WO2007072756A1 - ミネラル吸収促進剤、食品及び飼料 - Google Patents

ミネラル吸収促進剤、食品及び飼料 Download PDF

Info

Publication number
WO2007072756A1
WO2007072756A1 PCT/JP2006/325055 JP2006325055W WO2007072756A1 WO 2007072756 A1 WO2007072756 A1 WO 2007072756A1 JP 2006325055 W JP2006325055 W JP 2006325055W WO 2007072756 A1 WO2007072756 A1 WO 2007072756A1
Authority
WO
WIPO (PCT)
Prior art keywords
mineral
calcium
indigestible dextrin
citrate
mineral absorption
Prior art date
Application number
PCT/JP2006/325055
Other languages
English (en)
French (fr)
Inventor
Takashi Ichihara
Shoko Miyazato
Hiroyuki Tagami
Yuka Kishimoto
Hiroshi Hara
Original Assignee
Matsutani Chemical Industry Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsutani Chemical Industry Co. Ltd. filed Critical Matsutani Chemical Industry Co. Ltd.
Priority to US12/158,022 priority Critical patent/US20090232961A1/en
Priority to EP06834798.8A priority patent/EP1964855B1/en
Publication of WO2007072756A1 publication Critical patent/WO2007072756A1/ja
Priority to US13/348,513 priority patent/US20120107449A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/40Feeding-stuffs specially adapted for particular animals for carnivorous animals, e.g. cats or dogs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/163Sugars; Polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • A23L29/35Degradation products of starch, e.g. hydrolysates, dextrins; Enzymatically modified starches
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/16Inorganic salts, minerals or trace elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/718Starch or degraded starch, e.g. amylose, amylopectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • C08B31/02Esters
    • C08B31/04Esters of organic acids, e.g. alkenyl-succinated starch
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/15Inorganic Compounds
    • A23V2250/156Mineral combination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2059Starch, including chemically or physically modified derivatives; Amylose; Amylopectin; Dextrin

