WO2007063733A1 - 射出成形機用の温度調節機構 - Google Patents

射出成形機用の温度調節機構 Download PDF

Info

Publication number
WO2007063733A1
WO2007063733A1 PCT/JP2006/323129 JP2006323129W WO2007063733A1 WO 2007063733 A1 WO2007063733 A1 WO 2007063733A1 JP 2006323129 W JP2006323129 W JP 2006323129W WO 2007063733 A1 WO2007063733 A1 WO 2007063733A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
flow path
temperature
cooling
heating
Prior art date
Application number
PCT/JP2006/323129
Other languages
English (en)
French (fr)
Inventor
Masaya Ota
Haruo Yokohama
Yasuji Tanaka
Yasuo Hirakawa
Shinichiro Sekido
Original Assignee
Kabushiki Kaisha Tokai Rika Denki Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005347057A external-priority patent/JP2007152586A/ja
Priority claimed from JP2005347058A external-priority patent/JP4584134B2/ja
Application filed by Kabushiki Kaisha Tokai Rika Denki Seisakusho filed Critical Kabushiki Kaisha Tokai Rika Denki Seisakusho
Priority to CN2006800446478A priority Critical patent/CN101316692B/zh
Priority to US12/095,442 priority patent/US7841854B2/en
Publication of WO2007063733A1 publication Critical patent/WO2007063733A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/74Heating or cooling of the injection unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76531Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76655Location of control
    • B29C2945/76658Injection unit
    • B29C2945/76688Injection unit nozzle

