WO2007063880A1 - 位置検出システム、この位置検出システムに用いるオーディオ装置及び端末装置 - Google Patents

位置検出システム、この位置検出システムに用いるオーディオ装置及び端末装置 Download PDF

Info

Publication number
WO2007063880A1
WO2007063880A1 PCT/JP2006/323783 JP2006323783W WO2007063880A1 WO 2007063880 A1 WO2007063880 A1 WO 2007063880A1 JP 2006323783 W JP2006323783 W JP 2006323783W WO 2007063880 A1 WO2007063880 A1 WO 2007063880A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
measurement
audio
unit
sound
Prior art date
Application number
PCT/JP2006/323783
Other languages
English (en)
French (fr)
Inventor
Satoshi Suzuki
Toshiaki Ishibashi
Ryo Tanaka
Original Assignee
Yamaha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corporation filed Critical Yamaha Corporation
Priority to EP06833587.6A priority Critical patent/EP1962558A4/en
Priority to US12/085,724 priority patent/US20100322435A1/en
Publication of WO2007063880A1 publication Critical patent/WO2007063880A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0027Transmission from mobile station to base station of actual mobile position, i.e. position determined on mobile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/26Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/323Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/403Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/301Automatic calibration of stereophonic sound system, e.g. with test microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/01Aspects of volume control, not necessarily automatic, in sound systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic

Definitions

  • the present invention relates to a position detection system for inputting a measurement sound output from a speaker with a microphone and measuring the listening position of a listener using the input timing of the measurement sound.
  • the present invention relates to an audio device and a terminal device to be used.
  • an audio device that outputs sound by multi-channel, a speaker array device, or the like that outputs sound from a plurality of speakers at a volume or delay time corresponding to a listener's listening position.
  • the output level of the audio signal is adjusted and a delay time is given according to the listening position of the listener.
  • the audio signal is adjusted to an output level such that sounds output from a plurality of spin forces reach the listening position at the same volume.
  • a delay time is given so that these sounds reach the listening position at the same timing.
  • the listening position In order to calculate the delay time and volume as described above, the listening position must be acquired in advance by the speaker device! / ⁇ .
  • An audio device that automatically detects the listening position has been proposed in Patent Document 1, for example. This audio device has two speakers for L channel and R channel and a microphone. The microphone is placed in the listening position in advance. After this, the audio device generates a measurement audio signal and inputs it to the two speakers in turn.
  • the sound of the measurement sound signal (measurement sound) is picked up by a microphone.
  • the audio device generates a measurement audio signal for input to the L-channel speaker and calculates a time tlO until the measurement audio reaches the force microphone.
  • the audio device generates a measurement audio signal for input to the speaker of the R channel and outputs the measurement audio signal to the force microphone. Calculate the time t20 to reach.
  • the audio device calculates the distance from the L-channel speaker to the microphone using this time tlO, and calculates the distance from the R-channel speaker to the microphone mouth using this time t20. . Thereby, the listening position is calculated. In this way, the audio device can acquire the listening position, and can calculate the delay time and the output level according to the listening position.
  • Patent Document 1 Japanese Patent Laid-Open No. 4-370,000
  • noise such as environmental sound input from the microphone force or music output from the speaker device force is mistaken as measurement sound. In some cases, it was detected. In other words, noise, music, and the like contain components similar to Innols, and may be erroneously detected as noise or musical power impulses.
  • Both the microphone force and the input audio signal force need only be able to separate the components of the measurement audio using a bandpass filter or the like, but the impulse has a wide frequency spectrum.
  • an object of the present invention is to provide a position detection system that can effectively prevent erroneous detection of measurement sound.
  • a further object of the present invention is to provide an audio device and a terminal device used in a position detection system that can effectively prevent erroneous detection of measurement sound. Means for solving the problem
  • the position detection system has a function of communicating with an audio device and the audio device, and a microphone that collects the audio output from the audio device.
  • the audio device includes an input unit that sequentially inputs measurement audio signals including two or more audio signals having different frequencies to the first and second speakers, and the microphone for measurement.
  • a signal receiving unit that receives a notification signal indicating that the sound of the sound signal has been collected from the terminal device; and a first speaker power, after the sound of the sound signal for measurement is output, the notification of the sound signal for measurement From the first time until the signal is received by the signal receiving unit and the voice of the measurement audio signal from the second speech output until the notification signal of the measurement audio is received by the signal receiving unit And a calculation unit that calculates the position of the microphone using the first time and the second time measured by the time measurement unit.
  • the terminal device detects, as an audio signal component for measurement, when an audio signal exceeding a predetermined level is input to the microphone force for each frequency component of the audio signal for measurement.
  • a signal detection unit and a signal transmission unit that transmits the notification signal to the audio device when the signal detection unit detects the measurement audio signal.
  • the input unit inputs a chord signal as a measurement audio signal to the speaker.
  • the audio device includes an input unit that sequentially inputs a measurement audio signal having two or more audio signal forces having different frequencies to the first and second speakers, and a microphone.
  • a signal receiving unit for receiving a communication signal, a signal receiving unit for receiving a notification signal indicating that the voice of the measurement audio signal has been picked up by the microphone, and a first speaker The first time from when the sound of the measurement sound signal is output to when the signal reception unit receives the notification signal of the measurement sound signal, and the sound of the measurement sound signal is output from the second speaker
  • a time measuring unit for measuring a second time until the notification signal of the measurement sound is received by the signal receiving unit, and the first time and the second time measured by the time measuring unit.
  • the microphone Comprising a position measuring unit for measuring the location, at least.
  • the terminal device has a function of communicating with an audio device that inputs audio signals to a plurality of speaker powers including the first and second speakers.
  • the terminal device has a voice signal input unit for inputting a microphone power voice signal and a measurement voice signal including two or more voice signals of different frequencies output from the speaker device power. For each corresponding frequency, when a sound signal exceeding a predetermined level is input at the sound signal input unit, a signal detection unit detects the measurement sound signal, and the signal detection unit detects the measurement sound. And a signal transmission unit that transmits the notification signal to the audio device when a signal is detected.
  • the measurement audio signal having two or more audio signal powers of different frequencies is input to the first audio unit by the input unit. And sequentially input to the second speaker.
  • a microphone force sound signal for collecting the sound output from the audio device is input by the sound signal input unit. Then, when an audio signal that exceeds a predetermined level is input by the microphone force for each frequency component of the measurement audio signal, the signal detection unit detects the component of the measurement audio signal. When the signal detector detects a measurement audio signal, the signal transmitter transmits a notification signal to the audio device.
  • a notification signal indicating that the sound of the measurement audio signal has been picked up by the microphone is received by the signal receiving unit by the terminal device.
  • the second time from when the sound is output to when the signal receiving unit receives the measurement sound notification signal is timed by the time measuring unit.
  • the position of the microphone is calculated by the calculating unit.
  • the measurement audio signal including two or more audio signals having different frequencies is input to the first and second speakers, and each frequency component of the measurement audio signal is included.
  • this input signal is detected as a component of the measurement audio signal.
  • the measurement audio can be compared with noise, etc., compared to using a measurement audio signal consisting of one audio signal. Is easy to distinguish. As a result, noise such as environmental sounds and music are erroneously detected as measurement audio. This can be effectively prevented.
  • the input unit inputs a chord signal as a measurement sound signal to the speaker, the measurement sound becomes a chord, and thus the measurement sound is emitted with a sound that is not detrimental to the listener. be able to.
  • the position detection system has a function of communicating with an audio device and the audio device, and a microphone that collects sound output from the audio device.
  • Force At least a terminal device for inputting a voice signal.
  • the audio device is configured to input a sound signal for measurement of a pulse pattern having a specific pattern to the first and second powers in order, and to collect the sound of the sound signal for measurement by the microphone.
  • a signal receiving unit that receives a notification signal indicating that the measurement audio signal is output from the signal receiving unit that receives the notification signal from the terminal device, and the signal receiving unit receives the notification signal of the measurement audio signal.
  • the second time from when the voice of the measurement audio signal is output from the second speaker power until the notification signal of the measurement voice is received by the signal receiver.
  • a calculation unit that calculates the position of the microphone using the first time and the second time measured by the time measurement unit.
  • the terminal device detects a signal as a component of the measurement audio signal when an audio signal exceeding a predetermined level so as to match the specific pattern is input to the microphone, and the signal And a signal transmission unit that transmits the notification signal to the audio device when the measurement unit detects the measurement audio signal.
  • the input unit sequentially inputs the pulse train composed of two or more audio signals having different frequencies as the measurement audio signal to the first and second speakers, and detects the signal.
  • the unit detects, as the measurement voice, an audio signal that exceeds a predetermined level so as to match the specific pattern for each frequency of the measurement audio signal.
  • an audio device includes an input unit that sequentially inputs measurement sound signals of a pulse train having a specific pattern to first and second speakers, and a terminal device including a microphone.
  • the terminal device has a function of communicating with an audio device that inputs an audio signal to a plurality of speaker powers including the first and second speakers.
  • the terminal device includes an audio signal input unit that inputs a microphone-powered audio signal, and an audio signal that exceeds a predetermined level in the same specific pattern as the audio of a pulse train of a specific pattern output as a measurement audio from a speaker.
  • a signal detection unit that detects a measurement audio signal when input by the signal input unit, and a signal transmission unit that transmits the notification signal to the audio device when the measurement audio signal is detected by the signal detection unit And at least.
  • the measurement audio signal of the Norse sequence having a specific pattern is sequentially input to the first and second speakers by the input unit.
  • the microphone input sound signal for picking up the sound output from the audio device is input by the signal input unit. Then, when an audio signal that exceeds a predetermined level so as to match the specific pattern is input by the audio signal input unit, the measurement audio is detected by the signal detection unit. When the signal detector detects the measurement audio signal, the signal transmitter transmits a notification signal to the audio device.
  • a notification signal indicating that the sound of the measurement audio signal has been collected by the microphone is received by the signal receiving unit by the terminal device.
  • the second time from when the signal sound is output until the signal receiving unit receives the measurement sound notification signal is timed by the time measuring unit.
  • the position of the microphone is calculated by the calculating unit using the first time and the second time measured by the time measuring unit.
  • the sound signal for measurement of the pulse train of the specific pattern is input to the first and second speakers, and the sound signal exceeds a predetermined level so as to match the specific pattern. Is input at the audio signal input unit, this input signal is detected as measurement audio. In this way, since the measurement sound signal of the pulse train having the specific pattern is used, it becomes easy to distinguish between noise and the like and the measurement sound. As a result, it is possible to effectively prevent false detection of noise or other noise such as environmental sounds as measurement sound.
  • a pulse train composed of two or more audio signals having different frequencies is sequentially input to the first and second speakers as a measurement audio signal. Then, when the audio signal input unit inputs an audio signal that exceeds a predetermined level so as to match a specific pattern for each frequency of the measurement audio signal, the signal detection unit detects the input signal as measurement audio. Is done. This makes it possible to further improve the effect of preventing erroneous detection of measurement sound.
  • a measurement audio signal having two or more audio signal forces of different frequencies is input to the first and second speakers, and each frequency of the measurement audio signal is set.
  • the input signal is detected as measurement audio.
  • the measurement audio is regarded as noise or the like compared to using a measurement audio signal with one audio signal strength. Can be determined. As a result, it is possible to effectively prevent noises such as environmental sounds and music from being erroneously detected as measurement voices.
  • a sound signal for measurement of a pulse train having a specific pattern is input to the first and second speakers, and an audio signal exceeding a predetermined level so as to match the specific pattern is received.
  • this input signal is detected as measurement audio.
  • an audio signal for measurement of a pulse train of a specific pattern is used. Since the signal is used, it becomes easy to distinguish between noise and the like and measurement sound. As a result, it is possible to effectively prevent noises such as environmental sounds and music from being erroneously detected as measurement voices.
  • FIG. 1 is a diagram showing an external appearance of an audio system related to a first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining position detection processing executed by the position detection system shown in FIG. 1.
  • FIG. 3 is a block diagram schematically showing the configuration of the audio system shown in FIG.
  • FIG. 4 is a block diagram showing a configuration of the signal detection unit shown in FIG. 3 and its surroundings.
  • FIG. 5A is a diagram showing an example of a frequency spectrum of an audio signal input by the microphone force shown in FIG. 3.
  • FIG. 5B is a diagram showing an example of a frequency spectrum of an audio signal input by the microphone force shown in FIG. 3.
  • FIG. 6 is a part of a flowchart of processing including position detection processing executed by the audio system shown in FIGS. 3 and 4.
  • FIG. 7 is a part of a flowchart of processing including position detection processing executed by the audio system shown in FIGS. 3 and 4.
  • FIG. 8A is a block diagram showing a configuration of a signal detection unit in an audio system according to a second embodiment of the present invention.
  • FIG. 8B is a diagram for explaining an example of the timing of signal a and signal b input to the determination unit shown in FIG. 8A.
  • FIG. 9 is a block diagram showing a configuration of a signal detection unit in an audio system that works according to a third embodiment of the present invention.
  • SP1, SPn speaker unit (first and second speakers)
  • FIG. 1 is a diagram showing an external appearance of an audio (position detection) system 1 that works on the first embodiment. This external view is a view of the audio system 1 also viewed from above.
  • the audio system 1 includes a speaker device 2 and a remote controller 3 (hereinafter referred to as “remote controller 3”) having a function of operating the speaker device 2.
  • the speaker device 2 includes a speaker array 2a having a speaker unit SP force arranged in a line. By applying a delay time indicated by an arrow in this figure to each audio signal input to these speaker units SP, a sound beam is output from the speaker array 2a in a predetermined direction and range.
  • the listening position force of the listener is also the distance to each speaker unit SP.
  • the delay time for each audio signal based on the above must be set in the speaker device 2 in advance.
  • the speaker device 2 performs a process of detecting the listening position (position detection process) by measuring the distance from the listening position to the speaker units SP (SP1, SPn) at both ends. To do. Then, the speaker device 2 calculates a delay time for the sound from each speaker unit SP to reach the listening position at the same time, and sets it as a delay time to be added to the audio signal.
  • FIG. 2 is a diagram for explaining position detection processing executed by the audio system 1 shown in FIG.
  • the remote controller 3 is previously placed at the listening position by the listener.
  • the remote controller 3 is provided with a microphone 3a.
  • the speaker device 2 and the remote controller 3 have a communication function. Thereafter, the speaker device 2 outputs the measurement sound sequentially from the speaker units SP1, SPn at both ends.
  • the remote controller 3 transmits a notification signal notifying the input to the speaker device 2 when the measurement sound is input from the microphone 3a.
  • the speaker device 2 measures the time tl (first time) until the speaker unit SP1 outputs the measurement sound and receives the notification signal.
  • the time t2 second time from when the speaker unit SPn outputs the measurement sound to when the notification signal is received is counted.
  • the spinning device 2 calculates the listening position using the time tl and the time t2. The method for calculating the listening position will be described in detail later.
  • the present embodiment is characterized in that the audio signal for measurement is a combined synthesized signal of two audio signals having different frequencies.
  • the remote control 3 detects each frequency (frequency fl, frequency f2) of the measurement audio signal as a measurement audio when a signal of a predetermined level or higher is input from the microphone 3a, and transmits a notification signal to the speaker device 2. .
  • FIG. 3 is a block diagram schematically showing the configuration of the audio system 1.
  • the speaker device 2 includes an audio input control unit 21, a signal processing unit 22, an amplification unit 23, an infrared light receiving unit 24, a controller 25, and a position detection unit 26 in addition to the speaker array 2 a described above.
  • the audio input control unit 21 is an interface circuit that inputs a digital audio signal (audio content) from the audio playback device connected to the input terminal 27.
  • the audio input control unit 21 inputs the input audio signal to the signal processing unit 22.
  • the signal processing unit 22 is realized by a DSP (Digital Signal Processor) or the like.
  • the signal processing unit 22 performs predetermined audio signal processing such as equalizing on the input audio signal.
  • the signal processing unit 22 branches the input audio signal into the number of each speaker unit SP.
  • Various parameters for adjusting the audio signal from the controller 25 are set in the signal processing unit 22. Based on this parameter, the signal processing unit 22 performs a process of adjusting the output level of the branched audio signal and a process of adding a delay time.
  • the purpose of adding a delay time to the audio signal is to direct the sound beam to the listening position as described above with reference to FIG. 1 (see the arrow in FIG. 1). As described above, this delay time is set in advance before reproducing the desired audio content of the listener.
  • the signal processing unit 22 inputs the audio signal subjected to the above processing to the corresponding amplification unit 23.
  • a plurality of amplifiers 23 are provided in association with the respective speaker units SP1 to SPn. In order to distinguish these amplifying units 23, the same numbers as the corresponding speaker units SP1 to SPn are given and described as amplifying units 231 to 23n.
  • the amplification units 231 to 23n amplify the output level of the input audio signal in accordance with instructions from the signal processing unit 22.
  • the amplifying units 231 to 23n input the amplified audio signals to the corresponding speaker units SP1 to SPn.
  • sound is output from the speaker units SP1 to SPn, and a sound beam that is a synthesized sound of the sound is directed to the listening position.
  • the infrared light receiving unit 24 includes an infrared light receiving element and the like, and receives a command signal that is infrared light from the remote controller 3.
  • the infrared light receiving unit 24 converts the received command signal into an electric signal and inputs it to the controller 25.
  • the controller 25 is realized by a CPU (Central Processing Unit), a memory, or the like, and controls the operation of each unit of the speaker device 2 by executing a program stored in the memory.
  • the controller 25 sets parameters in the signal processing unit 22. These parameters include a delay control value for controlling the delay applied to the audio signal and a level control value for controlling the output level of the audio signal. As a result, the controller 25 controls the audio signal processing of the signal processing unit 22.
  • the controller 25 performs processing according to the command signal input from the infrared light receiving unit 24 by executing a program stored in the memory.
  • this command signal include a command signal for reproducing an audio signal from an audio playback device (not shown) connected to the input terminal 27, a start command signal, and the like.
  • the start command signal is a command signal for causing the speaker device 2 to execute the position detection process described above.
  • the controller 25 executes speaker side position detection processing when a start command signal is input.
  • the controller 25 causes the signal processing unit 22 to generate a measurement audio signal and output it to the speaker units SP1 and SPn.
  • this measurement audio signal is a signal obtained by adding and synthesizing the audio signal of frequency fl and the audio signal of frequency f2.
  • the controller 25 uses the position detection unit 26 to calculate the time tl, t2 from when the measurement audio signal is input to the above-described speaker unit SP1 until the force notification signal is input. Use to measure the time. Specifically, when the signal processing unit 22 is instructed to generate a measurement audio signal to be output to the speaker units SP1 and SPn, it is assumed that the measurement audio signal is input. Then, using the position detection unit 26, the time from when the notification signal is received by the infrared light receiving unit 24 is counted. Then, the listening position is calculated by using the position detection unit 26 with the measured time as time tl, t2.
  • the times tl and t2 are treated as the time from when the speaker units SP1 and SPn output the measurement sound and the force is input to the microphone 3a.
  • the time from the generation of the measurement audio signal to the input to the speaker units SP1 and SPn, the time until the measurement audio signal is converted to audio, the audio signal input from the microphone 3a on the remote control 3 The time for detecting the force measurement sound, the time for generating the notification signal, and the time for transmitting and receiving this notification signal are much shorter than the propagation time for the measurement sound, and are ignored. However, if it takes a time that cannot be ignored, the time tl, t2 may be obtained by correcting for this time.
  • the controller 25 sets a parameter in the signal processing unit 22 according to the listening position acquired by the speaker side position detection process. That is, a delay control value that gives a delay as shown by the arrow in FIG. 1 is set in the signal processing unit 22 so that the sound beam is directed to the listening position. As a result, the sound beam can be directed to the listening position.
  • the speaker side position detection process will be described later in detail with reference to FIGS.
  • the position detection unit 26 is realized by a CPU (Central Processing Unit), ROM, RAM, or the like.
  • the controller 25 and the position detection unit 26 may be realized by the same CPU and memory.
  • the position detection unit 26 executes a program stored in the ROM, thereby executing a process of measuring time tl, t2 when a controller 25 force instruction is given, and using the time tl, t2 to listen to the listening position. The process which calculates is performed.
  • the position detection unit 26 functionally includes a time measuring unit 261, a time storage unit 262, and a calculation unit 263 in order to execute these processes.
  • the timing unit 261 starts and ends timing in accordance with instructions from the controller 25.
  • the time storage unit 262 stores the times tl and t2 timed by the time measuring unit 261 and functions as a work area for the calculation unit 263.
  • the calculation unit 263 obtains the listening position by calculation using the times tl, t2 stored in the time storage unit 262. The method for calculating the listening position is explained below using Fig. 2.
  • the arrangement direction of the speaker units SP is defined as the X axis
  • the axis orthogonal to the X axis and parallel to the horizontal direction is defined as the Y axis.
  • the X axis the right side toward the speaker device 2, that is, the speaker unit SPn side is the positive direction.
  • the Y axis is the output direction of the audio signal from the speaker unit SP, that is, the user side is the positive direction.
  • the intersection of the X and Y axes, that is, the origin of the X and Y axes, is the center of the speaker units SP1 to SPn.
  • the remote controller 3 is located on the Y axis in FIG. 2, that is, in the center front of the speaker device 2 (the position of the middle remote controller 3 shown in FIG. 2).
  • the calculation unit 263 calculates the remote control 3 and the speaker device according to the following equation (1) from the time tl or time t2, the sound velocity c, and the distance (xl—x2) between the speaker force unit SP1 and the speaker unit SPn. Calculate the distance y to 2.
  • the X-axis coordinate of the speaker unit SP1 is xl
  • the X-axis coordinate of the speaker unit SPn is x2.
  • the remote controller 3 is located on the speaker unit SPn side from the center of the speaker device 2, that is, the remote controller 3 is located on the right side of the Y axis (the position of the remote control 3 at the right end in FIG. 2) when viewed in front. .
  • the calculation unit 263 calculates the coordinate x on the X axis of the remote controller 3 and the distance y ′ between the remote controller 3 and the speaker device 2 by the following equations (2) and (3).
  • x, [(ctl,) 2 — (ct2 ') 2 + (x2) 2- (xl) 2 ] / [2 (x2— xl) ⁇ Equation (2)
  • the remote control 3 is positioned on the speaker unit SP1 side from the center of the speaker device 2, that is, the remote control 3 is located on the left side of the Y axis (the position of the remote control 3 at the left end shown in FIG. 2) when viewed in front. .
  • the calculation unit 263 calculates the coordinate X ′′ on the X axis of the remote controller 3 and the distance y ′′ between the remote controller 3 and the spin force device 2 by the following equations (4) and (5).
  • the remote control 3 An infrared light emitting unit 31, an operation unit 32, a remote control unit 33, and a signal detection unit 34 are provided.
  • the infrared light emitting unit 31 includes an infrared light emitting element and outputs a command signal corresponding to the input command code as infrared light.
  • the operation unit 32 includes a plurality of operation buttons 321 and accepts a listener operation when the operation button 321 is pressed with a finger or the like. The operation unit 32 inputs an operation signal indicating the operation button 321 pressed by the listener to the remote control unit 33.
  • the remote controller 33 is realized by a microcomputer or the like, and controls the operation of each part of the remote controller 3.
  • the remote control control unit 33 stores a command code corresponding to each operation button 321. Then, when the operation signal is input, the remote control unit 33 specifies a command code corresponding to the operation button 321 indicated by the operation signal, and inputs the specified command code to the infrared light emitting unit 31.
  • the remote control control unit 33 connects the speaker device 2 to the speaker side.
  • a command code for executing the position detection process is input to the infrared light emitting unit 31. Then, this command code is output from the infrared light emitting unit 31 as a start command signal.
  • the remote control control unit 33 executes a remote control side listening position detection process by executing a stored program. As described above, in the speaker device 2, the measurement sound is output from the speaker units SP1 and SPn. In the position detection processing on the remote control side, when measurement audio is detected from the microphone 3a, that is, when detection of measurement audio is notified from the signal detection unit 34, a notification signal for notifying this input is generated. Then, the remote control control unit 33 transmits the generated notification signal from the infrared light emitting unit 31.
  • the remote control position detection process will be described in detail later.
  • the signal detection unit 34 receives an audio signal collected by the microphone 3a.
  • the signal detector 34 detects a measurement sound component from the input sound signal.
  • the signal detection unit 34 notifies the remote control unit 33 of this detection.
  • the configuration of the signal detection unit 34 will be described with reference to FIG.
  • FIG. 4 is a block diagram showing a configuration of the signal detector 34 shown in FIG. 3 and its surroundings.
  • the signal detector 34 includes three bandpass filters 341 (341A to 341C) and a level detector 342. (342A to 342C) and a determination unit 343.
  • An audio signal is input from the microphone 3 a to the node pass filter 341.
  • the band fl filter 341A has a frequency fl. For this reason, in the audio signal from the microphone 3a, only the component of the frequency fl passes through the bandpass filter 341A. This frequency fl component is input to the level detector 342A.
  • the frequency f2 is set in the band-pass filter 341B. For this reason, in the audio signal from the microphone 3a, only the component of the frequency f2 passes through the bandpass filter 341B.
  • the component of frequency f2 is input to level detection unit 342B.
  • a frequency f3 between the frequency fl and the frequency f2 as shown in FIG. 5A is set. For this reason, in the audio signal from the microphone 3a, only the component of the frequency f3 passes through the bandpass filter 341C.
  • Threshold values are set in the level detection units 342A to 342C.
  • the signal is input to the determination unit 343. That is, the level detection unit 342A inputs a signal to the determination unit 343 when the signal level of the component of the frequency fl exceeds the threshold value.
  • the level detection unit 342B inputs a signal to the determination unit 343 when the signal level of the component of the frequency f 2 is larger than the threshold value.
  • the level detection unit 342C inputs a signal to the determination unit 343 when the signal level of the component of the frequency f3 is greater than the threshold value.
  • the determination unit 343 receives the signal from both the level detection unit 342A and the level detection unit 342B, and the microphone 3a when the level detection unit 342C has no signal input. Is notified to the remote control unit 33 that the measurement audio is detected in the audio signal from. When both the level detection unit 342A and the level detection unit 342B have no signal input, or when only one of them does not have a force signal input, the determination unit 343 does not notify the remote control unit 33.
  • the reason for this is that even if the level of the component of the frequency fl and the frequency f 2 is greater than the threshold value, if the level of the component of the frequency f 3 is greater than the threshold value, it is input to the microphone 3a. This is because the voice is likely not noise for measurement but noise or music.
  • noises such as environmental sounds, music, and the like often have a wide frequency spectrum as shown in FIG. 5B.
  • the level of the frequency f 3 between the frequency fl and the frequency f 2 is also larger than the threshold value, the sound input to the microphone 3a is not a measurement sound but other noise or other music.
  • the notification to the remote control unit 33 is not performed on the assumption that it is sound. As a result, erroneous detection of the measurement voice can be prevented with higher accuracy.
  • the detection of the measurement sound can be determined only by the frequency fl and the component level of the frequency f 2 without referring to the signal level of the component of the frequency f 3.
  • FIGS. 6 and 7 are flowcharts (part 1 and part 2) of the process including the position detection process executed by the audio system 1 shown in FIGS.
  • the remote controller 3 is remote control side position detection processing
  • the speaker device 2 is speaker side position detection processing.
  • the remote control control unit 33 repeatedly determines at predetermined time intervals whether or not the start button 321a is pressed, and waits until it determines YES (Sl). If it is determined that the start button 321a has been pressed (YES in S1), the remote control unit 33 uses the infrared light emitting unit 31 to transmit a start command signal instructing execution of the position detection process on the remote control side. (S2).
  • the speaker device 2 repeatedly determines whether or not the controller 25 has input a start command signal, and waits until it determines YES (S3). If it is determined that a start command signal has been input (YES in S3), the controller 25 instructs the signal processing unit 22 to generate a measurement audio signal and input it to the speaker unit SP1, and the timing unit 261 Use to start timing (S4).
  • the remote controller 3 after the execution of step S2, the remote control unit 33 repeatedly determines whether or not the force for detecting the measurement sound is detected at predetermined time intervals, and waits until it is determined to be YES (S5). The determination that the measurement voice is detected is made when the detection of the measurement voice signal is notified from the signal detector 34 as described above. If it is determined that the measurement sound has been detected (YES in S5), the remote control unit 33 transmits a notification signal for notifying the reception using the infrared light emitting unit 31 (S6).
  • step S4 the speaker device 2 repeatedly determines at every predetermined time interval whether or not the controller 25 has input the notification signal, and waits until it determines YES (S7). If it is determined that the notification signal has been input (YES in S7), the controller 25 causes the time measuring unit 261 to end the time measurement, and the time storage unit 262 stores the time tl that is the time measurement time (S8).
  • the controller 25 instructs the signal processing unit 22 to generate a measurement audio signal and input it to the speaker unit SPn, and starts measuring time using the time measuring unit 261 (S9).
  • the remote control unit 33 After executing the step S6, the remote control unit 33 repeatedly determines at every predetermined time interval whether or not the measurement voice has been detected, and waits until it determines YES (S10). The determination that the measurement voice is detected is made when the detection of the measurement voice signal is notified from the signal detector 34 as described above.
  • the remote control unit 33 uses the infrared light emitting unit 31 to notify the detection. Is sent (Sl l). Thereafter, the remote controller control unit 33 returns the remote controller side position detection process to step S1.
  • step S9 the speaker device 2 repeatedly determines at every predetermined time interval whether the controller 25 has input the notification signal, and waits until it determines YES (S12) o Input the notification signal If it is determined that the time has elapsed (YES in S12), the controller 25 causes the timekeeping unit 261 to finish the timekeeping and stores the time t2 that is the timekeeping time in the time storage unit 262 (S13).
  • the controller 25 calculates the listening position using the calculation unit 263. Specifically, the calculation unit 263 reads the time tl and the time t2 from the time storage unit 262, and reads this time.
  • the listening position coordinates are calculated by performing the calculations of the above-described equations (1) to (5) using the times tl and t2 (S14).
  • the controller 25 sets a delay control value in the signal processing unit 22 so that the sound beam is directed to the listening position indicated by the listening position coordinates (S15).
  • the controller 25 instructs the signal processing unit 22 to generate a sound signal of an end sound and input it to the speaker units SPl to SPn.
  • the signal processing unit 22 executes processing as instructed, and thereby an end sound is generated (S16). Thereafter, the controller 25 returns the speaker side position detection process to step S3.
  • a signal obtained by adding and synthesizing the audio signal having the frequency fl and the audio signal having the frequency f2 is input to the speaker units SPl and SPn as the measurement audio signal. Then, in the audio signal input from the microphone 3a, when both components of the frequency fl and the frequency f2 exceed the threshold value (predetermined level), these components are detected by the determination unit 343 as measurement audio.
  • the remote control 3 can easily separate the noise and the like from the measurement audio signal using the band-pass filter 341. .
  • measurement is performed by the position detection unit 34 compared to using a measurement audio signal having an audio signal power of 1. It becomes easy to discriminate the voice from noise. As a result, it is possible to effectively prevent the signal detection unit 34 from erroneously detecting noise such as environmental sound or sound such as music as measurement sound.
  • the frequency fl and the frequency f2 may have a chordal relationship.
  • the signal level of the component of the frequency f3 that is between the frequency fl and the frequency f2 is greater than a predetermined level.
  • the signal level of the component of the frequency fl and the frequency f2 are not detected as measurement audio even if the value exceeds a predetermined level.
  • noise such as environmental sounds, music, and the like often have a wide frequency spectrum
  • the signal level of the component of frequency f3 which is composed of only frequency fl and frequency f2
  • these components may be noise or music audio instead of measurement audio components. High nature. Therefore, the signal level of the component of frequency f 3 is If it is larger than a certain level, these components are not detected as measurement voices, thereby making it possible to more effectively prevent noise and music from being erroneously detected as measurement voices.
  • the second embodiment is different from the first embodiment in that erroneous detection of the measurement sound is prevented by using a pulse train of a specific pattern as the measurement sound signal. .
  • the specific pattern is composed of three pulses.
  • the time from the output of the first pulse to the output of the second pulse is time tlO, and the output from the output of the second pulse is 3 This is a pattern with time t20 until the output of the first pulse.
  • the number of pulses is not limited to three, but may be two or more than three. However, the effect of preventing false detection is improved when the number of pulses is large, but the time required to detect the measurement voice is increased.
  • the second embodiment is different from the first embodiment in that the measurement audio signal and the remote controller 3 include a signal detection unit 34A instead of the signal detection unit 34, and other speaker devices.
  • the configurations of 2 and the remote controller 3 are the same as those in the first embodiment. Therefore, only the configuration of the signal detection unit 34A will be described below, and description of the other configurations will be omitted.
  • FIG. 8A is a block diagram showing a signal detection unit 34A that works on the second embodiment.
  • the signal detection unit 34A includes a level detection unit 344, a counter 345, and a determination unit 346.
  • the level detection unit 344 receives an audio signal from the microphone 3a.
  • a threshold is set in the level detection unit 344, and the level detection unit 344 inputs the signal a to the counter 345 and the determination unit 346 when the signal level force of the input signal becomes larger than the threshold.
  • the measurement sound is input from the microphone 3a
  • the input of the sound corresponding to the first pulse is started (T1 in FIG. 8B)
  • the input of the sound corresponding to the second pulse is opened.
  • the signal a is input to the counter 345 and the determination unit 346 at the start (T2 in FIG. 8B) and at the start of input of the voice corresponding to the third pulse (T3 in FIG. 8B).
  • FIG. 8B is a diagram for explaining an example of the timing of the signal a and the signal b input to the determination unit 346.
  • the horizontal axis indicates the passage of time.
  • the determination unit 346 receives the signal a from the level detection unit 344 at the timing of T1, the timing of T2, and the timing of T3.
  • the time tlO has elapsed from the timing of T1 (timing T1-1) and when the time t20 has elapsed (timing T1-2)
  • the time tlO has elapsed from the timing of T2 (timing T2— 1) and when time t20 has passed (timing T2-2-2)
  • signal b Is input to the judgment unit 346.
  • the signal bl is input when the time tlO has elapsed
  • the signal b2 is input when the time t20 has elapsed.
  • Determination unit 346 determines whether a signal is input from level detection unit 344 when signal b is input from counter 345. In this figure, the signal bl is input at the timing T1-1. Since the timing coincides with the timing T2, the signal a is input. If signal a is input when signal bl is input, it is determined that the voice corresponding to the first pulse is input at timing T1.
  • the determination unit 346 receives the first to third voices corresponding to the first to third pulses as described above. When it is determined that the signals are input in the third order, the remote control unit 33 is notified that the measurement voice has been detected. As a result, the measurement voice can be detected even if noise is input from the microphone 3a to the signal detector 34A together with the voice of the pulse of the specific pattern.
  • the measurement audio signal composed of a specific-pattern pulse train is input to the speaker units SP1 and SPn. Then, when an audio signal that exceeds a threshold value (predetermined level) so as to match the specific pattern is input to the signal detection unit 34A, it is determined that the measurement audio is input.
  • a threshold value predetermined level
  • a third embodiment of the present invention will be described with reference to FIG.
  • a signal obtained by adding and synthesizing the audio signal having the frequency fl and the audio signal having the frequency f2 is used as the measurement audio signal.
  • a pulse train having a specific pattern is used as a measurement audio signal.
  • the third embodiment is a pulse train having a signal power obtained by adding and synthesizing an audio signal having a frequency fl and an audio signal having a frequency f2, and using a specific non-turn signal as a measurement audio signal.
  • the third embodiment is different from the first embodiment in that the measurement audio signal and the remote controller 3 include a signal detection unit 34B instead of the signal detection unit 34, and other speaker devices.
  • the configurations of 2 and the remote controller 3 are the same as those in the first embodiment. Therefore, only the configuration of the signal detection unit 34B will be described below, and the description of the other configurations will be omitted.
  • FIG. 9 is a block diagram showing a configuration of a signal detection unit 34B that works on the third embodiment.
  • the signal detection unit 34B includes a bandpass filter 341 (341A to 341C), a level detection unit 342 (342A to 342C), a determination unit 343, a counter 345, and a determination unit 346.
  • the bandpass filters 341A to 341C pass only the components of the frequency fl, the frequency f2, and the frequency f3, respectively, of the audio signal input from the microphone 3a. Let Each component that has passed through is input to the corresponding level detector 342 (342A to 342C). Similarly to the first embodiment, the level detection units 342A to 342C also input a signal to the determination unit 343 when the level of the input audio signal exceeds the threshold value.
  • the determination unit 343 inputs a signal to the counter 345 and the determination unit 346 when the signal is input from the level detection unit 342A and the level detection unit 342B and the signal of the level detection unit 342C is not input.
  • the counter 345 starts timing when a signal is input, and inputs the signal to the determination unit 346 when the time tlO and the time t20 have elapsed.
  • the determination unit 346 also detects the measurement sound when the level detection units 342A and 342B force are also input when the signal is input from the counter 345 three times in succession. Notify the remote control 33.
  • a pulse train having a signal power obtained by adding and synthesizing the audio signal of frequency fl and the audio signal of frequency f2, and having a specific pattern is the measurement audio.
  • Signals are input to the speaker units SP1 and SPn. Then, when an audio signal exceeding a predetermined level is input with the microphone 3a so as to match the specific pattern with respect to the frequencies fl and f2, it is determined that the measurement audio is detected. In this way, for both components of the frequencies fl and f2, the measurement sound is detected only when the level of the input signal exceeds a predetermined level in a specific pattern. As a result, the effect of preventing erroneous detection of the measurement sound is further improved as compared with the first and second embodiments.
  • all the pulses constituting the pulse train include components of the same frequency fl, f2, but signals including different frequency components may be used for each pulse.
  • the present invention when the start button 321a is pressed, the position coordinates of the remote controller 3 are detected, but the present invention is not limited to this configuration. For example, after the start button 321a is pressed once, the operation is repeatedly repeated until the operation button 321 for ending this position detection is pressed. The position detection of Mokon 3 may be performed. According to this, if the listener moves with the remote control 3 during this period, the listening position will be detected following this movement, and the delay control value will be changed.
  • the measurement audio signal is input to the speaker units SP1 and SPn.
  • the present invention is not limited to this, and the configuration in which the measurement audio signal is input to another speaker unit SP is provided. Also good.
  • the remote controller 3 may not include the microphone 3a. It is only necessary to connect an external microphone 3a to the remote control 3 and place the microphone 3a at the listening position. Furthermore, the present invention is not limited to the remote controller 3, and may be another terminal device (for example, a general-purpose device) that can input a signal from the microphone 3a and has a function of communicating with the speaker device 2.
  • a general-purpose device for example, a general-purpose device
  • the speaker device 2 is configured to integrally include the speaker array 2a, but is not limited thereto.
  • a speaker system including a speaker array 2a and a function unit that performs signal processing for adjusting a delay time and an output level on an audio signal as separate units may be used instead of the speaker device 2.
  • this functional unit may be provided in a separate audio device.
  • the speaker array 2a includes speaker units SP1 to SPn arranged in a line, but is not limited to this configuration.
  • it is composed of speaker units SP arranged in a matrix, Hercam, or circle!
  • the speaker device 2 may include a plurality of normal speakers instead of the speaker array 2a.
  • the present invention can be applied to any configuration in which the listening position of the listener is detected by inputting the measurement audio signal to the plurality of speakers and detecting the measurement audio with the remote controller 3.
  • the position detection device and the position detection method of the present invention are not limited to the above-described embodiment, and do not depart from the gist of the present invention. Of course, various changes can be obtained.
  • the present invention is useful for a position detection system that can effectively prevent erroneous detection of measurement sound. Furthermore, the present invention is capable of effectively preventing erroneous detection of measurement sound. This is useful for a speaker device and a terminal device used in a position detection system.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Health & Medical Sciences (AREA)
  • Stereophonic System (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

 測定用音声の誤検出を効果的に防ぐことができる位置検出システムを提供する。位置検出システムは、オーディオ装置とマイクロフォンから音声信号を入力する端末装置を含む。オーディオ装置は、スピーカに異なった周波数の2以上の音声信号から成る測定用音声信号をスピーカに順番に入力し、測定用音声信号の音声を収音したことを示す通知信号を端末装置から受信し、スピーカSP1、スピーカSPnから測定用音声信号の音声の出力後からこの測定用音声信号の通知信号を信号受信部で受信するまでの時間t1、時間t2を計時し、時間t1及び時間t2を用いて、マイクロフォンの位置を演算する。端末装置は、測定用音声信号の各周波数成分について、所定レベルを超えた音声信号をマイクロフォンから入力した場合に測定用音声信号の成分として検出し、測定用音声信号を検出したときに、通知信号を送信する。

Description

位置検出システム、この位置検出システムに用いるオーディオ装置及び 端末装置
技術分野
[0001] この発明は、スピーカから出力された測定用音声をマイクロフォンで入力し、この測 定用音声の入力タイミングを用 、てリスナの聴取位置の測定を行う位置検出システム 、この位置検出システムに用いるオーディオ装置及び端末装置に関する。 本願は、
2005年 12月 2日に、日本に出願された特願 2005— 349090号に基づき優先権を 主張し、その内容をここに援用する。
背景技術
[0002] 従来、マルチチャンネルで音声を出力するオーディオ装置や、スピーカアレイ装置 等、複数のスピーカからリスナの聴取位置に応じた音量や遅延時間で音声を出力す るものが知られている。このようなスピーカ装置は、リスナの聴取位置に応じてオーデ ィォ信号の出力レベルの調整や遅延時間の付与が行われる。すなわち、複数のスピ 一力から出力された音声が同音量で聴取位置に到達するような出力レベルに、ォー ディォ信号が調整される。これととも〖こ、これらの音声が同じタイミングで聴取位置に 到達するように遅延時間が付与される。
[0003] 上記のような遅延時間や音量を算出するため、聴取位置は予めスピーカ装置に取 得されて!/ヽなければならな!/ヽ。この聴取位置を自動的に検出するオーディオ装置が 、例えば特許文献 1等で提案されている。このオーディオ装置は、 Lチャンネル用及 び Rチャンネル用の 2つのスピーカとマイクロフォンを備える。マイクロフォンは予め聴 取位置に配置される。この後、オーディオ装置は、測定用音声信号を発生して 2つの スピーカに順番に入力する。
[0004] この測定用音声信号の音声 (測定用音声)はマイクで収音される。オーディオ装置 は、 Lチャンネルのスピーカに入力用の測定用音声信号を発生して力 マイクに測定 用音声が到達するまでの時間 tlOを算出する。同様にして、オーディオ装置は、 Rチ ヤンネルのスピーカに入力用の測定用音声信号を発生して力 マイクに測定用音声 が到達するまでの時間 t20を算出する。
[0005] オーディオ装置は、この時間 tlOを用いて Lチャンネルのスピーカからマイクロフォ ンまでの距離を算出し、これとともに時間 t20を用いて Rチャンネルのスピーカからマ イク口フォンまでの距離を算出する。これによつて、聴取位置が算出される。この様に して、オーディオ装置は聴取位置を取得することができ、聴取位置に応じた遅延時間 や出力レベルを算出することができる。
特許文献 1:特開平 4— 370000号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、上記従来のオーディオ装置では、測定用音声としてインノ ルスを用 いるため、マイク力 入力した環境音等のノイズやスピーカ装置力 出力される音楽 等を測定用音声と誤検出してしまう場合があった。すなわち、ノイズや音楽等にはィ ンノ ルスと似た成分が含まれて 、るため、このノイズや音楽力インパルスとして誤検 出されてしまう場合があった。
[0007] マイク力も入力された音声信号力もバンドパスフィルタ等を用いて測定用音声の成 分のみを分離することができればよいが、インパルスは周波数スペクトルが広いため
、測定用音声の成分のみを分離することは困難であった。このような、誤検出があると
、測定結果が不正確なものとなる。
[0008] そこで、本発明の目的は、測定用音声の誤検出を効果的に防ぐことができる位置 検出システムを提供することである。
[0009] 本発明の更なる目的は、測定用音声の誤検出を効果的に防ぐことができる位置検 出システムに用いるオーディオ装置及び端末装置を提供することを目的としている。 課題を解決するための手段
[0010] 本発明の第 1の視点によれば、位置検出システムは、オーディオ装置と、このォー ディォ装置と通信する機能を有するとともに、このオーディオ装置力 出力された音 声を収音するマイクロフォン力 音声信号を入力する端末装置とを少なくとも含む。 前記オーディオ装置は、異なった周波数の 2以上の音声信号から成る測定用音声信 号を第 1及び第 2スピーカに順番に入力する入力部と、前記マイクロフォンで測定用 音声信号の音声を収音したことを示す通知信号を前記端末装置から受信する信号 受信部と、第 1スピーカ力 前記測定用音声信号の音声が出力されてから、この測定 用音声信号の前記通知信号を信号受信部で受信するまでの第 1時間と、第 2スピー 力から前記測定用音声信号の音声が出力されてから、この測定用音声の前記通知 信号を前記信号受信部で受信するまでの第 2時間とを計時する計時部と、この計時 部で計時した前記第 1時間及び前記第 2時間を用いて、前記マイクロフォンの位置を 演算する演算部と、を少なくとも含む。
[0011] また、前記端末装置は、前記測定用音声信号の各周波数成分について、所定レべ ルを超えた音声信号を前記マイクロフォン力 入力した場合に、前記測定用音声信 号の成分として検出する信号検出部と、この信号検出部で前記測定用音声信号を 検出したときに、前記通知信号を前記オーディオ装置に送信する信号送信部と、を 少なくとも含む。
[0012] 上述した位置検出システムにおいて、前記入力部は、測定用音声信号として和音 の信号を前記スピーカに入力する。
[0013] 本発明の第 2の視点によれば、オーディオ装置は、異なった周波数の 2以上の音声 信号力 成る測定用音声信号を第 1及び第 2スピーカに順番に入力する入力部と、 マイクロフォンを備えた端末装置力 通信信号を受信する信号受信部であって、前 記マイクロフォンで前記測定用音声信号の音声を収音したことを示す通知信号を受 信する信号受信部と、第 1スピーカ力 測定用音声信号の音声が出力されてから、こ の測定用音声信号の通知信号を前記信号受信部で受信するまでの第 1時間と、第 2 スピーカから前記測定用音声信号の音声が出力されてから、この測定用音声の前記 通知信号を前記信号受信部で受信するまでの第 2時間を計時する計時部と、この計 時部で計時した前記第 1時間及び前記第 2時間を用いて、前記マイクロフォンの位置 を測定する位置測定部と、を少なくとも含む。
[0014] 本発明の第 3の視点によれば、端末装置は、第 1及び第 2スピーカを含む複数のス ピー力にオーディオ信号を入力するオーディオ装置と通信する機能を備える。前記 端末装置は、マイクロフォン力 音声信号を入力する音声信号入力部と、スピーカ装 置力 出力された、異なった周波数の 2以上の音声信号から成る測定用音声信号に 対応する各周波数につ!ヽて、所定レベルを超えた音声信号を前記音声信号入力部 で入力した場合に前記測定用音声信号として検出する信号検出部と、この信号検出 部で前記測定用音声信号を検出したときに、前記通知信号を前記オーディオ装置に 送信する信号送信部と、を少なくとも含む。
[0015] 上記本発明の第 1、第 2及び第 3の視点における構成によれば、オーディオ装置で は、入力部によって、異なった周波数の 2以上の音声信号力も成る測定用音声信号 が第 1及び第 2スピーカに順番に入力される。
[0016] 端末装置では、音声信号入力部によって、このオーディオ装置力 出力された音 声を収音するマイクロフォン力 音声信号が入力される。そして、測定用音声信号の 各周波数成分にっ 、て、所定レベルを超えた音声信号をマイクロフォン力 入力した 場合に、信号検出部によって、測定用音声信号の成分が検出される。この信号検出 部で測定用音声信号を検出したときに、信号送信部によって、通知信号がオーディ ォ装置に送信される。
[0017] オーディオ装置では、マイクロフォンで測定用音声信号の音声を収音したことを示 す通知信号が、信号受信部によって端末装置力 受信される。ここで、第 1スピーカ から測定用音声信号の音声が出力されてから、この測定用音声信号の通知信号を 信号受信部で受信するまでの第 1時間と、第 2スピーカ力 測定用音声信号の音声 が出力されてから、この測定用音声の通知信号を前記信号受信部で受信するまでの 第 2時間が、計時部によって計時される。
[0018] この計時部で計時した第 1時間及び第 2時間を用いて、演算部によってマイクロフ オンの位置が演算される。
[0019] 上述の様に、本発明では、異なった周波数の 2以上の音声信号から成る測定用音 声信号が第 1及び第 2のスピーカに入力されるとともに、測定用音声信号の各周波数 成分につ!、て、所定レベルを超えた音声信号がマイクロフォン力も入力された場合に 、この入力信号が測定用音声信号の成分として検出される。この様に、異なった周波 数の 2以上の音声信号力 なる測定用音声信号を用いることで、 1の音声信号からな る測定用音声信号を用いるのに比較して、測定用音声をノイズ等と判別することが容 易になる。これによつて、環境音等のノイズや音楽等を測定用音声として誤検出する ことを効果的に防止することが可能となる。
[0020] また、前記入力部が、測定用音声信号として和音の信号を前記スピーカに入力す ることで、測定用音声が和音となるため、リスナの耳障りでない音声で測定用音声を 放音することができる。
[0021] 本発明の第 4の視点によれば、位置検出システムは、オーディオ装置と、このォー ディォ装置と通信する機能を有するとともに、このオーディオ装置力 出力された音 声を収音するマイクロフォン力 音声信号を入力する端末装置を少なくとも含む。前 記オーディオ装置は、特定パターンのパルス列の測定用音声信号を第 1及び第 2ス ピー力に順番に入力する入力部と、前記マイクロフォンで前記測定用音声信号の音 声を収音したことを示す通知信号を前記端末装置から受信する信号受信部と、前記 第 1スピーカ力 前記測定用音声信号の音声が出力されてから、この測定用音声信 号の前記通知信号を前記信号受信部で受信するまでの第 1時間と、前記第 2スピー 力から前記測定用音声信号の音声が出力されてから、この測定用音声の前記通知 信号を前記信号受信部で受信するまでの第 2時間を計時する計時部と、この計時部 で計時した前記第 1時間及び前記第 2時間を用いて、前記マイクロフォンの位置を演 算する演算部とを、少なくとも含む。
[0022] 前記端末装置は、前記特定パターンに合致するように所定レベルを超えた音声信 号を前記マイクロフォン力 入力した場合に、前記測定用音声信号の成分として検出 する信号検出部と、この信号検出部で前記測定用音声信号を検出したときに、前記 通知信号を前記オーディオ装置に送信する信号送信部とを、少なくとも含む。
[0023] 上記位置検出システムにおいて、前記入力部は、異なった周波数の 2以上の音声 信号から成る前記パルス列を前記測定用音声信号として前記第 1及び第 2スピーカ に順番に入力し、前記信号検出部は、前記測定用音声信号の各周波数について、 前記特定パターンに合致するように所定レベルを超えた音声信号を前記音声信号 入力部で入力した場合に、前記測定用音声として検出する。
[0024] 本発明の第 5の視点によれば、オーディオ装置は、特定パターンのパルス列の測 定用音声信号を第 1及び第 2スピーカに順番に入力する入力部と、マイクロフォンを 備えた端末装置力 通信信号を受信する信号受信部であって、前記マイクロフォン で前記測定用音声信号の音声を収音したことを示す通知信号を受信する信号受信 部と、前記第 1スピーカ力 前記測定用音声信号の音声が出力されてから、この測定 用音声信号の前記通知信号を前記信号受信部で受信するまでの第 1時間と、前記 第 2スピーカ力 前記測定用音声信号の音声が出力されてから、この測定用音声の 前記通知信号を前記信号受信部で受信するまでの第 2時間を計時する計時部と、こ の計時部で計時した前記第 1時間及び前記第 2時間を用いて、前記マイクロフォンの 位置を測定する位置測定部とを、少なくとも含む。
[0025] 本発明の第 6の視点によれば、端末装置は、第 1及び第 2スピーカを含む複数のス ピー力にオーディオ信号を入力するオーディオ装置と通信する機能を備える。前記 端末装置は、マイクロフォン力 音声信号を入力する音声信号入力部と、スピーカか ら測定用音声として出力された特定パターンのパルス列の音声と同じ特定パターン で、所定レベルを超えた音声信号を前記音声信号入力部で入力した場合に、測定 用音声信号として検出する信号検出部と、この信号検出部で前記測定用音声信号 を検出したときに、前記通知信号を前記オーディオ装置に送信する信号送信部とを 、少なくとも含む。
[0026] 上記構成によれば、オーディオ装置では、入力部によって、特定パターンのノルス 列の測定用音声信号が第 1及び第 2スピーカに順番に入力される。
[0027] 前述した端末装置では、信号入力部によって、このオーディオ装置から出力された 音声を収音するマイクロフォン力 音声信号が入力される。そして、特定パターンに 合致するように所定レベルを超えた音声信号を音声信号入力部で入力した場合に、 信号検出部によって、測定用音声が検出される。この信号検出部で測定用音声信号 を検出したときに、信号送信部によって、通知信号がオーディオ装置に送信される。
[0028] 前述したオーディオ装置では、マイクロフォンで測定用音声信号の音声を収音した ことを示す通知信号が、信号受信部によって端末装置力 受信される。ここで、第 1ス ピー力から測定用音声信号の音声が出力されてから、この測定用音声信号の通知 信号を信号受信部で受信するまでの第 1時間と、第 2スピーカから測定用音声信号 の音声が出力されてから、この測定用音声の通知信号を前記信号受信部で受信す るまでの第 2時間が、計時部によって計時される。 [0029] この計時部で計時した第 1時間及び第 2時間を用いて、演算部によってマイクロフ オンの位置が演算される。
[0030] 上述の様に、本発明では、特定パターンのパルス列の測定用音声信号が第 1及び 第 2のスピーカ〖こ入力されるとともに、特定パターンに合致するように所定レベルを超 えた音声信号が音声信号入力部で入力された場合に、この入力信号が測定用音声 として検出される。この様に、特定パターンのパルス列の測定用音声信号が用いられ るため、ノイズ等と測定用音声との判別がし易くなる。これによつて、環境音等のノィ ズゃ音楽等を測定用音声として誤検出することを効果的に防止することが可能となる
[0031] また、上記構成によれば、異なった周波数の 2以上の音声信号から成るパルス列が 測定用音声信号として第 1及び第 2スピーカに順番に入力される。そして、信号検出 部によって、測定用音声信号の各周波数について、特定パターンに合致するように 所定レベルを超えた音声信号を音声信号入力部で入力した場合に、入力信号が測 定用音声として検出される。これによつて、測定用音声の誤検出防止の効果を更に 向上させることが可會となる。
発明の効果
[0032] 本発明の 1つの視点によれば、異なった周波数の 2以上の音声信号力 成る測定 用音声信号が第 1及び第 2のスピーカに入力されるとともに、測定用音声信号の各周 波数成分にっ ヽて、所定レベルを超えた音声信号がマイクロフォンカゝら入力された 場合に、この入力信号が測定用音声として検出される。この様に、異なった周波数の 2以上の音声信号力 なる測定用音声信号を用いることで、 1の音声信号力 なる測 定用音声信号を用いるのに比較して、測定用音声をノイズ等と判別することができる 。これによつて、環境音等のノイズや音楽等を測定用音声として誤検出することを効 果的に防止することができる。
また、本発明の 1つの視点によれば、特定パターンのパルス列の測定用音声信号 が第 1及び第 2のスピーカに入力されるとともに、特定パターンに合致するように所定 レベルを超えた音声信号が音声信号入力部で入力された場合に、この入力信号が 測定用音声として検出される。この様に、特定パターンのパルス列の測定用音声信 号が用いられるため、ノイズ等と測定用音声との判別がし易くなる。これによつて、環 境音等のノイズや音楽等を測定用音声として誤検出することを効果的に防止すること ができる。
図面の簡単な説明
[0033] [図 1]本発明の第 1の実施形態にカゝかるオーディオシステムの外観を示す図である。
[図 2]図 1に示す位置検出システムが実行する位置検出処理を説明するための図で ある。
[図 3]図 1に示すオーディオシステムの構成を概略的に示すブロック図である。
[図 4]図 3に示す信号検出部及びその周辺の構成を示すブロック図である。
[図 5A]図 3に示すマイク力 入力された音声信号の周波数スペクトルの一例を示す 図である。
[図 5B]図 3に示すマイク力 入力された音声信号の周波数スペクトルの一例を示す 図である。
[図 6]図 3及び図 4で示すオーディオシステムが実行する位置検出処理を含む処理の フローチャートの一部である。
[図 7]図 3及び図 4で示すオーディオシステムが実行する位置検出処理を含む処理の フローチャートの一部である。
[図 8A]本発明の第 2の実施形態にカゝかるオーディオシステムにおける信号検出部の 構成を示すブロック図である。
[図 8B]図 8Aに示す判定部に入力される信号 aと信号 bのタイミングの一例を説明する ための図である。
[図 9]本発明の第 3の実施形態に力かるオーディオシステムにおける信号検出部の構 成を示すブロック図である。
符号の説明
[0034] 1 オーディオシステム (位置検出システム)
2—スピーカ装置 (オーディオ装置)
SP1, SPn スピーカユニット(第 1及び第 2スピーカ)
3a—マイク 3—リモートコントローラ (端末装置)
22—信号処理部 (入力部)
24 赤外線受光部 (信号受信部)
261—計時部
263 演算部
31 赤外線発光部 (信号送信部)
34, 34A, 34B—信号検出部 (音声信号入力部)
fl 周波数
f2—周波数
発明を実施するための最良の形態
[0035] (第 1の実施形態)
図 1〜図 7を参照して本発明の第 1の実施形態に力かるオーディオシステム 1につ いて説明する。図 1は、第 1の実施形態に力かるオーディオ (位置検出)システム 1の 外観を示す図である。この外観図はオーディオシステム 1を上方力も見た図である。 オーディオシステム 1は、スピーカ装置 2とこのスピーカ装置 2を操作する機能を備え たリモートコントローラ 3 (以下、「リモコン 3」と記載する。)とからなる。
スピーカ装置 2は、ライン状に配列されたスピーカユニット SP力もなるスピーカァレ ィ 2aを備える。これらのスピーカユニット SPに入力する各オーディオ信号に本図の矢 印で示す遅延時間を付与することで、スピーカアレイ 2aから所定の指向方向及び指 向範囲で音声ビームが出力される。
[0036] すなわち、各スピーカユニット SPから出力された音声が同時に焦点 pに到達するよ うに、各オーディオ信号に遅延時間が付与される。これによつて、各スピーカユニット SP (SPl〜SPn)からの音声信号が合成された音声ビームが焦点 pに向けて出力さ れる。リスナがスピーカ装置 2からの音声を聴取する聴取位置をこの焦点 pとすること により、音声ビームをリスナの聴取位置にのみ到達させることができる。これによつて、 聴取位置にいる特定のリスナのみが音声を聴くことができる。
[0037] 上述したように、特定のリスナのみがスピーカ装置 2からの所望の音声 (オーディオ コンテンツ)を聴くためには、リスナの聴取位置力も各スピーカユニット SPまでの距離 に基づいた各オーディオ信号への遅延時間がスピーカ装置 2に予め設定されなくて はならない。
[0038] この遅延時間を設定するために、スピーカ装置 2は聴取位置から両端のスピーカュ ニット SP (SP1, SPn)までの距離を測定して聴取位置を検出する処理 (位置検出処 理)を実行する。そして、スピーカ装置 2はこの聴取位置に各スピーカユニット SPから の音声が同時に到達するような遅延時間を算出し、オーディオ信号に付与する遅延 時間として設定する。
[0039] 図 2は、図 1で示すオーディオシステム 1が実行する位置検出処理を説明するため の図である。まず、準備として、リモコン 3がリスナによって聴取位置に予め配置される 。このリモコン 3には、マイク 3aが配設されている。また、スピーカ装置 2とリモコン 3と は通信機能を有している。この後、スピーカ装置 2は両端のスピーカユニット SP1, S Pnから順番に測定用音声を出力する。リモコン 3は、マイク 3aから測定用音声を入力 した場合に、この入力を通知する通知信号をスピーカ装置 2に送信する。
[0040] スピーカ装置 2は、スピーカユニット SP1が測定用音声を出力して力も通知信号を 受信するまでの時間 tl (第 1時間)を計時する。また、スピーカユニット SPnが測定用 音声を出力してから通知信号を受信するまでの時間 t2 (第 2時間)を計時する。スピ 一力装置 2は、この時間 tl及び時間 t2を用いて聴取位置を算出する。この聴取位置 の算出方法については、詳しくは後述する。
[0041] 本実施形態では、測定用音声信号が周波数の異なる 2つの音声信号の加算合成 信号であることを特徴とする。リモコン 3は、測定用音声信号の各周波数 (周波数 fl、 周波数 f2)について、所定レベル以上の信号がマイク 3aから入力されたときに測定 用音声として検出し、通知信号をスピーカ装置 2に送信する。
[0042] この様に、異なった周波数の 2以上の音声信号力 なる測定用音声信号を用いるこ とで、 1の音声信号力もなる測定用音声信号を用いるのに比較して、リモコン 3で測定 用音声をノイズ等と判別することが容易になる。これによつて、環境音等のノイズゃス ピー力装置 2の放音する楽音等を測定用音声として誤検出することが効果的に防止 され、聴取位置の測定精度を向上させることができる。
[0043] 以下に、上述したような聴取位置を測定する機能を備えたオーディオシステム 1の 構成を説明する。図 3は、オーディオシステム 1の構成を概略的に示すブロック図で ある。スピーカ装置 2は、上述したスピーカアレイ 2aの他に、オーディオ入力制御部 2 1、信号処理部 22、増幅部 23、赤外線受光部 24、コントローラ 25及び位置検出部 2 6を備える。
[0044] オーディオ入力制御部 21は、入力端子 27に接続されたオーディオ再生装置から デジタルのオーディオ信号 (オーディオコンテンツ)を入力するインタフェース回路で ある。オーディオ入力制御部 21は入力したオーディオ信号を信号処理部 22に入力 する。
[0045] 信号処理部 22は DSP(Digital Signal Processor)等で実現される。信号処理部 22は 、入力したオーディオ信号に対してィコライジング等の所定の音声信号処理を行う。 信号処理部 22は入力したオーディオ信号を各スピーカユニット SPの個数分に分岐 する。
[0046] 信号処理部 22には、コントローラ 25からオーディオ信号を調整するための各種パ ラメータ (ディレイ制御値、レベル制御値等)が設定される。そして、信号処理部 22は 、このパラメータに基づいて、分岐したオーディオ信号の出力レベルを調整する処理 を行うとともに遅延時間を付与する処理を行う。ここで、オーディオ信号に遅延時間を 付与する目的は、図 1を用いて上述したように(図 1矢印を参照)、音声ビームを聴取 位置に指向させるためである。この遅延時間は、上述したように、リスナの所望のォー ディォコンテンツを再生する前に予め設定されて 、る。
[0047] 信号処理部 22は、上記処理を施したオーディオ信号を対応する増幅部 23に入力 する。増幅部 23は、各スピーカユニット SPl〜SPnに対応付けて複数設けられてい る。これらの増幅部 23を区別する場合には、対応するスピーカユニット SPl〜SPnと 同一の数字を付して増幅部 231〜23nと記載する。
[0048] 増幅部 231〜23nは、入力したオーディオ信号の出力レベルを信号処理部 22の 指示に従って増幅する。増幅部 231〜23nはこの増幅後のオーディオ信号を対応す るスピーカユニット SPl〜SPnに入力する。これによつて、スピーカユニット SP1〜SP nから音声が出力され、この音声の合成音声である音声ビームが聴取位置に指向す る。 [0049] 赤外線受光部 24は、赤外線受光素子等を備え、リモコン 3から赤外光であるコマン ド信号を受信する。そして、赤外線受光部 24はこの受信したコマンド信号を電気信 号に変換してコントローラ 25に入力する。
[0050] コントローラ 25は、 CPU (Central Processing Unit)やメモリ等で実現され、このメモ リに記憶するプログラムを実行することでスピーカ装置 2の各部の動作を制御する。コ ントローラ 25は、信号処理部 22にパラメータを設定する。このパラメータには、ォー ディォ信号に付与するディレイを制御するためのディレイ制御値や、オーディオ信号 の出力レベルを制御するためのレベル制御値等がある。これによつて、コントローラ 2 5は信号処理部 22の音声信号処理を制御する。
[0051] また、コントローラ 25は、メモリに記憶するプログラムを実行することで赤外線受光 部 24から入力されたコマンド信号に応じた処理を行う。このコマンド信号には、例え ば、入力端子 27に接続した図略のオーディオ再生装置からのオーディオ信号を再 生させるコマンド信号や、開始コマンド信号等がある。開始コマンド信号とは、上述し た位置検出処理を本スピーカ装置 2に実行させるためのコマンド信号である。
[0052] コントローラ 25は、開始コマンド信号を入力したときにスピーカ側位置検出処理を 実行する。このスピーカ側位置検出処理では、コントローラ 25は信号処理部 22に測 定用音声信号を発生させてスピーカユニット SP1, SPnに対して出力させる。この測 定用音声信号は上述したように、周波数 flの音声信号と周波数 f 2の音声信号を加 算合成した信号である。
[0053] また、スピーカ側位置検出処理では、コントローラ 25は、上述したスピーカユニット S P1に測定用音声信号を入力して力 通知信号を入力するまでの時間 tl, t2を、位 置検出部 26を用いて計時する。具体的には、スピーカユニット SP1, SPnに出力す る測定用音声信号の発生を信号処理部 22に指示したときを、測定用音声信号を入 力したときとする。そして、位置検出部 26を用いて、このときから赤外線受光部 24で 通知信号を受信したときまでの時間を計時する。そして、この計時時間を時間 tl, t2 として位置検出部 26を用いて聴取位置を算出する。
[0054] この聴取位置の算出では、時間 tl, t2はスピーカユニット SP1, SPnが測定用音声 を出力して力もこの音声がマイク 3aに入力されるまでの時間として扱われる。本実施 形態において、測定用音声信号を発生してからスピーカユニット SP1, SPnに入力 するまでの時間、測定用音声信号が音声に変換されるまでの時間、リモコン 3におい てマイク 3aから入力された音声信号力 測定用音声を検出するための時間、通知信 号の生成の時間及びこの通知信号の送受信の時間等は、測定用音声の伝搬時間と 比較してはるかに小さいので無視するものとする。もっとも、無視できない程時間を要 する場合には、この時間分の補正をおこなって時間 tl, t2を求めてもよい。
[0055] コントローラ 25は、このスピーカ側位置検出処理によって取得された聴取位置に応 じたパラメータを信号処理部 22に設定する。すなわち、音声ビームが聴取位置に指 向するように、図 1の矢印に示すようなディレイを付与するようなディレイ制御値を信 号処理部 22に設定する。これによつて、音声ビームを聴取位置に指向させることがで きる。このスピーカ側位置検出処理については、詳しくは図 6及び図 7を用いて後述 する。
[0056] 位置検出部 26は、 CPU (Central Processing Unit)や ROM、 RAM等で実現される 。なお、コントローラ 25及び位置検出部 26を同一の CPU及びメモリで実現してもよい 。位置検出部 26は、 ROMで記憶されるプログラムを実行することで、コントローラ 25 力 指示があつたときに時間 tl, t2を計時する処理を実行するとともに、この時間 tl , t2を用いて聴取位置を演算する処理を実行する。
[0057] 位置検出部 26は、これらの処理を実行するために機能的に計時部 261、時間記憶 部 262及び演算部 263を備える。計時部 261は、コントローラ 25からの指示に応じて 計時を開始及び終了する。時間記憶部 262は、計時部 261で計時した時間 tl, t2を 記憶するとともに、演算部 263の作業領域として機能する。演算部 263は、時間記憶 部 262で記憶される時間 tl, t2を用いて聴取位置を演算により求める。以下に図 2を 用いて、聴取位置を演算する方法について説明する。
[0058] ここで、説明の便宜を図るために、スピーカユニット SPの配列方向を X軸、この X軸 に直交しかつ水平方向と平行な軸を Y軸とする。 X軸は、スピーカ装置 2に向かって 右側、すなわちスピーカユニット SPn側を正の方向とする。 Y軸は、スピーカユニット S Pからの音声信号の出力方向、すなわちユーザ側を正の方向とする。 X軸と Y軸の交 点、すなわち X軸と Y軸の原点はスピーカユニット SPl〜SPnの中央とする。 [0059] 時間 tlと時間 t2とが等しい場合には、リモコン 3とスピーカユニット SP1の距離と、リ モコン 3とスピーカユニット SPnの距離とが等しいことを意味する。従って、図 2中の Y 軸上、すなわちスピーカ装置 2の中央正面(図 2に示す真ん中のリモコン 3の位置)に リモコン 3が位置する。この場合、演算部 263は、時間 tlまたは時間 t2と、音速 cと、ス ピー力ユニット SP1及びスピーカユニット SPnの距離(xl— x2)とから、下記式(1)に よりリモコン 3とスピーカ装置 2との距離 yを算出する。なお、スピーカユニット SP1の X 軸の座標を xl、スピーカユニット SPnの X軸上の座標を x2とする。
[0060] y=[(ctl)2-{(x2-xl)/2}2]1/2
= [(ct2)2— {(χ2— χ1)Ζ2}2]1/2···式 (1)
また、時間 tl,が時間 t2,よりも長い場合には、リモコン 3とスピーカユニット SP1の 距離がリモコン 3とスピーカユニット SPnの距離よりも長 、ことを意味する。したがって 、リモコン 3がスピーカ装置 2の中央よりもスピーカユニット SPn側、すなわち図 2を正 面視した際にリモコン 3が Y軸よりも右側(図 2に示す右端のリモコン 3の位置)に位置 する。この場合には、演算部 263は、リモコン 3の X軸上の座標 x,およびリモコン 3とス ピー力装置 2との距離 y'を、下記式 (2), (3)により算出する。
[0061] x, =[(ctl,)2— (ct2')2+ (x2)2- (xl)2]/[2(x2— xl) · ·式(2)
y'=[(ct2')2-(x2-x')2]1/2
= [(ctl,)2— (χ,— χ1)2]1/2···式 )
また、時間 tl"が時間 t2"よりも短い場合には、リモコン 3とスピーカユニット SP1の 距離がリモコン 3とスピーカユニット SPnの距離よりも短 、ことを意味する。したがって 、リモコン 3がスピーカ装置 2の中央よりもスピーカユニット SP1側、すなわち図 2を正 面視した際にリモコン 3が Y軸よりも左側(図 2に示す左端のリモコン 3の位置)に位置 する。この場合には、演算部 263は、リモコン 3の X軸上の座標 X"及びリモコン 3とスピ 一力装置 2との距離 y"を、下記式 (4) (5)により算出する。
[0062] X" = [ (ctl,,) 2— (ct2")2+ (x2) 2— (xl) 2]/[2 (x2— xl)] · · ·式(4)
y" = [(ct2")2-(x2-x")2]12
= [(ctl")2— (χ,,— χ1)2]1/2···式 (5)
次に、リモコン 3の構成について説明する。リモコン 3は、上述したマイク 3aの他に、 赤外線発光部 31、操作部 32、リモコン制御部 33及び信号検出部 34を備える。赤外 線発光部 31は、赤外線発光素子等を備え、入力されたコマンドコードに応じたコマン ド信号を赤外光として出力する。操作部 32は、複数の操作ボタン 321を備え、この操 作ボタン 321が指等で押下されることでリスナの操作を受け付ける。操作部 32は、リ スナの押下した操作ボタン 321を示す操作信号をリモコン制御部 33に入力する。
[0063] リモコン制御部 33は、マイクロコンピュータ等で実現され、本リモコン 3の各部の動 作を制御する。リモコン制御部 33は、各操作ボタン 321に対応するコマンドコードを 記憶する。そして、リモコン制御部 33は、操作信号を入力すると、この操作信号の示 す操作ボタン 321に対応するコマンドコードを特定し、この特定したコマンドコードを 赤外線発光部 31に入力する。
[0064] 例えば、聴取位置を測定させるための操作ボタン 321 (開始ボタン 321a)が押下さ れ、これを示す操作信号を受け付けた場合には、リモコン制御部 33は、スピーカ装 置 2にスピーカ側位置検出処理を実行させるためのコマンドコードを赤外線発光部 3 1に入力する。そして、赤外線発光部 31からは、このコマンドコードが開始コマンド信 号として出力される。
[0065] リモコン制御部 33は、記憶するプログラムを実行することで、リモコン側聴取位置検 出処理を実行する。上述したように、スピーカ装置 2では、スピーカユニット SP1, SP nから測定用音声が出力される。リモコン側位置検出処理では、マイク 3aから測定用 音声が検出された場合にすなわち信号検出部 34から測定用音声の検出が通知され た場合に、この入力を通知するための通知信号を生成する。そして、リモコン制御部 33は、生成した通知信号を赤外線発光部 31から送信させる。リモコン側位置検出処 理については、詳しくは後述する。
[0066] 信号検出部 34は、マイク 3aで収音した音声信号が入力される。信号検出部 34は、 入力された音声信号から測定用音声成分を検出する。信号検出部 34は、測定用音 声成分を検出した場合にこの検出をリモコン制御部 33に通知する。以下に、図 4を 用いて信号検出部 34の構成を説明する。
[0067] 図 4は、図 3で示す信号検出部 34及びその周辺の構成を示すブロック図である。信 号検出部 34は、 3つのバンドパスフィルタ 341 (341A〜341C)、レベル検出部 342 (342A〜342C)を備えるとともに、判定部 343を備える。ノ ンドパスフィルタ 341に は、マイク 3aから音声信号が入力される。バンドパスフィルタ 341Aは、周波数 flが設 定されている。このため、マイク 3aからの音声信号では、周波数 flの成分のみがバン ドパスフィルタ 341Aを通過することになる。この周波数 flの成分はレベル検出部 34 2Aに入力される。
[0068] バンドパスフィルタ 341Bは、周波数 f 2が設定されている。このため、マイク 3aから の音声信号では、周波数 f 2の成分のみがバンドパスフィルタ 341Bを通過することに なる。この周波数 f2の成分はレベル検出部 342Bに入力される。バンドパスフィルタ 3 41Cは、図 5Aで示すような周波数 flと周波数 f 2の間の周波数 f3が設定されている。 このため、マイク 3aからの音声信号では、周波数 f 3の成分のみがバンドパスフィルタ 341Cを通過すること〖こなる。
[0069] レベル検出部 342A〜342Cには閾値が設定されている。レベル検出部 342A〜3
42Cは、入力した音声信号の信号レベル力この閾値と比較して大きい場合には、判 定部 343に信号を入力する。すなわち、レベル検出部 342Aは、周波数 flの成分の 信号レベルが閾値を超えて大きい場合には判定部 343に信号を入力する。レベル 検出部 342Bは、周波数 f 2の成分の信号レベルが閾値を超えて大きい場合には判 定部 343に信号を入力する。レベル検出部 342Cは、周波数 f3の成分の信号レベル が閾値を超えて大きい場合には判定部 343に信号を入力する。
[0070] 判定部 343は、図 5Aで示すように、レベル検出部 342A及びレベル検出部 342B の双方力も信号の入力があるとともに、レベル検出部 342C力も信号の入力がないと きに、マイク 3aからの音声信号において測定用音声を検出したとしてリモコン制御部 33に通知する。そして、レベル検出部 342A及びレベル検出部 342Bの双方力も信 号の入力がないときや、一方のみ力もし力信号の入力がないときには、判定部 343は リモコン制御部 33への通知は行わない。
[0071] この理由は、測定用音声に含まれる周波数 flの成分及び周波数 f2の成分の双方 が検出されたときにのみ測定用音声を検出したと判定することで、ノイズやスピーカ 装置 2が放音する音楽等を測定用音声として誤検出することを効果的に防止するた めである。 [0072] また、図 5Bで示すように、レベル検出部 342A及びレベル検出部 342Bの双方から 信号の入力があっても、レベル検出部 342C力も信号の入力があるときには、判定部 343はリモコン制御部 33への通知を行わない。この理由は、周波数 fl及び周波数 f 2 の成分のレベルが閾値を超えて大き 、場合であっても、周波数 f 3の成分のレベルが 閾値を超えて大きい場合には、マイク 3aに入力された音声は測定用音声ではなくて ノイズや音楽等である可能性が高 、からである。
[0073] すなわち、環境音等のノイズや音楽等は周波数スペクトルが図 5Bで示すように広 いことが多い。このため、周波数 fl及び周波数 f 2の間である周波数 f 3のレベルも閾 値を超えて大きい場合には、マイク 3aに入力された音声は測定用音声ではなくノィ ズゃ音楽等の他の音声であるとして、リモコン制御部 33への通知が行われない。こ れによって、更に精度良く測定用音声の誤検出を防止することができる。
[0074] なお、周波数 f 3の成分の信号レベルを参照することなぐ周波数 fl及び周波数 f 2 の成分のレベルのみで測定用音声の検出を判定することもできる。もっとも、上述し たように、周波数 f 3の成分の信号レベルを参照する方がより測定用音声の検出精度 が向上するため、好ましい。
[0075] 図 6及び図 7は、図 3及び図 4で示すオーディオシステム 1が実行する位置検出処 理を含む処理のフローチャート(その 1及びその 2)である。この位置検出処理のうち、 リモコン 3が実行するものがリモコン側位置検出処理であり、スピーカ装置 2が実行す るものがスピーカ側位置検出処理である。
[0076] まず、開始ボタン 321aが押下された力どうかをリモコン制御部 33が所定時間間隔 毎に繰り返し判断し、 YESと判断するまで待機する(Sl)。開始ボタン 321aが押下さ れたと判断した場合には(S1で YES)、リモコン制御部 33は、赤外線発光部 31を用 V、てリモコン側位置検出処理の実行を指示する開始コマンド信号を送信する(S2)。
[0077] スピーカ装置 2では、コントローラ 25が開始コマンド信号を入力したかどうかを繰り 返して判断し、 YESと判断するまで待機する (S3)。開始コマンド信号を入力したと判 断した場合には(S3で YES)、コントローラ 25は、信号処理部 22に測定用音声信号 を生成してスピーカユニット SP1に入力させるよう指示するとともに、計時部 261を用 いて計時を開始する(S4)。 [0078] リモコン 3では、リモコン制御部 33がステップ S2の実行後、測定用音声を検出した 力どうかを所定時間間隔毎に繰り返し判断して、 YESと判断するまで待機する (S5) 。この測定用音声を検出したとの判断は、上述したように信号検出部 34から測定用 音声信号の検出が通知されたときになされる。測定用音声を検出したと判断した場 合には(S5で YES)、リモコン制御部 33は赤外線発光部 31を用いてこの受信を通知 するための通知信号を送信する(S6)。
[0079] スピーカ装置 2では、ステップ S4の実行後、コントローラ 25が通知信号を入力した 力どうかを所定時間間隔毎に繰り返し判断して、 YESと判断するまで待機する (S7) 。通知信号を入力したと判断した場合には(S7で YES)、コントローラ 25は計時部 26 1に計時を終了させて、この計時時間である時間 tlを時間記憶部 262に記憶させる( S8)。
[0080] 次に、コントローラ 25は、測定用音声信号を生成してスピーカユニット SPnに入力 するように信号処理部 22に指示し、計時部 261を用いて計時を開始する(S9)。リモ コン 3では、リモコン制御部 33がステップ S6の実行後、測定用音声を検出したかどう かを所定時間間隔毎に繰り返し判断して、 YESと判断するまで待機する(S 10)。こ の測定用音声を検出したとの判断は、上述したように信号検出部 34から測定用音声 信号の検出が通知されたときになされる。
[0081] 図 7を参照して、測定用音声を検出したと判断した場合には(S10で YES)、リモコ ン制御部 33は赤外線発光部 31を用いてこの検出を通知するための通知信号を送 信する(Sl l)。この後、リモコン制御部 33は、リモコン側位置検出処理をステップ S1 に戻す。
[0082] スピーカ装置 2では、ステップ S9の実行後、コントローラ 25が通知信号を入力した 力どうかを所定時間間隔毎に繰り返し判断して、 YESと判断するまで待機する(S12 ) o通知信号を入力したと判断した場合には(S12で YES)、コントローラ 25は計時部 261に計時を終了させて、この計時時間である時間 t2を時間記憶部 262に記憶させ る(S13)。
[0083] この後、コントローラ 25は演算部 263を用いて聴取位置を算出する。具体的には、 演算部 263が時間記憶部 262から時間 tl及び時間 t2を読み出して、この読み出し た時間 tl及び t2を用いて上述したような式(1)〜式(5)の演算を行うことで、聴取位 置座標を算出する(S 14)。コントローラ 25は、この聴取位置座標の示す聴取位置に 音声ビームが指向するようなディレイ制御値を信号処理部 22に設定する(S15)。
[0084] そして、コントローラ 25は信号処理部 22に終了音の音声信号を発生してスピーカ ユニット SPl〜SPnに入力するように指示する。信号処理部 22はこの指示通りの処 理を実行し、これによつて、終了音が発音される(S16)。この後、コントローラ 25は、 スピーカ側位置検出処理をステップ S 3に戻す。
[0085] 上述したように、本実施形態では、位置検出処理において、測定用音声信号として 周波数 flの音声信号と周波数 f2の音声信号を加算合成した信号がスピーカユニット SPl, SPnに入力される。そして、マイク 3aから入力された音声信号において周波数 fl及び周波数 f 2の双方の成分が閾値 (所定レベル)を超えて大きい場合に、これら の成分が判定部 343によって測定用音声として検出される。
[0086] この様に、 2つの音声信号力も成る測定用音声信号を用いることで、リモコン 3でノィ ズ等と測定用音声信号とをバンドパスフィルタ 341を用いて容易に分離することがで きる。また、 2以上の異なった周波数 fl, f2の音声信号からなる測定用音声信号を用 いることで、 1の音声信号力 なる測定用音声信号を用いるのに比較して、位置検出 部 34で測定用音声をノイズ等と判別することが容易になる。これによつて、信号検出 部 34が環境音等のノイズや音楽等の音声を測定用音声として誤検出することを効果 的に防止することができる。 尚、周波数 flと周波数 f2とが、和音の関係であってもよ い。
[0087] 更に、本実施形態では、周波数 fl及び周波数 f2の間である周波数 f3の成分の信 号レベルが所定レベルを超えて大き 、場合には、周波数 fl及び周波数 f 2の成分の 信号レベルが所定レベルを超えて大きくとも、これらの成分は測定用音声として検出 されない。
[0088] 上述したように、環境音等のノイズや音楽等は周波数スペクトルが広 、ことが多!、。
このため、周波数 fl及び周波数 f 2だけでなぐ周波数 f 3の成分の信号レベルも所定 レベルを超えて大きい場合には、これらの成分は測定用音声の成分ではなくノイズ や音楽の音声である可能性が高い。このため、周波数 f 3の成分の信号レベルが所 定レベルを超えて大きい場合にはこれらの成分を測定用音声として検出しないことで 、ノイズや音楽を測定用音声として誤検出することを更に効果的に防止することがで きる。
[0089] (第 2の実施形態)
以下に、図 8A及び図 8Bを用いて本発明の第 2の実施形態を説明する。第 1の実 施形態では、周波数 flの音声信号と周波数 f2の音声信号とを加算合成した信号を 測定用音声信号として用いることで、測定用音声の誤検出が防止される。これに対し て、第 2の実施形態では、特定パターンのパルス列を測定用音声信号として用いるこ とで、測定用音声の誤検出が防止されることが第 1の実施形態とは相違している。
[0090] 本実施形態では、特定パターンは、 3つのパルスで構成され、 1つ目のパルスの出 力から 2つ目のパルスの出力までを時間 tlOとし、 2つ目のパルスの出力から 3つ目 のパルスの出力までを時間 t20とするパターンである。なお、パルス数は 3つに限定 されず、 2つでもまた 3つより多くても良い。もっとも、パルス数が多い方が誤検出を防 止する効果は向上するが、測定用音声の検出までに要する時間が長くなる。
[0091] 第 2の実施形態は、測定用音声信号とリモコン 3が信号検出部 34に代えて信号検 出部 34Aを備えることが第 1の実施形態とは相違しており、その他のスピーカ装置 2 及びリモコン 3の構成は第 1の実施形態と同様である。このため、以下に信号検出部 34Aの構成のみを説明し、その他の構成については説明を省略する。
[0092] 図 8Aは、第 2の実施形態に力かる信号検出部 34Aを示すブロック図である。信号 検出部 34Aは、レベル検出部 344、カウンタ 345及び判定部 346を備える。レベル 検出部 344には、マイク 3aから音声信号が入力される。レベル検出部 344には閾値 が設定されており、レベル検出部 344は、入力信号の信号レベル力この閾値を超え て大きくなつたときにカウンタ 345及び判定部 346に信号 aを入力する。
[0093] 例えば、マイク 3aから測定用音声が入力された場合には、 1番目のパルスに対応 する音声の入力開始時(図 8B中の T1)、 2番目のパルスに対応する音声の入力開 始時(図 8B中の T2)及び 3番目のパルスに対応する音声の入力開始時(図 8B中の T3)に、カウンタ 345及び判定部 346に信号 aが入力される。
[0094] カウンタ 345は、信号 aが入力されると計時を開始し、時間 tlO及び時間 t20が経過 したときに判定部 346に信号 bを入力する。
[0095] 図 8Bは、判定部 346に入力される信号 aと信号 bのタイミングの一例を説明するた めの図である。本図では、横軸が時間の経過を示す。
[0096] 判定部 346には、 T1のタイミング、 T2のタイミング及び T3のタイミングでレベル検 出部 344から信号 aが入力される。この場合には、 T1のタイミングから時間 tlOが経 過したとき (タイミング T1 - 1)及び時間 t20が経過したとき(タイミング T1 - 2)、 T2の タイミングから時間 tlOが経過したとき(タイミング T2— 1)及び時間 t20が経過したと き(タイミング T2— 2)、 T3のタイミングから時間 tlOが経過したとき(タイミング T3— 1) 及び時間 t20が経過したとき(タイミング T3— 2)に、信号 bが判定部 346に入力され る。具体的には、時間 tlOの経過のときには信号 blが、時間 t20の経過のときには信 号 b2が入力される。
[0097] 判定部 346は、カウンタ 345から信号 bが入力されたときにレベル検出部 344から 信号が入力されるかを判断する。本図では、タイミング T1— 1に信号 blが入力される 力 このタイミングはタイミング T2と一致しているため信号 aが入力される。信号 blが 入力されたときに信号 aが入力されると、タイミング T1のときには 1番目のパルスに対 応する音声が入力されたと判定される。
[0098] 次に、タイミング T1— 2及びタイミング T2—1のときには信号 b2、 blが入力される。
このタイミングでは測定用音声の入力がなぐ信号 aの入力がない。このため、タイミン グ T1には第 2番目のパルスに対応する音声が入力されていないと判定される。また、 タイミング T2には第 1番目のパルスに対応する音声が入力されていないと判定される
[0099] 次に、タイミング T2— 2には信号 b2の入力がある力 このタイミングはタイミング T3 と一致しているため、信号 aの入力がある。このため、タイミング T2では第 2番目のパ ルスに対応する音声が入力されたと判定され、タイミング T3では第 3番目のパルスに 対応する音声が入力されたと判定される。
[0100] なお、タイミング T3— l、 Τ3— 2には、ノイズ等の入力もなく信号 aが入力されないと する。
[0101] 判定部 346は、上述のように第 1番目〜第 3番目のパルスに対応する音声が第 1〜 第 3の順番に入力されたと判定した場合に、測定用音声を検出したとしてリモコン制 御部 33に通知する。これによつて、特定パターンのパルスの音声とともにノイズがマ イク 3aから信号検出部 34Aに入力されていても測定用音声を検出することができる。
[0102] 上述したように、第 2の実施形態では、特定パターンのノ ルス列からなる測定用音 声信号がスピーカユニット SP1, SPnに入力される。そして、特定パターンに合致す るように閾値 (所定レベル)を超えた音声信号を信号検出部 34Aに入力した場合に、 測定用音声が入力されたと判定される。この様に、特定パターンのパルス列の測定 用音声信号が用いられるため、信号検出部 34Aでノイズ等と測定用音声との判別が し易くなる。これによつて、第 1の実施形態と同様に環境音等のノイズや音楽を測定 用音声としてリモコン 3が誤検出することが効果的に防止される。
[0103] (第 3の実施形態)
以下に、図 9を用いて本発明の第 3の実施形態を説明する。上述したように、第 1の 実施形態では、周波数 flの音声信号と周波数 f2の音声信号とを加算合成した信号 を測定用音声信号として用いる。第 2の実施形態では、特定パターンのパルス列を 測定用音声信号として用いる。これに対して、第 3の実施形態では、周波数 flの音声 信号と周波数 f2の音声信号とを加算合成した信号力 なるパルス列であって、特定 ノターンのものを測定用音声信号として用いることを特徴とする。
[0104] 第 3の実施形態は、測定用音声信号とリモコン 3が信号検出部 34に代えて信号検 出部 34Bを備えることが第 1の実施形態とは相違しており、その他のスピーカ装置 2 及びリモコン 3の構成は第 1の実施形態と同様である。このため、以下に信号検出部 34Bの構成のみを説明し、その他の構成については説明を省略する。
[0105] 図 9は、第 3の実施形態に力かる信号検出部 34Bの構成を示すブロック図である。
信号検出部 34Bにおいて、信号検出部 34及び信号検出部 34Aと同一の構成につ いては同一の符号を付して説明を省略する。信号検出部 34Bは、バンドパスフィルタ 341 (341A〜341C)、レベル検出部 342 (342A〜342C)、判定部 343、カウンタ 3 45及び判定部 346を備える。
[0106] バンドパスフィルタ 341A〜341Cは、第 1の実施形態と同様に、マイク 3aから入力 した音声信号のうちそれぞれ周波数 fl、周波数 f2及び周波数 f3の成分のみを通過 させる。この通過した各成分はそれぞれ対応するレベル検出部 342 (342A〜342C )に入力される。レベル検出部 342A〜342Cも、第 1の実施形態と同様に入力され た音声信号のレベルが閾値を超えて大きい場合に判定部 343に信号を入力する。
[0107] 判定部 343は、レベル検出部 342A及びレベル検出部 342Bから信号が入力され るとともにレベル検出部 342C力も信号が入力されないときに、カウンタ 345及び判定 部 346に信号を入力する。
[0108] カウンタ 345は、第 2の実施形態と同様に、信号が入力されると計時を開始し、時間 tlO及び時間 t20が経過したときに判定部 346に信号を入力する。判定部 346も、第 2の実施形態と同様に、連続して 3回、カウンタ 345から入力されたときにレベル検出 部 342A、 342B力も信号が入力された場合に、測定用音声を検出したとしてリモコン 制御部 33に通知する。
[0109] 上述したように、第 3の実施形態では、周波数 flの音声信号と周波数 f 2の音声信 号とを加算合成した信号力もなるパルス列であって、特定パターンのものが測定用音 声信号としてスピーカユニット SP1, SPnに入力される。そして、周波数 fl、 f2につい て特定パターンに合致するように所定レベルを超えた音声信号をマイク 3aで入力し た場合に、測定用音声が検出されたと判定される。この様に、周波数 fl, f2の双方の 成分につ 、て、入力信号のレベルが特定パターンで所定レベルを超えて ヽる場合に 初めて測定用音声が検出される。これによつて、第 1及び第 2の実施形態に比較して 、更に測定用音声の誤検出を防止する効果が向上する。
[0110] また、本実施形態では、パルス列を構成する全てのパルスが同じ周波数 fl, f2の 成分を含むが、パルス毎に異なった周波数成分を含む信号を用いてもよい。この様 に構成し、パルス列のパターンを工夫することで、測定用音声を簡易的な音楽とする こともできる。これによつて、リスナの耳障りが良い測定用音声を用いて聴取位置を測 定することができる。
[0111] 本実施形態は、以下の変形例を採用することができる。
[0112] 本実施形態では、開始ボタン 321aが押下されたときに、リモコン 3の位置座標が検 出されるが、この構成に限定されない。例えば、一度開始ボタン 321aが押下された 後、この位置検出を終了させる操作ボタン 321が押下されるまでの期間、繰り返しリ モコン 3の位置検出が行われても良い。これによると、この期間はリスナがリモコン 3を 持って移動すると、この移動に追従して聴取位置が検出され、ディレイ制御値が変更 されること〖こなる。
[0113] 本実施形態では、スピーカユニット SP1, SPnに測定用音声信号を入力するが、こ れに限定されず、他のスピーカユニット SPに測定用音声信号を入力する構成 'BR〉 ナあってもよい。
[0114] また、リモコン 3にマイク 3aが内蔵されていなくてもよい。リモコン 3に外付けのマイク 3aを接続し、このマイク 3aを聴取位置に配置すればよい。更に、リモコン 3に限定さ れず、マイク 3aから信号を入力可能でありスピーカ装置 2と通信する機能を備えた他 の端末装置 (例えば汎用機等)であってもよ 、。
[0115] また、スピーカ装置 2はスピーカアレイ 2aを一体的に備える構成であるがこれに限 定されない。スピーカアレイ 2aと、オーディオ信号に遅延時間や出力レベルを調整 する信号処理を施す機能部とを別体として備えたスピーカシステムをスピーカ装置 2 に代えて用いてもよい。また、スピーカ装置 2に備えるが、この機能部を別体のォー ディォ装置に設けてもよい。
[0116] なお、スピーカアレイ 2aは、ライン状に配列されたスピーカユニット SPl〜SPnから 成るが、この構成に限定されない。例えば、マトリクス状、ハ-カム状や円形に配列さ れたスピーカユニット SPから構成されて!、てもよ!/、。
[0117] また、スピーカ装置 2は、スピーカアレイ 2aの代わりに、通常のスピーカを複数備え ても良い。これらの複数のスピーカに測定用音声信号が入力され、リモコン 3で測定 用音声を検出することでリスナの聴取位置を検出する構成であれば、本発明を適用 することができる。
[0118] 以上、本発明の実施の形態について説明した力 本発明の位置検出装置及び位 置検出方法は、上述の実施形態に限定されるものではなぐ本発明の要旨を逸脱し な 、範囲内にお 、て種々変更をカ卩ぇ得ることは勿論である。
産業上の利用可能性
[0119] 本発明は、測定用音声の誤検出を効果的に防ぐことができる位置検出システムに 有用である。さらに、本発明は、測定用音声の誤検出を効果的に防ぐことができる位 置検出システムに用 、るスピーカ装置及び端末装置に有用である。

Claims

請求の範囲
[1] オーディオ装置と、
前記オーディオ装置と通信する機能を有するとともに、前記オーディオ装置から出 力された音声を収音するマイクロフォン力 音声信号を入力する端末装置とを少なく とも含む位置検出システムであって、
前記オーディオ装置は、
異なった周波数の 2以上の音声信号から成る測定用音声信号を第 1及び第 2スピ 一力に順番に入力する入力部と、
前記マイクロフォンで測定用音声信号の音声を収音したことを示す通知信号を前 記端末装置から受信する信号受信部と、
第 1スピーカ力 前記測定用音声信号の音声が出力されてから、この測定用音声 信号の前記通知信号を前記信号受信部で受信するまでの第 1時間と、第 2スピーカ から前記測定用音声信号の音声が出力されてから、この測定用音声の前記通知信 号を前記信号受信部で受信するまでの第 2時間を計時する計時部と、
この計時部で計時した前記第 1時間及び前記第 2時間を用いて、前記マイクロフォ ンの位置を演算する演算部とを少なくとも含み、
前記端末装置は、
前記測定用音声信号の各周波数成分について、所定レベルを超えた音声信号を 前記マイクロフォン力 入力した場合に、前記測定用音声信号の成分として検出する 信号検出部と、
この信号検出部で前記測定用音声信号を検出したときに、前記通知信号を前記ォ 一ディォ装置に送信する信号送信部と、を少なくとも含む、
位置検出システム。
[2] 前記入力部は、測定用音声信号として和音の信号を前記スピーカに入力する請求 項 1に記載の位置検出システム。
[3] 異なった周波数の 2以上の音声信号から成る測定用音声信号を第 1及び第 2スピ 一力に順番に入力する入力部と、
マイクロフォンを備えた端末装置力 通信信号を受信する信号受信部であって、前 記マイクロフォンで前記測定用音声信号の音声を収音したことを示す通知信号を受 信するものと、
第 1スピーカ力 前記測定用音声信号の音声が出力されてから、この測定用音声 信号の通知信号を前記信号受信部で受信するまでの第 1時間と、第 2スピーカから 前記測定用音声信号の音声が出力されてから、この測定用音声の前記通知信号を 前記信号受信部で受信するまでの第 2時間を計時する計時部と、
この計時部で計時した前記第 1時間及び前記第 2時間を用いて、前記マイクロフォ ンの位置を測定する位置測定部と、
を少なくとも含むオーディオ装置。
[4] 第 1及び第 2スピーカにオーディオ信号を入力するオーディオ装置と通信する機能 を備えた端末装置であって、
マイクロフォン力 音声信号を入力する音声信号入力部と、
スピーカ装置力 出力された、異なった周波数の 2以上の音声信号から成る測定用 音声信号に対応する各周波数にっ ヽて、所定レベルを超えた音声信号を前記音声 信号入力部で入力した場合に前記測定用音声信号として検出する信号検出部と、 この信号検出部で前記測定用音声信号を検出したときに、前記通知信号を前記ォ 一ディォ装置に送信する信号送信部と、
を少なくとも含む端末装置。
[5] オーディオ装置と、
このオーディオ装置と通信する機能を有するとともに、このオーディオ装置力 出力 された音声を収音するマイクロフォン力 音声信号を入力する端末装置とを少なくと も含む位置検出システムであって、
前記オーディオ装置は、
特定パターンのパルス列の測定用音声信号を第 1及び第 2スピーカに順番に入力 する入力部と、
前記マイクロフォンで前記測定用音声信号の音声を収音したことを示す通知信号 を前記端末装置から受信する信号受信部と、
前記第 1スピーカ力 前記測定用音声信号の音声が出力されてから、この測定用 音声信号の前記通知信号を前記信号受信部で受信するまでの第 1時間と、前記第 2 スピーカから前記測定用音声信号の音声が出力されてから、この測定用音声の前記 通知信号を前記信号受信部で受信するまでの第 2時間を計時する計時部と、 この計時部で計時した前記第 1時間及び前記第 2時間を用いて、前記マイクロフォ ンの位置を演算する演算部と、を少なくとも含み、
前記端末装置は、
前記特定パターンに合致するように所定レベルを超えた音声信号を前記マイクロフ オン力 入力した場合に、前記測定用音声信号の成分として検出する信号検出部と この信号検出部で前記測定用音声信号を検出したときに、前記通知信号を前記ォ 一ディォ装置に送信する信号送信部と、を少なくとも含む、
位置検出システム。
[6] 前記入力部は、異なった周波数の 2以上の音声信号力 成る前記パルス列を前記 測定用音声信号として前記第 1及び第 2スピーカに順番に入力し、
前記信号検出部は、前記測定用音声信号の各周波数について、前記特定パター ンに合致するように所定レベルを超えた音声信号を前記音声信号入力部で入力した 場合に、前記測定用音声信号の成分として検出する、請求項 5に記載の位置検出シ ステム。
[7] 特定パターンのパルス列の測定用音声信号を第 1及び第 2スピーカに順番に入力 する入力部と、
マイクロフォンを備えた端末装置力 通信信号を受信する信号受信部であって、前 記マイクロフォンで前記測定用音声信号の音声を収音したことを示す通知信号を受 信するものと、
前記第 1スピーカ力 前記測定用音声信号の音声が出力されてから、この測定用 音声信号の前記通知信号を前記信号受信部で受信するまでの第 1時間と、前記第 2 スピーカから前記測定用音声信号の音声が出力されてから、この測定用音声の前記 通知信号を前記信号受信部で受信するまでの第 2時間を計時する計時部と、 この計時部で計時した前記第 1時間及び前記第 2時間を用いて、前記マイクロフォ ンの位置を測定する位置測定部と、
を少なくとも含むオーディオ装置。
第 1及び第 2スピーカにオーディオ信号を入力するオーディオ装置と通信する機能 を備えた端末装置であって、
マイクロフォン力 音声信号を入力する音声信号入力部と、
スピーカから測定用音声として出力された特定パターンのパルス列の音声と同じ特 定パターンで、所定レベルを超えた音声信号を前記音声信号入力部で入力した場 合に、測定用音声信号として検出する信号検出部と、
この信号検出部で前記測定用音声信号を検出したときに、前記通知信号を前記ォ 一ディォ装置に送信する信号送信部と、
を少なくとも含む端末装置。
PCT/JP2006/323783 2005-12-02 2006-11-29 位置検出システム、この位置検出システムに用いるオーディオ装置及び端末装置 WO2007063880A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06833587.6A EP1962558A4 (en) 2005-12-02 2006-11-29 POSITION DETECTION SYSTEM, AUDIO DEVICE AND TERMINAL DEVICE USED IN THE POSITION DETECTION SYSTEM
US12/085,724 US20100322435A1 (en) 2005-12-02 2006-11-29 Position Detecting System, Audio Device and Terminal Device Used in the Position Detecting System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-349090 2005-12-02
JP2005349090A JP4788318B2 (ja) 2005-12-02 2005-12-02 位置検出システム、この位置検出システムに用いるオーディオ装置及び端末装置

Publications (1)

Publication Number Publication Date
WO2007063880A1 true WO2007063880A1 (ja) 2007-06-07

Family

ID=38092213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323783 WO2007063880A1 (ja) 2005-12-02 2006-11-29 位置検出システム、この位置検出システムに用いるオーディオ装置及び端末装置

Country Status (5)

Country Link
US (1) US20100322435A1 (ja)
EP (1) EP1962558A4 (ja)
JP (1) JP4788318B2 (ja)
CN (1) CN101379875A (ja)
WO (1) WO2007063880A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882380B2 (ja) * 2006-01-16 2012-02-22 ヤマハ株式会社 スピーカシステム
WO2009150841A1 (ja) * 2008-06-12 2009-12-17 パナソニック株式会社 コンテンツ再生装置およびコンテンツ再生方法
KR101702330B1 (ko) * 2010-07-13 2017-02-03 삼성전자주식회사 근거리 및 원거리 음장 동시제어 장치 및 방법
JP5718189B2 (ja) * 2011-08-23 2015-05-13 シチズンホールディングス株式会社 電子血圧計
US8218902B1 (en) * 2011-12-12 2012-07-10 Google Inc. Portable electronic device position sensing circuit
US9134814B2 (en) * 2012-04-05 2015-09-15 Seiko Epson Corporation Input device, display system and input method
EP2860120A1 (de) * 2013-10-10 2015-04-15 Uhlmann Pac-Systeme GmbH & Co. KG Verpackung für Tabletten und Vorrichtung zum Herstellen der Verpackung
CN104270693A (zh) * 2014-09-28 2015-01-07 电子科技大学 虚拟耳机
WO2016054090A1 (en) * 2014-09-30 2016-04-07 Nunntawi Dynamics Llc Method to determine loudspeaker change of placement
KR102444075B1 (ko) * 2015-06-09 2022-09-16 삼성전자주식회사 전자 장치, 주변 기기 및 그 제어 방법
JP6361680B2 (ja) * 2016-03-30 2018-07-25 オンキヨー株式会社 音場制御システム、解析装置、音響装置、音場制御システムの制御方法、解析装置の制御方法、音響装置の制御方法、プログラム、記録媒体
KR102533698B1 (ko) * 2016-12-13 2023-05-18 삼성전자주식회사 음향 출력 시스템을 구성하는 전자 장치, 음향 출력 장치 및 그 제어 방법
WO2018123612A1 (ja) * 2016-12-28 2018-07-05 ソニー株式会社 オーディオ信号再生装置及び再生方法、収音装置及び収音方法、並びにプログラム
US20190394602A1 (en) * 2018-06-22 2019-12-26 EVA Automation, Inc. Active Room Shaping and Noise Control
US10708691B2 (en) 2018-06-22 2020-07-07 EVA Automation, Inc. Dynamic equalization in a directional speaker array
US10484809B1 (en) 2018-06-22 2019-11-19 EVA Automation, Inc. Closed-loop adaptation of 3D sound
US10524053B1 (en) 2018-06-22 2019-12-31 EVA Automation, Inc. Dynamically adapting sound based on background sound
US10531221B1 (en) 2018-06-22 2020-01-07 EVA Automation, Inc. Automatic room filling
US10511906B1 (en) 2018-06-22 2019-12-17 EVA Automation, Inc. Dynamically adapting sound based on environmental characterization
US11956617B2 (en) * 2021-08-07 2024-04-09 Bose Corporation Audio system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276900A (ja) * 1988-04-28 1989-11-07 Hitachi Ltd 音場再生装置
JPH0235085U (ja) * 1988-08-31 1990-03-06
JP2000214258A (ja) * 1999-01-26 2000-08-04 Matsushita Electric Works Ltd 車両用障害物警報装置
JP2003195859A (ja) * 2001-12-27 2003-07-09 Yamaha Corp 電子楽音発生装置および信号処理特性調整方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935952A (en) * 1988-07-13 1990-06-19 B-Warned, Inc. Alarm-responsive apparatus and method
US5091917A (en) * 1990-04-12 1992-02-25 Raytheon Company Method and apparatus for pulse sorting
US5194848A (en) * 1991-09-09 1993-03-16 Hitek-Protek Systems Inc. Intrusion detection apparatus having multiple channel signal processing
JPH10111693A (ja) * 1996-10-04 1998-04-28 Nippon Columbia Co Ltd 音響特性測定用記録媒体、音響特性測定装置及び音響特性測定方法
JP2001025085A (ja) * 1999-07-08 2001-01-26 Toshiba Corp チャネル配置装置
IL134979A (en) * 2000-03-09 2004-02-19 Be4 Ltd A system and method for optimizing three-dimensional hearing
JP2001352600A (ja) * 2000-06-08 2001-12-21 Marantz Japan Inc リモートコントロール装置およびレシーバならびにオーディオシステム
JP4465870B2 (ja) * 2000-12-11 2010-05-26 ソニー株式会社 音声信号処理装置
JP2002330500A (ja) * 2001-04-27 2002-11-15 Pioneer Electronic Corp 自動音場補正装置及びそのためのコンピュータプログラム
AU2003250413A1 (en) * 2002-07-31 2004-02-23 Koninklijke Philips Electronics N.V. Audio processing system
EP1482763A3 (en) * 2003-05-26 2008-08-13 Matsushita Electric Industrial Co., Ltd. Sound field measurement device
JP4349972B2 (ja) * 2003-05-26 2009-10-21 パナソニック株式会社 音場測定装置
JP4765289B2 (ja) * 2003-12-10 2011-09-07 ソニー株式会社 音響システムにおけるスピーカ装置の配置関係検出方法、音響システム、サーバ装置およびスピーカ装置
JP2005181088A (ja) * 2003-12-19 2005-07-07 Advanced Telecommunication Research Institute International モーションキャプチャシステム及びモーションキャプチャ方法
GB0402952D0 (en) * 2004-02-11 2004-03-17 Koninkl Philips Electronics Nv Remote control system and related method and apparatus
JP2005236502A (ja) * 2004-02-18 2005-09-02 Yamaha Corp 音響再生装置
JP4568536B2 (ja) * 2004-03-17 2010-10-27 ソニー株式会社 測定装置、測定方法、プログラム
JP4449536B2 (ja) * 2004-03-30 2010-04-14 ヤマハ株式会社 音量制御装置
US8116465B2 (en) * 2004-04-28 2012-02-14 Sony Corporation Measuring apparatus and method, and recording medium
US7170404B2 (en) * 2004-07-23 2007-01-30 Innovalarm Corporation Acoustic alert communication system with enhanced signal to noise capabilities
JP2006258442A (ja) * 2005-03-15 2006-09-28 Yamaha Corp 位置検出システム、スピーカシステムおよびユーザ端末装置
US20090316529A1 (en) * 2005-05-12 2009-12-24 Nokia Corporation Positioning of a Portable Electronic Device
JP4701944B2 (ja) * 2005-09-14 2011-06-15 ヤマハ株式会社 音場制御機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276900A (ja) * 1988-04-28 1989-11-07 Hitachi Ltd 音場再生装置
JPH0235085U (ja) * 1988-08-31 1990-03-06
JP2000214258A (ja) * 1999-01-26 2000-08-04 Matsushita Electric Works Ltd 車両用障害物警報装置
JP2003195859A (ja) * 2001-12-27 2003-07-09 Yamaha Corp 電子楽音発生装置および信号処理特性調整方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1962558A4 *

Also Published As

Publication number Publication date
CN101379875A (zh) 2009-03-04
EP1962558A4 (en) 2013-06-19
US20100322435A1 (en) 2010-12-23
JP4788318B2 (ja) 2011-10-05
JP2007158582A (ja) 2007-06-21
EP1962558A1 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
WO2007063880A1 (ja) 位置検出システム、この位置検出システムに用いるオーディオ装置及び端末装置
US8649539B2 (en) Method for processing the signals from two or more microphones in a listening device and listening device with plural microphones
US20100202626A1 (en) Control device, control method and control program
EP2495996A2 (en) Method for measuring critical gain on a hearing aid
CN101621730A (zh) 用于检测声反馈的装置和方法
ATE527829T1 (de) Binaurales hörhilfesystem mit koordinierter schallverarbeitung
US8184836B2 (en) Audio apparatus
WO2017071183A1 (zh) 一种语音处理方法、装置及拾音电路
CN204721589U (zh) 骨导声音传播装置
US11297429B2 (en) Proximity detection for wireless in-ear listening devices
WO2018179506A1 (ja) オーディオ装置およびコンピュータで読み取り可能なプログラム
JP2007049413A (ja) 聴取位置の検査方法、聴取位置検査システム及びこのシステムに用いるスピーカ装置
JPH11331990A (ja) 自己発話検出装置、音声入力装置および補聴器
CN115039418A (zh) 用于头戴式送受话器的耳上检测的系统和方法
JP4442726B2 (ja) オーディオトランスデューサ用音声マッチングシステム
CN108810745B (zh) 啸叫测试方法、啸叫测试系统与相关装置
JPS63262576A (ja) マイクロホン装置
JP5200784B2 (ja) スピーカ診断装置および音響システム
TW202203663A (zh) 指向助聽裝置及其方法
JP2012191541A (ja) 遅延測定装置、遅延測定方法およびコンピュータプログラム
TWI777265B (zh) 指向音源探取裝置及其方法
TWI736122B (zh) 用於聲學回聲消除的時間延遲校準方法及電視裝置
JP7402848B2 (ja) 嵌合音検出装置、および嵌合音検出システム
JPH0625120Y2 (ja) 補聴装置
CN115529543A (zh) 判断环境中的混响程度的方法及系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044728.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006833587

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12085724

Country of ref document: US