Definitions

  • the present invention relates to a mineral absorption promoter characterized by containing an indigestible dextrin or a derivative thereof, and a food and feed containing the same.
  • Patent Documents 1 and 2 casein phosphopeptide (CPP) (Patent Documents 1 and 2), which has been separated from milk power, is known to promote the absorption of power and is low in milk content and easy to remove bitter peptides is not. Since Patent Document 3 exhibits the strength S and sourness of the calcium citrate 'calcium malate calcium complex disclosed in the calcium solubility effect, there are restrictions on its use in foods.
  • Patent Document 4 phosphate sucrose in which two or more phosphates are bonded to a glucan in which 2 to 8 glucoses are bonded by ⁇ -1,4 bonds prevents insoluble minerals containing calcium. It is disclosed.
  • Patent Document 5 discloses a phosphorylated polysaccharide that promotes calcium absorption and a method for producing the same.
  • This phosphate-polysaccharide is a high-molecular phosphorylated saccharide obtained by reacting a natural or synthetic polysaccharide with an inorganic phosphate, and its use in food is restricted due to its viscosity.
  • dietary fibers such as indigestible oligosaccharides including frato-oligosaccharides, talc and ligo are disclosed.
  • Patent Documents 6 and 7 e.g. (Patent Documents 6 and 7 and Non-Patent Document 1).
  • dietary fibers are known to promote mineral absorption because they reach the large intestine without being digested by digestive tract enzymes and are degraded and fermented by intestinal bacteria.
  • short-chain fatty acids such as acetic acid, propionic acid, and butyric acid are generated to lower the pH and increase the solubility of minerals.
  • solubilization caused by pH drop is not a necessary and sufficient condition for promoting mineral absorption.
  • indigestible dextrin is known as a water-soluble dietary fiber derived from starch different from the indigestible oligosaccharide (for example, Patent Document 8).
  • the indigestible dextrin reaches the large intestine without being digested by digestive tract enzymes and is decomposed and fermented by intestinal bacteria, in common with the indigestible oligosaccharide-guar gum degradation product,
  • the energy value is 1 kilocalorie Zg, which is approximately 1 Z2 of the energy value of the digestible oligosaccharide-guar gum decomposition product (Non-patent Document 2).
  • indigestible dextrin indicates that the amount of short-chain fatty acids produced by fermentation in the large intestine is small if the energy value is high. /! In fact, in in vitro fermentation tests using human fecal microflora, indigestible dextrin has a lower total pH and lower pH compared to the degradation products of furato-oligosaccharides and guar gum.
  • Patent Document 9 discloses an enteral nutritional composition containing branched maltodextrins, which describes the ability of branched maltodextrins to promote general absorption. However, according to Patent Document 10, the energy value of branched maltodextrins is described as 2 kilocalories, which is twice that of indigestible dextrin.
  • Patent Document 1 Japanese Patent Laid-Open No. 3-240470
  • Patent Document 2 JP-A-5-284939
  • Patent Document 3 Japanese Patent Application Laid-Open No. 56-97248
  • Patent Document 4 JP-A-8-104696
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2000-157186
  • Patent Document 6 Japanese Patent Laid-Open No. 7-252156
  • Patent Document 7 JP-A-7-67575
  • Patent Document 8 Japanese Patent Publication No. 4-43624
  • Patent Document 9 Special Table 2004-524366
  • Patent Document 10 Special Table 2004-524849
  • Patent Document 11 Japanese Patent Application Laid-Open No. 2004-307768
  • Non-patent literature l New Food Industry 2001 Vol. 43 No.12 p35- 44
  • Non-Patent Document 2 Journal of the Japanese Society of Dietary Fiber 9-9 No. 34-46 (2005) Non-Patent Document 3 Journal of Nutrition, 2000; 130 (5): 1267-1273
  • the present invention provides the following mineral absorption promoter, food and feed containing the same.
  • a mineral absorption promoter comprising an indigestible dextrin or a derivative thereof as an active ingredient.
  • Degradable dextrin derivative The mineral absorption enhancer according to 1 or 2 above, which is a carboxylic acid-binding indigestible dextrin.
  • mineral absorption promoter according to any one of 1 to 3 above, wherein the mineral is at least one selected from calcium, magnesium, iron and zinc power.
  • the mineral absorption enhancer of the present invention foods and feeds containing the same, have an excellent mineral absorption promotion function, and are effective in resolving the daily shortage of mineral intake.
  • the mineral absorption promoter of the present invention can contribute to efficient mineral intake by modern people with low energy values.
  • the mineral in the mineral absorption enhancer of the present invention is an essential nutrient for animals, and specific examples thereof include at least one mineral selected from calcium, magnesium, iron and zinc.
  • indigestible dextrin used as an active ingredient of the mineral absorption promoter of the present invention is a non-digested dextrin obtained by heating or roasting starch in the presence of an acid. Or dextrin that is not digested with digestive tract enzymes or their hydrogenated substances, obtained by fractionation after the action of acid or saccharide-degrading enzymes such as amylase and glucoamylase. .
  • Such indigestible dextrin is, for example, pine under the trade names of Fibersol 2 and Fibersol 2 ⁇ (hydrogenated product). It is sold by Tani Chemical Industry Co., Ltd.
  • the indigestible dextrin derivative used as an active ingredient of the mineral absorption promoter of the present invention is not particularly limited as long as it has a mineral absorption promoting effect equivalent to that of the indigestible dextrin.
  • Preferable specific examples include citrate-bound indigestible dextrin in which citrate is bound to indigestible dextrin. More specifically, a citrate-bound glucose polymer represented by citrate-bonded indigestible dextrin in which citrate is chemically bound to the fiber sol 2 or fiber sol 2H (Patent Document 11).
  • the polymer is a polymer in which citrate and glucose polymer are ester-bonded.
  • the bonding molar ratio of citrate and glucose polymer is preferably 2: 1 to 1: 1 considering the use as food.
  • the ester bond is preferably a monoester bond.
  • the glucose polymer used as a raw material for the citrate-bonded glucose polymer used in the present invention is not particularly limited as long as it is a polymer having glucose as a structural unit, but it is a general starch processed product, particularly oxidized starch, starch. Degraded products, reduced starch degraded products, resistant starch degraded products, resistant digestible dextrin or hydrogenated products thereof (reduced resistant digestible dextrin) are preferred. Particularly preferred glucose polymers are reduced starch degradation products, resistant starch degradation products, resistant digestive dextrin or hydrogenated products thereof (reduced resistant digestible dextrin).
  • the degree of polymerization of the glucose polymer can vary widely depending on the properties of the intended glucose polymer. However, considering the necessity of mixing with citrate and drying the powder, the degree of polymerization is It is preferably 4 to 123, more preferably 4 to 18, and most preferably 6 to 15. When a glucose polymer having a higher degree of polymerization is used, a substance insoluble in water may be formed when dissolved in water, and use may be restricted. On the other hand, when a glucose polymer having a lower degree of polymerization is used, it is difficult to obtain a powder. It is not preferable.
  • starch When starch is used as a raw material for the glucose polymer, the type is not particularly limited.
  • potato starch, sweet potato starch, corn starch, tapio force starch, wheat starch, etc. Can be used as
  • a glucose polymer and citrate are mixed and dissolved in water to obtain an aqueous solution.
  • the mixing ratio of glucose polymer and citrate is appropriately selected according to the properties of the target polymer, but in order to obtain the desired product, it is preferably 1: 1 to 1: 3, more preferably a molar ratio. 1: 2.5.
  • the number average molecular weight of indigestible dextrin and its derivatives used in the present invention is a size-exclusion HPLC column, for example, TSK gel G6000PW, G3000PW and G2500PW of Tosoh Corporation connected in series. Using molecules
  • the amount of dulcose polymer and citrate dissolved in water is not particularly limited as long as it dissolves in water, but in general, the total amount of glucose polymer and citrate is preferably 20 to 50 parts by mass with respect to 100 parts by mass of water. More preferably, it is 30 to 40 parts by mass. Dissolution may be carried out under normal pressure, usually 10-60 ° C, usually at room temperature, with stirring if necessary.
  • the obtained aqueous solution is preferably dried at 95 to 110 ° C for 1 to 1: LO time to obtain a uniform powder, usually a uniform amorphous powder.
  • LO time to obtain a uniform powder, usually a uniform amorphous powder.
  • any method such as spray drying, drum drying or freeze drying can be used effectively.
  • the product temperature is preferably 100 to 160 ° C, usually 1 to 20 hours, preferably 2 to 15 hours, more preferably 2 to 10 hours.
  • the desired citrate-bound glucose polymer can be produced.
  • general heat treatment equipment such as an oil bath or a rotary kiln, or a vacuum roasting apparatus, an etastruder, a drum dryer, or a fluidized bed heating apparatus can be used effectively.
  • the temperature of the powder during the heat treatment is preferably 100 to 160, more preferably 100 to 12. 5 ° C. Increasing the reaction temperature increases the reaction rate. Reactions are fast at temperatures above 125 ° C, but water-insoluble materials may be formed. However, water-insoluble substances are not generated under conditions of 100-125 ° C.
  • the glucose polymer and citrate are mainly composed of monoester bonds, and almost no diester bonds are recognized! /.
  • the heating reaction product does not need to be purified depending on the application.
  • a method or apparatus used for purification of general sugars such as a filtration apparatus, It can be purified effectively by using a desalting process using an ion exchange resin, a membrane separator, or the like.
  • the amount of citrate bound to the glucose polymer of the purified citrate-bound glucose polymer can be indirectly quantified by measuring the fluctuation of the amount of free citrate in the yarn and product before and after the reaction by HPLC.
  • the ester bond type can be determined by measuring the carboxyl group of the citrate-bound glucose polymer by neutralization titration.
  • the citrate-bonded glucose polymer or the indigestible dextrin thus produced can be used alone or in combination as a mineral absorption promoter for tablets, granules, capsules and the like. Also used in various beverages such as soft drinks, fermented beverages and milk beverages, or in foods such as cereals, breads, confectionery, snacks and candy, livestock, poultry and various pet foods can do. Furthermore, it can be used by blending with mineral supplements or enteral nutritional compositions such as liquid foods.
  • the mineral absorption promoter comprising the indigestible dextrin or derivative thereof of the present invention as an active ingredient is usually 0.1 to 50 g per day for an adult, preferably 0.5 to: LOg is divided into 1 to 3 times. Orally. These intakes can be appropriately increased or decreased depending on body weight, age and the like.
  • the mineral absorption promoter of the present invention is added to food, feed, etc., it is usually added preferably in the range of 1-20% by mass with respect to the target food, feed, etc.
  • the mineral absorption enhancer of the present invention will be described in more detail by taking as an example the case of using a citrate-bound glucose polymer as a calcium absorption enhancer.
  • the carboxyl group of the citrate-bonded glucose polymer used as a calcium absorption promoter is used as a free form or as an alkali metal salt or alkaline earth metal salt.
  • an alkali metal salt or alkaline earth metal salt when added to an acidic beverage, it can be used as it is as a free form, but when used for foods and drinks having a pH near neutral, an alkali metal salt or It is preferable to use it as an alkaline metal salt!
  • Examples of the alkali metal salt or alkaline earth metal salt include potassium, sodium, calcium, and magnesium salt.
  • the molar ratio of calcium to be ingested and citrate in the citrate-binding glucose polymer is 1: 0.1 to 1: 2, preferably 1: 0.5 to 1: 1. 5. More preferably, it is preferable to take 1: 1, for example, the average amount of power Lucium taken by a Japanese adult is 12.5-15 mmol Z days. intake of Kuen acid binding grayed Le course comprise, in Kuen acid terms 1. preferred 25-30 mmol Z Date force s.
  • a general mineral balance test is used as a method for evaluating the mineral absorptivity of the mineral absorption enhancer of the present invention. For example, rats are used as test animals, and they are allowed to ingest test foods that contain minerals and reared for about 1 to 2 weeks. Measure the amount of minerals in the test food and feces collected for several days before the end of the breeding, and calculate the apparent mineral absorption rate according to the following formula 1. The rate of change can also be calculated by the following equation (2) by simultaneously measuring the absorption rate of the 4 powers before the start of the test (week 0).
  • Apparent mineral absorption rate (%) 100 X [(amount of mineral in the ingested feed) (amount of mineral excreted in the feces)] Z (amount of mineral in the ingested feed)
  • Fluctuation rate (%) 100 X [(apparent mineral absorption rate) (apparent mineral absorption rate in week 0)] Z (apparent mineral absorption rate in week 0)
  • calcium chloride was used as calcium agent, magnesium chloride as magnesium agent, ferric chloride as iron agent, and zinc chloride as zinc agent.
  • samples without carbohydrates and V and samples without minerals were prepared, respectively.
  • Figure 1 shows that reduced indigestible dextrin citrate sodium salt significantly increases the solubility of minerals in phosphate buffer. On the other hand, no such effect was observed with reduced resistant digestible dextrin. This result indicates that citrate bound to indigestible dextrin contributes to mineral solubility.
  • Reduced indigestible dextrin (Matsutani Chemical Co., Ltd. Fiber Sol 2H (FS2H): Hydrogenated indigestible dextrin with a branched structure with a number average molecular weight of about 2,000) 8.1 kg (4.05 mol) was stirred and dissolved in 23 kg of water, and then 1.9 kg (9.90 mol) of cuenic acid (manufactured by Archer Daniels Midland, USA) was added and mixed and dissolved. Next, this aqueous solution was spray-dried with a spray dryer to obtain a uniform powder of dextrin Z citrate. Next, heat treatment was performed for 400 minutes while maintaining 7 kg of the powder at a product temperature of 120 ° C.
  • this heat-treated powder was dissolved in water (10% wZw), and unreacted citrate was removed with a loose reverse osmosis membrane (NTR-7470: manufactured by Nitto Denko Corporation). This is a spray dryer The powder was reduced to 5.5 kg of a reduced resistant digestible dextrin citrate ester.
  • the reduced indigestible dextrin citrate thus purified had reduced indigestible dextrin and citrate bound at a molar ratio of 1: 1.2, and the bond was a monoester bond.
  • this reduced indigestible dextrin citrate is dissolved in water (30% wZ w), neutralized with sodium hydroxide and powdered again with a spray drier, and reduced inextensible dextrin.
  • a sodium salt of citrate ester was obtained.
  • feed and demineralized water shown in Table 1 are freely ingested, reared in a light / dark cycle every 12 hours, pre-bred (week 0), and the last day of the first week for 3 days is collected during the balance test period.
  • the amount of calcium, magnesium, iron and zinc in the feces was measured by atomic absorption spectrometry.
  • Mineral content of feed and food intake ability The amount of mineral intake during the test period was calculated, and the apparent mineral absorption rate was calculated according to Equation 1 above.
  • Vitamin mixture 1 10 10 10
  • the reduction indigestible dextrin citrate sodium salt addition group and the reduction indigestible dextrin addition group suppressed the decrease in calcium absorption rate compared to the control group.
  • the calcium absorption rate was significantly increased in the reduced indigestible dextrin citrate sodium salt addition group compared to the control group.
  • the reduced-digestible dextrin-added group also controls force to increase the calcium absorption rate. It was not significant compared to the group. Compared to intake of standard calcium feed (Example 3) compared to intake of low calcium feed
  • Fine granules for direct hitting No. 2 0 9 (Fuji Chemical Co., Ltd.) "4 8
  • Magnesium stearate 2 1
  • It consists of magnesium aluminate metasilicate (20%), corn starch (30%) and lactose (50%).
  • the above materials were mixed uniformly, and the mixed powder was compressed into tablets of 200 mg per tablet.
  • FS2HZC.Ca calcium salt
  • FS2HZC. Ca was water-soluble and could be a transparent aqueous solution of at least 50% (wZv).
  • a calcium-fortified beverage was prepared according to the formulation shown in Table 5 using FS2H / C. Ca.
  • Dog food was prepared according to the recipe in Table 6.
  • the reduced indigestible dextrin citrate was neutralized with magnesium carbonate in the same manner as in Example 1 to prepare its magnesium salt (FS2H / C. Mg).
  • FS2HZC. Mg was water-soluble and could be a transparent aqueous solution of at least 50% (wZv).
  • a magnesium-fortified beverage was prepared according to the formulation shown in Table 8 using FS2HZC. Mg. Table 8
  • Dog food was prepared according to the recipe in Table 9.
  • Soybean meal 2 1. 0
  • a calcium supplement mixture was prepared, kneaded with water, granulated, and dried.
  • Non-digestible dextrin (FS2, Matsutani Chemical Industry) 10.0 This was pulverized and sized to obtain a powder for tableting. A sucrose fatty acid ester was added to the powder as a lubricant so as to be 2 wZw%, followed by tableting to obtain tablets having an average weight of 0.35 g.
  • Enteral nutrients were prepared according to the formulation in Table 11.
  • Vitamin E tocopherol acetate 8.2 3 mg
  • Vitamin B 1 (thiamine hydrochloride) 0.3 8 mg
  • Vitamin B 2 0.44 mg
  • Vitamin B 6 pyridoxine hydrochloride
  • Vitamin B 1 2 (Cyanoconolamin) 1.5 ⁇ g
  • FIG. 1 is a graph showing the results of a mineral solubility enhancement test in a phosphate buffer in a reference example.
  • FIG. 2 Mineral absorption in rats fed standard calcium diet in Example 2. It is a graph which shows the influence of indigestible dextrins which has on a rate.
  • Example 3 the fluctuation rate of the calcium absorption rate when a standard calcium feed is ingested is shown.
  • Ctr. represents the control group
  • FS2H represents the group with reduced indigestible dextrin
  • FS2HZC.Na represents the group with reduced indigestible dextrin citrate sodium salt added.
  • Example 4 shows the rate of change of calcium absorption rate when a low calcium diet is ingested.
  • the symbols in the figure are the same as in Example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Husbandry (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Inorganic Chemistry (AREA)
  • Hematology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Obesity (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Diabetes (AREA)
  • Birds (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Fodder In General (AREA)
  • Medicinal Preparation (AREA)