Definitions

  • the present invention relates to a temperature adjustment mechanism that adjusts the temperature of resin injected by injection molding machine power.
  • an injection molding machine performs a process of heating and melting a molding material (resin chip) in a heating cylinder (injection nozzle) of the injection molding machine (heating and melting process).
  • the injection molding machine performs a process (filling process) in which the heated and melted resin is injected with a nozzle force to fill the mold with the resin.
  • the injection molding machine performs a process (cooling process) of cooling the filled resin and releasing the solidified resin (molded product).
  • One cycle (molding cycle) in the molding process includes a heating and melting process, a filling process, and a cooling process.
  • Patent Document 1 a cooling gas is jetted toward the outer surface of the injection nozzle to lower the temperature of the injection port portion of the injection nozzle. This promotes suitable cutting of the resin at the time of mold release. For this reason, even if the cooling time is shortened compared to before, the yarn drawing phenomenon is suppressed.
  • the injection port portion in the resin flow channel in the injection nozzle is provided with the An inhibiting member (piece member) that prevents the molten resin from flowing at the center of the resin flow path is disposed.
  • An inhibiting member piece member
  • coagulation of the coagulation starts with the external surface force, and the central region where the temperature is difficult to decrease solidifies last.
  • the blocking member at the injection port portion, the molten resin flows in the central portion of the resin flow path at the injection port. For this reason, coagulation of coconut is promoted, and the stringing phenomenon is suppressed even if the cooling time is shortened.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-211513
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-246642
  • the present invention provides a temperature adjusting mechanism for an injection molding machine that can further reduce the molding cycle time while suitably suppressing the occurrence of the yarn drawing phenomenon.
  • a temperature adjustment mechanism for an injection molding machine is provided.
  • the temperature adjusting mechanism is a temperature adjusting mechanism for an injection molding machine having an injection nozzle for injecting a resin material, and is a cooling medium for cooling the resin material in the injection nozzle or the above-mentioned resin.
  • the cooling medium and the heating medium to heat the material Control the supply of the cooling medium and the heating medium into the medium circulation part so that the cooling medium and the heating medium are selectively ejected from the medium circulation part.
  • a supply control unit is a temperature adjusting mechanism for an injection molding machine having an injection nozzle for injecting a resin material, and is a cooling medium for cooling the resin material in the injection nozzle or the above-mentioned resin.
  • a temperature adjustment mechanism for an injection molding machine is provided.
  • the temperature adjusting mechanism is a temperature adjusting mechanism for an injection molding machine having an injection nozzle for injecting a resin material, and a pipe-shaped medium for circulating a cooling medium for cooling the resin material in the injection nozzle.
  • FIG. 1 is a schematic overall view showing a temperature adjustment mechanism for an injection molding machine according to a first embodiment of the present invention.
  • FIG. 2 is a sequence chart showing a molding cycle in the injection molding machine of FIG.
  • FIG. 3 is a schematic flowchart showing temperature adjustment control by the supply control unit of FIG.
  • [4A] A schematic cross-sectional view showing a temperature adjustment mechanism for an injection molding machine according to a second embodiment of the present invention.
  • FIG. 4B is a cross-sectional view taken along line 4B-4B of FIG. 4A.
  • FIG. 4C is a sectional view taken along line 4C 4C of FIG. 4B.
  • FIG. 5A is a schematic cross-sectional view showing another pipe of the present invention.
  • FIG. 5B is a schematic cross-sectional view showing another pipe of the present invention.
  • FIG. 5C is a schematic cross-sectional view showing another pipe of the present invention.
  • FIG. 5D is a schematic cross-sectional view showing another pipe of the present invention.
  • FIG. 6A is a schematic cross-sectional view showing another pipe of the present invention.
  • FIG. 6B is a schematic cross-sectional view showing another pipe of the present invention.
  • FIG. 7 is a schematic overall view showing a temperature adjustment mechanism for an injection molding machine according to a third embodiment of the present invention.
  • FIG. 8 is a schematic flowchart showing temperature adjustment control by the supply control unit of FIG.
  • FIG. 9 is a schematic overall view showing a temperature adjustment mechanism for an injection molding machine according to a fourth embodiment of the present invention. Figure.
  • FIG. 10A is a schematic cross-sectional view showing another injection nozzle of the present invention.
  • FIG. 10B is a plan view of the directional force indicated by the arrow 10B in FIG. 10A.
  • an injection mold 1 is attached to a fixed platen (not shown), and a movable mold 2 is attached to a movable platen (not shown) and can be brought into contact with and separated from the fixed mold 2. Including.
  • the fixed mold 2 includes a fixed mold plate 4 attached to a fixed platen, a sprue bush 5 embedded in the fixed mold plate 4 and in contact with the movable mold 3, and the sprue bush 5 fixed.
  • a locating ring 6 that is held in the template 4 is provided.
  • the sprue bush 5 is provided with a recess 7, and the positioning ring 6 is provided with a through hole 8 communicating with the recess 7.
  • a sprue 9 penetrating the movable mold 3 is provided in the innermost part of the recess 7, a sprue 9 penetrating the movable mold 3 is provided.
  • a cavity 10 communicating with the sprue 9 is recessed on the surface of the movable mold 3 facing the fixed mold.
  • the sprue 9 is set so that its diameter gradually increases toward the movable mold 3.
  • the tip portion of the injection nozzle 11 of the injection molding machine is accommodated through the through hole 8.
  • the injection nozzle 11 is provided with an injection port 12 formed at the tip edge thereof and a resin flow channel 13 communicating with the injection port 12.
  • the injection nozzle 11 is accommodated in the recess 7 so that the injection port 12 matches the sprue.
  • the injection nozzle 11 heats and melts the resin material supplied into the resin flow path 13 by a heating mechanism (not shown), and discharges the molten resin from the injection port 12 to the outside. For this reason, molten resin flowing in the resin flow path 13 is supplied from the injection port 12 into the cavity 10 through the sprue 9.
  • a medium flow path as a medium circulation part is provided in the fixed mold plate 4 and the sprue bush 5 so that the cooling medium and the heating medium can be supplied into the recess 7 toward the tip portion of the injection nozzle 11.
  • 14 is transparent.
  • the medium flow path 14 extends through the sprue bush 5 and the fixed mold plate 4 and is provided so as to communicate with the recess 7 from the outside of the fixed mold plate 4. ing.
  • the medium flow path 14 includes three flow paths 14a, 14b, and 14c (14a to 14c).
  • the first flow path 14 a (first medium flow path) extends in a direction orthogonal to the insertion direction of the injection nozzle 11 with respect to the recess 7, and has an opening on the outer surface of the fixed mold plate 4.
  • the second flow path 14 a (second medium flow path) extends in parallel with the first flow path 14 a and has an opening on the outer surface of the fixed mold plate 4.
  • the third flow path 14b (third medium flow path) has one end connected to the first flow path 14a and the second flow path 14b, and the other end (opening 14d) communicating with the recess 7.
  • the opening 14d is disposed in the vicinity of the injection port 12. That is, the medium flowing through the first flow path 14a and the medium flowing through the second flow path 14b merge at the third flow path 14c. Therefore, the mixed medium flows through the third flow path 14c.
  • a first port 15 is provided at an opening portion of the first flow path 14a in the fixed mold plate 4, and a second port 16 is provided at an opening position of the second flow path 14b.
  • the first port 15 is connected to a pump 19 as a medium supply source via a first supply flow path 17 and the second port 16 is connected to a pump 19 as a medium supply source.
  • the pump 19 supplies air as a medium to the supply channels 17 and 18 and the medium channel 14 (first to third channels 14a to 14c)! /
  • a first temperature sensor 21 is disposed in the first flow path 14a, a second temperature sensor 22 is disposed in the second flow path 14b, and a third temperature sensor 23 is disposed in the third flow path 14c. It is arranged.
  • Each of the temperature sensors 21 to 23 is electrically connected to a supply control unit (hereinafter referred to as a control unit) 24 as medium supply control means.
  • the first supply flow path 17 is provided with a first valve 25 that controls the flow rate of the medium from the pump 19 to the first flow path 14 a via the flow path 17.
  • the second supply flow path 18 is provided with a second valve 26 that controls the flow rate of the medium from the pump 19 to the second flow path 14 b via the flow path 18.
  • Each valve 25, 26 is electrically connected to the control unit 24, and controls the flow rate of the medium based on the flow control signal supplied from the control unit 24. In the first embodiment, the opening degree of each valve 25, 26 is controlled by the control unit 24 so as to change linearly.
  • the second supply channel 18 is provided with a temperature adjusting device 27 that heats the medium flowing through the second supply channel 18 to a predetermined temperature (eg, 225 ° C).
  • the temperature control device 27 is electrically connected to the control unit 24 and is based on a temperature control signal supplied from the control unit 24. Then control the temperature.
  • the flow rate of air flowing through the first supply flow path 17 is controlled by the first valve 25. Then, air controlled to a predetermined flow rate is injected from the first supply channel 17 to the tip portion of the injection nozzle 11 via the first port 15, the first channel 14a, and the third channel 14c. That is, normal temperature air flows through the first supply channel 17, the first port 15, and the first channel 14a. On the other hand, the temperature of the air flowing through the second supply channel 18 is adjusted by the temperature adjustment device 27. Further, the flow rate of the air flowing through the second supply channel 18 is controlled by the second valve 26.
  • air controlled to a predetermined temperature and flow rate is injected from the second supply channel 18 to the tip portion of the injection nozzle 11 through the second port 16, the second channel 14b, and the third channel 14c. . That is, high-temperature air flows through the second supply flow path 18, the second port 16, and the second flow path 14b. Therefore, the air flowing from the first supply flow path 17 to the third flow path 14c via the first port 15 and the first flow path 14a functions as a cooling medium, and from the second supply flow path 18 to the second port 16 The air flowing through the third flow path 14c via the second flow path 14b functions as a heating medium. The air flowing through the first flow path 14a and the second flow path 14b is mixed in the third flow path 14c, and the mixed air is jetted to the tip portion of the injection nozzle 11.
  • the control unit 24 is configured by a computer unit including a CPU, ROM, and RAM (not shown).
  • the control unit 24 controls driving of the valves 25 and 26 and the temperature control device 27 based on input signals from the injection molding machine and detection signals from the temperature sensors 21 to 23. Therefore, the control unit 24 performs medium supply control in synchronization with the injection molding machine.
  • the medium flow path 14 having the first to third flow paths 14a to 14c, the first and second valves 25 and 26, and the first and second supply flow paths. 17, 18, pump 19, first to third temperature sensors 21 to 23, and control unit 24 constitute a temperature adjustment mechanism for the injection molding machine.
  • step S 1 a heating and melting process is performed in which the resin material (the resin chip) supplied into the resin flow path 13 of the injection nozzle 11 is heated and melted by a heating mechanism.
  • step S2 a filling step is performed in which the molten resin is injected into the sprue 9 from the injection port 12 of the injection nozzle 11 to fill the cavity 10 with the resin.
  • step S3 a cooling step for cooling and solidifying the resin is performed.
  • step S4 a mold releasing step is performed in which the movable mold 3 is released from the fixed mold 2 and the resin molded product is taken out from the cavity 10. That is, the molding process by the injection molding machine is performed with the molding cycle of “heating and melting process ⁇ filling process ⁇ cooling process ⁇ mold release process”.
  • the control unit 24 executes a control routine (temperature adjustment control) shown in FIG. 3 at predetermined interruption intervals.
  • a control routine temperature adjustment control
  • the control unit 24 acquires various molding information based on an input signal from the injection molding machine.
  • This molding information includes each step in the molding cycle, grease material information indicating the material of the resin, melting temperature information indicating the heating temperature of the injection nozzle 11, injection port information indicating the diameter of the injection port 12, and resin molding.
  • the size of the product includes information on the diameter and length of sprue 9 and the molded product.
  • the control unit 24 obtains the optimum temperature of the heating medium (heating air) based on such molding information and supplies a temperature control signal for adjusting the heating air to the optimum temperature to the temperature adjustment device 27. .
  • step S12 the control unit 24 determines whether or not the power is the heating start time.
  • the start time of the heating and melting process is set as the heating start time (heating medium supply start timing), and the end time of the heating and melting process is set as the heating end time (heating medium supply stop timing). ) Is set. Therefore, the control unit 24 determines whether or not it is the heating start time based on the input signal of the injection molding machine force, and when it is determined that it is the heating start time, the control unit 24 performs steps S13 to S17. Heat treatment is performed.
  • step S 13 the control unit 24 supplies a flow control signal to the second valve 26 to open the second valve 26. Specifically, the control unit 24 drives the second valve 26 from the fully closed state to the fully opened state, so that the second supply channel 18, the second port 16, the second channel 14b, and the third channel 14c are moved. Circulate heated air. For this reason, the heated air is at the tip of the injection nozzle 11 It is injected into the site. As a result, the heating of the injection nozzle 11 is promoted, the melting speed of the resin is increased, and the time required for the heating and melting process is shortened.
  • step S 14 the control unit 24 determines whether or not the temperature of the medium (heating air) is the optimum temperature based on the detection signals from the second temperature sensor 22 and the third temperature sensor 23. To do. If the temperature of the heated air is not the optimum temperature, the control unit 24 supplies a temperature control signal to the temperature adjustment device 27 in step S15, and controls the opening of each valve 25, 26 to adjust the temperature of the heated air. To do.
