳米粒子的表面活性剂为油酸、十一烯酸中的 一种或两者联合使用。
所述的有机溶剂为正辛垸、 正己烷中的一种。
所述的引发剂为过硫酸钾 (KPS)、 偶氮二异丁腈 (AIBN)、 过氧 化苯甲酰 (BPO) 的一种。
本发明针对以往制备有机 /无机复合微球存在无机粒子含量低且微 球分布不均匀的问题,创新地提出了一种新颖的制备方法,克服了长期 以来人们采用传统的聚合方法所面临的无机粒子在聚合单体聚合的过 程中易团聚、复合程度不高、体系难以控制的瓶颈。本发明结合了细乳 液的稳定机制和乳液聚合的聚合机理。 含无机纳米粒子的细乳液 A中 的单体液滴基于数量多和表面积大的优势作为主要的成核点,类似于乳 液聚合中的胶束; 细乳液 B 中微米级的单体液滴则作为单体库, 不断 的提供单体给成核乳胶粒,这类似于乳液聚合中的单体液滴。以上聚合 机理正是利用了乳液聚合便于合成单分散性微球的优点,同时釆用细乳 液液滴成核克服了胶束成核不利于制备无机 /有机复合微粒的弊端, 制 备出高磁含量、 单分散性的无机 /有机纳米复合微球。 本发明主要用于 制备含有两相或多相组分的无机 /有机复合纳米材料。 附图说明
图 1为本发明制备所得的 Fe304/PS磁性复合纳米微球效果图。 发明的详细说明
结合本发明技术方案提供以下实施例:
实施例 1 ·. 单分散髙磁含量 (95wt%) 磁性聚苯乙烯纳米复合微球 的制备
1、 Fe3O4磁性纳米粒子的制备、表面修饰及 Fe3O4辛垸分散液的制 备
釆用共沉淀法制备油酸和十一烯酸共同修饰的磁性 Fe304纳米粒 子。 26gFe3Cl . 7H2O和 18gFe2SO4 . 7H2O溶于 50ml去离子水中,充分 溶解后倒入三口烧瓶, 并置于 70°C水浴中, 充氮气, 400rpm搅拌半小 时后, 将 50ml氨水加入反应体系中开始反应。 五分钟后加入油酸和十 一烯酸的混合液 5 g (油酸: 十一烯酸 =2: 3 )。 一小时后将水浴升温到 90°C后保温 1小时,使氨水全部蒸发出来结束反应。这样得到的磁粒子 用水和无水乙醇反复各洗三次后用正辛烷分散, 得到磁含量为 50%的 Fe3O4辛垸分散液。
2、 细乳液 A的制备
0.02、SDS, 48g去离子水, 2g磁含量为 50%的 Fe3O4辛垸分散液, 经 800瓦超声 30分钟后得到平均粒径为 129nm的细乳液 A。
3、 细乳液 B的制备
苯乙烯 5g、 十六烷 0.08g混合均勾后加入 SPG的模乳化装置中, 压力 0.048Mpa时挤入含 SDS 0.10g和去离子水 80g的连续相中, 得到 平均粒径 5.126 μ m的单体分散细乳液 B。
4、 聚合
磁细乳 A中加入 20mg引发剂过硫酸钾, 500rpm机械搅拌半小时 后将细乳液 B倒入细乳液 A中,调节搅拌速度为 200rpm, 放入 78°C水 浴中聚合 17小时, 得到平均粒径 169.4nm的单分散纳米复合磁微球, 如图 1所示。 实施例 2:单分散低磁含量聚甲基丙烯酸甲酯纳米复合磁性微球的 制备
1、 Fe3O4磁性纳米粒子的制备、表面修饰及 Fe3O4辛垸分散液的制 备
磁性纳米粒子的制备同实施例 1-1中所述。油酸和十一烯酸共同修 饰的磁性纳米粒子经水和无水乙醇反复清洗后分散在正辛垸中配成 10wt%磁含量的 Fe304辛烷分散液。
2、 细乳液 A的制备
0.12gSDS (十二垸基硫酸钠), 48g 去离子水, 2g 磁含量为 10%的 Fe3O4辛垸分散液, 经 200瓦超声 10分钟后得到平均粒径为 200nm的 细乳液 A。
3、 乳液 B的制备
甲基丙烯酸甲酯 5g、 十六烷 0.08g 混合均勾后加入 SPG的模乳化 装置中, 压力 0.048Mpa时挤入含 SDS 0.10g和去离子水 80g的连续相 中, 得到平均粒径 4.923 μ ιη的单体分散乳液8。
4、 聚合
磁细乳 Α中加入 20mg引发剂过硫酸钾, 500rpm机械搅拌半小时 后将乳液 B倒入细乳液 A中,调节搅拌速度为 200rpm,放入 50°C水浴 中聚合 17小时, 得到平均粒径 280nm的复合磁粒子。 实施例 3 : 量子点标记的磁性复合纳米微球的制备
磁粒子的制备和表面修饰同实施例 1中所述,所不同的是 Fe3O4辛 烷分散液的磁含量为 30%。细乳液 A和细乳液 B的制备亦同实施例 1, 所不同的是制备细乳液 (A)的超声功率为 500W, 细乳液 (A)的平均粒径 为 155nm。将细乳液 A倒入三口烧瓶中, 加入含量子点(TOPO修饰的 CdSe)的辛垸分散液 0.5g, 500rpm搅拌 1小时,然后加入引发剂偶氮二 异丁腈, 将细乳液 B倒入三口烧瓶与细乳液 A混合后放入 65°C水浴中 聚合 5小时, 得到平均粒径 230nm, 包覆 CdSe的磁性复合纳米微球。 实施例 4: FeCo/PS磁性复合纳米微球的制备
FeCo纳米合金用高温有机溶剂法制备, 并将 分散在正己烷中得 到磁含量为 5wt%的磁液。细乳液 A和细乳液 B的制备方法以及聚合过 程均同实施例 1,只是将 50wt%的 Fe3O4磁流体变成 5wt%的 FeCo磁流 体, 引发剂变为过氧化苯甲酰, 聚合温度为 85 Ό最终得到平均粒径 157nm的磁性复合纳米微球。

