WO2007063992A1 - 有機発光トランジスタ素子及びその製造方法 - Google Patents

有機発光トランジスタ素子及びその製造方法 Download PDF

Info

Publication number
WO2007063992A1
WO2007063992A1 PCT/JP2006/324107 JP2006324107W WO2007063992A1 WO 2007063992 A1 WO2007063992 A1 WO 2007063992A1 JP 2006324107 W JP2006324107 W JP 2006324107W WO 2007063992 A1 WO2007063992 A1 WO 2007063992A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
charge injection
surface side
insulating film
Prior art date
Application number
PCT/JP2006/324107
Other languages
English (en)
French (fr)
Inventor
Katsunari Obata
Shinichi Handa
Takuya Hata
Kenji Nakamura
Atsushi Yoshizawa
Hiroyuki Endo
Original Assignee
Dai Nippon Printing Co., Ltd.
Pioneer Corporation
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co., Ltd., Pioneer Corporation, Nec Corporation filed Critical Dai Nippon Printing Co., Ltd.
Priority to US12/085,682 priority Critical patent/US8158970B2/en
Priority to KR1020087015760A priority patent/KR101284427B1/ko
Priority to CN200680052303.1A priority patent/CN101336491B/zh
Publication of WO2007063992A1 publication Critical patent/WO2007063992A1/ja
Priority to US12/659,164 priority patent/US8309963B2/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/30Organic light-emitting transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers

Definitions

  • the present invention relates to an organic light emitting transistor element and a method for manufacturing the same. More specifically, the present invention relates to an organic light-emitting transistor element that facilitates current control between an anode and a cathode in a vertical organic light-emitting transistor element and a method for manufacturing the same.
  • Organic EL (Organic Electroluminesence) elements have a simple element structure, so they are expected as light-emitting elements for next-generation displays that are thin, lightweight, large-area, and low-cost. In recent years, they have been actively researched. Yes.
  • active matrix field effect transistors FETs
  • TFTs thin film transistors
  • semiconductor materials that make up thin film transistors inorganic semiconductor materials such as silicon semiconductors and compound semiconductors have been studied.
  • organic thin film transistors (organic TFTs) using organic semiconductor materials have also been actively studied. Speak.
  • Organic semiconductor materials are expected as next-generation semiconductor materials, but have a problem that they have lower charge mobility and higher resistance than inorganic semiconductor materials.
  • the vertical FET structure static induction transistor which has a vertical structure, can reduce the channel width of the transistor and effectively use the entire surface electrode. Because of this, it is recognized that high-speed response can increase power and that it is less susceptible to interface effects. In recent years, therefore, the development of organic light-emitting transistors that combine such SIT structures and organic EL element structures has been studied, taking advantage of the above-mentioned advantages of electrostatic induction transistors (SIT) (for example, “Current Status and Future Prospects of Organic Transistors” by Kazuhiro E, Applied Physics, No. 72, No.
  • FIG. 18 is a schematic cross-sectional view showing an example of an organic light-emitting transistor in which a SIT structure and an organic EL element structure are combined, described in the above-mentioned document “Current Status and Future Prospects of Organic Transistor”.
  • the organic light-emitting transistor 101 includes a source electrode 103 made of a transparent conductive film and a hole transport layer 104 in which a slit-like Schottky gate electrode 105 is embedded on a glass substrate 102.
  • the light emitting layer 106 and the drain electrode 107 have a vertical FET structure provided in this order.
  • this composite organic light emitting transistor 101 has a structure in which the slit-shaped Schottky gate electrode 105 is embedded in the hole transport layer 104.
  • the hole transport layer 104 and the gate electrode 105 form a Schottky junction, whereby a depletion layer is formed in the hole transport layer 104.
  • the spread of the depletion layer varies depending on the gate voltage (voltage applied between the source electrode 103 and the gate electrode 105). Therefore, by changing the gate voltage, the channel width is controlled, and by controlling the applied voltage between the source electrode 103 and the drain electrode 107, the amount of generated charge is changed! / Speak.
  • FIG. 19 is a schematic cross-sectional view showing an example of an organic light emitting transistor described in Japanese Patent Application Laid-Open No. 2002-343578 in which an FET structure and an organic EL element structure are combined.
  • this organic light emitting transistor 111 an auxiliary electrode 113 and an insulating layer 118 are laminated on a base 112 as shown in FIG.
  • An anode 115 is partially formed on the insulating layer 118, and a light emitting material layer 116 is formed on the insulating layer 118 so as to cover the anode 115.
  • a cathode 117 is formed on the light emitting material layer 116.
  • An anode buffer layer 119 is formed on the anode 115.
  • the anode buffer layer 119 allows holes to pass from the anode 115 to the light emitting material layer 116, but has a function of preventing electrons from passing from the light emitting material layer 116 to the anode 115. Also in such an organic light emitting transistor 111, the channel width is controlled by changing the applied voltage between the auxiliary electrode 113 and the anode 115, and the applied voltage between the anode 115 and the negative electrode 117 is controlled. As a result, the amount of generated charge is changed.
  • An object of the present invention is to provide a vertical organic light-emitting transistor device and a method for manufacturing the same, in which current control between an anode and a cathode is easy.
  • the present invention provides a substrate, an auxiliary electrode layer provided on the upper surface side of the substrate, an insulating film provided on the upper surface side of the auxiliary electrode layer, and a predetermined region locally on the upper surface side of the insulating film.
  • a first electrode provided in a size, a charge injection suppression layer provided on the upper surface of the first electrode in a shape larger than the first electrode in plan view, and the first electrode or the charge injection suppression layer Provided on the upper surface side of the insulating film and on the upper surface of the charge injection suppressing layer, a light emitting layer provided on the upper surface of the charge injection layer, and provided on the upper surface side of the light emitting layer.
  • An organic light-emitting transistor element comprising the second electrode layer.
  • the present invention provides a substrate, an auxiliary electrode layer provided on the upper surface side of the substrate, an insulating film provided on the upper surface side of the auxiliary electrode layer, and a local surface on the upper surface side of the insulating film.
  • a first electrode provided in a predetermined size, a charge injection suppression layer provided on the upper surface of the first electrode in a shape larger than the first electrode in plan view, and the first electrode or the charge injection
  • a charge injection layer provided on an upper surface side of the insulating film not provided with a suppression layer; a light emitting layer provided on an upper surface of the charge injection suppression layer and an upper surface of the charge injection layer; and
  • An organic light emitting transistor element comprising: a second electrode layer provided on an upper surface side.
  • the present invention provides a substrate, an auxiliary electrode layer provided on the upper surface side of the substrate, an insulating film provided on the upper surface side of the auxiliary electrode layer, and a local surface on the upper surface side of the insulating film.
  • a first electrode provided in a predetermined size on the insulating film and on the insulating film not provided with the first electrode.
  • a charge injection layer provided on the surface side, a charge injection suppression layer provided in a larger shape in plan view than the first electrode on the entire upper surface of the first electrode and a partial upper surface of the charge injection layer, A light-emitting layer provided on the upper surface of the charge-injection layer; a second electrode layer provided on the upper surface side of the charge-injection-suppressing layer and the upper surface side of the light-emitting layer; And an organic light-emitting transistor element.
  • a constant voltage is applied between the first electrode and the second electrode, and a variable voltage is applied between the auxiliary electrode and the first electrode.
  • the light emission amount is controlled.
  • the first electrode is provided with the charge injection suppression layer having a shape larger than that of the first electrode in plan view on the first electrode.
  • the charge generated at the first electrode is a force mainly generated at both end faces (both side faces) of a small area where the charge injection suppressing layer is not provided. The generated charge is efficiently applied to the charge injection layer in contact with the both end faces. Is injected into the second electrode.
  • the current value between the first electrode and the second electrode when a constant voltage is applied between the first electrode and the second electrode can be suppressed.
  • the voltage applied between the auxiliary electrode and the first electrode the current flowing between the first electrode and the second electrode can be controlled, and the amount of light emission can be controlled.
  • the shape of the charge injection suppression layer is larger than that of the first electrode (for example, the edge portion of the first electrode is inside the edge portion of the charge injection suppression layer)
  • the auxiliary electrode and the first electrode since the shape of the charge injection suppression layer is larger than that of the first electrode (for example, the edge portion of the first electrode is inside the edge portion of the charge injection suppression layer), the auxiliary electrode and the first electrode The voltage directly applied to the first electrode and the second electrode can be less affected directly.
  • the thickness of the charge injection layer is preferably thicker than the thickness of the first electrode. In this case, it is preferable that at least the edge portion of the first electrode is in contact with the charge injection layer. Further, in this case, it is also possible to form a light emitting layer between the laminated structures composed of the first electrode and the charge injection suppressing layer to form a matrix-like element. More specifically, the thickness of the charge injection layer is preferably substantially the same as or greater than the total thickness of the first electrode and the charge injection suppression layer. [0012]
  • the charge injection layer is formed of a coating type charge injection material. In this case, when the charge injection layer is formed, the fluid coating type material can easily reach the edge portion of the first electrode located inside the edge portion of the charge injection suppressing layer. As a result, charges generated at the edge portion of the first electrode can be efficiently injected into the charge injection layer in contact with the edge portion.
  • a second charge injection layer made of the same material as or a different material from the charge injection layer may be provided between the insulating film and the first electrode and the charge injection layer.
  • electric charges can be generated also on the surface of the first electrode on the insulating film side.
  • the flow of charges generated on the surface of the first electrode on the insulating film side is also controlled by the voltage applied between the auxiliary electrode and the first electrode, and the current flowing between the first electrode and the second electrode is controlled, The amount of luminescence can be controlled.
  • a third charge injection layer for the second electrode layer is provided between the light emitting layer and the second electrode layer.
  • the third charge injection layer provided in contact with the second electrode facilitates charge injection into the light emitting layer.
  • a charge transport layer is provided between the light emitting layer and the third charge injection layer in order to improve charge transport performance.
  • the charge injection suppressing layer is made of an insulating material, more preferably a photosensitive resist material.
  • it is easy to form a charge injection suppression layer on the first electrode.
  • the dimensional accuracy in forming the charge injection suppression layer can be increased.
  • the first electrode functions as an anode and the second electrode functions as a cathode.
  • the first electrode functions as a cathode and the second electrode functions as an anode.
  • the amount of charge is changed sharply by controlling the voltage (gate voltage) applied between the auxiliary electrode and the first electrode. It can be made.
  • the current flowing between the first electrode and the second electrode is controlled, and as a result, the amount of emitted light can be controlled sharply.
  • the present invention also provides an organic light-emitting transistor element having any one of the above characteristics, and first voltage supply means for applying a constant voltage between the first electrode and the second electrode of the organic light-emitting transistor element.
  • the organic light-emitting transistor element An organic light-emitting transistor comprising: a second voltage supply unit that applies a variable voltage between the first electrode and the auxiliary electrode.
  • the first voltage supply means and the second voltage supply means apply a constant voltage between the first electrode and the second electrode, and between the first electrode and the auxiliary electrode.
  • a variable voltage can be applied to.
  • the charge amount can be changed sharply, the current flowing between the first electrode and the second electrode can be controlled, and the light emission amount can be controlled sharply.
  • the present invention is a light emitting display device including a plurality of light emitting units arranged in a matrix, and each of the plurality of light emitting units includes an organic light emitting transistor element having any one of the above characteristics.
  • the light-emitting display device is characterized by the above.
  • the present invention provides a step of preparing a substrate having an auxiliary electrode layer and an insulating film formed on the upper surface in that order, and is locally larger than the predetermined size on the upper surface side of the insulating film in plan view.
  • a step of providing a charge injection layer, and an upper surface of the charge injection layer A step of providing a light emission layer, a method of manufacturing an organic light emitting transistor element providing a second electrode layer on the upper surface side of the light-emitting layer, characterized that you provided with.
  • the present invention provides a step of preparing a substrate having an auxiliary electrode layer and an insulating film formed on the upper surface in that order, and is locally larger than the predetermined size on the upper surface side of the insulating film in a plan view.
  • the present invention provides a step of preparing a substrate in which an auxiliary electrode layer and an insulating film are formed on the upper surface in that order, and a size larger than the predetermined size locally in a plan view on the upper surface side of the insulating film.
  • the method for producing an organic light-emitting transistor element comprising:
  • the present invention provides a step of preparing a substrate having an auxiliary electrode layer and an insulating film formed on the upper surface in that order, and a first electrode having a predetermined size locally on the upper surface side of the insulating film.
  • a step of providing a charge injection suppression layer in a shape larger than the electrode in plan view, a step of further providing a charge injection layer on the upper surface of the charge injection layer not provided with the charge injection suppression layer, and the charge injection suppression layer A step of providing a charge injection layer also on the upper surface of the substrate, a step of providing a light emitting layer on the upper surface of the charge injection layer, and a step of providing a second electrode layer on the upper surface side of the light emitting layer. It is a manufacturing method of an organic light emitting transistor element.
  • the present invention provides a step of preparing a substrate having an auxiliary electrode layer and an insulating film formed on the upper surface in that order, and a first electrode having a predetermined size locally on the upper surface side of the insulating film.
  • the present invention provides a step of preparing a substrate having an auxiliary electrode layer and an insulating film formed on the upper surface in that order, and a first electrode having a predetermined size locally on the upper surface side of the insulating film.
  • a method for producing an organic light emitting transistor element comprising:
  • the organic light emitting transistor element can be produced more efficiently.
  • a step of providing a second charge injection layer made of the same material as the charge injection layer or a different material on the upper surface of the insulating film is performed.
  • the present invention provides a substrate, an auxiliary electrode layer provided on the upper surface side of the substrate, an insulating film provided on the upper surface side of the auxiliary electrode layer, and an upper surface side of the insulating film.
  • a first electrode provided in a predetermined size, a charge injection suppression layer provided on the upper surface of the first electrode in a shape larger than the first electrode in plan view, the first electrode,
  • An organic semiconductor layer provided on the upper surface side of the insulating film not provided with the charge injection suppression layer, and a second electrode layer provided on the upper surface side of the organic semiconductor layer. It is an organic transistor element.
  • FIG. 1 is a schematic cross-sectional view showing an organic light emitting transistor element according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram conceptually showing the flow of charge in the organic light emitting transistor element of FIG.
  • FIG. 3A to FIG. 3C are schematic sectional views showing organic light emitting transistor elements according to other embodiments of the present invention, respectively.
  • FIG. 4 is a schematic cross-sectional view showing an organic light-emitting transistor element according to another embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing an organic light-emitting transistor element according to another embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing an organic light-emitting transistor element according to another embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing an organic light-emitting transistor element according to another embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing an organic transistor element according to one embodiment of the present invention.
  • FIGS. 9A to 9F are process diagrams showing a method for manufacturing an organic light-emitting transistor element according to an embodiment of the present invention.
  • FIG. 10A to FIG. 10F are process diagrams showing a method for manufacturing an organic light-emitting transistor device according to another embodiment of the present invention.
  • FIG. 11 is a plan view showing an example of an electrode arrangement constituting the organic light-emitting transistor element according to one embodiment of the present invention.
  • FIG. 12 is a plan view showing another example of the electrode arrangement constituting the organic light-emitting transistor device according to one embodiment of the present invention.
  • FIG. 13 is a schematic view showing an example of a light emitting display device incorporating an organic light emitting transistor element according to an embodiment of the present invention.
  • FIG. 14 is a circuit schematic diagram showing an example of an organic light emitting transistor having an organic light emitting transistor element according to an embodiment of the present invention, provided as each pixel (unit element) in a light emitting display device. is there.
  • FIG. 15 is a diagram of the present invention provided as each pixel (unit element) in the light emitting display device.
  • FIG. 5 is a circuit schematic diagram showing another example of an organic light emitting transistor having an organic light emitting transistor element according to an embodiment.
  • FIG. 16 is a schematic cross-sectional view of the organic light-emitting transistor element of Example 1.
  • FIG. 17 is a schematic cross-sectional view of an organic light-emitting transistor element of Example 2.
  • FIG. 18 is a cross-sectional configuration diagram showing an example of a conventional organic light emitting transistor in which a SIT structure and an organic EL element structure are combined.
  • FIG. 19 is a cross-sectional configuration diagram showing another example of a conventional light-emitting transistor in which a SIT structure and an organic EL element structure are combined.
  • FIG. 1 to FIG. 7 show respective embodiments (configuration examples) of the organic light-emitting transistor element according to the present invention.
  • the organic light-emitting transistor element of the present invention is a field effect organic light-emitting transistor element having an organic EL element structure and a vertical FET structure.
  • the substrate 1, the auxiliary electrode layer 2 provided on the upper surface of the substrate 1, the insulating film 3 provided on the upper surface of the auxiliary electrode layer 2, and the insulating film 3 A first electrode 4 locally provided at a predetermined size on the upper surface of the first electrode 4, a charge injection suppressing layer 5 provided on the upper surface of the first electrode 4 in a shape larger than the first electrode 4 in plan view, A charge injection layer 12 provided on the upper surface of the insulating film 3 on which the first electrode 4 is not provided and an upper surface of the charge injection suppression layer 5; a light emitting layer 11 provided on the upper surface of the charge injection layer 12; And a second electrode 7 provided on the upper surface of 11.
  • the charge injection layer 12 and the light emitting layer 11 may be collectively referred to as the organic layer 6. Furthermore, the organic layer 6 may include a charge transport layer (described later) as necessary.
  • the charge injection layer 12 and the edge portion (end face) 4a of the first electrode 4 are in contact with each other.
  • charges holes or electrons
  • This electric charge is carried toward the second electrode 7 by the first electrode 4 force by the drain voltage VD applied between the first electrode 4 and the second electrode 7.
  • a constant electric field drain voltage VD
  • the amount of charge generated can be controlled by varying the electric field (gate voltage VG) applied between the first electrode 4 and the first electrode 4.
  • the generated charge is carried to the light emitting layer 11 and recombined with the charge supplied from the second electrode 7 to emit light. Therefore, the amount of emitted light is controlled by controlling the amount of generated charge.
  • Such light emission amount control is realized by providing the charge injection suppressing layer 5 on the first electrode 4.
  • a constant voltage drain voltage VD
  • VD drain voltage
  • the charge injection suppressing layer 5 Only the charges generated at the edge portion 4a (end surface) having a small area that is not covered with the charge injection suppression layer 5 will move toward the second electrode 7. Therefore, when a constant voltage (drain voltage VD) is applied between the first electrode 4 and the second electrode 7, the current value between the first electrode and the second electrode is suppressed.
  • the amount of charge generated at the first electrode 4 can be controlled, As a result, the amount of emitted light can be controlled.
  • a charge injection suppression layer 5 is provided on the first electrode 4 in a shape larger than that of the first electrode 4 in plan view. Therefore, at least partially, the edge portion 4 a of the first electrode 4 is located inside the edge portion of the charge injection suppressing layer 5. At this time, when a constant voltage is applied between the first electrode 4 and the second electrode 7, the generation of charges (holes or electrons) on the upper surface and contour edge of the first electrode 4 can be suppressed.
  • the first electrode 4 and the charge injection suppressing layer 5 are directly formed by the voltage applied between the auxiliary electrode 2 and the first electrode 4 as compared with the case where the first electrode 4 and the charge injection suppressing layer 5 are formed in the same size (plan view). Can be reduced.
  • the width of the charge injection suppression layer 5 is dl
  • the width of the first electrode 4 is d2
  • the edge portion 4a of the charge injection suppression layer 5 and the edge portion 4a of the first electrode 4 When the difference (shift width) is d3 and d4, it is preferable that d2 ⁇ dl and that the edge portion 4a of the first electrode 4 is located inside the edge portion of the charge injection suppressing layer 5.
  • the position of the edge portion 4a of the first electrode 4 is represented by a difference (d3, d4) from the edge portion of the charge injection suppression layer 5.
  • the first electric power whose difference (d3, d4) is extremely small
  • charge holes or electrons
  • the pole 4 and the charge injection suppression layer 5 are substantially the same size in plan view
  • charge holes or electrons
  • the generated charges are easily affected by the voltage applied between the auxiliary electrode 2 and the first electrode 4.
  • the controllability of the current flowing between the first electrode and the second electrode may be somewhat impaired.
  • the difference (d3, d4) can be quite large, and it will be difficult to create such a form itself! ,.
  • the form of the first electrode 4 and the charge injection suppression layer 5 may be a form as shown in FIG. 6 and FIG.
  • the edge portion 4a of the first electrode 4 is provided only on the side where the charge injection layer 12 is provided between the adjacent first electrodes. Is located inside the edge portion of the charge injection suppressing layer 5.
  • the charge injection suppression layer 5 is provided so as to cover the first electrode 4 in the embodiment of FIG. 6, and the first electrode 4 is an insulating film in the embodiment of FIG. 3 (see, for example, the upper or lower end portion of the comb-shaped electrode in FIGS. 11 and 12).
  • FIG. 3 see, for example, the upper or lower end portion of the comb-shaped electrode in FIGS. 11 and 12.
  • the edge portions 4 a on both the left and right sides of the first electrode 4 are configured to be located inside the edge portions of the charge injection suppression layer 5.
  • the form shown in FIG. 1 is a form in which the left and right edge portions 4a are in contact with the charge injection layer 12 (see, for example, the central part of the comb-shaped electrode in FIGS. 11 and 12).
  • the first electrode 4 may be configured as an anode and the second electrode 7 may be configured as a cathode, or the first electrode 4 may be configured as a cathode and the second electrode 7 may be configured as an anode. May be.
  • the amount of charge is changed sharply by controlling the voltage applied between the auxiliary electrode 2 and the first electrode 4. Accordingly, the current flowing between the first electrode and the second electrode can be controlled, and as a result, the amount of light emission can be controlled.
  • the charge injection layer in contact with the first electrode 4 is a hole injection layer.
  • the charge injection layer 14 third charge injection layer
  • the charge injection layer 14 is an electron injection layer.
  • the charge injection layer 14 is in contact with the second electrode 7.
  • the charge injection layer 14 is in contact with the second electrode 7.
  • the charge injection layer 14 is a hole injection layer.
  • the charge injection layer 12 is not less than the thickness T1 of the first electrode 4 and the first (1)
  • the charge injection layer 12 is formed by the thickness of the first electrode 4 and the thickness T3 of the electrode 4 and the charge injection suppression layer 5 can be formed.
  • the charge injection layer 12 has a thickness substantially the same as the total thickness T2 of the first electrode 4 and the charge injection suppression layer 5. Can be formed. In any of these forms, the edge portion 4 a of the first electrode 4 can be in contact with the charge injection layer 12.
  • the charge injection layer 12 is formed with a thickness substantially the same as the thickness T1 of the first electrode 4, and the light emitting layer 11 formed on the charge injection layer 12 is charged. It can be formed to approximately the same thickness as the injection suppression layer 5 (in FIG. 3C, it means that the light emitting layer can be “maximum” to have the same thickness as the charge injection suppression layer 5; It may be thinner than the thickness of the suppression layer 5).
  • the edge portion 4a of the first electrode 4 can be in contact with the charge injection layer 12.
  • the light-emitting layer 11 is formed between the stacked structures 8 having the first electrode 4 and the charge injection suppressing layer 5 to form a matrix-like element. Is possible.
  • the stacked form of the organic layer 6 for example, as shown in FIGS. 1 to 3C, a two-layer structure in which the charge injection layer 12 and the light-emitting layer 11 are formed in this order on the upper surface of the insulating film 3, or FIG. 4 and FIG. 5, a three-layer structure in which the second charge injection layer 12, the charge injection layer 12, and the light emitting layer 11 are formed in this order on the top surface of the insulating film 3, or as shown in FIG.
  • a three-layer structure in which the charge injection layer 12, the charge transport layer 13, and the light emitting layer 11 are formed in this order from the insulating layer 3 side can be exemplified.
  • the configuration of the organic layer 6 is not limited to these, and a charge transport layer or the like may be further provided as necessary.
  • a single layer structural force in which a charge injection layer material or a charge transport layer material is included in the light emitting layer 11 and has the same function as the charge injection layer or the charge transport layer can be employed.
  • the charge injection layer 12 ′, the charge injection layer 12, and the light emitting layer 11 are formed on the upper surface of the insulating film 3 in this order. That is, in the organic light-emitting transistor elements 30 and 40 according to these embodiments, the charge injection layer 12 is the same between the insulating film 3 and the first electrode 4 and the charge injection layer 12 shown in FIGS. A charge injection layer 12 'made of a material or a different material is provided. In such organic light emitting transistor elements 30 and 40, the charge injection layer 12 ′ is further provided, so that charges can be generated also on the surface of the first electrode 4 on the insulating film 3 side. The generated charge is also controlled by the voltage applied between the auxiliary electrode 2 and the first electrode 4. Therefore, the current flowing between the first electrode and the second electrode is controlled, and as a result, the amount of light emission can be controlled.
  • the organic light emitting transistor element of each embodiment may be a top emission type light emitting transistor element or a bottom emission type light emitting transistor element! /. Depending on whether the form of V deviation is adopted, the light transmittance of each layer to be constructed is designed.
  • Each cross-sectional view of the organic light emitting transistor element corresponds to one pixel (-pixel) of the organic light emitting transistor. Therefore, a light emitting display device such as a color display can be formed by forming a light emitting layer that emits a predetermined color for each pixel.
  • the features of the present invention can be applied to an organic transistor element.
  • a charge injection suppression layer 5 larger in plan view than the first electrode 4 is formed on the upper surface of the first electrode 4 facing the second electrode 7.
  • the amount of charge flowing through the organic semiconductor layer 15 for example, a charge injection layer or a charge transport layer
  • the amount of charge flowing through the organic semiconductor layer 15 can be suppressed (controlled).
  • Upper surface force of the first electrode 4 Direct force to the second electrode 7 By controlling the flow of charge, the controllability of the organic transistor element is improved.
  • the substrate 1 is not particularly limited, and can be appropriately determined depending on the material of each layer to be laminated. For example, it can be selected from various materials such as metals such as A1, glass, quartz, and resin.
  • the substrate is preferably formed of a material that becomes transparent or translucent.
  • the substrate 1 may be formed of an opaque material.
  • various materials generally used as a substrate of an organic EL element can be used.
  • a material made of a flexible material or a hard material can be selected depending on the application.
  • Specific examples include substrates having material strength such as glass, quartz, polyethylene, polypropylene, polyethylene terephthalate, polymethacrylate, polymethylolate methacrylate, polymethyl acrylate, polyester, and polycarbonate. .
  • the shape of the substrate 1 may be a single wafer shape or a continuous shape (such as a roll of film or SUS (thin plate)). Specific examples of the shape include a card shape, a film shape, a disk shape, and a chip shape.
  • an auxiliary electrode 2 As the electrodes, an auxiliary electrode 2, a first electrode 4, and a second electrode 7 are provided. As materials for these electrodes, metals, conductive oxides, conductive polymers and the like can be used.
  • the first electrode 4 is locally provided with a predetermined size on the upper surface side of the insulating film 3.
  • the predetermined size is not particularly limited.