  • the control unit 24 raises the temperature of the heated air by the temperature adjusting device 27. Further, the control unit 24 expands the opening degree of the second valve 26 (only when not fully opened). As a result, the temperature of the heated air rises and is adjusted to the optimum temperature.
  • the control unit 24 lowers the temperature of the heated air with the temperature adjustment device 27. Further, the control unit 24 throttles the opening of the second valve 26. More preferably, the control unit 24 opens the first valve 25 and causes the cooling medium (cooling air) to flow through the first supply channel 17. As a result, cooling air flows through the first flow path 14a, and an air-fuel mixture of heated air and cooling air flows through at least the third flow path 14c. As a result, the temperature of the medium flowing through the third flow path 14c decreases, and the temperature of the heated air is adjusted to the optimum temperature. Note that the control unit 24 may adjust the temperature of the heated air only by controlling the temperature without opening the first valve 25 and the opening control of the second valve 26 in step S15.
  • step S15 when the processing in step S15 is completed, or when it is determined in step S14 that the medium temperature is the optimum temperature, the control unit 24 performs a heating and melting process by the injection molding machine in step S16. It is determined whether or not it is finished. If the heating and melting step has not been completed, the control unit 24 proceeds to the process of step S14 again. When the heating and melting step is completed, the control unit 24 controls the valves 25 and 26 from the open state to the fully closed state in step S17 to stop the medium injection to the injection nozzle 11. Then, the control unit 24 ends the process.
  • step S18 the control unit 24 determines whether or not it is a cooling start time.
  • the time near the end of the filling process is set as the cooling start timing (cooling medium supply start timing)
  • the end of the mold release process is set as the cooling end timing (cooling medium supply stop timing). Is set as.
  • the control unit 24 determines whether or not it is the cooling start time based on the input signal from the injection molding machine, and when it is determined that it is not the cooling start time, the process is terminated once. .
  • control unit 24 determines that it is neither the heating start time nor the cooling start time, and performs no control. On the other hand, when the control unit 24 determines that it is the cooling start time, it performs the cooling process shown in steps S19 to S23.
  • step S19 the control unit 24 supplies a flow control signal to the first valve 25 to open the first valve 25.
  • the control unit 24 drives the first valve 25 from the fully closed state to the fully opened state, so that the first supply channel 17, the first port 15, the first channel 14a, and the third channel 14c are moved. Allow cooling air (normal temperature air) to flow. For this reason, the cooling air is injected to the tip portion of the injection nozzle 11, and the tip portion of the injection nozzle 11 is cooled. As a result, the molten resin flowing through the injection port 12 and the resin passage 13 of the injection nozzle 11 is indirectly cooled by the cooling air, and the solidification rate is increased.
  • cooling air normal temperature air
  • step S 20 the control unit 24 determines that the temperature of the medium (cooling air) is the optimum temperature for cooling (cooling air) based on the detection signals from the first temperature sensor 21 and the third temperature sensor 23. Judge whether the power is at room temperature. When the temperature of the cooling air is not the optimum temperature, the control unit 24 adjusts the temperature of the cooling air by controlling the opening degree of the first valve 25 in step S21.
  • control unit 24 reduces the opening of the first valve 25 when the temperature of the cooling air is lower than the optimum temperature.
  • the control unit 24 expands the opening of the first valve 25 (only when not fully opened). Thereby, the temperature of the cooling air is adjusted to the optimum temperature.
  • the control unit 24 performs separation by the injection molding machine in step S22. It is determined whether or not the mold process has been completed. If the mold release process is not completed, the control unit 24 again proceeds to the process of step S20. If the release process has been completed, the control unit 24 controls the first valve 25 from the open state to the fully closed state in step S22 to stop the medium injection to the injection nozzle 11. Then, the control unit 24 ends the process.
  • the resin solidification rate is increased from the time when the filling process is completed until the time when the mold release process is completed, and as a result, the time for the cooling process is shortened.
  • the mold is released, a threading phenomenon occurs in the molded product, and it is suitably suppressed that the resin remains in the cavity 10 in the next molding cycle.
  • the tip of the injection nozzle 11 cooled by the cooling air is heated by the heating air. For this reason, it is possible to prevent the heating and melting process from being prolonged with cooling. Therefore, the entire molding cycle time is suitably shortened.
  • the temperature adjustment mechanism of the first embodiment has the following advantages.
  • the tip portion of the injection nozzle 11 is cooled by the cooling air injected through the first flow path 14a and the third flow path 14c.
  • the resin flowing through the resin flow path 13 is indirectly cooled, and the solidification time of the resin is shortened. Therefore, even if the time for performing the process of cooling and releasing the molded product is shortened, the stringing phenomenon occurs in the molded product.
  • the heating and melting step is performed in the next molding cycle, the injection nozzle 11 cooled in the previous molding cycle is heated by the heated air injected through the second flow path 14b and the third flow path 14c. The tip is heated. For this reason, melting of the resin flowing through the resin flow path 13 is promoted, and the time for the heating and melting step can be shortened.
  • both the cooling medium and the heating medium are fluid (air)
  • the structure for cooling and the structure for heating may be of the same type. For this reason, for example, cooling is performed using a cooling medium and heating is performed using a heater or the like. The structure of the degree adjusting mechanism is simplified.
  • the opening degree of the first valve 25 and the second valve 26 is linearly controlled by the control unit 24. That is, the supply amount of the cooling air and the heated air is continuously changed by the control unit 24. For this reason, when the injection nozzle 11 and the resin are cooled or heated, the supply amount of each medium is set to an optimum value. In particular, when the temperature of the medium is adjusted by mixing the cooling medium and the heating medium, the temperature of the mixed medium can be easily finely adjusted.
  • the heating start time by the control unit 24 is set at the start of the heating and melting process, and the heating end time is set at the end of the heating and melting process. Therefore, heating of the injection nozzle 11 with heated air can be performed only when necessary, and effective heating assistance of the injection nozzle 11 can be performed.
  • the cooling start time by the control unit 24 is set at a time near the end of the filling process, and the cooling end time is set at the end of the mold release process. For this reason, the injection nozzle 11 can be reliably cooled by the cooling air, and solidification of the molten resin through the injection nozzle 11 can be surely promoted. Therefore, it is possible to further shorten the molding cycle time while suppressing the stringing phenomenon of the molded product.
  • the temperature of the cooling air and the temperature of the heating air are detected by the first to third temperature sensors 21 to 23, and the control unit 24 is based on the detection results of the sensors 21 to 23. Control the temperature of the cooling air and heating air to the optimum temperature. For this reason, cooling and heating control using a medium can be performed with high accuracy.
  • a third flow path 14 c that functions as a medium flow part is formed by a pipe 31.
  • Pipe 31 is generally cylindrical as shown in Figure 4C.
  • the third flow path 14c is formed inside the pipe 31.
  • the Neuve 31 is preferably disposed in the recess 7 so as to penetrate the tip portion of the injection nozzle 11.
  • the pipe 31 is formed at the center of the resin flow path 13 along the direction perpendicular to the flow direction of the resin flow through the resin flow path 13 at the tip portion of the injection nozzle 11. Arranged to pass through O.
  • the tip of the pipe 31 protrudes outside the injection nozzle 11.
  • the cooling air or the heated air flowing through the third flow path 14c passes through the resin flow path 13 and is then discharged to the outside of the injection nozzle 11. Therefore, the resin itself flowing through the resin flow path 13 is cooled or heated by the cooling air or heating air flowing through the pipe 31. For this reason, in the second embodiment, the cooling and heating of the resin is performed more directly than in the first embodiment. As a result, further shortening of the heating and melting step and the cooling step can be achieved.
  • the cross-sectional shape of the pipe 31 is not limited to a true circular shape as shown in FIG. 4C, but can be changed to various shapes.
  • the pipe 31a shown in FIG. 5A has an elliptical cross section.
  • the major axis of the ellipse is arranged in parallel with the resin flow direction.
  • 3 lb of the pipe shown in FIG. 5B has a teardrop-shaped cross section.
  • the pipe 31b is preferably arranged as shown in FIG. 5B.
  • a pipe 31c having a diamond-shaped cross section or a pipe 31d having a triangular cross section may be used.
  • the cross-sectional shape is a perfect circle (FIG. 4C)
  • the pipe 14 can be easily formed.
  • the resin can smoothly flow from the resin flow path 13 to the injection port 12. Furthermore, the contact area between the pipe and the resin can be increased to cool (heat) the resin more effectively.
  • the pipe functioning as the medium circulation part may be disposed so as to pass through a place other than the center O (see FIG. 4B) of the resin flow path 13.
  • the pipe 31e shown in FIG. 6A is formed of two parallel pipes that do not pass through the center O.
  • it may be a pipe f having an annular portion extending along the inner peripheral surface of the resin flow path 13! /. If this Neuf f is used, the resin can be cooled (heated) more effectively.
  • the temperature adjustment mechanism for the injection molding machine of the third embodiment of the present invention is the first and second. A detailed description will be given based on FIG. 7 and FIG. 8 focusing on differences from the embodiment.
  • the same members as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment.
  • the pipe 101 functioning as a medium flow part is disposed so as to penetrate the tip portion of the injection nozzle 11 (near the end of the injection port 12). .
  • the pipe 101 is located at the center 0 of the resin flow path 13 along the direction perpendicular to the flow direction of the resin flow through the resin flow path 13 at the tip portion of the injection nozzle 11 (see FIG. 4B).
  • the opening 101a at the tip of the nozzle 101 protrudes outside the injection nozzle 11.
  • the opening 101a of the pipe 101 is disposed in the vicinity of the injection port 12.
  • the pipe 101 is formed in a circular shape in cross section and has a medium flow path inside.
  • the base end of the pipe 101 is connected to a pump 102 that is a medium supply source.
  • the pump 102 supplies normal temperature air to the medium flow path of the pipe 101 as a cooling medium.
  • a valve 103 for controlling the flow rate of the cooling air flowing through the medium flow path inside the pipe 101 is disposed.
  • a temperature sensor 104 for detecting the temperature of the cooling air flowing through the medium flow path is disposed.
  • the valve 103 and the temperature sensor 104 are electrically connected to a supply control unit (hereinafter referred to as control unit) 105 as medium supply control means.
  • the valve 103 controls the flow rate of the cooling medium flowing through the medium flow path based on the flow control signal supplied from the control unit 105.
  • the opening degree of the knob 103 is controlled by the control unit 105 so as to change linearly.
  • the flow rate of the cooling medium (cooling air) supplied from the pump 102 is controlled by the nozzle 103. Then, the cooling air controlled to a predetermined flow rate is discharged to the outside from the opening 101 a at the tip of the pipe 101 via the medium flow path in the pipe 101.
  • the control unit 105 is configured by a computer unit that includes a CPU, ROM, and RAM (not shown).
  • the control unit 105 controls the driving of the nozzle 103 based on the input signal from the injection molding machine and the detection signal from the temperature sensor 104 as in the first embodiment. Therefore, the control unit 105 performs cooling air supply control in synchronization with the injection molding machine.
  • the pipe 101, the pump 102, the valve 103, the temperature sensor 104, and the control unit 105 constitute a temperature adjustment mechanism for the injection molding machine. .
  • the injection molding machine performs the molding process according to the molding cycle shown in FIG.
  • the molding process is performed with one cycle consisting of a heating and melting process, a filling process, a cooling process, and a mold releasing process.
  • the control unit 105 executes a control routine (temperature adjustment control) shown in FIG. 8 at a predetermined interrupt interval during such a molding cycle.
  • a control routine temperature adjustment control
  • the control unit 105 obtains various molding information based on the input signal from the injection molding machine.
  • This molding information includes, for example, each step in the molding cycle, resin material information indicating the material of the resin, melting temperature information indicating the heating temperature of the injection nozzle 11, and injection port information indicating the diameter of the injection nozzle 12. , Including information on the diameter and length of sprue 9 and molded parts.
  • step S102 the control unit 105 determines whether or not it is a cooling start time based on the molding information of the injection molding machine acquired in step S101.
  • the control unit 105 uses at least one of the various pieces of molding information as a displacement parameter, and uses a cooling start timing (cooling air supply start timing) and a cooling end timing (cooling air supply stop). Timing). Specifically, in the third embodiment, the time when the filling process is almost finished is set as the cooling start time, and the end time of the mold release step is set as the cooling end time.
  • step S102 when the control unit 105 determines that it is not the cooling start time, it ends the process.
  • the control unit 105 determines that it is the cooling start time, it performs the cooling process shown in steps S103 to S107.
  • step S103 the control unit 105 supplies a flow control signal to the knob 103 to open the valve 103. Specifically, the control unit 105 drives the valve 103 so that the fully closed state force is also fully opened, and causes cooling air (normal temperature air) to flow through the medium flow path in the pipe 101. For this reason, the cooling air passes through the resin flow path 13 of the injection nozzle 11 and is discharged from the tip 101a of the pipe 101 to the outside. As a result, the injection of the injection nozzle 11 The molten resin flowing through the mouth 12 and the resin flow path 13 is indirectly cooled by the cooling air, and the solidification rate of the resin increases.