Claims

权利 要 求书
1、一种制备单分散有机 /无机复合纳米微球的聚合方法, 其特征在 于,预先制备两种不同的细乳液体系:含无机纳米粒子的细乳液体系 A 和含聚合单体的细乳液体系 B, 细乳液 A中加入水溶性引发剂预搅拌 直到引发剂溶解在水相中, 然后再加入细乳液 B搅拌直到体系混合均 匀, 混合好的体系置于恒温水浴中反应。
2、根据权利要求 1所述的制备单分散有机 /无机复合纳米微球的聚 合方法, 其特征是, 包括三个步骤-
( 1 ) 经表面活性剂修饰的无机纳米粒子分散在一种有机溶剂中作 为油相与水和用于制备双细乳液体系的表面活性剂混合, 超声后形成 o/w型细乳液 , 超声功率范围为 200〜800W, 形成含有无机纳米颗粒 的分散相油滴;
( 2 ) 水和用于制备双细乳液体系的同种表面活性剂配成 0.1-0.2wt%的水溶液,聚合单体从 SPG模乳化装置中挤出,形成均一的 细乳液 B, 聚合单体在水相中形成微米级单分散的油滴;
(3 )细乳液 A和细乳液 B均必须保证体系无空胶束存在, 向细乳 液 A中放入引发剂搅拌溶解后加入细乳液 B混合搅拌半小时,放入 50〜 85°C的恒温水浴中反应 5小时以上。
3、根据权利要求 1或者 2所述的制备单分散有机 /无机复合纳米微 球的聚合方法, 其特征是, 所述的细乳液 A和细乳液 B两个体系的分 散相油滴直径存在至少一个数量级的差别, 且数量相差 104, 细乳液 A 体系中含有无机颗粒的分散相油滴直径范围在 50~200nm, 而细乳液 B 体系中分散相单体液滴直径大于 1 μ m。
4、根据权利要求 1或者 2所述的制备单分散有机 /无机复合纳米微 球的聚合方法, 其特征是, 所述的无机纳米粒子为 Fe3O4、 FeCo合金、 金属及半导体纳米晶、 Fe2O3中的几种或一种。
5、根据权利要求 1或者 2所述的制备单分散有机 /无机复合纳米微 球的聚合方法, 其特征是, 所述的聚合单体为苯乙烯、 甲基丙烯酸甲酯 单独聚合或者共聚。
6、根据权利要求 2所述的制备单分散有机 /无机复合纳米微球的聚 合方法,其特征是,所述的用于制备双细乳液体系的表面活性剂为十二 烷基硫酸钠、 吐温 20中的一种。
7、根据权利要求 2所述的制备单分散有机 /无机复合纳米微球的聚 合方法,其特征是,所述的用于修饰无机纳米粒子的表面活性剂为油酸、 十一烯酸中的一种或两者联合使用。 '
8、根据权利要求 2所述的制备单分散有机 /无机复合纳米微球的聚 合方法, 其特征是, 所述的有机溶剂为正辛烷、 正己垸中的一种。
9、根据权利要求 1或者 2所述的制备单分散有机 /无机复合纳米微 球的聚合方法, 其特征是, 所述的引发剂为过硫酸钾、 偶氮二异丁腈、 过氧化苯甲酰的一种。
PCT/CN2007/000107 2006-01-12 2007-01-11 Procede de polymerisation destine a la preparation de nano-microspheres composites monodispersees organiques/inorganiques WO2007079690A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07702039A EP1978037B1 (en) 2006-01-12 2007-01-11 Polymerization process for preparing monodispersal organic / inorganic composite nano-microsphere
DE602007013179T DE602007013179D1 (de) 2006-01-12 2007-01-11 Polymerisationsverfahren zur herstellung von monodisperser organisch/anorganischer verbundnanomikrokugel
US12/160,802 US8552110B2 (en) 2006-01-12 2007-01-11 Polymerization process for preparing monodispersal organic/inorganic composite nano-microsphere