  • the comb-shaped first electrode 4 having a line width of about 1 to 500 ⁇ m and a line pitch of about 1 to 500 ⁇ m.
  • FIG. 11 it is shown as a stacked structure 8 or, as will be described later with reference to FIG. 12, for example, a lattice width force of about ⁇ 500 ⁇ m and a lattice pitch of about 1 to 500 ⁇ m.
  • the grid-shaped first electrode 4 shown in FIG.
  • the shape of the first electrode 4 is not limited to a comb shape or a lattice shape, and may be formed in various shapes such as a rhombus and a circle.
  • the line width and pitch are not particularly limited. Also, the line widths and pitches need not be the same width. Examples of the material for forming the auxiliary electrode 2 include ITO (indium tin oxide), indium oxide, IZO (indium zinc oxide), a transparent conductive film such as SnO and ZnO, gold, and chromium.
  • auxiliary electrode 2 is provided on the upper surface side of the substrate 1.
  • a noria layer, a smooth layer or the like may be provided between the substrate 1 and the auxiliary electrode 2.
  • first electrode 4 or the second electrode 7 is configured as a cathode
  • simple metals such as aluminum and silver, magnesium alloys such as MgAg, aluminum alloys such as AlLi, AlCa and AlMg, Li
  • magnesium alloys such as MgAg
  • aluminum alloys such as AlLi, AlCa and AlMg
  • Li examples include metals having a low work function such as alkali metals such as Ca and alloys of alkali metals such as LiF.
  • a material for forming the first electrode 4 or the second electrode 7 as an anode is a metal that forms an ohmic contact with a constituent material of an organic layer (charge injection layer or light emitting layer) in contact with the anode.
  • the electrode material similar to the electrode material used for the auxiliary electrode 2 or the said cathode can be mentioned.
  • a metal material having a high work function such as gold or chromium, a transparent conductive film such as ITO (indium tin oxide), indium oxide, IZO (indium zinc oxide), SnO, or ZnO, polyaline, polyacetylene, etc.
  • Each of the auxiliary electrode 2, the first electrode 4 and the second electrode 7 may be an electrode having a single layer structure formed of the electrode material described above, or an electrode having a laminated structure in which a plurality of electrode material forces are also formed. It may be.
  • the thickness of each electrode is not particularly limited, but is usually in the range of 10 to: LOOOnm.
  • the electrode positioned below the light-emitting layer 11 is preferably transparent or translucent.
  • the electrode located above the light emitting layer 11 is preferably transparent or translucent.
  • the transparent electrode material the above-described transparent conductive film, metal thin film, and conductive polymer film can be used.
  • the lower side and the upper side mean the lower side and the upper side in the vertical direction of the form when the diagram shown in the present invention is viewed in plan.
  • Each of the above electrodes is formed by a vacuum process such as vacuum deposition, sputtering, or CVD, or coating.
  • the thickness (film thickness) of each electrode varies depending on the material used, but for example, ⁇ ! It is preferably about ⁇ lOOOnm.
  • a protective layer is formed on the organic layer in order to reduce damage to the organic layer at the time of electrode formation. (Not shown) may be provided.
  • the protective layer is formed on the organic layer by an electrode force S sputtering method or the like, it is provided in advance before the electrode is formed. It is preferable to form a film that does not easily damage the organic layer during the film formation, such as a deposited film such as an inorganic semiconductor film or a sputtered film.
  • the thickness of the protective layer is preferably about 1 to 500 nm.
  • the insulating film 3 is provided on the auxiliary electrode 2.
  • Insulating film 3 is made of SiO 2, SiNx, Al 2 O 3, etc.
  • Inorganic materials such as polychloropyrene, polyethylene terephthalate, polyoxymethylene, polyvinyl chloride, poly (vinylidene fluoride), cyanoethyl pullulan, polymethyl metatalylate, polybulufenol, polysulfone, polycarbonate, polyimide, etc. It can be formed of an organic material or a commonly used commercially available resist material.
  • the insulating film 3 may be a single-layered insulating film formed of the above-described materials, or may be a stacked-layered insulating film formed of a plurality of materials.
  • a predetermined pattern can be formed by a screen printing method, a spin coat method, a cast method, a pulling method, a transfer method, an ink jet method, a photolithographic method, or the like.
  • the insulating film 3 made of the inorganic material can be formed using an existing pattern process such as a CVD method.
  • the thickness of the insulating film 3 is preferably as thin as possible, but if it is too thin, the leakage current between the auxiliary electrode 2 and the first electrode 4 tends to increase, and is usually about 0.001 to 5.0 m. It is preferable.
  • the insulating layer 3 is positioned below the light emitting layer 11. Therefore, the insulating layer 3 is preferably transparent or translucent. On the other hand, in the case of a top emission structure, the insulating layer 3 does not need to be transparent or translucent.
  • the charge injection suppression layer 5 is provided on the first electrode 4 in such a size that the force of the first electrode 4 protrudes (in a larger shape in plan view), and the upper surface of the first electrode 4 facing the second electrode 7 It works to suppress the flow of charges (holes or electrons; the same shall apply hereinafter) generated at the second electrode 7 and directed toward the second electrode 7.
  • the charge injection suppression layer 5 is provided in a larger shape on the upper surface of the first electrode 4 which is the opposite surface of the second electrode 7, the charge (charge flow) generated in the first electrode 4 is This occurs mainly in the edge portion 4a having a small area where the charge injection suppressing layer 5 is not provided.
  • the amount of charge (charge flow) generated at the edge portion 4 a of the first electrode 4 is controlled by the gate voltage VG applied between the auxiliary electrode 2 and the first electrode 4. Further, the charge (charge flow) generated in the edge portion 4 a is directed to the second electrode 7 by the drain voltage VD applied between the first electrode 4 and the second electrode 7.
  • the charge injection suppression layer 5 can be formed of various materials as long as the above-described effects are exhibited.
  • Examples of the charge injection suppressing layer 5 include an insulating inorganic film and an organic film.
  • inorganic insulation such as SiO, SiNx, Al 2 O
  • the charge injection suppression layer 5 may be a single layer structure charge injection suppression layer formed of each of the above materials !, or a stacked structure charge injection suppression layer formed of a plurality of materials. May be.
  • the charge injection suppression layer 5 is formed by a vacuum process such as vacuum deposition, sputtering, CVD, or coating.
  • the film thickness preferably varies depending on the material used, for example, about 0.001 ⁇ m to 10 ⁇ m.
  • the charge injection suppression layer 5 in the present invention has an insulating material strength that is easy to obtain, easy to form, and easy to pattern with high accuracy.
  • a resist film As long as it is a resist film, it may be a positive type or a negative type.
  • a resist film is used as a material for forming the charge injection suppression layer 5, there is an advantage that the charge injection suppression layer 5 can be easily and accurately formed in a predetermined dimension (thickness, size).
  • the charge injection suppression layer 5 is provided at least partially on the upper surface of the first electrode 4 facing the second electrode 7 in a shape larger than that of the first electrode 4.
  • the edge portion 4 a of the first electrode 4 is configured to be in contact with the charge injection layer 12.
  • the organic layer 6 has at least the charge injection layer 12 and the light emitting layer 11 as described above. If necessary, a charge transport layer or the like can be added. Alternatively, the organic layer 6 has a light emitting layer 11 containing a charge injection material.
  • the organic layer 6 is not particularly limited as long as these conditions are satisfied, and various forms described above can be adopted.
  • Each layer constituting the organic layer 6 is formed to have an appropriate thickness (for example, in the range of 0. Inn! To 1 ⁇ m) according to the element configuration and the type of constituent material. When the thickness of each layer constituting the organic layer is too thick, a large applied voltage is required to obtain a constant light output, and the light emission efficiency may deteriorate. On the other hand, when the thickness of each layer constituting the organic layer is too thin, pinholes or the like are generated, and sufficient luminance may not be obtained even when an electric field is applied.
  • a material for forming the light emitting layer 11 is not particularly limited as long as it is a material generally used as a light emitting layer of an organic EL element.
  • a dye-based luminescent material, a metal complex-based luminescent material, a polymer-based luminescent material, and the like can be given.
  • dye-based luminescent materials include cyclopentagen derivatives, tetraphenylbutadiene derivatives, triphenylamine derivatives, oxadiazole derivatives, pyrazoguchi quinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, silole derivatives, thiophene rings.
  • metal complex light emitting material examples include aluminum quinolinol complex, benzoquinolinol beryllium complex, benzoxazole zinc complex, benzothiazole zinc complex, azomethyl zinc complex, porphyrin zinc complex, europine. Um complex and the like.
  • Other metal complex light-emitting materials include Al, Zn, Be, etc. as the central metal, or rare earth metals such as Tb, Eu, Dy, etc., and oxadiazole, thiadiazole, phenylpyridine, phenol as the ligand. Examples thereof include a metal complex having a lupenzoimidazole or quinoline structure.
  • polymer light-emitting material examples include polyparaphenylene-lenylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polybulur rubazole, polyfluorenone derivatives, polyfluorene derivatives, polyquinoxaline derivatives, And copolymers thereof.
  • An additive such as a doping agent may be added to the light emitting layer 11 for the purpose of improving the light emission efficiency or changing the light emission wavelength.
  • doping agents include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazoline derivatives, decacitrane, funoxazone, quinoxaline derivatives, force rubazole derivatives, fluorene derivatives, etc. Can be mentioned.
  • Examples of the material for forming the charge injection layer 12 include the compounds exemplified as the light emitting material of the light emitting layer 11.
  • Other examples include ferramine-based, starburst-type amine-based, phthalocyanine-based, polyacene-based, oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, and derivatives such as amorphous carbon, polyarine, and polythiophene. Can do.
  • the material for forming the charge injection layer 12 is preferably a fluid coating type material.
  • the flowable coating material is not particularly limited as long as it is a material that can be coated, such as a high molecular weight material, a low molecular weight material, and a dendrimer, but from the edge portion of the charge injection suppressing layer 5 during film formation. It is also preferable that the material can easily reach the edge 4a of the first electrode 4 located inside. (As a result, charges generated at the edge portion 4a of the first electrode 4 can be efficiently injected into the charge injection layer 12 in contact with the edge portion 4a.)
  • the second electrode charge injection layer 14 may be provided on the light emitting layer 11 side of the second electrode 7.
  • a material for forming the charge (electron) injection layer 14 when the second electrode 7 is a cathode in addition to the compounds exemplified as the light emitting material of the light emitting layer 11, aluminum , Lithium fluoride, Strontium, Magnesium oxide, Magnesium fluoride, Stony fluoride, Calcium fluoride, Barium fluoride, Aluminum oxide, Strontium oxide, Calcium, Sodium polymethylmetatalyl polystyrene sulfonate, Lithium, Cesium And alkali metals such as cesium fluoride, halides of alkali metals, and organic complexes of alkali metals.
  • the material for forming the charge (hole) transport layer 13 when the first electrode 4 is an anode, phthalocyanine, naphthalocyanine, porphyrin, oxadiazole, triphenylamine, triazole, imidazole, imidazolone, pyrazoline, Those usually used as hole transport materials such as tetrahydroimidazole, hydrazone, stilbene, pentacene, polythiophene, butadiene, and derivatives thereof can be used. Also, for example, poly (3,4) ethylenedioxythiophene Z polystyrene sulfonate (abbreviated as PEDOTZPSS, manufactured by Bayer, trade name;
  • the charge transport layer 13 is formed using a charge transport layer forming coating solution containing such a compound. These charge transport materials may be mixed in the light emitting layer 11 or may be mixed in the charge injection layer 12.
  • a charge transport layer may be provided on the second electrode 7 side of the light emitting layer 11.
  • the charge (electron) transport layer is formed by using anthraquinodimethane, fluorenylidenemethane, tetracyanethylene, fluorenone, diphenoquinone.
  • electron transport materials such as xadiazole, anthrone, thiopyran dioxide, diphenoquinone, benzoquinone, malono-tolyl, -ditrobenzene, nitroanthraquinone, maleic anhydride, perylenetetracarboxylic acid, and derivatives thereof Can be used.
  • the charge (electron) transport layer is formed by using a charge transport layer forming coating solution containing such a compound. These charge transport materials may be mixed in the light emitting layer 11 described above! Mix it in the electron injection layer 12 above.
  • the organic layer such as the light-emitting layer 11, the charge injection layer 12, and the charge transport layer 13 described above contains a light-emitting material such as an oligomer material or a dendrimer material or a charge transport injection material as necessary. obtain.
  • a light-emitting material such as an oligomer material or a dendrimer material or a charge transport injection material as necessary.
  • Each layer constituting the organic layer is formed by vacuum deposition.
  • Each of the forming materials is dissolved or dispersed in a solvent such as toluene, chloroform, dichloromethane, tetrahydrofuran, or dioxane to prepare a coating solution, and the coating solution is applied to a coating device or the like. It is formed by coating or printing.
  • the organic layer 6 is formed of a light emitting layer forming material, a charge injection layer forming material, a charge transport layer forming material, or the like according to various lamination modes.
  • the organic layer 6 is divided by a partition wall (not shown) and formed at predetermined positions.
  • the partition wall (not shown) forms a region divided for each emission color in the plane of the organic light emitting transistor.
  • various materials conventionally used as a partition wall material for example, photosensitive resin, active energy ray-curable resin, thermosetting resin, thermoplastic resin, etc. are used. obtain.
  • a means for forming the partition wall a means suitable for the partition wall material employed is employed.
  • the partition walls can be formed by a thick film printing method or patterning using a photosensitive resist.
  • the laminated structure including the first electrode 4 and the charge injection suppressing layer 5 acts as a partition wall.
  • the charge injection suppression layer 5 is formed thin as shown in FIG. 3A, for example. . Therefore, a light emitting portion is formed by providing an organic EL light emitting layer of each color for each range surrounded by a partition wall (not shown). It is also possible to arrange the configuration of FIG. 3A inside the portion surrounded by the configuration of FIG. 3C. Also in this case, while the stacked structure 8 ′ in FIG. 3C acts as a partition, a light emitting portion is formed by providing an organic EL light emitting layer of each color for each range surrounded by other partitions (not shown). .
  • 9A to 9F are process diagrams showing a method for manufacturing an organic light-emitting transistor device according to one embodiment of the present invention.
  • the method of manufacturing the organic light-emitting transistor element according to the present embodiment includes a step of preparing the auxiliary electrode 2, the insulating film 3, and the substrate 1 formed in that order (see FIG. 9A), and a local process on the insulating film 3.
  • Target Providing the first electrode 4 ′ with a shape larger than the predetermined size in plan view (see FIG. 9B), and having a predetermined size on the first electrode 4 ′ (more than the predetermined size of the first electrode 4).
  • the step see FIGS.
  • the configuration in which the edge portion 4a of the first electrode 4 is located on the inner side of the edge portion of the charge injection suppression layer 5 is the charge injection suppression layer 5 having a predetermined size.
  • the layered first electrode 4 is formed (realized) by overetching.
  • a coating type charge injection material is applied to form the charge injection layer 12.
  • the configuration is such that the edge portion 4a of the first electrode 4 is positioned inside the edge portion of the charge injection suppressing layer 5 (the first electrode 4 on the first electrode 4).
  • one of the embodiments in which the charge injection suppression layer 5 having a large shape force in plan view is provided can be easily realized.
  • a coating type charge injection material having fluidity can be easily filled in the space on the insulating film 3 located inside the edge portion of the charge injection suppression layer 5. is there.
  • the coating-type charge injection material can be applied by a coating method such as an inkjet method. For this reason, the charge injection layer 12 can be formed easily and at a lower cost than the vapor deposition method performed in the case of a conventional low molecular charge injection material. Further, the overetching of the layered first electrode 4 can be performed using an etching solution (wet process) or an etching gas (dry process) corresponding to the material of the first electrode 4.
  • the step of forming the charge injection suppression layer 5 on the first electrode 4 'shown in Fig. 9B various materials as described above are used as the material for forming the charge injection suppression layer 5.
  • Forming material Can be preferably used.
  • a photosensitive resist can also be used as a material for forming the charge injection suppression layer 5.
  • the charge injection suppressing layer 5 having a predetermined size can be easily and accurately formed by normal exposure, development, or the like.
  • 9A to 9F correspond to the method of manufacturing the organic light emitting transistor element 10 shown in FIG. 1, but the organic light emitting transistor elements shown in FIGS. 3A to 3C are also manufactured in the same manner. can do.
  • the charge injection layer 12 has a thickness T3 equal to or greater than the thickness T1 of the first electrode 4 and the thickness of the first electrode 4. It is formed to be approximately the same as T1. Thereafter, the light emitting layer 11 is formed so as to uniformly cover the charge injection layer 12 and the charge injection suppression layer 5.
  • the charge injection layer 12 has a thickness T3 of the total thickness T2 of the first electrode 4 and the charge injection suppression layer 5. It is formed to be almost the same as. Thereafter, the light emitting layer 11 is formed so as to uniformly cover the charge injection layer 12 and the charge injection suppression layer 5.
  • the charge injection layer 12 has a thickness T3 that is substantially the same as the thickness T1 of the first electrode 4. Formed. Thereafter, the light emitting layer 11 is formed until the total thickness of the charge injection layer 12 and the light emitting layer 11 does not exceed the total thickness of the first electrode 4 and the charge injection suppression layer 5 and is substantially the same. .
  • the charge injection layer 12 can be formed between the first electrodes 4 and 4 adjacent to each other, and an element can be formed.
  • a light emitting layer may be formed between adjacent laminated structures composed of the first electrode 4 and the charge injection suppressing layer 5 to form elements in a matrix form. It becomes possible.
  • FIGS. 10A to 10F are process diagrams showing an example of a method for manufacturing the organic light-emitting transistor element shown in FIG.
  • a step of preparing a substrate 1 in which an auxiliary electrode 2 and an insulating film 3 are formed in that order (see FIG. 10A)
  • a step of providing layer 12 ′ (see FIG. 10B) and upper surface side of insulating film 3
  • the charge injection suppression layer 5 having a larger shape in plan view than the first electrode 4 on the entire upper surface of the first electrode 4 and on the upper surface of the end portion of the charge injection layer 12 (see FIG. 10C).
  • a charge injection layer 12 is further provided on the charge injection layer 12 where the charge injection suppression layer 5 is not provided, and charge injection is also performed on the charge injection suppression layer 5.
  • a step of providing the layer 12 ′′ (see FIG. 10F), a step of providing the light emitting layer 11 on the charge injection layer 12 ′′, and a step of providing the second electrode layer 7 on the light emitting layer 11 .
  • the charge injection layer 12 ′ provided on the insulating film 3 may be the same material as the charge injection layer 12 or a different material. Also, the charge injection layer 12 "may be the same material as the charge injection layer 12 or a different material. A single charge injection layer is usually formed of a single material. However, it may be a stack of different materials!
  • the shape in which the edge portion 4a of the first electrode 4 is located inside the edge portion of the charge injection suppressing layer 5 is formed in a predetermined shape.
  • the charge injection suppression layer 5 having a shape larger than that of the first electrode 4 in plan view is provided on the first electrode 4 and on the end of the charge injection layer 12. As a result, it is formed (realized).
  • the charge injection material is preferably a fluid coating type material.
  • organic light-emitting transistor element of FIGS. 5 to 7 and the organic transistor element of FIG. 8 can also be manufactured through substantially the same steps as described above.
  • the organic light emitting transistor of the present embodiment is an organic light emitting transistor element arranged in a matrix on a sheet-like substrate.
  • the organic light-emitting transistor of the present embodiment includes an organic light-emitting transistor element and a first voltage supply unit that applies a constant voltage (drain voltage V) between the first electrode 4 and the second electrode 7 of the organic light-emitting transistor element.
  • V drain voltage
  • a variable voltage (gate voltage V) is applied between the first electrode 4 and the auxiliary electrode 2 of the transistor element.
  • Second voltage supply means are provided.
  • FIG. 11 and FIG. 12 are plan views showing examples of the electrode arrangement of the organic light emitting transistor element included in the organic light emitting transistor of the present embodiment.
  • FIG. 11 is a layout view when the laminated structure 8 composed of the first electrode 4 and the charge injection suppressing layer 5 is formed in a comb shape
  • FIG. 12 is a diagram when the laminated structure is formed in a lattice shape.
  • the electrode arrangement shown in FIG. 11 includes an auxiliary electrode 2 extending in the vertical direction in a plan view, a comb-shaped laminated structure 8 (first electrode 4) extending from one side so as to be orthogonal to the auxiliary electrode 2, and an auxiliary electrode.
  • the second electrode 7 extends from the other side so as to be perpendicular to 2 and overlap the laminated structure 8, and the like.
  • an X-direction laminated structure 8x and a Y-direction laminated structure 8y are provided instead of the comb-shaped laminated structure 8 shown in FIG. Note that the arrangements of FIGS. 11 and 12 are only examples.
  • a plurality of light-emitting portions are arranged in a matrix.
  • Each of the plurality of light emitting portions has an organic light emitting transistor element having the characteristics of the present invention.
  • FIG. 13 is a schematic view showing an example of a light emitting display device incorporating an organic light emitting transistor element according to an embodiment of the present invention.
  • FIG. 14 is a circuit schematic diagram showing an example of an organic light-emitting transistor having an organic light-emitting transistor element according to an embodiment of the present invention provided as each pixel (unit element) in the light-emitting display device.
  • the light-emitting display device described here is an example in which each pixel (unit element) 180 has one switching transistor.
  • Each pixel 180 shown in FIGS. 13 and 14 is connected to a first switching wiring 187 and a second switching wiring 188 arranged vertically and horizontally.
  • the first switching wiring 187 and the second switching wiring 188 are connected to the voltage control circuit 164 as shown in FIG.
  • the voltage control circuit 164 is connected to the image signal supply source 163.
  • reference numeral 186 denotes a ground wiring
  • reference numeral 189 denotes a constant voltage application line.
  • the source 193a of the first switching transistor 183 is connected to the first varnishing wiring 188, and the gate 194a of the first switching transistor 183 is The drain 195 a of the first switching transistor 183 is connected to one switching wiring 187, and is connected to one terminal of the auxiliary electrode 2 of the organic light emitting transistor 140 and the voltage holding capacitor 185. The other terminal of the voltage holding capacitor 185 is connected to the ground 186.
  • the second electrode 7 of the organic light emitting transistor 140 is also connected to the ground 186.
  • the first electrode 4 of the organic light emitting transistor 140 is connected to a constant voltage application line 189.
  • the first electrode 4 of the organic light emitting transistor 140 when a voltage is applied to the first electrode 4 of the organic light emitting transistor 140, the first electrode 4 and the second electrode 7 are electrically connected, and pass through the organic light emitting transistor 140 from the constant voltage supply line 189. A current flows to the ground 186, and the organic light emitting transistor 140 emits light.
  • FIG. 15 is a circuit schematic diagram showing another example of an organic light emitting transistor having an organic light emitting transistor element according to an embodiment of the present invention provided as each pixel (unit element) in the light emitting display device.
  • the light-emitting display device described here is an example having two switching transistors for each pixel (unit element) 181 force S.
  • Each pixel 181 shown in FIG. 15 is connected to the first switching wiring 187 and the second switching wiring 188 arranged in the vertical and horizontal directions as in the case of FIG.
  • the first switching wiring 187 and the second switching wiring 188 are connected to the voltage control circuit 164 as shown in FIG.
  • the voltage control circuit 164 is connected to the image signal supply source 163.
  • reference numeral 186 is a ground wiring
  • reference numeral 209 is a current supply line
  • reference numeral 189 is a constant voltage application line.
  • the source 193a of the first switching transistor 183 Is connected to the switching wiring 188, the gate 194a of the first switching transistor 183 is connected to the first switching wiring 187, the drain 195a of the first switching transistor 183 is the gate 194b of the second switching transistor 184 and the voltage holding capacitor 18 5 Connected to one terminal.
  • the other terminal of the voltage holding capacitor 185 is connected to the ground 186.
  • the source 193 b of the second switching transistor 184 is connected to the current source 209, and the drain 195 b of the second switching transistor 184 is connected to the auxiliary electrode 2 of the organic light emitting transistor 140.
  • the second electrode 7 of the organic light emitting transistor 140 is connected to the ground 186.
  • the first electrode 4 of the organic light emitting transistor 140 is connected to the constant voltage application line 189.
  • the organic light emitting transistor 140 emits light.
  • the image signal supply source 163 shown in FIG. 13 has a built-in or connected device for reproducing image information and a device for converting inputted electromagnetic information into an electric signal. Yes.
  • An apparatus that reproduces image information is connected to, for example, a card in which an image information medium in which image information is recorded is built in or connected.
  • the image signal supply source 163 is an electric signal format in which the voltage controller 164 can receive an electric signal from a device that reproduces image information or a device power that converts input electromagnetic information into an electric signal. And is sent to the voltage control device 164.
  • the voltage controller 164 further converts the electrical signal provided from the image signal supply source 163 to determine which pixels 180 and 181 are located. The power to emit light for such a time is calculated, and the voltage, time, and timing applied to the first switching wiring 187 and the second switching wiring 188 are determined. Accordingly, the light emitting display device can display a desired image based on the image information.
  • each adjacent minute pixel can emit three colors of RGB, a color based on red, a color based on green, and a color based on blue, an image display of color display is possible. You can get the equipment.
  • the first electrode 4 has an edge portion 4a located on the inner side of the edge portion of the charge injection suppressing layer 5 so that the first Electrode 4 was over-etched.
  • the width d2 of the first electrode 4 was 44 m
  • the deviation between d3 and d4 shown in FIG. 2 was 3 ⁇ m.
  • poly 3 hexylthiophene (trade name: Poly (3-hexylthiophene-2,5-diyl), which is a charge injection material, is formed on the insulating film 3 where the first electrode 4 is not provided.
  • the pentacene (thickness 50 nm) was formed by vacuum deposition as the charge (hole) injection layer 12 '.
  • an organic light-emitting transistor element of Example 2 as shown in FIG. 17 was produced.
  • Au thickness 30 nm
  • Poly 3 hexylthiophene (trade name: Poly (3-hexylthiophene-2,5-diyl), a polymer charge injection material, is formed on the insulating film 3 where the electrode 4 is not provided by an inkjet method. This was applied to form a charge injection layer 12 having a thickness of 30 nm, which is the same as the thickness of the first electrode 4.
  • the same PVP resist (Tokyo) Oka Kogyo Co., Ltd., trade name: TM R-P10) was formed by spin coating, and exposure and development were performed using a mask to obtain a charge (width dl 120 ⁇ m and thickness 50 nm) ( Hole) injection suppression layer 5.
  • d3 and d4 shown in Fig. 2 were both 10 / zm.
  • the molecular charge injection material was further applied, and the charge injection layer 12 was bulked (further formed) to a thickness of lOOnm.
  • Example 3 An organic light-emitting transistor element of Example 3 was produced.
  • the cross-sectional configuration of Example 3 is similar to the cross-sectional configuration of Example 1 shown in FIG.
  • Example 4 Before the layered first electrode 4 was formed on the insulating film 3, the pentacene (thickness 50 nm) was formed by vacuum deposition as the charge (hole) injection layer 12 '. In the same manner as in Example 3, the organic light-emitting transistor device of Example 4 was produced.
  • the cross-sectional configuration of Example 4 is similar to the cross-sectional configuration of Example 2 shown in FIG.
  • Au as a first electrode 4 was formed by vacuum deposition (thickness 30 nm). O After that, the same PVP resist (Tokyo Ohka Kogyo Co., Ltd.) Company-made, trade name: TMR-P10) is applied by spin coating, and exposure and development are performed using a mask. A charge (hole) injection suppression layer 5 having a width dl of 50 m and a thickness of lOOnm is formed. Been formed.
  • the first electrode 4 has an edge portion 4a located on the inner side of the edge portion of the charge injection suppressing layer 5 so that the first Electrode 4 was over-etched.
  • the width d2 of the first electrode 4 was 44 m
  • the deviation between d3 and d4 shown in FIG. 2 was 3 ⁇ m.
  • poly 3 hexylthiophene (trade name: Poly (3-hexylthiophene-2,5-diyl), an organic semiconductor material, is formed on the insulating film 3 where the first electrode 4 is not provided.
  • Example 5 The cross-sectional configuration of Example 5 is similar to the cross-sectional configuration of FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