  • cooling air normal temperature air
  • step S104 based on the detection signal from the temperature sensor 104, the control unit 105 determines whether the temperature of the cooling air is a force that is optimal for cooling (normal temperature). When the temperature of the cooling air is not the optimum temperature, the control unit 105 adjusts the temperature of the cooling air by controlling the opening degree of the valve 103 in step S105.
  • control unit 105 reduces the opening of the valve 103 when the temperature of the cooling air is lower than the optimum temperature, and controls the valve 103 when the temperature of the cooling air is higher than the optimum temperature.
  • the opening of the is expanded (only when not fully open). As a result, the temperature of the cooling air is adjusted to the optimum temperature.
  • step S105 when the processing in step S105 is completed, or when it is determined in step S104 that the cooling air is at the optimum temperature, the control unit 105 ends the mold release process in step S106. Judgment is made based on the input signal from the injection molding machine. If the mold release process has not been completed, the control unit 105 proceeds to the process of step S104 again. When the mold release process is completed, the control unit 105 stops the injection of the cooling air to the injection nozzle 11 by controlling the open state force of the valve 103 to the fully closed state in step S107. Then, the control unit 105 ends the process.
  • the solidification rate of the resin is increased between the end of the filling process and the completion of the release process, and as a result, the time of the cooling process is shortened.
  • the squeezing force a thread drawing phenomenon occurs in the molded product at the time of mold release, and it is suitably suppressed that the resin remains in the cavity 10 in the next molding cycle.
  • the temperature adjustment mechanism of the third embodiment has the following advantages.
  • a pipe 101 is disposed so as to penetrate the resin flow path 13 in the injection nozzle 11, and a cooling medium (cooling air) is circulated through the medium flow path of the pipe 101. Therefore, it is more directly cooled by the cooling air flowing through the S-pipe 101 than when the cooling air is jetted to the outer surface of the injection nozzle 11 as in the prior art.
  • the pipe 101 is disposed in the vicinity of the injection port 12 of the injection nozzle 11, the resin in the vicinity of the injection port 12 is effectively cooled. Therefore, since the solidification time of the resin is shortened, the molded product is cooled and released. Even if the time for performing the process is shortened, the stringing phenomenon occurs in the molded product. In other words, it is possible to reduce the molding cycle time while suppressing the yarn drawing phenomenon.
  • the pipe 101 is arranged along a direction orthogonal to the direction of circulation of the resin flowing in the resin flow path 13. Therefore, the resin flowing through the resin flow path 13 always comes into contact with the pipe 101. Therefore, when the cooling air is supplied to the Neuve 101, the resin contacting the pipe 101 can be reliably cooled by the cooling air.
  • the cooling air supply start timing and supply stop timing are based on at least one of the material of the resin, the heating temperature of the injection nozzle, the diameter of the injection port, and the size of the resin molded product. Are controlled to change. For this reason, the resin can be cooled at an optimal cooling timing.
  • the pipe 101 is disposed on the injection nozzle 11 and is not disposed on the fixed mold 2. For this reason, in arranging the temperature adjustment mechanism of the third embodiment, it can be dealt with only by changing the injection nozzle 11, and there is no need to change the shape of the fixed mold 2. Therefore, the temperature adjustment mechanism can be disposed without requiring a large-scale change.
  • the temperature of the cooling air is detected by the temperature sensor 104, and the control unit 105 controls the valve 103 based on the detection result so as to optimize the flow rate of the cooling air. To do. For this reason, the cooling control using the medium can be performed with high accuracy.
  • the temperature adjustment mechanism of the fourth embodiment is different from the temperature adjustment mechanism of the third embodiment in that it includes both a cooling mechanism and a heating mechanism.
  • the heating mechanism is the first and second implementation It is comprised similarly to the heating mechanism of form.
  • the Neuve 201 includes a flow path 202 disposed so as to penetrate the injection nozzle 11 and two flow paths 203 and 204 branched from the flow path 202.
  • the flow path (hereinafter referred to as the first flow path) 203 forms the first medium flow path of the present invention
  • the flow path (hereinafter referred to as the second flow path) 204 is the second medium flow of the present invention.
  • a flow path (hereinafter referred to as a third flow path) 202 forms a third medium flow path of the present invention.
  • the third flow path 202 has an opening (opening of the pipe 201) 201a disposed near the injection port 12.
  • Each of the first flow path 203 and the second flow path 204 has a first end communicating with the third flow path 202 and a second end connected to the pump 210.
  • a first valve 205 is disposed in the first flow path 203, and a second valve 206 is disposed in the second flow path 204.
  • Each of the valves 205 and 206 is electrically connected to a supply control unit (hereinafter referred to as a control unit) 211 and controls the flow rate of the medium based on a flow control signal supplied from the control unit 211.
  • the opening degree of each of the valves 205 and 206 is controlled by the control unit 211 so as to change linearly.
  • a first temperature sensor 207 is disposed between the first valve 205 and the third flow path 202 in the first flow path 203.
  • a second temperature sensor 208 is disposed between the second valve 206 and the third flow path 202 in the second flow path 204.
  • a third temperature sensor 212 is disposed in the third flow path 202.
  • Each temperature sensor 207, 208, 212 is electrically connected to the control unit 211
  • a temperature adjusting device that heats the medium flowing through the second flow path 204 to a predetermined temperature (for example, 225 ° C).
  • the temperature adjusting device 209 is electrically connected to the control unit 211 and controls the temperature based on a temperature control signal supplied from the control unit 211.
  • the flow rate of the air supplied from the pump 210 to the first flow path 203 is controlled by the first valve 205. Then, the air controlled to a predetermined flow rate flows from the first flow path 203 to the third flow path 202.
  • the temperature of the air supplied from the pump 210 to the second flow path 204 is adjusted by the temperature adjusting device 209. Further, the flow rate of the air flowing through the second flow path 204 is controlled by the second valve 206.
  • the air controlled to a predetermined temperature and flow rate is It flows from the second flow path 204 to the third flow path 202.
  • air flowing from the first flow path 203 to the third flow path 202 functions as a cooling medium
  • air flowing from the second flow path 204 to the third flow path 202 functions as a heating medium.
  • Air flowing through the first flow path 203 and the second flow path 204 is mixed in the third flow path 202. Then, the mixed air is injected into the recess 7 from the opening 20 la at the tip of the pipe 201 (third flow path 202) passing through the injection nozzle 11.
  • the pipe 201 having the first to third flow paths 203, 204, 202, the pump 210, and the first to third temperature sensors 207, 208, 212.
  • the first and second knobs 205 and 206 and the control unit 211 constitute a temperature adjusting mechanism for the injection molding machine.
  • the temperature adjustment mechanism of the fourth embodiment configured as described above operates according to the control routine shown in FIG. 3, as in the first embodiment.
  • the control unit 211 executes the control routine (temperature adjustment control) shown in FIG. 3 at a predetermined interruption interval during a molding cycle (see FIG. 2) performed by the injection molding machine.
  • the first and second valves 205 and 206 of the fourth embodiment correspond to the first and second valves 25 and 26 of the first embodiment, respectively.
  • the first to third flow paths 203, 204, 202 of the fourth embodiment correspond to the first to third flow paths 14a, 14b, 14c of the first embodiment, respectively.
  • the first to third temperature sensors 207, 208, and 212 of the fourth embodiment correspond to the first to third temperature sensors 21 to 23 of the first embodiment, respectively.
  • the temperature adjustment mechanism of the fourth embodiment is the above (1) to (3) in the third embodiment.
  • heated air that flows only with cooling air is also circulated.
  • the heated air is circulated in a heating and melting process in which the injection nozzle 11 is heated to melt the resin in the resin flow path 13. For this reason, melting of the resin flowing in the resin flow channel 13 can be promoted by the heated air.
  • the tip portion of the injection nozzle 11 cooled in the previous molding cycle is heated by the heated air injected to the injection nozzle 11 in the heating and melting process of the next molding cycle. As a result, the heating and melting process can be performed only in the cooling process. Time can be shortened. Therefore, it is possible to further reduce the molding site time while suppressing the stringing phenomenon of the molded product.
  • the structure for cooling and the structure for calorie heat may be the same type. For this reason, for example, the structure of the temperature adjustment mechanism is simplified as compared with the case where cooling is performed using a cooling medium and the resin is heated using a heater or the like.
  • Each of the cooling air and the heating air flows into the third flow path 202 via the individual medium flow paths (the first flow path 203 and the second flow path 204). For this reason, it is possible to freely adjust the temperature of the medium flowing through the resin flow path 13 by using either the cooling air or the heating air alone or by using the mixture of the cooling air and the heating air. it can. Therefore, the temperature of the heated air can be quickly adjusted as compared with the case where only the temperature adjusting device 209 is used.
  • the opening degree of the first valve 205 and the second valve 206 is linearly controlled by the control unit 211. That is, the supply amount of the cooling air and the heating air is continuously changed by the control unit 211. For this reason, when the injection nozzle 11 is cooled or heated, the supply amount of each medium is set to an optimum value. In particular, when the temperature of the medium is adjusted by mixing the cooling medium and the heating medium, the temperature of the mixed medium can be easily finely adjusted.
  • the material of the resin, the heating temperature of the injection nozzle, the diameter of the resin injection port, the size of the resin molded product are also determined at the supply start timing and supply stop timing of the heated air. Control is made to vary based on at least one of the magnitudes. For this reason, the resin can be heated at an optimal heating timing.
  • the temperatures of the cooling air and the heating air are detected by the first to third temperature sensors 207, 208, 212. Based on the detection results of the sensors 207, 208, and 212, the control unit 211 controls the temperatures of the cooling air and the heating air so as to become optimum temperatures. For this reason, cooling and heating control using a medium can be performed with high accuracy.
  • a bush 301 formed of a heat insulating material may be interposed between the injection nozzle 11 and the pipe 201. In this way, the thermal effect between the injection nozzle 11 and the pipe 201 can be reduced, and more accurate. High temperature control is possible.
  • air cooling medium, heating medium, or both
  • the substance can be easily used as a cooling medium and a heating medium, which is preferable for a liquid such as water or an environment such as chlorofluorocarbon.
  • control unit performs heating start timing, heating end timing, cooling start timing (first, second, and fourth embodiments only) and cooling end timing ( At least one of the first, second, and fourth embodiments) may be freely changed according to molding information supplied from an injection molding machine, parameters input by an operator, and the like.
  • the opening of the valve may change in a binary manner between a fully closed state and a fully open state.
  • the control of the valve by the control unit (24, 105, 211) can be simplified.
  • the temperature of the cooling air is not limited to room temperature, but may be adjusted to a temperature adjusted by a temperature adjustment device (27, 209) (for example, a temperature below room temperature), for example.
  • the temperature control device (27, 209) may be omitted.
  • the second supply flow path 18 is disposed in the vicinity of the injection nozzle 11, and the temperature of the heated air flowing through the second supply flow path 18 is determined using the temperature of the injection nozzle 11. You may adjust.
  • the temperature of the heated air flowing through the pipe 201 (first flow path 202) may be adjusted using the temperature of the injection nozzle 11.
  • the medium flow path 14 may include only the third flow path 14c.
  • control unit 24 selectively supplies cooling air and heating air into the third flow path 14c.
  • control unit 105 may selectively supply cooling air and heating air into the pipe 101.
  • the medium flow path 14 may include only the first flow path 14a and the second flow path 14b. In this case, each flow path 14a, 14b communicates with the recess 7 individually.
  • the temperature sensor may be omitted.
  • the configuration of the temperature adjustment mechanism is simplified.
  • the processing burden on the control unit can be reduced.
  • the control routine for temperature adjustment control has a predetermined interrupt as shown in Fig. 3 and Fig. 8. Not limited to interrupt routines that run at regular intervals.
  • the control routine of FIG. 3 may be configured to return to step S12 after execution of step S17 or step S23.
  • the control routine of FIG. 8 may be configured to return to step S102 after execution of step S107.
  • the supply control unit 24, 105 or 211 continuously performs the temperature adjustment control over the period of the molding site.
  • the cooling medium and the heating medium are air. According to the technical idea described in (1), the cooling medium and the heating medium can be configured at low cost.
  • the temperature of the air as the cooling medium is a normal temperature. According to the technical idea described in (2), the structure for actively cooling the cooling medium can be eliminated.
  • a temperature of a medium flowing through the medium circulation part is set to the medium circulation part.
  • a temperature detection unit is provided, and the supply control unit adjusts the temperature of the medium flowing through the medium circulation unit based on a detection signal of the temperature detection unit force. According to the technical idea described in (3), it is possible to suitably adjust the temperature of the medium flowing through the medium distribution unit.
  • a heating and melting step in which the resin material is heated and melted in the injection nozzle of the injection molding machine, and a filling process in which the heated and melted resin is injected from the injection nozzle and filled in the molding die.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 糸引き現象を好適に抑制しつつ、成形サイクルタイムの更なる短縮化を図ることができる射出成形機用の温度調節機構。温度調節機構は、射出ノズル(11)内の樹脂材料を冷却する冷却媒体か、又は樹脂材料を加熱する加熱媒体のいずれかを噴射するように、冷却媒体及び加熱媒体を流通させる媒体流通部(14)と、媒体流通部(14)から冷却媒体及び加熱媒体が選択的に噴射されるように、媒体流通部(14)内への冷却媒体及び加熱媒体の供給を制御する供給制御部(24)とを備える。