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610023218.4 2006-01-12
CNB2006100232184A CN100348622C (zh) 2006-01-12 2006-01-12 制备单分散有机/无机复合纳米微球的聚合方法

Publications (1)

Publication Number Publication Date
WO2007079690A1 true WO2007079690A1 (fr) 2007-07-19

Family

ID=36866026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/000107 WO2007079690A1 (fr) 2006-01-12 2007-01-11 Procede de polymerisation destine a la preparation de nano-microspheres composites monodispersees organiques/inorganiques

Country Status (5)

Country Link
US (1) US8552110B2 (zh)
EP (1) EP1978037B1 (zh)
CN (1) CN100348622C (zh)
DE (1) DE602007013179D1 (zh)
WO (1) WO2007079690A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115055126A (zh) * 2022-06-24 2022-09-16 重庆理工大学 一种微流控制备多孔磁性/温敏微球的方法及其产品和应用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009042036B4 (de) * 2009-09-17 2016-09-01 Institut für Bioprozess- und Analysenmesstechnik e.V. Verwendung einer lichthärtenden, biokompatiblen und biologisch abbaubaren Polymermischung
CN102142310B (zh) * 2010-02-03 2013-07-03 中国石油天然气股份有限公司 一种纳米磁性聚合物复合微球的制备方法
CN102319558B (zh) * 2011-06-09 2013-01-23 莆田学院 二硫代氨基甲酸盐改性磁性微球的制备方法及应用方法
CN102516562B (zh) * 2011-09-28 2013-07-24 东华大学 一种以磁性杂化微球为交联点的凝胶的制备方法
CN103551146B (zh) * 2013-09-10 2015-05-13 杭州师范大学 一种贵金属-二氧化钛纳米复合粒子的制备方法
CN104031201B (zh) * 2014-05-29 2016-08-24 深圳市新产业生物医学工程股份有限公司 一种用于生物蛋白分离的磁性微球的制备方法及其应用
DE102015109023A1 (de) * 2015-06-08 2016-12-08 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Herstellung von Kompositpartikeln
CN104961859B (zh) * 2015-07-14 2017-01-18 江南大学 一种磁组装光子晶体防伪标识的制备方法
CN106881043B (zh) * 2017-04-17 2023-08-15 中国工程物理研究院激光聚变研究中心 一种双重乳粒单分散装置
CN111205912B (zh) * 2020-01-19 2021-03-30 清华大学 一种智能存储型纳米颗粒的制备方法
CN111892033A (zh) * 2020-07-24 2020-11-06 无锡迈科为生物科技有限公司 一种羟基磷灰石微球的制备方法
CN112044295A (zh) * 2020-08-19 2020-12-08 上海纳米技术及应用国家工程研究中心有限公司 一种纳米电气石分散液及其制备方法
CN112206751B (zh) * 2020-10-13 2022-08-23 中南大学 疏水磁性功能材料及制备方法和在含油污泥处理上的应用
CN112500514B (zh) * 2020-11-11 2023-05-05 四川安可瑞新材料技术有限公司 聚苯乙烯胶乳微球及其制备方法
CN115232234B (zh) * 2022-05-16 2023-06-27 北京化工大学 一种用于荧光陶瓷的球型造孔剂的制备方法及所得球型造孔剂