Abstract

 難消化性デキストリン又はその誘導体を有効成分とするミネラル吸収促進剤、これを含有するミネラル吸収促進剤を含有する食品、及び飼料を提供する。本発明のミネラル吸収促進剤は、食品への利用が容易で、哺乳類の消化酵素に耐性の、ミネラルの腸管吸収を促進する機能を有する。

Description

ミネラル吸収促進剤、食品及び飼料
技術分野
[0001] 本発明は、難消化性デキストリン又はその誘導体を含有することを特徴とするミネラ ル吸収促進剤、これを含有する食品及び飼料に関する。
背景技術
[0002] 飽食の時代にあって、カルシウム、マグネシウム、鉄及び亜鉛は、不足あるいは不 足しがちな必須ミネラルであることが知られている。この内、カルシウムの成人一日当 りの栄養所要量は、 日本人で 600〜700mgと設定されているが、平均摂取量は栄 養所要量に達して 、な 、のが現状である。カルシウムはアルカリ側で無機リン酸と結 合して不溶性のリン酸カルシウムを形成することが知られており、腸管からのカルシゥ ムの吸収率はきわめて低いとされている。そのために、カルシウムが腸管環境下で不 溶ィ匕しないようなカルシウム結合物質を利用して腸管からの吸収を高める方法の開 発が精力的に行われている。
例えば、乳汁力 分離されたカゼインホスホペプチド (CPP) (特許文献 1〜2)は力 ルシゥム吸収を促進することが知られている力 乳汁中の含量が少なく高価であり、 苦味ペプチドの除去も容易ではない。特許文献 3にはクェン酸カルシウム 'リンゴ酸 カルシウム複合体のカルシウム可溶ィ匕効果が開示されている力 S、酸味を呈することか ら、食品への利用には制約がある。特許文献 4には 2〜8個のグルコースが α— 1, 4 結合で結合したグルカンに 2個以上のリン酸が結合したリン酸ィ匕糖がカルシウムを含 むミネラルの不溶ィ匕を防止することが開示されている。このリン酸ィ匕糖は、リン酸を含 む澱粉に複数の加水分解酵素あるいは糖転移酵素を作用させて製造されるので、 操作が繁雑であるという欠点を有する。また、該リン酸ィ匕糖の腸管における安定性も 懸念される。特許文献 5には、カルシウム吸収を促進するリン酸化多糖類及びその製 造方法が開示されている。このリン酸ィ匕多糖類は、天然あるいは合成の多糖類に無 機リン酸を作用させて得られる高分子リン酸化糖であり、その粘性により、食品への 利用には制約がある。 前記以外のミネラルの吸収を促進する食品素材として、フラタトオリゴ糖ゃキシ口才 リゴ等を含む難消化性オリゴ糖類、グァーガム分解物などの食物繊維が開示されて
V、る(例えば特許文献 6及び 7及び非特許文献 1)。
これらの食物繊維は、ミネラル吸収を促進することが知られている力 その理由とし て、該食物繊維は、消化管酵素で消化されずに大腸に到達し、腸内細菌によって分 解発酵されること、その結果、酢酸、プロピオン酸、酪酸等の短鎖脂肪酸が生成して pHが低下し、ミネラルの溶解性が高まることが考えられている。しかし、 pH低下によ る可溶ィ匕はミネラル吸収促進の必要条件ではある力 十分条件ではない。また、大 腸発酵に依存しな 、ミネラル吸収促進作用も知られており、ミネラル吸収にはさまざ まな要因が関係している (非特許文献 1)。
一方、難消化性オリゴ糖とは異なる澱粉由来の水溶性食物繊維として、難消化性 デキストリンが知られている (例えば特許文献 8)。難消化性デキストリンは、消化管酵 素で消化されずに大腸に到達し、腸内細菌によって分解発酵されることにおいては 前記難消化性オリゴ糖ゃグァーガム分解物と共通して 、るが、そのエネルギー値は 1 キロカロリー Zgであり、前記難消化性オリゴ糖ゃグァーガム分解物のエネルギー値 の約 1Z2である(非特許文献 2)。これらのエネルギー値は大腸における発酵の程度 によって定められており、難消化性デキストリンは、そのエネルギー値力 すれば、大 腸における発酵によって生成する短鎖脂肪酸の量が少な 、ものであることを示して!/、 る。実際、ヒト糞便マイクロフローラを用いたインビトロ発酵試験において、難消化性 デキストリンは、フラタトオリゴ糖ゃグァーガム分解物に比べて、 24時間の発酵で生 成する全有機酸量が少なぐ pH低下も少ないことが示されている (非特許文献 3)。 特許文献 9には分岐状マルトデキストリン類を含む経腸栄養組成物が開示され、分 岐状マルトデキストリン類力 ネラル吸収を促進することが記載されて 、る。しかしなが ら、特許文献 10によれば、分岐状マルトデキストリン類のエネルギー値は 2キロカロリ 一と記載されており、難消化性デキストリンの 2倍のエネルギー値である。
従って、これらの知見から、難消化性デキストリンがミネラル吸収を促進することを予 測することは容易ではない。
松田らは、澱粉由来のグルコースポリマー (難消化性デキストリン)とクェン酸を乾式 で加熱し、クェン酸が結合したイオン交換能を有するグルコースポリマーを生成させ 、これがカルシウムと可溶性の塩を形成することを示している力 そのミネラル吸収性 につ 、ては言及して!/、な!/、(特許文献 11)。
[0004] 特許文献 1:特開平 3— 240470号公報
特許文献 2:特開平 5 - 284939号公報
特許文献 3:特開昭 56 - 97248号公報
特許文献 4:特開平 8 - 104696号公報
特許文献 5 :特開 2000— 157186号公報
特許文献 6 :特開平 7— 252156号公報
特許文献 7:特開平 7— 67575号公報
特許文献 8:特公平 4— 43624号公報
特許文献 9:特表 2004 - 524366号公報
特許文献 10:特表 2004— 524849号公報
特許文献 11:特開 2004 - 307768号公報
非特許文献 l :New Food Industry 2001 Vol. 43 No.12 p35- 44
非特許文献 2 :日本食物繊維学会誌 第 9卷第 1号第 34— 46ページ (2005) 非特許文献 3 Journal of Nutrition, 2000; 130(5): 1267-1273
発明の開示
発明が解決しょうとする課題
[0005] 本発明の目的は、食品への利用が容易で、哺乳類の消化酵素に耐性の、ミネラル の腸管吸収を促進する機能を有するミネラル吸収促進剤を提供することである。 本発明の他の目的は、上記ミネラル吸収促進剤を含有する食品、飼料を提供する ことである。
課題を解決するための手段
[0006] 本発明者らは、難消化性デキストリンが、腸内細菌による発酵が弱いにもかかわら ず、動物試験においてミネラル吸収を顕著に促進することを見出した。また、前記特 許文献 9に記載のイオン交換能を有するグルコースポリマー力 同様にラットにおけ るミネラル吸収を促進することを見出した。本発明はこれらの知見に基づいて達成さ れたものである。
[0007] すなわち本発明は、下記のミネラル吸収促進剤、これを含有する食品、及び飼料を 提供するものである。
1.難消化性デキストリン又はその誘導体を有効成分とするミネラル吸収促進剤。
2.難消化性デキストリンが焙焼デキストリンを α—アミラーゼ及びダルコアミラーゼで 処理して得られる水溶性食物繊維又はその水素添加物である、上記 1に記載のミネ ラル吸収促進剤。
3.難消化性デキストリンの誘導体カ^ェン酸結合難消化性デキストリンである、上記 1又は 2に記載のミネラル吸収促進剤。
4.ミネラルがカルシウム、マグネシウム、鉄及び亜鉛力 選択される少なくとも一種で ある、上記 1〜3のいずれか 1項に記載のミネラル吸収促進剤。
5.上記 1〜4の 、ずれか 1項に記載のミネラル吸収促進剤を含有する食品。
6.上記 1〜4の ヽずれか 1項に記載のミネラル吸収促進剤を含有する飼料。
発明の効果
[0008] 本発明のミネラル吸収促進剤、これを含有する食品、及び飼料は、優れたミネラル 吸収促進機能を有し、 日常的なミネラルの摂取不足の解消に有効である。また、本 発明のミネラル吸収促進剤はエネルギー値が低ぐ現代人の効率的なミネラル摂取 に貢献できる。
発明を実施するための最良の形態
[0009] 本発明のミネラル吸収促進剤におけるミネラルは、動物に必須の栄養素であって、 その具体例としては、カルシウム、マグネシウム、鉄及び亜鉛から選択される少なくと も一種のミネラルが挙げられる。
[0010] この明細書において、本発明のミネラル吸収促進剤の有効成分として使用する「難 消化性デキストリン」は、澱粉を、酸の存在下に加熱あるいは焙焼して得られるデキス トリンをそのまま分画、あるいは酸又は糖質分解酵素、例えばひ—アミラーゼ及びグ ルコアミラーゼを作用させた後に分画して得られる、消化管酵素で消化されないデキ ストリン又はそれらの水素添加物を意味するものとする。そのような難消化性デキスト リンは、例えばファイバーソル 2及びファイバーソル 2Η (水素添加物)の商品名で松 谷化学工業 (株)から販売されて ヽる。