Description

明 細 書
射出成形機用の温度調節機構
技術分野
[0001] 本発明は、射出成形機力 射出される榭脂の温度を調節する温度調節機構に関 するものである。
背景技術
[0002] 一般に、射出成形機は、射出成形機の加熱シリンダ (射出ノズル)内において成形 材料 (榭脂チップ)を加熱溶融する工程 (加熱溶融工程)を行う。次!ヽで射出成形機 は、その加熱溶融された榭脂をノズル力 射出して成形金型内に榭脂を充填するェ 程 (充填工程)を行う。次いで射出成形機は、該充填された榭脂を冷却して、固化さ れた榭脂 (成形品)を離型する工程 (冷却工程)を行う。成形工程における 1サイクル ( 成形サイクル)は、加熱溶融工程、充填工程及び冷却工程を含む。
[0003] 従来、こうした成形サイクルタイムを短縮ィ匕することにより、成形品の生産性を向上さ せることが要望されている。しかし、成形サイクルタイムを単純に短縮ィ匕することは困 難である。例えば冷却工程の時間を短縮した場合には、成形品の離型時に射出ノズ ルの射出口部位で榭脂が好適に切断されず、成形品に榭脂糸が残る糸引き現象が 生じてしまうおそれがある。こうした糸引き現象が生じると、その糸が金型内に残り、次 のサイクルで成形される成形品に該糸が混入するおそれがある。その結果、成形品 の不良率が高まり、歩留まりが低下する。このため、こうした糸引き現象の発生を抑制 することが必要となる。
[0004] そこで従来、例えば特許文献 1や特許文献 2に記載される糸引き防止技術が提案 されている。
詳しくは、特許文献 1においては、射出ノズルの外面に向けて冷却用気体を噴出し て該射出ノズルの射出口部位の温度を低下させる。これにより、成形品離型時にお ける樹脂の好適な切断を促進させる。このため、それ以前に比べて冷却時間を短縮 しても糸引き現象が抑制される。
[0005] また、特許文献 2においては、射出ノズル内の榭脂流路における射出口部位に、該 榭脂流路の中心に溶融樹脂が流れることを阻害する阻害部材 (駒部材)を配設して いる。通常、榭脂の凝固は外面部位力 始まり、温度が低下しにくい中心部位が最 後に凝固する。このため、射出口部位に前記阻害部材を配設することにより、該射出 口における榭脂流路の中心部位に溶融樹脂が流れに《なる。このため榭脂の凝固 が促進され、冷却時間を短縮しても糸引き現象が抑制される。
[0006] よって、これら従来の技術により、成形サイクルタイムの短縮ィ匕が可能となる。
ところが、例えば特許文献 1のように射出ノズルの冷却を行った場合には、次の成 形サイクルにおける加熱溶融工程においては再び射出ノズルを加熱して内部の榭脂 を溶融させる必要がある。このため、射出ノズルを冷却してしまうと、榭脂を溶融する ために必要な加熱時間が若干長くなつてしまう。
[0007] また、例えば特許文献 2のように榭脂流路に阻害部材を配設した場合には、何も配 設しない場合よりも榭脂流路内における榭脂の流動性が低下してしまう。このため、 充填工程に要する時間が長くなつてしまう。
[0008] 近年では、よりいつそう生産性を向上させるために、更なる成形サイクルタイムの短 縮ィ匕が要望されている。従って、上記加熱溶融工程や充填工程における時間のロス も軽視できない。
[0009] また、前記従来の技術では、更なる成形サイクルタイムの短縮を行うべく冷却時間 の更なる短縮ィ匕を図ると、前記糸引き現象が生じ、歩留まりが悪ィ匕してしまう。このた め、更なる成形サイクルタイムの短縮は事実上困難であった。
特許文献 1 :特開 2003— 211513号公報
特許文献 2:特開 2001 - 246642号公報
発明の開示
[0010] 本発明は、糸引き現象の発生を好適に抑制しつつ、成形サイクルタイムの更なる短 縮ィ匕を図ることができる射出成形機用の温度調節機構を提供する。
本発明の第 1の態様において、射出成形機用の温度調節機構が提供される。該温 度調節機構は、榭脂材料を射出する射出ノズルを有する射出成形機用の温度調節 機構であって、前記射出ノズル内の前記榭脂材料を冷却する冷却媒体か、又は前 記榭脂材料を加熱する加熱媒体の!/ゝずれかを噴射するように、前記冷却媒体及び 前記加熱媒体を流通させる媒体流通部と、前記媒体流通部から前記冷却媒体及び 前記加熱媒体が選択的に噴射されるように、前記媒体流通部内への前記冷却媒体 及び前記加熱媒体の供給を制御する供給制御部と、を備える。
[0011] 本発明の第 2の態様において、射出成形機用の温度調節機構が提供される。該温 度調節機構は、榭脂材料を射出する射出ノズルを有する射出成形機用の温度調節 機構であって、前記射出ノズル内の前記榭脂材料を冷却する冷却媒体を流通させる パイプ状の媒体流通部であって、該媒体流通部の一部が前記射出ノズル内を貫通 している、媒体流通部と、前記媒体流通部への前記冷却媒体の供給を制御する供 給制御部と、を備える。
図面の簡単な説明
[0012] [図 1]本発明の第一実施形態の射出成形機用の温度調節機構を示す概略的な全体 図。
[図 2]図 1の射出成形機における成形サイクルを示すシーケンスチャート。
[図 3]図 1の供給制御部による温度調整制御を示す概略的なフローチャート。
圆 4A]本発明の第二実施形態の射出成形機用の温度調節機構を示す概略的な断 面図。
[図 4B]図 4Aの 4B— 4B線断面図。
[図 4C]図 4Bの 4C 4C線断面図。
[図 5A]本発明の他のパイプを示す概略的な断面図。
[図 5B]本発明の他のパイプを示す概略的な断面図。
[図 5C]本発明の他のパイプを示す概略的な断面図。
[図 5D]本発明の他のパイプを示す概略的な断面図。
[図 6A]本発明の他のパイプを示す概略的な断面図。
[図 6B]本発明の他のパイプを示す概略的な断面図。
[図 7]本発明の第三実施形態の射出成形機用の温度調節機構を示す概略的な全体 図。
[図 8]図 7の供給制御部による温度調整制御を示す概略的なフローチャート。
[図 9]本発明の第四実施形態の射出成形機用の温度調節機構を示す概略的な全体 図。
[図 10A]本発明の他の射出ノズルを示す概略的な断面図。
[図 10B]図 10Aの矢印 10Bの方向力 見た平面図。
発明を実施するための最良の形態
[0013] 以下、本発明の第一実施形態の射出成形機用の温度調節機構を図 1〜図 3に基 づき詳細に説明する。
図 1に示すように、射出成型用金型 1は、図示しない固定プラテンに取り付けられる 固定金型 2と、図示しない可動プラテンに取り付けられ、固定金型 2に接触及び離間 自在な可動金型 3とを含む。
[0014] 固定金型 2は、固定プラテンに取着される固定型板 4と、その固定型板 4内に埋設 されて可動金型 3と当接するスプルブッシュ 5と、そのスプルブッシュ 5を固定型板 4内 に保持するロケ一トリング 6とを備えている。スプルブッシュ 5には凹所 7が凹設される とともに、ロケ一トリング 6にはその凹所 7と連通する貫通孔 8が設けられている。その 凹所 7の最奥部には、可動金型 3に貫通するスプル 9が透設されている。また、可動 金型 3において固定金型と対面する面には、スプル 9と連通するキヤビティ 10が凹設 されている。なお、スプル 9は、可動金型 3に向かうに従って徐々に径が大きくなるよう に設定されている。こうした凹所 7内には、射出成形機の射出ノズル 11の先端部位が 貫通孔 8を貫通して収容されている。詳しくは、射出ノズル 11は、その先端縁に形成 された射出口 12と、その射出口 12と連通する榭脂流路 13とが設けられている。そし て、射出ノズル 11は、射出口 12がスプルに合致するように凹所 7内に収容されてい る。射出ノズル 11は、図示しない加熱機構により榭脂流路 13内に供給される榭脂材 料を加熱及び溶融させ、その溶融榭脂を射出口 12から外部に吐出する。このため、 榭脂流路 13内を流通する溶融榭脂は、射出口 12からスプル 9を介してキヤビティ 10 内に供給される。
[0015] ところで、固定型板 4及びスプルブッシュ 5には、射出ノズル 11の先端部位に向け て前記凹所 7内に冷却媒体及び加熱媒体を供給できるように、媒体流通部としての 媒体流路 14が透設されている。この媒体流路 14は、スプルブッシュ 5及び固定型板 4を貫通して延びるとともに、固定型板 4の外部から凹所 7に連通するように設けられ ている。この媒体流路 14は、 3つの流路 14a, 14b, 14c (14a〜14c)を含む。具体 的に、第 1流路 14a (第 1媒体流路)は、凹所 7に対する射出ノズル 11の挿入方向と 直交する方向に延びており、固定型板 4の外面に開口を有する。第 2流路 14a (第 2 媒体流路)は、第 1流路 14aと平行に延びており、固定型板 4の外面に開口を有する 。第 3流路 14b (第 3媒体流路)は、第 1流路 14a及び第 2流路 14bに連結される一端 と、凹所 7に連通する他端(開口 14d)とを有する。開口 14dは、射出口 12の近傍に 配置されている。すなわち、第 1流路 14aを流れる媒体と第 2流路 14bを流れる媒体 とは第 3流路 14cにて合流する。したがって、該第 3流路 14cには混合された媒体が 流れる。また、固定型板 4における第 1流路 14aの開口箇所には第 1ポート 15が設け られるとともに、第 2流路 14bの開口箇所には第 2ポート 16が設けられている。そして 、第 1ポート 15は、第 1供給流路 17、第 2ポート 16は第 2供給流路 18を介して媒体供 給源としてのポンプ 19に連結されている。なお、第一実施形態においてポンプ 19は 、各供給流路 17, 18及び媒体流路 14 (第 1〜第 3流路 14a〜14c)に媒体として空 気を供給するようになって!/、る。
[0016] 第 1流路 14aには第 1温度センサ 21が配設され、第 2流路 14bには第 2温度センサ 22が配設され、第 3流路 14cには第 3温度センサ 23が配設されている。各温度セン サ 21〜23は、媒体供給制御手段としての供給制御部(以下、制御部) 24に電気的 に接続されている。
[0017] 第 1供給流路 17には、ポンプ 19から該流路 17を介した第 1流路 14aへの媒体の流 通量を制御する第 1バルブ 25が配設されている。第 2供給流路 18には、ポンプ 19か ら該流路 18を介した第 2流路 14bへの媒体の流通量を制御する第 2バルブ 26が配 設されている。各バルブ 25, 26は、制御部 24に電気的に接続され、該制御部 24か ら供給される流通制御信号に基づいて媒体の流通量を制御する。なお、第一実施形 態において各バルブ 25, 26の開度は、制御部 24によってリニアに変化するように制 御される。
[0018] さらに、第 2供給流路 18には、該第 2供給流路 18を流通する媒体を所定温度 (例 えば 225°C)に加熱する温度調節装置 27が配設されている。この温度調節装置 27 は、制御部 24に電気的に接続され、該制御部 24から供給される温度制御信号に基 づいて温度を制御する。
[0019] 第 1供給流路 17を流れる空気の流量は、第 1バルブ 25によって制御される。そして 、所定の流量に制御された空気が、第 1供給流路 17から第 1ポート 15、第 1流路 14a 及び第 3流路 14cを介して射出ノズル 11の先端部位に噴射される。すなわち、第 1供 給流路 17、第 1ポート 15及び第 1流路 14aには、常温の空気が流通する。一方、第 2 供給流路 18を流れる空気の温度は、温度調節装置 27によって調節される。更に、 第 2供給流路 18を流れる空気の流量は、第 2バルブ 26によって制御される。そして、 所定の温度及び流量に制御された空気が、第 2供給流路 18から第 2ポート 16、第 2 流路 14b及び第 3流路 14cを介して射出ノズル 11の先端部位に噴射される。すなわ ち、第 2供給流路 18、第 2ポート 16及び第 2流路 14bには、高温の空気が流通するこ ととなる。従って、第 1供給流路 17から第 1ポート 15及び第 1流路 14aを介して第 3流 路 14cに流通する空気が冷却媒体として機能するとともに、第 2供給流路 18から第 2 ポート 16及び第 2流路 14bを介して第 3流路 14cに流通する空気が加熱媒体として 機能する。なお、第 1流路 14a及び第 2流路 14bを介してそれぞれ流れる空気は第 3 流路 14cにおいて混合され、その混合空気が射出ノズル 11の先端部位に噴射され ることとなる。
[0020] 制御部 24は、具体的には図示しない CPU、 ROM, RAMを含むコンピュータュ- ットによって構成されている。制御部 24は、射出成形機からの入力信号や、各温度 センサ 21〜23からの検出信号に基づいて、各バルブ 25, 26及び温度調節装置 27 の駆動を制御する。このため、制御部 24は、射出成形機と同期して媒体の供給制御 を行う。
[0021] このように、第一実施形態では、第 1〜第 3流路 14a〜14cを有する媒体流路 14と 、第 1及び第 2バルブ 25, 26と、第 1及び第 2供給流路 17, 18と、ポンプ 19と、第 1 〜第 3温度センサ 21〜23と、制御部 24とにより、射出成形機用の温度調節機構が 構成されている。
[0022] 次に、このように構成された温度調節機構の具体的な動作例を、図 2に示すシーケ ンスチャート及び図 3に示すフローチャートに従って説明する。
図 2に示すように、射出成形機による成形工程は、以下の手順で行われる。まずス テツプ S 1にお ヽて射出ノズル 11の榭脂流路 13内に供給された榭脂材料 (榭脂チッ プ)を加熱機構によって加熱溶融する加熱溶融工程が行われる。その後、ステップ S 2において射出ノズル 11の射出口 12からスプル 9内に該溶融榭脂を射出してキヤビ ティ 10内に榭脂を充填する充填工程が行われる。次に、ステップ S3において該榭脂 を冷却 '固化させる冷却工程が行われる。次に、ステップ S4において固定金型 2から 可動金型 3を離型して榭脂成形品をキヤビティ 10から取り出す離型工程が行われる 。すなわち、射出成形機による成形工程は、「加熱溶融工程→充填工程→冷却工程 →離型工程」を成形サイクルとして行われる。
[0023] 制御部 24は、このような成形サイクルの期間に、図 3に示す制御ルーチン (温度調 節制御)を所定の割り込み間隔で実行する。図 3に示すように、まずステップ S11に おいて制御部 24は、射出成形機からの入力信号に基づき、各種の成形情報を取得 する。この成形情報は、成形サイクルにおける各工程や、榭脂の材料を示す榭脂材 料情報、射出ノズル 11の加熱温度を示す溶融温度情報、射出口 12の口径を示す 射出口情報、榭脂成形品の大きさゃスプル 9の口径や長さ、成形品に関する情報を 含む。そして、制御部 24は、こうした成形情報に基づいて加熱媒体 (加熱空気)の最 適な温度を求め、該加熱空気を最適温度に調節するための温度制御信号を温度調 節装置 27に供給する。
[0024] 次に、ステップ S12において制御部 24は、加熱開始時期である力否かを判断する 。なお、第一実施形態においては、加熱溶融工程の開始時が加熱開始時期 (加熱 媒体の供給開始タイミング)として設定されるとともに、加熱溶融工程の終了時が加熱 終了時期 (加熱媒体の供給停止タイミング)として設定されている。このため、制御部 24は、射出成形機力 の入力信号に基づいて加熱開始時期であるか否かの判断を 行 、、加熱開始時期であると判断した際にはステップ S 13〜S 17の加熱処理を行う。
[0025] <加熱処理 >
まず、ステップ S 13において制御部 24は、第 2バルブ 26に対して流通制御信号を 供給して該第 2バルブ 26を開ける。具体的には、制御部 24は、第 2バルブ 26を全閉 状態から全開状態に駆動して、第 2供給流路 18、第 2ポート 16、第 2流路 14b及び 第 3流路 14cに加熱空気を流通させる。このため、加熱空気は射出ノズル 11の先端 部位に噴射される。その結果、該射出ノズル 11の加熱が促進されて榭脂の溶融速 度が上がり、加熱溶融工程に要する時間が短縮される。
[0026] そして、ステップ S 14において制御部 24は、第 2温度センサ 22及び第 3温度センサ 23からの検出信号に基づいて媒体 (加熱空気)の温度が前記最適温度であるか否 かを判断する。加熱空気の温度が最適温度ではない場合は、制御部 24は、ステップ S15において温度調節装置 27に温度制御信号を供給し、各バルブ 25, 26の開度 を制御して加熱空気の温度を調節する。
[0027] 詳しくは、制御部 24は、加熱空気の温度が最適温度よりも低い場合には、温度調 節装置 27によって加熱空気の温度を上昇させる。更に制御部 24は、第 2バルブ 26 の開度を拡張する (全開状態でない場合に限る)。これにより、加熱空気の温度が上 昇し、最適温度に調節される。