 本発明は、基板と、前記基板の上面側に設けられた補助電極層と、前記補助電極層の上面側に設けられた絶縁膜と、前記絶縁膜の上面側に局所的に所定の大きさで設けられた第1電極と、前記第1電極の上面に当該第1電極よりも平面視で大きな形状で設けられた電荷注入抑制層と、前記第1電極または前記電荷注入抑制層が設けられていない前記絶縁膜の上面側と前記電荷注入抑制層の上面に設けられた電荷注入層と、前記電荷注入層の上面に設けられた発光層と、前記発光層の上面側に設けられた第2電極層と、を備えたことを特徴とする有機発光トランジスタ素子である。

Description

有機発光トランジスタ素子及びその製造方法
技術分野
[0001] 本発明は、有機発光トランジスタ素子及びその製造方法に関している。更に詳しく は、縦型の有機発光トランジスタ素子において、陽極と陰極との間の電流制御を容易 にした有機発光トランジスタ素子及びその製造方法に関している。
背景技術
[0002] 有機 EL (Organic Electroluminesence)素子は、素子構造が単純であるため、薄型' 軽量 '大面積'低コストな次世代ディスプレイの発光素子として期待され、近年その研 究が盛んに行われている。
有機 EL素子を駆動するための駆動方式としては、薄膜トランジスタ (TFT: Thin Fil m Transistor)を用いたアクティブマトリックス方式の電界効果型トランジスタ(FET: Fi eld Effect Transistor)力 動作速度や消費電力の点で有効であると考えられている。 一方、薄膜トランジスタを構成する半導体材料については、シリコン半導体や化合物 半導体等の無機半導体材料について研究されているほか、近年では、有機半導体 材料を用いた有機薄膜トランジスタ (有機 TFT)の研究も盛んに行われて ヽる。有機 半導体材料は、次世代の半導体材料として期待されているが、無機半導体材料に比 ベて電荷移動度が低く抵抗が高 、と 、う問題点がある。
一方、電界効果型トランジスタについては、その構造を縦型にした縦型 FET構造の 静電誘導型トランジスタ(SIT: Static Induction Transistor)に、トランジスタのチャネル 幅を短くできること、表面の電極全体を有効利用できるために高速応答ゃ大電力化 が可能となること、界面の影響が受け難くなること、等のメリットが認められている。 そこで、近年、静電誘導型トランジスタ(SIT)の前記のメリットを活力ゝして、そのような SIT構造と有機 EL素子構造とを複合させた有機発光トランジスタの開発が検討され ている (例えば、ェ藤一浩による「有機トランジスタの現状と将来展望」、応用物理、第 72卷、第 9号、第 1151頁〜第 1156頁(2003年;);特開 2003— 324203号公報(特 には請求項 1) ;特開 2002— 343578号公報(特には図 23) )。 [0003] 図 18は、前記文献「有機トランジスタの現状と将来展望」に記載された、 SIT構造と 有機 EL素子構造とを複合させた有機発光トランジスタの一例を示す概略断面図で ある。この有機発光トランジスタ 101は、図 18に示すように、ガラス基板 102上に、透 明導電膜からなるソース電極 103と、スリット状のショットキーゲート電極 105が埋め込 まれた正孔輸送層 104と、発光層 106と、ドレイン電極 107と、が当該順に設けられ た縦型 FET構造を有して 、る。
[0004] 前記のように、この複合型の有機発光トランジスタ 101は、正孔輸送層 104の内部 にスリット状のショットキーゲート電極 105が埋め込まれた構造を有して 、る。正孔輸 送層 104とゲート電極 105とはショットキー接合し、これにより正孔輸送層 104に空乏 層が形成される。この空乏層の広がりは、ゲート電圧(ソース電極 103とゲート電極 10 5との間に印加する電圧)によって変化する。そこで、当該ゲート電圧を変化させるこ とによってチャネル幅を制御し、また、ソース電極 103とドレイン電極 107との間の印 加電圧を制御することによって、電荷の発生量を変化させて!/ヽる。
また、図 19は、特開 2002— 343578号公報に記載された、 FET構造と有機 EL素 子構造とを複合させた有機発光トランジスタの一例を示す概略断面図である。この有 機発光トランジスタ 111は、図 19に示すように、基体 112上に、補助電極 113と絶縁 層 118とが積層されている。そして、絶縁層 118上に部分的に陽極 115が形成され、 更に絶縁層 118上に陽極 115を覆うように発光材料層 116が形成されて ヽる。発光 材料層 116の上に、陰極 117が形成されている。陽極 115上には、陽極バッファ層 1 19が形成されている。陽極バッファ層 119は、陽極 115から発光材料層 116に正孔 を通過させるが、発光材料層 116から陽極 115に電子が通過することを防ぐ機能を 有する。このような有機発光トランジスタ 111においても、補助電極 113と陽極 115と の間の印加電圧を変化させることによってチャネル幅を制御し、また、陽極 115と陰 極 117との間の印加電圧を制御することによって、電荷の発生量を変化させている。 発明の要旨
[0005] 前記文献及び前記特許文献に記載された SIT構造と有機 EL素子構造とを複合ィ匕 させた有機発光トランジスタでは、例えば図 19を参照して説明すれば、陽極 115と陰 極 117との間に一定電圧(一 Vdl < 0)を印加すると、陰極 117に対向する側の陽極 115の面で多くの正孔が発生し、その正孔が陰極 117に向力う流れ (電荷の流れ)が 起こる。ここで、より大きな電荷の流れを得るため(すなわち、より大きな輝度を得るた め)、 Vd=— Vd2《― Vdlなる電圧を陽極 115と陰極 117との間に印加すると、陽 極 115と陰極 117との間の電荷の発生とその流れが支配的になるために、補助電極 113と陽極 115との間の印加電圧 (Vg)を制御しても電荷発生量を制御できず、発光 量の制御が難し ヽと 、う問題がある。
本発明は、前記問題を解決するためになされたものである。本発明の目的は、陽極 と陰極との間の電流制御が容易であるような縦型の有機発光トランジスタ素子及びそ の製造方法を提供することにある。
[0006] 本発明は、基板と、前記基板の上面側に設けられた補助電極層と、前記補助電極 層の上面側に設けられた絶縁膜と、前記絶縁膜の上面側に局所的に所定の大きさ で設けられた第 1電極と、前記第 1電極の上面に当該第 1電極よりも平面視で大きな 形状で設けられた電荷注入抑制層と、前記第 1電極または前記電荷注入抑制層が 設けられていない前記絶縁膜の上面側と前記電荷注入抑制層の上面に設けられた 電荷注入層と、前記電荷注入層の上面に設けられた発光層と、前記発光層の上面 側に設けられた第 2電極層と、を備えたことを特徴とする有機発光トランジスタ素子で ある。
[0007] あるいは、本発明は、基板と、前記基板の上面側に設けられた補助電極層と、前記 補助電極層の上面側に設けられた絶縁膜と、前記絶縁膜の上面側に局所的に所定 の大きさで設けられた第 1電極と、前記第 1電極の上面に当該第 1電極よりも平面視 で大きな形状で設けられた電荷注入抑制層と、前記第 1電極または前記電荷注入抑 制層が設けられていない前記絶縁膜の上面側に設けられた電荷注入層と、前記電 荷注入抑制層の上面及び前記電荷注入層の上面に設けられた発光層と、前記発光 層の上面側に設けられた第 2電極層と、を備えたことを特徴とする有機発光トランジス タ素子である。
[0008] あるいは、本発明は、基板と、前記基板の上面側に設けられた補助電極層と、前記 補助電極層の上面側に設けられた絶縁膜と、前記絶縁膜の上面側に局所的に所定 の大きさで設けられた第 1電極と、前記第 1電極が設けられていない前記絶縁膜の上 面側に設けられた電荷注入層と、前記第 1電極の全上面及び前記電荷注入層の一 部上面に当該第 1電極よりも平面視で大きな形状で設けられた電荷注入抑制層と、 前記電荷注入抑制層が設けられて ヽな ヽ前記電荷注入層の上面に設けられた発光 層と、前記電荷注入抑制層の上面側及び前記発光層の上面側に設けられた第 2電 極層と、を備えたことを特徴とする有機発光トランジスタ素子である。
[0009] 以上のような構成を有する有機発光トランジスタ素子は、第 1電極と第 2電極との間 に一定電圧が印加されると共に、補助電極と第 1電極との間に可変電圧が印加され ることで、発光量の制御が行われる。
[0010] 以上のような構成を有する有機発光トランジスタ素子によれば、第 1電極上に当該 第 1電極よりも平面視で大きな形状の電荷注入抑制層が設けられているため、第 1電 極と第 2電極との間に一定電圧が印加された場合、第 1電極の上面及び上面縁 (輪 郭縁)での電荷 (正孔又は電子)の発生が抑制されると共に、第 2電極に向力う電荷 の流れが抑制される。例えば、第 1電極で発生する電荷は、電荷注入抑制層が設け られていない小面積の両端面(両側面)において主に発生する力 この発生した電荷 は当該両端面に接する電荷注入層に効率的に注入されて力ゝら第 2電極に向かう。こ れにより、第 1電極と第 2電極との間に一定電圧が印加された場合での第 1電極 第 2電極間の電流値が抑制され得る。その結果、補助電極と第 1電極との間に印加す る電圧を制御することによって、第 1電極 第 2電極間に流れる電流が制御されて、 発光量を制御することができる。特に本発明では、電荷注入抑制層の形状が第 1電 極よりも大き 、ため(例えば第 1電極のエッジ部が電荷注入抑制層のエッジ部よりも 内側にある)、補助電極と第 1電極との間に印加される電圧が第 1電極 第 2電極間 に流れる電流に直接的に与える影響を小さくすることができる。
[0011] 以上において、前記電荷注入層の厚さは、前記第 1電極の厚さよりも厚いことが好 ましい。この場合、少なくとも第 1電極のエツヂ部が電荷注入層に接することになつて 好ましい。更に、この場合、第 1電極と電荷注入抑制層とからなる積層構造体同士の 間に発光層を形成して、マトリクス状の素子を形成することも可能である。より具体的 には、前記電荷注入層の厚さは、前記第 1電極と前記電荷注入抑制層の合計厚さと 略同じか、それよりも更に厚いことが好ましい。 [0012] また、前記電荷注入層は、塗布型の電荷注入材料から形成されて!ヽることが好まし い。この場合、電荷注入層の形成時において、流動性のある塗布型材料が電荷注 入抑制層のエツヂ部よりも内側に位置する第 1電極のエッジ部にまで容易に至ること ができる。その結果として、第 1電極のエツヂ部で発生した電荷が当該エツヂ部に接 する電荷注入層に効率的に注入され得るのである。
[0013] また、前記絶縁膜と前記第 1電極及び前記電荷注入層との間に、当該電荷注入層 と同じ材料又は異なる材料カゝらなる第 2電荷注入層が設けられてもよい。この場合、 第 1電極の絶縁膜側の面においても電荷を発生させることができる。第 1電極の絶縁 膜側の面において発生した電荷の流れも、補助電極と第 1電極との間に印加される 電圧によって制御され、第 1電極 第 2電極間に流れる電流が制御されて、発光量 を制御することができる。
また、前記発光層と前記第 2電極層との間に、当該第 2電極層用の第 3電荷注入層 が設けられることが好ましい。この場合、第 1電極に接して設けられる電荷注入層と同 様の原理により、第 2電極に接して設けられる第 3電荷注入層のために、発光層への 電荷注入が容易になる。
[0014] 更にこの場合、前記発光層と前記第 3電荷注入層との間に、電荷輸送性能の向上 のために、電荷輸送層が設けられることが好ましい。
[0015] また、好ましくは、前記電荷注入抑制層は、絶縁材料、更に好ましくは感光性のレ ジスト材料、によって構成される。この場合、第 1電極上への電荷注入抑制層の形成 が容易である。また、電荷注入抑制層の形成の寸法精度を高くすることができる。
[0016] 例えば、前記第 1電極は陽極として機能し、前記第 2電極は陰極として機能する。あ るいは、前記第 1電極は陰極として機能し、前記第 2電極は陽極として機能する。第 1 電極と第 2電極とが何れの極性を持つ場合であっても、補助電極と第 1電極との間に 印加される電圧 (ゲート電圧)を制御することによって、電荷量を鋭敏に変化させるこ とができる。これにより、第 1電極 第 2電極間に流れる電流が制御され、結果的に発 光量を鋭敏に制御することができる。 また、本発明は、前記のいずれかの特徴を有 する有機発光トランジスタ素子と、当該有機発光トランジスタ素子の第 1電極と第 2電 極との間に一定電圧を印加する第 1電圧供給手段と、当該有機発光トランジスタ素子 の第 1電極と補助電極との間に可変電圧を印加する第 2電圧供給手段と、を備えたこ とを特徴とする有機発光トランジスタである。
[0017] 本発明によれば、第 1電圧供給手段と第 2電圧供給手段とによって、第 1電極と第 2 電極との間に一定電圧を印加すると共に、第 1電極と補助電極との間に可変電圧を 印加することができる。その結果、電荷量を鋭敏に変化させることができ、第 1電極一 第 2電極間に流れる電流が制御され、発光量を鋭敏に制御することができる。
また、本発明は、マトリクス状に配置された複数の発光部を備えた発光表示装置で あって、前記複数の発光部の各々が前記のいずれかの特徴を備えた有機発光トラン ジスタ素子を有していることを特徴とする発光表示装置である。
[0018] このような発光表示装置によれば、発光量の制御が容易であるため、輝度調整が 容易である。
[0019] また、本発明は、上面に補助電極層と絶縁膜とが当該順に形成された基板を準備 する工程と、前記絶縁膜の上面側に局所的に所定の大きさよりも平面視で大きな形 状で第 1電極を設ける工程と、前記第 1電極の上面に当該第 1電極の所定の大きさよ りも平面視で大きな形状で電荷注入抑制層を設ける工程と、前記第 1電極のエッジ 部が前記電荷注入抑制層のエッジ部よりも内側に位置するようになるまで前記第 1電 極のエッジ部をエッチングして前記第 1電極を所定の大きさにする工程と、前記エツ チング工程の後で、前記第 1電極または電荷注入抑制層が存在しない前記絶縁膜 の上面側に塗布型の電荷注入材料を塗布して電荷注入層を設ける工程と、前記電 荷注入抑制層の上面にも電荷注入層を設ける工程と、前記電荷注入層の上面に発 光層を設ける工程と、当該発光層の上面側に第 2電極層を設ける工程と、を備えたこ とを特徴とする有機発光トランジスタ素子の製造方法である。
[0020] あるいは、本発明は、上面に補助電極層と絶縁膜とが当該順に形成された基板を 準備する工程と、前記絶縁膜の上面側に局所的に所定の大きさよりも平面視で大き な形状で第 1電極を設ける工程と、前記第 1電極の上面に当該第 1電極の所定の大 きさよりも平面視で大きな形状で電荷注入抑制層を設ける工程と、前記第 1電極のェ ッジ部が前記電荷注入抑制層のエッジ部よりも内側に位置するようになるまで前記第 1電極のエッジ部をエッチングして前記第 1電極を所定の大きさにする工程と、前記 エッチング工程の後で、前記第 1電極または前記電荷注入抑制層が存在しな 、前記 絶縁膜の上面側に塗布型の電荷注入材料を塗布して電荷注入層を設ける工程と、 前記電荷注入抑制層の上面及び前記電荷注入層の上面に発光層を設ける工程と、 当該発光層の上面側に第 2電極層を設ける工程と、を備えたことを特徴とする有機発 光トランジスタ素子の製造方法である。
[0021] あるいは、本発明は、上面に補助電極層と絶縁膜とが当該順に形成された基板を 準備する工程と、前記絶縁膜の上面側に局所的に所定の大きさよりも平面視で大き な形状で第 1電極を設ける工程と、前記第 1電極の上面に当該第 1電極の所定の大 きさよりも平面視で大きな形状で電荷注入抑制層を設ける工程と、前記第 1電極のェ ッジ部が前記電荷注入抑制層のエッジ部よりも内側に位置するようになるまで前記第 1電極のエッジ部をエッチングして前記第 1電極を所定の大きさにする工程と、前記 エッチング工程の後で、前記第 1電極が存在しない前記絶縁膜の上面側に塗布型 の電荷注入材料を塗布して電荷注入層を設ける工程と、前記電荷注入層の上面に 発光層を設ける工程と、前記電荷注入抑制層の上面側及び当該発光層の上面側に 第 2電極層を設ける工程と、を備えたことを特徴とする有機発光トランジスタ素子の製 造方法である。
[0022] あるいは、本発明は、上面に補助電極層と絶縁膜とが当該順に形成された基板を 準備する工程と、記絶縁膜の上面側に局所的に所定の大きさからなる第 1電極を設 ける工程と、前記第 1電極が設けられていない前記絶縁膜の上面側に電荷注入層を 設ける工程と、前記第 1電極の全上面及び前記電荷注入層の一部上面に当該第 1 電極よりも平面視で大きな形状で電荷注入抑制層を設ける工程と、前記電荷注入抑 制層が設けられていない前記電荷注入層の上面に更に電荷注入層を設ける工程と 、前記電荷注入抑制層の上面にも電荷注入層を設ける工程と、前記電荷注入層の 上面に発光層を設ける工程と、当該発光層の上面側に第 2電極層を設ける工程と、 を備えたことを特徴とする有機発光トランジスタ素子の製造方法である。
[0023] あるいは、本発明は、上面に補助電極層と絶縁膜とが当該順に形成された基板を 準備する工程と、前記絶縁膜の上面側に局所的に所定の大きさからなる第 1電極を 設ける工程と、前記第 1電極が設けられていない前記絶縁膜の上面側に電荷注入層 を設ける工程と、前記第 1電極の全上面及び前記電荷注入層の一部上面に当該第 1電極よりも平面視で大きな形状で電荷注入抑制層を設ける工程と、前記電荷注入 抑制層が設けられていない前記電荷注入層の上面に更に電荷注入層を設ける工程 と、前記電荷注入抑制層の上面及び前記電荷注入層の上面に発光層を設ける工程 と、当該発光層の上面側に第 2電極層を設ける工程と、を備えたことを特徴とする有 機発光トランジスタ素子の製造方法である。
[0024] あるいは、本発明は、上面に補助電極層と絶縁膜とが当該順に形成された基板を 準備する工程と、前記絶縁膜の上面側に局所的に所定の大きさからなる第 1電極を 設ける工程と、前記第 1電極が設けられていない前記絶縁膜の上面側に電荷注入層 を設ける工程と、前記第 1電極の全上面及び前記電荷注入層の一部上面に当該第 1電極よりも平面視で大きな形状で電荷注入抑制層を設ける工程と、前記電荷注入 抑制層が設けられていない前記電荷注入層の上面に発光層を設ける工程と、前記 電荷注入抑制層の上面側及び当該発光層の上面側に第 2電極層を設ける工程と、 を備えたことを特徴とする有機発光トランジスタ素子の製造方法である。
[0025] 以上のような有機発光トランジスタ素子の製造方法によれば、有機発光トランジスタ 素子をより効率的に製造することができる。
[0026] 好ましくは、前記第 1電極を設ける工程の前に、前記絶縁膜の上面に前記電荷注 入層と同じ材料又は異なる材料カゝらなる第2電荷注入層を設ける工程が行われる。