[0011] 本発明のミネラル吸収促進剤の有効成分として使用する難消化性デキストリンの誘 導体は、難消化性デキストリンと同等のミネラル吸収促進効果を有するものであれば 特に制限はない。好ましい具体例としては、難消化性デキストリンにクェン酸が結合 した、クェン酸結合難消化性デキストリンが挙げられる。さらに具体的には、前記ファ ィバーソル 2又はファイバーソル 2Hにクェン酸が化学結合したクェン酸結合難消化 性デキストリンに代表される、クェン酸結合グルコースポリマー(特許文献 11)が挙げ られる。該ポリマーは、クェン酸とグルコースポリマーがエステル結合したポリマーで ある。クェン酸とグルコースポリマーとの結合モル比は、食品としての利用を考慮する と、好ましくは 2 : 1〜1: 1である。また、ミネラルとの可溶性塩の形成を考慮すると、ェ ステル結合は、好ましくはモノエステル結合である。
[0012] 本発明に使用するクェン酸結合グルコースポリマーの原料となるグルコースポリマ 一は、グルコースを構成単位とするポリマーであれば特に制限されないが、一般的な 澱粉加工品、特に、酸化澱粉、澱粉分解物、還元澱粉分解物、難消化性澱粉分解 物、難消化性デキストリン又はその水素添加物 (還元難消化性デキストリン)が好まし い。特に好ましいグルコースポリマーは、還元澱粉分解物、難消化性澱粉分解物、 難消化性デキストリン又はその水素添加物(還元難消化性デキストリン)である。還元 澱粉分解物や還元難消化性デキストリンを用いると、クェン酸との結合反応中の着色 が少ないため、得られるグルコースポリマーの製品価値が高くなり、好ましい。また難 消化性澱粉分解物又はその水素添加物を用いた場合は、生成物にミネラル吸収促 進作用を付与する効果だけではなぐ食物繊維としての利用や低カロリー食品として の利用も可能となる。
[0013] グルコースポリマーの重合度は、目的とするグルコースポリマーの特性に応じて幅 広いものが使用できるが、クェン酸と混合して粉末乾燥ィ匕する必要性を考慮すれば 、重合度は、好ましくは 4〜123、さらに好ましくは 4〜18、最も好ましくは 6〜15であ る。重合度がこれより高いグルコースポリマーを用いた場合は、水に溶解したときに、 水に不溶な物質を生成することがあり、使用に制限が加わることがある。一方、重合 度がこれより低いグルコースポリマーを用いた場合は、粉末が得られにくい、という点 で好ましくない。
[0014] グルコースポリマーの原料として澱粉を使用する場合、特にその種類は限定される ものではなぐ例えば、ジャガイモ澱粉、カンショ澱粉、コーンスターチ、タピオ力澱粉 、小麦澱粉などを、いずれも効果的な原料澱粉として用いることができる。
[0015] 次に、本発明のクェン酸結合グルコースポリマーの製造方法について説明する。
先ず、グルコースポリマー及びクェン酸を混合して水に溶解して水溶液とする。 グルコースポリマーとクェン酸の混合比率は目的のポリマーの特性に合わせて適宜 選択されるが、所望の製品を得るためには、好ましくはモル比で1 : 1〜1 : 3、さらに好 ましくは 1 : 2. 5である。
なお本発明に使用する難消化性デキストリン、その誘導体、例えば、グルコースポリ マーの数平均分子量は、サイズ排斥 HPLCカラム、例えば東ソー (株)の TSKゲル G 6000PW , G3000PW 及び G2500PW を直列に連結したカラムを用いて分子
XL XL XL
量に基く分離を行 、、プルランを標準物質とする検量線力も求めることができる。 水に対するダルコースポリマーとクェン酸の溶解量は、水に溶解する限り特に制限 はないが、一般に、水 100質量部に対して、グルコースポリマーとクェン酸の合計量 が好ましくは 20〜50質量部、さらに好ましくは 30〜40質量部である。溶解は、通常 は常圧下、 10〜60°C、通常は常温で、必要により攪拌しながら行えばよい。
[0016] 得られた水溶液を、好ましくは 95〜110°Cで 1〜: LO時間乾燥して均一な粉末、通 常は均一な非晶質粉末を得る。グルコースポリマーとクェン酸の混合水溶液から、均 一な粉末を得るために乾燥粉末ィ匕する方法としては、例えば、スプレードライ、ドラム ドライ、凍結乾燥等のいずれもが効果的に使用できる。
[0017] 次に、これを粉末状態のままで、好ましくは品温が 100〜160°Cで、通常は 1〜20 時間、好ましくは 2〜15時間、さらに好ましくは 2〜10時間加熱処理を行うことによつ て、 目的とするクェン酸結合グルコースポリマーを製造することができる。加熱処理装 置としては一般的な各種の装置がある。例えば、オイルバス、ロータリー ·キルン、な どの連続的に加熱できる装置、あるいは、真空焙焼装置、エタストルーダー、ドラムド ライヤ、流動床加熱装置等が、効果的に使用できる。
加熱処理時の粉末の品温は、好ましくは100〜160で、さらに好ましくは 100〜12 5°Cである。反応温度を高くすると反応速度は速くなる。 125°Cより高い温度では反 応は速いが、水不溶物質が生成されることがある。しかし 100〜125°Cの条件下では 水不溶物質は生成されな 、。
この反応物中のグルコースポリマーとクェン酸の結合形式は、モノエステル結合が 主体であり、ジエステル結合はほとんど認められな!/、。
[0018] 加熱反応生成物は、用途によって精製は不要である力 特に食品、飼料等の用途 に使用するためには、一般的な糖類の精製に使用される方法や装置、例えば、濾過 装置、イオン交換樹脂による脱塩、膜分離装置等を使用して効果的に精製すること ができる。
精製されたクェン酸結合グルコースポリマーのグルコースポリマーに結合したクェン 酸量は、反応前後における糸且成物中の遊離クェン酸量の消長を HPLCで測定する ことにより、間接的に定量することができる。また、クェン酸結合グルコースポリマーの カルボキシル基を中和滴定法で測定することにより、エステル結合のタイプを決定す ることがでさる。
[0019] このようにして製造されるクェン酸結合グルコースポリマー又は前記難消化性デキ ストリンは、錠剤、顆粒剤、カプセル等のミネラル吸収促進剤として、単独又は組み合 わせて用いることができる。また、清涼飲料、発酵飲料、乳飲料等の各種飲料、ある いは穀類、パン類、菓子類、スナック類、キャンデー類等の各種食品、家畜、家禽、 各種ペット類の飼料に配合して使用することができる。さらに、ミネラル補給用サブリメ ント、あるいは流動食などの経腸栄養組成物に配合して使用することができる。
ミネラルを含まな ヽ食品を摂取する場合は、ミネラルと共に本発明のミネラル吸収促 進剤を摂取することで、ミネラルの吸収を促進することができる。ただし、本発明のミネ ラル吸収促進剤をミネラル塩として摂取する場合は、単独で摂取しても良 ヽ。
[0020] 本発明の難消化性デキストリン又はその誘導体を有効成分とするミネラル吸収促進 剤は、通常、成人 1日当り 0. l〜50g、好ましくは 0. 5〜: LOgを 1〜3回に分けて経口 摂取すればよい。これらの摂取量は体重、年齢等により適宜増減することができる。 また、本発明のミネラル吸収促進剤を食品、飼料等に添加する場合は、通常、対象 食品、飼料等に対して好ましくは 1〜20質量%の範囲で添加すればよい。 [0021] 次に、クェン酸結合グルコースポリマーをカルシウム吸収促進剤として使用する場 合を例にして、本発明のミネラル吸収促進剤をさらに詳しく説明する。
[0022] カルシウム吸収促進剤として使用するクェン酸結合グルコースポリマーのカルボキ シル基は、遊離型として、あるいはアルカリ金属塩又はアルカリ土類金属塩として使 用される。例えば、酸性飲料に添加して使用する場合は、遊離型としてそのまま使用 することができるが、 pHが中性付近の飲食品に用いる場合は、呈味性の問題を考慮 してアルカリ金属塩又はアル力リ土類金属塩として使用するのが好まし!/ヽ。アル力リ 金属塩又はアルカリ土類金属塩としては、カリウム、ナトリウム、カルシウム及びマグネ シゥム塩を例示することができる。
[0023] 前記カルシウム吸収促進剤は、摂取するカルシウムとクェン酸結合グルコースポリ マー中のクェン酸のモル比が 1 : 0. 1〜1: 2、好ましくは 1 : 0. 5〜1 : 1. 5、さらに好ま しくは 1 : 1となるように摂取することが好ましぐ例えば、 日本人の成人が摂取する力 ルシゥムの平均量は 12. 5〜15ミリモル Z日であるから、この場合、クェン酸結合グ ルコースポリマーの摂取量は、クェン酸換算で 1. 25〜30ミリモル Z日力 s好ましい。
