WO2007060865A1 - 可変動弁装置ならびにそれを備えるエンジン装置および車両 - Google Patents

可変動弁装置ならびにそれを備えるエンジン装置および車両 Download PDF

Info

Publication number
WO2007060865A1
WO2007060865A1 PCT/JP2006/322722 JP2006322722W WO2007060865A1 WO 2007060865 A1 WO2007060865 A1 WO 2007060865A1 JP 2006322722 W JP2006322722 W JP 2006322722W WO 2007060865 A1 WO2007060865 A1 WO 2007060865A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
state
valve
rotating shaft
rotation
Prior art date
Application number
PCT/JP2006/322722
Other languages
English (en)
French (fr)
Inventor
Minoru Yamamoto
Yoshitaka Nagai
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Priority to EP06832653A priority Critical patent/EP1956197A1/en
Priority to US12/094,003 priority patent/US20090114175A1/en
Priority to BRPI0618802-8A priority patent/BRPI0618802A2/pt
Publication of WO2007060865A1 publication Critical patent/WO2007060865A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/022Chain drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/181Centre pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0005Deactivating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0036Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction

Definitions

  • Variable valve operating apparatus and engine apparatus and vehicle including the same
  • the present invention relates to a variable valve gear that drives a valve of an engine, an engine device including the same, and a vehicle.
  • variable valve mechanisms for controlling intake and exhaust have been developed for the purpose of improving fuel consumption, reducing harmful substances in exhaust gas, and increasing output in a specific rotation range.
  • Patent Document 1 proposes an engine valve operating device that switches between a low speed cam and a high speed cam with a simple and compact structure.
  • a low speed cam is fixed to the cam shaft, and a high speed cam is provided in parallel with the low speed cam so as to be relatively displaceable on the cam shaft.
  • a control shaft is provided in the cam shaft so as to be reciprocally movable in the axial direction. As the control shaft moves in the axial direction, the high-speed cam protrudes in the direction perpendicular to the cam shaft, and the low-speed cam and high-speed cam are switched.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 09-256827
  • An object of the present invention is to provide a variable valve operating apparatus that can switch a cam optimally according to the rotational speed of an engine, and an engine apparatus and vehicle including the same, in a small size and at low cost.
  • a variable valve operating apparatus is a variable valve operating apparatus for driving a valve of an engine, and includes a rotary shaft that is rotatably provided in conjunction with the rotation of the engine.
  • a first force member provided to rotate together with the rotating shaft and acting to open and close the valve; and a first force member provided to be rotatable relative to the rotating shaft and acting to open and close the valve.
  • the rotation shaft rotates in conjunction with the rotation of the engine.
  • the first cam member rotates as the rotating shaft rotates.
  • the second cam member is in a state of being rotatable with respect to the rotating shaft when the locking member is in the first state, and is locked with the rotating shaft when the locking member is in the second state. It becomes.
  • the locking member switches to the first state or the second state according to the rotation speed of the rotating shaft.
  • the locking member shifts to the first state by the biasing force generated by the biasing member. Accordingly, the second cam member can be rotated with respect to the rotation shaft by the locking member. Therefore, the second cam member rotates as the rotating shaft rotates. No state. In this case, the first cam member acts to open and close the valve.
  • the locking member shifts to the second state against the urging force by the urging member due to the centrifugal force applied to the driving member.
  • the second force member is locked to the rotating shaft. Therefore, the second cam member is in a state of rotating as the rotating shaft rotates. In this case, the second cam member acts to open and close the valve.
  • the state in which the first cam member acts on the valve and the state in which the second cam member acts on the valve are switched according to the rotational speed of the engine.
  • the first cam member and the second cam member are formed into optimal shapes when the engine is running at low speed and high speed, respectively, thereby improving fuel efficiency during normal driving (medium / low speed driving) and exhaust gas.
  • the drive member is provided so as to be rotatable to the first position force and the second position by a centrifugal force accompanying the rotation of the rotation shaft, and the locking member is provided with the first position force of the drive member.
  • the urging member is provided so as to be movable in one direction along the rotation axis as it rotates to the position, and the urging member applies an urging force to the driving member so that the driving member is directed toward the first position.
  • the stop member may be in a first state when the drive member is in the first position, and may be in a second state when the drive member is in the second position.
  • the urging force by the urging member acts so that the driving member is directed toward the first position.
  • the centrifugal force accompanying the rotation of the rotating shaft acts so that the drive member rotates to the first position force and the second position.
  • the locking member shifts to the first state or the second state depending on the magnitude of the centrifugal force applied to the driving member.
  • the first cam member and the second cam member can be switched with a simple configuration.
  • the locking member has a locking portion
  • the second cam member has a locked portion locked by the locking portion of the locking member
  • the locking member is the first
  • the locking portion may release the locked portion force when the locking member is in this state, and the locking portion may lock the locked portion when the locking member is in the second state.
  • the locking member includes a rod-shaped member, the locking portion is an end of the rod-shaped member, and the locked portion of the second cam member can be fitted to the end of the rod-shaped member. Even the hole.
  • the locking member is a plurality of rod-shaped members
  • the locked portion of the second cam member is a plurality of holes into which end portions of the plurality of rod-shaped members can be respectively fitted.
  • the rod-shaped members may be arranged at mutually asymmetric positions with respect to the center of the rotation axis.
  • the second cam member is securely fixed to the rotation shaft.
  • the plurality of bar-shaped members are arranged at positions asymmetric with respect to the center of the rotation axis, each bar-shaped member is moved to it. It is securely inserted into the corresponding hole.
  • variable valve operating apparatus may further include a movement preventing member that prevents movement of the locking member when the locking member is in at least one of the first state and the second state.
  • a force that causes the locking member to shift to the first state due to the biasing force generated by the biasing member and a force that causes the locking member to shift to the second state due to the centrifugal force applied to the driving member. It is possible to prevent the locking member from becoming unstable between the first state and the second state in a balanced state. As a result, switching between the first cam member and the second cam member is performed stably, and the opening and closing of the knob can be prevented from becoming unstable.
  • the locking member has at least one groove, and the movement preventing member is a fit that can be fitted into the groove when the locking member is in at least one of the first state and the second state. It may have a joint.
  • the fitting portion of the movement preventing member is fitted into the groove portion of the locking member.
  • the locking member is sufficiently fixed in the first state or the second state, so that it is possible to reliably prevent the locking member from becoming unstable due to the reaction force of the valve.
  • the urging force generated by the urging member causes the force to shift the locking member to the first state, and the force causes the driving member to shift the locking member to the second state by the centrifugal force associated with the rotation. It is possible to sufficiently prevent the locking member from becoming unstable between the first state and the second state in a state where the two are balanced.
  • the groove portion and the fitting portion may be formed so that the fitting portion of the movement preventing member can be withdrawn from one groove portion.
  • variable valve operating apparatus is interlocked with the rotation of the first transmission member that moves the valve up and down by swinging in conjunction with the rotation of the first cam member, and the rotation of the second cam member. And a second transmission member that swings the first transmission member.
  • the first transmission member swings as the first cam member rotates as the rotation shaft rotates. Thereby, the valve moves up and down.
  • the first cam member acts to open the valve with the first lift amount in the first state
  • the second cam member may act so as to open the valve with a second lift amount larger than the first lift amount in the second state.
  • the first cam member rotates as the rotating shaft rotates. Since the second cam member can rotate with respect to the rotation shaft, it does not rotate with the rotation of the rotation shaft. Thereby, the first cam member acts to open the valve with the first lift amount.
  • the first cam member rotates as the rotating shaft rotates, and the second cam member rotates while being locked to the rotating shaft.
  • the first force member acts to open the valve with the first lift amount
  • the second cam member operates the valve with the second lift amount that is larger than the first lift amount. Acts to open.
  • the valve moves up and down by the second lift amount.
  • the lift amount of the valve is switched between the first lift amount and the second lift amount according to the rotational speed of the engine.
  • the first cam member acts to open the valve at the first operating angle in the first state
  • the second cam member is larger than the first operating angle in the second state It may act to open the valve at the second operating angle.
  • the first cam member acts to open the valve at the first operating angle.
  • valve operating angle is switched between the first operating angle and the second operating angle in accordance with the rotational speed of the engine.
  • the valve may be an intake valve.
  • the state in which the first cam member acts on the intake valve and the state in which the second cam member acts on the intake valve are switched according to the rotational speed of the engine.
  • the intake amount or the intake timing is adjusted by forming the first cam member and the second cam member in optimum shapes when the engine is running at low speed and at high speed, respectively.
  • fuel costs during normal driving can be improved, harmful substances in the exhaust gas can be reduced, and high output during high-speed driving can be realized.
  • An engine device includes an engine having a valve and a variable valve operating device for driving the engine valve, the variable valve operating device rotating the engine.
  • a rotary shaft provided rotatably in conjunction with the rotary shaft, a first cam member provided so as to rotate together with the rotary shaft and acting to open and close the valve, and provided so as to be rotatable relative to the rotary shaft.
  • a second cam member that acts to open and close the first cam member, a first state in which the second cam member is rotatable with respect to the rotating shaft, and a second state in which the second cam member is locked to the rotating shaft.
  • a locking member that can be shifted to the first state, a biasing member that generates a biasing force that shifts the locking member to the first state, and a biasing member that is biased by the centrifugal force associated with the rotation of the rotating shaft.
  • a drive member that operates to move the locking member to the second state against the force, and when the locking member is in the first state, the first cam member acts to open and close the valve. However, when the locking member is in the second state, the second cam member acts to open and close the valve.
  • valve of the engine is driven by the variable valve operating device.
  • the rotating shaft rotates in conjunction with the rotation of the engine.
  • the first cam member rotates as the rotating shaft rotates.
  • the second cam member is rotatable with respect to the rotating shaft when the locking member is in the first state, and is locked with the rotating shaft when the locking member is in the second state. It becomes a state.
  • the locking member switches to the first state or the second state according to the rotation speed of the rotating shaft.
  • the locking member shifts to the first state by the biasing force generated by the biasing member. Accordingly, the second cam member can be rotated with respect to the rotation shaft by the locking member. Therefore, the second cam member does not rotate with the rotation of the rotating shaft. In this case, the first cam member acts to open and close the valve.
  • the locking member moves to the second state against the urging force by the urging member due to the centrifugal force applied to the drive member.
  • the second force member is locked to the rotating shaft. Therefore, the second cam member is in a state of rotating as the rotating shaft rotates. In this case, the second cam member acts to open and close the valve.
  • the state in which the first cam member acts on the valve and the state in which the second cam member acts on the valve are switched according to the rotational speed of the engine.
  • the first cam member and the second cam member are formed into optimal shapes when the engine is running at low and high speeds, respectively, thereby improving fuel efficiency during normal driving and toxic substances in the exhaust gas. As well as higher output during high-speed driving.
  • first cam member and the second cam member are separated by utilizing the centrifugal force generated by the rotation of the rotation shaft. Since it is switched, a drive source by a hydraulic system is unnecessary. Therefore, a small and low-cost variable valve operating device is realized.
  • a vehicle includes an engine device, a drive wheel, and a transmission mechanism that transmits power generated by the engine device to the drive wheel.
  • the engine device includes a valve.
  • a variable valve device for driving a valve of the engine, and the variable valve device is configured to rotate together with the rotation shaft, and a rotation shaft provided to rotate in conjunction with the rotation of the engine.
  • a locking member provided so as to be able to shift between a first state in which the shaft is rotatable with respect to the rotation shaft and a second state in which the second cam member is locked to the rotation shaft, and the locking member is A biasing member that generates a biasing force to shift to the state of
  • a drive member that operates to shift the locking member to the second state against the urging force of the urging member due to the centrifugal force accompanying the rotation of the rotating shaft, and the locking member is in the first state.
  • the first cam member acts to open and close the valve
  • the second cam member acts to open and close the valve.
  • the power generated by the engine device is transmitted to the drive wheels by the transmission mechanism, and the drive wheels are driven.
  • the valve of the engine is driven by the variable valve operating device.
  • the state in which the first cam member acts on the valve and the state in which the second cam member cover acts on the valve are switched according to the rotational speed of the engine. .
  • the first cam member and the second cam member are formed into optimal shapes when the engine is running at low and high speeds, respectively, thereby improving fuel efficiency during normal driving and toxic substances in the exhaust gas. As well as high output during high-speed driving.
  • the state in which the first cam member acts on the valve and the state in which the second cam member CAS valve acts on the valve are switched according to the rotational speed of the engine.
  • the first cam member and the second cam member are formed into optimal shapes when the engine is running at low and high speeds, respectively, thereby improving fuel efficiency during normal driving and toxic substances in the exhaust gas.
  • high output during high-speed driving since the first cam member and the second cam member are switched using the centrifugal force generated by the rotation of the rotating shaft, a drive source by a hydraulic system is not necessary. Therefore, a small and low-cost variable valve operating device is realized.
  • FIG. 1 is a schematic diagram of a motorcycle according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the outline of a variable valve operating apparatus according to an embodiment of the present invention.
  • FIG. 3 is an assembled perspective view for explaining the structure of the variable valve operating apparatus.
  • FIG. 4 is an assembled perspective view for explaining the structure of the variable valve operating apparatus.
  • FIG. 5 is an assembled perspective view for explaining the structure of the variable valve operating apparatus.
  • FIG. 6 is an XZ plane sectional view of the lock plate housing member in a state where the lock plate and the spring are inserted.
  • FIG. 7 is a cross-sectional view showing a state of the variable valve operating apparatus during low rotation.
  • FIG. 8 is a cross-sectional view showing a state of the variable valve operating apparatus during high rotation.
  • FIG. 9 is a diagram for explaining the details of the operation of the lock plate and the lock pin of FIG. 7 and FIG.
  • FIG. 10 is a cross-sectional view showing a state in which the variable valve gear is attached to the engine.
  • FIG. 11 is a top view showing the arrangement of the variable valve operating device, intake high cam rocker arm, intake low cam rocker arm and exhaust cam rocker arm of FIG.
  • FIG. 12 is a cross-sectional view taken along line RR of the cylinder head of FIG.
  • FIG. 13 is a diagram showing displacement amounts of the intake valve and the exhaust valve shown in FIG.
  • FIG. 14 is a view showing a modification of the variable valve operating apparatus.
  • variable valve operating apparatus an engine apparatus including the same, and a vehicle will be described.
  • a small motorcycle will be described as a vehicle.
  • FIG. 1 is a schematic diagram of a motorcycle according to an embodiment of the present invention.
  • This motorcycle 100 is provided with a head pipe 3 at the front end of the main body frame 6.
  • a front fork 2 is provided on the head pipe 3 so as to be swingable in the left-right direction.
  • the front wheel 1 is rotatably supported at the lower end of the front fork 2.
  • a handle 4 is attached to the upper end of the head pipe 3.
  • An engine 7 is held at the center of the main body frame 6.
  • a fuel tank 8 is provided above the engine 7, and a seat 9 is provided behind the fuel tank 8.