[0027] また、本発明は、基板と、前記基板の上面側に設けられた補助電極層と、前記補助 電極層の上面側に設けられた絶縁膜と、前記絶縁膜の上面側に局所的に所定の大 きさで設けられた第 1電極と、前記第 1電極の上面に当該第 1電極よりも平面視で大 きな形状で設けられた電荷注入抑制層と、前記第 1電極及び前記電荷注入抑制層 が設けられていない前記絶縁膜の上面側に設けられた有機半導体層と、前記有機 半導体層の上面側に設けられた第 2電極層と、を備えたことを特徴とする有機トラン ジスタ素子である。
図面の簡単な説明
[0028] [図 1]図 1は、本発明の一実施の形態に係る有機発光トランジスタ素子を示す模式断 面図である。 [図 2]図 2は、図 1の有機発光トランジスタ素子における電荷の流れを概念的に示す 説明図である。
[図 3]図 3A乃至図 3Cは、それぞれ、本発明の他の実施の形態に係る有機発光トラン ジスタ素子を示す模式断面図である。
[図 4]図 4は、本発明の他の実施の形態に係る有機発光トランジスタ素子を示す模式 断面図である。
[図 5]図 5は、本発明の他の実施の形態に係る有機発光トランジスタ素子を示す模式 断面図である。
[図 6]図 6は、本発明の他の実施の形態に係る有機発光トランジスタ素子を示す模式 断面図である。
[図 7]図 7は、本発明の他の実施の形態に係る有機発光トランジスタ素子を示す模式 断面図である。
[図 8]図 8は、本発明の一実施の形態に係る有機トランジスタ素子を示す模式断面図 である。
圆 9]図 9A乃至図 9Fは、本発明の一実施の形態に係る有機発光トランジスタ素子の 製造方法を示す工程図である。
圆 10]図 10A乃至図 10Fは、本発明の他の実施の形態に係る有機発光トランジスタ 素子の製造方法を示す工程図である。
[図 11]図 11は、本発明の一実施の形態に係る有機発光トランジスタ素子を構成する 電極配置の一例を示す平面図である。
[図 12]図 12は、本発明の一実施の形態に係る有機発光トランジスタ素子を構成する 電極配置の他の例を示す平面図である。
[図 13]図 13は、本発明の一実施の形態に係る有機発光トランジスタ素子を内蔵した 発光表示装置の一例を示す概略図である。
[図 14]図 14は、発光表示装置内の各画素(単位素子)として設けられた、本発明の 一実施の形態に係る有機発光トランジスタ素子を有する有機発光トランジスタの一例 を示す回路概略図である。
[図 15]図 15は、発光表示装置内の各画素(単位素子)として設けられた、本発明の 一実施の形態に係る有機発光トランジスタ素子を有する有機発光トランジスタの他の 例を示す回路概略図である。
[図 16]図 16は、実施例 1の有機発光トランジスタ素子の模式断面図である。
[図 17]図 17は、実施例 2の有機発光トランジスタ素子の模式断面図である。
[図 18]図 18は、 SIT構造と有機 EL素子構造とを複合させた従来の有機発光トランジ スタの一例を示す断面構成図である。
[図 19]図 19は、 SIT構造と有機 EL素子構造とを複合させた従来の発光トランジスタ の他の例を示す断面構成図である。
発明を実施するための最良の形態
[0029] 以下、本発明を実施の形態に基づいて詳細に説明する。図 1乃至図 7は、それぞ れ、本発明に係る有機発光トランジスタ素子の各実施の形態 (構成例)を示して ヽる。 本発明の有機発光トランジスタ素子は、有機 EL素子構造と縦型 FET構造とを有する 電界効果型の有機発光トランジスタ素子である。
[0030] 図 1に示された実施の形態では、基板 1と、基板 1の上面に設けられた補助電極層 2と、補助電極層 2の上面に設けられた絶縁膜 3と、絶縁膜 3の上面に局所的に所定 の大きさで設けられた第 1電極 4と、第 1電極 4の上面に第 1電極 4よりも平面視で大き な形状で設けられた電荷注入抑制層 5と、第 1電極 4が設けられていない絶縁膜 3の 上面と電荷注入抑制層 5の上面とに設けられた電荷注入層 12と、電荷注入層 12の 上面に設けられた発光層 11と、発光層 11の上面に設けられた第 2電極 7と、を少なく とも備えている。
[0031] なお、本願明細書では、電荷注入層 12と発光層 11とをまとめて、有機層 6ということ がある。さらに有機層 6は、必要に応じて、電荷輸送層(後述される)をも含む場合が ある。
図 1の実施の形態では、電荷注入層 12と第 1電極 4のエツヂ部 (端面) 4aとが接触 している。第 1電極 4のエツヂ部 4aでは、第 1電極 4と補助電極 2との間に印加される ゲート電圧 VGによって、電荷 (正孔又は電子)が発生する。この電荷は、第 1電極 4と 第 2電極 7との間に印加されるドレイン電圧 VDによって、第 1電極 4力 第 2電極 7に 向かって運ばれる。 [0032] 本実施の形態では (他の実施の形態でも同様であるが)、第 1電極 4と第 2電極 7と の間に一定の電界(ドレイン電圧 VD)を印加すると共に、補助電極 2と第 1電極 4との 間に印加する電界 (ゲート電圧 VG)を可変させることによって、電荷の発生量が制御 され得る。発生した電荷は発光層 11に運ばれて、第 2電極 7から供給される電荷と再 結合して発光する。従って、電荷の発生量が制御されることによって、発光量が制御 されるのである。
[0033] このような発光量制御は、第 1電極 4上に電荷注入抑制層 5を設けたことによって実 現される。図 2に示すように、第 1電極 4と第 2電極 7との間に一定電圧(ドレイン電圧 VD)を印加する場合、第 1電極 4の上面で発生して第 2電極 7に向カゝぅ電荷の流れは 、電荷注入抑制層 5の存在によって抑制される。電荷注入抑制層 5で覆われていな い小面積のエツヂ部 4a (端面)で発生する電荷のみが、第 2電極 7に向かって移動す ること〖こなる。従って、第 1電極 4と第 2電極 7との間に一定電圧(ドレイン電圧 VD)が 印加された場合において、第 1電極 第 2電極間の電流値が抑制される。その結果 、補助電極 2と第 1電極 4との間に印加する電圧 (ゲート電圧 VG)を制御して電荷の 発生をアシストすることにより、第 1電極 4での電荷の発生量を制御でき、結果として 発光量を制御することができる。
本発明の特徴として、図 1乃至図 8に示すように、第 1電極 4上に当該第 1電極 4より も平面視で大きな形状で電荷注入抑制層 5が設けられている。従って、少なくとも部 分的に、第 1電極 4のエッジ部 4aが電荷注入抑制層 5のエツヂ部よりも内側に位置す る。この時、第 1電極 4と第 2電極 7との間に一定電圧が印加されると、第 1電極 4の上 面及び輪郭縁での電荷 (正孔又は電子)の発生が抑制され得る。その結果、第 1電 極 4と電荷注入抑制層 5とを同じ大きさ(平面視)で形成したものに比べて、補助電極 2と第 1電極 4との間に印加される電圧による直接的な影響を小さくすることができる。
[0034] 図 1に示すように、電荷注入抑制層 5の幅を dlとし、第 1電極 4の幅を d2とし、電荷 注入抑制層 5のエツヂ部と第 1電極 4のエッジ部 4aとの差 (ずれ幅)を d3, d4とすると 、 d2< dlであり、かつ、第 1電極 4のエッジ部 4aが電荷注入抑制層 5のエツヂ部より も内側に位置することが好ましい。第 1電極 4のエッジ部 4aの位置は、電荷注入抑制 層 5のエツヂ部との差 (d3、 d4)で表される。その差 (d3, d4)が極めて小さぐ第 1電 極 4と電荷注入抑制層 5とが平面視で実質的に同じ大きさである場合には、第 1電極 4のエツヂ部 4aの輪郭縁で電荷 (正孔又は電子)の発生が起こり得る。その場合、当 該発生電荷は、補助電極 2と第 1電極 4との間に印加される電圧の影響を受け易い。 このため、第 1電極 第 2電極間に流れる電流の制御性がやや損なわれるおそれが ある。一方、その差 (d3, d4)はかなり大きくてもよぐそうした形態自体の作製が難し くならな!、程度の大きさであればよ!、。
[0035] なお、第 1電極 4と電荷注入抑制層 5との形態は、図 6及び図 7に示すような形態で あってもよい。図 6及び図 7の実施の形態では、図 1の実施の形態とは異なり、隣り合 う第 1電極間に電荷注入層 12が設けられている側でのみ、第 1電極 4のエツヂ部 4a が電荷注入抑制層 5のエツヂ部よりも内側に位置するように構成されている。その反 対側のエツヂ部については、図 6の実施の形態では電荷注入抑制層 5が第 1電極 4 を覆うように設けられており、図 7の実施の形態では第 1電極 4が絶縁膜 3上に引き出 された形態になっている(例えば、図 11及び図 12の櫛形電極の上端部分又は下端 部分を参照)。他方、図 1で示される形態では、第 1電極 4の左右の両側のエツヂ部 4 aが電荷注入抑制層 5のエツヂ部よりも内側に位置するように構成されている。図 1に 示される形態は、左右の両側のエツヂ部 4aが電荷注入層 12に接する形態である(例 えば、図 11及び図 12の櫛形電極の中央部分を参照)。
[0036] 電極の極性にっ ヽては、第 1電極 4を陽極とし、第 2電極 7を陰極として構成しても よいし、第 1電極 4を陰極とし、第 2電極 7を陽極として構成してもよい。第 1電極 4と第 2電極 7とが何れの極性を持つ場合であっても、補助電極 2と第 1電極 4との間に印加 する電圧を制御することによって、電荷量を鋭敏に変化させることができ、これによつ て第 1電極 第 2電極間に流れる電流を制御し、結果として発光量を制御することが できる。
[0037] もっとも、第 1電極 4が陽極で第 2電極 7が陰極である場合には、第 1電極 4に接する 電荷注入層は正孔注入層である。そして、第 2電極 7に接して電荷注入層 14 (第 3電 荷注入層)が設けられる場合(図 6を参照)には、当該電荷注入層 14は電子注入層 である。一方、第 1電極 4が陰極で第 2電極 7が陽極である場合には、第 1電極 4に接 する電荷注入層は電子注入層である。そして、第 2電極 7に接して電荷注入層 14が 設けられる場合(図 6を参照)には、当該電荷注入層 14は正孔注入層である。
第 1電極 4が絶縁膜 3の上面側に形成され (第 2電荷注入層が間に設けられてもよ い:図 5参照)、且つ、第 1電極 4上の電荷注入抑制層 5が第 1電極 4よりも平面視で 大きく形成され(=電荷注入抑制層 5が第 1電極 4の輪郭縁 (の少なくとも一部)を覆 い隠すように形成され)、且つ、第 1電極 4のエツヂ部 4aが電荷注入層 12に接するよ うに構成されていることが重要な特徴である。その他の特徴については、種々変更さ れ得る。例えば、図 3A乃至図 7に示すような各種の態様が採用され得る。
例えば、電荷注入層 12と発光層 11とを有する有機層 6の構造形態については、(i )図 1に示すように、電荷注入層 12は、第 1電極 4の厚さ T1以上で且つ第 1電極 4と 電荷注入抑制層 5との合計厚さ T2以上の厚さ T3で形成され得るし、 (ii)図 3Aに示 すように、電荷注入層 12は、第 1電極 4の厚さ T1とほぼ同じ厚さで形成され得るし、 ( iii)図 3Bに示すように、電荷注入層 12は、第 1電極 4と電荷注入抑制層 5との合計厚 さ T2とほぼ同じ厚さで形成され得る。これらのいずれの形態でも、第 1電極 4のエツヂ 部 4aは、電荷注入層 12に接することができる。
また、例えば、図 3Cに示すように、電荷注入層 12が第 1電極 4の厚さ T1とほぼ同じ 厚さで形成されると共に、当該電荷注入層 12上に形成される発光層 11が電荷注入 抑制層 5とほぼ同じ厚さに形成され得る(図 3Cにおいて発光層の膜厚が「最大で」電 荷注入抑制層 5とほぼ同じ膜厚になり得ることを意味しており、電荷注入抑制層 5の 膜厚よりも薄くても構わない)。図 3Cの実施の形態の有機発光トランジスタ素子 20C でも、第 1電極 4のエツヂ部 4aは電荷注入層 12に接することができる。一方、図 3Cの 実施の形態の有機発光トランジスタ素子 20Cでは、第 1電極 4と電荷注入抑制層 5と 力 なる積層構造体 8同士の間に発光層 11が形成されて、マトリクス状の素子化が 可能である。
また、有機層 6の積層形態については、例えば、図 1乃至図 3Cに示すように、絶縁 膜 3の上面に電荷注入層 12と発光層 11とが当該順に形成された 2層構造や、図 4及 び図 5に示すように、絶縁膜 3の上面に第 2電荷注入層 12,と電荷注入層 12と発光 層 11とが当該順に形成された 3層構造や、図 6に示すように、絶縁層 3の上面に電荷 注入層 12と発光層 11と電荷注入層 14とが当該順に形成された 3層構造や、図 7〖こ 示すように、絶縁層 3側から電荷注入層 12と電荷輸送層 13と発光層 11とが当該順 に形成された 3層構造等を例示できる。なお、有機層 6の構成はこれらに限定されず 、さらに必要に応じて、電荷輸送層等が設けられてもよい。更には、発光層 11中に電 荷注入層材料や電荷輸送層材料を含有させて電荷注入層や電荷輸送層と同様の 機能を持たせた単層構造力 なるものも採用され得る。
前述のように、図 4及び図 5の各実施の形態では、絶縁膜 3の上面に、電荷注入層 12'と電荷注入層 12と発光層 11とが当該順で形成されている。すなわち、これらの 実施の形態の有機発光トランジスタ素子 30, 40では、図 1乃至図 3に示された絶縁 膜 3と第 1電極 4及び電荷注入層 12との間に、電荷注入層 12と同じ材料又は異なる 材料カゝらなる電荷注入層 12'が設けられている。このような有機発光トランジスタ素子 30, 40においては、電荷注入層 12'が更に設けられていることにより、第 1電極 4の 絶縁膜 3側の面でも電荷を発生させることができる。その発生電荷も、補助電極 2と第 1電極 4との間に印加される電圧により制御される。従って、第 1電極 第 2電極間に 流れる電流が制御されて、結果として発光量が制御され得る。
各実施の形態の有機発光トランジスタ素子は、トップェミッション型の発光トランジス タ素子であってもよ 、し、ボトムェミッション型の発光トランジスタ素子であってもよ!/、。 Vヽずれの形態を採用するかに依存して、構成される各層の光透過性が設計される。 なお、有機発光トランジスタ素子の各断面図は、有機発光トランジスタの一画素(ーピ クセル)に対応している。したがって、当該画素毎に所定の発光色を発光する発光層 を形成すれば、カラーディスプレイ等の発光表示装置を形成することもできる。
また、図 8に示すように、本発明の特徴を有機トランジスタ素子に適用することも可 能である。図 8の有機トランジスタ素子 70では、第 2電極 7に対向する第 1電極 4の上 面に第 1電極 4よりも平面視で大きな電荷注入抑制層 5が形成されている。これにより 、有機半導体層 15 (例えば電荷注入層または電荷輸送層)に流れる電荷量を抑制( 制御)することができる。(第 1電極 4の上面力 第 2電極 7へ直接向力 電荷の流れを 抑制することで、有機トランジスタ素子の制御性を向上させている。 )
<有機発光トランジスタ素子の構成 >
以下に、各実施の形態の有機発光トランジスタ素子を構成する層及び電極につい て説明する。
基板 1は、特に限定されるものではなぐ積層される各層の材質等によって適宜に 決めることができる。例えば、 A1等の金属、ガラス、石英又は榭脂等の各種の材料か ら選択され得る。光を基板側から出射させるボトムェミッション構造の有機発光トラン ジスタ素子の場合には、透明又は半透明になる材料で基板が形成されることが好ま しい。一方、光を第 2電極 7側から出射させるトップェミッション構造の有機発光トラン ジスタ素子の場合には、必ずしも透明又は半透明になる材料を用いる必要はな 、。 すなわち、不透明材料で基板 1を形成してもよい。
[0039] 特に好ましくは、有機 EL素子の基板として一般的に用いられている各種のものを 用いることができる。例えば、用途に応じて、フレキシブルな材質や硬質な材質等か らなるものが選択され得る。具体的には、例えば、ガラス、石英、ポリエチレン、ポリプ ロピレン、ポリエチレンテレフタレート、ポリメタタリレート、ポリメチノレメタタリレート、ポリ メチルアタリレート、ポリエステル、ポリカーボネート等の材質力もなる基板を挙げるこ とがでさる。
[0040] 基板 1の形状としては、枚葉状でも連続状 (フィルムや SUS (薄板状のもの)のロー ル状など)でもよい。具体的な形状としては、例えばカード状、フィルム状、ディスク状 、チップ状等を挙げることができる。
[0041] 電極としては、補助電極 2、第 1電極 4及び第 2電極 7が設けられて!/、る。これら各電 極の材料としては、金属、導電性酸化物、導電性高分子等が用いられ得る。
[0042] 第 1電極 4は、絶縁膜 3の上面側に所定の大きさで局所的に設けられる。所定の大 きさは、特に限定されないが、例えば図 11を参照して後述するように、ライン幅が 1〜 500 μ m程度でラインピッチが 1〜500 μ m程度の櫛形の第 1電極 4 (図 11では、積 層構造体 8として示されている)や、例えば図 12を参照して後述するように、格子幅 力^〜 500 μ m程度で格子ピッチが 1〜 500 μ m程度の格子形の第 1電極 4 (図 12で は、 X方向の積層構造体 8xと Y方向の積層構造体 8yとして示されている)を、例とし て挙げることができる。なお、第 1電極 4の形状は、櫛形や格子状に限定されず、菱 形や円形等の各種の形状で形成されてよい。その線幅やピッチについても、特に限 定されない。また、各線幅やピッチは、それぞれ同じ幅でなくてもよい。 補助電極 2の形成材料としては、例えば、 ITO (インジウム錫オキサイド)、酸化イン ジゥム、 IZO (インジウム亜鉛オキサイド)、 SnO 、 ZnO等の透明導電膜、金、クロム
2
のような仕事関数の大きな金属、銀、アルミの一般的な金属、ポリア-リン、ポリアセ チレン、ポリアルキルチオフェン誘導体、ポリシラン誘導体のような導電性高分子等を 挙げることができる。補助電極 2は、基板 1の上面側に設けられる。基板 1と補助電極 2との間にノリア層や平滑層等が設けられて ヽてもよ ヽ。
第 1電極 4または第 2電極 7を陰極として構成する場合の形成材料としては、アルミ 、銀等の単体金属、 MgAg等のマグネシウム合金、 AlLi、 AlCa、 AlMg等のアルミ- ゥム合金、 Li、 Caをはじめとするアルカリ金属類、 LiF等のアルカリ金属類の合金、の ような仕事関数の小さな金属等を挙げることができる。
一方、第 1電極 4または第 2電極 7を陽極として構成する場合の形成材料としては、 当該陽極と接する有機層 (電荷注入層または発光層)の構成材料とォーミック接触を 形成する金属であって補助電極 2や前記陰極に用いられる電極材料と同様の電極 材料を挙げることができる。好ましくは、金、クロムのような仕事関数の大きな金属材 料や、 ITO (インジウム錫オキサイド)、酸化インジウム、 IZO (インジウム亜鉛ォキサイ ド)、 SnO 、 ZnO等の透明導電膜、ポリア-リン、ポリアセチレン、ポリアルキルチオ
2
フェン誘導体、ポリシラン誘導体のような導電性高分子が挙げられる。 補助電極 2、 第 1電極 4及び第 2電極 7は、それぞれ、前記の電極材料で形成された単層構造の 電極であってもよ 、し、複数の電極材料力も形成された積層構造の電極であってもよ い。また、各電極の厚さは、特に限定されないが、通常は 10〜: LOOOnmの範囲内で ある。
有機発光トランジスタ素子がボトムェミッション構造である場合には、発光層 11より も下側に位置する電極は、透明又は半透明になっていることが好ましい。一方、トツ プェミッション構造である場合には、発光層 11よりも上側に位置する電極は、透明又 は半透明になっていることが好ましい。透明な電極材料としては、上記した透明導電 膜、金属薄膜、導電性高分子膜を用いることができる。なお、下側、上側とは、本発 明で示す図を平面視したときの形態について、その上下方向における下側、上側を 意味している。 上記の各電極は、真空蒸着、スパッタリング、 CVD等の真空プロセス又は塗布によ り形成される。各電極の厚み (膜厚)は、使用される材料等によっても異なるが、例え ば ΙΟηπ!〜 lOOOnm程度であることが好ましい。なお、発光層 11や電荷注入層 12 等の有機層上に電極が成膜される場合には、電極成膜時に当該有機層に与えられ るダメージを軽減するため、当該有機層上に保護層(図示しない)が設けられてもよ い。保護層は、電極力 Sスパッタリング法等で有機層上に成膜される場合において、電 極形成前に予め設けられるものであり、例えば、 Au、 Ag、 A1等の半透明膜や ZnS、 ZnSe等の無機半導体膜等の蒸着膜又はスパッタ膜のように、その成膜時に有機層 にダメージを与え難いものが成膜されることが好ましい。保護層の厚みとしては、 1〜 500nm程度の厚さで成膜されることが好ま 、。
絶縁膜 3は、補助電極 2上に設けられる。絶縁膜 3は、 SiO 、SiNx、Al O 等の
2 2 3 無機材料や、ポリクロロピレン、ポリエチレンテレフタレート、ポリオキシメチレン、ポリビ -ルクロライド、ポリフッ化ビ-リデン、シァノエチルプルラン、ポリメチルメタタリレート 、ポリビュルフエノール、ポリサルホン、ポリカーボネート、ポリイミド等の有機材料や、 一般的に使用されている市販のレジスト材料で形成され得る。絶縁膜 3は、上記の各 材料で形成された単層構造の絶縁膜であってもよ 、し、複数の材料で形成された積 層構造の絶縁膜であってもよ 、。
特に、本発明においては、製造コストや製造容易性の観点から、一般的に使用され ているレジスト材料を好ましく用いることができる。そして、スクリーン印刷法、スピンコ ート法、キャスト法、引き上げ法、転写法、インクジェット法、フォトリソグラフ法等により 、所定のパターンが形成され得る。なお、上記の無機材料カゝらなる絶縁膜 3について は、 CVD法等の既存のパターンプロセスを用いて形成できる。絶縁膜 3の厚さは、薄 いほど好ましいが、薄すぎると補助電極 2と第 1電極 4との間の漏れ電流が大きくなり 易いので、通常、 0. 001〜5. 0 m程度であることが好ましい。
なお、有機発光トランジスタ素子がボトムェミッション構造である場合には、絶縁層 3 は発光層 11よりも下側に位置する。従って、絶縁層 3は透明又は半透明になってい ることが好ましい。一方、トップェミッション構造である場合には、絶縁層 3は透明又は 半透明である必要はない。 電荷注入抑制層 5は、第 1電極 4上に第 1電極 4力 はみ出すような大きさで (平面 視でより大きな形状で)設けられて、第 2電極 7に対向する第 1電極 4の上面にて発生 して第 2電極 7に向力う電荷 (正孔又は電子。以下同じ。)の流れを抑制するように作 用する。本発明では、電荷注入抑制層 5が第 2電極 7の対向面である第 1電極 4の上 面により大きな形状で設けられているので、第 1電極 4で発生する電荷 (電荷の流れ) は、主として、電荷注入抑制層 5が設けられていない小面積のエツヂ部 4aにて発生 する。第 1電極 4のエツヂ部 4aでの電荷 (電荷の流れ)発生量は、補助電極 2と第 1電 極 4との間に印加されるゲート電圧 VGで制御される。また、エツヂ部 4aで発生した電 荷 (電荷の流れ)は、第 1電極 4と第 2電極 7との間に印加されたドレイン電圧 VDによ つて第 2電極 7に向かう。従って、補助電極 2と第 1電極 4との間に印加されるゲート電 圧 VGを制御することにより、第 1電極 4と第 2電極 7との間に流れる電流が制御され得 る。これにより、発光量が制御され得る。 電荷注入抑制層 5は、上記作用を奏する限 りにおいて、各種の材料で形成することができる。電荷注入抑制層 5としては、絶縁 性の無機膜や有機膜を例示できる。例えば、 SiO 、SiNx、Al O 等の無機絶縁
2 2 3
材料で形成されたものであってもよいし、一般的な有機絶縁材料、例えば、ポリクロ口 ピレン、ポリエチレンテレフタレート、ポリオキシメチレン、ポリビュルクロライド、ポリフッ 化ビ-リデン、シァノエチルプルラン、ポリメチルメタタリレート、ポリビュルフエノール、 ポリサルホン、ポリカーボネート、ポリイミド等の有機絶縁材料で形成されたものであつ てもよい。また、電荷注入抑制層 5は、上記の各材料で形成された単層構造の電荷 注入抑制層であってもよ!、し、複数の材料で形成された積層構造の電荷注入抑制 層であってもよい。電荷注入抑制層 5は、真空蒸着、スパッタリング、 CVD等の真空 プロセス又は塗布により形成される。その膜厚は、使用される材料等によっても異な る力 例えば 0. 001 μ m〜10 μ m程度であることが好ましい。
本発明における電荷注入抑制層 5は、入手が容易で、成膜が容易で、精度のよい パター-ングが容易であるような絶縁材料力もなることが好ましい。特に、レジスト膜を 用いることが好ましい。レジスト膜であれば、ポジ型でもネガ型でもよい。電荷注入抑 制層 5の形成材料としてレジスト膜を用いる場合には、所定寸法 (厚さ、大きさ)に容 易且つ精度よく電荷注入抑制層 5を形成できるという利点がある。 電荷注入抑制層 5は、少なくとも部分的に、第 2電極 7に対向する第 1電極 4上面に 当該第 1電極 4よりも大きな形状で設けられる。ここで、第 1電極 4のエツヂ部 4aは、電 荷注入層 12に接するように構成される。このような電荷注入抑制層 5を形成すること により、第 2電極 7に対向する第 1電極 4上面では電荷 (電荷の流れ)は発生せず、小 面積のエツヂ部 4aで電荷 (電荷の流れ)が発生する。その結果、補助電極 2と第 1電 極 4との間に印加される電圧 (ゲート電圧)を制御することにより、発生電荷量 (正孔発 生量)を鋭敏に変化させることができる。これにより、第 1電極 第 2電極間に流れる 電流を制御することができ、発光量を制御することができる。
有機層 6は、上述したように、少なくとも電荷注入層 12と発光層 11とを有する。必要 に応じて、電荷輸送層等が加えられ得る。あるいは、有機層 6は、電荷注入物質を含 む発光層 11を有する。有機層 6は、これらの条件を満たすものであれば、特に限定さ れず、上述した各種の形態が採用され得る。有機層 6を構成する各層は、素子の構 成や構成材料の種類等に応じて、適切な厚さ(例えば 0. Inn!〜 1 μ mの範囲内)に 形成される。なお、有機層を構成する各層の厚さが厚すぎる場合には、一定の光出 力を得るために大きな印加電圧が必要になって、発光効率が悪くなることがある。一 方、有機層を構成する各層の厚さが薄すぎる場合には、ピンホール等が発生して、 電界を印加しても十分な輝度が得られないことがある。
発光層 11の形成材料としては、有機 EL素子の発光層として一般的に用いられて いる材料であれば特に限定されない。例えば、色素系発光材料、金属錯体系発光 材料、高分子系発光材料等を挙げることができる。
色素系発光材料としては、例えば、シクロペンタジェン誘導体、テトラフエニルブタ ジェン誘導体、トリフエ-ルァミン誘導体、ォキサジァゾール誘導体、ピラゾ口キノリン 誘導体、ジスチリルベンゼン誘導体、ジスチリルァリーレン誘導体、シロール誘導体、 チォフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチ ォフェン誘導体、トリフマニルァミン誘導体、ォキサジァゾールダイマー、ピラゾリンダ イマ一等を挙げることができる。また、金属錯体系発光材料としては、例えば、アルミ キノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾォキサゾール亜鉛錯体、 ベンゾチアゾール亜鉛錯体、ァゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、ユーロピ ゥム錯体等を挙げることができる。金属錯体系発光材料としては、その他、中心金属 として Al、 Zn、 Be等、または Tb、 Eu、 Dy等の希土類金属を有し、配位子としてォキ サジァゾール、チアジアゾール、フエニルピリジン、フエ-ルペンゾイミダゾール、キノ リン構造等を有する金属錯体等を挙げることができる。また、高分子系発光材料とし ては、例えば、ポリパラフエ-レンビ-レン誘導体、ポリチォフェン誘導体、ポリパラフ ェ-レン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリビュル力ルバゾール 、ポリフルォレノン誘導体、ポリフルオレン誘導体、ポリキノキサリン誘導体、及びそれ らの共重合体等を挙げることができる。
発光層 11中には、発光効率の向上や発光波長を変化させる等の目的で、ドーピン グ剤等の添加剤を添加するようにしてもよい。ドーピング剤としては、例えば、ペリレン 誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクァリウム誘導体、 ポルフィリン誘導体、スチリル色素、テトラセン誘導体、ピラゾリン誘導体、デカシタレ ン、フ ノキサゾン、キノキサリン誘導体、力ルバゾール誘導体、フルオレン誘導体等 を挙げることができる。
電荷注入層 12の形成材料としては、例えば、発光層 11の発光材料として例示した 化合物を挙げることができる。その他、フエ-ルァミン系、スターバースト型ァミン系、 フタロシアニン系、ポリアセン系、酸化バナジウム、酸化モリブデン、酸化ルテニウム、 酸化アルミニウムなどの酸化物、アモルファスカーボン、ポリア-リン、ポリチォフェン などの誘導体等を挙げることができる。特には、電荷注入層 12の形成材料は、流動 性のある塗布型材料であることが好ましい。流動性のある塗布型材料としては、高分 子材料、低分子材料、デンドリマー等、塗布することができる材料であれば特に限定 されないが、成膜時において、電荷注入抑制層 5のエツヂ部よりも内側に位置する第 1電極 4のエッジ部 4aにまで容易に至る材料であることが好ま 、。(その結果として 、第 1電極 4のエツヂ部 4aで発生した電荷が当該エツヂ部 4aに接する電荷注入層 12 に効率的に注入され得る。 )
また、第 2電極 7の発光層 11側には、第 2電極用の電荷注入層 14 (図 6参照)が設 けられてもよい。例えば、第 2電極 7を陰極とした場合における電荷 (電子)注入層 14 の形成材料としては、発光層 11の発光材料として例示した化合物の他、アルミニウム 、フッ化リチウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、フッ化スト口 ンチウム、フッ化カルシウム、フッ化バリウム、酸化アルミニウム、酸化ストロンチウム、 カルシウム、ポリメチルメタタリレートポリスチレンスルホン酸ナトリウム、リチウム、セシ ゥム、フッ化セシウム等のアルカリ金属類、アルカリ金属類のハロゲン化物、アルカリ 金属の有機錯体等を挙げることができる。
第 1電極 4を陽極とした場合における電荷 (正孔)輸送層 13 (図 7参照)の形成材料 としては、フタロシアニン、ナフタロシアニン、ポリフィリン、ォキサジァゾール、トリフエ -ルァミン、トリァゾール、イミダゾール、イミダゾロン、ピラゾリン、テトラヒドロイミダゾー ル、ヒドラゾン、スチルベン、ペンタセン、ポリチォフェン、ブタジエン、これらの誘導体 等、正孔輸送材料として通常使用されるものを用いることができる。また、電荷輸送層 13の形成材料として巿販されている、例えばポリ(3、 4)エチレンジォキシチォフェン Zポリスチレンスルホネート(略称 PEDOTZPSS、バイエル社製、商品名; Baytron
P AI4083、水溶液として巿販。)等も使用することができる。電荷輸送層 13は、こ うした化合物を含有した電荷輸送層形成用塗液を用いて形成される。なお、これらの 電荷輸送材料は、上記の発光層 11内に混ぜてもよいし、上記の電荷注入層 12内に 混ぜてもよい。
また、図示していないが、電荷輸送層を発光層 11の第 2電極 7側に設けてもよい。 例えば、第 2電極 7を陰極とした場合における当該電荷 (電子)輸送層の形成材料と しては、アントラキノジメタン、フルォレニリデンメタン、テトラシァノエチレン、フルォレ ノン、ジフエノキノンォキサジァゾール、アントロン、チォピランジオキシド、ジフエノキノ ン、ベンゾキノン、マロノ-トリル、 -ジトロベンゼン、ニトロアントラキノン、無水マレイン 酸、ペリレンテトラカルボン酸、これらの誘導体等、電子輸送材料として通常使用され るものを用いることができる。当該電荷 (電子)輸送層は、こうした化合物を含有した電 荷輸送層形成用塗液を用いて形成される。なお、これらの電荷輸送材料は、上記の 発光層 11内に混ぜてもよ!ヽし、上記の電子注入層 12内に混ぜてもょ ヽ。
なお、上述した発光層 11、電荷注入層 12、電荷輸送層 13等カゝらなる有機層中に は、必要に応じて、オリゴマー材料又はデンドリマー材料等の発光材料若しくは電荷 輸送注入材料が含有され得る。また、有機層を構成する各層は、真空蒸着法によつ て成膜されるか、あるいは、それぞれの形成材料がトルエン、クロ口ホルム、ジクロロメ タン、テトラヒドロフラン、ジォキサン等の溶媒に溶解又は分散されて塗布液が調整さ れ、その塗布液が塗布装置等を用いて塗布又は印刷等されることによって形成され る。
有機層 6は、上述したように、各種の積層態様に応じて、発光層形成材料、電荷注 入層形成材料、電荷輸送層形成材料等によって形成される。ここで、有機層 6は、隔 壁 (不図示)によって区分けされて、所定の位置毎に形成される。隔壁 (不図示)は、 有機発光トランジスタの平面において、発光色毎に区分けされた領域を形成する。隔 壁の材料としては、従来より隔壁材料として使用されている各種の材料、例えば、感 光性榭脂、活性エネルギー線硬化性榭脂、熱硬化性榭脂、熱可塑性榭脂等が用い られ得る。隔壁の形成手段としては、採用される隔壁材料に適した手段が採用される 。例えば、隔壁は、厚膜印刷法や、感光性レジストを用いたパターニングによって、形 成され得る。
図 3Cに示す実施の形態では、電荷注入抑制層 5を第 2電極 7に接触するように厚 くした構成が採用されている。この場合には、第 1電極 4と電荷注入抑制層 5とからな る積層構造体が隔壁として作用する。それ以外の実施の形態においては、第 1電極 4と電荷注入抑制層 5とからなる積層構造体において、例えば図 3Aに示すように、電 荷注入抑制層 5の厚さが薄く形成されている。従って、隔壁 (不図示)で囲まれた範 囲毎に各色の有機 EL発光層を設けることによって、発光部が形成される。また、図 3 Cの構成で囲まれた箇所の内側に図 3Aの構成を配置することも可能である。その場 合も、図 3Cの積層構造体 8'が隔壁として作用する一方、他の隔壁 (不図示)で囲ま れた範囲毎に各色の有機 EL発光層を設けることによって発光部が形成される。
[0046] <有機発光トランジスタ素子の製造方法 >
次に、本発明に係る有機発光トランジスタ素子の製造方法の実施の形態について 説明する。図 9A乃至図 9Fは、本発明の一実施の形態に係る有機発光トランジスタ 素子の製造方法を示す工程図である。
[0047] 本実施の形態の有機発光トランジスタ素子の製造方法は、補助電極 2と絶縁膜 3と 力当該順に形成された基板 1を準備する工程 (図 9A参照)と、絶縁膜 3上に局所的 に所定の大きさよりも平面視で大きな形状で第 1電極 4'を設ける工程 (図 9B参照)と 、第 1電極 4'上に所定の大きさの (第 1電極 4の所定の大きさよりも平面視で大きな形 状の)電荷注入抑制層 5を設ける工程(図 9C乃至図 9D参照)と、第 1電極 4のエッジ 部 4aが電荷注入抑制層 5のエッジ部よりも内側に位置するようになるまで前記第 1電 極 4,のエッジ部をエッチングして第 1電極 4を所定の大きさにする工程(図 9E参照)と 、第 1電極 4または電荷注入抑制層 5が存在しな 、絶縁膜 3上に塗布型の電荷注入 材料を塗布して電荷注入層 12を設けると共に電荷注入抑制層 5上にも電荷注入層 1 2を設ける工程 (図 9F参照)と、電荷注入層 12上に発光層 11を設ける工程 (図 9F参 照)と、発光層 11上に第 2電極層 7を設ける工程 (図 9F参照)と、を少なくとも有して いる。
本実施の形態の製造方法によれば、第 1電極 4のエツヂ部 4aが電荷注入抑制層 5 のエツヂ部よりも内側に位置するという形態が、所定の大きさからなる電荷注入抑制 層 5を形成した後に、層状の第 1電極 4,をオーバーエッチングすることによって形成( 実現)される。そして、第 1電極 4が設けられていない(存在していない)絶縁膜 3上に 、塗布型の電荷注入材料が塗布されて、電荷注入層 12が形成される。本実施の形 態の製造方法によれば、第 1電極 4のエツヂ部 4aが電荷注入抑制層 5のエツヂ部より も内側に位置するという形態 (第 1電極 4上に当該第 1電極 4よりも平面視で大きな形 状力もなる電荷注入抑制層 5が設けられた形態の一つ)を、容易に実現することがで きる。特に、電荷注入抑制層 5のエツヂ部よりも内側に位置する絶縁膜 3上の空間に 、流動性を有した塗布型の電荷注入材料が容易に充填され得る、ということが注目さ れるべきである。
[0048] なお、塗布型の電荷注入材料は、インクジェット法等の塗布法によって塗布すること ができる。このため、従来の低分子の電荷注入材料の場合に行われる蒸着法に比べ て、電荷注入層 12を容易且つ低コストで形成できる。また、層状の第 1電極 4,のォ 一バーエッチングは、第 1電極 4の材質に対応したエッチング液 (ウエットプロセス)又 はエッチングガス(ドライプロセス)を用いて行われ得る。
[0049] また、上記の各工程のうち、図 9Bに示す第 1電極 4 '上に電荷注入抑制層 5を形成 する工程では、電荷注入抑制層 5の形成材料として、上述したような各種の形成材料 を好ましく用いることができる。例えば、電荷注入抑制層 5の形成材料として、感光性 レジストも用いられ得る。この場合、通常の露光、現像等により、所定の大きさの電荷 注入抑制層 5を容易且つ精度よく形成できる。
[0050] 図 9A乃至図 9Fは、図 1に示された有機発光トランジスタ素子 10の製造方法に対 応しているが、図 3A乃至図 3Cに示された有機発光トランジスタ素子についても同様 に製造することができる。