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1556123A (zh) * 2003-12-30 2004-12-22 上海交通大学 高磁含量磁性聚合物粒子的制备方法
CN1654489A (zh) * 2005-01-28 2005-08-17 中国林业科学研究院林产化学工业研究所 纳米二氧化硅-丙烯酸酯复合乳液的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421660A (en) * 1980-12-15 1983-12-20 The Dow Chemical Company Colloidal size hydrophobic polymers particulate having discrete particles of an inorganic material dispersed therein
US4608401A (en) * 1982-09-02 1986-08-26 Union Carbide Corporation Method of encapsulating finely divided solid particles
JP2004517980A (ja) * 2000-09-21 2004-06-17 ローム アンド ハース カンパニー 極性モノマーと多価カチオンとに関わる方法および組成物
CN1143868C (zh) * 2001-10-26 2004-03-31 中国科学院长春应用化学研究所 原位乳液聚合制备聚丙烯酸酯/粘土纳米复合材料的方法
US6797782B2 (en) * 2002-03-25 2004-09-28 Jsr Corporation Process for producing particles for diagnostic reagent
JP2004168846A (ja) * 2002-11-19 2004-06-17 Asahi Glass Co Ltd 複合微粒子およびその製造方法
CN1417249A (zh) * 2002-12-13 2003-05-14 清华大学 烯烃聚合物/SiO2复合型纳米粒子及其制备方法
CN1519262A (zh) * 2003-01-20 2004-08-11 浙江大学 聚合物-纳米氢氧化镁复合微球的制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1556123A (zh) * 2003-12-30 2004-12-22 上海交通大学 高磁含量磁性聚合物粒子的制备方法
CN1654489A (zh) * 2005-01-28 2005-08-17 中国林业科学研究院林产化学工业研究所 纳米二氧化硅-丙烯酸酯复合乳液的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Magnetic Polystyrene Nanoparticles with a High Magnetite Content Obtained by Miniemulsion Processes", MACROMOLECULAR CHEMISTRY AND PHYSICS, 2003
RAMIREZ L.P. AND LANDFESTER K.: "Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes", MACROMOLECULAR CHEMISTRY AND PHYSICS, vol. 204, no. 1, 2003, pages 22 - 31, XP001047630 *
See also references of EP1978037A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115055126A (zh) * 2022-06-24 2022-09-16 重庆理工大学 一种微流控制备多孔磁性/温敏微球的方法及其产品和应用
CN115055126B (zh) * 2022-06-24 2023-11-28 重庆理工大学 一种微流控制备多孔磁性/温敏微球的方法及其产品和应用

Also Published As

Publication number Publication date
CN1803859A (zh) 2006-07-19
US20100292388A1 (en) 2010-11-18
EP1978037A1 (en) 2008-10-08
DE602007013179D1 (de) 2011-04-28
US8552110B2 (en) 2013-10-08
EP1978037A4 (en) 2008-12-31
CN100348622C (zh) 2007-11-14
EP1978037B1 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
WO2007079690A1 (fr) Procede de polymerisation destine a la preparation de nano-microspheres composites monodispersees organiques/inorganiques
CN108948246B (zh) 固体颗粒改性转相并稳定Pickering反相细乳液的方法
Thickett et al. Preparation of composite materials by using graphene oxide as a surfactant in Ab initio emulsion polymerization systems
Mahdieh et al. Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization
WO2018000423A1 (zh) 温敏性纳米胶囊及其制备方法
US4049604A (en) Emulsion polymerization method for preparing aqueous dispersions of organic polymer particles
Gu et al. Preparation and colloidal stability of monodisperse magnetic polymer particles
Faridi-Majidi et al. Encapsulation of magnetic nanoparticles with polystyrene via emulsifier-free miniemulsion polymerization
Gu et al. Synthesis of monodisperse, magnetic latex particles with polystyrene core
CN108976341A (zh) 一种树莓状无机聚合物杂化微球及其制备方法
CN106589464A (zh) 乙烯基聚合物包覆纳米二氧化硅微球及改性环氧树脂的制备方法
Yao et al. Efficient preparation of carboxyl-functionalized magnetic polymer/Fe3O4 nanocomposite particles in one-pot miniemulsion systems
Yamamoto et al. Design of polymer particles maintaining dispersion stability for the synthesis of hollow silica particles through sol-gel reaction on polymer surfaces
Dou et al. Magnetic nanoparticles encapsulated latexes prepared with photo-initiated miniemulsion polymerization
CN101703914A (zh) 一种制备单分散性聚合物纳米微球的方法
EP2283047A1 (en) Filled nanoparticles
JPS61215602A (ja) 重合体粒子の製造方法
CN110016150B (zh) 大分子自组装稳定Pickering反相细乳液的方法
Shiraz et al. Preparation of novel film-forming armoured latexes using silica nanoparticles as a pickering emulsion stabiliser
Cai et al. Fabrication of polystyrene hollow spheres in W/O/W multiple emulsions
Liu et al. Tailoring Emulsion Polymerization for High-Yield Synthesis of Tween 80 Stabilized Magnetic Cross-Linked Polystyrene Nanocomposite Particles
CN113289560A (zh) 一种以Janus纳米乳液为模板合成Janus纳米粒子的方法
de la Cruz Montoya et al. Preparation of magnetic polymer colloids with Brownian magnetic relaxation
JPH0731869A (ja) 固体粒子のマイクロカプセル化方法
Kang et al. Study on soap‐free P (MMA‐EA‐AA or MAA) latex particles with narrow size distribution

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007702039

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12160802

Country of ref document: US