[0028] 一方、制御部 24は、加熱空気の温度が最適温度よりも高い場合には、温度調節装 置 27によって加熱空気の温度を下降させる。更に制御部 24は、第 2バルブ 26の開 度を絞る。更に好適には、制御部 24は、第 1バルブ 25を開けて第 1供給流路 17に 冷却媒体 (冷却空気)を流通させる。これにより、第 1流路 14aに冷却空気が流通し、 少なくとも第 3流路 14cには加熱空気と冷却空気との混合気が流通する。その結果、 第 3流路 14cを流通する媒体の温度が低下して、加熱空気の温度が最適温度に調 節される。なお、制御部 24は、ステップ S15において第 1バルブ 25を開けることなぐ 温度制御及び第 2バルブ 26の開度制御のみによって、加熱空気の温度を調節して ちょい。
[0029] そして、こうしたステップ S15の処理が終了した場合、またはステップ S14において 媒体温度が最適温度であると判断された場合に、制御部 24は、ステップ S16におい て射出成形機による加熱溶融工程が終了したカゝ否かを判断する。加熱溶融工程が 終了していない場合には、制御部 24は再びステップ S 14の処理へ移行する。加熱 溶融工程が終了している場合には、制御部 24はステップ S17において各バルブ 25 , 26を開状態から全閉状態に制御して射出ノズル 11に対する媒体の噴射を停止す る。そして、制御部 24は、処理をー且終了する。
[0030] 上記のような加熱処理が行われることにより、加熱溶融工程の時間が短縮化され、 成形サイクルタイムの短縮ィ匕が可能となる。
一方、制御部 24は、ステップ S12において加熱開始時期ではないと判断した場合 には、ステップ S18の処理に移行する。そして、ステップ S18において制御部 24は、 冷却開始時期であるか否かを判断する。なお、第一実施形態においては、充填工程 の終了間近の時点が冷却開始時期 (冷却媒体の供給開始タイミング)として設定され 、離型工程の終了時が冷却終了時期 (冷却媒体の供給停止タイミング)として設定さ れている。このため、制御部 24は、射出成形機からの入力信号に基づいて冷却開始 時期であるか否かの判断を行 、、冷却開始時期ではな 、と判断した際には処理を一 且終了する。すなわち、この場合、制御部 24は、加熱開始時期でも冷却開始時期で もないと判断して何ら制御を行わない。これに対し、制御部 24は、冷却開始時期であ ると判断した際にはステップ S19〜S23に示す冷却処理を行う。
[0031] <冷却処理 >
まず、ステップ S19において制御部 24は、第 1バルブ 25に対して流通制御信号を 供給して該第 1バルブ 25を開ける。具体的には、制御部 24は、第 1バルブ 25を全閉 状態から全開状態に駆動して、第 1供給流路 17、第 1ポート 15、第 1流路 14a及び第 3流路 14cに冷却空気(常温空気)を流通させる。このため、冷却空気は射出ノズル 1 1の先端部位に噴射され、該射出ノズル 11の先端部位が冷却される。その結果、射 出ノズル 11の射出口 12及び榭脂流路 13を流れる溶融樹脂が冷却空気によって間 接的に冷却され、凝固速度が上昇する。
[0032] 次に、ステップ S 20において制御部 24は、第 1温度センサ 21及び第 3温度センサ 2 3からの検出信号に基づ 、て媒体 (冷却空気)の温度が冷却に最適な温度(常温)で ある力否かを判断する。冷却空気の温度が最適温度ではない場合は、制御部 24は 、ステップ S21において第 1バルブ 25の開度を制御して冷却空気の温度を調節する
[0033] 詳しくは、制御部 24は、冷却空気の温度が最適温度よりも低い場合には第 1バル ブ 25の開度を絞る。逆に、冷却空気の温度が最適温度よりも高い場合には、制御部 24は、該第 1バルブ 25の開度を拡張する (全開状態でない場合に限る)。これにより 、冷却空気の温度が最適温度に調節される。 [0034] そして、こうしたステップ S21の処理が終了した場合、またはステップ S20において 媒体温度が冷却に最適な温度であると判断された場合に、制御部 24は、ステップ S2 2において射出成形機による離型工程が終了したカゝ否かを判断する。離型工程が終 了していない場合には、制御部 24は再びステップ S20の処理へ移行する。離型ェ 程が終了している場合には、制御部 24はステップ S22において第 1バルブ 25を開状 態から全閉状態に制御して射出ノズル 11に対する媒体の噴射を停止する。そして、 制御部 24は、処理をー且終了する。
[0035] 上記のような冷却処理が行われることにより、充填工程の終了間近から離型工程の 完了時までの間における樹脂の凝固速度が早くなり、結果として冷却工程の時間が 短縮化される。しカゝも、離型時において、成形品に糸引き現象が生じに《なり、次の 成形サイクルにおいて樹脂がキヤビティ 10内に残存してしまうのが好適に抑制される
[0036] また、次の成形サイクル時における加熱溶融工程では、冷却空気によって冷却され た射出ノズル 11の先端が加熱空気によって加熱される。このため、冷却に伴い加熱 溶融工程の時間が長くなることも防止される。従って、成形サイクルタイム全体が好適 に短縮化される。
[0037] 第一実施形態の温度調節機構は、以下の利点を有する。
(1)第 1流路 14a及び第 3流路 14cを介して噴射される冷却空気により、射出ノズル 11の先端部位が冷却される。その結果、榭脂流路 13を流れる榭脂が間接的に冷却 され、榭脂の凝固時間が短くなる。従って、成形品を冷却'離型する工程を実施する 時間を短縮しても、成形品に糸引き現象が生じに《なる。しかも、次の成形サイクル で加熱溶融工程を行う際には、第 2流路 14b及び第 3流路 14cを介して噴射される加 熱空気により、前回の成形サイクルで冷却された射出ノズル 11の先端部位が加熱さ れる。このため、榭脂流路 13を流れる榭脂の溶融が促進され、加熱溶融工程の時間 を短縮することができる。よって、糸引き現象を抑制しつつ、成形サイクルタイムの更 なる短縮ィ匕を図ることができる。さらには、冷却媒体も加熱媒体も共に流体 (空気)で あるため、冷却のための構造と加熱のための構造が同一種で済む。このため、例え ば冷却媒体を用いて冷却を行い、ヒータなどを用いて加熱を行う場合に比べて、温 度調節機構の構造が簡素化される。
[0038] (2)冷却媒体と加熱媒体の各々は個別の媒体流路 (第 1流路 14a、第 2流路 14b) を介して第 3流路 14cに流入する。このため、各媒体を単独で用いる力、又は 2つの 媒体の混合気を用いることにより、射出ノズル 11の外面に噴射される媒体の温度を 自由に調節することができる。従って、温度調節装置 27だけを用いる場合に比べて 、加熱空気の温度調節を迅速に行うことができる。
[0039] (3)第 1バルブ 25及び第 2バルブ 26の開度は、制御部 24によってリニアに制御さ れる。すなわち、冷却空気及び加熱空気の供給量は、制御部 24により連続的に変 更される。このため、射出ノズル 11や榭脂を冷却又は加熱する際に、各媒体の供給 量が最適値に設定される。特に、冷却媒体と加熱媒体とを混合して媒体の温度を調 節する際には、その混合媒体の温度の微調整を容易に行うことができる。
[0040] (4)制御部 24による加熱開始時期は加熱溶融工程の開始時に設定され、加熱終 了時期は加熱溶融工程の終了時に設定されている。このため、加熱空気による射出 ノズル 11の加熱を必要時にのみ行うことができ、該射出ノズル 11の効果的な加熱補 助を行うことができる。また、制御部 24による冷却開始時期は充填工程の終了間近 の時点に設定され、冷却終了時期は離型工程の終了時に設定されている。このため 、冷却空気による射出ノズル 11の冷却を確実に行うことができ、該射出ノズル 11を介 した溶融樹脂の凝固を確実に促進させることができる。よって、成形品の糸引き現象 を抑制しつつ、成形サイクルタイムの更なる短縮ィ匕を図ることができる。
[0041] (5)冷却空気の温度及び加熱空気の温度は、第 1〜第 3温度センサ 21〜23によつ て検出され、制御部 24は、各センサ 21〜23の検出結果に基づいて冷却空気及び 加熱空気の温度を最適温度となるように制御する。このため、媒体を用いた冷却及び 加熱制御を高 、精度で行うことができる。
[0042] 次に、本発明の第二実施形態の射出成形機用の温度調節機構を第一実施形態と の相違点を中心に図 4に基づいて詳細に説明する。なお、第二実施形態において、 第一実施形態と同一の部材は、第一実施形態と同一の符号で示す。
[0043] 図 4Aに示すように、第二実施形態の温度調節機構は、媒体流通部として機能する 第 3流路 14cがパイプ 31で形成されている。パイプ 31は、図 4Cに示すように略円筒 状であり、該パイプ 31の内部に第 3流路 14cが形成されている。ノイブ 31は、好適に は射出ノズル 11の先端部位を貫通するように凹所 7内に配置される。詳しくは、図 4B に示すように、パイプ 31は、射出ノズル 11の先端部位において、榭脂流路 13を流れ る榭脂の流通方向と直交する方向に沿って、榭脂流路 13の中心 Oを通るように配置 される。パイプ 31の先端は、射出ノズル 11の外部に突出している。このため、第 3流 路 14cを流れる冷却空気または加熱空気は、榭脂流路 13を通過した後、射出ノズル 11の外部へ放出される。よって、榭脂流路 13を流れる榭脂自体がパイプ 31内を流 れる冷却空気または加熱空気によって冷却または加熱される。このため、第二実施 形態では、榭脂の冷却及び加熱が第一実施形態に比べてより直接的に行われる。 その結果、加熱溶融工程及び冷却工程の更なる短縮ィ匕を図ることができる。
[0044] なお、第二実施形態において、パイプ 31の断面形状は、図 4Cに示すような真円形 状に限らず、種々の形状に変更可能である。
例えば、図 5Aに示すパイプ 31aは楕円形状の断面を有する。この場合、榭脂の流 通を円滑に行うため且つ樹脂との接触面積を増やすため、楕円の長軸が榭脂流通 方向と平行となるように配置されることが好ましい。また、他の形状として、図 5Bに示 すパイプ 3 lbは涙滴形状の断面を有する。この場合も、好ましくは、パイプ 31bは図 5 Bに示すように配置される。更には図 5C、図 5Dに示すように、菱形状の断面を有す るパイプ 31cや三角形状の断面を有するパイプ 31dでもよい。断面形状が真円形状 ( 図 4C)の場合にはパイプ 14を容易に形成することができる。これに対し、図 5A〜図 5Dに示すパイプ 31a〜31dを用いると、榭脂流路 13から射出口 12への樹脂の流動 を円滑に行うことができる。更にはパイプと榭脂との接触面積を大きくして該榭脂をよ り効果的に冷却 (加熱)することができる。
[0045] 更に、媒体流通部として機能するパイプは、榭脂流路 13の中心 O (図 4B参照)以 外の箇所を通るように配置されていてもよい。例えば図 6Aに示すパイプ 31eは、中 心 Oを通らない 2本の平行なパイプで形成されている。更には図 6Bに示すように、榭 脂流路 13の内周面に沿つて延びる円環形状の部分を有するパイプ fでもよ!/、。この ノイブ fを用いると榭脂を一段と効果的に冷却 (加熱)することができる。
[0046] 次に、本発明の第三実施形態の射出成形機用の温度調節機構を第一及び第二 実施形態との相違点を中心に図 7、図 8に基づいて詳細に説明する。なお、第三実 施形態において、第一実施形態と同一の部材は、第一実施形態と同一の符号で示 す。
[0047] 第三実施形態では、第二実施形態と同様に、媒体流通部として機能するパイプ 10 1が射出ノズル 11の先端部位 (射出口 12の端部近辺)を貫通して配置されている。 具体的に、パイプ 101は、射出ノズル 11の先端部位において、榭脂流路 13を流れる 榭脂の流通方向と直交する方向に沿って、該榭脂流路 13の中心 0 (図 4B参照)を 通るように配置され、その先端の開口 101aが射出ノズル 11の外部に突出している。 パイプ 101の開口 101aは、射出口 12の近傍に配置されている。パイプ 101は、断面 真円状に形成され、内部に媒体流路を有する。そして、パイプ 101の基端は、媒体 供給源であるポンプ 102に接続されている。なお、第三実施形態においてポンプ 10 2は、パイプ 101の媒体流路に冷却媒体として常温空気を供給する。
[0048] ノイブ 101におけるポンプ 102の近傍には、パイプ 101内部の媒体流路を流れる 冷却空気の流通量を制御するバルブ 103が配設されている。パイプ 101における射 出ノズル 11の近傍には、該媒体流路を流れる冷却空気の温度を検出する温度セン サ 104が配設されている。バルブ 103及び温度センサ 104は媒体供給制御手段とし ての供給制御部(以下、制御部) 105に電気的に接続されている。バルブ 103は、制 御部 105から供給される流通制御信号に基づいて媒体流路を流れる冷却媒体の流 通量を制御する。なお、第三実施形態においてノ レブ 103の開度は、制御部 105に よってリニアに変化するように制御される。
[0049] このため、ポンプ 102から供給された冷却媒体 (冷却空気)の流量は、ノ レブ 103 によって制御される。そして、所定流量に制御された冷却空気が、パイプ 101内の媒 体流路を介して、パイプ 101の先端の開口 101aから外部に放出される。
[0050] 制御部 105は、具体的には図示しない CPU、 ROM, RAMを含むコンピュータュ ニットによって構成されている。制御部 105は、第一実施形態と同様に、射出成形機 からの入力信号や、温度センサ 104からの検出信号に基づいて、ノ レブ 103の駆動 を制御する。このため、制御部 105は、射出成形機と同期して冷却空気の供給制御 を行う。 [0051] このように、第三実施形態では、パイプ 101と、ポンプ 102と、バルブ 103と、温度セ ンサ 104と、制御部 105とにより、射出成形機用の温度調節機構が構成されている。
[0052] 次に、このように構成された温度調節機構の具体的な動作例を、図 8に示すフロー チャートに従って説明する。
第三実施形態では、第一実施形態と同様に、射出成形機は、図 2に示す成形サイ クルに従って成形工程を行う。即ち、成形工程は、加熱溶融工程、充填工程、冷却 工程及び離型工程を 1サイクルとして行われる。
[0053] 制御部 105は、こうした成形サイクルの期間に、図 8に示す制御ルーチン (温度調 節制御)を所定の割り込み間隔で実行する。図 8に示すように、まずステップ S101に おいて制御部 105は、射出成形機からの入力信号に基づき、種々の成形情報を取 得する。この成形情報は、例えば、上記成形サイクルにおける各工程や、榭脂の材 料を示す榭脂材料情報、射出ノズル 11の加熱温度を示す溶融温度情報、射出口 1 2の口径を示す射出口情報、スプル 9の口径や長さ、成形品に関する情報を含む。
[0054] 次に、ステップ S102において制御部 105は、ステップ S101にて取得した射出成 形機の成形情報に基づき、冷却開始時期であるカゝ否かを判断する。なお、第三実施 形態において制御部 105は、前記種々の成形情報のうちの少なくとも一つを変位パ ラメータとして、冷却開始時期(冷却空気の供給開始タイミング)及び冷却終了時期 ( 冷却空気の供給停止タイミング)を算出する。具体的に、第三実施形態では、充填ェ 程の終了間近になった時点が冷却開始時期として設定され、離型工程の終了時が 冷却終了時期として設定されている。そして、ステップ S102において制御部 105は、 冷却開始時期ではないと判断した際には処理をー且終了する。これに対し、制御部 105は、冷却開始時期であると判断した際にはステップ S103〜S107に示す冷却処 理を行う。
[0055] 冷却処理が行われるとき、ステップ S103において制御部 105は、ノ レブ 103に流 通制御信号を供給して該バルブ 103を開にする。具体的には制御部 105は、バルブ 103を全閉状態力も全開状態に駆動して、パイプ 101内の媒体流路に冷却空気(常 温空気)を流通させる。このため、冷却空気は射出ノズル 11の榭脂流路 13内を通つ て、パイプ 101の先端 101aから外部に放出される。その結果、射出ノズル 11の射出 口 12及び榭脂流路 13を流れる溶融樹脂が冷却空気によって間接的に冷却され、該 榭脂の凝固速度が上昇する。
[0056] 次に、ステップ S104において制御部 105は、温度センサ 104からの検出信号に基 づ!、て冷却空気の温度が冷却に最適な温度(常温)である力否かを判断する。冷却 空気の温度が最適温度でない場合には、制御部 105は、ステップ S105においてバ ルブ 103の開度制御を行うことにより、冷却空気の温度調節を行う。
[0057] 詳しくは、制御部 105は、冷却空気の温度が最適温度よりも低い場合にはバルブ 1 03の開度を絞り、該冷却空気の温度が最適温度よりも高い場合には該バルブ 103 の開度を拡張する (全開状態でない場合に限る)。これにより、冷却空気の温度が最 適温度に調節される。