[0024] 本発明のミネラル吸収促進剤のミネラル吸収性を評価する方法としては、一般的な ミネラル出納試験が用いられる。例えば試験動物としてラットを用い、ミネラルを含む 試験食を自由摂取させ、 1〜2週間程度飼育する。飼育終了前の数日間について摂 取した試験食と糞便中のミネラル量を測定して見かけのミネラル吸収率を下記式 1に より算出する。また、試験開始前 (第 0週)の見力 4ナの吸収率を同時に測定することに より、変動率を下記式 2により算出することもできる。
[0025] 式 1
見かけのミネラル吸収率(%) = 100 X [ (摂取した飼料中のミネラル量) (糞中に排 泄されたミネラル量) ] Z (摂取した飼料中のミネラル量)
式 2
変動率(%) = 100 X [ (見かけのミネラル吸収率) (第 0週の見かけのミネラル吸収 率) ] Z (第 0週の見かけのミネラル吸収率)
[0026] 次に、クェン酸結合グルコースポリマーの試験管内でのミネラル溶解性を調べた結 果を参考例として示す。 参考例 リン酸緩衝液中でのミネラル溶解性促進試験
後述の実施例 1の方法で調製した還元難消化性デキストリンクェン酸エステルナトリ ゥム塩又は比較例として還元難消化性デキストリン (松谷化学工業株式会社製フアイ バーソル 2H (FS2H):数平均分子量約 2, 000の分岐構造の発達した難消化性デ キストリンの水素添加物)(以下両者を合わせて糖質という)を、最終濃度が 16mMの リン酸緩衝液 50mlに 10〜500mgの範囲で加え、次!ヽで各ミネラルを 4mMとなるよ うに加えた。ミネラルには、カルシウム剤として塩ィ匕カルシウム、マグネシウム剤として 塩化マグネシウム、鉄剤として塩化第 2鉄、及び亜鉛剤として塩化亜鉛をそれぞれ使 用した。陰性及び陽性コントロールとして、糖質を含まない試料及びミネラルを含まな V、試料をそれぞれ用意した。
各試料を 37°Cで 1時間保持した後、上清を採取し、溶解しているミネラル濃度を原 子吸光法で測定した。その結果を図 1に示す。なお、塩ィ匕マグネシウムは糖質無しで も全く不溶ィ匕しな力つたので、データから除外した。
図 1により、還元難消化性デキストリンクェン酸エステルナトリウム塩はリン酸緩衝液 中でのミネラルの溶解性を顕著に高めることが示された。一方、還元難消化性デキス トリンにはそのような効果は認められなかった。この結果は、難消化性デキストリンに 結合したクェン酸がミネラルの溶解性に寄与して 、ることを示して 、る。
次に、実施例により本発明をさらに具体的に説明するが、実施例は本発明を限定 するものではない。
実施例 1 クェン酸結合グルコースポリマーの調製
還元難消化性デキストリン (松谷化学工業株式会社製ファイバーソル 2H (FS2H): 数平均分子量約 2, 000の分岐構造の発達した難消化性デキストリンの水素添加物) 8. 1kg (4. 05モル)を水 23kgに攪拌溶解し、その後、クェン酸(米国 Archer Daniels Midland社製) 1. 9kg (9. 90モル)を加えて混合溶解させた。次いで、この水溶液を スプレードライヤーで噴霧乾燥してデキストリン Zクェン酸の均一な粉末を得た。次に 、その粉末 7kgを品温 120°Cに保持しながら 400分間加熱処理を行った。さらに、こ の加熱処理した粉末を水に溶解(10%wZw)し、ルーズ逆浸透膜 (NTR— 7470 : 日東電工株式会社製)により未反応クェン酸を除去した。これをスプレードライヤーに て粉末化し、精製された還元難消化性デキストリンクェン酸エステル 5. 5kgを得た。 この様に精製された還元難消化性デキストリンクェン酸エステルは、還元難消化性デ キストリンとクェン酸がモル比 1 : 1. 2で結合しており、結合はモノエステル結合であつ た。さらに、この還元難消化性デキストリンクェン酸エステルを、水に溶解(30%wZ w)し、水酸ィ匕ナトリウムで中和後、再度スプレードライヤーにて粉末ィ匕し、還元難消 化性デキストリンクェン酸エステルのナトリゥム塩を得た。
[0028] 実施例 2 標準カルシウム飼料摂取によるラットにおけるミネラル出納試験
5週齢の SD系雄ラット 24匹を標準カルシウム飼料 (カルシウム含量 0. 5%)で 1週 間予備飼育後、与える餌の種類によりコントロール群、難消化性デキストリン (FS2) 添加群、還元難消化性デキストリン (FS2H)添加群、及び実施例 1で得た還元難消 化性デキストリンクェン酸エステルナトリウム塩 (FS2HZC. Na)添加群に分け、各 添加群は低用量(15g/kg)と高用量(30g/kg)の 2段階とし、それぞれ 1群 8匹で、 1 週間の試験飼育を行った。試験飼育中は表 1に示す飼料および脱塩水を自由摂取 させ、 12時間毎の明暗サイクルで飼育し、予備飼育 (第 0週)、第 1週の最終日 3日間 を出納試験期間として採糞し、糞中のカルシウム、マグネシウム、鉄及び亜鉛量を原 子吸光法で測定した。飼料のミネラル含有量と摂餌量力 試験期間中のミネラル摂 取量を算定し、見かけのミネラル吸収率を前記式 1によりそれぞれ算出した。
[0029] 表 1 標準カルシウム試験飼料 (gZkg)
コントロール FS23) FS2H ) FS2H/C . Na5) カゼイン 200 200 200 200
コーンスターチ 529 , 5 529. 5 499. 5 499. 5 ショ糖 100 100 100 100 ビタミ ン混合1 ) 10 10 10 10 ミネラル混合 2 35 35 35 35
L 一シスチン 3 3 3 3 重酒石酸コリ ン 2. 5 2. 5 2. 5 2. 5 大豆油 70 70 70 70
セノレ口一ス 50 50 50 50
第三プチルヒ ドロキノン 0. 014 0. 014 0, 014 0. 014
F S 2 3 ) 15又は 30
F S 2 H 4 ) 15又は 30
F S 2 H / C . N a ) 15又は 30 カルシウム含有量 (%) 0. 5 0. 5 0, 5 0. 5 1) AIN— 93ビタミン混合 (米国国立栄養研究所が設定したマウス及びラット用標準 飼料におけるビタミン混合物、 日本クレア (株)から入手)
2) AIN—93Gミネラル混合 (米国国立栄養研究所が設定したマウス及びラット用繁 殖期飼料におけるミネラル混合物、 日本クレア (株)から入手)
3)難消化性デキストリン
4)還元難消化性デキストリン
5)還元難消化性デキストリンクェン酸エステルナトリウム塩
[0030] 図 2に示すように、難消化性デキストリン (FS2)、還元難消化性デキストリン (FS2H )及び還元難消化性デキストリンクェン酸エステルナトリウム塩 (FS2HZC. Na)添カロ 群は、コントロール群に比べ、低用量 (A)及び高用量 (B)のいずれの場合も、ミネラ ル吸収率を有意に上昇させた。
[0031] 実施例 3 標準カルシウム飼料摂取によるラットにおけるカルシウム出納試験
9週齢の SD系雄ラット 18匹を標準カルシウム飼料 (カルシウム含量 0. 5%)で 1週 間予備飼育後、与える餌の種類によりコントロール群、還元難消化性デキストリン (F S2H)添加群、及び実施例 1で得た還元難消化性デキストリンクェン酸エステルナトリ ゥム塩 (FS2HZC. Na)添加群に分け、それぞれ 1群 6匹で、 2週間の試験飼育を行 つた。試験飼育中は表 2に示す飼料および脱塩水を自由摂取させ、 12時間毎の明 暗サイクルで飼育し、予備飼育 (第 0週)、第 1週および第 2週の最終日 3日間を出納 試験期間として採糞し、糞中のカルシウム量をカルシウム C テストヮコー(和光純薬 工業)で測定した。飼料のカルシウム含有量と摂餌量力 試験期間中のカルシウム摂 取量を算定し、見かけのカルシウム吸収率を前記式 1により算出した。また、カルシゥ ム吸収率の変動率を前記式 2により算出した。
[0032] 表 2 標準カルシウム試験飼料 (gZkg) コントロール FS2H3) FS2H/C. Na ) カゼイン 200 200 200
コーンスターチ 529. 5 499. 5 499. 5
ショ糖 100 100 100
ビタミン混合1〕 10 10 10
ミネラル混合 2 ) 35 35 35
L 一シスチン 3 3 3
重酒石酸コリ ン 2. 5 2. 5 2. 5
大豆油 70 70 70
セノレロース 50 50 50
第三プチルヒ ドロキノン 0. 014 0. 014 0. 014
F S 2 H 3 ) 30
F S 2 H / C . N a 4 ) 30
カルシウム含有量 (%) 0. 5 0. 5 0. 5