[0051] 図 3Aに示された有機発光トランジスタ素子 20Aを製造する際には、電荷注入層 12 力 その厚さ T3が第 1電極 4の厚さ T1以上であって且つ第 1電極 4の厚さ T1と略同 じ、になるように形成される。その後は、電荷注入層 12上及び電荷注入抑制層 5上を 一様に覆うように発光層 11が形成される。
[0052] また、図 3Bに示された有機発光トランジスタ素子 20Bを製造する際には、電荷注入 層 12が、その厚さ T3が第 1電極 4と電荷注入抑制層 5との合計厚さ T2と略同じ、に なるように形成される。その後、電荷注入層 12上及び電荷注入抑制層 5上を一様に 覆うように発光層 11が形成される。
[0053] また、図 3Cに示された有機発光トランジスタ素子 20Cを製造する際には、電荷注 入層 12が、その厚さ T3が第 1電極 4の厚さ T1と略同じ、になるように形成される。そ の後、発光層 11が、電荷注入層 12と発光層 11との合計厚さが第 1電極 4と電荷注入 抑制層 5との合計厚さを超えず且つ略同じになるまで形成される。
図 3A乃至図 3Cに示された有機発光トランジスタ素子を製造する方法においては、 電荷注入材料と発光層形成材料との両方を、インクジェット法等の塗布法によって形 成することが生産性の点で好ましい。このような方法により、電荷注入層 12が隣り合う 第 1電極 4, 4の間に形成され得て、素子化が可能となる。更には、例えば図 3Cに示 すように、第 1電極 4と電荷注入抑制層 5とからなる隣り合う積層構造体同士の間に発 光層を形成して、マトリクス状に素子化することも可能になる。
図 10A乃至図 10Fは、図 4に示された有機発光トランジスタ素子の製造方法の一 例を示す工程図である。この製造方法においては、図 10A乃至図 10Fに示すように 、補助電極 2と絶縁膜 3とが当該順に形成された基板 1を準備する工程 (図 10A参照 )と、絶縁膜 3上に電荷注入層 12'を設ける工程 (図 10B参照)と、絶縁膜 3の上面側 の電荷注入層 12'上に局所的に所定の大きさからなる第 1電極 4を設ける工程(図 1 OB参照)と、第 1電極 4が設けられていない絶縁膜 3上に電荷注入層 12を設けるェ 程(図 10C参照)と、第 1電極 4の全上面上及び電荷注入層 12の端部上面上に第 1 電極 4よりも平面視で大きな形状カゝらなる電荷注入抑制層 5を設ける工程(図 10D乃 至図 10E参照)と、電荷注入抑制層 5が設けられていない電荷注入層 12上に更に電 荷注入層 12"を設けると共に電荷注入抑制層 5上にも電荷注入層 12"を設ける工程 (図 10F参照)と、電荷注入層 12"上に発光層 11を設ける工程と、発光層の 11上に 第 2電極層 7を設ける工程と、を少なくとも有している。
絶縁膜 3上に設けられる電荷注入層 12'は、電荷注入層 12と同じ材料であってもよ いし、異なる材料であってもよい。また、電荷注入層 12"についても、電荷注入層 12 と同じ材料であってもよいし、異なる材料であってもよい。単一の電荷注入層は、通 常は単一の材料で形成されるが、異なる材料が積層されたものであってもよ!、。
[0054] 図 10A乃至図 10Fに示された製造方法によれば、第 1電極 4のエツヂ部 4aが電荷 注入抑制層 5のエツヂ部よりも内側に位置するという形態が、所定形状に形成された 第 1電極 4間に電荷注入層 12を設けた後に第 1電極 4上及び電荷注入層 12の端部 上に当該第 1電極 4よりも平面視で大きな形状の電荷注入抑制層 5を設けることによ つて、形成(実現)される。なお、図 10A乃至図 10Fに示された製造方法においても 、電荷注入材料は流動性のある塗布型材料であることが好まし 、。
[0055] なお、図 5乃至図 7の有機発光トランジスタ素子及び図 8の有機トランジスタ素子も、 上記と略同様の工程を経て製造することができる。
[0056] <有機発光トランジスタ及び発光表示装置 >
次に、本発明の有機発光トランジスタ及び発光表示装置の実施の形態について説 明する力 本発明は以下の説明によって限定されない。
[0057] 本実施の形態の有機発光トランジスタは、有機発光トランジスタ素子がシート状基 板の上にマトリクス配置されたものである。本実施の形態の有機発光トランジスタは、 有機発光トランジスタ素子と、当該有機発光トランジスタ素子の第 1電極 4と第 2電極 7 との間に一定電圧 (ドレイン電圧 V )を印加する第 1電圧供給手段と、当該有機発光
D
トランジスタ素子の第 1電極 4と補助電極 2との間に可変電圧 (ゲート電圧 V )を印カロ する第 2電圧供給手段と、を備えている。
図 11及び図 12は、本実施の形態の有機発光トランジスタに含まれる有機発光トラ ンジスタ素子の電極配置の例を示す平面図である。図 11は、第 1電極 4と電荷注入 抑制層 5とからなる積層構造体 8を櫛形に形成した場合の配置図であり、図 12は、当 該積層構造体を格子状に形成した場合の配置図である。図 11に示す電極配置は、 平面視で上下方向に延びる補助電極 2と、当該補助電極 2に直交するように一方の 側から延びる櫛形の積層構造体 8 (第 1電極 4)と、補助電極 2に直交すると共に積層 構造体 8と重なるように他方の側から延びる第 2電極 7と、カゝら構成されている。図 12 に示す電極配置では、図 11の櫛形の積層構造体 8に替えて、格子を構成する X方 向の積層構造体 8xと Y方向の積層構造体 8yとが設けられている。なお、図 11及び 図 12の配置は、いずれも一例である。
また、本実施の形態の発光表示装置では、複数の発光部がマトリクス状に配置され ている。その複数の発光部の各々が、本発明の特徴を有する有機発光トランジスタ 素子を有している。
図 13は、本発明の一実施の形態に係る有機発光トランジスタ素子を内蔵した発光 表示装置の一例を示す概略図である。図 14は、発光表示装置内の各画素(単位素 子)として設けられた、本発明の一実施の形態に係る有機発光トランジスタ素子を有 する有機発光トランジスタの一例を示す回路概略図である。ここで説明される発光表 示装置は、各画素(単位素子) 180が 1つのスイッチングトランジスタを有する例であ る。
図 13及び図 14に示される各画素 180は、縦横に配列された第一スイッチング配線 187及び第二スイッチング配線 188に接続されて 、る。第一スイッチング配線 187及 び第二スイッチング配線 188は、図 13に示すように、電圧制御回路 164に接続され ている。電圧制御回路 164は、画像信号供給源 163に接続されている。その他、図 1 3及び図 14において、符号 186はグランド配線であり、符号 189は定電圧印加線で ある。
図 14に示すように、第一スイッチングトランジスタ 183のソース 193aは、第ニスイツ チング配線 188に接続され、第一スイッチングトランジスタ 183のゲート 194aは、第 一スイッチング配線 187に接続され、第一スイッチングトランジスタ 183のドレイン 195 aは、有機発光トランジスタ 140の補助電極 2及び電圧保持用コンデンサ 185の一方 の端子に接続されている。電圧保持用コンデンサ 185の他方の端子は、グランド 186 に接続されている。有機発光トランジスタ 140の第 2電極 7も、グランド 186に接続さ れている。有機発光トランジスタ 140の第 1電極 4は、定電圧印加線 189に接続され ている。
次に、図 14に示された回路の動作について説明する。第一スイッチング配線 187 に電圧が印加されると、第一スイッチングトランジスタ 183のゲート 194aに電圧が印 加される。これにより、ソース 193aとドレイン 195aとの間に導通が生じる。この状態に おいて、第二スイッチング配線 188に電圧が印加されると、ドレイン 195aに電圧が印 加され、電圧保持用コンデンサ 185に電荷が貯えられる。これにより、第一スィッチン グ配線 187または第二スイッチング配線 188に印加される電圧がオフにされても、有 機発光トランジスタ 140の補助電極 2には、電圧保持用コンデンサ 185に貯えられた 電荷が消滅するまで電圧が印加され続ける。一方、有機発光トランジスタ 140の第 1 電極 4に電圧が印加されることにより、第 1電極 4と第 2電極 7との間が導通し、定電圧 供給線 189から有機発光トランジスタ 140を通過してグランド 186へと電流が流れ、 有機発光トランジスタ 140が発光する。
図 15は、発光表示装置内の各画素(単位素子)として設けられた、本発明の一実 施の形態に係る有機発光トランジスタ素子を有する有機発光トランジスタの他の例を 示す回路概略図である。ここで説明される発光表示装置は、各画素(単位素子) 181 力 S 2つのスイッチングトランジスタを有する例である。
図 15に示される各画素 181は、図 14の場合と同様、縦横に配列された第一スイツ チング配線 187及び第二スイッチング配線 188に接続されている。第一スイッチング 配線 187及び第二スイッチング配線 188は、図 13に示すように、電圧制御回路 164 に接続されている。電圧制御回路 164は、画像信号供給源 163に接続されている。 その他、図 15において、符号 186はグランド配線であり、符号 209は電流供給線で あり、符号 189は定電圧印加線である。
図 15に示すように、第一スイッチングトランジスタ 183のソース 193aは、第ニスイツ チング配線 188に接続され、第一スイッチングトランジスタ 183のゲート 194aは、第 一スイッチング配線 187に接続され、第一スイッチングトランジスタ 183のドレイン 195 aは、第二スイッチングトランジスタ 184のゲート 194b及び電圧保持用コンデンサ 18 5の一方の端子に接続されている。電圧保持用コンデンサ 185の他方の端子は、グ ランド 186に接続されている。第二スイッチングトランジスタ 184のソース 193bは、電 流源 209に接続され、第二スイッチングトランジスタ 184のドレイン 195bは、有機発 光トランジスタ 140の補助電極 2に接続されている。有機発光トランジスタ 140の第 2 電極 7は、グランド 186に接続されている。有機発光トランジスタ 140の第 1電極 4は、 定電圧印加線 189に接続されている。
次に、図 15に示された回路の動作について説明する。第一スイッチング配線 187 に電圧が印加されると、第一スイッチングトランジスタ 183のゲート 194aに電圧が印 加される。これにより、ソース 193aとドレイン 195aとの間に導通が生じる。この状態に おいて、第二スイッチング配線 188に電圧が印加されると、ドレイン 195aに電圧が印 加され、電圧保持用コンデンサ 185に電荷が貯えられる。これにより、第一スィッチン グ配線 187または第二スイッチング配線 188に印加される電圧がオフにされても、第 二スイッチングトランジスタ 184のゲート 194bには、電圧保持用コンデンサ 185〖こ貯 えられた電荷が消滅するまで電圧が印加され続ける。第二トランジスタ 184のゲート 1 94bに電圧が印加されることにより、ソース 193bとドレイン 195bとの間が導通し、定 電圧供給線 189から有機発光トランジスタ 140を通過してグランド 186へと電流が流 れ、有機発光トランジスタ 140が発光する。
図 13に示された画像信号供給源 163には、画像情報を再生する装置や、入力さ れた電気磁気的な情報を電気信号に変換する装置が、内蔵されているか、あるいは 、接続されている。画像情報を再生する装置には、例えば、画像情報が記録された 画像情報メディアが内蔵されているカゝ、あるいは、接続されている。そして、画像信号 供給源 163は、画像情報を再生する装置や入力された電気磁気的な情報を電気信 号に変換する装置力ゝらの電気信号を、電圧制御装置 164が受け取れる電気信号形 態に変換して、電圧制御装置 164に送るようになつている。電圧制御装置 164は、画 像信号供給源 163からもたらされた電気信号を更に変換し、どの画素 180, 181をど れだけの時間発光させる力を計算し、第一スイッチング配線 187及び第二スィッチン グ配線 188に印加する電圧、時間、及びタイミングを決定する。これにより、発光表示 装置は、画像情報に基づいて、所望の画像を表示できるようになる。
[0061] なお、近接した微小画素ごとに、赤を基調にする色、緑を基調にする色、青を基調 にする色、の RGB三色を発光できるようにすれば、カラー表示の画像表示装置を得 ることがでさる。
[0062] <実施例 >
以下に、実施例を説明する。
[0063] (実施例 1)
厚さ lOOnmの ITO膜を補助電極 2として有するガラス基板 1上に、絶縁膜 3として、 PVP系のレジスト (東京応化工業株式会社製、商品名: TMR—P10)力 スピンコー ト法によって 300nmの厚さで成膜された。
[0064] 次に、真空蒸着法により、第 1電極 4 (陽極)としての Auがー様に成膜された (厚さ 3 0nm) oその後、前記と同じ PVP系のレジスト (東京応化工業株式会社製、商品名: T MR- P10)がスピンコート法によって塗布され、マスクを用いた露光、現像を行って 、幅 dlが 50 mで厚さ lOOnmという電荷(正孔)注入抑制層 5が形成された。そして 、エッチング液として金エッチング液(関東ィ匕学社製、 AURUM101)を用いて、第 1 電極 4のエツヂ部 4aが電荷注入抑制層 5のエツヂ部よりも内側に位置するように、第 1電極 4がオーバーエッチングされた。このとき、第 1電極 4の幅 d2は 44 mであり、 図 2に示す d3と d4は、 、ずれも 3 μ mであった。
[0065] その後、第 1電極 4が設けられていない絶縁膜 3上に、電荷注入材料であるポリ 3へ キシルチオフェン(アルドリッチ社製、商品名: Poly(3- hexylthiophene- 2,5- diyl)力 ィ ンクジェット法で塗布され、第 1電極 4と電荷注入抑制層 5との合計の厚さ以上である 150nmの厚さの電荷注入層 12が形成された。
[0066] その後、電荷注入層 12及び電荷注入抑制層 5を覆うようにして、電荷 (正孔)輸送 層 13として、 a— NPD (厚さ 40nm)が真空蒸着によって成膜された。さらに、発光 層 11としての Alq3 (厚さ 60nm) Z電子注入層 14としての LiF (厚さ lnm) Z第 2電 極 7としての A1 (厚さ lOOnm)力 当該順で真空蒸着によって積層された。これにより 、図 16に示すような実施例 1の有機発光トランジスタ素子が作製された。
(実施例 2)
絶縁膜 3上に層状の第 1電極 4がー様に形成される前に、電荷 (正孔)注入層 12 'と してペンタセン (厚さ 50nm)が真空蒸着法によって形成されたことの他は、実施例 1 と同様にして、図 17に示すような実施例 2の有機発光トランジスタ素子が作製された
(実施例 3)
厚さ lOOnmの ITO膜を補助電極 2として有するガラス基板 1上に、絶縁膜 3として、 PVP系のレジスト (東京応化工業株式会社製、商品名: TMR—P10)力 スピンコー ト法によって 300nmの厚さで成膜された。
[0067] 次に、マスクを用いた真空蒸着法により、幅 (11 = 100 /ζ πιの第 1電極 4 (陽極)とし ての Au (厚さ 30nm)が成膜された。その後、第 1電極 4が設けられていない絶縁膜 3 上に、高分子の電荷注入材料であるポリ 3へキシルチオフェン (アルドリッチ社製、商 品名: Poly(3- hexylthiophene- 2,5- diyl)がインクジェット法で塗布され、第 1電極 4の厚 さと同じ 30nmの厚さの電荷注入層 12が形成された。次に、第 1電極 4及び電荷注 入層 12上に、前記と同じ PVP系のレジスト (東京応化工業株式会社製、商品名: TM R- P10)がスピンコート法によって成膜された。そして、マスクを用いた露光、現像を 行って、幅 dlが 120 μ mで厚さ 50nmという電荷(正孔)注入抑制層 5が形成された。 このとき、図 2に示す d3と d4は、いずれも 10 /z mであった。その後、前記と同じ高分 子の電荷注入材料がさらに塗布されて、 lOOnmの厚さとなるように電荷注入層 12が 嵩増しされた (更に形成された)。
[0068] その後、電荷注入層 12及び電荷注入抑制層 5を覆うようにして、電荷 (正孔)輸送 層 13として、 a— NPD (厚さ 40nm)が真空蒸着によって成膜された。さらに、発光 層 11としての Alq3 (厚さ 60nm) Z電子注入層 14としての LiF (厚さ lnm) Z第 2電 極 7としての A1 (厚さ lOOnm)力 当該順で真空蒸着によって積層された。これにより 、実施例 3の有機発光トランジスタ素子が作製された。実施例 3の断面構成は、図 16 に示した実施例 1の断面構成に類似の構成である。
[0069] (実施例 4) 絶縁膜 3上に層状の第 1電極 4がー様に形成される前に、電荷 (正孔)注入層 12'と してペンタセン (厚さ 50nm)が真空蒸着法によって形成されたことの他は、実施例 3 と同様にして、実施例 4の有機発光トランジスタ素子が作製された。実施例 4の断面 構成は、図 17に示した実施例 2の断面構成に類似の構成である。
[0070] (実施例 5)
厚さ lOOnmの ITO膜を補助電極 2として有するガラス基板 1上に、絶縁膜 3として、 PVP系のレジスト (東京応化工業株式会社製、商品名: TMR—P10)力 スピンコー ト法によって 300nmの厚さで成膜された。
[0071] 次に、真空蒸着法により、第 1電極 4 (陽極)としての Auがー様に成膜された (厚さ 3 0nm) oその後、前記と同じ PVP系のレジスト (東京応化工業株式会社製、商品名: T MR-P10)がスピンコート法によって塗布され、マスクを用いた露光、現像を行って 、幅 dlが 50 mで厚さ lOOnmという電荷(正孔)注入抑制層 5が形成された。そして 、エッチング液として金エッチング液(関東ィ匕学社製、 AURUM101)を用いて、第 1 電極 4のエツヂ部 4aが電荷注入抑制層 5のエツヂ部よりも内側に位置するように、第 1電極 4がオーバーエッチングされた。このとき、第 1電極 4の幅 d2は 44 mであり、 図 2に示す d3と d4は、 、ずれも 3 μ mであった。
[0072] その後、第 1電極 4が設けられていない絶縁膜 3上に、有機半導体材料であるポリ 3 へキシルチオフェン(アルドリッチ社製、商品名: Poly(3- hexylthiophene- 2,5- diyl)力 インクジェット法で塗布され、第 1電極 4と電荷注入抑制層 5との合計の厚さ以上であ る 150nmの厚さの有機半導体層 15が形成された。
[0073] その後、第 2電極 7としての A1 (厚さ 70nm)が真空蒸着によって積層され、実施例 5 の有機トランジスタ素子が作製された。実施例 5の断面構成は、図 8の断面構成に類 似の構成である。

Claims

請求の範囲
[1] 基板と、
前記基板の上面側に設けられた補助電極層と、
前記補助電極層の上面側に設けられた絶縁膜と、
前記絶縁膜の上面側に局所的に所定の大きさで設けられた第 1電極と、 前記第 1電極の上面に当該第 1電極よりも平面視で大きな形状で設けられた電荷 注入抑制層と、
前記第 1電極または前記電荷注入抑制層が設けられていない前記絶縁膜の上面 側と前記電荷注入抑制層の上面に設けられた電荷注入層と、
前記電荷注入層の上面に設けられた発光層と、
前記発光層の上面側に設けられた第 2電極層と、
を備えたことを特徴とする有機発光トランジスタ素子。
[2] 基板と、
前記基板の上面側に設けられた補助電極層と、
前記補助電極層の上面側に設けられた絶縁膜と、
前記絶縁膜の上面側に局所的に所定の大きさで設けられた第 1電極と、 前記第 1電極の上面に当該第 1電極よりも平面視で大きな形状で設けられた電荷 注入抑制層と、
前記第 1電極または前記電荷注入抑制層が設けられていない前記絶縁膜の上面 側に設けられた電荷注入層と、
前記電荷注入抑制層の上面及び前記電荷注入層の上面に設けられた発光層と、 前記発光層の上面側に設けられた第 2電極層と、
を備えたことを特徴とする有機発光トランジスタ素子。
[3] 基板と、
前記基板の上面側に設けられた補助電極層と、
前記補助電極層の上面側に設けられた絶縁膜と、
前記絶縁膜の上面側に局所的に所定の大きさで設けられた第 1電極と、 前記第 1電極が設けられていない前記絶縁膜の上面側に設けられた電荷注入層と 前記第 1電極の全上面及び前記電荷注入層の一部上面に当該第 1電極よりも平面 視で大きな形状で設けられた電荷注入抑制層と、
前記電荷注入抑制層が設けられて ヽな 、前記電荷注入層の上面に設けられた発 光層と、
前記電荷注入抑制層の上面側及び前記発光層の上面側に設けられた第 2電極層 と、
を備えたことを特徴とする有機発光トランジスタ素子。
[4] 前記電荷注入層の厚さは、前記第 1電極の厚さよりも厚い
ことを特徴とする請求項 1または 2に記載の有機発光トランジスタ素子。
[5] 前記電荷注入層は、塗布型の電荷注入材料から形成されて 、る
ことを特徴とする請求項 1乃至 4のいずれかに記載の有機発光トランジスタ素子。
[6] 前記絶縁膜と前記第 1電極及び前記電荷注入層との間に、当該電荷注入層と同じ 材料又は異なる材料カゝらなる第 2電荷注入層が設けられている
ことを特徴とする請求項 1乃至 5のいずれかに記載の有機発光トランジスタ素子。
[7] 前記発光層と前記第 2電極層との間に、当該第 2電極層用の第 3電荷注入層が設 けられている
ことを特徴とする請求項 1乃至 6のいずれかに記載の有機発光トランジスタ素子。
[8] 前記発光層と前記第 3電荷注入層との間に、電荷輸送層が設けられている
ことを特徴とする請求項 1乃至 7のいずれかに記載の有機発光トランジスタ素子。
[9] 前記電荷注入抑制層は、絶縁材料によって構成されて ヽる
ことを特徴とする請求項 1乃至 8のいずれかに記載の有機発光トランジスタ素子。
[10] 前記第 1電極は陽極として機能し、前記第 2電極は陰極として機能する
ことを特徴とする請求項 1乃至 9のいずれかに記載の有機発光トランジスタ素子。
[11] 前記第 1電極は陰極として機能し、前記第 2電極は陽極として機能する
ことを特徴とする請求項 1乃至 9のいずれかに記載の有機発光トランジスタ素子。
[12] 請求項 1乃至 11のいずれかに記載の有機発光トランジスタ素子と、
前記有機発光トランジスタ素子の第 1電極と第 2電極との間に一定電圧を印加する 第 1電圧供給手段と、
前記有機発光トランジスタ素子の第 1電極と補助電極との間に可変電圧を印加する 第 2電圧供給手段と、
を備えことを特徴とする有機発光トランジスタ。
[13] マトリクス状に配置された複数の発光部を備えた発光表示装置であって、
前記複数の発光部の各々は、請求項 1乃至 11のいずれかに記載の有機発光トラ ンジスタ素子を有している
ことを特徴とする発光表示装置。
[14] 請求項 1に記載の有機発光トランジスタ素子を製造する方法であって、
上面に補助電極層と絶縁膜とが当該順に形成された基板を準備する工程と、 前記絶縁膜の上面側に局所的に所定の大きさよりも平面視で大きな形状で第 1電 極を設ける工程と、
前記第 1電極の上面に当該第 1電極の所定の大きさよりも平面視で大きな形状で 電荷注入抑制層を設ける工程と、
前記第 1電極のエッジ部が前記電荷注入抑制層のエッジ部よりも内側に位置する ようになるまで前記第 1電極のエッジ部をエッチングして前記第 1電極を所定の大きさ にする工程と、
前記エッチング工程の後で、前記第 1電極または電荷注入抑制層が存在しな 、前 記絶縁膜の上面側に塗布型の電荷注入材料を塗布して電荷注入層を設ける工程と 前記電荷注入抑制層の上面にも電荷注入層を設ける工程と、
前記電荷注入層の上面に発光層を設ける工程と、
当該発光層の上面側に第 2電極層を設ける工程と、
を備えたことを特徴とする有機発光トランジスタ素子の製造方法。
[15] 請求項 2に記載の有機発光トランジスタ素子を製造する方法であって、
上面に補助電極層と絶縁膜とが当該順に形成された基板を準備する工程と、 前記絶縁膜の上面側に局所的に所定の大きさよりも平面視で大きな形状で第 1電 極を設ける工程と、 前記第 1電極の上面に当該第 1電極の所定の大きさよりも平面視で大きな形状で 電荷注入抑制層を設ける工程と、
前記第 1電極のエッジ部が前記電荷注入抑制層のエッジ部よりも内側に位置する ようになるまで前記第 1電極のエッジ部をエッチングして前記第 1電極を所定の大きさ にする工程と、
前記エッチング工程の後で、前記第 1電極または前記電荷注入抑制層が存在しな い前記絶縁膜の上面側に塗布型の電荷注入材料を塗布して電荷注入層を設けるェ 程と、
前記電荷注入抑制層の上面及び前記電荷注入層の上面に発光層を設ける工程と 当該発光層の上面側に第 2電極層を設ける工程と、
を備えたことを特徴とする有機発光トランジスタ素子の製造方法。
[16] 請求項 3に記載の有機発光トランジスタ素子を製造する方法であって、
上面に補助電極層と絶縁膜とが当該順に形成された基板を準備する工程と、 前記絶縁膜の上面側に局所的に所定の大きさよりも平面視で大きな形状で第 1電 極を設ける工程と、
前記第 1電極の上面に当該第 1電極の所定の大きさよりも平面視で大きな形状で 電荷注入抑制層を設ける工程と、
前記第 1電極のエッジ部が前記電荷注入抑制層のエッジ部よりも内側に位置する ようになるまで前記第 1電極のエッジ部をエッチングして前記第 1電極を所定の大きさ にする工程と、
前記エッチング工程の後で、前記第 1電極が存在しない前記絶縁膜の上面側に塗 布型の電荷注入材料を塗布して電荷注入層を設ける工程と、
前記電荷注入層の上面に発光層を設ける工程と、
前記電荷注入抑制層の上面側及び当該発光層の上面側に第 2電極層を設けるェ 程と、
を備えたことを特徴とする有機発光トランジスタ素子の製造方法。
[17] 請求項 1に記載の有機発光トランジスタ素子を製造する方法であって、 上面に補助電極層と絶縁膜とが当該順に形成された基板を準備する工程と、 前記絶縁膜の上面側に局所的に所定の大きさからなる第 1電極を設ける工程と、 前記第 1電極が設けられていない前記絶縁膜の上面側に電荷注入層を設けるェ 程と、
前記第 1電極の全上面及び前記電荷注入層の一部上面に当該第 1電極よりも平面 視で大きな形状で電荷注入抑制層を設ける工程と、
前記電荷注入抑制層が設けられて!/ヽな!ヽ前記電荷注入層の上面に更に電荷注入 層を設ける工程と、
前記電荷注入抑制層の上面にも電荷注入層を設ける工程と、
前記電荷注入層の上面に発光層を設ける工程と、
当該発光層の上面側に第 2電極層を設ける工程と、
を備えたことを特徴とする有機発光トランジスタ素子の製造方法。
[18] 請求項 2に記載の有機発光トランジスタ素子を製造する方法であって、
上面に補助電極層と絶縁膜とが当該順に形成された基板を準備する工程と、 前記絶縁膜の上面側に局所的に所定の大きさからなる第 1電極を設ける工程と、 前記第 1電極が設けられていない前記絶縁膜の上面側に電荷注入層を設けるェ 程と、
前記第 1電極の全上面及び前記電荷注入層の一部上面に当該第 1電極よりも平面 視で大きな形状で電荷注入抑制層を設ける工程と、
前記電荷注入抑制層が設けられて!/ヽな!ヽ前記電荷注入層の上面に更に電荷注入 層を設ける工程と、
前記電荷注入抑制層の上面及び前記電荷注入層の上面に発光層を設ける工程と 当該発光層の上面側に第 2電極層を設ける工程と、
を備えたことを特徴とする有機発光トランジスタ素子の製造方法。
[19] 請求項 3に記載の有機発光トランジスタ素子を製造する方法であって、
上面に補助電極層と絶縁膜とが当該順に形成された基板を準備する工程と、 前記絶縁膜の上面側に局所的に所定の大きさからなる第 1電極を設ける工程と、 前記第 1電極が設けられていない前記絶縁膜の上面側に電荷注入層を設けるェ 程と、
前記第 1電極の全上面及び前記電荷注入層の一部上面に当該第 1電極よりも平面 視で大きな形状で電荷注入抑制層を設ける工程と、
前記電荷注入抑制層が設けられて ヽな 、前記電荷注入層の上面に発光層を設け る工程と、
前記電荷注入抑制層の上面側及び当該発光層の上面側に第 2電極層を設けるェ 程と、
を備えたことを特徴とする有機発光トランジスタ素子の製造方法。
[20] 前記第 1電極を設ける工程の前に、前記絶縁膜の上面に前記電荷注入層と同じ材 料又は異なる材料カゝらなる第 2電荷注入層を設ける工程が行われる
ことを特徴とする請求項 14乃至 19のいずれかに記載の有機発光トランジスタ素子の 製造方法。
[21] 基板と、
前記基板の上面側に設けられた補助電極層と、
前記補助電極層の上面側に設けられた絶縁膜と、
前記絶縁膜の上面側に局所的に所定の大きさで設けられた第 1電極と、 前記第 1電極の上面に当該第 1電極よりも平面視で大きな形状で設けられた電荷 注入抑制層と、
前記第 1電極及び前記電荷注入抑制層が設けられていない前記絶縁膜の上面側 に設けられた有機半導体層と、
前記有機半導体層の上面側に設けられた第 2電極層と、
を備えたことを特徴とする有機トランジスタ素子。
[22] 基板と、
前記基板の上面側に設けられた補助電極層と、
前記補助電極層の上面側に設けられた絶縁膜と、
前記絶縁膜の上面側に局所的に所定の大きさで設けられた第 1電極と、 前記第 1電極の上面に当該第 1電極よりも平面視で大きな形状で設けられた電荷 注入抑制層と、
前記第 1電極または前記電荷注入抑制層が設けられていない前記絶縁膜の上面 側と前記電荷注入抑制層の上面に設けられた発光層と、
前記発光層の上面側に設けられた第 2電極層と、
を備え、
前記発光層は、電荷注入層材料を含有している
ことを特徴とする有機発光トランジスタ素子。
[23] 基板と、
前記基板の上面側に設けられた補助電極層と、
前記補助電極層の上面側に設けられた絶縁膜と、
前記絶縁膜の上面側に局所的に所定の大きさで設けられた第 1電極と、 前記第 1電極の上面に当該第 1電極よりも平面視で大きな形状で設けられた電荷 注入抑制層と、
前記第 1電極または前記電荷注入抑制層が設けられていない前記絶縁膜の上面 側に設けられた発光層と、
前記発光層の上面側に設けられた第 2電極層と、
を備え、
前記発光層は、電荷注入層材料を含有している
ことを特徴とする有機発光トランジスタ素子。
[24] 基板と、
前記基板の上面側に設けられた補助電極層と、
前記補助電極層の上面側に設けられた絶縁膜と、
前記絶縁膜の上面側に局所的に所定の大きさで設けられた第 1電極と、 前記第 1電極の上面に当該第 1電極よりも平面視で大きな形状で設けられた電荷 注入抑制層と、
前記第 1電極または前記電荷注入抑制層が設けられていない前記絶縁膜の上面 側に設けられた発光層と、
前記電荷注入抑制層の上面側及び前記発光層の上面側に設けられた第 2電極層 と、
を備え、
前記発光層は、電荷注入層材料を含有している ことを特徴とする有機発光トランジスタ素子。
PCT/JP2006/324107 2005-12-02 2006-12-01 有機発光トランジスタ素子及びその製造方法 WO2007063992A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/085,682 US8158970B2 (en) 2005-12-02 2006-12-01 Organic luminescence transistor device and manufacturing method thereof
KR1020087015760A KR101284427B1 (ko) 2005-12-02 2006-12-01 유기 발광 트랜지스터 소자 및 그 제조 방법
CN200680052303.1A CN101336491B (zh) 2005-12-02 2006-12-01 有机发光晶体管元件及其制造方法
US12/659,164 US8309963B2 (en) 2005-12-02 2010-02-26 Organic luminescence transistor device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-348754 2005-12-02
JP2005348754A JP4809670B2 (ja) 2005-12-02 2005-12-02 有機発光トランジスタ素子及びその製造方法並びに発光表示装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/085,682 A-371-Of-International US8158970B2 (en) 2005-12-02 2006-12-01 Organic luminescence transistor device and manufacturing method thereof
US12/659,164 Division US8309963B2 (en) 2005-12-02 2010-02-26 Organic luminescence transistor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2007063992A1 true WO2007063992A1 (ja) 2007-06-07

Family

ID=38092324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324107 WO2007063992A1 (ja) 2005-12-02 2006-12-01 有機発光トランジスタ素子及びその製造方法

Country Status (6)

Country Link
US (2) US8158970B2 (ja)
JP (1) JP4809670B2 (ja)
KR (1) KR101284427B1 (ja)
CN (1) CN101336491B (ja)
TW (1) TW200731850A (ja)
WO (1) WO2007063992A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022555A1 (ja) * 2007-08-10 2009-02-19 Sumitomo Chemical Company, Limited 有機エレクトロルミネッセンス素子、製造方法及び塗布液
EP2085958A2 (en) 2008-01-29 2009-08-05 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
EP2415072B1 (en) * 2009-03-29 2019-01-09 Technion Research & Development Foundation Ltd. Vertical organic field effect transistor and method of its manufacture

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200721478A (en) * 2005-10-14 2007-06-01 Pioneer Corp Light-emitting element and display apparatus using the same
KR100838088B1 (ko) 2007-07-03 2008-06-16 삼성에스디아이 주식회사 유기 발광 소자
KR101994332B1 (ko) * 2012-10-30 2019-07-01 삼성디스플레이 주식회사 유기 발광 트랜지스터 및 이를 포함하는 표시 장치
KR102033097B1 (ko) * 2012-11-05 2019-10-17 삼성디스플레이 주식회사 유기 발광 트랜지스터 및 유기 발광 표시 장치
KR101427776B1 (ko) * 2013-01-23 2014-08-12 서울대학교산학협력단 준 면발광 수직형 유기발광 트랜지스터 및 그 제조 방법
KR101503175B1 (ko) 2013-11-22 2015-03-18 서강대학교산학협력단 나노사이즈의 게이트 오프닝 홀을 구비하는 세로형 유기트랜지스터 및 그 제조방법
KR20150140504A (ko) 2014-06-05 2015-12-16 삼성디스플레이 주식회사 유기 발광 트랜지스터
KR102294724B1 (ko) * 2014-12-02 2021-08-31 삼성디스플레이 주식회사 유기 발광 트랜지스터 및 이를 포함하는 표시 장치
KR101730902B1 (ko) 2015-10-19 2017-04-27 서울대학교산학협력단 누설 전류가 저감된 수직형 유기 발광 트랜지스터 및 이의 제조 방법
KR101878187B1 (ko) * 2016-07-29 2018-07-13 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN106847668A (zh) * 2017-01-19 2017-06-13 北京科技大学 一种在Ga‑极性GaN模板上生长极性交替的GaN结构的方法
JP6844845B2 (ja) 2017-05-31 2021-03-17 三国電子有限会社 表示装置
JP7190729B2 (ja) 2018-08-31 2022-12-16 三国電子有限会社 キャリア注入量制御電極を有する有機エレクトロルミネセンス素子
JP7246681B2 (ja) 2018-09-26 2023-03-28 三国電子有限会社 トランジスタ及びトランジスタの製造方法、並びにトランジスタを含む表示装置
KR102122445B1 (ko) * 2018-11-29 2020-06-15 동아대학교 산학협력단 저전압 구동형 발광 트랜지스터
JP7190740B2 (ja) 2019-02-22 2022-12-16 三国電子有限会社 エレクトロルミネセンス素子を有する表示装置
JP7444436B2 (ja) 2020-02-05 2024-03-06 三国電子有限会社 液晶表示装置
WO2021261493A1 (ja) 2020-06-23 2021-12-30 三国電子有限会社 塗布型無機透明酸化物半導体電子輸送層を有する逆構造エレクトロルミネセンス素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343578A (ja) * 2001-05-10 2002-11-29 Nec Corp 発光体、発光素子、および発光表示装置
JP2003282256A (ja) * 2002-03-25 2003-10-03 Sangaku Renkei Kiko Kyushu:Kk 有機薄膜発光トランジスタ及びそれを用いた発光輝度制御方法
JP2005243871A (ja) * 2004-02-26 2005-09-08 Nec Corp 有機薄膜発光トランジスタおよびその製造方法
JP2005327797A (ja) * 2004-05-12 2005-11-24 Matsushita Electric Ind Co Ltd 有機電界効果トランジスタおよびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373088B2 (en) * 1997-06-16 2002-04-16 Texas Instruments Incorporated Edge stress reduction by noncoincident layers
EP1349435B8 (en) * 2000-11-30 2018-09-19 Canon Kabushiki Kaisha Luminescent element and display
JP4273191B2 (ja) * 2001-03-01 2009-06-03 三星モバイルディスプレイ株式會社 有機発光デバイス
JP2003324203A (ja) 2002-04-30 2003-11-14 Sharp Corp 静電誘導型トランジスタ
JP3817235B2 (ja) * 2003-06-17 2006-09-06 双葉電子工業株式会社 捕水剤及び有機el素子
US7372070B2 (en) 2004-05-12 2008-05-13 Matsushita Electric Industrial Co., Ltd. Organic field effect transistor and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343578A (ja) * 2001-05-10 2002-11-29 Nec Corp 発光体、発光素子、および発光表示装置
JP2003282256A (ja) * 2002-03-25 2003-10-03 Sangaku Renkei Kiko Kyushu:Kk 有機薄膜発光トランジスタ及びそれを用いた発光輝度制御方法
JP2005243871A (ja) * 2004-02-26 2005-09-08 Nec Corp 有機薄膜発光トランジスタおよびその製造方法
JP2005327797A (ja) * 2004-05-12 2005-11-24 Matsushita Electric Ind Co Ltd 有機電界効果トランジスタおよびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ENDO H. ET AL.: "Ko Koritsu Yuki Hakko Transistor", DENSHI JOHO TSUSHIN GAKKA GIJUTSU KENKYU HOKOKU, vol. 103, no. 698, 7 September 2005 (2005-09-07), pages 29, XP003014019 *
NAKAMURA K. ET AL.: "Tategata Yuki Transistor no Sakusei", DAI 55 KAI THE JAPAN SOCIETY OF APPLIED PHYSICS GAKUJUTSU KOENKAI, 7 September 2005 (2005-09-07), pages 1177, XP003014018 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022555A1 (ja) * 2007-08-10 2009-02-19 Sumitomo Chemical Company, Limited 有機エレクトロルミネッセンス素子、製造方法及び塗布液
EP2085958A2 (en) 2008-01-29 2009-08-05 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
EP2085958A3 (en) * 2008-01-29 2010-04-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8022406B2 (en) 2008-01-29 2011-09-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
EP2415072B1 (en) * 2009-03-29 2019-01-09 Technion Research & Development Foundation Ltd. Vertical organic field effect transistor and method of its manufacture

Also Published As

Publication number Publication date
KR101284427B1 (ko) 2013-07-09
JP2007157871A (ja) 2007-06-21
KR20080105027A (ko) 2008-12-03
JP4809670B2 (ja) 2011-11-09
TW200731850A (en) 2007-08-16
US20090179195A1 (en) 2009-07-16
CN101336491A (zh) 2008-12-31
US8309963B2 (en) 2012-11-13
US20100176384A1 (en) 2010-07-15
US8158970B2 (en) 2012-04-17
CN101336491B (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
JP4809670B2 (ja) 有機発光トランジスタ素子及びその製造方法並びに発光表示装置
JP4808479B2 (ja) 有機発光トランジスタ素子及びその製造方法並びに発光表示装置
JP4809682B2 (ja) 有機発光トランジスタ素子及びその製造方法並びに発光表示装置
JP4962500B2 (ja) 有機トランジスタ素子、その製造方法、有機発光トランジスタ及び発光表示装置
JP5087927B2 (ja) 有機発光素子、有機発光トランジスタ及び発光表示装置
TWI362229B (en) Organic light-emitting transistor and display device
JP4101824B2 (ja) 平板ディスプレイ装置
JP2008041747A (ja) 有機エレクトロルミネッセント発光装置およびその製造方法
JP4381206B2 (ja) 発光トランジスタ
US7923720B2 (en) Organic luminescence transistor device and manufacturing method thereof
JP2008041894A (ja) 有機エレクトロルミネッセント素子およびその製造方法
JP2004296154A (ja) 電極とその製造方法及び有機エレクトロルミネッセンス素子
JP2007335737A (ja) 有機エレクトロルミネッセント素子およびその製造方法
US8368055B2 (en) Display device including organic light-emitting transistor and a fluorecent pattern and method of fabricating the display device
JP2008041692A (ja) 有機エレクトロルミネッセント素子およびその製造方法
JP4900160B2 (ja) 発光素子及び発光表示装置
KR20150041314A (ko) 유기전계 발광소자 및 그 제조방법
JP2009223188A (ja) 駆動素子アレイ及びその製造方法並びに表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087015760

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12085682

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680052303.1

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 06833877

Country of ref document: EP

Kind code of ref document: A1