[0058] そして、こうしたステップ S105の処理が終了した場合、またはステップ S104におい て冷却空気が最適温度であると判断された場合に、制御部 105は、ステップ S106に おいて、離型工程が終了した力否かを射出成形機からの入力信号に基づいて判断 する。離型工程が終了していない場合には、制御部 105は再びステップ S104の処 理へ移行する。離型工程が終了している場合には、制御部 105はステップ S107に お 、てバルブ 103を開状態力も全閉状態に制御して射出ノズル 11に対する冷却空 気の噴射を停止する。そして、制御部 105は処理をー且終了する。
[0059] 上記のような冷却処理が行われることにより、充填工程の終了間近から離型工程の 完了時までの間における樹脂の凝固速度が早くなり、結果として冷却工程の時間が 短縮される。し力も、離型時において、成形品に糸引き現象が生じに《なり、次の成 形サイクルにおいて樹脂がキヤビティ 10内に残存してしまうのが好適に抑制される。
[0060] 第三実施形態の温度調節機構は、以下の利点を有する。
(1)射出ノズル 11内の榭脂流路 13内を貫通するようにパイプ 101が配設され、そ のパイプ 101の媒体流路に冷却媒体 (冷却空気)が流通される。従って、従来技術の ように射出ノズル 11の外面に向力つて冷却空気を噴射するよりも、榭脂自体力 Sパイプ 101を流れる冷却空気によって、より直接的に冷却される。しかも、パイプ 101は射出 ノズル 11における射出口 12付近に配設されているため、射出口 12付近の榭脂が効 果的に冷却される。よって、榭脂の凝固時間が短くなるため、成形品を冷却'離型す る工程を行う時間を短縮しても、成形品に糸引き現象が生じに《なる。換言すれば、 糸引き現象を抑制しつつ、成形サイクルタイムの短縮ィ匕を図ることができる。
[0061] (2)パイプ 101は、榭脂流路 13内を流れる榭脂の流通方向と直交する方向に沿つ て配置されている。このため、該榭脂流路 13を流れる榭脂は必ずパイプ 101に接触 する。よって、ノイブ 101に冷却空気を供給した際に、パイプ 101に接触する榭脂を 該冷却空気によって確実に冷却することができる。
[0062] (3)パイプ 101は、榭脂流路 13の中心部位 (第二実施形態と同様、図 4Bに示す中 心 O)を通るように配置されているため、榭脂流路 13内を流れる榭脂は、中心部位か ら優先的に冷却される。通常、榭脂の凝固は外面部位力 始まり、温度が低下しにく い中心部位が最後に凝固する。このため、榭脂の中心部位力も優先的に冷却するこ とにより、該榭脂の凝固を促進させることができ、凝固時間を短縮することができる。
[0063] (4)冷却空気の供給開始タイミング及び供給停止タイミングは、榭脂の材質、射出 ノズルの加熱温度、射出口の口径、榭脂成形品の大きさのうちの少なくとも一つに基 づいて変化するように制御される。このため、最適な冷却タイミングで榭脂を冷却する ことができる。
[0064] (5)パイプ 101は射出ノズル 11に配設されており、固定金型 2には配設されていな い。このため、第三実施形態の温度調節機構を配設するにあたっては、射出ノズル 1 1の変更のみで対応可能であり、固定金型 2の形状を変更する必要がない。従って、 大規模な変更を要することなく温度調節機構を配設することができる。
[0065] (6)冷却空気の温度が温度センサ 104によって検出され、制御部 105は、その検 出結果に基づいてバルブ 103を制御することによって冷却空気の流通量を最適とな るように制御する。このため、媒体を用いた冷却制御を高い精度で行うことができる。
[0066] 次に、本発明の第四実施形態の射出成形機用の温度調節機構を第一、第二及び 第三実施形態との相違点を中心に図 9に基づいて詳細に説明する。なお、第四実施 形態において、第一実施形態と同一の部材は、第一実施形態と同一の符号で示す
[0067] 第四実施形態の温度調節機構は、冷却機構と加熱機構の双方を具備して ヽる点 で、第三実施形態の温度調節機構と異なる。なお、加熱機構は、第一及び第二実施 形態の加熱機構と同様に構成されている。
[0068] 詳しくは、図 9に示すように、ノイブ 201は、射出ノズル 11を貫通するように配置さ れた流路 202と、その流路 202から分岐する 2つの流路 203, 204とを備えている。 第四実施形態において、流路 (以下、第 1流路) 203は本発明の第 1媒体流路を形 成し、流路 (以下、第 2流路) 204は本発明の第 2媒体流路を形成し、流路 (以下、第 3流路) 202は本発明の第 3媒体流路を形成する。第 3流路 202は、射出口 12の近 傍に配置された開口(パイプ 201の開口) 201aを有する。第 1流路 203及び第 2流路 204の各々は、第 3流路 202に連通する第 1端部と、ポンプ 210に連結された第 2端 部とを有している。
[0069] 第 1流路 203には第 1バルブ 205が配設され、第 2流路 204には第 2バルブ 206が 配設されている。各バルブ 205, 206は、供給制御部(以下、制御部) 211に電気的 に接続され、該制御部 211から供給される流通制御信号に基づいて媒体の流通量 を制御する。なお、第四実施形態において各バルブ 205, 206の開度は、制御部 21 1によってリニアに変化するように制御される。
[0070] 第 1流路 203における第 1バルブ 205と第 3流路 202との間には第 1温度センサ 20 7が配設されている。第 2流路 204における第 2バルブ 206と第 3流路 202との間には 第 2温度センサ 208が配設されている。第 3流路 202には第 3温度センサ 212が配設 されている。各温度センサ 207, 208, 212は制御部 211に電気的に接続されている
[0071] さらに、第 2流路 204における第 2バルブ 206とポンプ 210との間には、該第 2流路 204を流通する媒体を所定温度 (例えば 225°C)に加熱する温度調節装置 209が配 設されている。この温度調節装置 209は、制御部 211に電気的に接続され、制御部 211から供給される温度制御信号に基づ 、て温度を制御する。
[0072] ポンプ 210から第 1流路 203に供給された空気の流量は、第 1バルブ 205によって 制御される。そして、所定の流量に制御された空気が、第 1流路 203から第 3流路 20 2に流れる。一方、ポンプ 210から第 2流路 204に供給された空気の温度は、温度調 節装置 209によって調節される。更に、第 2流路 204を流れる空気の流量は、第 2バ ルブ 206によって制御される。そして、所定の温度及び流量に制御された空気が、第 2流路 204から第 3流路 202に流れる。従って、第 1流路 203から第 3流路 202に流 通する空気が冷却媒体として機能するとともに、第 2流路 204から第 3流路 202に流 通する空気が加熱媒体として機能する。なお、第 1流路 203及び第 2流路 204をそれ ぞれ流れる空気は第 3流路 202において混合される。そして、その混合空気が射出ノ ズル 11を貫通するパイプ 201 (第 3流路 202)の先端の開口 20 laから凹所 7内に噴 射される。
[0073] このように、第四実施形態においては、第 1〜第 3流路 203, 204, 202を有するパ ィプ 201と、ポンプ 210と、第 1〜第 3温度センサ 207, 208, 212と、第 1及び第 2ノ ルブ 205, 206と、制御部 211とにより、射出成形機用の温度調節機構が構成されて いる。
[0074] このように構成された第四実施形態の温度調節機構は、第一実施形態と同様に、 図 3に示す制御ルーチンに従って動作する。
すなわち、制御部 211は、射出成形機によって実施される成形サイクル(図 2参照) の期間に、図 3に示す制御ルーチン (温度調節制御)を所定の割り込み間隔で実行 する。なお、この場合において、第四実施形態の第 1及び第 2バルブ 205, 206が第 一実施形態の第 1及び第 2バルブ 25, 26にそれぞれ対応する。また、第四実施形態 の第 1〜第 3流路 203, 204, 202が第一実施形態の第 1〜第 3流路 14a, 14b, 14c にそれぞれ対応する。また、第四実施形態の第 1〜第 3温度センサ 207, 208, 212 が第一実施形態の第 1〜第 3温度センサ 21〜23にそれぞれ対応する。
[0075] したがって、第四実施形態の温度調節機構は、第三実施形態における上記(1)〜
(6)に記載の利点に加えて、更に以下の利点を有する。
(7)射出ノズル 11の榭脂流路 13内を貫通するように配置されたパイプ 201の第 3 流路 202には冷却空気だけでなぐ加熱空気も流通される。そして、その加熱空気は 、射出ノズル 11を加熱して榭脂流路 13内の榭脂を溶融させる加熱溶融工程におい て流通される。このため、該加熱空気によって榭脂流路 13内を流れる榭脂の溶融を 促進させることができる。しカゝも、前回の成形サイクルで冷却された射出ノズル 11の 先端部位が、次の成形サイクルの加熱溶融工程で射出ノズル 11に噴射される加熱 空気によって加熱される。その結果、冷却工程の時間だけでなぐ加熱溶融工程の 時間をも短縮することができる。よって、成形品の糸引き現象を抑制しつつ、成形サ イタルタイムの更なる短縮ィ匕を図ることができる。
[0076] し力も、冷却媒体も加熱媒体も共に流体 (空気)であるため、冷却のための構造とカロ 熱のための構造が同一種で済む。このため、例えば冷却媒体を用いて冷却を行い、 ヒータなどを用いて榭脂の加熱を行う場合に比べて、温度調節機構の構造が簡素化 される。
[0077] (8)冷却空気と加熱空気の各々は個別の媒体流路 (第 1流路 203、第 2流路 204) を介して第 3流路 202に流入する。このため、冷却空気及び加熱空気のいずれかを 単独で用いるか、又は冷却空気及び加熱空気の混合気を用いることにより、榭脂流 路 13内を流通する媒体の温度を自由に調節することができる。従って、温度調節装 置 209だけを用いる場合に比べて、加熱空気の温度調節を迅速に行うことができる。
[0078] (9)第 1バルブ 205及び第 2バルブ 206の開度は、制御部 211によってリニアに制 御される。すなわち、冷却空気及び加熱空気の供給量は、制御部 211により連続的 に変更される。このため、射出ノズル 11ゃ榭脂を冷却又は加熱する際に、各媒体の 供給量が最適値に設定される。特に、冷却媒体と加熱媒体とを混合して媒体の温度 を調節する際には、その混合媒体の温度の微調整を容易に行うことができる。
[0079] (10)冷却空気と同様に、加熱空気の供給開始タイミング及び供給停止タイミングに おいても、榭脂の材質、射出ノズルの加熱温度、榭脂射出口の口径、榭脂成形品の 大きさのうちの少なくとも一つに基づいて変化するように制御される。このため、最適 な加熱タイミングで榭脂を加熱することができる。
[0080] (11)冷却空気及び加熱空気の温度は、第 1〜第 3温度センサ 207, 208, 212に よって検出される。そして、制御部 211は、各センサ 207, 208, 212の検出結果に 基づ 、て冷却空気及び加熱空気の温度を最適温度となるように制御する。このため 、媒体を用いた冷却及び加熱制御を高 、精度で行うことができる。
[0081] なお、本発明は以下のように変更してもよい。
• 第四実施形態では、例えば図 10A, Bに示すように、射出ノズル 11とパイプ 201 との間に、断熱材によって形成されたブッシュ 301を介在させてもよい。このようにす れば、射出ノズル 11とパイプ 201との間の熱影響を軽減することができ、より精度の 高い温度管理が可能となる。
[0082] · 各実施形態にお!、ては、空気 (冷却媒体、加熱媒体、又はその双方)を再びポ ンプに還流させてもよい。このようにすれば、水などの液体や、フロンガスなどの環境 に好ましくな 、物質を冷却媒体及び加熱媒体として容易に用いることができる。
[0083] · 各実施形態においては、制御部(24, 105, 211)は、加熱開始時期、加熱終了 時期、冷却開始時期 (第一、第二、第四実施形態のみ)及び冷却終了時期 (第一、 第二、第四実施形態のみ)のうちの少なくとも 1つを、射出成形機から供給される成形 情報や、操作者によって入力されるパラメータなどによって自由に変更してもよい。
[0084] · 各実施形態において、バルブの開度は、全閉状態と全開状態とに 2値的に変化 するものであってよい。このようにすれば、制御部(24, 105, 211)によるバルブの制 御を簡素化することができる。
[0085] · 冷却空気の温度は、常温に限らず、例えば温度調節装置(27, 209)などによつ て調節された温度 (例えば常温以下の温度)に調節されてもょ 、。
• 第一、第二及び第四実施形態においては、温度調節装置(27, 209)を省略し てもよい。例えば第一及び第二実施形態では、射出ノズル 11の近傍に第 2供給流路 18を配設し、該射出ノズル 11の温度を利用して第 2供給流路 18を流れる加熱空気 の温度を調節してもよい。同様に、第四実施形態では、射出ノズル 11の温度を利用 してパイプ 201 (第 1流路 202)を流れる加熱空気の温度を調節してもよい。
[0086] · 第一実施形態において媒体流路 14は、第 3流路 14cのみを備えていてもよい。
この場合、好適には制御部 24は、第 3流路 14c内に冷却空気と加熱空気とを選択的 に供給する。
[0087] · 第三実施形態において制御部 105は、パイプ 101内に冷却空気と加熱空気とを 選択的に供給してもよい。
• 第一実施形態において媒体流路 14は、第 1流路 14a及び第 2流路 14bのみを 備えていてもよい。この場合、各流路 14a, 14bは個別に凹所 7に連通する。
[0088] · 各実施形態において温度センサを省略してもよい。このようにした場合、温度調 節機構の構成が簡素化される。更には、制御部の処理負担を軽減することができる。 • 温度調節制御のための制御ルーチンは、図 3,図 8に示すような、所定の割り込 み間隔で実行される割込ルーチンに限定されな 、。例えば図 3の制御ルーチンは、 ステップ S17又はステップ S23の実行後に、ステップ S12に戻るように構成されてもよ い。同様に、図 8の制御ルーチンは、ステップ S107の実行後に、ステップ S102に戻 るように構成されてもよい。このような場合、供給制御部 24、 105又は 211は、成形サ イタルの期間に亘つて、温度調節制御を継続的に実行する。
[0089] 次に、特許請求の範囲に記載された技術的思想のほかに、前述した各実施形態及 び各変形例から把握される技術的思想を以下に列挙する。
(1) 請求項 1〜6及び 11のいずれか 1つに記載の温度調節機構において、前記 冷却媒体及び前記加熱媒体は空気であること。この(1)に記載の技術的思想によれ ば、冷却媒体及び加熱媒体を安価に構成することができる。
[0090] (2) 上記技術的思想(1)に記載の温度調節機構において、前記冷却媒体として の空気の温度は、常温であること。この(2)に記載の技術的思想によれば、冷却媒体 を積極的に冷却するための構造を不要とすることができる。
[0091] (3) 請求項 1〜11及び技術的思想(1)〜(2)のいずれか 1つに記載の温度調節 機構において、前記媒体流通部に、該媒体流通部を流れる媒体の温度を検出する 温度検出部を配設し、前記供給制御部は、該温度検出部力 の検出信号に基づい て前記媒体流通部を流れる媒体の温度を調節すること。この(3)に記載の技術的思 想によれば、媒体流通部を流れる媒体の温度を好適に調節することが可能となる。
[0092] (4) 請求項 1〜11のいずれか 1つに記載の温度調節機構において、前記射出ノ ズルと前記媒体流通部との間に断熱用のブッシュを介在したこと。
(5) 射出成形機の射出ノズル内において榭脂材料を加熱溶融する加熱溶融工程 、その加熱溶融された榭脂を射出ノズルから射出して成形金型内に充填する充填ェ 程、該充填された榭脂を冷却して固化させて離型する冷却工程を経て成形される榭 脂成形品の製造方法であって、前記各工程のうちの少なくとも冷却工程において、 射出ノズル内に配設されたパイプ状の媒体流通部内に冷却媒体を流通させることに より、該媒体流通部近辺に位置する榭脂を冷却することを特徴とする榭脂成形品の 製造方法。
[0093] (6) 上記(5)に記載の技術的思想にぉ 、て、榭脂の材質、射出ノズルの加熱温 度、榭脂射出口の口径、スプルの口径、榭脂成形品の大きさのうちの少なくとも一つ に基づ!/ヽて、前記冷却媒体の供給開始タイミング及び供給停止タイミングを変化させ ること。

Claims

請求の範囲
[1] 榭脂材料を射出する射出ノズルを有する射出成形機用の温度調節機構であって、 前記射出ノズル内の前記榭脂材料を冷却する冷却媒体か、又は前記榭脂材料を 加熱する加熱媒体の!/ゝずれかを噴射するように、前記冷却媒体及び前記加熱媒体 を流通させる媒体流通部と、
前記媒体流通部から前記冷却媒体及び前記加熱媒体が選択的に噴射されるよう に、前記媒体流通部内への前記冷却媒体及び前記加熱媒体の供給を制御する供 給制御部と、
を備えた、温度調節機構。
[2] 請求項 1に記載の温度調節機構において、
前記射出ノズルは、該射出ノズルの先端部に形成された射出口を含み、 前記媒体流通部は、前記射出口の外面に向かって前記冷却媒体及び前記加熱媒 体が選択的に噴射されるように配設される、温度調節機構。
[3] 請求項 1に記載の温度調節機構において、
前記射出ノズルは、該射出ノズルの先端部に形成された射出口と、該射出口に連 通し、前記榭脂材料を流通させる榭脂流路とを含み、
前記媒体流通部は、その一部が前記榭脂流路内を貫通するように配設される、温 度調節機構。
[4] 請求項 1乃至 3の何れか一項に記載の温度調節機構において、
前記供給制御部は、前記媒体流通部から前記冷却媒体と前記加熱媒体との混合 体が前記加熱媒体として噴射されるように、前記媒体流通部内に前記加熱媒体と前 記冷却媒体とを同時に供給する、温度調節機構。
[5] 請求項 1乃至 4の何れか一項に記載の温度調節機構にぉ 、て、
前記媒体流通部は、
前記冷却媒体を流通させる第 1媒体流路と、
前記加熱媒体を流通させる第 2媒体流路と、
前記第 1媒体流路及び前記第 2媒体流路の各々に連通する第 3媒体流路であって 、前記第 1媒体流路及び前記第 2媒体流路を介して該第 3媒体流路に流通する媒体 を噴射する、第 3媒体流路と、
を含む、温度調節機構。
[6] 請求項 1乃至 5の何れか一項に記載の温度調節機構において、
前記供給制御部は、前記冷却媒体及び前記加熱媒体の各々の供給量を連続的 に変更する、温度調節機構。
[7] 請求項 1乃至 5の何れか一項に記載の温度調節機構において、
前記供給制御部は、供給状態と供給停止状態のうちいずれかに切り換えることによ り、前記媒体流通部に対する前記冷却媒体及び前記加熱媒体の供給を制御する、 温度調節機構。
[8] 請求項 1乃至 7の何れか一項記載の温度調節機構にぉ 、て、
前記供給制御部は、前記射出成形機の成形サイクルに関する情報、前記榭脂材 料の情報、前記射出ノズルを加熱する温度、前記射出口の口径、前記金型に形成さ れたスプルの口径、該スプルの長さ、及び前記金型を用いて形成される成形品に関 する情報のうちの少なくとも一つを変位パラメータとして、前記加熱媒体の供給開始 タイミング及び供給停止タイミングを制御する、温度調節機構。
[9] 榭脂材料を射出する射出ノズルを有する射出成形機用の温度調節機構であって、 前記射出ノズル内の前記榭脂材料を冷却する冷却媒体を流通させるパイプ状の媒 体流通部であって、該媒体流通部の一部が前記射出ノズル内を貫通している、媒体 流通部と、
前記媒体流通部への前記冷却媒体の供給を制御する供給制御部と、 を備えた、温度調節機構。
[10] 請求項 9に記載の温度調節機構において、
前記射出ノズルは、該射出ノズルの先端部に形成された射出口と、該射出口に連 通し、前記榭脂材料を流通させる榭脂流路とを含み、
前記媒体流通部は、前記榭脂流路内を流通する前記榭脂材料の流通方向に対し て交差する方向に沿って前記媒体流通部の一部が前記射出口内を貫通するように 配設されている、温度調節機構。
[11] 請求項 10に記載の温度調節機構において、 前記媒体流通部は、該媒体流通部の一部が前記榭脂流路の中心部位を通るよう に配設されている、温度調節機構。
[12] 請求項 1乃至 11の何れか一項記載の温度調節機構において、
前記供給制御部は、前記射出成形機の成形サイクルに関する情報、前記榭脂材 料の情報、前記射出ノズルを加熱する温度、前記射出口の口径、前記金型に形成さ れたスプルの口径、該スプルの長さ、及び前記金型を用いて形成される成形品に関 する情報のうちの少なくとも一つを変位パラメータとして、前記冷却媒体の供給開始 タイミング及び供給停止タイミングを制御する、温度調節機構。
[13] 請求項 9乃至 12の何れか一項記載の温度調節機構において、
前記供給制御部は、前記冷却媒体に加え、更に加熱媒体を前記媒体流通部内に 供給可能であり、該媒体流通部内への前記前記冷却媒体及び前記加熱媒体の供 給を制御する、温度調節機構。
PCT/JP2006/323129 2005-11-30 2006-11-20 射出成形機用の温度調節機構 WO2007063733A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800446478A CN101316692B (zh) 2005-11-30 2006-11-20 用于注塑机的温度调节机构
US12/095,442 US7841854B2 (en) 2005-11-30 2006-11-20 Temperature adjustment mechanism for injection molding machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005347057A JP2007152586A (ja) 2005-11-30 2005-11-30 射出成形機における温度調節機構
JP2005347058A JP4584134B2 (ja) 2005-11-30 2005-11-30 射出成形機における樹脂冷却機構
JP2005-347058 2005-11-30
JP2005-347057 2005-11-30

Publications (1)

Publication Number Publication Date
WO2007063733A1 true WO2007063733A1 (ja) 2007-06-07

Family

ID=38092068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323129 WO2007063733A1 (ja) 2005-11-30 2006-11-20 射出成形機用の温度調節機構

Country Status (2)

Country Link
US (1) US7841854B2 (ja)
WO (1) WO2007063733A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011109138A1 (en) * 2010-03-04 2011-09-09 Husky Injection Molding Systems Ltd Mold-tool assembly having energy source to emit energy from mold-core assembly to gate-orifice region
TWI798058B (zh) 2022-04-18 2023-04-01 中原大學 包含模具感測器冷卻結構的模具設備
CN115910815B (zh) * 2023-01-14 2023-07-14 东莞市坤琦精密五金有限公司 一种具有双相变散热的半导体芯片封装模具

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236615A (ja) * 1987-03-26 1988-10-03 Sanri Kk 間欠冷却方式によるランナ−レス合成樹脂射出成形方法およびその装置
JP2003211513A (ja) * 2002-01-18 2003-07-29 Seikoh Giken Co Ltd 射出成形機
JP2004074803A (ja) * 2002-08-16 2004-03-11 Yudo Co Ltd 射出機用ノズル及び射出成形方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781554A (en) * 1987-07-09 1988-11-01 Michael Ladney Apparatus for the injection molding of thermoplastics
DE3991547C2 (de) * 1988-12-26 1994-11-03 Asahi Chemical Ind Verfahren und Vorrichtung zum Spritzgießen eines hohlen, geformten Gegenstandes
US5505891A (en) * 1992-07-29 1996-04-09 Shah; Chandrakant S. Method of and apparatus for dual fluid injection molding
JP4335400B2 (ja) 2000-03-06 2009-09-30 本田技研工業株式会社 射出成形機用ノズル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236615A (ja) * 1987-03-26 1988-10-03 Sanri Kk 間欠冷却方式によるランナ−レス合成樹脂射出成形方法およびその装置
JP2003211513A (ja) * 2002-01-18 2003-07-29 Seikoh Giken Co Ltd 射出成形機
JP2004074803A (ja) * 2002-08-16 2004-03-11 Yudo Co Ltd 射出機用ノズル及び射出成形方法

Also Published As

Publication number Publication date
US7841854B2 (en) 2010-11-30
US20090246304A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
EP1389517B1 (en) Method of controlling a shut-off nozzle with heating unit and cooling unit for hot runner systems of injection molding machines
JP2662023B2 (ja) 射出成形方法及びその装置
EP1758721B1 (en) Mold apparatus
JPS63236615A (ja) 間欠冷却方式によるランナ−レス合成樹脂射出成形方法およびその装置
JP2009006486A (ja) 射出成形システム、コンピュータプログラム、射出成形方法、射出成形機
JPH05345334A (ja) バルブゲートを備えたランナーレス射出成形方法およびその装置
WO2007063733A1 (ja) 射出成形機用の温度調節機構
JP4584134B2 (ja) 射出成形機における樹脂冷却機構
JP2007152586A (ja) 射出成形機における温度調節機構
EP3526003B1 (en) Apparatus and method for heating a side gate nozzle
JP6903686B2 (ja) 射出成形工具
JP2004209904A (ja) 射出成形装置
JP5102186B2 (ja) 射出成形方法および射出成形機
JP3766337B2 (ja) 射出成形機
JP3496880B2 (ja) 合成樹脂製注射器シリンダの射出成形用金型及び成形方法
JP2004314399A (ja) 成形機の温度調整装置
JPH06210685A (ja) フローモールド成形方法
JP4473028B2 (ja) 成形型および成形方法
JP4023464B2 (ja) 樹脂成形品の製造方法及び二次成形時における加熱媒体と樹脂材との切替装置
JPH06297529A (ja) 射出成形機
JP2011126186A (ja) 樹脂成形方法及び射出成形装置
JPH06254928A (ja) 射出成形開始方法
JP2000094476A (ja) 射出成形装置および射出成形方法
JP3650742B2 (ja) 射出ノズル
JPH02202416A (ja) プリプラタイプの射出成形機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044647.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12095442

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06832979

Country of ref document: EP

Kind code of ref document: A1