1 ) AIN 93ビタミン混合
2) AIN 93Gミネラル混合
3)還元難消化性デキストリン
4)還元難消化性デキストリンクェン酸エステルナトリウム塩
[0033] 図 3に示すように、還元難消化性デキストリンクェン酸エステルナトリウム塩添加群 及び還元難消化性デキストリン添加群は、コントロール群に比べ、カルシウム吸収率 の低下を抑制した。
[0034] 実施例 4 低カルシウム飼料摂取によるラットにおけるカルシウム出納試験
12週齢の SD系雄ラット 12匹を低カルシウム飼料 (カルシウム含量 0. 15%)で 1週 間予備飼育後、与える餌の種類によりコントロール群、還元難消化性デキストリン (F S2H)添加群、還元難消化性デキストリンクェン酸エステルナトリウム塩 (FS2HZC. Na)添加群に分け、それぞれ 1群 4匹とし、 2週間の試験飼育を行った。それぞれの 飼料は低カルシウム飼料を基本とし、還元難消化性デキストリン又は還元難消化性 デキストリンクェン酸エステルナトリウム塩を添加した。試験飼育中は表 3に示す飼料 および脱塩水を自由摂取させた。見かけのカルシウム吸収率およびその変動率は実 施例 3と同様に求めた。
[0035] 表 3 低カルシウム試験飼料 (gZkg) コントロール FS2H FS2H/C. Na カゼイ ン 200 200 200
コーンスターチ 529.5 499.5 499.5 ショ 糖 96.25 96.25 ビタ ミ ン混合 10 10 10
カルシウム欠乏 ミ ネラル混合 1〕 35 35 35
L シスチン 3 3 3
重酒石酸コリン 2.5 2.5 2.5
大豆油 70 70 70
セルロース 50 50 50
第三ブチルヒ ドロ キノ ン 0.014 0.014 0.014
F S 2 H 30
F S 2 H/ C . N a 30
炭酸カルシウム 3.75 3.75 3.75 カルシウム含有量 (%) 0.15 0.15 0.15
1) AIN— 93Gミネラル混合よりカルシウムを除 、たもの
[0036] 図 4に示すように、還元難消化性デキストリンクェン酸エステルナトリウム塩添加群 はコントロール群に比べ、カルシウム吸収率が有意に増加した。還元難消化性デキ ストリン添加群もカルシウム吸収率を増カロさせた力 コントロール。群に比べ有意ではな かった。標準カルシウム飼料摂取時 (実施例 3)に比べて低カルシウム飼料摂取時に
\
おける還元難消化性デキストリンクェン酸エステルナトリウム塩のカルシウム吸収率改 善効果が顕著であったことは、カルシウム摂取時のカルシウムに対するクェン酸結合 グルコースポリマーのモル比が高まることによって、カルシウムの吸収率が高まること を示唆している。実際、実施例 3における該モル比は 1:0. 13であるのに対し、実施 例 4における該モル比は 1 :0.44であった。
[0037] 実施例 5 錠剤の調製
表 4の処方に従って、本発明のカルシウム吸収促進剤の錠剤を調製した。 表 4
材料
還元難消化性デキス ト リ ンクェン酸エステルナ トリ 4 0
ゥム塩 (F S 2 H/ C. N a )
直打用微粒 N o . 2 0 9 (富士化学社製) " 4 8
結晶セルロース 1 0
ステアリン酸マグネシウム 2 1)メタ珪酸アルミン酸マグネシウム(20%)、トウモロコシ澱粉(30%)及び乳糖(50% )から成る。
上記材料を均一に混合し、混合末を打錠して、一錠当り 200mgの錠剤とした。
[0038] 実施例 6 カルシウム強化飲料の調製
還元難消化性デキストリンクェン酸を実施例 1と同様の方法で、炭酸カルシウムで 中和してそのカルシウム塩(FS2HZC. Ca)を調製した。 FS2HZC. Caは、水溶性 であり、少なくとも 50% (wZv)の透明水溶液とすることができた。次いで、 FS2H/ C. Caを用いて表 5の処方により、カルシウム強化飲料を調製した。
表 5
Figure imgf000016_0001
実施例 7 ドッグフードの調製
表 6の処方に従って、ドッグフードを調製した。
表 6
Figure imgf000016_0002
[0040] 実施例 8 錠剤の調製
表 7の処方に従って、本発明のミネラル吸収促進剤の錠剤を調製した。 表 7 材料
Figure imgf000017_0001
難消化性デキス ト リ ン (F S 2、 松谷化学工業) 4 0
直打用微粒 N o . 2 0 9 (富士化学社製) n 4 8
結晶セルロース 1 0
ステア リ ン酸マグネシウム 2
1)メタ珪酸アルミン酸マグネシウム(20%)、トウモロコシ澱粉(30%)及び乳糖(50% )から成る。
上記材料を均一に混合し、混合末を打錠して、一錠当り 200mgの錠剤とした。 実施例 9 マグネシウム強化飲料の調製
還元難消化性デキストリンクェン酸エステルを実施例 1と同様の方法で、炭酸マグ ネシゥムで中和してそのマグネシウム塩(FS2H/C. Mg)を調製した。 FS2HZC. Mgは水溶性であり、少なくとも 50% (wZv)の透明水溶液とすることができた。次い で、 FS2HZC. Mgを用いて表 8の処方により、マグネシウム強化飲料を調製した。 表 8
Figure imgf000017_0003
実施例 10 ドッグフードの調製
表 9の処方に従って、ドッグフードを調製した。
表 9
材料
Figure imgf000017_0002
還元難消化性デキス トリ ン ( F S 2 H、 松谷化学工業) 5. 3
ト ウモロ コ シ 3 0. 0
小麦粉 3 3. 0
大豆粕 2 1 . 0
脱脂米ぬか 5. 5
ミー ト ミール 5. 0
ミネラルミ ックス 0. 2 実施例 11 サプリメントの調製
表 10の処方に従って、カルシウムサプリメント用混合物を調製し、水と混練して造粒 し、乾燥した。
表 10
材料
卵殻カルシウム 5 5 . 0
コーンスターチ 3 0 . 8
結晶セルロース 2 . 5
C M Cカルシウム 1 . 7
難消化性デキス ト リ ン ( F S 2、 松谷化学工業) 1 0 . 0 これを粉砕、整粒して打錠用粉体を得た。粉体に滑択剤としてショ糖脂肪酸エステ ルを 2wZw%となるように加えて打錠し、平均重量 0. 35gの錠剤を得た。
実施例 12 経腸栄養剤の調製
表 11の処方に従って、経腸栄養剤を調製した。
表 11
\
材料 配合 ( 2 5 0 m 1中) カゼインナト リ ウム 5 . 9 g
カゼィンナト リ ゥムカルシウム 2 . 7 g
大豆たんぱく質 1 . 3 g
精製白糖 9 . 8 g
デキス ト リ ン 2 4 . 5 g
トウモロコシ油 8 . 3 g
大豆リン脂質 0 . 4 g
ビタミン A 6 2 5 I U
ビタミン D 5 0 I U
ビタミン E (酢酸トコフェロール) 8 . 2 3 m g
ビタミン K 1 7 . 5 u g
ビタミン B 1 (塩酸チアミン) 0 . 3 8 m g
ビタミン B 2 0 . 4 3 m g
ビタミン B 6 (塩酸ピリ ドキシン) 0 . 5 0 m g
ビタミン B 1 2 (シァノコノ ラミ ン) 1 . 5 μ g
ビタミン C 3 8 m g
ナイァシン 5 . 0 m g
葉酸 5 0 g
パントテン酸カノレシゥム 1 . 3 6 m g
ビォチン 3 8 μ g
塩化コリ ン 0 . 1 5 g
リ ン酸カルシウム 0 . 3 g
塩化マグネシウム 0 . 4 1 g
クェン酸力リ ウム 0 . 4 6 g
塩化力リ ウム 0 . 3 0 g
タエン酸ナト リ ウム 0 . 3 9 g
硫酸亜鉛 1 6 . 4 9 m g
硫酸鉄 1 1 . 2 0 m g
塩化マンガン 1 . 8 0 m g
硫酸銅 0 . 9 8 m g
水酸化力リ ウム 2 4 m g
クェン酸 2 5 m g
炭酸水素ナト リ ゥム 7 6 . 5 μ g
還元難消化性デキス ト リ ン (F S 2 H、 松谷化 7 . 5 g
学工業) 図面の簡単な説明
[図 1]参考例において、リン酸緩衝液中におけるミネラルの溶解性促進試験の結果を 示すグラフである。
[図 2]実施例 2にお 、て、標準カルシウム飼料を摂取したラットにおけるミネラル吸収 率に及ぼす難消化性デキストリン類の影響を示すグラフである。
[図 3]実施例 3にお 、て、標準カルシウム飼料を摂取したときのカルシウム吸収率の 変動率を示す。図中、 Ctr.はコントロール群、 FS2Hは還元難消化性デキストリン添 加群、 FS2HZC. Naは還元難消化性デキストリンクェン酸エステルナトリウム塩添 加群を示す。
[図 4]実施例 4にお 、て、低カルシウム飼料を摂取したときのカルシウム吸収率の変 動率を示す。図中の記号は実施例 3と同じである。