  • a rear arm 10 is connected to the main body frame 6 so as to extend rearward of the engine 7.
  • the rear arm 10 rotatably holds the rear wheel 11 and the rear wheel driven sprocket 12.
  • An exhaust pipe 13 is connected to the engine 7.
  • a muffler 14 is attached to the rear end of the exhaust pipe 13.
  • a rear wheel drive sprocket 15 is attached to the drive shaft 26 of the engine 7.
  • the rear-wheel drive sprocket 15 is connected to the rear-wheel drive socket 12 of the rear wheel 11 via a chain 16.
  • the engine 7 is provided with a variable valve gear.
  • the variable valve operating apparatus according to the present embodiment will be described.
  • FIG. 2 is a diagram for explaining the outline of the variable valve operating apparatus according to the embodiment of the present invention.
  • FIG. 2 (a) shows a schematic top view of the variable valve gear provided inside the engine 7, and
  • FIG. 2 (b) shows a schematic side view of the variable valve gear provided inside the engine 7.
  • variable valve gear 200 is provided in the cylinder head 7 S of the engine 7.
  • the variable valve operating apparatus 200 includes a cam driven sprocket 220, an intake high cam 237, an intake low cam 241 and an exhaust cam 242. [0069] As the piston 21 reciprocates in the cylinder 20, the crankshaft 23 rotates, and the cam drive sprocket 24 provided on the crankshaft 23 rotates.
  • the rotational force of the cam drive sprocket 24 is transmitted to the cam driven sprocket 220 of the variable valve operating apparatus 200 via the chain 25. Thereby, the variable valve apparatus 200 rotates.
  • variable valve operating apparatus 200 switching between intake air, icam 237 and intake low cam 241 is performed in accordance with the rotational speed of engine 7 and changes in the rotational speed (increase and decrease in rotational speed). As a result, the lift amount of an intake valve, which will be described later, changes, and the intake amount to the cylinder 20 changes.
  • FIGS. 3 to 5 are assembled perspective views for explaining the structure of the variable valve operating apparatus 200.
  • FIG. 1 as indicated by arrows X, ⁇ , and Z, the three directions orthogonal to each other are defined as the X direction, the Y direction, and the Z direction.
  • variable valve device 200 is roughly divided into a lock pin holding mechanism 210 (see Fig. 3), a cam driven sprocket 220 (see Fig. 4), a lock pin locking mechanism 230 (see Fig. 4), and a floating cam. Part 23 5 (see Fig. 5) and camshaft 240 (see Fig. 5) forces are also configured! RU
  • FIG. 3 shows an assembled perspective view of the lock pin holding mechanism 210.
  • the lock pin holding mechanism 210 has a support member 211 parallel to the XZ plane.
  • a through hole 211G is formed at the center of the support member 211.
  • projection pieces 21 Id and 21 le bent so as to extend in the Y direction are formed. Between the projecting piece 21 Id and the projecting piece 21 le, there are formed a projecting piece 21 If extending in the X direction and a spring holding piece 212 b bent in a U shape on one surface side of the support member 211. .
  • Through holes 211A to 211F are formed in the projecting pieces 211a to 211f, and through holes 212A and 212B are formed in the spring holding pieces 212a and 212b, respectively.
  • the weight 213 includes a weight body 213a, a plate-like extension 213d, two cylindrical portions 213e, and two hook portions 213f.
  • the weight main body 213a has a substantially rectangular parallelepiped shape extending in the X direction.
  • the extension 213d is formed to extend in the Y direction from the upper surface of the weight body 213a.
  • the two cylindrical portions 213e are respectively formed at both ends of the extension portion 213d in the X direction.
  • the two hook portions 213f extend from the central portion of the extension portion 213d in the X direction so as to incline to the lower side of the extension portion 213d.
  • the tips of the two hook portions 213f are curved in a partial cylindrical shape.
  • Lock pins 214 extending in the Y direction are attached to the two hook portions 213f. Near one end of the lock pin 214, a support pin 214t extending in the X direction is formed. By attaching the support pin 214t to the hook portion 213f, the lock pin 214 is rotatably held by the weight 213. A part of the lock pin 214 can come into contact with the weight body 213.
  • annular groove 214a and a groove 214b are formed in parallel.
  • a rotating shaft 215 is inserted into the cylindrical portion 213e of the weight 213. Thereby, the rotating shaft 215 holds the weight 213 in a rotatable manner. In this state, both ends of the rotation 215 are inserted into the through holes 211A and 211D of the support member 211. Thereby, the weight 213 is rotatably held on the support member 211.
  • the lock pin 214 is disposed so as to pass through the notch 211H of the support member 211.
  • the weight 216 has the same structure as the weight 213. When the lock pin holding mechanism 210 is assembled, the weight 216 is disposed so as to face the weight 213.
  • Fig. 3 [Koo! Way, body 216 of way 216, way 216a, extension 216d, two cylindrical 216e, and two hooks 216f are way body 213a, way 213a, extension 213d, 2 This corresponds to the cylindrical portion 213e and the two hook portions 213f.
  • the lock pin 217 has the same structure as the lock pin 214.
  • the groove portions 217a and 217b of the lock pin 217 correspond to the groove portions 214a and 214b.
  • the support pin 217t corresponds to the support pin 214t.
  • the rotating shaft 218 is inserted into the cylindrical portion 216e of the weight 216. Thereby, the rotating shaft 218 holds the weight 216 in a rotatable manner. In this state, both ends of the rotating shaft 218 are inserted into the through holes 211B and 211E of the support member 211. Thereby, the weight 216 is rotatably held on the support member 211. Further, the lock pin 217 is disposed so as to pass through the notch 21 II of the support member 211.
  • the lock pins 214 and 217 are arranged so as to be perpendicular to the support member 211.
  • the distance between the through hole 211G of the support member 211 and the lock pin 214 is smaller than the distance between the through hole 211G and the lock pin 217.
  • Screws 219 are inserted into the two through holes 211C and 211F of the two projecting pieces 211c and 211f of the support member 211, respectively.
  • FIG. 4 is an assembly perspective view of the lock pin holding mechanism 210, the cam driven sprocket 220, and the lock pin locking mechanism 230.
  • the cam driven sprocket 220 is arranged so as to be parallel to the XZ plane, and the lock pin locking mechanism 230 is arranged so that its axis J is parallel to the Y direction.
  • one end of the spring S1 is locked in the through hole of the protruding portion (not shown) of the weight 213, and the other end is locked in the through hole 212B of the spring holding piece 212b. It has been.
  • One end of the spring S2 is locked in a through hole of a protruding portion (not shown) of the weight 216, and the other end is locked in a through hole 212A of the spring holding piece 212a.
  • the cam driven sprocket 220 has through holes 220a to 220e.
  • the through hole 220a formed at the center of the cam dribbling procket 220 has a larger diameter than the other through holes 220b to 220e.
  • the through holes 220a, 220b, and 220c are arranged on the same straight line parallel to the Z direction, and the through hole 220b and the through hole 220c have the same diameter.
  • the distance between the through hole 220a and the through hole 22 Ob is smaller than the distance between the through hole 220a and the through hole 220c.
  • the through hole 220d and the through hole 220e are formed symmetrically with respect to the through hole 220a and have the same diameter.
  • the lock pin locking mechanism 230 is formed of a cylindrical rotating shaft 231 and a disk-shaped lock plate storage member 232.
  • the lock pin locking mechanism 230 has through holes 230H, 230b, and 230c.
  • the through hole 230H is formed in the shaft center J of the lock pin locking mechanism 230. That is, the through-hole 230H is formed from the center of the end surface of the rotating shaft 231 to the center of the end surface of the lock plate housing member 232.
  • the through holes 230H, 230b, and 230c are arranged on the same straight line parallel to the Z direction, and the through hole 230b and the through hole 230c have the same diameter. Note that the distance between the through hole 230H and the through hole 230b is shorter than the distance between the through hole 230H and the through hole 230c.
  • screw end holes 230d and 230e are formed on the end surface of the rotating shaft 231 of the lock pin locking mechanism 230.
  • the screw insect accumulation holes 230d and 230e are formed at mutually symmetrical positions with the through hole 230H as the center and have the same diameter.
  • the screw screw holes 230 d and 230 e are threaded.
  • a step portion 23 la is formed on the outer peripheral surface of the rotating shaft 231.
  • a slit-like lock plate insertion port 232A and a substantially circular spring insertion port 232B are formed on the outer peripheral surface of the lock plate storage member 232 of the lock pin locking mechanism 230.
  • the lock plate insertion port 232A communicates with the lock plate storage space 232b formed in the lock plate storage member 232 (FIG. 6 described later), and the spring ⁇ inlet 232B is the spring storage space formed in the lock plate storage member 232. It communicates with 232c ( Figure 6 below).
  • the plate-shaped lock plate 233 is inserted into the lock plate storage space 232b (FIG. 6) in the lock plate storage member 232 from the lock plate insertion port 232A.
  • the spring 234 is inserted from the spring insertion port 232B into the spring storage space 232c (FIG. 6) in the lock plate storage member 232.
  • the lock plate 233 includes a substantially rectangular support plate 233a, a long lock pin engagement portion 233b, and a long lock pin engagement portion 233c.
  • the lock pin engaging portion 233b extends in one direction along one side of the support plate 233a, and the lock pin engaging portion 233c extends diagonally outward at one corner of the support plate 233a and is parallel to the lock pin engaging portion 233b. It is bent to become.
  • support A through hole 233A is formed at the center of the plate 233a.
  • a columnar member 234a is attached to one end of the spring 234 to facilitate attachment to and removal from the lock pin locking mechanism 230.
  • FIG. 6 shows the lock plate housing member 23 with the lock plate 233 and the spring 234 inserted.
  • FIG. 1 A first figure.
  • a pin 233 d is inserted into the through hole 233 A of the lock plate 233.
  • the lock plate 233 is held so as to be swingable within the lock plate storage space 232b of the lock plate storage member 232.
  • the spring 234 is inserted into the spring housing space 232 c in the direction of the force 234, and the lower end portion of the spring 234 comes into contact with the upper end portion of the lock pin engaging portion 233 b of the lock plate 233. As a result, the lock plate 233 is biased downward.
  • the lower end portion of the lock pin engaging portion 233c of the lock plate 233 is fitted into the groove portion 214a (Fig. 3) or the groove portion 214b (Fig. 3) of the lock pin 214 inserted in the Y direction into the lock plate housing member 232. Is done.
  • the lower end portion of the lock pin engaging portion 233b of the lock plate 233 is fitted into the groove portion 217a (FIG. 3) or the groove portion 217b (FIG. 3) of the lock pin 217 inserted in the Y direction into the lock plate housing member 232.
  • the relative positions of the through holes 220d and 220e with respect to the through hole 220a of the cam driven sprocket 220 are the same as the through holes 230H of the lock pin locking mechanism 230.
  • the relative positions of the screw screw holes 230d and 230e as the reference are the same.
  • the diameter of the through holes 230d and 230e is equal to the diameter of the screw insect holes 220d and 220e!
  • the lock pin holding mechanism 210 is fixed to one surface of the cam driven sprocket 220, and the lock pin locking mechanism 230 is fixed to the other surface of the cam driven sprocket 220.
  • the lock pin 214 is inserted into the through hole 220b of the cam driven sprocket 220 and the through hole 230b of the lock pin locking mechanism 230, and the lock pin 217 is inserted into the through hole 220c and the lock pin of the cam driven sprocket 220. It is inserted into the through hole 230c of the locking mechanism 230.
  • the weights 213 and 216 are turned, the lock pin 214 and 217 force S
  • the lock plate storage member 232 side end face force of the lock pin engagement mechanism 230 also protrudes, and the lock pins 214 and 217 are inside the lock pin engagement mechanism 230
  • the state stored in is switched. Details will be described later.
  • FIG. 5 shows an assembled perspective view of the structure assembled as shown in FIG. 4 (hereinafter referred to as an assembled structure), the floating cam portion 235 and the camshaft 240. Note that the axis J of the idle power section 235 and the camshaft 240 is arranged to be parallel to the Y direction.
  • the idle cam portion 235 is formed of an intake high cam 237 having a lock pin fitting portion 236 and a cam nose 237A.
  • a through hole 235H is formed in the portion of the axis J of the floating cam portion 235. That is, the through hole 235H is formed from the center of the end surface of the lock pin fitting portion 236 to the center of the end surface of the intake high cam 237.
  • Lock pin fitting holes 236b and 236c force S are formed in the lock pin fitting portion 236 of the floating cam portion 235.
  • the lock pin fitting holes 236b and 236c and the through hole 235H are arranged on the same straight line parallel to the Z direction, and the lock pin fitting hole 236b and the lock pin fitting hole 236c have the same diameter.
  • the distance between the through hole 235H and the lock pin fitting hole 236b is shorter than the distance between the through hole 235H and the lock pin fitting hole 236c.
  • the camshaft 240 includes an intake low cam 241 having a cam nose 241A, an exhaust cam 242 having a cam nose 242A, a stepped portion 243, a cam fixing shaft 244, and a protruding shaft 245.
  • the camshaft 240 has a cam fixing shaft 244 extending in the Y direction on one end side in the Y direction, a stepped portion 243, an intake low cam 241 and an exhaust cam 242 in the central portion, and Y on the other end side. It has a protruding shaft 245 extending in the direction. A screw hole 240H is formed at the end of the cam fixing shaft 244. [0117] The length of the cam nose 237A of the intake high cam 237 of the floating cam portion 235 is larger than the length of the cam nose 241A of the intake low cam 241! /.
  • the floating cam portion 235, and the camshaft 240, the floating cam portion 235 and the camshaft 240 are attached to the lock plate housing member 232 of the assembled structure.
  • the cam fixing shaft 244 of the camshaft 240 is inserted into the through hole 235H of the floating cam portion 235 and the through hole 230H (FIG. 4) of the lock pin locking mechanism 230.
  • the idle power portion 235 is rotatably held by the camshaft 240.
  • the rotation shaft 231 and the lock plate storage member 232 of the lock pin locking mechanism 230 may be formed integrally or individually.
  • the intake low cam 241, the exhaust cam 242, the stepped portion 243, the cam fixing shaft 244 and the protruding shaft 245 of the camshaft 240 may be integrally formed! / It's okay.
  • a connecting mechanism between the cam fixing shaft 244 and the through hole 220a (FIG. 4) is provided with a fixing mechanism that restricts the rotation of the cam shaft 240 with respect to the cam driven sprocket 220. May be.
  • this fixing mechanism is provided with a protrusion at the tip of the cam fixing shaft 244 of the camshaft 240, and fitted with the protrusion of the cam fixing shaft 244 in the through hole 220a (Fig. 4) of the cam driven sprocket 220. It may be realized by providing a matching groove.
  • variable valve gear 200 having the configuration shown in FIGS.
  • the state is switched accordingly.
  • switching of the state of the variable valve gear 200 will be described.
  • the case where the rotational speed of the engine 7 (see FIG. 1 and FIG. 2) is higher than a predetermined value is referred to as high rotation
  • the case where the rotation speed is lower than the predetermined value is referred to as low rotation.
  • the rotational speed of the cam fixed shaft 244 is half of the rotational speed of the engine 7.
  • the rotational speed of the cam fixed shaft 244 at the time of switching between low rotation and high rotation is called a threshold value.
  • variable valve apparatus 200 when the engine 7 is operated, the variable valve apparatus 200 (see FIGS. 3 to 6) rotates. As a result, centrifugal force due to rotation is applied to the weights 213 and 216 of the variable valve apparatus 200 in addition to the biasing force due to the springs SI and S2. The magnitude of the centrifugal force applied to the weights 213 and 216 varies depending on the rotational speed of the variable valve apparatus 200. The state of the variable valve apparatus 200 is switched using the change in the magnitude of the centrifugal force.
  • FIG. 7 is a cross-sectional view showing the state of the variable valve apparatus 200 during low rotation
  • FIG. 8 is a cross-sectional view showing the state of the variable valve apparatus 200 during high rotation.
  • FIG. 7 and FIG. 8 as indicated by arrows Y and Z, two directions orthogonal to each other are defined as a Y direction and a Z direction.
  • the direction in which the arrow points is the + direction, and the opposite direction is the one direction.
  • the urging force in the Z direction by the spring S1 is applied to the weight 213, and the centrifugal force in the + Z direction by the rotation of the variable valve apparatus 200 is applied to the weight 213.
  • the centrifugal force applied to the weight 213 is small, so that the weight 213 rotates around the rotation shaft 215 by the biasing force of the spring S1. Operation is restricted.
  • the lock pin engaging portion 233c of the lock plate 233 is fitted in the groove 214a of the lock pin 214.
  • the lock plate 233 is biased in the Z direction by a spring 234 (see FIGS. 4 and 6). Therefore, the movement of the lock pin 214 in the + Y direction is limited.
  • the lock pin 214 is fixed in a state where the tip thereof is housed in the lock pin locking mechanism 230.
  • the lock pin 217 is fixed in a state where the tip thereof is accommodated in the lock pin locking mechanism 230.
  • the force becomes greater than the urging force in the + Z direction, and the weight 216 acts to rotate in the direction of the arrow M2 around the rotation axis 218.
  • the idle cam portion 235 is fixed with respect to the rotation direction of the variable valve apparatus 200 by the lock pins 214 and 217.
  • the lock pin 214 and the lock pin 217, and the lock pin fitting hole 236b and the lock pin fitting hole 236c are different from each other with respect to the cam fixing shaft 244. Have a distance.
  • the floating cam portion 235 is always fixed at the same phase with respect to the rotating shaft without being fixed in an inverted state.
  • the movement of the lock pins 214 and 217 is restricted by the lock plate 233. Therefore, the movement of the lock pins 214 and 217 is performed stably. The details of the operation are described below.
  • FIG. 9 is a diagram for explaining the details of the operation of the lock plate 233 and the lock pins 214 and 217 of FIGS. 7 and 8.
  • Fig. 9 (a) shows the state of the lock plate 233 and the lock pins 2 14 and 217 at the time of low rotation (the state shown in Fig. 7).
  • FIG. 9 (c) shows the state of the lock pins 214 and 217 (the state shown in FIG. 8).
  • FIG. 9 (b) shows the state of the lock plate 233 and the lock on the way to the state of FIG. 9 (a) Indicates the state of pins 214 and 217.
  • FIG. 9 the Y direction and the Z direction are defined as in FIGS. 7 and 8. Only the lock pin engagement portion 233c of the lock pin engagement portion 233c and the lock pin engagement portion 233b of the lock plate 233 is shown.
  • the relationship between the lock pin 217 and the lock pin engaging portion 233b is the same as the relationship between the lock pin 214 and the lock pin engaging portion 233c.
  • the cross sections of the grooves 214a and 214b of the lock pin 214 are formed in a V-shape. ing.
  • the cross section of the lower end portion of the lock pin engaging portion 233c is formed in a tapered shape complementary to the cross sectional shape of the groove portions 214a and 214b.
  • the movement force of the lock pin 214 in the + Y direction is reduced when the engine speed is changed from the low state to the high state. If it is not large enough, the lock pin 214 will not move. Specifically, the centrifugal force force in the + Z direction acting on the weight 213 is caused by the spring S1 — when the force increases in the Z direction beyond a certain value (the rotational speed of the cam fixed shaft 244 The lock pin 214 moves when the value becomes higher than the threshold value by a certain value or more.
  • the lock pin 214 does not move unless the moving force of the lock pin 214 in the + Y direction becomes sufficiently large. Specifically, when the centrifugal force in the + Z direction applied to the weight 213 becomes smaller than a certain value by the spring S1 — the biasing force in the Z direction (the rotational speed of the cam fixed shaft 244 is the threshold value). The lock pin 214 moves when it becomes lower than a certain value.
  • FIG. 10 is a cross-sectional view showing a state in which the variable valve apparatus 200 is attached to the engine 7.
  • three directions orthogonal to each other are defined as an X direction, a Y direction, and a Z direction.
  • a space for attaching the variable valve gear 200 is provided in the upper part of the cylinder head 7S.
  • Bearings Bl and B2 are attached to the outer periphery of the rotary shaft 231 and the outer periphery of the projecting shaft 245 of the variable valve apparatus 200, respectively.
  • one end surface perpendicular to the Y direction of the bearing B1 contacts the internal contact surface BH1 of the cylinder head 7S.
  • one end surface of the bearing B2 perpendicular to the Y direction contacts the internal contact surface BH2 of the cylinder head 7S.
  • a part of the other end surface perpendicular to the Y direction of the bearing B1 is brought into contact with the fixed plate BH3 connected to the cylinder head 7S.
  • the variable valve apparatus 200 is rotatably fixed inside the cylinder head 7S.
  • An intake high cam rocker arm 330, an intake low force murotsu car arm 340, and an exhaust cam rocker arm 350 are provided on the upper part of the variable valve apparatus 200! /.
  • the intake high cam rocker arm 330 is in contact with the intake high cam 237 of the variable valve operating device 200
  • the intake low force Murotsuker arm 340 is in contact with the intake low cam 241 of the variable valve operating device 200
  • the exhaust cam rocker arm 350 is in contact with the variable valve operating device 200.
  • a side cover SC is attached to the cylinder head 7S so as to cover the lock pin holding mechanism 210 side of the variable valve apparatus 200.
  • a chain 25 is hung on the cam driven sprocket 220.
  • FIG. 11 is a top view showing the arrangement of the variable valve gear 200, the intake high cam rocker arm 330, the intake low cam rocker arm 340, and the exhaust cam rocker arm 350 of FIG.
  • FIG. 12 is a cross-sectional view taken along the line RR of the cylinder head 7S of FIG. 11 and 12, the X direction, the Y direction, and the Z direction are defined as in FIG.
  • variable valve gear 200 is mounted in the cylinder head 7S by bearings Bl and B2.
  • the intake high cam rocker arm 330 and the intake low force groat force one arm 340 are arranged in parallel on one side of the variable valve operating device 200 and are rotatably held by the shaft 341 at the respective central portions.
  • One end of the intake high cam rocker arm 330 extends to bend to the position above the intake high cam 237 (Z direction), and one end of the intake low force mrotker arm 340 is bent to the position above the intake low cam 241 (Z direction) It extends.
  • the exhaust cam rocker arm 350 is disposed on the other side of the variable valve apparatus 200, and is rotatably held by a shaft 351 at the center thereof. One end of the exhaust cam rocker arm 350 extends to a position above the exhaust cam 242 (Z direction).
  • the intake low cam rocker arm 340 is composed of a cam receiving portion 340T, an arm 340R, an adjuster 342 and a nut 343!
  • One end of the arm 340R in the X direction is provided with a cam receiving portion 340T that comes into contact with the intake low cam 241.
  • the other end of the arm 340R is attached with a nut 343 by a nut 343.
  • a pin 345 extending in the Y direction is attached to a portion of the arm 340R near the adjuster 342 so as to protrude below the intake high cam rocker arm 330.
  • the intake high cam rocker arm 330 is composed of a cam receiving portion (not shown), an arm 330R, an adjuster 332, and a nut 333 force!
  • One end of the arm 330R in the X direction is provided with a cam receiving portion that comes into contact with the intake high cam 237, and an agitator 332 is attached to the other end with a nut 333.
  • the adjuster 332 of the intake high cam rocker arm 330 abuts the upper portion of the pin 345 of the intake low cam rocker arm 340.
  • the cam receiver 340T moves up and down.
  • the arm 340R rotates around the shaft 341, and the adjuster 342 moves up and down.
  • the cam receiver moves up and down as the intake high cam 237 rotates in the direction of arrow Q2.
  • the arm 330R rotates about the shaft 341, and the adjuster 332 moves up and down.
  • An intake valve 344 is positioned below the adjuster 342 of the intake low cam rocker arm 340.
  • the stem end 344 a at the upper end of the intake valve 344 is in contact with the adjuster 342.
  • the intake valve 344 is provided with a valve spring 347.
  • Valve spring 347 urges intake valve 344 upward!
  • the length of the cam nose 237A of the intake high cam 237 is larger than the length of the cam nose 241A of the intake low cam 241.
  • the downward movement distance of the agitator 332 accompanying the rotation of the intake high cam 237 is larger than the downward movement distance of the agitator 342 accompanying the rotation of the intake low cam 241.
  • the intake high cam 237 during low rotation is The camshaft 240 can rotate with respect to the cam fixing shaft 244. Therefore, the rotational force of the cam fixing shaft 244 is not transmitted to the intake high cam 237.
  • the intake high cam 237 at the time of high rotation is fixed to the cam fixing shaft 244 by lock pins 214 and 217. Therefore, the rotational force of the cam fixing shaft 244 is transmitted to the intake high cam 237.
  • the intake high cam rocker arm 330 is not driven by the intake high cam 237. Therefore, the adjuster 342 of the intake low cam rocker arm 340 moves up and down by the rotation of the intake low cam 241 and the intake valve 344 moves up and down (lift operation). As a result, the intake valve 344 opens and closes.
  • intake high cam rocker arm 330 is driven by intake high cam 237.
  • the intake low cam rocker arm 340 is driven by the intake high cam rocker arm 330. Therefore, the agitator 342 of the intake low cam rocker arm 340 moves up and down by the rotation of the intake high cam 237, and the intake valve 344 moves up and down (lift operation). As a result, the intake valve 344 opens and closes.
  • the rotational force of the intake low cam 241 is transmitted to the intake valve 344 via the intake low cam rocker arm 340, and the rotational force of the intake high cam 237 is transmitted to the intake high cam rocker arm 330 and the intake low cam rocker arm 340.
  • the amount of displacement of the intake valve 344 at low speed depends on the length of the cam nose 241A of the intake low cam 2 41, and the amount of lift of the intake valve 344 at high speed is the cam nose of the intake high cam 237 Depends on the length of 237A.
  • Exhaust cam rocker arm 350 consists of intake high cam rocker arm 330 and intake low Like the cam rocker arm 340, the cam rocker arm 340 includes a cam receiving portion 350T, an arm 350R, an adjuster 352 and a nut 353.
  • An exhaust valve 354 is positioned below the adjuster 352 of the exhaust cam rocker arm 350.
  • the exhaust valve 354 is provided with a valve spring 357.
  • Valve spring 357 biases intake valve 344 upward.
  • the exhaust cam rocker arm 350 is driven by the exhaust cam 242. Therefore, the adjuster 352 of the exhaust cam rocker arm 350 moves up and down by the rotation of the exhaust cam 242 and the exhaust valve 354 moves up and down (lift operation). As a result, the exhaust valve 354 opens and closes.
  • FIG. 13 shows lift amounts of intake valve 344 and exhaust valve 354 shown in FIG.
  • the horizontal axis indicates the crank angle (the rotation angle of the crankshaft 23), and the vertical axis indicates the lift amount of the exhaust valve 354 and the intake valve 344 (the vertical direction of the exhaust valve 354 and the intake valve 344). Displacement).
  • the exhaust valve 354 and the intake valve 344 are open when the lift amount is larger than zero, and are closed when the lift amount is zero.
  • crank angle is shown from one 360 ° to + 360 °.
  • Crank angle is 0 °, 36
  • Piston 21 (Fig. 2) is located at top dead center TDC in cylinder 20 at 0 ° and -360 °, and piston 21 (Fig. 2) is in cylinder 20 when crank angle is 180 ° and-180 °. Located at BDC BDC.
  • a valve lift curve 242L indicated by a solid line shows a change in the lift amount of the exhaust valve 354 due to the rotation of the exhaust cam 242 (Fig. 9).
  • the maximum lift amount of the exhaust valve 354 is the maximum value L1.
  • a valve lift curve 241L indicated by a one-dot chain line indicates a change in the lift amount of the intake valve 344 at the time of low rotation.
  • the maximum lift amount of the intake valve 344 is the maximum value L2.
  • the lift amount of the intake valve 344 depends on the length of the cam nose 241 A of the intake low force 241.
  • the valve lift curve 237L indicated by the dotted line shows the lift of the intake valve 344 at high speed. Indicates the change in quantity.
  • the maximum lift amount of the intake valve 344 is a maximum value L1 equal to the maximum lift amount of the exhaust valve 354 larger than the maximum value L2.
  • the lift amount of the intake valve 344 depends on the length of the cam nose 237A of the intake high cam 237.
  • the lift amount of the intake valve 344 at the time of high rotation is larger than the lift amount of the intake valve 344 at the time of low rotation.
  • the time of high rotation it is possible to secure a larger amount of intake air to the cylinder 20 in FIG. 2 than at the time of low rotation.
  • fuel efficiency during normal driving can be improved, harmful substances in exhaust gas can be reduced, and high output during high-speed driving can be realized.
  • the maximum lift amount of the exhaust valve 354 and the maximum lift amount of the intake valve 344 at a high rotation speed are set to be equal!
  • the maximum lift amount of the intake valve 344 may be different from the maximum lift amount of the intake valve 344 at high rotation.
  • a variable valve apparatus 200 that switches between intake high cam 237 and intake low cam 241 using a centrifugal force caused by rotation is used.
  • the hydraulic actuator and the hydraulic pump are not required, so that the intake high cam 237 and the intake low cam 241 can be switched at a smaller size and at a lower cost. .
  • fuel efficiency during normal driving can be improved, harmful substances in exhaust gas can be reduced, and high output during high-speed driving can be realized.
  • the intake valve 344 and the exhaust valve 354 are examples of valves
  • the cam fixing shaft 244 is an example of a rotating shaft
  • the intake low cam 241 is the first cam member.
  • the floating cam portion 235 is an example of the second cam member
  • the lock pin 214, 217 is a force locking member
  • the springs SI, S2 are examples of the biasing member
  • the weights 213, 216 Is an example of a drive member.
  • the tips of the lock pins 214 and 217 are examples of locking portions
  • the lock pin fitting holes 236b and 236c are examples of locked portions
  • the lock plate 233 is an example of a movement blocking member.
  • groove portions 214a, 21 4b, 217a, 217b are examples of groove portions
  • lock pin locking portions 233b, 233c are examples of fitting portions
  • intake low cam rocker arm 340 is an example of a first transmission member
  • the intake high cam knocker arm 330 is an example of the second transmission member.
  • the state of the lock pins 214 and 217 at the time of low rotation shown in FIG. 7 is an example of the first state, and the positions of the weights 213 and 216 at the time of low rotation are examples of the first position.
  • the state of the lock pins 214 and 217 at the time of high rotation shown in FIG. 8 is an example of the second state, and the positions of the weights 213 and 2 16 at the time of high rotation are examples of the second position.
  • the lift amount of the intake valve 344 at low speed indicated by the alternate long and short dash line is an example of the first lift amount
  • the lift amount of the intake valve 344 at high speed indicated by the dotted line is the second lift amount. It is an example.
  • the engine 7 and the variable valve gear 200 are examples of an engine device
  • the motorcycle 100 is an example of a vehicle
  • the rear wheel 11 is an example of a driving wheel
  • the rear wheel driven sprocket 12 and the drive.
  • Shaft 26, rear wheel drive sprocket 15 and chain 16 are examples of transmission mechanisms.
  • variable valve operating apparatus 200 of the above embodiment has two weights 213, 216 and two Only one of the weights 213 and 216 and the lock pins 214 and 217 may be provided.
  • An example of the variable valve gear 200 in that case is shown in FIG.
  • variable valve operating apparatus 200 shown in Fig. 14 does not have the weight 213 and the lock pin 214 in the variable valve operating apparatus 200 shown in Figs.
  • Fig. 14 (a) is a cross-sectional view of the variable valve apparatus 200 at low rotation
  • Fig. 14 (b) is a diagram of Fig. 14 (a).
  • variable valve operating apparatus 200 includes a lock pin holding mechanism 210, a cam driven sprocket 220, a lock pin locking mechanism 230, an idle cam portion 235, and a camshaft 2
  • the lock pin holding mechanism 210 is provided with a weight 216 and a lock pin 217.
  • the weight 216 and the lock pin 217 are arranged so that the floating cam portion 235 can be rotated with respect to the cam fixing shaft 244 and fixed according to the rotational speed of the engine 7. Switch.
  • the lock plate 233 in this case has a long lock pin engaging portion 233b extending along one side of a substantially rectangular support plate 233a, as shown in FIG. 14 (b).
  • variable valve operating apparatus 200 when a set of weight 216 and lock pin 217 is provided in variable valve operating apparatus 200, fuel consumption during normal driving is improved and harmful substances in exhaust gas are reduced. As well as high output during high-speed driving. Further, further miniaturization of the variable valve operating apparatus 200 can be realized.
  • the operating angle of the intake valve 344 may be changed by switching the intake high cam 237 and the intake low cam 241 to change the lift amount of the intake valve 344.
  • the operating angle of the intake valve 344 refers to a crank angle range in which the intake valve 344 is lifted.
  • the working angle of the intake valve 344 is 260 ° (-30 ° force to 230 °).
  • the cam nose 237A of the intake high cam 237 is formed wider than the cam nose 241 A of the intake low cam 241.
  • the operating angle force of the intake valve 344 at high speeds Intake valve at low speeds It becomes larger than the working angle of 344.
  • variable valve device 200 may be applied to the exhaust valve 354.
  • the floating cam portion, the lock pin locking mechanism, and the cam having the same structure as the floating cam portion 235, the lock pin locking mechanism 230, and the cam driven sprocket 220 so as to be adjacent to the exhaust valve 354.
  • a driven sprocket is provided, and an exhaust and iclot rocker arm having the same structure as the intake high cam rocker arm 330 is provided.
  • the lift amount of the exhaust valve 354 can be switched.
  • only one of the forces provided on the lock pins 214 and 217 with the two grooves 214a and 217a and the grooves 214b and 217b may be provided, respectively.
  • the lock pin 214 may be provided with only the groove 214a, and the lock pin 217 may be provided with only the groove 217a.
  • the lock pins 233b and 233c force S of the lock plate 233 are fitted into the grooves 214a and 217a of the lock pins 214 and 217, and the movement of the lock pins 214 and 217 is restricted.
  • only the groove 214b may be provided on the lock pin 214, and only the groove 217b may be provided on the lock pin 217.
  • the locking pins 233b and 233c of the lock plate 233 are engaged with the grooves ⁇ b and 217b of the lock pins 214 and 217, and the movement of the lock pins 214 and 217 is restricted.
  • the movement blocking member for limiting the movement of the lock pins 214 and 217 is used as a movement blocking member of another shape such as a force pin using the plate-shaped lock plate 233. Also good.
  • the shape of the grooves 214a, 214b, 217a, 217b formed in the lock pins 214, 217 is appropriately determined according to the shape of the movement preventing member.
  • variable valve operating device 200 is provided in the SOHC (single overhead camshaft) engine 7! /, But the variable valve operating device 200 is provided in the engine 7 having a camshaft. It will not be limited if it is the structure provided.
  • the engine 7 may be an SV (side valve) engine, an OHV (overhead valve) engine, or a DOHC (double overhead camshaft) engine.
  • SV side valve
  • OHV overhead valve
  • DOHC double overhead camshaft
  • variable valve operating apparatus 200 is provided in the engine 7 including the intake high-power murotsuka arm 330, the intake low cam rocker arm 340, and the exhaust cam rocker arm 350.
  • the variable valve apparatus 200 may be provided in a direct hitting engine.
  • variable valve apparatus 200 uses the springs SI and S2 to bias the weights 213 and 216 in a predetermined direction.
  • it is an elastic body that urges the weights 213 and 216 in a predetermined direction
  • rubber or the like may be used instead of the springs SI and S2.
  • variable valve apparatus 200 can also be provided in a small vehicle with a small displacement such as a tractor and a cart and an engine of a small vessel.
  • the present invention can be used for various vehicles, ships and the like equipped with engines such as motorcycles and four-wheeled vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

 低回転時には、ウェイトに加わる遠心力が小さいため、ウェイトの回転動作が制限される。それにより、ロックピンが遊動カム部のロックピン嵌合穴に嵌合されず、遊動カム部はカム固定軸を中心に空回りする。高回転時には、ウェイトに加わる遠心力が大きくなり、ウェイトは回転軸を中心として回転する。それにより、ロックピンの先端が、遊動カム部のロックピン嵌合部に嵌合される。したがって、高回転時には、遊動カム部がロックピンにより可変動弁装置の回転方向に対して固定される。

Description

明 細 書
可変動弁装置ならびにそれを備えるエンジン装置および車両
技術分野
[0001] 本発明は、エンジンのバルブを駆動する可変動弁装置ならびにそれを備えるェン ジン装置および車両に関する。
背景技術
[0002] 従来より、燃費の向上、排気ガス中の有害物質の低減、および特定の回転域での 高出力化を目的として吸排気を制御する種々の可変バルブ機構が開発されている。
[0003] 吸排気の効率を高めるためには、エンジンの回転速度が低 、低速域およびェンジ ンの回転速度が高 、高速域にお!、て、吸気量を最適に切り替えることが好ま 、。
[0004] 一般に、自動二輪車におけるエンジンの占有スペースは四輪の自動車等に比べて 小さい。また、自動二輪車の低コスト化も求められている。これにより、自動二輪車で は、より小型化された可変ノ レブ機構が要求されて ヽる。
[0005] 特許文献 1には、低速用カムと高速用カムとの切替を簡単でコンパクトな構造で行う エンジンの動弁装置が提案されている。この動弁装置においては、カム軸に低速用 カムが固定され、この低速用カムに並列してカム軸に相対変位可能に高速用カムが 設けられている。カム軸内には、軸方向に往復移動可能に制御軸が設けられている 。制御軸の軸方向の移動により高速用カムがカム軸に垂直な方向に突出し、低速用 カムと高速用カムとが切り替えられる。
特許文献 1:特開平 09 - 256827号公報
発明の開示
発明が解決しょうとする課題
[0006] 特許文献 1の動弁装置では、低速用カムから高速用カムへの切替を油圧ァクチュ エータにより行う。具体的には、制御軸と連動するように制御レバーが設けられており 、スプリングにより付勢された制御レバーを油圧ァクチユエータにより移動させる。そ れにより、制御軸が軸方向に移動し、低速用カム力 高速用カムへと切り替えられる [0007] し力しながら、スプリングの付勢力、バルブ力も高速用カムへ加わる反力、およびバ ルブ力 制御軸へ加わる反力に抗して制御レバーを移動させるには、大きな油圧が 必要となる。そのため、油圧ァクチユエータにオイルを供給するオイルポンプとして、 より大型で、より高価なものが必要となる。その結果、生産コストが増大するとともに、 車両の小型化が妨げられる。
[0008] 本発明の目的は、小型かつ低コストで、エンジンの回転速度に応じてカムを最適に 切り替えることができる可変動弁装置ならびにそれを備えるエンジン装置および車両 を提供することである。
課題を解決するための手段
[0009] (1)本発明の一局面に従う可変動弁装置は、エンジンのバルブを駆動するための 可変動弁装置であって、エンジンの回転に連動して回転可能に設けられた回転軸と 、回転軸とともに回転するように設けられ、バルブを開閉するように作用する第 1の力 ム部材と、回転軸に対して回転可能に設けられ、バルブを開閉するように作用する第
2のカム部材と、第 2のカム部材を回転軸に対して回転可能にする第 1の状態と第 2 のカム部材を回転軸に係止する第 2の状態とに移行可能に設けられた係止部材と、 係止部材を第 1の状態に移行させる付勢力を発生する付勢部材と、回転軸の回転に 伴う遠心力により付勢部材による付勢力に抗して係止部材を第 2の状態に移行させ るように作動する駆動部材とを備え、係止部材が第 1の状態である場合には第 1の力 ム部材がバルブの開閉に作用し、係止部材が第 2の状態である場合には第 2のカム 部材がバルブの開閉に作用するものである。
[0010] その可変動弁装置においては、エンジンの回転に連動して回転軸が回転する。第 1のカム部材は、回転軸の回転に伴い回転する。第 2のカム部材は、係止部材が第 1 の状態にあるときに回転軸に対して回転可能な状態となり、係止部材が第 2の状態に あるときに回転軸に係止される状態となる。係止部材は、回転軸の回転速度に応じて 第 1の状態または第 2の状態に切り替わる。
[0011] 回転軸の回転速度が低い場合には、付勢部材が発生する付勢力により、係止部材 が第 1の状態に移行する。それにより、第 2のカム部材が係止部材により回転軸に対 して回転可能となる。したがって、第 2のカム部材は、回転軸の回転に伴って回転し ない状態となる。この場合、第 1のカム部材がバルブの開閉に作用する。
[0012] 一方、回転軸の回転速度が高い場合には、駆動部材に加わる遠心力により、付勢 部材による付勢力に抗して係止部材が第 2の状態に移行する。それにより、第 2の力 ム部材が回転軸に係止される。したがって、第 2のカム部材は、回転軸の回転に伴つ て回転する状態となる。この場合、第 2のカム部材がバルブの開閉に作用する。
[0013] このように、エンジンの回転速度に応じて、第 1のカム部材がバルブに作用する状 態と、第 2のカム部材がバルブに作用する状態とが切り替えられる。それにより、第 1 のカム部材および第 2のカム部材をそれぞれエンジンの低回転時および高回転時に 最適な形状に形成することにより、通常走行(中低速走行)時の燃費を向上させ、排 気ガス中の有害物質を低減することができるとともに、高速走行時の高出力化を実現 することができる。
[0014] また、回転軸の回転による遠心力を利用して第 1のカム部材と第 2のカム部材とが 切り替えられるため、油圧系統による駆動源が不要である。したがって、小型かつ低 コストの可変動弁装置が実現される。
[0015] (2)駆動部材は回転軸の回転に伴う遠心力により第 1の位置力 第 2の位置に回動 可能に設けられ、係止部材は駆動部材の第 1の位置力 第 2の位置への回動に伴つ て回転軸に沿った一方向に移動可能に設けられ、付勢部材は、駆動部材が第 1の 位置に向力うように駆動部材に付勢力を与え、係止部材は、駆動部材が第 1の位置 にあるときに第 1の状態になり、駆動部材が第 2の位置にあるときに第 2の状態になつ てもよい。
[0016] この場合、付勢部材による付勢力は、駆動部材が第 1の位置に向力うように働く。回 転軸の回転に伴う遠心力は、駆動部材が第 1の位置力 第 2の位置に回動するよう に働く。
[0017] 回転軸の回転速度が低い場合には、駆動部材に加わる付勢力が遠心力よりも大き くなるため、駆動部材は第 1の位置にある。それにより、係止部材が第 1の状態にある 。したがって、第 2のカム部材が回転軸に対して回転可能となり、第 1のカム部材がバ ルブの開閉に作用する。
[0018] 回転軸の回転速度が高い場合には、駆動部材に加わる遠心力が付勢力よりも大き くなるため、駆動部材が第 1の位置力も第 2の位置に回動する。それにより、係止部 材が回転軸に沿った一方向に移動し、第 1の状態から第 2の状態へ切り替わる。した がって、第 2のカム部材が回転軸とともに回転し、第 2のカム部材がバルブの開閉に 作用する。
[0019] このように、駆動部材に加わる遠心力の大きさにより係止部材が第 1の状態または 第 2の状態に移行する。それにより、簡単な構成で、第 1のカム部材および第 2のカム 部材の切替を行うことができる。
[0020] (3)係止部材は係止部を有し、第 2のカム部材は、係止部材の係止部により係止さ れる被係止部を有し、係止部材が第 1の状態にあるときに係止部が被係止部力 外 れ、係止部材が第 2の状態にあるときに係止部が被係止部を係止してもよい。
[0021] 回転軸の回転速度が低い場合には、係止部材の係止部が第 2のカム部材の被係 止部から外れる。それにより、第 2のカム部材が回転軸に対して回転可能となる。回 転軸の回転速度が高い場合には、係止部材の係止部が第 2のカム部材の被係止部 を係止する。それにより、第 2のカム部材が回転軸に対して固定される。このように、 簡単な構成で、第 1のカム部材および第 2のカム部材の切替を行うことができる。
[0022] (4)係止部材は棒状部材を含み、係止部は棒状部材の端部であり、第 2のカム部 材の被係止部は、棒状部材の端部が嵌合可能な孔部であってもよ 、。
[0023] 回転軸の回転速度が低い場合には、棒状部材の端部が第 2のカム部材の孔部か ら外れる。それにより、第 2のカム部材が回転軸に対して回転可能となる。回転軸の 回転速度が高い場合には、棒状部材の端部が第 2のカム部材の孔部に挿入される。 それにより、第 2のカム部材が回転軸に対して固定される。このように、簡単な構成で 、第 1のカム部材および第 2のカム部材の切替を行うことができる。
[0024] (5)係止部材は複数の棒状部材であり、第 2のカム部材の被係止部は複数の棒状 部材の端部がそれぞれ嵌合可能な複数の孔部であり、複数の棒状部材は回転軸の 中心に関して互 ヽに非対称な位置に配置されてもょ 、。
[0025] この場合、複数の棒状部材が対応する複数の孔部にそれぞれ挿入されるので、第 2のカム部材が回転軸に対して確実に固定される。また、複数の棒状部材が回転軸 の中心に関して互いに非対称な位置に配置されているので、各棒状部材がそれに 対応する孔部に確実に挿入される。
[0026] (6)可変動弁装置は、係止部材が第 1の状態および第 2の状態の少なくとも一方に あるときに係止部材の移動を阻止する移動阻止部材をさらに備えてもよい。
[0027] この場合、係止部材が第 1の状態または第 2の状態で確実に固定されるため、バル ブの反力により係止部材が不安定になることを防止することができる。
[0028] また、付勢部材が発生する付勢力により係止部材が第 1の状態に移行する力と、駆 動部材に加わる遠心力により係止部材が第 2の状態に移行する力とが釣り合う状態 で、係止部材が第 1の状態と第 2の状態と間で不安定になることを防止することができ る。その結果、第 1のカム部材および第 2のカム部材の切替が安定して行われ、ノ レ ブの開閉が不安定となることを防止することができる。
[0029] (7)係止部材は少なくとも 1つの溝部を有し、移動阻止部材は、係止部材が第 1の 状態および第 2の状態の少なくとも一方にあるときに溝部に嵌合可能な嵌合部を有し てもよい。
[0030] この場合、係止部材が第 1の状態および第 2の状態の少なくとも一方にあるときに移 動阻止部材の嵌合部が係止部材の溝部に嵌合される。それにより、係止部材が第 1 の状態または第 2の状態で十分に固定されるため、バルブの反力により係止部材が 不安定になることを確実に防止することができる。
[0031] また、付勢部材が発生する付勢力が係止部材を第 1の状態に移行させる力と、回 転に伴う遠心力により駆動部材が係止部材を第 2の状態に移行させる力とが釣り合う 状態で、係止部材が第 1の状態と第 2の状態との間で不安定になることを十分に防止 することができる。
[0032] (8)係止部材が第 1の状態から第 2の状態へ移行する場合および係止部材が第 2 の状態力 第 1の状態へ移行する場合の少なくとも一方で係止部材の少なくとも 1つ の溝部カゝら移動阻止部材の嵌合部が退出可能に溝部および嵌合部が形成されても よい。
[0033] この場合、係止部材が第 1の状態または第 2の状態にあるときには、移動阻止部材 の嵌合部が係止部材の溝部に嵌合され、係止部材が第 1の状態力 第 2の状態に移 行する際または第 2の状態力 第 1の状態に移行する際には、移動阻止部材の嵌合 部が係止部材の溝部から退出する。それにより、係止部材が第 1の状態または第 2の 状態にあるときにはバルブの反力により係止部材が不安定になることを防止すること ができるとともに、第 1の状態力 第 2の状態への移行または第 2の状態力 第 1の状 態への移行が安定して行われる。
[0034] (9)可変動弁装置は、第 1のカム部材の回転に連動して揺動することによりバルブ を上下動させる第 1の伝達部材と、第 2のカム部材の回転に連動して第 1の伝達部材 を揺動させる第 2の伝達部材とをさらに備えてもよい。
[0035] この場合、第 1のカム部材が回転軸の回転に伴い回転することにより第 1の伝達部 材が摇動する。それにより、バルブの上下動が行われる。
[0036] また、第 2のカム部材が回転軸に係止された状態において、第 2のカム部材が回転 軸の回転に伴い回転することにより第 2の伝達部材が揺動する。それにより、第 1の 伝達部材が摇動し、バブルの上下動が行われる。
[0037] このように、第 1のカム部材および第 2のカム部材が回転する場合において、バルブ の上下動は第 1の伝達部材の揺動により行われる。それにより、第 1の伝達部材およ び第 2の伝達部材がそれぞれ別個にバルブを上下動させる場合と比べて、バルブが 小型化されるとともに、バルブに偏荷重が加わることを防止することができる。
[0038] (10)第 1のカム部材は第 1の状態で第 1のリフト量でバルブを開くように作用し、第
2のカム部材は第 2の状態で第 1のリフト量よりも大きい第 2のリフト量でバルブを開く ように作用してもよい。
[0039] ここで、回転軸の回転速度が低い場合には、第 1のカム部材が回転軸の回転に伴 つて回転する。第 2のカム部材は回転軸に対して回転可能となるので、回転軸の回 転に伴って回転しない。それにより、第 1のカム部材が第 1のリフト量でバルブを開くよ うに作用する。
[0040] 回転軸の回転速度が高い場合には、第 1のカム部材が回転軸の回転に伴って回 転するとともに、第 2のカム部材が回転軸に係止されて回転する。この場合、第 1の力 ム部材が第 1のリフト量でバルブを開くように作用するのに対して、第 2のカム部材が 第 1のリフト量よりも大きい第 2のリフト量でバルブを開くように作用する。それにより、 バルブは第 2のリフト量で上下動を行う。 [0041] このように、エンジンの回転速度に応じて、バルブのリフト量が、第 1のリフト量と第 2 のリフト量とに切り替えられる。それにより、通常走行時の燃費を向上させ、排気ガス 中の有害物質を低減することができるとともに、高速走行時の高出力化を実現するこ とがでさる。
[0042] (11)第 1のカム部材は第 1の状態で第 1の作用角でバルブを開くように作用し、第 2のカム部材は第 2の状態で第 1の作用角よりも大きい第 2の作用角でバルブを開く ように作用してもよい。
[0043] ここで、回転軸の回転速度が低い場合には、第 1のカム部材が第 1の作用角でバル ブを開くように作用する。
[0044] 回転軸の回転速度が高い場合には、第 2のカム部材が第 1の作用角よりも大きい第
2の作用角でバルブを開くように作用する。
[0045] このように、エンジンの回転速度に応じて、バルブの作用角が、第 1の作用角と第 2 の作用角とに切り替えられる。それにより、通常走行時の燃費を向上させ、排気ガス 中の有害物質を低減することができるとともに、高速走行時の高出力化を実現するこ とがでさる。
[0046] (12)前記バルブは吸気バルブであってもよい。この場合、エンジンの回転速度に 応じて、第 1のカム部材が吸気バルブに作用する状態と、第 2のカム部材が吸気バル ブに作用する状態とが切り替えられる。それにより、第 1のカム部材および第 2のカム 部材をそれぞれエンジンの低回転時および高回転時に最適な形状に形成すること により、吸気の量または吸気のタイミングが調整される。それにより、通常走行時の燃 費を向上させ、排気ガス中の有害物質を低減することができるとともに、高速走行時 の高出力化を実現することができる。
[0047] (13)本発明の他の局面に従うエンジン装置は、バルブを有するエンジンと、ェンジ ンのバルブを駆動するための可変動弁装置とを備え、可変動弁装置は、エンジンの 回転に連動して回転可能に設けられた回転軸と、回転軸とともに回転するように設け られ、バルブを開閉するように作用する第 1のカム部材と、回転軸に対して回転可能 に設けられ、バルブを開閉するように作用する第 2のカム部材と、第 2のカム部材を回 転軸に対して回転可能にする第 1の状態と第 2のカム部材を回転軸に係止する第 2 の状態とに移行可能に設けられた係止部材と、係止部材を第 1の状態に移行させる 付勢力を発生する付勢部材と、回転軸の回転に伴う遠心力により付勢部材による付 勢力に抗して係止部材を第 2の状態に移行させるように作動する駆動部材とを備え、 係止部材が第 1の状態である場合には第 1のカム部材がバルブの開閉に作用し、係 止部材が第 2の状態である場合には第 2のカム部材がバルブの開閉に作用するもの である。
[0048] そのエンジン装置においては、可変動弁装置によりエンジンのバルブが駆動される
[0049] 可変動弁装置においては、エンジンの回転に連動して回転軸が回転する。第 1の カム部材は、回転軸の回転に伴い回転する。第 2のカム部材は、係止部材が第 1の 状態にあるときに回転軸に対して回転可能な状態となり、係止部材が第 2の状態にあ るときに回転軸に係止される状態となる。係止部材は、回転軸の回転速度に応じて 第 1の状態または第 2の状態に切り替わる。
[0050] 回転軸の回転速度が低い場合には、付勢部材が発生する付勢力により、係止部材 が第 1の状態に移行する。それにより、第 2のカム部材が係止部材により回転軸に対 して回転可能となる。したがって、第 2のカム部材は、回転軸の回転に伴って回転し ない状態となる。この場合、第 1のカム部材がバルブの開閉に作用する。
[0051] 一方、回転軸の回転速度が高い場合には、駆動部材に加わる遠心力により、付勢 部材による付勢力に抗して係止部材が第 2の状態に移行する。それにより、第 2の力 ム部材が回転軸に係止される。したがって、第 2のカム部材は、回転軸の回転に伴つ て回転する状態となる。この場合、第 2のカム部材がバルブの開閉に作用する。
[0052] このように、エンジンの回転速度に応じて、第 1のカム部材がバルブに作用する状 態と、第 2のカム部材がバルブに作用する状態とが切り替えられる。それにより、第 1 のカム部材および第 2のカム部材をそれぞれエンジンの低回転時および高回転時に 最適な形状に形成することにより、通常走行時の燃費を向上させ、排気ガス中の有 害物質を低減することができるとともに、高速走行時の高出力化を実現することがで きる。
[0053] また、回転軸の回転による遠心力を利用して第 1のカム部材と第 2のカム部材とが 切り替えられるため、油圧系統による駆動源が不要である。したがって、小型かつ低 コストの可変動弁装置が実現される。
[0054] (14)本発明のさらに他の局面に従う車両は、エンジン装置と、駆動輪と、エンジン 装置により発生される動力を駆動輪に伝達する伝達機構とを備え、エンジン装置は、 バルブを有するエンジンと、エンジンのバルブを駆動するための可変動弁装置とを備 え、可変動弁装置は、エンジンの回転に連動して回転可能に設けられた回転軸と、 回転軸とともに回転するように設けられ、バルブを開閉するように作用する第 1のカム 部材と、回転軸に対して回転可能に設けられ、バルブを開閉するように作用する第 2 のカム部材と、第 2のカム部材を回転軸に対して回転可能にする第 1の状態と第 2の カム部材を回転軸に係止する第 2の状態とに移行可能に設けられた係止部材と、係 止部材を第 1の状態に移行させる付勢力を発生する付勢部材と、回転軸の回転に伴 う遠心力により付勢部材による付勢力に抗して係止部材を第 2の状態に移行させるよ うに作動する駆動部材とを備え、係止部材が第 1の状態である場合には第 1のカム部 材がバルブの開閉に作用し、係止部材が第 2の状態である場合には第 2のカム部材 がバルブの開閉に作用するものである。
[0055] その車両においては、エンジン装置により発生される動力が、伝達機構により駆動 輪に伝達され、駆動輪が駆動される。ここで、エンジン装置においては、可変動弁装 置により、エンジンのバルブが駆動される。
[0056] この場合、可変動弁装置においては、エンジンの回転速度に応じて、第 1のカム部 材がバルブに作用する状態と、第 2のカム部材カバルブに作用する状態とが切り替 えられる。それにより、第 1のカム部材および第 2のカム部材をそれぞれエンジンの低 回転時および高回転時に最適な形状に形成することにより、通常走行時の燃費を向 上させ、排気ガス中の有害物質を低減することができるとともに、高速走行時の高出 力化を実現することができる。
[0057] また、回転軸の回転による遠心力を利用して第 1のカム部材と第 2のカム部材とが 切り替えられるため、油圧系統による駆動源が不要である。したがって、小型かつ低 コストの可変動弁装置が実現される。
発明の効果 [0058] 本発明によれば、エンジンの回転速度に応じて、第 1のカム部材がバルブに作用 する状態と、第 2のカム部材カ Sバルブに作用する状態とが切り替えられる。それにより 、第 1のカム部材および第 2のカム部材をそれぞれエンジンの低回転時および高回 転時に最適な形状に形成することにより、通常走行時の燃費を向上させ、排気ガス 中の有害物質を低減することができるとともに、高速走行時の高出力化を実現するこ とができる。また、回転軸の回転による遠心力を利用して第 1のカム部材と第 2のカム 部材とが切り替えられるため、油圧系統による駆動源が不要である。したがって、小 型かつ低コストの可変動弁装置が実現される。
図面の簡単な説明
[0059] [図 1]図 1は本発明の一実施の形態に係る自動二輪車の模式図である。
[図 2]図 2は本発明の一実施の形態に係る可変動弁装置の概要を説明するための図 である。
[図 3]図 3は可変動弁装置の構造を説明するための組立て斜視図である。
[図 4]図 4は可変動弁装置の構造を説明するための組立て斜視図である。
[図 5]図 5は可変動弁装置の構造を説明するための組立て斜視図である。
[図 6]図 6はロック板およびスプリングが挿入された状態のロック板収納部材の XZ平 面断面図である。
[図 7]図 7は低回転時の可変動弁装置の状態を示す断面図である。
[図 8]図 8は高回転時の可変動弁装置の状態を示す断面図である。
[図 9]図 9は図 7および図 8のロック板およびロックピンの動作の詳細を説明するため の図である。
[図 10]図 10は可変動弁装置のエンジンへの取り付け状態を示す断面図である。
[図 11]図 11は図 10の可変動弁装置、吸気ハイカムロッカーアーム、吸気ローカム口 ッカーアームおよび排気カムロッカーアームの配置を示す上面図である。
[図 12]図 12は図 10のシリンダヘッドの R— R線における断面図である。
[図 13]図 13は図 12に示す吸気バルブおよび排気バルブの変位量を示す図である。
[図 14]図 14は可変動弁装置の変形例を示す図である。
発明を実施するための最良の形態 [0060] 以下、本発明の一実施の形態に係る可変動弁装置ならびにそれを備えるエンジン 装置および車両について説明する。なお、本実施の形態においては、車両として小 型の自動二輪車にっ 、て説明する。
[0061] (1)車両の構成
図 1は、本発明の一実施の形態に係る自動二輪車の模式図である。
[0062] この自動二輪車 100にお!/、ては、本体フレーム 6の前端にヘッドパイプ 3が設けら れて 、る。ヘッドパイプ 3にフロントフォーク 2が左右方向に揺動可能に設けられて ヽ る。フロントフォーク 2の下端に前輪 1が回転可能に支持されている。ヘッドパイプ 3の 上端にはハンドル 4が取り付けられている。
[0063] 本体フレーム 6の中央部にはエンジン 7が保持されている。エンジン 7の上部には燃 料タンク 8が設けられ、燃料タンク 8の後方にはシート 9が設けられて 、る。
[0064] エンジン 7の後方に延びるように、本体フレーム 6にリアアーム 10が接続されている 。リアアーム 10は、後輪 11および後輪ドリブンスプロケット 12を回転可能に保持する 。エンジン 7には排気管 13が接続されている。排気管 13の後端にマフラー 14が取り 付けられている。
[0065] エンジン 7のドライブシャフト 26に後輪ドライブスプロケット 15が取り付けられている 。後輪ドライブスプロケット 15は、チェーン 16を介して後輪 11の後輪ドリブンスプロケ ット 12に連結されている。
[0066] エンジン 7には可変動弁装置が設けられる。以下、本実施の形態に係る可変動弁 装置について説明する。
[0067] (2)可変動弁装置の概要
図 2は、本発明の一実施の形態に係る可変動弁装置の概要を説明するための図で ある。図 2 (a)にエンジン 7内部に設けられる可変動弁装置の模式的上面図が示され 、図 2 (b)にエンジン 7内部に設けられる可変動弁装置の模式的側面図が示されてい る。
[0068] 図 2 (a)および (b)に示すように、可変動弁装置 200はエンジン 7のシリンダヘッド 7 Sに設けられる。可変動弁装置 200は、カム用ドリブンスプロケット 220、吸気ハイカム 237、吸気ローカム 241および排気カム 242を備える。 [0069] ピストン 21がシリンダ 20内で往復動作することによりクランクシャフト 23が回転し、ク ランクシャフト 23に設けられたカム用ドライブスプロケット 24が回転する。
[0070] カム用ドライブスプロケット 24の回転力は、チェーン 25を介して可変動弁装置 200 のカム用ドリブンスプロケット 220に伝達される。これにより、可変動弁装置 200が回 転する。
[0071] 可変動弁装置 200においては、エンジン 7の回転速度および回転速度の変化(回 転速度の上昇および下降)に応じて吸気ノ、ィカム 237と吸気ローカム 241との切替が 行われる。それにより、後述する吸気バルブのリフト量が変化し、シリンダ 20への吸気 量が変化する。
[0072] (3)可変動弁装置の構成
可変動弁装置 200の構成の詳細について説明する。図 3〜図 5は、可変動弁装置 200の構造を説明するための組立て斜視図である。図 3〜図 5においては、矢印 X, Υ, Zで示すように、互いに直交する 3方向を X方向、 Y方向および Z方向と定義する
[0073] 可変動弁装置 200は、大きく分けてロックピン保持機構 210 (図 3参照)、カム用ドリ ブンスプロケット 220 (図 4参照)、ロックピン係止機構 230 (図 4参照)、遊動カム部 23 5 (図 5参照)およびカムシャフト 240 (図 5参照)力も構成されて!、る。
[0074] 図 3に、ロックピン保持機構 210の組立て斜視図が示されている。図 3に示すように 、ロックピン保持機構 210は、 XZ平面に平行な支持部材 211を有する。支持部材 21 1の中央部には、貫通孔 211Gが形成されている。
[0075] 支持部材 211の上端部および下端部の一方側には、 Y方向に延びるように折曲さ れた突起片 21 la, 21 lbが形成されている。突起片 21 laと突起片 21 lbとの間には 、支持部材 211の一面側にコの字状に折曲されたばね保持片 212a、および X方向 に延びる突起片 21 lcが形成されて ヽる。
[0076] 支持部材 211の上端部および下端部の他方側には、 Y方向に延びるように折曲さ れた突起片 21 Id, 21 leが形成されている。突起片 21 Idと突起片 21 leとの間には 、 X方向に延びる突起片 21 If、および支持部材 211の一面側にコの字状に折曲さ れたばね保持片 212bが形成されている。 [0077] 突起片 211a〜211fには、それぞれ貫通孔 211A〜211Fが形成され、ばね保持 片 212a, 212bには、それぞれ貫通孔 212A, 212B力 ^形成されている。
[0078] 支持部材 211の上端部の中央および下端部の中央には、凹状の切欠き 211H, 2
1 IIがそれぞれ形成されて 、る。
[0079] ウェイト 213は、ウェイト本体 213a、板状の延長部 213d、 2つの筒状部 213eおよ び 2つのフック部 213fを有する。ウェイト本体 213aは X方向に延びる略直方体形状 を有する。
[0080] 延長部 213dは、ウェイト本体 213aの上面から Y方向に延びるように形成されてい る。 2つの筒状部 213eは、 X方向における延長部 213dの両端部にそれぞれ形成さ れている。
[0081] 2つのフック部 213fは、 X方向における延長部 213dの中央部から延長部 213dの 下側へ傾斜するように延びている。 2つのフック部 213fの先端は部分円筒状に湾曲 している。
[0082] 2つのフック部 213fには Y方向に延びるロックピン 214が取り付けられる。ロックピン 214の一端部近傍には X方向に延びる支持ピン 214tが形成されている。フック部 21 3fに支持ピン 214tが取り付けられることにより、ロックピン 214はウェイト 213に回動 可能に保持される。ロックピン 214の一部はウェイト本体 213に当接可能となる。
[0083] ロックピン 214の他端部近傍の外周面には、環状の溝部 214aおよび溝部 214bが 並列に形成されている。
[0084] ウェイト 213の筒状部 213eには回転軸 215が挿入される。これにより、回転軸 215 はウェイト 213を回動可能に保持する。この状態で、回転 215の両端が支持部材 21 1の貫通孔 211A, 211Dに挿入される。それにより、ウェイト 213は、支持部材 211 上で回動可能に保持される。また、ロックピン 214は、支持部材 211の切欠き 211H 内を通るように配置される。
[0085] ウェイト 216は、ウェイト 213と同様の構造を有する。ロックピン保持機構 210の組立 て時において、ウェイト 216は、ウェイト 213に対向するように配置される。
[0086] 図 3【こお!ヽて、ウェイ卜 216のウェイ卜本体 216a、延長咅 216d、 2つの筒状咅 216e および 2つのフック部 216fは、ウェイ卜 213のウェイ卜本体 213a、延長部 213d、 2つ の筒状部 213eおよび 2つのフック部 213fに相当する。
[0087] ロックピン 217はロックピン 214と同様の構造を有する。ロックピン 217の溝部 217a , 217bは溝部 214a, 214bに相当する。また、支持ピン 217tは支持ピン 214tに相 当する。
[0088] ウェイト 216の筒状部 216eに回転軸 218が挿入される。これにより、回転軸 218は ウェイト 216を回動可能に保持する。この状態で、回転軸 218の両端が支持部材 21 1の貫通孔 211B, 211Eに挿入される。それにより、ウェイト 216は、支持部材 211上 で回動可能に保持される。また、ロックピン 217は、支持部材 211の切欠き 21 II内を 通るように配置される。
[0089] ロックピン 214, 217は支持部材 211に対して垂直になるように配置される。なお、 支持部材 211の貫通孔 211Gとロックピン 214との間の距離は、貫通孔 211Gとロック ピン 217との間の距離よりも小さい。
[0090] 支持部材 211の 2つの突起片 211c, 211fの 2つの貫通孔 211C, 211Fには、そ れぞれねじ 219が挿入される。
[0091] 図 4に、ロックピン保持機構 210、カム用ドリブンスプロケット 220およびロックピン係 止機構 230の組立て斜視図が示されている。なお、カム用ドリブンスプロケット 220は XZ平面と平行となるように配置され、ロックピン係止機構 230は、その軸心 Jが Y方向 と平行になるように配置されて 、る。
[0092] ここで、ロックピン保持機構 210において、ばね S1の一端はウェイト 213の突出部( 図示せず)の貫通孔に係止され、他端はばね保持片 212bの貫通孔 212Bに係止さ れている。また、ばね S2の一端はウェイト 216の突出部(図示せず)の貫通孔に係止 され、他端はばね保持片 212aの貫通孔 212Aに係止されている。
[0093] カム用ドリブンスプロケット 220は、貫通孔 220a〜220eを有する。カム用ドリブンス プロケット 220の中心に形成される貫通孔 220aは他の貫通孔 220b〜220eよりも大 きい径を有する。
[0094] 貫通孔 220a, 220b, 220cは Z方向に平行な同一の直線上に配置され、貫通孔 2 20bおよび貫通孔 220cは互いに等しい径を有する。なお、貫通孔 220aと貫通孔 22 Obとの間の距離は、貫通孔 220aと貫通孔 220cとの間の距離よりも小さい。また、貫 通孔 220dおよび貫通孔 220eは、貫通孔 220aを中心として互いに対称な位置に形 成されており、互いに等しい径を有する。
[0095] ロックピン係止機構 230は、円筒状の回動シャフト 231および円板状のロック板収 納部材 232から形成されている。
[0096] ロックピン係止機構 230には貫通孔 230H, 230b, 230cが形成されている。貫通 孔 230Hは、ロックピン係止機構 230の軸心 Jに形成されている。すなわち、貫通孔 2 30Hは、回動シャフト 231の端面中央からロック板収納部材 232の端面中央にかけ て形成されている。貫通孔 230H, 230b, 230cは Z方向に平行な同一の直線上に 配置され、貫通孔 230bおよび貫通孔 230cは互いに等しい径を有する。なお、貫通 孔 230Hと貫通孔 230bとの間の距離は、貫通孔 230Hと貫通孔 230cとの間の距離 よりち短い。
[0097] また、ロックピン係止機構 230の回動シャフト 231の端面には、ねじ螺合穴 230d, 2 30e力形成されて!ヽる。ねじ虫累合穴 230d, 230eは、貫通孑し 230Hを中 、として互 ヽ に対称な位置に形成されているとともに、互いに等しい径を有する。ねじ螺合穴 230 d, 230eはそれぞれねじ切り加工されている。また、回動シャフト 231の外周面には 段差部 23 laが形成されて ヽる。
[0098] ロックピン係止機構 230のロック板収納部材 232の外周面には、スリット状のロック 板挿入口 232Aおよび略円形状スプリング挿入口 232Bが形成されて 、る。ロック板 挿入口 232Aはロック板収納部材 232内部に形成されたロック板収納空間 232b (後 述の図 6)に連通し、スプリング揷入口 232Bはロック板収納部材 232内部に形成され たスプリング収納空間 232c (後述の図 6)に連通する。
[0099] ロック板挿入口 232Aからロック板収納部材 232内のロック板収納空間 232b (図 6) に板状のロック板 233が挿入される。スプリング挿入口 232Bからロック板収納部材 2 32内のスプリング収納空間 232c (図 6)にスプリング 234が挿入される。
[0100] ロック板 233は、略長方形状の支持板 233a、長尺状のロックピン係止部 233b,お よび長尺状のロックピン係止部 233cからなる。ロックピン係止部 233bは支持板 233a の一辺に沿って一方向に延び、ロックピン係止部 233cは支持板 233aの 1つの角部 力も斜め外方に延びてロックピン係止部 233bに平行になるように屈曲している。支持 板 233aの中央部には貫通孔 233Aが形成されて 、る。
[0101] スプリング 234の一端部には、ロックピン係止機構 230への取り付けおよび取り外し を容易にするための円柱状部材 234aが取り付けられて 、る。
[0102] ここで、図 6を参照して、ロック板収納部材 232内における、ロック板 233およびスプ リング 234の配置について説明する。
[0103] 図 6は、ロック板 233およびスプリング 234が挿入された状態のロック板収納部材 23
2の XZ平面断面図である。
[0104] 図 6に示すように、ロック板 233の貫通孔 233Aにはピン 233dが挿入される。それ により、ロック板 233がロック板収納部材 232のロック板収納空間 232b内で揺動可能 に保持される。
[0105] また、スプリング 234力 ¾方向のスプリング収納空間 232c内に挿入され、スプリング 234の下端部が、ロック板 233のロックピン係止部 233bの上端部に当接する。それ により、ロック板 233が下方に付勢される。
[0106] ロック板 233のロックピン係止部 233cの下端部は、ロック板収納部材 232に Y方向 に挿入されるロックピン 214の溝部 214a (図 3)または溝部 214b (図 3)に嵌合される 。ロック板 233のロックピン係止部 233bの下端部は、ロック板収納部材 232に Y方向 に挿入されるロックピン 217の溝部 217a (図 3)または溝部 217b (図 3)に嵌合される
[0107] これにより、ロックピン 214, 217の Y方向の移動力 ロック板 233により制限される。
詳細は後述する。
[0108] ここで、図 4に示すように、カム用ドリブンスプロケット 220の貫通孔 220aを基準とす る貫通孔 220d, 220eのそれぞれの相対位置はロックピン係止機構 230の貫通孔 2 30Hを基準とするねじ螺合穴 230d, 230eのそれぞれの相対位置と同様である。ま た、貫通孑し 230d, 230eの径はねじ虫累合穴 220d, 220eの径と等し!/、。
[0109] ロックピン保持機構 210、カム用ドリブンスプロケット 220およびロックピン係止機構 230を組み立てる際には、カム用ドリブンスプロケット 220の貫通孔 220dの位置と口 ックピン係止機構 230の貫通孔 230dの位置とを合わせ、カム用ドリブンスプロケット 2 20の貫通孔 220eの位置とロックピン係止機構 230の貫通孔 230eの位置とを合わせ た状態で、それぞれにロックピン保持機構 210のねじ 219を螺合する。
[0110] これにより、カム用ドリブンスプロケット 220の一面にロックピン保持機構 210が固定 され、カム用ドリブンスプロケット 220の他面にロックピン係止機構 230が固定される。
[0111] このとき、ロックピン 214がカム用ドリブンスプロケット 220の貫通孔 220bおよびロッ クピン係止機構 230の貫通孔 230bに挿入され、ロックピン 217がカム用ドリブンスプ ロケット 220の貫通孔 220cおよびロックピン係止機構 230の貫通孔 230cに挿入され る。ウェイト 213, 216の回動により、ロックピン 214, 217力 Sロックピン係止機構 230の ロック板収納部材 232側の端面力も突出した状態と、ロックピン 214, 217がロックピ ン係止機構 230内に収納された状態とが切り替わる。詳細は後述する。
[0112] 図 5には、図 4に示すように組立てられた構造物(以下、組立て構造物と呼ぶ。)、遊 動カム部 235およびカムシャフト 240の組立て斜視図が示されている。なお、遊動力 ム部 235およびカムシャフト 240の軸心 Jは Y方向と平行になるように配置されている
[0113] 遊動カム部 235は、ロックピン嵌合部 236、およびカムノーズ 237Aを有する吸気ハ ィカム 237から形成されている。遊動カム部 235の軸心 Jの部分には、貫通孔 235H が形成されている。すなわち、貫通孔 235Hは、ロックピン嵌合部 236の端面中央か ら吸気ハイカム 237の端面中央にかけて形成されている。
[0114] 遊動カム部 235のロックピン嵌合部 236には、ロックピン嵌合穴 236b, 236c力 S形 成されている。ロックピン嵌合穴 236b, 236cおよび貫通孔 235Hは、 Z方向に平行 な同一の直線上に配置され、ロックピン嵌合穴 236bおよびロックピン嵌合穴 236cは 互いに等しい径を有する。なお、貫通孔 235Hとロックピン嵌合穴 236bとの間の距離 は、貫通孔 235Hとロックピン嵌合穴 236cとの間の距離よりも短い。
[0115] カムシャフト 240は、カムノーズ 241Aを有する吸気ローカム 241、カムノーズ 242A を有する排気カム 242、段差部 243、カム固定軸 244および突出軸 245からなる。
[0116] カムシャフト 240は、 Y方向において、一端側に Y方向に延びるカム固定軸 244を 有し、中央部に段差部 243、吸気ローカム 241および排気カム 242を有し、他端側に Y方向に延びる突出軸 245を有する。カム固定軸 244の端部にはねじ孔 240Hが形 成されている。 [0117] なお、遊動カム部 235の吸気ハイカム 237のカムノーズ 237Aの長さは、吸気ロー カム 241のカムノーズ 241 Aの長さよりも大き!/、。
[0118] 組立て構造物、遊動カム部 235およびカムシャフト 240の組立て時においては、組 み立て構造物のロック板収納部材 232に遊動カム部 235およびカムシャフト 240が 取り付けられる。
[0119] この場合、カムシャフト 240のカム固定軸 244が遊動カム部 235の貫通孔 235Hお よびロックピン係止機構 230の貫通孔 230H (図 4)に挿入される。これにより、遊動力 ム部 235はカムシャフト 240により回転可能に保持される。
[0120] また、カム固定軸 244のねじ孔 240H力 ロックピン係止機構 230の貫通孔 235H ( 図 5)内において、カム用ドリブンスプロケット 220の貫通孔 220a (図 4)に対向する。 また、カム用ドリブンスプロケット 220の貫通孔 220a (図 4)とロックピン保持機構 210 の貫通孔 211Gとは互いに対向する。
[0121] この状態で、ロックピン保持機構 210の貫通孔 211G力もカム固定軸 244のねじ孔 240Hにねじ 250が螺合される。これにより、カム用ドリブンスプロケット 220に力ムシ ャフト 240が固定される。それにより、可変動弁装置 200が完成する。
[0122] なお、ロックピン係止機構 230の回動シャフト 231およびロック板収納部材 232は一 体的に形成されてもよぐあるいはそれぞれ個別に形成されてもよい。また、カムシャ フト 240の吸気ローカム 241、排気カム 242、段差部 243、カム固定軸 244および突 出軸 245は一体的に形成されてもよぐある!/、はそれぞれ個別に形成されて!、てもよ い。
[0123] さらに、図 5では図示しないが、カム固定軸 244と貫通孔 220a (図 4)との接続部に は、カム用ドリブンスプロケット 220に対するカムシャフト 240の回転を制限する固定 機構が設けられてもよい。
[0124] この固定機構は、例えばカムシャフト 240のカム固定軸 244の先端部に突起部を設 け、カム用ドリブンスプロケット 220の貫通孔 220a (図 4)にカム固定軸 244の突起部 と嵌合可能な溝部を設けることにより実現されてもよい。
[0125] (4)可変動弁装置の動作
図 3〜図 6の構成を有する可変動弁装置 200においては、エンジンの回転速度に 応じて状態の切替が行われる。次に、可変動弁装置 200の状態の切替について説 明する。なお、以下の説明において、エンジン 7 (図 1および図 2参照)の回転速度が 所定値より高い場合を高回転時と呼び、所定値より低い場合を低回転時と呼ぶ。カム 固定軸 244の回転速度はエンジン 7の回転速度の 2分の 1である。低回転時と高回 転時との切り替わり時のカム固定軸 244の回転速度をしきい値と呼ぶ。
[0126] まず、エンジン 7が作動することにより、可変動弁装置 200 (図 3〜図 6参照)が回転 する。それにより、可変動弁装置 200のウェイト 213, 216には、ばね SI, S2による付 勢力以外に、回転による遠心力が加わる。ウェイト 213, 216に加わる遠心力の大き さは、可変動弁装置 200の回転速度により変化する。その遠心力の大きさの変化を 利用して可変動弁装置 200の状態の切替が行われる。
[0127] 図 7は、低回転時の可変動弁装置 200の状態を示す断面図であり、図 8は、高回転 時の可変動弁装置 200の状態を示す断面図である。
[0128] 図 7および図 8においては、矢印 Yおよび矢印 Zで示すように、互いに直交する 2方 向を Y方向および Z方向と定義する。なお、矢印が向かう方向を +方向、その反対の 方向を一方向とする。
[0129] 図 7に示すように、ウェイト 213には、ばね S1による— Z方向への付勢力が加わると ともに、可変動弁装置 200の回転による +Z方向への遠心力が加わる。低回転時 (力 ム固定軸 244の回転速度がしきい値より低い場合)には、ウェイト 213に加わる遠心 力が小さいため、ばね S1の付勢力により回転軸 215を中心とするウェイト 213の回転 動作が制限される。
[0130] ロック板 233のロックピン係止部 233cはロックピン 214の溝部 214aに嵌合されてい る。また、ロック板 233はスプリング 234 (図 4および図 6参照)により一 Z方向に付勢さ れている。そのため、ロックピン 214の +Y方向への移動は制限される。
[0131] それにより、ロックピン 214は、その先端がロックピン係止機構 230内に収納された 状態で固定される。
[0132] 同様に、ウェイト 216には、ばね S2 (図 3〜図 5)による +Z方向への付勢力が加わ るとともに、可変動弁装置 200の回転による— Z方向への遠心力が加わる。低回転時 には、ウェイト 216に加わる遠心力が小さいため、ばね S2の付勢力により回転軸 218 を中心とするウェイト 216の回転動作が制限される。
[0133] ロック板 233のロックピン係止部 233bはロックピン 217の溝部 217aに嵌合され、口 ック板 233はスプリング 234により一 Z方向に付勢されているため、ロックピン 217の
+Y方向への移動は制限される。
[0134] それにより、ロックピン 217は、その先端がロックピン係止機構 230内に収容された 状態で固定される。
[0135] このよう【こ、遊動力ム咅 235のロックピン嵌合穴 236b, 236c【こロックピン 214, 217 が嵌合されず、遊動カム部 235はカム固定軸 244を中心に空回りする。
[0136] 一方、図 8に示すように、高回転時 (カム固定軸 244の回転速度がしきい値を超え ている場合)には、ウェイト 213に加わる +Z方向への遠心力力 ばね S1による一 Z 方向への付勢力よりも大きくなり、ウェイト 213は回転軸 215を中心として矢印 Mlの 方向に回転しょうとする力が働く。
[0137] それに伴って、ロックピン 214に +Y方向へ移動しょうとする力が働く。それにより、 ロック板 233のロックピン係止部 233cがロックピン 214の溝部 214aから外れる。その 結果、遊動カム部 235のロックピン嵌合穴 236bの位置とロックピン 214の先端部の 位置とが合わさった時点で、ロックピン 214の先端力 ロックピン係止機構 230の一面 力も突出し、遊動カム部 235のロックピン嵌合部 236bに嵌合される。このとき、ロック 板 233のロックピン係止部 233cがロックピン 214の溝部 214bに嵌合される。それに より、ロックピン 214の一 Y方向への移動が制限される。したがって、ロックピン 214は 遊動カム部 235のロックピン嵌合部 236bに嵌合された状態で固定される。
[0138] 同様に、ウェイト 216に加わる一 Z方向への遠心力力 ばね S2 (図 3〜図 5)による
+Z方向への付勢力よりも大きくなり、ウェイト 216は回転軸 218を中心として矢印 M2 の方向に回転しょうとする力が働く。
[0139] それに伴って、ロックピン 217に +Y方向へ移動しょうとする力が働く。それにより、 ロック板 233のロックピン係止部 233bがロックピン 217の溝部 217aから外れる。その 結果、遊動カム部 235のロックピン嵌合穴 236cの位置とロックピン 217の先端部の 位置とが合わさった時点で、ロックピン 217の先端がロックピン係止機構 230の一面 力 突出し、遊動カム部 235のロックピン嵌合部 236cに嵌合される。このとき、ロック 板 233のロックピン係止部 233bがロックピン 217の溝部 217bに嵌合される。それに より、ロックピン 214の一 Y方向への移動が制限される。したがって、ロックピン 217は 遊動カム部 235のロックピン嵌合穴 236cに嵌合された状態で固定される。
[0140] このように、高回転時には、遊動カム部 235がロックピン 214, 217により可変動弁 装置 200の回転方向に対して固定される。
[0141] また、図 3〜図 5に示したように、ロックピン 214およびロックピン 217、ならびにロック ピン嵌合穴 236bおよびロックピン嵌合穴 236cは、それぞれ、カム固定軸 244に対し て異なる距離を有する。それにより、遊動カム部 235は、反転した状態で固定される ことなく、回転軸に対して常に同一の位相で固定される。
[0142] ここで、一般的に、このような遠心力を利用した切替機構を設けた場合には、ェンジ ン 7のある回転速度領域でウェイト 213, 216に加わる遠心力とばね SI, S2の付勢 力とが釣り合う状態が発生する。その状態が継続すると、ロックピン 214, 217の移動 が不安定となる。
[0143] そこで、本実施の形態では、ロック板 233によりロックピン 214, 217の移動が制限 される。それにより、ロックピン 214, 217の移動が安定して行われる。以下、その動 作の詳細を説明する。
[0144] 図 9は、図 7および図 8のロック板 233およびロックピン 214, 217の動作の詳細を説 明するための図である。図 9 (a)は、低回転時におけるロック板 233およびロックピン 2 14, 217の状態(図 7に示した状態)を示し、図 9 (c)は、高回転時におけるロック板 2 33およびロックピン 214, 217の状態(図 8に示した状態)を示し、図 9 (b)は、図 9 (a) の状態から図 9 (c)の状態へ移行する途中のロック板 233およびロックピン 214, 217 の状態を示す。
[0145] なお、図 9においても、図 7および図 8と同様に Y方向および Z方向を定義する。ま ック板 233のロックピン係止部 233cおよびロックピン係止部 233bのうちロックピン係 止部 233cのみを示す。ロックピン 217およびロックピン係止部 233bの関係は、ロック ピン 214およびロックピン係止部 233cの関係と同様である。
[0146] 図 9に示すように、ロックピン 214の溝部 214a, 214bの断面は、 V字状に形成され ている。ロックピン係止部 233cの下端部の断面は、溝部 214a, 214bの断面形状に 相補なテーパ状に形成されて 、る。
[0147] 図 9 (a)の低回転時の状態から図 9 (c)の高回転時の状態へと移行する際には、図 9 (b)に示すように、ロックピン係止部 233cの下端部力 ロックピン 214の溝部 214a の傾斜面に沿って +Z方向に持ち上がり、溝部 214aから外れる。それにより、ロック ピン 214が +Y方向に移動する。高回転時の状態から低回転時の状態への移行は 上記と逆の順序で行われる。
[0148] このように、ロック板 233によりロックピン 214の移動を制限することにより、エンジン の回転速度が低い状態から高い状態に移行する際に、ロックピン 214の +Y方向へ の移動力が十分に大きくならないと、ロックピン 214は移動しない。具体的には、ゥェ イト 213にカ卩わる +Z方向への遠心力力 ばね S1による— Z方向への付勢力よりもあ る一定値以上大きくなつたとき (カム固定軸 244の回転速度がしきい値よりも一定値 以上高くなつたとき)に、ロックピン 214が移動する。
[0149] また、エンジンの回転速度が高い状態力も低い状態に移行する際には、ロックピン 214の +Y方向への移動力が十分に大きくならないと、ロックピン 214は移動しない。 具体的には、ウェイト 213に加わる +Z方向への遠心力が、ばね S1による— Z方向へ の付勢力よりもある一定値以上小さくなつたとき (カム固定軸 244の回転速度がしきい 値よりも一定値以上低くなつたとき)に、ロックピン 214が移動する。
[0150] それにより、ウェイト 213, 216に加わる遠心力とばね SI, S2の付勢力とが釣り合う 状態において、ロックピン 214, 217の移動が不安定となることが防止される。
[0151] (5)可変動弁装置のエンジンへの取り付け
図 10は、可変動弁装置 200のエンジン 7への取り付け状態を示す断面図である。 図 10においては、矢印 X, Υ, Zで示すように、互いに直交する 3方向を X方向、 Y方 向および Z方向と定義する。
[0152] 図 10に示すように、シリンダヘッド 7S内の上部には可変動弁装置 200を取り付ける ためのスペースが設けられて 、る。
[0153] 可変動弁装置 200の回動シャフト 231の外周部および突出軸 245の外周部にそれ ぞれベアリング Bl, B2が取り付けられる。 [0154] シリンダヘッド 7S内部において、ベアリング B1の Y方向に垂直な一端面がシリンダ ヘッド 7Sの内部当接面 BH1に当接する。また、ベアリング B2の Y方向に垂直な一端 面がシリンダヘッド 7Sの内部当接面 BH2に当接する。ベアリング B1の Y方向に垂直 な他端面の一部がシリンダヘッド 7Sに接続された固定板 BH3に当接される。これに より、可変動弁装置 200がシリンダヘッド 7S内部に回転可能に固定される。
[0155] 可変動弁装置 200の上部に、吸気ハイカムロッカーアーム 330、吸気ロー力ムロツ カーアーム 340および排気カムロッカーアーム 350が設けられて!/、る。吸気ハイカム ロッカーアーム 330は可変動弁装置 200の吸気ハイカム 237に当接し、吸気ロー力 ムロツカーアーム 340は可変動弁装置 200の吸気ローカム 241に当接し、排気カム ロッカーアーム 350は可変動弁装置 200の排気カム 242に当接する。
[0156] 可変動弁装置 200のロックピン保持機構 210側を覆うように、シリンダヘッド 7Sにサ イドカバー SCが取り付けられている。カム用ドリブンスプロケット 220にはチェーン 25 が架けられている。
[0157] (6)可変動弁装置によるバルブの駆動
図 11は、図 10の可変動弁装置 200、吸気ハイカムロッカーアーム 330、吸気ロー カムロッカーアーム 340および排気カムロッカーアーム 350の配置を示す上面図であ る。図 12は、図 10のシリンダヘッド 7Sの R—R線における断面図である。なお、図 11 および図 12においても、図 10と同様に X方向、 Y方向および Z方向を定義する。
[0158] 図 11に示すように、ベアリング Bl, B2により可変動弁装置 200がシリンダヘッド 7S 内に取り付けられて 、る。吸気ハイカムロッカーアーム 330および吸気ロー力ムロツ力 一アーム 340は可変動弁装置 200の一方側に並列に配置され、それぞれの中央部 でシャフト 341により回転可能に保持されている。吸気ハイカムロッカーアーム 330の 一端は吸気ハイカム 237の上方 (Z方向)の位置に屈曲するように延び、吸気ロー力 ムロツカーアーム 340の一端は吸気ローカム 241の上方(Z方向)の位置に屈曲する ように延びている。
[0159] 排気カムロッカーアーム 350は、可変動弁装置 200の他方側に配置され、その中 央部でシャフト 351により回転可能に保持されている。排気カムロッカーアーム 350 の一端は排気カム 242の上方 (Z方向)の位置に延びて 、る。 [0160] 図 12に示すように、吸気ローカムロッカーアーム 340はカム受け部 340T、アーム 3 40R、アジヤスタ 342およびナット 343から構成されて!、る。
[0161] X方向におけるアーム 340Rの一端には、吸気ローカム 241に当接するカム受け部 340Tが設けられ、他端にアジヤスタ 342がナット 343により取り付けられている。
[0162] また、アジヤスタ 342近傍のアーム 340Rの部分には、 Y方向に延びるピン 345が 吸気ハイカムロッカーアーム 330の下方に突出するように取り付けられて 、る。
[0163] 吸気ハイカムロッカーアーム 330は、カム受け部(図示せず)、アーム 330R、アジャ スタ 332およびナット 333力ら構成されて!ヽる。
[0164] X方向におけるアーム 330Rの一端には、吸気ハイカム 237に当接するカム受け部 が設けられ、他端にアジヤスタ 332がナット 333により取り付けられている。吸気ハイ カムロッカーアーム 330のアジヤスタ 332は、吸気ローカムロッカーアーム 340のピン 345の上部に当接する。
[0165] 吸気ローカム 241の矢印 Q2の方向の回転に伴って、カム受け部 340Tが上下動作 する。それにより、アーム 340Rがシャフト 341を中心として回動し、アジヤスタ 342が 上下動作する。同様に、吸気ハイカム 237の矢印 Q2の方向の回転に伴って、カム受 け部が上下動作する。それにより、アーム 330Rがシャフト 341を中心として回動し、 アジヤスタ 332が上下動作する。
[0166] 吸気ローカムロッカーアーム 340のアジヤスタ 342の下方には吸気バルブ 344が位 置して 、る。吸気バルブ 344の上端部のステムエンド 344aがアジヤスタ 342に当接 している。吸気バルブ 344にはバルブスプリング 347が設けられている。バルブスプリ ング 347は吸気バルブ 344を上方向に付勢して!/、る。
[0167] 図 5に示したように、吸気ハイカム 237のカムノーズ 237Aの長さは、吸気ローカム 2 41のカムノーズ 241Aの長さよりも大きい。それにより、吸気ハイカム 237の回転に伴 うアジヤスタ 332の下方向への移動距離は、吸気ローカム 241の回転に伴うアジヤス タ 342の下方向への移動距離よりも大きくなる。吸気ハイカム 237が回転して 、るとき には、吸気ハイカムロッカーアーム 330のアジヤスタ 332の下方向への移動力は、ピ ン 345を介して吸気ローカムロッカーアーム 340に伝達される。
[0168] ここで、本実施の形態では、図 7に示したように、低回転時の吸気ハイカム 237は、 カムシャフト 240のカム固定軸 244に対して回転可能となる。そのため、吸気ハイカム 237にはカム固定軸 244の回転力が伝達されない。それに対して、図 8に示したよう に、高回転時の吸気ハイカム 237は、ロックピン 214, 217によりカム固定軸 244に対 して固定される。そのため、吸気ハイカム 237には、カム固定軸 244の回転力が伝達 される。
[0169] すなわち、低回転時には、吸気ハイカムロッカーアーム 330は吸気ハイカム 237に より駆動されない。そのため、吸気ローカムロッカーアーム 340のアジヤスタ 342は、 吸気ローカム 241の回転により上下動し、吸気バルブ 344が上下動作 (リフト動作)を 行う。これにより、吸気バルブ 344が開閉する。
[0170] 一方、高回転時には、吸気ハイカムロッカーアーム 330は吸気ハイカム 237により 駆動される。それにより、吸気ローカムロッカーアーム 340は、吸気ハイカムロッカー アーム 330により駆動される。そのため、吸気ローカムロッカーアーム 340のアジヤス タ 342は、吸気ハイカム 237の回転により上下動し、吸気バルブ 344が上下動作(リ フト動作)を行う。これにより、吸気バルブ 344が開閉する。
[0171] このように、吸気ローカム 241の回転力は、吸気ローカムロッカーアーム 340を介し て吸気バルブ 344に伝達され、吸気ハイカム 237の回転力は、吸気ハイカムロッカー アーム 330および吸気ローカムロッカーアーム 340を介して吸気バルブ 344に伝達さ れる。低回転時の吸気バルブ 344の変位量(以下、リフト量と呼ぶ)は吸気ローカム 2 41のカムノーズ 241Aの長さに依存し、高回転時の吸気バルブ 344のリフト量は吸 気ハイカム 237のカムノーズ 237Aの長さに依存する。
[0172] ここで、吸気ハイカムロッカーアーム 330のアジヤスタ 332および吸気ロー力ムロツ カーアーム 340のアジヤスタ 342の両方を吸気バルブ 344のステムエンド 344aに当 接させるためには、ステムエンド 344aの上面の面積を大きくする必要がある。これに 対して、本実施の形態では、吸気ハイカムロッカーアーム 330の上下動作が吸気口 一力ムロツカーアーム 340を介して吸気バルブ 344に伝達されるため、吸気バルブ 3 44のステムエンド 344aの上面の面積を小さくすることができるとともに、吸気バルブ 3 44に偏荷重が加わることを防止することができる。
[0173] 排気カムロッカーアーム 350は、吸気ハイカムロッカーアーム 330および吸気ロー カムロッカーアーム 340と同様に、カム受け部 350T、アーム 350R、アジヤスタ 352 およびナット 353から構成されて 、る。
[0174] 排気カムロッカーアーム 350のアジヤスタ 352の下方には排気バルブ 354が位置し ている。排気バルブ 354にはバルブスプリング 357が設けられている。バルブスプリン グ 357は吸気バルブ 344を上方向に付勢している。排気カムロッカーアーム 350は 排気カム 242により駆動される。そのため、排気カムロッカーアーム 350のアジヤスタ 352は、排気カム 242の回転により上下動し、排気バルブ 354が上下動作 (リフト動 作)を行う。これにより、排気バルブ 354が開閉する。
[0175] (7)バルブリフト量
図 13には、図 12に示す吸気バルブ 344および排気バルブ 354のリフト量が示され る。
[0176] 図 13においては、横軸がクランク角(クランクシャフト 23の回転角度)を示し、縦軸 が排気バルブ 354および吸気バルブ 344のリフト量 (排気バルブ 354および吸気バ ルブ 344の上下方向の変位量)を示す。
[0177] 図 13では、排気バルブ 354および吸気バルブ 344は、リフト量が 0よりも大きいとき に開いており、リフト量が 0であるときに閉じている。
[0178] クランク角は一 360° から + 360° にわたつて示されている。クランク角が 0° 、 36
0° および—360° の場合にピストン 21 (図 2)がシリンダ 20内の上死点 TDCに位置 し、クランク角が 180° および— 180° の場合にピストン 21 (図 2)がシリンダ 20内の 下死点 BDCに位置する。
[0179] 実線で示すバルブリフト曲線 242Lは、排気カム 242 (図 9)が回転することによる排 気バルブ 354のリフト量の変化を示す。バルブリフト曲線 242Lによれば、排気バル ブ 354の最大リフト量は極大値 L1である。
[0180] 一点鎖線で示すバルブリフト曲線 241Lは、低回転時の吸気バルブ 344のリフト量 の変化を示す。バルブリフト曲線 241Lによれば、吸気バルブ 344の最大リフト量は 極大値 L2である。この場合、上記のように、吸気バルブ 344のリフト量は吸気ロー力 ム 241のカムノーズ 241 Aの長さに依存する。
[0181] 一方、点線で示すバルブリフト曲線 237Lは、高回転時の吸気バルブ 344のリフト 量の変化を示す。バルブリフト曲線 237Lによれば、吸気バルブ 344の最大リフト量 は、極大値 L2よりも大きぐ排気バルブ 354の最大リフト量に等しい極大値 L1である 。この場合、上記のように、吸気バルブ 344のリフト量は吸気ハイカム 237のカムノー ズ 237Aの長さに依存する。
[0182] このように、高回転時の吸気バルブ 344のリフト量は、低回転時の吸気バルブ 344 のリフト量よりも大きくなる。それにより、高回転時には、図 2のシリンダ 20への吸気量 を低回転時よりも多く確保することができる。その結果、通常走行時の燃費を向上さ せ、排気ガス中の有害物質を低減することができるとともに、高速走行時の高出力化 を実現することができる。
[0183] なお、本実施の形態では、排気バルブ 354の最大リフト量と高回転時の吸気ノ レ ブ 344の最大リフト量とが等しくなるように設定されて!、るが、排気ノ レブ 354の最大 リフト量と高回転時の吸気バルブ 344の最大リフト量とが異なっていてもよい。
[0184] (8)本実施の形態の効果
本実施の形態においては、回転による遠心力を利用して吸気ハイカム 237および 吸気ローカム 241の切替を行う可変動弁装置 200を用いる。この場合、油圧により 2 つの吸気カムの切替を行う場合と比べて、油圧ァクチユエータおよび油圧ポンプを必 要としないため、より小型かつ低コストで吸気ハイカム 237および吸気ローカム 241の 切替を行うことができる。それにより、通常走行時の燃費を向上させ、排気ガス中の有 害物質を低減することができるとともに、高速走行時の高出力化を実現することがで きる。
[0185] さらに、本実施の形態では吸気ハイカム 237および吸気ローカム 241の切替力 構 成部材間の摩擦力を用いることなぐロックピン嵌合穴 236b, 236cへのロックピン 21 4, 217の挿入および引き抜きにより行われる。それにより、構成部品の磨耗による劣 化がほとんど生じない。その結果、耐磨耗性の構成部材を使用することなく可変動弁 装置 200の長寿命化が実現されるとともに、低コストィ匕が実現される。
[0186] その上、高い加工精度が要求されることなぐロックピン嵌合穴 236b, 236cへの口 ックピン 214, 217の挿入および引き抜きが機械的な構造のみで実現されるので、製 造が容易となる。 [0187] (9)請求項の各構成要素と実施の形態の各部の対応
以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明す るが、本発明は下記の例に限定されない。
[0188] 上記実施の形態にお!、ては、吸気バルブ 344および排気バルブ 354がバルブの 例であり、カム固定軸 244が回転軸の例であり、吸気ローカム 241が第 1のカム部材 の例であり、遊動カム部 235が第 2のカム部材の例であり、ロックピン 214, 217力係 止部材の例であり、ばね SI, S2が付勢部材の例であり、ウェイト 213, 216が駆動部 材の例である。
[0189] また、ロックピン 214, 217の先端が係止部の例であり、ロックピン嵌合穴 236b, 23 6cが被係止部の例であり、ロック板 233が移動阻止部材の例であり、溝部 214a, 21 4b, 217a, 217bが溝部の例であり、ロックピン係止部 233b, 233cが嵌合部の例で あり、吸気ローカムロッカーアーム 340が第 1の伝達部材の例であり、吸気ハイカム口 ッカーアーム 330が第 2の伝達部材の例である。
[0190] また、図 7に示した低回転時のロックピン 214, 217の状態が第 1の状態の例であり 、低回転時のウェイト 213, 216の位置が第 1の位置の例であり、図 8に示した高回転 時のロックピン 214, 217の状態が第 2の状態の例であり、高回転時のウェイト 213, 2 16の位置が第 2の位置の例であり、図 13に一点鎖線で示した低回転時の吸気バル ブ 344のリフト量が第 1のリフト量の例であり、点線で示した高回転時の吸気バルブ 3 44のリフト量が第 2のリフト量の例である。
[0191] また、エンジン 7および可変動弁装置 200がエンジン装置の例であり、自動二輪車 100が車両の例であり、後輪 11が駆動輪の例であり、後輪ドリブンスプロケット 12、ド ライブシャフト 26、後輪ドライブスプロケット 15およびチェーン 16が伝達機構の例で ある。
[0192] 請求項の各構成要素として、請求項に記載されて!ヽる構成または機能を有する他 の種々の要素を用いることもできる。
[0193] (10)他の実施の形態
(10- 1)
上記実施の形態の可変動弁装置 200には、 2つのウェイト 213, 216および 2つの ロックピン 214, 217力設けられる力 ウェイト 213, 216およびロックピン 214, 217の うちそれぞれ一方のみを設けてもよい。その場合における可変動弁装置 200の例を 図 14に示す。
[0194] 図 14に示す可変動弁装置 200は、図 3〜図 13に示した可変動弁装置 200におけ る、ウェイト 213およびロックピン 214を有さない。
[0195] 図 14 (a)は低回転時の可変動弁装置 200の断面図であり、図 14 (b)は図 14 (a)の
P— P線断面図を示す。
[0196] 図 14 (a)に示すように、可変動弁装置 200は、ロックピン保持機構 210、カム用ドリ ブンスプロケット 220、ロックピン係止機構 230、遊動カム部 235およびカムシャフト 2
40を備える。
[0197] ロックピン保持機構 210には、ウェイト 216およびロックピン 217が設けられている。
ウェイト 216およびロックピン 217は、図 7および図 8に示したように、エンジン 7の回転 速度の応じて遊動カム部 235をカム固定軸 244に対して回転可能な状態と固定され た状態とに切り替える。
[0198] また、ロックピン 217の移動はロック板 233のロックピン係止部 233bにより制限され る。
[0199] この場合のロック板 233は、図 14 (b)に示すように、略長方形状の支持板 233aの 一辺に沿うように延びる長尺状のロックピン係止部 233bを有する。
[0200] 本例のように、可変動弁装置 200に 1組のウェイト 216およびロックピン 217を設け る場合には、通常走行時の燃費を向上させ、排気ガス中の有害物質を低減すること ができるとともに、高速走行時の高出力化を実現することができる。また、可変動弁装 置 200のさらなる小型化を実現することができる。
[0201] (10- 2)
上記実施の形態の可変動弁装置 200では、吸気ハイカム 237および吸気ローカム 241を切り替えることにより、吸気バルブ 344のリフト量を変化させる力 吸気バルブ 3 44の作用角を変化させてもよい。ここで、吸気バルブ 344の作用角とは、吸気バルブ 344がリフトしている状態のクランク角の範囲をいう。例えば、図 13において、吸気バ ルブ 344の作用角は 260° (— 30° 力ら 230° まで)である。 [0202] この場合、吸気ハイカム 237のカムノーズ 237Aの幅を吸気ローカム 241のカムノー ズ 241 Aの幅よりも大きく形成することにより、高回転時の吸気バルブ 344の作用角 力 低回転時の吸気バルブ 344の作用角よりも大きくなる。
[0203] 吸気ハイカム 237のカムノーズ 237Aの長さと吸気ローカム 241のカムノーズ 241A の長さとが等しい場合には、吸気バルブ 344の作用角を切り替えることができ、上記 実施の形態と同様に、吸気ハイカム 237のカムノーズ 237Aの長さが吸気ローカム 2 41のカムノーズ 241Aの長さよりも大きい場合には、吸気バルブ 344のリフト量および 吸気バルブ 344の作用角の両方を切り替えることができる。
[0204] (10- 3)
本発明に係る可変動弁装置 200を排気バルブ 354に適用してもよい。
[0205] この場合、排気バルブ 354に隣接するように遊動カム部 235、ロックピン係止機構 2 30およびカム用ドリブンスプロケット 220と同様の構造を有する、遊動カム部、ロック ピン係止機構およびカム用ドリブンスプロケットを設け、吸気ハイカムロッカーアーム 3 30と同様の構造を有する排気ノ、イカムロツカーアームを設ける。
[0206] それにより、排気バルブ 354のリフト量を切り替えることが可能となる。
[0207] (10-4)
上記実施の形態においては、ロックピン 214, 217にそれぞれ 2つの溝部 214a, 2 17aおよび溝部 214b, 217bを設けた力 それぞれいずれか一方のみを設けてもよ い。
[0208] 例えば、ロックピン 214に溝部 214aのみを設け、ロックピン 217に溝部 217aのみを 設けてもよい。この場合、低回転時において、ロックピン 214, 217の溝部 214a, 21 7aにロック板 233のロックピン係止咅 233b, 233c力 S嵌合され、ロックピン 214, 217 の移動が制限される。
[0209] また、ロックピン 214に溝部 214bのみを設け、ロックピン 217に溝部 217bのみを設 けてもよい。この場合、高回転時において、ロックピン 214, 217の溝咅 214b, 217b にロック板 233のロックピン係止咅 233b, 233c力 S嵌合され、ロックピン 214, 217の 移動が制限される。
[0210] (10- 5) 上記実施の形態においては、ロックピン 214, 217の移動を制限するための移動阻 止部材として、板状のロック板 233を用いた力 ピン状等の他の形状の移動阻止部 材を用いてもよい。この場合、ロックピン 214, 217に形成される溝部 214a, 214b, 2 17a, 217bの形状は、移動阻止部材の形状に応じて適宜決定される。
[0211] (10-6)
上記実施の形態にぉ 、て、可変動弁装置 200は SOHC (シングルオーバーヘッド カムシャフト)構造のエンジン 7に設けられて!/、るが、可変動弁装置 200が設けられる エンジン 7はカムシャフトが設けられる構成であれば限定されない。
[0212] 例えば、エンジン 7は SV (サイドバルブ)構造のエンジン、 OHV (オーバーヘッドバ ルブ)構造のエンジンまたは DOHC (ダブルオーバーヘッドカムシャフト)構造のェン ジンであってもよい。
[0213] (10- 7)
また、図 10〜図 12を用いて説明したように、可変動弁装置 200は吸気ハイ力ムロツ カーアーム 330、吸気ローカムロッカーアーム 340および排気カムロッカーアーム 35 0を備えるエンジン 7に設けられて 、るが、可変動弁装置 200は直打式のエンジンに 設けられてもよい。
[0214] (10-8)
上記実施の形態では、可変動弁装置 200には、ウェイト 213, 216を所定の方向に 付勢するために、ばね SI, S2が用いられている。しかしながら、ウェイト 213, 216を 所定の方向に付勢する弾性体であれば、ばね SI, S2に代えてゴム等が用いられて ちょい。
[0215] (10- 9)
上記実施の形態では、車両として自動二輪車について説明したが、これに限らず、 可変動弁装置 200はトラクターおよびカート等の低排気量の小型車両ならびに小型 船舶のエンジンにも設けることができる。 産業上の利用可能性
[0216] 本発明は、自動二輪車、四輪の自動車等のエンジンを備える種々の車両および船 舶等に利用することができる。

Claims

請求の範囲
[1] エンジンのバルブを駆動するための可変動弁装置であって、
前記エンジンの回転に連動して回転可能に設けられた回転軸と、
前記回転軸とともに回転するように設けられ、前記バルブを開閉するように作用する 第 1のカム部材と、
前記回転軸に対して回転可能に設けられ、前記バルブを開閉するように作用する 第 2のカム部材と、
前記第 2のカム部材を前記回転軸に対して回転可能にする第 1の状態と前記第 2 のカム部材を前記回転軸に係止する第 2の状態とに移行可能に設けられた係止部 材と、
前記係止部材を前記第 1の状態に移行させる付勢力を発生する付勢部材と、 前記回転軸の回転に伴う遠心力により前記付勢部材による付勢力に抗して前記係 止部材を前記第 2の状態に移行させるように作動する駆動部材とを備え、
前記係止部材が前記第 1の状態である場合には前記第 1のカム部材が前記バルブ の開閉に作用し、前記係止部材が前記第 2の状態である場合には前記第 2のカム部 材が前記バルブの開閉に作用する、可変動弁装置。
[2] 前記駆動部材は前記回転軸の回転に伴う遠心力により第 1の位置から第 2の位置に 回動可能に設けられ、
前記係止部材は前記駆動部材の前記第 1の位置から前記第 2の位置への回動に 伴って前記回転軸に沿った一方向に移動可能に設けられ、
前記付勢部材は、前記駆動部材が前記第 1の位置に向力うように前記駆動部材に 付勢力を与え、
前記係止部材は、前記駆動部材が前記第 1の位置にあるときに前記第 1の状態に なり、前記駆動部材が前記第 2の位置にあるときに前記第 2の状態になる、請求項 1 記載の可変動弁装置。
[3] 前記係止部材は係止部を有し、
前記第 2のカム部材は、前記係止部材の前記係止部により係止される被係止部を 有し、 前記係止部材が前記第 1の状態にあるときに前記係止部が前記被係止部から外れ 、前記係止部材が前記第 2の状態にあるときに前記係止部が前記被係止部を係止 する、請求項 1記載の可変動弁装置。
[4] 前記係止部材は棒状部材を含み、前記係止部は前記棒状部材の端部であり、 前記第 2のカム部材の前記被係止部は、前記棒状部材の端部が嵌合可能な孔部 である、請求項 3記載の可変動弁装置。
[5] 前記係止部材は複数の棒状部材であり、前記第 2のカム部材の前記被係止部は前 記複数の棒状部材の端部がそれぞれ嵌合可能な複数の孔部であり、前記複数の棒 状部材は前記回転軸の中心に関して互 、に非対称な位置に配置される、請求項 4 記載の可変動弁装置。
[6] 前記係止部材が前記第 1の状態および前記第 2の状態の少なくとも一方にあるときに 前記係止部材の移動を阻止する移動阻止部材をさらに備えた、請求項 1記載の可変 動弁装置。
[7] 前記係止部材は少なくとも 1つの溝部を有し、
前記移動阻止部材は、前記係止部材が前記第 1の状態および前記第 2の状態の 少なくとも一方にあるときに前記溝部に嵌合可能な嵌合部を有する、請求項 6記載の 可変動弁装置。
[8] 前記係止部材が前記第 1の状態から前記第 2の状態へ移行する場合および前記係 止部材が前記第 2の状態から前記第 1の状態へ移行する場合の少なくとも一方で前 記係止部材の前記少なくとも 1つの溝部力 前記移動阻止部材の前記嵌合部が退 出可能に前記溝部および前記嵌合部が形成された、請求項 7記載の可変動弁装置
[9] 前記第 1のカム部材の回転に連動して揺動することにより前記バルブを上下動させる 第 1の伝達部材と、
前記第 2のカム部材の回転に連動して前記第 1の伝達部材を揺動させる第 2の伝 達部材とをさらに備えた、請求項 1記載の可変動弁装置。
[10] 前記第 1のカム部材は前記第 1の状態で第 1のリフト量で前記バルブを開くように作 用し、 前記第 2のカム部材は前記第 2の状態で前記第 1のリフト量よりも大きい第 2のリフト 量で前記バルブを開くように作用する、請求項 1記載の可変動弁装置。
[11] 前記第 1のカム部材は前記第 1の状態で第 1の作用角で前記バルブを開くように作 用し、
前記第 2のカム部材は前記第 2の状態で前記第 1の作用角よりも大きい第 2の作用 角で前記バルブを開くように作用する、請求項 1記載の可変動弁装置。
[12] 前記バルブは吸気バルブである、請求項 1記載の可変動弁装置。
[13] バルブを有するエンジンと、
前記エンジンの前記バルブを駆動するための可変動弁装置とを備え、 前記可変動弁装置は、
前記エンジンの回転に連動して回転可能に設けられた回転軸と、
前記回転軸とともに回転するように設けられ、前記バルブを開閉するように作用する 第 1のカム部材と、
前記回転軸に対して回転可能に設けられ、前記バルブを開閉するように作用する 第 2のカム部材と、
前記第 2のカム部材を前記回転軸に対して回転可能にする第 1の状態と前記第 2 のカム部材を前記回転軸に係止する第 2の状態とに移行可能に設けられた係止部 材と、
前記係止部材を前記第 1の状態に移行させる付勢力を発生する付勢部材と、 前記回転軸の回転に伴う遠心力により前記付勢部材による付勢力に抗して前記係 止部材を前記第 2の状態に移行させるように作動する駆動部材とを備え、
前記係止部材が前記第 1の状態である場合には前記第 1のカム部材が前記バルブ の開閉に作用し、前記係止部材が前記第 2の状態である場合には前記第 2のカム部 材が前記バルブの開閉に作用する、エンジン装置。
[14] エンジン装置と、
駆動輪と、
前記エンジン装置により発生される動力を前記駆動輪に伝達する伝達機構とを備 え、 前記エンジン装置は、
バルブを有するエンジンと、
前記エンジンの前記バルブを駆動するための可変動弁装置とを備え、
前記可変動弁装置は、
前記エンジンの回転に連動して回転可能に設けられた回転軸と、
前記回転軸とともに回転するように設けられ、前記バルブを開閉するように作用する 第 1のカム部材と、
前記回転軸に対して回転可能に設けられ、前記バルブを開閉するように作用する 第 2のカム部材と、
前記第 2のカム部材を前記回転軸に対して回転可能にする第 1の状態と前記第 2 のカム部材を前記回転軸に係止する第 2の状態とに移行可能に設けられた係止部 材と、
前記係止部材を前記第 1の状態に移行させる付勢力を発生する付勢部材と、 前記回転軸の回転に伴う遠心力により前記付勢部材による付勢力に抗して前記係 止部材を前記第 2の状態に移行させるように作動する駆動部材とを備え、
前記係止部材が前記第 1の状態である場合には前記第 1のカム部材が前記バルブ の開閉に作用し、前記係止部材が前記第 2の状態である場合には前記第 2のカム部 材が前記バルブの開閉に作用する、車両。
PCT/JP2006/322722 2005-11-28 2006-11-15 可変動弁装置ならびにそれを備えるエンジン装置および車両 WO2007060865A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06832653A EP1956197A1 (en) 2005-11-28 2006-11-15 Adjustable valve device, and engine device and vehicle using the same
US12/094,003 US20090114175A1 (en) 2005-11-28 2006-11-15 Variable valve system, and engine device and vehicle including the same
BRPI0618802-8A BRPI0618802A2 (pt) 2005-11-28 2006-11-15 sistema de válvula variável e dispositivo de motor e veìculo que incluem o mesmo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005341591A JP2007146740A (ja) 2005-11-28 2005-11-28 可変動弁装置ならびにそれを備えるエンジン装置および車両
JP2005-341591 2005-11-28

Publications (1)

Publication Number Publication Date
WO2007060865A1 true WO2007060865A1 (ja) 2007-05-31

Family

ID=38067095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322722 WO2007060865A1 (ja) 2005-11-28 2006-11-15 可変動弁装置ならびにそれを備えるエンジン装置および車両

Country Status (6)

Country Link
US (1) US20090114175A1 (ja)
EP (1) EP1956197A1 (ja)
JP (1) JP2007146740A (ja)
CN (1) CN101316986A (ja)
BR (1) BRPI0618802A2 (ja)
WO (1) WO2007060865A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030457A1 (ja) * 2009-09-14 2011-03-17 本田技研工業株式会社 内燃機関の可変動弁装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948831B2 (ja) * 2005-12-13 2012-06-06 ヤマハ発動機株式会社 可変動弁装置ならびにそれを備えるエンジンシステムおよび乗り物
JP5199766B2 (ja) * 2008-07-22 2013-05-15 ヤマハ発動機株式会社 可変動弁装置とこれを備えたエンジン装置および車両
JP5171521B2 (ja) * 2008-09-30 2013-03-27 本田技研工業株式会社 エンジンの可変動弁装置
JP4999832B2 (ja) * 2008-12-26 2012-08-15 本田技研工業株式会社 内燃機関の可変動弁装置
JP5204080B2 (ja) * 2009-11-27 2013-06-05 本田技研工業株式会社 エンジンの可変動弁装置
TW201144574A (en) * 2010-06-15 2011-12-16 Kwang Yang Motor Co Structure of driving member of engine valve
DE102011003558A1 (de) * 2011-02-03 2012-08-09 Schaeffler Technologies Gmbh & Co. Kg Nockenwellen- oder Nockenverstellmechanismus mit Schlingfedern
JP5771494B2 (ja) * 2011-09-28 2015-09-02 本田技研工業株式会社 内燃機関の可変動弁装置
CN102400729A (zh) * 2011-11-15 2012-04-04 中国嘉陵工业股份有限公司(集团) 一种发动机气门升程可变机构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562004U (ja) * 1979-06-20 1981-01-09
JPS608402U (ja) * 1983-06-28 1985-01-21 三菱自動車工業株式会社 プロフイ−ル可変型カム
JPH01157208U (ja) * 1988-04-19 1989-10-30
JPH11229831A (ja) * 1998-02-13 1999-08-24 Honda Motor Co Ltd エンジンのカム位相可変装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261610A (ja) * 1986-05-09 1987-11-13 Honda Motor Co Ltd エンジンのオ−トデコンプ装置
US5813377A (en) * 1995-11-07 1998-09-29 Yamaha Hatsudoki Kabushiki Kaisha Engine valve operating system
US5855190A (en) * 1996-09-24 1999-01-05 Yamaha Hatsudoki Kabushiki Kaisha Valve-actuating variable cam for engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562004U (ja) * 1979-06-20 1981-01-09
JPS608402U (ja) * 1983-06-28 1985-01-21 三菱自動車工業株式会社 プロフイ−ル可変型カム
JPH01157208U (ja) * 1988-04-19 1989-10-30
JPH11229831A (ja) * 1998-02-13 1999-08-24 Honda Motor Co Ltd エンジンのカム位相可変装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030457A1 (ja) * 2009-09-14 2011-03-17 本田技研工業株式会社 内燃機関の可変動弁装置
US8807102B2 (en) 2009-09-14 2014-08-19 Honda Motor Co., Ltd Variable valve operating device for internal combustion engine

Also Published As

Publication number Publication date
CN101316986A (zh) 2008-12-03
EP1956197A1 (en) 2008-08-13
JP2007146740A (ja) 2007-06-14
BRPI0618802A2 (pt) 2011-09-13
US20090114175A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
WO2007060865A1 (ja) 可変動弁装置ならびにそれを備えるエンジン装置および車両
US7392773B2 (en) Lift-variable valve-operating system for internal combustion engine
JP2005299536A (ja) 内燃機関の可変動弁装置
WO2006064707A1 (ja) バルブタイミング制御装置ならびにそれを備えるエンジン装置および車両
JP2008025418A (ja) 内燃機関の可変動弁機構
US7739991B2 (en) Adjustable valve drive device of engine
JP4493488B2 (ja) バルブタイミング制御装置ならびにそれを備えるエンジン装置および車両
EP1956199B1 (en) Lift amount adjusting device in lift-variable valve-operating mechanism
JP3923314B2 (ja) 内燃機関のsohc型動弁装置
JP4381965B2 (ja) 内燃機関
JP5447211B2 (ja) 内燃機関の可変動弁装置
JP4485495B2 (ja) 内燃機関の可変動弁機構
JP2007107430A (ja) 内燃機関の可変動弁装置
JPH1077814A (ja) 内燃エンジンの動弁機構
JP2008045540A (ja) 内燃機関の可変動弁機構
JP2009041574A (ja) 内燃機関の可変動弁装置
JP2009041573A (ja) 内燃機関の可変動弁装置
JP2009013999A (ja) 内燃機関の可変動弁装置
JP2009014000A (ja) 内燃機関の可変動弁装置
JP2002047905A (ja) 内燃機関の弁を操作するためのカム軸

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044296.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006832653

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2065/KOLNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12094003

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0618802

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080523