Claims

請求の範囲
[1] 難消化性デキストリン又はその誘導体を有効成分とするミネラル吸収促進剤。
[2] 難消化性デキストリンが焙焼デキストリンを a一アミラーゼ及びダルコアミラーゼで 処理して得られる水溶性食物繊維又はその水素添加物である、請求項 1に記載のミ ネラル吸収促進剤。
[3] 難消化性デキストリンの誘導体カ^ェン酸結合難消化性デキストリンである、請求項
1に記載のミネラル吸収促進剤。
[4] 難消化性デキストリンの誘導体カ^ェン酸結合難消化性デキストリンである、請求項
2に記載のミネラル吸収促進剤。
[5] ミネラルがカルシウム、マグネシウム、鉄及び亜鉛力も選択される少なくとも一種で ある、請求項 1に記載のミネラル吸収促進剤。
[6] ミネラルがカルシウム、マグネシウム、鉄及び亜鉛力も選択される少なくとも一種で ある、請求項 2に記載のミネラル吸収促進剤。
[7] ミネラルがカルシウム、マグネシウム、鉄及び亜鉛力も選択される少なくとも一種で ある、請求項 3に記載のミネラル吸収促進剤。
[8] 請求項 1〜7の!ヽずれか 1項に記載のミネラル吸収促進剤を含有する食品。
[9] 請求項 1〜7の!ヽずれか 1項に記載のミネラル吸収促進剤を含有する飼料。
PCT/JP2006/325055 2005-12-19 2006-12-15 ミネラル吸収促進剤、食品及び飼料 WO2007072756A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/158,022 US20090232961A1 (en) 2005-12-19 2006-12-15 Mineral-absorption promoter, food and feed
EP06834798.8A EP1964855B1 (en) 2005-12-19 2006-12-15 Mineral absorption enhancer, food and feeding stuff
US13/348,513 US20120107449A1 (en) 2005-12-19 2012-01-11 Mineral-absorption promoter, food and feed

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005365200 2005-12-19
JP2005-365200 2005-12-19
JP2006-239092 2006-09-04
JP2006239092A JP5349744B2 (ja) 2005-12-19 2006-09-04 ミネラル吸収促進剤、食品及び飼料

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/348,513 Division US20120107449A1 (en) 2005-12-19 2012-01-11 Mineral-absorption promoter, food and feed

Publications (1)

Publication Number Publication Date
WO2007072756A1 true WO2007072756A1 (ja) 2007-06-28

Family

ID=38188535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325055 WO2007072756A1 (ja) 2005-12-19 2006-12-15 ミネラル吸収促進剤、食品及び飼料

Country Status (5)

Country Link
US (2) US20090232961A1 (ja)
EP (1) EP1964855B1 (ja)
JP (1) JP5349744B2 (ja)
KR (1) KR101025879B1 (ja)
WO (1) WO2007072756A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7892586B2 (en) * 2001-02-22 2011-02-22 Suzanne Jaffe Stillman Water containing soluble fiber
US8178150B2 (en) 2000-02-22 2012-05-15 Suzanne Jaffe Stillman Water containing soluble fiber
JP5592682B2 (ja) * 2010-03-26 2014-09-17 株式会社明治 少容量に充填したプロバイオティクス含有組成物
JP2012036112A (ja) * 2010-08-05 2012-02-23 Sankyo:Kk 生物学的利用能(バイオアベイラビリティー)を向上させる製品の製造方法および製品
EP2983783B1 (en) 2013-03-15 2021-04-21 New York University Citrate containing beverage

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697248A (en) 1979-12-28 1981-08-05 Tanaka Shiro Conjugated compound of calcium citrate and calcium malate and its preparation
JPH03240470A (ja) 1990-02-19 1991-10-25 Meiji Milk Prod Co Ltd 果汁飲料及びその製造法
JPH05284939A (ja) 1992-04-09 1993-11-02 Meiji Seika Kaisha Ltd カルシウム含有飲食品
JPH0767575A (ja) 1993-08-31 1995-03-14 Suntory Ltd ミネラル吸収促進組成物
JPH07252156A (ja) 1994-03-15 1995-10-03 Meiji Seika Kaisha Ltd 骨粗鬆症予防治療材
JPH08104696A (ja) 1994-08-11 1996-04-23 Ezaki Glico Co Ltd リン酸化糖とその製造方法
JPH11255803A (ja) * 1998-03-06 1999-09-21 Oji Cornstarch Kk 高いCa可溶化活性を有するリン酸結合澱粉とそのオリゴ糖組成物及びそれらの製造方法
JP2000157186A (ja) 1998-11-26 2000-06-13 Hokkaido カルシウム吸収を促進する多糖類食品素材およびその製造方法
JP2002145893A (ja) * 2000-11-06 2002-05-22 Oji Cornstarch Co Ltd リン酸オリゴ糖及びリン酸デキストリンの多価金属塩類組成物並びにそれらの製造方法
JP2004524366A (ja) 2001-03-30 2004-08-12 ロケット・フルーレ 繊維を含む経腸栄養用組成物
JP2004524849A (ja) 2001-03-30 2004-08-19 ロケット・フルーレ 低カロリー食品を調製する方法
JP2004307768A (ja) 2003-04-10 2004-11-04 Japan Research & Development Association For New Functional Foods イオン交換能力を有するグルコースポリマーの製造法及びそれを含有する組成物
JP2005532294A (ja) * 2002-03-13 2005-10-27 キボー バイオテック、インク 腎機能を増強するための組成物及び方法
JP4043624B2 (ja) 1998-12-01 2008-02-06 日本バイリーン株式会社 アルカリ電池用セパレータ及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05176719A (ja) * 1991-10-30 1993-07-20 Matsutani Kagaku Kogyo Kk 食物繊維含有デキストリン
JPH0870842A (ja) * 1994-07-05 1996-03-19 Matsutani Chem Ind Ltd 醸造用糖類およびその製造法
JP4606550B2 (ja) * 2000-06-09 2011-01-05 松谷化学工業株式会社 易分散性大豆蛋白造粒物及びその製造法
JP2002330735A (ja) * 2001-05-11 2002-11-19 Matsutani Chem Ind Ltd 炭酸飲料の製造法
US6989166B2 (en) * 2001-12-20 2006-01-24 N.V. Nutricia Soft drink replacer
JP2005287454A (ja) * 2004-04-02 2005-10-20 Matsutani Chem Ind Ltd 保健機能付与飲食品及び飲食品へ保健機能を付与する方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697248A (en) 1979-12-28 1981-08-05 Tanaka Shiro Conjugated compound of calcium citrate and calcium malate and its preparation
JPH03240470A (ja) 1990-02-19 1991-10-25 Meiji Milk Prod Co Ltd 果汁飲料及びその製造法
JPH05284939A (ja) 1992-04-09 1993-11-02 Meiji Seika Kaisha Ltd カルシウム含有飲食品
JPH0767575A (ja) 1993-08-31 1995-03-14 Suntory Ltd ミネラル吸収促進組成物
JPH07252156A (ja) 1994-03-15 1995-10-03 Meiji Seika Kaisha Ltd 骨粗鬆症予防治療材
JPH08104696A (ja) 1994-08-11 1996-04-23 Ezaki Glico Co Ltd リン酸化糖とその製造方法
JPH11255803A (ja) * 1998-03-06 1999-09-21 Oji Cornstarch Kk 高いCa可溶化活性を有するリン酸結合澱粉とそのオリゴ糖組成物及びそれらの製造方法
JP2000157186A (ja) 1998-11-26 2000-06-13 Hokkaido カルシウム吸収を促進する多糖類食品素材およびその製造方法
JP4043624B2 (ja) 1998-12-01 2008-02-06 日本バイリーン株式会社 アルカリ電池用セパレータ及びその製造方法
JP2002145893A (ja) * 2000-11-06 2002-05-22 Oji Cornstarch Co Ltd リン酸オリゴ糖及びリン酸デキストリンの多価金属塩類組成物並びにそれらの製造方法
JP2004524366A (ja) 2001-03-30 2004-08-12 ロケット・フルーレ 繊維を含む経腸栄養用組成物
JP2004524849A (ja) 2001-03-30 2004-08-19 ロケット・フルーレ 低カロリー食品を調製する方法
JP2005532294A (ja) * 2002-03-13 2005-10-27 キボー バイオテック、インク 腎機能を増強するための組成物及び方法
JP2004307768A (ja) 2003-04-10 2004-11-04 Japan Research & Development Association For New Functional Foods イオン交換能力を有するグルコースポリマーの製造法及びそれを含有する組成物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BULLETIN OF THE DIETARY FIBER SOCIETY IN JAPAN, vol. 9, no. 1, 2005, pages 34 - 46
JOURNAL OF NUTRITION, vol. 130, no. 5, 2000, pages 1267 - 1273
NEW FOOD INDUSTRY, vol. 43, no. 12, 2001, pages 35 - 44
See also references of EP1964855A4
VERMOREL M. ET AL.: "Energy value of a low-digestible carbohydrate, NUTRIOSE FB, and its impact on magnesium, calcium and zinc apparent absorption and retention in healthy young men", EUR. J. NUTR., vol. 43, no. 6, 2004, pages 344 - 352, XP003014286 *

Also Published As

Publication number Publication date
KR101025879B1 (ko) 2011-03-30
US20090232961A1 (en) 2009-09-17
EP1964855A1 (en) 2008-09-03
JP2007191462A (ja) 2007-08-02
KR20080071179A (ko) 2008-08-01
US20120107449A1 (en) 2012-05-03
JP5349744B2 (ja) 2013-11-20
EP1964855A4 (en) 2013-05-01
EP1964855B1 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
Björck et al. Formation of enzyme resistant starch during autoclaving of wheat starch: studies in vitro and in vivo
Qiang et al. Health benefit application of functional oligosaccharides
CN100438779C (zh) 具有健康促进作用的含有寡糖的营养组合物
JP4793533B2 (ja) ポリデキストロースでの免疫系の刺激
JP4626752B2 (ja) 炭水化物および組成物の新規な使用
IL224833A (en) Synbiotic product
JP2008504038A (ja) 前生物学的調製物
US5882685A (en) Food energy utilization from carbohydrates in animals
Tetens et al. Effects of the type and level of dietary fibre supplements on nitrogen retention and excretion patterns
WO2007072756A1 (ja) ミネラル吸収促進剤、食品及び飼料
Petkevičius et al. The effect of inulin on new and on patent infections of Trichuris suis in growing pigs
JPWO2004084919A1 (ja) 血中低分子量含窒素化合物の濃度を低減させる病態改善用食品
EP0791357A2 (en) Use of gluten peptides as stimulator of mineral absorption and preventive agent of hyperlipidermia and hypercholesterolemia
US20230101104A1 (en) Use Of Ionic Polymers In Biomass Processing For Preparation Of Animal Feed Additive
JP2596509B2 (ja) 新規なグルクロン酸含有オリゴ糖、その製造法及びその利用
KR100485155B1 (ko) 효소저항전분을 포함하는 면역활성 증강용 조성물
JP3993907B2 (ja) カルシウム吸収促進剤
WO2002002102A1 (en) Rapid fatty acid delivery
JP2509824B2 (ja) ミネラル吸収促進剤
KR20150033642A (ko) 맥주 생산에 기인한 바이오매스로부터 얻은 지방 결합제
JP2003055231A (ja) 経腸栄養剤
JP3425664B2 (ja) カルシウム吸収を促進する多糖類食品素材およびその製造方法
Mineo et al. Ingestion of potato starch containing high levels of esterified phosphorus reduces calcium and magnesium absorption and their femoral retention in rats
Beynen Beet pulp in dog food
JP2002369658A (ja) ペットフード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006834798

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087014588

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12158022

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE