WO2007058044A1 - 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 - Google Patents
芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 Download PDFInfo
- Publication number
- WO2007058044A1 WO2007058044A1 PCT/JP2006/320746 JP2006320746W WO2007058044A1 WO 2007058044 A1 WO2007058044 A1 WO 2007058044A1 JP 2006320746 W JP2006320746 W JP 2006320746W WO 2007058044 A1 WO2007058044 A1 WO 2007058044A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- substituted
- unsubstituted
- aromatic amine
- organic
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/43—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
- C07C211/54—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/43—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
- C07C211/57—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
- C07C211/58—Naphthylamines; N-substituted derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/43—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
- C07C211/57—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
- C07C211/61—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/633—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
- H10K2102/103—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
- H10K85/324—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/626—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
Definitions
- the present invention relates to an aromatic amine derivative and an organic electoluminescence (EL) device using the same, and in particular, the yield in producing an organic EL device in which molecules are difficult to crystallize is improved and the lifetime is increased. It relates to long organic EL devices and aromatic amine derivatives that realize them.
- An organic EL element is a self-luminous element that utilizes the principle that a fluorescent substance emits light by recombination energy of holes injected from an anode and electrons injected from a cathode by applying an electric field. .
- the advantages of the stacked structure are that it increases the efficiency of hole injection into the light-emitting layer, increases the efficiency of generating excitons generated by recombination by blocking electrons injected from the cathode, and generates in the light-emitting layer. For example, confining excitons.
- the device structure of the organic EL device is a hole transport (injection) layer, a two-layer type of electron transport emission layer, or a hole transport (injection) layer, light emitting layer, electron transport (injection) layer
- the three-layer type is well known.
- the element structure and the formation method have been devised in order to increase the recombination efficiency of injected holes and electrons.
- Patent Document 3 describes an aromatic amine derivative having an asymmetric structure, but does not describe any specific features of the asymmetric compound.
- Patent Document 4 describes an asymmetric aromatic amine derivative having phenanthrene as an example, but it is treated in the same way as a symmetric compound and does not describe any characteristics of the asymmetric compound. Absent.
- Patent Document 5 describes a method for producing an aromatic amine derivative having an asymmetric structure, but does not describe the characteristics of the asymmetric compound.
- Patent Document 6 only exemplifies a compound having a powerful rubazole having a description of a thermally stable asymmetric compound having a high glass transition temperature. In addition, as a result of the present inventors creating a device using this compound, it was found that a short lifetime is a problem.
- Patent Document 1 U.S. Pat.No. 4,720,432
- Patent Document 2 U.S. Pat.No. 5, 061, 569
- Patent Document 3 JP-A-8-48656
- Patent Document 4 Japanese Patent Laid-Open No. 11-135261
- Patent Document 5 Japanese Patent Laid-Open No. 2003-171366
- Patent Document 6 U.S. Patent No. 6, 242, 115
- the present invention has been made to solve the above-described problems, and realizes an organic EL device having a long lifetime and improved yield in manufacturing an organic EL device, in which molecules are hardly crystallized. It is an object to provide an aromatic amine derivative.
- novel aromatic amine derivative having an asymmetric structure represented by (1) is used as a material for an organic EL device, particularly as a hole transport material, it has been found that the above-mentioned problems can be solved, and the present invention has been developed. It came to be completed.
- diamine compounds that have the same two aryl groups bonded to one amine and different two amines bonded to a linking group have steric hindrance, and therefore, interaction between molecules. Therefore, the crystallization is suppressed, the yield of manufacturing the organic EL device is improved, and furthermore, since it can be deposited at a low sublimation temperature, the decomposition of molecules during the deposition is suppressed, and the resulting organic EL device is obtained. It has been found that there is an effect of prolonging the life of the light emitting device, and in particular, a remarkable long life effect can be obtained by combining with a blue light emitting element.
- the present invention provides an aromatic amine derivative represented by the following general formula (1).
- L represents a linking group consisting of a substituted or unsubstituted arylene group having 5 to 50 nuclear atoms, or a plurality of substituted or unsubstituted arylene groups having 5 to 50 nuclear atoms. It is a linking group bonded by a single bond, an oxygen atom, a sulfur atom, a nitrogen atom, or a saturated or unsaturated divalent aliphatic hydrocarbon group having 1 to 20 nuclear carbon atoms.
- A is a dialylamino group represented by the following general formula (2),
- B is a diarylamino group represented by 1 / N in the following general formula (3).
- ⁇ and ⁇ are not the same.
- the total number of carbon atoms excluding substituents in the aromatic amine derivative of the general formula (I) is 55 or more.
- Ar and Ar are each independently substituted or unsubstituted.
- the present invention provides an organic EL element in which an organic thin film layer having at least one or more light emitting layers including a light emitting layer is sandwiched between a cathode and an anode.
- the present invention provides an organic EL device containing an aromatic amine derivative alone or as a component of a mixture.
- the aromatic amine derivative of the present invention and the organic EL device using the same are improved in yield when producing an organic EL device in which molecules are difficult to crystallize, and have a long life.
- L represents (I) an arylene having 5 to 50 substituted or unsubstituted nuclear atoms.
- a linking group consisting of a group, or (II) a plurality of substituted or unsubstituted arylene groups having 5 to 50 nuclear atoms ( ⁇ -1) a single bond, ( ⁇ -2) an oxygen atom (one 0—), ( ⁇ -3) sulfur atom (one S—), ( ⁇ -4) nitrogen atom (NH—, — NR— [R is a substituent]) or ( ⁇ -5) saturated or unsaturated nuclear carbon number 1 ⁇ It is a linking group bonded by 20 divalent aliphatic hydrocarbon groups.
- Examples of the arylene group having 5 to 50 nuclear atoms in the above (I) and (II) include, for example, a 1,4-phenylene group, a 1,2-phenylene group, a 1,3-phenylene group, 1, 4 naphthylene group, 2, 6 —naphthylene group, 1, 5 naphthylene group, 9, 10 anthracylene group, 9, 10 phenanthrenylene group, 3, 6 phenanthrene group, 1, 6 pyrenylene group, 2, 7 Pyrenylene group, 6, 12 Chrysylene group, 1, 1'-biphenylene group, 4, 4'-biphenylene group, 3, 3, -biphenylene group, 2, 2, 1 biphenylene group 2,7 fluorene group, 2,5 thiophenylene group, 2,5 silylylene group, 2,5-oxadiazolylene group, terferene group and the like.
- 1, 4 -phenylene group, 1, 2 -phenylene group, 1, 3 -phenylene group, 1, 4 naphthylene group, 9, 10-anthralene group, 6, 12 chrysene group are diene group, 4, 4, 1 biphenylene group, 3, 3, 1 biphenylene group, 2, 2, 1 biphenylene group, 2, 7 fluorene group.
- the saturated or unsaturated divalent aliphatic hydrocarbon group having 1 to 20 nuclear carbon atoms in ( ⁇ -5) may be linear, branched or cyclic.
- Examples include a methylene group, an ethylene group, a propylene group, an isopropylene group, an ethylidene group, a cyclohexylidene group, and an adamantylene group.
- L is particularly preferably a 1,1′-biphenylene group, more preferably a biphenylene group, more preferably a biphenylene group, a biphenylene group, a terpherene group, or a fluorene group.
- each group represented by L a substituted or unsubstituted aryl group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted carbon number 1 to 50 alkoxy groups, substituted or unsubstituted aralkyl groups having 6 to 50 carbon atoms, substituted or unsubstituted aryloxy groups having 5 to 50 nucleus atoms, substituted or unsubstituted aryloxy groups having 5 to 50 nucleus atoms , A substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms, an amino group substituted with a substituted or unsubstituted aryl group having 5 to 50 nucleus atoms, a halogen atom, a cyano group, a nitro group, a hydroxyl group, or Carboxyl group etc.
- A is a dialylamino group represented by the following general formula (2).
- B is a diarylamino group represented by the following general formula (3).
- the total number of carbon atoms excluding substituents is 55 or more, preferably 66 or more, and more preferably 66 to 84.
- the aromatic amine derivative of the general formula (1) of the present invention preferably has 10 or more benzene rings, and more preferably 10-14.
- Ar and Ar are each independently substituted or unsubstituted.
- Ar and Ar aryl groups include, for example, a phenyl group, a 1-naphthyl group, 2
- a biphenyl group and a terphenyl group are more preferable, in which a phenyl group, a biphenyl group, a terfel group, a fluoro group, and a naphthyl group are preferable.
- the aryl group may be further substituted with a substituent.
- substituents include an alkyl group having 1 to 6 carbon atoms (ethyl group, methyl group, i-propyl group, n-propyl group).
- the aromatic amine derivative of the present invention represented by the general formula (1) is preferably a compound represented by the following general formula (4) or (5).
- R are each independently a hydrogen atom or a substituent.
- a, b, c and d are each an integer of 0 to 4 (preferably 0 to 1), and e is an integer of 1 to 3 (preferably 2 to 3).
- R to R are bonded to each other and may be substituted or saturated.
- Ar to Ar are each independently a substituted or unsubstituted nucleogen.
- Ar to Ar aryl groups include, for example, substituted or unsubstituted phenyl groups and substituted
- the preferred bonding position for an unsubstituted phenyl group, an unsubstituted a- naphthyl group, an unsubstituted ⁇ -naphthyl group, an unsubstituted meta (m—), or para ( ⁇ ) biphenyl group is o— , M— or p, preferably p.
- R to R are the same as R to R, and f, i, j and m are each An integer of 0-4 (preferably 0-1), g, h, k, 1 and n are each an integer of 0-3 (preferably 0), and o is 1-3 (preferably 2-3) ), And p, q, r, s, t, and u are each an integer of 0 to 3 (preferably 0).
- Ar to Ar are each independently a substituted or unsubstituted nucleogen.
- Ar to Ar aryl groups include, for example, substituted or unsubstituted phenyl groups, substituted
- the preferred bonding position for an unsubstituted phenyl group, an unsubstituted a naphthyl group, an unsubstituted 13 naphthyl group, an unsubstituted meta (m—), or a para (p) biphenyl group is o—, m— or p, preferably m— or p.
- R to R are substituted or unsubstituted nucleus atoms of 5 to 50
- reel groups are the same as those described for Ar and Ar aryl groups.
- alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, and n-heptyl group.
- n-octyl group hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 2-hydroxyisobutyl group, 1,2-dihydroxyethyl group, 1,3 dihydroxyisopropyl group, 2, 3 Dihydroxy-butyl group, 1,2,3 trihydroxypropyl group, chloromethyl group, 1 chloroethyl group, 2 chloroethyl group,
- the alkoxy group is a group represented by OY, and examples of Y include the same examples as those described for the alkyl group.
- aralkyl group examples include a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylisopropyl group, a 2-phenylisopropyl group, a phenyl-t-butynole group, and a naphthinolele.
- Methinole group 1-a naphthinoreethinole group, 2-a naphthinoreethyl group, 1 ⁇ naphthylisopropyl group, 2-a naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1 ⁇ -naphthylisopropyl group, 2- ⁇ naphthylisopropyl group, 1 pyrrolylmethyl group, 2 (1 pyrrolyl) ethyl group, ⁇ -methylbenzyl group, m-methylbenzyl group, o-methenobendinole group, p Benzinore group, m-Chloro-Bendinore group, o Chloro-Benzinore group, p Bromobenzyl group, m-Bromobenzyl group, o Bromobenz
- the aryloxy group is represented as OY ', and examples of Y' include the Ar and Ar alkyl groups.
- the arylthio group is represented by —SY ′, and examples of Y ′ include Ar and Ar
- the alkoxycarbonyl group is a group represented by COOY, and examples of Y include the same examples as those described above for the alkyl group.
- aryl group in the amino group substituted with the aryl group examples include the Ar and
- halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- the aromatic amine derivative of the present invention is more preferably a hole transport material for an organic EL device, which is preferably an organic EL device material.
- aromatic amine derivative represented by the general formula (1) of the present invention are shown below, but are not limited to these exemplified compounds.
- the organic EL device of the present invention is an organic EL device in which an organic thin film layer composed of one or more layers including at least a light emitting layer is sandwiched between a cathode and an anode, and at least one layer of the organic thin film layer is
- the organic thin film layer has a hole transport layer, and the hole transport layer is a single compound of the aromatic amine derivative of the present invention.
- the hole transport layer contains the aromatic amine derivative of the present invention as a main component.
- the aromatic amine derivative of the present invention is particularly preferably used for an organic EL device emitting blue light.
- the light emitting layer preferably contains an arylamine compound and Z or a styrylamine compound.
- Examples of the styrylamine compound include compounds represented by the following general formula (I), and examples of the arylamine compound include compounds represented by the following general formula (II).
- Ar represents a fuel, a bifuel, a terfal, a stilbene, a distyrylary.
- Luka is a selected group, Ar and Ar are each a hydrogen atom or 6 to 2 carbon atoms.
- p ′ is an integer of 1 to 4. More preferably, Ar is used.
- the aromatic group having 6 to 20 carbon atoms is preferably a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a terfel group, or the like.
- Ar to Ar each independently represent an optionally substituted cycloalkyl having 5 to 40 nuclear carbon atoms.
- aryl groups having 5 to 40 nuclear atoms include phenol, naphthyl, anthral, fenanthrinol, pyrel, coloninole, biphenol, terfel, pyrolaryl, fuller, Thiophenyl, benzothiophenyl, oxadiazolyl, diphenylanthranyl, indolyl, carbazolyl, pyridyl, benzoquinolyl, fluoranthenyl, acenaphthofluoranthur, stilbene and the like are preferable.
- the aryl group having 5 to 40 nucleus atoms may be further substituted with a substituent.
- Examples of the preferable substituent include an alkyl group having 1 to 6 carbon atoms (ethyl group, methyl group, i-propyl group). , N-propyl group, s butyl group, t-butyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group, etc.), C1-C6 alkoxy group (ethoxy group, methoxy group, i-propoxy) Group, n-propoxy group, s butoxy group, t butoxy group, pentoxy group, hexyloxy group, cyclopentoxy group, cyclohexyloxy group, etc.), aryl group having 5 to 40 nuclear atoms, and 5 to 40 nuclear atoms An aryl group substituted with an aryl group, an ester group having an aryl group of 5 to 40 nuclei atoms, an ester group having an alkyl group of 1 to 6 carbon atoms, a
- the force for which the configuration of (8) is preferably used is not limited to these.
- the aromatic amine derivative of the present invention can be used in any organic thin film layer of an organic EL device, and can be used in a light emission band or a hole transport band, preferably a hole transport band, particularly preferably a hole transport. By using it as a layer, the yield when manufacturing an organic EL device in which molecules are difficult to crystallize is improved.
- Aromatic Amin derivatives of the present invention the amount to be contained in the organic thin film layer,. 30 to: LOO mol 0/0 are preferred.
- the organic EL device of the present invention is manufactured on a light-transmitting substrate.
- the translucent substrate mentioned here is a substrate that supports the organic EL device, and a smooth substrate with a light transmittance in the visible region of 400 to 700 nm of 50% or more is preferable.
- a glass plate, a polymer plate, etc. are mentioned.
- the glass plate include soda-lime glass, norlium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
- the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyethersulfide, and polysulfone.
- Anode of the organic EL device of the present invention has a function of injecting holes into the hole transport layer or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
- Specific examples of the anode material used in the present invention include indium tin oxide alloy (ITO), acid-tin tin (NE SA), indium-zinc oxide (IZO), gold, silver, platinum, copper, and the like. Can be mentioned.
- the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
- the transmittance of the anode for light emission is greater than 10%.
- the sheet resistance of the anode is preferably several hundred ⁇ or less.
- the film thickness of the anode is a force depending on the material. Usually, it is selected in the range of 10 nm to l ⁇ m, preferably 10 to 200 nm.
- the light emitting layer of the organic EL device has the following functions (1) to (3).
- Injection function Function that can inject holes from the anode or hole injection layer when an electric field is applied, and can inject electrons from the cathode or electron injection layer
- Transport function Function to move injected charges (electrons and holes) by the force of electric field
- Light emission function A function to provide a field for recombination of electrons and holes and connect this to light emission.However, there is no difference between the ease of hole injection and the ease of electron injection.
- the transport capacity expressed by the mobility of holes and electrons may be large or small, but it is preferable to move one of the charges.
- the light emitting layer is particularly preferably a molecular deposited film.
- the molecular deposition film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidification from a material compound in a solution state or a liquid phase state.
- a film can be classified from a thin film (accumulated film) formed by the LB method by the difference in aggregated structure and higher-order structure and functional differences resulting from it.
- a binder such as rosin and a material compound are dissolved in a solvent to form a solution, which is then thin-filmed by spin coating or the like.
- the light emitting layer can also be formed by twisting.
- a known light emitting material other than the light emitting material comprising the aromatic amine derivative of the present invention may be contained in the light emitting layer as desired, as long as the object of the present invention is not impaired.
- a light emitting layer containing another known light emitting material may be laminated on the light emitting layer containing the light emitting material comprising the aromatic amine derivative of the present invention.
- Examples of the light-emitting material or doping material that can be used in the light-emitting layer together with the aromatic amine derivative of the present invention include anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, taricene, fluorescein, perylene, lid-perylene, naphtha-mouth.
- Ar is a substituted or unsubstituted condensed aromatic group having 10 to 50 nuclear carbon atoms.
- Ar is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
- X is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 atomic atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
- substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, substituted or unsubstituted A arylthio group having 5 to 50 nucleus atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, and a hydroxyl group.
- a, b and c are each an integer of 0-4.
- n is an integer of 1 to 3. When n is 2 or more, the values in [] may be the same or different. )
- R 1 to R 1Q are each independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, and a substituted group. Or an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl having 6 to 50 carbon atoms.
- substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted or unsubstituted carbon
- substituted or unsubstituted carbon substituted or unsubstituted carbon
- alkoxycarbo group having a prime number of 1 to 50 substituted or unsubstituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group and a hydroxyl group.
- Ar and Ar ′ are each a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
- L and L are each a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group.
- n is an integer from 1 to 4
- s is an integer from 0 to 2
- t is an integer from 0 to 4.
- L or Ar is bonded to any of the 1-5 positions of pyrene, and L or Ar, is bonded to any of the 6-10 positions of pyrene.
- a 1 and A 2 are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 nuclear carbon atoms.
- Ar 1 and Ar 2 are each independently a hydrogen atom or a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms.
- R 1 to R 1Q are each independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, and a substituted group. Or an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl having 6 to 50 carbon atoms.
- Ar 1 , Ar 2 , R 9 and R 1 () may be plural or adjacent to each other to form a saturated or unsaturated cyclic structure.
- a group that is symmetrical with respect to the XY axes shown on the anthracene is not bonded to the 9th and 10th positions of the central anthracene.
- ⁇ to 1 ⁇ ° are independently hydrogen atom, alkyl group, cycloalkyl group, optionally substituted aryl group, alkoxyl group, aryloxy group, alkylamino group, alkyl group, aryl group
- a and b each represent an integer of 1 to 5, and when they are 2 or more, R 1 or R 2 may be the same in each case to form a ring Yogumata each other or R 2 are bonded to each other be different!, even if I was, and R 3, R 5 tR 6, R 7 R &, R 9 and R 1Q each other L 1 is a single bond, —O—, 1 S—, —N (R) — (where R is an alkyl group or an optionally substituted aryl group), alkylene Group or arylene group.)
- R u to! ⁇ are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkoxyl group, an aryloxy group, an alkylamino group, an arylamino group, or a plurality of which may be substituted.
- Cd, e and f each represent an integer of 1 to 5, and when they are 2 or more, R 11 to each other, R 12 to each other, R 16 to each other or R 17 to each other, It may be the same or different, and R 11 , R 12 , R 16, or R 17 may combine to form a ring, or R 13 and R 14 , R 18 and R 19 L 2 is a single bond, — O—, — S—, — N (R) — (R is an alkyl group or an optionally substituted aryl group. ), An alkylene group or an arylene group.
- a 5 to A 8 are each independently a substituted or unsubstituted biphenyl group or a substituted or unsubstituted naphthyl group.
- R 21 to R 23 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or 1 carbon atom.
- R 21 to R 23 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or 1 carbon atom.
- An atom, and at least one of A 9 to A 14 is a group having three or more condensed aromatic rings.
- a fluorene compound represented by the following general formula (ix) is represented by the following general formula (ix).
- R and R are a hydrogen atom, substituted or unsubstituted alkyl
- 1 2 represents a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted amino group, a cyano group or a halogen atom. R bonded to different fluorene groups
- R 2 and R R are bonded to the same fluorene group, which may be the same or different.
- R 1 2 can be the same or different.
- R and R bonded to the same fluorene group may be the same or different.
- Ar and Ar are substituted or unsubstituted condensed groups with a total of 3 or more benzene rings
- Ar and Ar are the same
- n an integer of 1 to 10.
- anthracene derivatives are preferable, monoanthracene derivatives are more preferable, and asymmetric anthracene is particularly preferable.
- a phosphorescent compound can also be used as the dopant light-emitting material.
- a compound containing a force rubazole ring as a host material is preferable.
- the dopant is a compound capable of emitting triplet exciton force, and is not particularly limited as long as it also emits triplet exciton force, but also has Ir, Ru, Pd, Pt, Os, and Re forces.
- Group force At least one selected A borphyrin metal complex or an ortho metal ⁇ metal complex, which is preferably a metal complex containing two metals, is preferred.
- a host suitable for phosphorescence emission with a compound power containing a strong rubazole ring is a compound having the function of emitting a phosphorescent compound as a result of energy transfer from its excited state to the phosphorescent compound. is there.
- the host compound is not particularly limited as long as it is a compound that can transfer the exciton energy to the phosphorescent compound, and can be appropriately selected according to the purpose. It may have an arbitrary heterocyclic ring in addition to the force rubazole ring.
- host compounds include force rubazole derivatives, triazole derivatives, oxazole derivatives, oxaziazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, furan diamine derivatives, arylamine derivatives , Amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquinodis Methane derivatives, anthrone derivatives, diphenylquinone derivatives, thiobilane dioxide derivatives, carpositimide derivatives, fluorenylidenemethane derivatives, Metal complexes of styryl birazine derivatives, heterocyclic te
- the phosphorescent dopant is a compound capable of emitting triplet exciton power.
- the triplet exciton force is not particularly limited as long as it emits light, but it is preferably a metal complex containing at least one metal selected from the group force Ir, Ru, Pd, Pt, Os and Re force, and is preferably a porphyrin metal complex or orthometal ion. ⁇ Metal complexes are preferred.
- the porphyrin metal complex is preferably a porphyrin platinum complex.
- the phosphorescent compound may be used alone or in combination of two or more.
- ligands that form ortho-metal complexes
- preferred ligands include 2-phenyl pyridine derivatives, 7, 8-benzoquinoline derivatives, and 2- (2-phenyl) pyridines.
- Derivatives 2- (1-naphthyl) pyridine derivatives, 2-furquinoline derivatives and the like. These derivatives may have a substituent as necessary.
- it may have a ligand other than the above-mentioned ligands such as acetylacetonate and picric acid as an auxiliary ligand.
- the content of the phosphorescent dopant in the light-emitting layer is a force that can be appropriately selected according to the purpose of restriction, for example, 0.1 to 70% by mass, and 1 to 30% by mass. preferable. If the phosphorescent emissive compound content is less than 0.1% by mass, the light emission is weak and the effect of the content is not fully exhibited. If the content exceeds 70% by mass, a phenomenon called concentration quenching is prominent. The device performance deteriorates.
- the light emitting layer may contain a hole transport material, an electron transport material, and a polymer binder as necessary.
- the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and most preferably 10 to 50 nm. If the thickness is less than 5 nm, it is difficult to form a light emitting layer, and it may be difficult to adjust the chromaticity. If it exceeds 50 nm, the driving voltage may increase.
- the hole injection 'transport layer is a layer that helps injecting holes into the light emitting layer and transports it to the light emitting region, and has a high ion mobility with a high hole mobility, usually less than 5.5 eV.
- a hole injection / transport layer a material that transports holes to the light-emitting layer with a lower electric field strength is preferable.
- a field mobility of 10 4 to 10 6 VZcm is applied, at a minimum preferable if the 10- 4 cm 2 / V ⁇ sec! /,.
- the aromatic amine derivative of the present invention when used in a hole transport zone, the aromatic amine derivative of the present invention alone may be used as a hole injection or transport layer, or may be mixed with other materials. Yes.
- the material for forming the hole injection / transport layer by mixing with the aromatic amine derivative of the present invention is not particularly limited as long as it has the above-mentioned preferred properties. It is possible to select and use any of those conventionally used as a charge transport material for holes and known materials used for hole injection / transport layers of organic EL devices. Specific examples include triazole derivatives (see US Pat. No. 3,112,197), oxadiazole derivatives (see US Pat. No. 3,189,447), imidazole derivatives (Japanese Patent Publication No. 37-16096). Polyarylalkane derivatives (US Pat. Nos.
- polysilane JP-A-2-204996
- aniline co-polymer examples thereof include conductive polymer oligomers (particularly thiophene oligomers) disclosed in JP-A-2-282263 and JP-A-1-211399.
- the above-mentioned materials can be used as the material for the hole injection 'transport layer.
- Volphiline compounds (disclosed in JP-A-63-29556965, etc.), aromatic tertiary amine compounds And styrylamine compounds (US Pat. No. 4,127,412, JP-A 53-27033, 54-58445, 54-149634, 54-64299) No. 55-79450, No. 55-144250, No. 56-119132, No. 61-295558, No. 61-98353, No. 63-295695, etc.
- inorganic compounds such as p-type Si and p-type SiC can be used as the material for the hole injection / transport layer in addition to the above-mentioned aromatic dimethylidin-based compounds shown as the material for the light emitting layer.
- the hole injecting / transporting layer can be formed by thinning the aromatic amine derivative of the present invention by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. .
- the thickness of the hole injection 'transport layer is not particularly limited, but is usually 5 ⁇ ! ⁇ 5 m.
- This hole injecting / transporting layer may be composed of one or more layers of the above-mentioned materials as long as it contains the aromatic amine derivative of the present invention in the hole transporting zone!
- a hole injection / transport layer made of a different kind of compound from the hole injection / transport layer may be laminated.
- a hole injection or electron injection organic semiconductor layer provided as a layer to help Moyogu 10- 1Q SZcm more of the conductivity of the light-emitting layer.
- Examples of the material of such an organic semiconductor layer include thiophene oligomers, conductive oligomers such as allylamin oligomers disclosed in JP-A-8-193191, and conductive properties such as allylamin dendrimers. Dendrimers and the like can be used.
- the electron injection layer 'transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region.
- the electron mobility is high and the adhesion improving layer is included in the electron injection layer.
- it is a layer having good material strength with good adhesion to the cathode.
- the electron transport layer is appropriately selected with a film thickness of several nm to several m.
- 10 4 to 10 V / cm it is preferred electron mobility when an electric field is applied are the least 10- 5 cm 2 ZVs than.
- 8-hydroxyquinoline or a metal complex of its derivative, oxadiazole derivative is suitable.
- specific examples of the above-mentioned metal complexes of 8-hydroxyquinoline or derivatives thereof include metal chelate oxinoid compounds including chelates of oxine (generally 8-quinolinol or 8-hydroxyquinoline), such as tris (8-quinolinol).
- Aluminum can be used as an electron injection material.
- examples of the oxadiazole derivative include electron transfer compounds represented by the following general formula.
- Ar 1 , Ar 2 , Ar 3 , Ar 5 , Ar 6 , Ar 9 each represents a substituted or unsubstituted aryl group, which may be the same or different from each other.
- Ar 4 , Ar 7 and Ar 8 represent a substituted or unsubstituted arylene group, which may be the same or different.
- examples of the aryl group include a phenyl group, a biphenyl group, an anthral group, a perylenyl group, and a pyrenyl group.
- examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthracene group, a peryleneylene group, and a pyrenylene group.
- substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyan group.
- This electron transfer compound is preferably a film-forming material. Specific examples of the electron-transmitting compound include the following.
- a 1 to A 3 are each independently a nitrogen atom or a carbon atom.
- Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms
- Ar 2 is a hydrogen atom, substituted or unsubstituted Aryl group having 6 to 60 nuclear carbon atoms, substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or substituted or unsubstituted carbon number 1 to 20 alkoxy groups, or these divalent groups.
- any one of Ar 1 and Ar 2 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nuclear carbon atoms. .
- L 1 , L 2 and L are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear carbon atoms, or A substituted or unsubstituted fluorenylene group.
- R is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
- n is an integer of 0 to 5, and when n is 2 or more, a plurality of Rs may be the same or different.
- a plurality of R groups may be bonded to each other to form a carbocyclic aliphatic ring or a carbocyclic aromatic ring. The nitrogen-containing heterocyclic derivative represented by this.
- HAr-L-Ar'-Ar 2 (In the formula, HAr is a nitrogen-containing heterocycle having 3 to 40 carbon atoms which may have a substituent, and L is a single bond and having 6 to 60 carbon atoms which may have a substituent.
- a fluorolenylene group, and Ar 1 is A divalent aromatic hydrocarbon group having 6 to 60 carbon atoms which may have a substituent
- Ar 2 is an aryl group having 6 to 60 carbon atoms which may have a substituent or A nitrogen-containing heterocyclic derivative represented by the following formula: a heteroaryl group having 3 to 60 carbon atoms, which may have a substituent.
- X and Y are each independently a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group, an alkoxy group, an alkyloxy group, a hydroxy group, a substituted or It is an unsubstituted aryl group, a substituted or unsubstituted heterocyclic ring, or a structure in which X and Y are combined to form a saturated or unsaturated ring.
- R to R are independently hydrogen, halo
- alkyl groups having 1 to 6 carbon atoms alkoxy groups, aryloxy groups, perfluoroalkyl groups, perfluoroalkoxy groups, amino groups, alkyl carbo yl groups, aryl carbo- Group, alkoxycarbonyl group, aryloxycarbonyl group, azo group, alkylcarbonyloxy group, arylcarbonyl group, alkoxycarboxoxy group, aryloxycarboxyl group, sulfyl group, Sulfol group, sulfar group, silyl group, strong rubamoyl group, aryl group, heterocyclic group, alkenyl group, alkynyl group, nitro group, formyl group, nitroso group, formyloxy group, isocyano group, cyanate group, isocyanate Group, thiocyanate group, isothiocyanate group or cyano group or adjacent Is a structure substitute
- R 1 to R and Z are each independently a hydrogen atom, saturated or unsaturated carbonization
- a hydrogen group, an aromatic group, a heterocyclic group, a substituted amino group, a substituted boryl group, an alkoxy group or an aryloxy group, and X, Y and Z are each independently a saturated or unsaturated carbonization.
- Z and Z substituents may be bonded to each other to form a condensed ring.
- N is 1.
- Q 1 and Q 2 each independently represent a ligand represented by the following general formula (G), and L represents a halogen atom, a substituted or unsubstituted alkyl group, substituted or unsubstituted A substituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, OR 1 (where R 1 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group; , Substituted or unsubstituted aryl group, substituted or unsubstituted heterocyclic group) or — O Ga Q 3 (Q 4 ) (Q 3 and Q 4 are the same as Q 1 and Q 2 ) Arrangement Represents a quantifier. ]
- rings A 1 and A 2 are 6-membered aryl rings condensed with each other and may have a substituent.
- This metal complex is strong as an n-type semiconductor and has a high electron injection capability. Furthermore, since the generation energy at the time of complex formation is low, the bond between the metal and the ligand of the formed metal complex is strengthened, and the fluorescence quantum efficiency as a light emitting material is also increasing.
- substituents of the rings A 1 and A 2 forming the ligand of the general formula (G) include chlorine, bromine, iodine, halogen atoms of fluorine, methyl group, ethyl group, propyl group, A substituted or unsubstituted alkyl group such as a propyl group, sec butyl group, tert butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group or trichloromethyl group, a phenyl group, or a naphthyl group 3-methylphenyl group, 3-methoxyphenyl group, 3-fluorophenyl group, 3-trichloromethylphenyl group, 3-trifluoromethylphenyl group, 3-- trophyl- Substituted or unsubstituted aryl groups such as thiol groups, methoxy groups, n-butoxy groups, tert-
- aryl groups pyridyl groups, birazinyl groups, pyrimidinyl groups, pyridazinyl groups, triazyl groups, indolinyl groups, quinolinyl groups, acrylidinyl groups, Pyrrolidyl group, dioxal group, piperidyl group, morpholydyl group, piperazyl group, triachur group, carbazolyl group, fuller group, thiofzole group, oxazolyl group, oxadiazolyl group, benzo Oxazolyl, thiazolyl, thiadiazolyl, benzothiazolyl, triazolyl, imidazolyl, benzimi There are heterocyclic groups such as a dazolyl group and a plaque group. Further, the above substituents may be bonded to each other to form a further 6-membered aryl ring or heterocyclic ring.
- a preferred form of the organic EL device of the present invention is a device containing a reducing dopant in an electron transporting region or an interface region between the cathode and the organic layer.
- the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earths.
- Metal oxides, alkaline earth metal halides, rare earth metal oxides or rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes, rare earth metal organic complexes At least one substance selected from the group can be suitably used. More specifically, preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV), and Cs (work function: 1). 95eV) Force Group Force At least one selected alkali metal, Ca (work function: 2.9 eV;), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2.
- a work function of 2.9 eV or less including at least one alkaline earth metal selected from the group consisting of 52 eV).
- a more preferable reducing dopant is at least one alkali metal selected from the group force consisting of K, Rb and Cs, more preferably Rb or Cs, and most preferably Cs. .
- These alkali metals can improve the emission brightness and extend the life of organic EL devices by adding a relatively small amount to the electron injection region where the reducing ability is high.
- a reducing dopant having a work function of 2.9 eV or less a combination of these two or more alkali metals is also preferred.
- combinations containing Cs for example, Cs and Na, Cs and K, Cs And a combination of Rb or Cs, Na and ⁇ .
- Cs for example, Cs and Na, Cs and K, Cs And a combination of Rb or Cs, Na and ⁇ .
- an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer.
- an insulator at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides is used. I like it. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
- preferred alkali metal chalcogenides include, for example, Li 0, LiO, Na S, Na Se and NaO.
- alkaline earth metal chalcogenide examples include CaO, BaO, SrO, BeO, BaS and CaSe.
- Preferred alkali metal halides include, for example, LiF, NaF, KF, LiCl, KC1, and NaCl.
- Preferred alkaline earth metal halides include, for example, CaF, BaF, SrF, M
- Examples include fluorides such as 2 2 2 gF and BeF, and halides other than fluorides.
- a semiconductor constituting the electron transport layer an oxide containing at least one element of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb and Zn , Nitrides or oxynitrides, or a combination of two or more thereof.
- the inorganic compound constituting the electron transport layer is preferably a microcrystalline or amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
- the cathode in order to inject electrons into the electron injecting / transporting layer or the light emitting layer, a material having a small work function (4 eV or less) metal, an alloy, an electrically conductive compound, and a mixture thereof is used.
- electrode materials include sodium, sodium 'potassium alloy, magnesium, lithium, magnesium' silver alloy, aluminum / acid aluminum, aluminum 'lithium alloy, indium, and rare earth metals. It is done.
- This cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
- the transmittance for the light emission of the cathode is preferably larger than 10%.
- the sheet resistance as a cathode is several hundred ⁇ or less.
- the preferred film thickness is usually ⁇ ! To 1 m, preferably 50 to 200 nm.
- organic EL devices apply an electric field to ultra-thin films, pixel defects are likely to occur due to leaks and shorts. In order to prevent this, it is preferable to insert an insulating thin film layer between the pair of electrodes.
- Examples of materials used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, and titanium oxide. , Silicon oxide, acid gel germanium , Silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide, and the like, and a mixture or laminate thereof may be used.
- anode By forming the anode, the light-emitting layer, the hole injection 'transport layer, and the electron injection' transport layer as necessary, and the cathode by forming the anode and the light-emitting layer, if necessary, by the materials and formation methods exemplified above, and further forming the cathode
- An element can be manufactured.
- An organic EL element can also be fabricated from the cathode to the anode in the reverse order.
- an organic EL device having a configuration in which an anode, a hole injection layer, a Z light emitting layer, a Z electron injection layer, and a Z cathode are sequentially provided on a light transmitting substrate will be described.
- a thin film made of an anode material is formed on a suitable translucent substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm, to produce an anode.
- a hole injection layer is provided on the anode.
- the hole injection layer can be formed by a vacuum deposition method, a spin coating method, a casting method, an LB method, or the like, but a homogeneous film can be obtained immediately and pinholes are generated. It is preferable to form by a vacuum vapor deposition method.
- the deposition conditions vary depending on the compound used (material of the hole injection layer), the crystal structure and recombination structure of the target hole injection layer, etc.
- the formation of the light emitting layer in which the light emitting layer is provided on the hole injection layer is also performed using a desired organic light emitting material by an organic light emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting.
- a method such as vacuum deposition, sputtering, spin coating, or casting.
- the deposition conditions vary depending on the compound used, but can generally be selected from the same condition range as the hole injection layer.
- an electron injection layer is provided on the light emitting layer.
- a vacuum evaporation method because it is necessary to obtain a homogeneous film.
- the vapor deposition conditions can be selected from the same condition ranges as those for the hole injection layer and the light emitting layer.
- the aromatic amine derivative of the present invention varies depending on which layer in the emission band or the hole transport band, it can be co-deposited with other materials when using the vacuum deposition method. .
- a spin coat method it can be included by mixing with other materials.
- a cathode can be stacked to obtain an organic EL device.
- the cathode also has a metallic force, and vapor deposition and sputtering can be used. In order to protect the underlying organic layer from the damage when forming the film, vacuum deposition is preferred. It is preferable to fabricate the organic EL element from the anode to the cathode consistently by a single vacuum.
- the method for forming each layer of the organic EL device of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used.
- the organic thin film layer containing the compound represented by the general formula (1) used in the organic EL device of the present invention is a vacuum deposition method, a molecular beam deposition method (MBE method) or a dating method of a solution dissolved in a solvent, It can be formed by a known method such as a spin coating method, a casting method, a bar coating method, or a roll coating method.
- each organic layer of the organic EL device of the present invention is not particularly limited, but in general, if the film thickness is too thin, defects such as pinholes are generated. Usually, the range of several nm to 1 ⁇ m is preferable because of worsening.
- a direct current voltage When a direct current voltage is applied to the organic EL element, light emission can be observed by applying a voltage of 5 to 40 V with the anode set to + and the cathode set to one polarity. In addition, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Furthermore, when AC voltage is applied, uniform light emission is observed only when the anode is + and the cathode is of the same polarity.
- the alternating current waveform to be applied may be arbitrary.
- a 200 ml three-necked flask was charged with 20.0 g of 4-bromobiphenyl (product of Tokyo Chemical Industry Co., Ltd.), 8.64 g of sodium tbutoxy (manufactured by Wako Pure Chemical Industries), and 84 mg of palladium acetate (manufactured by Wako Pure Chemical Industries, Ltd.)
- Add a stir bar set rubber caps on both sides of the flask, set a reflux snake in the center neck, set a balloon filled with three-way cock and argon gas on it, and use a vacuum pump in the system.
- the argon gas in the balloon was replaced once.
- the flask was set in an oil bath, and the temperature was gradually raised to 120 ° C. while stirring the solution. Seven hours later, the oil bath flask was removed to terminate the reaction, and the mixture was left under an argon atmosphere for 12 hours.
- the reaction solution was transferred to a separatory funnel, 600 ml of dichloromethane was added to dissolve the precipitate, washed with 120 ml of saturated Japanese brine, and the organic layer was dried over anhydrous potassium carbonate.
- the solvent of the organic layer obtained by filtering out potassium carbonate was distilled off, and 400 ml of toluene and 80 ml of ethanol were added to the resulting residue, and the residue was heated to 80 ° C. with a drying tube to completely dissolve the residue. Then, it was left to stand for 12 hours and recrystallized by cooling to room temperature.
- the precipitated crystals were separated by filtration and vacuum dried at 60 ° C. to obtain 13.5 g of N, N-di (4-biphenyl) monobenzylamine.
- N, N diphenylamine 1058 g (Tokyo Chemical Industry Co., Ltd.), 4, 4, Jodhbiphenol 1953 g (Wako Pure Chemical Industries, Ltd.), potassium carbonate 1296 g (Wako Pure Chemical Industries, Ltd.), copper powder 39.8 g (manufactured by Wako Pure Chemical Industries, Ltd.) and decalin 4L (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and reacted at 200 ° C. for 6 days. After the reaction, the mixture was filtered while hot, the insoluble matter was washed with toluene, and the filtrate was combined and concentrated.
- a glass substrate with a transparent electrode having a thickness of 25 mm X 75 mm X 1.1 mm was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
- a glass substrate with a transparent electrode line after cleaning is attached to a substrate holder of a vacuum deposition apparatus.
- the following compound ⁇ 232 having a film thickness of 60 nm is formed so as to cover the transparent electrode on the surface where the transparent electrode line is formed.
- a film was formed.
- This H232 film functions as a hole injection layer.
- the compound HI layer having a thickness of 20 nm was formed as a hole transport material.
- This film functions as a hole transport layer.
- the following compound EM1 having a film thickness of 40 nm was deposited to form a film.
- the following amine compound D1 having a styryl group was deposited as a luminescent molecule so that the weight ratio of EM1 to D1 was 40: 2. This film functions as a light-emitting layer To do.
- Alq film having a thickness of lOnm was formed. This functions as an electron injection layer. Thereafter, Li (Li source: manufactured by Saesgetter), which is a reducing dopant, and Alq were vapor-deposited to form an Alq: Li film (film thickness lOnm) as an electron injection layer (cathode). On this Alq: Li film, metal A1 was deposited to form a metal cathode, and an organic EL device was formed.
- Li Li source: manufactured by Saesgetter
- Luminous efficiency was measured and the luminescent color was observed.
- Luminous efficiency was measured using Minolta CS1000, and the luminous efficiency of lOmAZcm 2 was calculated.
- Table 1 shows the results of measuring the half life of light emission with an initial luminance of 5000 nits, room temperature, and DC constant current drive.
- Example 1 an organic EL device was produced in the same manner except that the compound shown in Table 1 was used instead of compound HI as the hole transport material.
- Table 1 shows the results of measuring the luminous efficiency of the obtained organic EL device, observing the luminescent color, and measuring the half-life of luminescence under the condition of Sarako, initial luminance of 5000 nits, room temperature, and DC constant current.
- An organic EL device was produced in the same manner as in Example 1, except that Comparative Compound 1 (Comparative Example 1) was used instead of Compound HI as the hole transport material.
- Table 1 shows the results of measuring the luminous efficiency of the obtained organic EL device, observing the luminescent color, and measuring the half-life of luminescence under the condition of Sarako, initial luminance of 5000 nits, room temperature, and DC constant current.
- An organic EL device was produced in the same manner as in Example 1 except that the following arylamine compound D2 was used instead of the amine compound D1 having a styryl group.
- Me is a methyl group.
- the emission efficiency of the obtained organic EL device was measured and found to be 5.2 cdZA, and the emission color was blue. Furthermore, the half-life of light emission measured with an initial luminance of 5000 nits, room temperature, and DC constant current drive was 440 hours. [Chemical 30]
- An organic EL device was produced in the same manner as in Example 6 except that the comparative compound 1 was used instead of the compound HI as the hole transport material.
- the light emission efficiency of the obtained organic EL device was measured and found to be 4.8 cdZA, and the emission color was blue. Furthermore, the half-life of light emission measured with an initial luminance of 5000 nits, room temperature, and DC constant current drive was 270 hours.
- the aromatic amine derivative of the present invention and the organic EL device using the same have improved yield and long lifetime when producing an organic EL device in which molecules are difficult to crystallize. It is. For this reason, the organic EL device of the present invention is extremely useful as a highly practical device.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electroluminescent Light Sources (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
明 細 書
芳香族ァミン誘導体及びそれを用いた有機エレクト口ルミネッセンス素子 技術分野
[0001] 本発明は、芳香族ァミン誘導体及びそれを用いた有機エレクト口ルミネッセンス (EL )素子に関し、特に、分子が結晶化しにくぐ有機 EL素子を製造する際の歩留りが向 上し、寿命が長い有機 EL素子及びそれを実現する芳香族ァミン誘導体に関するも のである。
背景技術
[0002] 有機 EL素子は、電界を印加することより、陽極より注入された正孔と陰極より注入さ れた電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自発光 素子である。イーストマン 'コダック社の C. W. Tangらによる積層型素子による低電 圧駆動有機 EL素子の報告(C.W. Tang, S.A. Vanslyke,アプライドフィジックスレター ズ (Applied Physics Letters),51卷、 913頁、 1987年等)がなされて以来、有機材料 を構成材料とする有機 EL素子に関する研究が盛んに行われている。 Tangらは、トリ ス(8—ヒドロキシキノリノールアルミニウム)を発光層に、トリフエ-ルジァミン誘導体を 正孔輸送層に用いている。積層構造の利点としては、発光層への正孔の注入効率を 高めること、陰極より注入された電子をブロックして再結合により生成する励起子の生 成効率を高めること、発光層内で生成した励起子を閉じ込めること等が挙げられる。 この例のように有機 EL素子の素子構造としては、正孔輸送 (注入)層、電子輸送発 光層の 2層型、又は正孔輸送 (注入)層、発光層、電子輸送 (注入)層の 3層型等がよ く知られている。こうした積層型構造素子では注入された正孔と電子の再結合効率を 高めるため、素子構造や形成方法の工夫がなされている。
[0003] 通常、高温環境下で有機 EL素子を駆動させたり、保管すると、発光色の変化、発 光効率の低下、駆動電圧の上昇、発光寿命の短時間化等の悪影響が生じる。これを 防ぐためには正孔輸送材料のガラス転移温度 (Tg)を高くする必要があった。そのた めに正孔輸送材料の分子内に多くの芳香族基を有する必要があり(例えば、特許文 献 1の芳香族ジァミン誘導体、特許文献 2の芳香族縮合環ジァミン誘導体)、通常 8
〜12個のベンゼン環を有する構造が好ましく用いられている。
し力しながら、分子内に多くの芳香族基を有すると、これらの正孔輸送材料を用い て薄膜を形成して有機 EL素子を作製する際に結晶化が起こりやすぐ蒸着に用いる るつぼの出口を塞いだり、結晶化に起因する薄膜の欠陥が発生し、有機 EL素子の 歩留り低下を招くなどの問題が生じていた。また、分子内に多くの芳香族基を有する 化合物は、一般的にガラス転移温度 (Tg)は高いものの、昇華温度が高ぐ蒸着時の 分解や蒸着が不均一に形成される等の現象が起こると考えられるために寿命が短い という問題があった。
一方、非対称な芳香族ァミン誘導体が開示された公知文献がある。例えば、特許 文献 3に、非対称な構造を有する芳香族ァミン誘導体が記載されているものの具体 的な実施例はなぐ非対称ィ匕合物の特徴についても一切記載されていない。また、 特許文献 4には、フエナントレンを有する非対称な芳香族ァミン誘導体が実施例とし て記載されているが、対称の化合物と同列に扱われているとともに、非対称化合物の 特徴については一切記載されていない。また、非対称化合物は特殊な合成法が必 要であるにもかかわらず、これらの特許には非対称化合物の製造方法に関する記載 が明示されていない。さらに、特許文献 5には、非対称な構造を有する芳香族ァミン 誘導体の製造法にっ 、ては記載されて 、るものの、非対称化合物の特徴につ!、て は記載されていない。特許文献 6には、ガラス転移温度の高い熱的に安定な非対称 化合物の記載がある力 力ルバゾールを有する化合物しか例示がない。また、本発 明者らがこの化合物を用いて素子を作成した結果、寿命が短いことが問題であること が分かった。
以上のように、長寿命な有機 EL素子の報告があるものの、未だ必ずしも充分なもの とはいえない。そのため、より優れた性能を有する有機 EL素子の開発が強く望まれ ていた。
特許文献 1 :米国特許第 4, 720, 432号明細書
特許文献 2 :米国特許第 5, 061, 569号明細書
特許文献 3 :特開平 8— 48656号公報
特許文献 4:特開平 11— 135261号公報
特許文献 5 :特開 2003— 171366号公報
特許文献 6 :米国特許第 6, 242, 115号明細書
発明の開示
発明が解決しょうとする課題
[0004] 本発明は、前記の課題を解決するためになされたもので、分子が結晶化しにくく、 有機 EL素子を製造する際の歩留りが向上し、寿命が長い有機 EL素子及びそれを 実現する芳香族ァミン誘導体を提供することを目的とする。
課題を解決するための手段
[0005] 本発明者らは、前記目的を達成するために、鋭意研究を重ねた結果、下記一般式
(1)で表される非対称な構造を有する新規な芳香族ァミン誘導体を有機 EL素子用 材料として用い、特に正孔輸送材料として用いると、前記の課題を解決することを見 出し、本発明を完成するに至った。
また、ジァミン化合物において、一つのァミンに結合する 2つのァリール基が同一で あり、かつ連結基に結合する 2種のァミンが異なるジァミンィ匕合物は、立体障害性が あるため分子間の相互作用が小さいことから、結晶化が抑制され、有機 EL素子を製 造する歩留を向上させ、さらには、低い昇華温度で蒸着できるため、蒸着時の分子 の分解が抑制され、得られる有機 EL素子の寿命を長くする効果があり、特に青色発 光素子と組み合わせることにより、顕著な長寿命効果が得られることが判った。
[0006] すなわち、本発明は、下記一般式 (1)で表される芳香族ァミン誘導体を提供するも のである。
[一般式(1)において、 Lは、置換もしくは無置換の核原子数 5〜50のァリーレン基か らなる連結基、又は、複数の置換もしくは無置換の核原子数 5〜50のァリーレン基を 単結合、酸素原子、硫黄原子、窒素原子又は飽和もしくは不飽和の核炭素数 1〜20 の 2価の脂肪族炭化水素基で結合した連結基である。
Aは、下記一般式(2)で表されるジァリールアミノ基であり、
[0007] [化 1]
A
Bは、下記一般式(3)で1/表Nされるジァリールアミノ基である。
[化 2]
[0008] ただし、 Αと Βは同一ではない。また、一般式(I)の芳香族ァミン誘導体における置 換基を除く炭素数の合計が 55以上である。
{一般式(2)及び(3)において、 Ar 及び Ar は、それぞれ独立に、置換もしくは無
I 2
置換の核原子数 5〜50のァリール基である。ただし、 Aと Bは同一ではない。 }] [0009] また、本発明は、陰極と陽極間に少なくとも発光層を含む一層又は複数層力もなる 有機薄膜層が挟持されている有機 EL素子において、該有機薄膜層の少なくとも I層 力 前記芳香族ァミン誘導体を単独もしくは混合物の成分として含有する有機 EL素 子を提供するものである。
発明の効果
[0010] 本発明の芳香族ァミン誘導体及びそれを用いた有機 EL素子は、分子が結晶化し にくぐ有機 EL素子を製造する際の歩留りが向上し、寿命が長いものである。
発明を実施するための最良の形態
[OOll] 本発明の芳香族ァミン誘導体は、下記一般式(I)で表されるものである。
A-L-B (I)
一般式(I)において、 Lは、(I)置換もしくは無置換の核原子数 5〜50のァリーレン
基からなる連結基、又は (II)複数の置換もしくは無置換の核原子数 5〜50のァリーレ ン基を (Π-1)単結合, (Π- 2)酸素原子(一 0— ) , (Π- 3)硫黄原子(一 S— ) , (Π- 4)窒 素原子( NH— , — NR— [Rは置換基] )又は(Π-5)飽和もしくは不飽和の核炭素 数 1〜20の 2価の脂肪族炭化水素基で結合した連結基である。
[0012] 前記 (I)及び (II)における核原子数 5〜50のァリーレン基としては、例えば、 1, 4 フエ-レン基、 1, 2 フエ-レン基、 1, 3 フエ-レン基、 1, 4 ナフチレン基、 2, 6 —ナフチレン基、 1, 5 ナフチレン基、 9, 10 アントラ-レン基、 9, 10 フエナント レニレン基、 3, 6 フエナントレ-レン基、 1, 6 ピレニレン基、 2, 7 ピレニレン基、 6, 12 クリセ二レン基、 1, 1 'ービフエ二レン基、 4, 4'ービフエ二レン基、 3, 3,ービ フエ-レン基、 2, 2, 一ビフエ-レン基、 2, 7 フルォレ-レン基、 2, 5 チォフエ- レン基、 2, 5 シローリレン基、 2, 5—ォキサジァゾーリレン基、ターフェ-レン基等 が挙げられる。これらの中で、好ましくは、 1, 4 フエ-レン基、 1, 2 フエ二レン基、 1, 3 フエ-レン基、 1, 4 ナフチレン基、 9, 10 アントラ-レン基、 6, 12 クリセ 二レン基、 4, 4,一ビフエ-レン基、 3, 3,一ビフエ二レン基、 2, 2,一ビフエ二レン基、 2, 7 フルォレ-レン基である。
[0013] 前記 (Π-5)における飽和もしくは不飽和の核炭素数 1〜20の 2価の脂肪族炭化水 素基としては、直鎖,分岐,環状のいずれであってもよぐ例えば、メチレン基、ェチレ ン基、プロピレン基、イソプロピレン基、ェチリデン基、シクロへキシリデン基、ァダマン チレン基等が挙げられる。
Lは、フエ-レン基、ビフエ-レン基、ターフェ-レン基、フルォレ-レン基であると好 ましぐビフエ二レン基がさらに好ましぐ 1, 1 'ービフエ二レン基が特に好ましい。 また、 Lの示す各基の置換基としては、置換もしくは無置換の核原子数 5〜50のァ リール基、置換もしくは無置換の炭素数 1〜50のアルキル基、置換もしくは無置換の 炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6〜50のァラルキル基 、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、置換もしくは無置換の 核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭素数 2〜50のアルコキ シカルボニル基、置換もしくは無置換の核原子数 5〜50のァリール基で置換された アミノ基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基又はカルボキシル基等が
挙げられる。
[0014] 一般式(1)において、 Aは、下記一般式(2)で表されるジァリールアミノ基である。
[化 3]
[0015] 一般式(1)において、 Bは、下記一般式(3)で表されるジァリールアミノ基である。
[化 4]
[0016] ただし、 Αと Βは同一ではない。
本発明の一般式 (1)の芳香族ァミン誘導体は、置換基を除く炭素数の合計が 55以 上であり、 66以上であると好ましく、 66〜84であるとさらに好ましい。
また、本発明の一般式(1)の芳香族ァミン誘導体は、ベンゼン環を 10個以上有す ると好ましく、 10〜14個であるとさらに好ましい。
一般式(2)及び(3)において、 Ar 及び Arは、それぞれ独立に、置換もしくは無
1 2
置換の核原子数 5〜50のァリール基である。
[0017] 前記 Ar 及び Arのァリール基としては、例えば、フエ二ル基、 1 ナフチル基、 2
1 2
ナフチル基、 1 アントリル基、 2 アントリル基、 9 アントリル基、 1—フエナントリ ル基、 2 フヱナントリル基、 3 フヱナントリル基、 4ーフヱナントリル基、 9—フエナン トリル基、 1 ナフタセ-ル基、 2 ナフタセ-ル基、 9 ナフタセ-ル基、 1 ピレ- ル基、 2 ピレ-ル基、 4ーピレ-ル基、 2 ビフヱ-ルイル基、 3 ビフヱ-ルイル基
、 4—ビフエ-ルイル基、 p ターフェ-ルー 4—ィル基、 p ターフェ-ルー 3—ィル 基、 ρ ターフェ-ルー 2—ィル基、 m—ターフェ-ルー 4—ィル基、 m—ターフェ- ルー 3—ィル基、 m—ターフェ-ルー 2—ィル基、 o トリル基、 m—トリル基、 p トリ ル基、 p—t—ブチルフエ-ル基、 p— (2 フエ-ルプロピル)フエ-ル基、 3 メチル —2 ナフチル基、 4—メチル 1—ナフチル基、 4—メチル 1—アントリル基、 4, - メチルビフエ-ルイル基、 4"—tーブチルー p—ターフェ-ルー 4ーィル基、フルオラ ンテュル基、フルォレニル基、 1 ピロリル基、 2 ピロリル基、 3 ピロリル基、ピラジ -ル基、 2 ピリジ-ル基、 3 ピリジ-ル基、 4 ピリジ-ル基、 1 インドリル基、 2 —インドリル基、 3—インドリル基、 4—インドリル基、 5—インドリル基、 6—インドリル基 、 7—インドリル基、 1—イソインドリル基、 2—イソインドリル基、 3—イソインドリル基、 4 —イソインドリル基、 5—イソインドリル基、 6—イソインドリル基、 7—イソインドリル基、 2 フリル基、 3 フリル基、 2 べンゾフラ-ル基、 3 べンゾフラ-ル基、 4一べンゾ フラ-ル基、 5 べンゾフラ-ル基、 6 べンゾフラ-ル基、 7 べンゾフラ-ル基、 1 イソべンゾフラ-ル基、 3—イソべンゾフラ-ル基、 4 イソべンゾフラ-ル基、 5—ィ ソベンゾフラ -ル基、 6—イソべンゾフラ-ル基、 7—イソべンゾフラ-ル基、キノリル基 、 3—キノリル基、 4 キノリル基、 5—キノリル基、 6—キノリル基、 7—キノリル基、 8— キノリル基、 1 イソキノリル基、 3 イソキノリル基、 4 イソキノリル基、 5 イソキノリ ル基、 6 イソキノリル基、 7 イソキノリル基、 8 イソキノリル基、 2 キノキサリニル 基、 5 キノキサリニル基、 6 キノキサリニル基、 1一力ルバゾリル基、 2—力ルバゾリ ル基、 3—力ルバゾリル基、 4一力ルバゾリル基、 9一力ルバゾリル基、 1 フエナンスリ ジ-ル基、 2 フエナンスリジ-ル基、 3 フエナンスリジ-ル基、 4 フエナンスリジ- ル基、 6—フエナンスリジ-ル基、 7—フエナンスリジ-ル基、 8—フエナンスリジ -ル基 、 9 フエナンスリジ-ル基、 10 フエナンスリジ-ル基、 1—アタリジ-ル基、 2 ァク リジ-ル基、 3—アタリジ-ル基、 4—アタリジ-ル基、 9—アタリジ-ル基、 1, 7 フエ ナンスロリン— 2—ィル基、 1, 7 フエナンスロリン— 3—ィル基、 1, 7 フエナンスロ リン 4ーィル基、 1, 7 フエナンスロリン— 5—ィル基、 1, 7 フエナンスロリン— 6 —ィル基、 1, 7 フエナンスロリン— 8—ィル基、 1, 7 フエナンスロリン— 9—ィル基 、 1, 7 フエナンスロリン— 10—ィル基、 1, 8 フエナンスロリン— 2—ィル基、 1, 8
—フエナンスロリン一 3—ィル基、 1, 8 フエナンスロリン一 4—ィル基、 1, 8 フエナ ンスロリン一 5—ィル基、 1, 8 フエナンスロリン一 6—ィル基、 1, 8 フエナンスロリン —7—ィル基、 1, 8 フエナンスロリン— 9—ィル基、 1, 8 フエナンスロリン— 10— ィル基、 1, 9 フエナンスロリン— 2—ィル基、 1, 9 フエナンスロリン— 3—ィル基、 1, 9 フエナンスロリン一 4—ィル基、 1, 9 フエナンスロリン一 5—ィル基、 1, 9 フ ェナンスロリン— 6—ィル基、 1, 9 フエナンスロリン— 7—ィル基、 1, 9 フエナンス 口リン— 8—ィル基、 1, 9 フエナンスロリン— 10—ィル基、 1, 10 フエナンスロリン —2—ィル基、 1, 10 フエナンスロリン— 3—ィル基、 1, 10 フエナンスロリン— 4— ィル基、 1, 10 フエナンスロリン— 5—ィル基、 2, 9 フエナンスロリン— 1—ィル基 、 2, 9 フエナンスロリン— 3—ィル基、 2, 9 フエナンスロリン— 4—ィル基、 2, 9— フエナンスロリン一 5—ィル基、 2, 9 フエナンスロリン一 6—ィル基、 2, 9 フエナン スロリン— 7—ィル基、 2, 9 フエナンスロリン— 8—ィル基、 2, 9 フエナンスロリン — 10—ィル基、 2, 8 フエナンスロリン一 1—ィル基、 2, 8 フエナンスロリン一 3— ィル基、 2, 8 フエナンスロリン一 4—ィル基、 2, 8 フエナンスロリン一 5—ィル基、 2, 8 フエナンスロリン一 6—ィル基、 2, 8 フエナンスロリン一 7—ィル基、 2, 8 フ ェナンスロリン— 9—ィル基、 2, 8 フエナンスロリン— 10—ィル基、 2, 7 フエナン スロリン— 1—ィル基、 2, 7 フエナンスロリン— 3—ィル基、 2, 7 フエナンスロリン —4—ィル基、 2, 7 フエナンスロリン一 5—ィル基、 2, 7 フエナンスロリン一 6—ィ ル基、 2, 7—フエナンスロリンー8—ィル基、 2, 7—フエナンスロリンー9ーィル基、 2, 7 フエナンスロリン 10—ィル基、 1 フエナジ-ル基、 2 フエナジ-ル基、 1ーフ エノチアジ-ル基、 2 フエノチアジ-ル基、 3 フエノチアジ-ル基、 4ーフエノチア ジ-ル基、 10—フエノチアジ-ル基、 1 フエノキサジ-ル基、 2—フエノキサジ-ル 基、 3 フエノキサジ-ル基、 4 フエノキサジ-ル基、 10 フエノキサジ-ル基、 2— ォキサゾリル基、 4ーォキサゾリル基、 5—ォキサゾリル基、 2 ォキサジァゾリル基、 5 ォキサジァゾリル基、 3 フラザ-ル基、 2 チェ-ル基、 3 チェ-ル基、 2—メチ ルピロールー1ーィル基、 2 メチルピロ一ルー 3—ィル基、 2 メチルピロ一ルー 4 ーィル基、 2 メチルピロ一ルー 5—ィル基、 3 メチルピロ一ルー 1ーィル基、 3—メ チルピロールー2—ィル基、 3 メチルピロ一ルー 4ーィル基、 3 メチルピロ一ルー 5
ーィル基、 2— t—ブチルピロ一ルー 4ーィル基、 3—(2 フエ-ルプロピル)ピロール 1ーィル基、 2—メチルー 1 インドリル基、 4ーメチルー 1 インドリル基、 2—メチ ルー 3 インドリル基、 4ーメチルー 3 インドリル基、 2 t ブチル 1 インドリル基、 4 t ブチル 1 インドリル基、 2 t ブチル 3 インドリル基、 4 t ブチル 3—ィ ンドリル基等が挙げられる。
これらの中でも、フエ-ル基、ビフヱ-ル基、ターフェ-ル基、フルォレ -ル基、ナフ チル基が好ましぐビフエニル基、ターフェニル基がさらに好ましい。
[0018] なお、前記ァリール基は、さらに置換基により置換されていてもよぐ好ましい置換 基としては、炭素数 1〜6のアルキル基(ェチル基、メチル基、 i プロピル基、 n—プ 口ピル基、 s ブチル基、 t ブチル基、ペンチル基、へキシル基、シクロペンチル基 、シクロへキシル基等)、炭素数 1〜6のアルコキシ基 (エトキシ基、メトキシ基、 i プロ ポキシ基、 n—プロポキシ基、 s—ブトキシ基、 t—ブトキシ基、ペントキシ基、へキシル ォキシ基、シクロペントキシ基、シクロへキシルォキシ基等)、核原子数 5〜40のァリ ール基、核原子数 5〜40のァリール基で置換されたァミノ基、核原子数 5〜40のァリ 一ル基を有するエステル基、炭素数 1〜6のアルキル基を有するエステル基、シァノ 基、ニトロ基、ハロゲン原子 (塩素、臭素、ヨウ素等)が挙げられる。
[0019] 前記一般式(1)で表される本発明の芳香族ァミン誘導体は、下記一般式 (4)又は( 5)で表される化合物であると好ま 、。
[化 5]
一般式 (4)において、 R くは無置換
1〜Rは、それぞれ独立に、水素原子、置換もし
5
の核原子数 5〜50のァリール基、置換もしくは無置換の炭素数 1〜50のアルキル基
、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 2〜50のアルコキシカルボ-ル基、置換もしくは無置換の核原子数 5〜50のァ リール基で置換されたァミノ基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基又 はカルボキシル基である。
一般式 (4)において、 a、 b、 c及び dはそれぞれ 0〜4 (好ましくは 0〜1)の整数であ り、 eは 1〜3 (好ましくは 2〜3)の整数である。
一般式 (4)において、 R〜Rは互いに結合して置換されていてもよい飽和もしくは
1 5
不飽和の 5員環又は 6員環の環状構造を形成してもよ 、。
一般式 (4)において、 Ar〜Arは、それぞれ独立に、置換もしくは無置換の核原
3 6
子数 5〜50のァリール基である。
Ar〜Arのァリール基としては、例えば、置換もしくは無置換のフエ二ル基、置換も
3 6
しくは無置換の a ナフチル基、置換もしくは無置換の /3 ナフチル基、又は置換 もしくは無置換のオルト(o )、メタ (m— )、パラ (p )のビフヱ-ル基等が挙げられ、 無置換のフ ニル基、無置換の a ナフチル基、無置換の β ナフチル基、無置換 のメタ (m—)、パラ (ρ )のビフエ-ル基であると好ましぐ結合位置は o—、 m—又は p であり、 p であると好ましい。
[0021] [ィ匕 6]
[0022] 一般式(5)において、 R〜R は前記 R〜Rと同様であり、 f、i、j及び mはそれぞれ
0〜4 (好ましくは 0〜1)の整数であり、 g、 h、 k、 1及び nはそれぞれ 0〜3 (好ましくは 0 )の整数であり、 oは 1〜3 (好ましくは 2〜3)の整数であり、 p、 q、 r、 s、 t及び uはそれ ぞれ 0〜3 (好ましくは 0)の整数である。
一般式(5)において、 Ar〜Ar は、それぞれ独立に、置換もしくは無置換の核原
7 14
子数 5〜50のァリール基である。
Ar〜Ar のァリール基としては、例えば、置換もしくは無置換のフエ二ル基、置換
7 14
もしくは無置換の α ナフチル基、置換もしくは無置換の β ナフチル基、又は置 換もしくは無置換のオルト(ο )、メタ (m— )、パラ (ρ )のビフヱ-ル基等が挙げら れ、無置換のフヱニル基、無置換の a ナフチル基、無置換の 13 ナフチル基、無 置換のメタ (m—)、パラ (p )のビフエ-ル基であると好ましぐ結合位置は o—、 m— 又は p であり、 m—又は p であると好ましい。
一般式 (4)及び(5)における R〜R の置換もしくは無置換の核原子数 5〜50のァ
1 14
リール基の例としては、前記 Ar及び Arのァリール基で説明したものと同様の例が挙
1 2
げられる。
また、前記アルキル基としては、メチル基、ェチル基、プロピル基、イソプロピル基、 n ブチル基、 s ブチル基、イソブチル基、 t ブチル基、 n ペンチル基、 n—へキ シル基、 n—へプチル基、 n—ォクチル基、ヒドロキシメチル基、 1ーヒドロキシェチル 基、 2—ヒドロキシェチル基、 2—ヒドロキシイソブチル基、 1 , 2—ジヒドロキシェチル 基、 1 , 3 ジヒドロキシイソプロピル基、 2, 3 ジヒドロキシー t ブチル基、 1 , 2, 3 トリヒドロキシプロピル基、クロロメチル基、 1 クロ口ェチル基、 2—クロ口ェチル基、
2 クロ口イソブチル基、 1 , 2 ジクロロェチル基、 1 , 3 ジクロロイソプロピル基、 2,
3 ジクロロ一 t ブチル基、 1 , 2, 3 トリクロ口プロピル基、ブロモメチル基、 1—ブ ロモェチル基、 2—ブロモェチル基、 2—ブロモイソブチル基、 1 , 2—ジブロモェチル 基、 1 , 3 ジブロモイソプロピル基、 2, 3 ジブ口モー t—ブチル基、 1 , 2, 3 トリブ ロモプロピル基、ョードメチル基、 1ーョードエチル基、 2—ョードエチル基、 2—ョード イソブチル基、 1 , 2 ジョードエチル基、 1 , 3 ジョードイソプロピル基、 2, 3 ジョ 一ドー t—ブチル基、 1 , 2, 3 トリョードプロピル基、アミノメチル基、 1—アミノエチル 基、 2 アミノエチル基、 2 ァミノイソブチル基、 1 , 2 ジアミノエチル基、 1 , 3 ジ
ァミノイソプロピル基、 2, 3 ジァミノ一 t—ブチル基、 1 , 2, 3 トリァミノプロピル基、 シァノメチル基、 1ーシァノエチル基、 2—シァノエチル基、 2—シァノイソブチル基、 1 , 2 ジシァノエチル基、 1 , 3 ジシァノイソプロピル基、 2, 3 ジシァノー t—ブチル 基、 1 , 2, 3 トリシアノプロピル基、ニトロメチル基、 1— -トロェチル基、 2 -トロェ チル基、 2 -トロイソブチル基、 1 , 2 ジ-トロェチル基、 1 , 3 ジ-トロイソプロピ ル基、 2, 3 ジ-トロー t—ブチル基、 1 , 2, 3 トリ-トロプロピル基、シクロプロピル 基、シクロブチル基、シクロペンチル基、シクロへキシル基、 4ーメチルシクロへキシル 基、 1—ァダマンチル基、 2—ァダマンチル基、 1 ノルボル-ル基、 2—ノルボル- ル基等が挙げられる。
[0024] 前記アルコキシ基は OYで表される基であり、 Yの例としては、前記アルキル基で 説明したものと同様の例が挙げられる。
前記ァラルキル基の例としては、ベンジル基、 1 フエ-ルェチル基、 2—フエニル ェチル基、 1—フエ-ルイソプロピル基、 2—フエ-ルイソプロピル基、フエ-ルー t— ブチノレ基、 a ナフチノレメチノレ基、 1 - a ナフチノレエチノレ基、 2 - a ナフチノレエ チル基、 1 α ナフチルイソプロピル基、 2— a ナフチルイソプロピル基、 β ナ フチルメチル基、 1— β ナフチルェチル基、 2 - β ナフチルェチル基、 1 β— ナフチルイソプロピル基、 2— β ナフチルイソプロピル基、 1 ピロリルメチル基、 2 一(1 ピロリル)ェチル基、 ρ—メチルベンジル基、 m—メチルベンジル基、 o—メチ ノレべンジノレ基、 p クロ口べンジノレ基、 m—クロ口べンジノレ基、 o クロ口べンジノレ基、 p ブロモベンジル基、 m—ブロモベンジル基、 o ブロモベンジル基、 p ョードベ ンジル基、 m—ョードベンジル基、 o ョードベンジル基、 p ヒドロキシベンジル基、 m—ヒドロキシベンジル基、 o ヒドロキシベンジル基、 p ァミノべンジル基、 m—アミ ノベンジル基、 o ァミノべンジル基、 p -トロベンジル基、 m—-トロベンジル基、 o -トロベンジル基、 p シァノベンジル基、 m—シァノベンジル基、 o シァノベンジ ル基、 1—ヒドロキシ一 2—フエ-ルイソプロピル基、 1—クロ口一 2—フエ-ルイソプロ ピル基等が挙げられる。
[0025] 前記ァリールォキシ基は OY'と表され、 Y'の例としては前記 Ar及び Arのァリ
1 2 ール基で説明したものと同様の例が挙げられる。
前記ァリールチオ基は— SY'と表され、 Y'の例としては前記 Ar及び Arのァリー
1 2 ル基で説明したものと同様の例が挙げられる。
前記アルコキシカルボ二ル基は COOYで表される基であり、 Yの例としては、前 記アルキル基で説明したものと同様の例が挙げられる。
前記ァリール基で置換されたァミノ基におけるァリール基の例としては前記 Ar及び
1
Arのァリール基で説明したものと同様の例が挙げられる。
2
前記ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等 が挙げられる。
[0026] 本発明の芳香族ァミン誘導体は、有機 EL素子用材料であると好ましぐ有機 EL素 子用正孔輸送材料であるとさらに好まし 、。
本発明の一般式(1)で表される芳香族ァミン誘導体の具体例を以下に示すが、こ れら例示化合物に限定されるものではない。
[0027] [化 7]
L0Z£/900ZdT/13d
[0028] 次に、本発明の有機 EL素子について説明する。
本発明の有機 EL素子は、陰極と陽極間に少なくとも発光層を含む一層又は複数 層からなる有機薄膜層が挟持されている有機 EL素子において、該有機薄膜層の少 なくとも 1層が、前記芳香族ァミン誘導体を単独もしくは混合物の成分として含有する 本発明の有機 EL素子は、前記有機薄膜層が正孔輸送層を有し、該正孔輸送層が 、本発明の芳香族ァミン誘導体を単独もしくは混合物の成分として含有すると好まし い。さらに、前記正孔輸送層が、主成分として本発明の芳香族ァミン誘導体を含有す ると好まし ヽ。
本発明の芳香族ァミン誘導体は、特に青色系発光する有機 EL素子に用いると好 ましい。
[0029] また、本発明の有機 EL素子は、発光層が、ァリールアミンィ匕合物及び Z又はスチリ ルァミン化合物を含有すると好ま 、。
スチリルァミン化合物としては下記一般式 (I)で表される化合物などが挙げられ、ァ リールアミンィ匕合物としては下記一般式 (II)で表される化合物などが挙げられる。
[0030] [式中、 Ar は、フエ-ル、ビフエ-ル、ターフェ-ル、スチルベン、ジスチリルァリー
15
ルカ 選ばれる基であり、 Ar 及び Ar は、それぞれ水素原子又は炭素数が 6〜2
16 17
0の芳香族基であり、置換されていてもよい。 p'は、 1〜4の整数である。さらに好まし くは Ar 及び されている。]
16 Z又は Ar はスチリル基が置換
17
ここで、炭素数が 6〜20の芳香族基としては、フエニル基、ナフチル基、アントラ- ル基、フエナンスリル基、ターフェ-ル基等が好ましい。
[0031] [化 9]
[0032] [式中、 Ar〜Ar は、それぞれ独立に、置換されていてもよい核炭素数 5〜40のァ
17 19
リール基である。 q,は、 1〜4の整数である。 ]
ここで、核原子数が 5〜40のァリール基としては、フエ-ル、ナフチル、アントラ-ル 、フエナンスリノレ、ピレ -ル、コロニノレ、ビフエ-ル、ターフェ-ル、ピロ一リル、フラ- ル、チォフエニル、ベンゾチォフエニル、ォキサジァゾリル、ジフエ二ルアントラニル、 インドリル、カルバゾリル、ピリジル、ベンゾキノリル、フルオランテニル、ァセナフトフ ルオランテュル、スチルベン等が好ましい。なお、核原子数が 5〜40のァリール基は 、さらに置換基により置換されていてもよぐ好ましい置換基としては、炭素数 1〜6の アルキル基(ェチル基、メチル基、 i—プロピル基、 n—プロピル基、 s ブチル基、 t— ブチル基、ペンチル基、へキシル基、シクロペンチル基、シクロへキシル基等)、炭素 数 1〜6のアルコキシ基(エトキシ基、メトキシ基、 i—プロポキシ基、 n—プロポキシ基、 s ブトキシ基、 t ブトキシ基、ペントキシ基、へキシルォキシ基、シクロペントキシ基 、シクロへキシルォキシ基等)、核原子数 5〜40のァリール基、核原子数 5〜40のァ リール基で置換されたァミノ基、核原子数 5〜40のァリール基を有するエステル基、 炭素数 1〜6のアルキル基を有するエステル基、シァノ基、ニトロ基、ハロゲン原子( 塩素、臭素、ヨウ素等)が挙げられる。
[0033] 以下、本発明の有機 EL素子の素子構成について説明する。
(1)有機 EL素子の構成
本発明の有機 EL素子の代表的な素子構成としては、
(1)陽極 Z発光層 Z陰極
(2)陽極 Z正孔注入層 Z発光層 Z陰極
(3)陽極 Z発光層 Z電子注入層 Z陰極
(4)陽極 Z正孔注入層 Z発光層 Z電子注入層 Z陰極
(5)陽極 z有機半導体層 z発光層 z陰極
(6)陽極 Z有機半導体層 Z電子障壁層 Z発光層 Z陰極
(7)陽極 Z有機半導体層 Z発光層 Z付着改善層 Z陰極
(8)陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子注入層 Z陰極
(9)陽極 Z絶縁層 Z発光層 Z絶縁層 Z陰極
(10)陽極 Z無機半導体層 Z絶縁層 Z発光層 Z絶縁層 Z陰極
(11)陽極 Z有機半導体層 Z絶縁層 Z発光層 Z絶縁層 Z陰極
(12)陽極 z絶縁層 Z正孔注入層 Z正孔輸送層 Z発光層 Z絶縁層 Z陰極
(13)陽極 z絶縁層 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子注入層 Z陰極 などの構造を挙げることができる。
これらの中で通常 (8)の構成が好ましく用いられる力 これらに限定されるものでは ない。
本発明の芳香族ァミン誘導体は、有機 EL素子のどの有機薄膜層に用いてもょ ヽ 力 発光帯域又は正孔輸送帯域に用いることができ、好ましくは正孔輸送帯域、特に 好ましくは正孔輸送層に用いることにより、分子が結晶化しにくぐ有機 EL素子を製 造する際の歩留りが向上する。
本発明の芳香族ァミン誘導体を、有機薄膜層に含有させる量としては、 30〜: LOO モル0 /0が好ましい。
[0034] (2)透光性基板
本発明の有機 EL素子は、透光性の基板上に作製する。ここでいう透光性基板は 有機 EL素子を支持する基板であり、 400〜700nmの可視領域の光の透過率が 50 %以上で平滑な基板が好ま ヽ。
具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ 石灰ガラス、ノ リウム 'ストロンチウム含有ガラス、鉛ガラス、アルミノケィ酸ガラス、ホウ ケィ酸ガラス、ノリウムホウケィ酸ガラス、石英等が挙げられる。またポリマー板として は、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルフアイ ド、ポリサルフォン等を挙げることができる。
[0035] (3)陽極
本発明の有機 EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する機能 を有するものであり、 4. 5eV以上の仕事関数を有することが効果的である。本発明に 用いられる陽極材料の具体例としては、酸化インジウム錫合金 (ITO)、酸ィ匕錫 (NE SA)、インジウム—亜鉛酸ィ匕物 (IZO)、金、銀、白金、銅等が挙げられる。
陽極は、これらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させ ること〖こより作製することができる。
このように発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率 が 10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百 ΩΖ口以下が 好ましい。陽極の膜厚は材料にもよる力 通常 10nm〜l μ m、好ましくは 10〜200n mの範囲で選択される。
(4)発光層
有機 EL素子の発光層は以下 (1)〜(3)の機能を併せ持つものである。
(1)注入機能;電界印加時に陽極又は正孔注入層より正孔を注入することができ、 陰極又は電子注入層より電子を注入することができる機能
(2)輸送機能;注入した電荷 (電子と正孔)を電界の力で移動させる機能
(3)発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能 ただし、正孔の注入されやすさと電子の注入されやすさに違いがあってもよぐまた
、正孔と電子の移動度で表される輸送能に大小があってもよいが、どちらか一方の電 荷を移動することが好まし 、。
この発光層を形成する方法としては、例えば蒸着法、スピンコート法、 LB法等の公 知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましい 。ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、 溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通 常この分子堆積膜は、 LB法により形成された薄膜 (分子累積膜)とは凝集構造、高 次構造の相違や、それに起因する機能的な相違により区分することができる。
また、特開昭 57— 51781号公報に開示されているように、榭脂等の結着剤と材料 化合物とを溶剤に溶力して溶液とした後、これをスピンコート法等により薄膜ィ匕するこ とによっても、発光層を形成することができる。
本発明においては、本発明の目的が損なわれない範囲で、所望により発光層に本 発明の芳香族ァミン誘導体からなる発光材料以外の他の公知の発光材料を含有さ せてもよぐまた、本発明の芳香族ァミン誘導体からなる発光材料を含む発光層に、 他の公知の発光材料を含む発光層を積層してもよい。
[0037] 本発明の芳香族ァミン誘導体と共に発光層に使用できる発光材料又はドーピング 材料としては、例えば、アントラセン、ナフタレン、フエナントレン、ピレン、テトラセン、 コロネン、タリセン、フノレォレセイン、ペリレン、フタ口ペリレン、ナフタ口ペリレン、ぺリノ ン、フタ口ペリノン、ナフタ口ペリノン、ジフエニルブタジエン、テトラフェニルブタジエン 、クマリン、ォキサジァゾール、アルダジン、ビスべンゾキサゾリン、ビススチリル、ピラ ジン、シクロペンタジェン、キノリン金属錯体、ァミノキノリン金属錯体、ベンゾキノリン 金属錯体、ィミン、ジフエ-ルエチレン、ビュルアントラセン、ジァミノカルバゾール、ピ ラン、チォピラン、ポリメチン、メロシアニン、イミダゾールキレートィ匕ォキシノイド化合 物、キナクリドン、ルブレン及び蛍光色素等が挙げられるが、これらに限定されるもの ではない。
[0038] 本発明の芳香族ァミン誘導体と共に発光層に使用できるホスト材料としては、下記 ( i)〜 (ix)で表される化合物が好ま 、。
[化 10]
(式中、 Arは置換もしくは無置換の核炭素数 10〜50の縮合芳香族基である。
Ar,は置換もしくは無置換の核炭素数 6〜50の芳香族基である。
Xは、置換もしくは無置換の核炭素数 6〜50の芳香族基、置換もしくは無置換の核 原子数 5〜50の芳香族複素環基、置換もしくは無置換の炭素数 1〜50のアルキル
基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素 数 6〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ 基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の 炭素数 1〜50のアルコキシカルボ-ル基、カルボキシル基、ハロゲン原子、シァノ基 、ニトロ基、ヒドロキシル基である。
a、 b及び cは、それぞれ 0〜4の整数である。
nは 1〜3の整数である。また、 nが 2以上の場合は、 [ ]内は、同じでも異なってい てちよい。 )
下記一般式 (ii)で表される非対称モノアントラセン誘導体。
[化 11]
( i i )
(式中、 Ar1及び Ar2は、それぞれ独立に、置換もしくは無置換の核炭素数 6〜50の 芳香族環基であり、 m及び nは、それぞれ 1〜4の整数である。ただし、 m=n= lでか つ Ar1と Ar2のベンゼン環への結合位置が左右対称型の場合には、 Ar1と Ar2は同 一ではなぐ m又は nが 2〜4の整数の場合には mと nは異なる整数である。
R1〜R1Qは、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭
素数 1〜50のアルコキシカルボ-ル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。 )
下記一般式 (iii)で表される非対称ピレン誘導体。
[化 12]
[式中、 Ar及び Ar'は、それぞれ置換もしくは無置換の核炭素数 6〜50の芳香族基 である。
L及び L,は、それぞれ置換もしくは無置換のフエ-レン基、置換もしくは無置換の ナフタレ-レン基、置換もしくは無置換のフルォレニレン基又は置換もしくは無置換 のジベンゾシロリレン基である。
mは 0〜2の整数、 nは 1〜4の整数、 sは 0〜2の整数、 tは 0〜4の整数である。 また、 L又は Arは、ピレンの 1〜5位のいずれかに結合し、 L,又は Ar,は、ピレンの 6〜10位のいずれかに結合する。
ただし、 n+tが偶数の時、 Ar, Ar' , L, L'は下記 (1)又は (2)を満たす。
(1) Ar≠Ar,及び Z又は L≠L' (ここで≠は、異なる構造の基であることを示す。 )
(2) Ar = Ar,かつ L = L,の時
(2-1) m≠s及び Z又は n≠t、又は
(2-2) m=sかつ n=tの時、
(2-2-1) L及び L'、又はピレン力 それぞれ Ar及び Ar,上の異なる結合位置に 結合している力、 (2-2-2) L及び L,、又はピレン力 Ar及び Ar,上の同じ結合位置で
結合している場合、 L及び L,又は Ar及び Ar,のピレンにおける置換位置が 1位と 6位 、又は 2位と 7位である場合はない。 ]
下記一般式 (iv)で表される非対称アントラセン誘導体。
[化 13]
(iv)
(式中、 A1及び A2は、それぞれ独立に、置換もしくは無置換の核炭素数 10〜20の 縮合芳香族環基である。
Ar1及び Ar2は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数 6〜50の芳香族環基である。
R1〜R1Qは、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボ-ル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基又はヒドロキシル基である。
Ar1、 Ar2、 R9及び R1()は、それぞれ複数であってもよぐ隣接するもの同士で飽和 もしくは不飽和の環状構造を形成して 、てもよ 、。
ただし、一般式(1)において、中心のアントラセンの 9位及び 10位に、該アントラセ ン上に示す X— Y軸に対して対称型となる基が結合する場合はない。)
下記一般式 (V)で表されるアントラセン誘導体。
[化 14]
(式中、 1^〜1^°は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,置換 しても良いァリール基,アルコキシル基,ァリーロキシ基,アルキルアミノ基,ァルケ- ル基,ァリールアミノ基又は置換しても良い複素環式基を示し、 a及び bは、それぞれ 1〜5の整数を示し、それらが 2以上の場合、 R1同士又は R2同士は、それぞれにお いて、同一でも異なっていてもよぐまた 同士または R2同士が結合して環を形成し て!、てもよ 、し、 R3と , R5 tR6 , R7 R& , R9と R1Qが互いに結合して環を形成して いてもよい。 L1は単結合、—O—, 一 S—, —N (R)—(Rはアルキル基又は置換して も良いァリール基である)、アルキレン基又はァリーレン基を示す。 )
下記一般式 (vi)で表されるアントラセン誘導体。
[化 15]
(式中、 Ru〜! ^は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,ァリ ール基,アルコキシル基,ァリーロキシ基,アルキルアミノ基,ァリールアミノ基又は置 換しても良い複数環式基を示し、 c d, e及び fは、それぞれ 1〜5の整数を示し、それ らが 2以上の場合、 R11同士, R12同士, R16同士又は R17同士は、それぞれにおいて、 同一でも異なっていてもよぐまた R11同士, R12同士, R16同士又は R17同士が結合して 環を形成していてもよいし、 R13と R14, R18と R19がたがいに結合して環を形成していて もよい。 L2は単結合、— O— , — S— , — N (R)— (Rはアルキル基又は置換しても良 ぃァリール基である)、アルキレン基又はァリーレン基を示す。 )
[0044] 下記一般式 (vii)で表されるスピロフルオレン誘導体。
[化 16]
(式中、 A5〜A8は、それぞれ独立に、置換もしくは無置換のビフエ-ル基又は置換 もしくは無置換のナフチル基である。 )
[0045] 下記一般式 (viii)で表される縮合環含有化合物。
[化 17]
(式中、 A9〜A14は前記と同じ、 R21〜R23は、それぞれ独立に、水素原子、炭素数 1〜 6のアルキル基、炭素数 3〜6のシクロアルキル基、炭素数 1〜6のアルコキシル基、 炭素数 5〜18のァリールォキシ基、炭素数 7〜18のァラルキルォキシ基、炭素数 5 〜16のァリールアミノ基、ニトロ基、シァノ基、炭素数 1〜6のエステル基又はハロゲ ン原子を示し、 A9〜A14のうち少なくとも 1つは 3環以上の縮合芳香族環を有する基 である。 )
下記一般式 (ix)で表されるフルオレンィ匕合物。
[化 18]
(式中、 R及び R は、水素原子、置換あるいは無置換のアルキル
1 2 基、置換あるいは 無置換のァラルキル基、置換あるいは無置換のァリール基,置換あるいは無置換の 複素環基、置換アミノ基、シァノ基またはハロゲン原子を表わす。異なるフルオレン基 に結合する R
1 同士、 R
2 同士は、同じであっても異なっていてもよぐ同じフルォレ ン基に結合する R及び R R
1 2 は、同じであっても異なって 、てもよ 、。 R
3及び 4 は、 水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のァラルキル基 、置換あるいは無置換のァリール基または置換ある 、は無置換の複素環基を表わし
、異なるフルオレン基に結合する R 同士、 R 同士は、同じであっても異なっていて
3 4
もよぐ同じフルオレン基に結合する R 及び R は、同じであっても異なっていても
3 4
よい。 Ar及び Ar は、ベンゼン環の合計が 3個以上の置換あるいは無置換の縮合
1 2
多環芳香族基またはベンゼン環と複素環の合計が 3個以上の置換あるいは無置換 の炭素でフルオレン基に結合する縮合多環複素環基を表わし、 Ar及び Arは、同じ
1 2 であっても異なっていてもよい。 nは、 1〜10の整数を表す。 )
[0047] 以上のホスト材料の中でも、好ましくはアントラセン誘導体、さらに好ましくはモノア ントラセン誘導体、特に好ましくは非対称アントラセンである。
また、ドーパントの発光材料としては、りん光発光性の化合物を用いることもできる。 りん光発光性の化合物としては、ホスト材料に力ルバゾール環を含む化合物が好まし い。ドーパントとしては三重項励起子力 発光することのできる化合物であり、三重項 励起子力も発光する限り特に限定されないが、 Ir、 Ru、 Pd、 Pt、 Os及び Re力もなる 群力 選択される少なくとも一つの金属を含む金属錯体であることが好ましぐボルフ ィリン金属錯体又はオルトメタルイ匕金属錯体が好ましい。
力ルバゾール環を含む化合物力 なるりん光発光に好適なホストは、その励起状態 からりん光発光性ィ匕合物へエネルギー移動が起こる結果、りん光発光性化合物を発 光させる機能を有する化合物である。ホストイ匕合物としては励起子エネルギーをりん 光発光性ィ匕合物にエネルギー移動できる化合物ならば特に制限はなぐ 目的に応じ て適宜選択することができる。力ルバゾール環以外に任意の複素環などを有して ヽ ても良い。
[0048] このようなホストイ匕合物の具体例としては、力ルバゾール誘導体、トリァゾール誘導 体、ォキサゾール誘導体、ォキサジァゾール誘導体、イミダゾール誘導体、ポリアリー ルアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フ -レンジァミン誘導体、 ァリールァミン誘導体、ァミノ置換カルコン誘導体、スチリルアントラセン誘導体、フル ォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三 ァミン化合物、スチリルアミンィ匕合物、芳香族ジメチリデン系化合物、ポルフィリン系 化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフヱ-ルキノン誘導体、チ オビランジオキシド誘導体、カルポジイミド誘導体、フルォレニリデンメタン誘導体、ジ
スチリルビラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フ タロシアニン誘導体、 8-キノリノール誘導体の金属錯体ゃメタルフタロシアニン、ベン ゾォキサゾールやべンゾチアゾールを配位子とする金属錯体に代表される各種金属 錯体ポリシラン系化合物、ポリ(N-ビュルカルバゾール)誘導体、ァ-リン系共重合体 、チォフェンオリゴマー、ポリチォフェン等の導電性高分子オリゴマー、ポリチォフェン 誘導体、ポリフ 二レン誘導体、ポリフ 二レンビニレン誘導体、ポリフルオレン誘導 体等の高分子化合物等が挙げられる。ホストイ匕合物は単独で使用しても良いし、 2種 以上を併用しても良い。
具体例としては、以下のような化合物が挙げられる。
[0049] [化 19]
[0050] りん光発光性のドーパントは三重項励起子力 発光することのできる化合物である 。三重項励起子力も発光する限り特に限定されないが、 Ir、 Ru、 Pd、 Pt、 Os及び Re 力 なる群力 選択される少なくとも一つの金属を含む金属錯体であることが好ましく 、ポルフィリン金属錯体又はオルトメタルイ匕金属錯体が好ましい。ポルフィリン金属錯 体としては、ポルフィリン白金錯体が好ましい。りん光発光性ィ匕合物は単独で使用し ても良いし、 2種以上を併用しても良い。
オルトメタルイ匕金属錯体を形成する配位子としては種々のものがあるが、好ましい 配位子としては、 2-フエ二ルビリジン誘導体、 7、 8-ベンゾキノリン誘導体、 2-(2-チェ ニル)ピリジン誘導体、 2-(1-ナフチル)ピリジン誘導体、 2-フ 二ルキノリン誘導体等 が挙げられる。これらの誘導体は必要に応じて置換基を有しても良い。特に、フッ素 化物、トリフルォロメチル基を導入したもの力 青色系ドーパントとしては好ましい。さ らに補助配位子としてァセチルァセトナート、ピクリン酸等の上記配位子以外の配位 子を有していても良い。
りん光発光性のドーパントの発光層における含有量としては、特に制限はなぐ目 的に応じて適宜選択することができる力 例えば、 0. 1〜70質量%であり、 1〜30質 量%が好ましい。りん光発光性ィヒ合物の含有量が 0. 1質量%未満では発光が微弱 でありその含有効果が十分に発揮されず、 70質量%を超える場合は、濃度消光と言 われる現象が顕著になり素子性能が低下する。
また、発光層は、必要に応じて正孔輸送材、電子輸送材、ポリマーバインダーを含 有しても良い。
さらに、発光層の膜厚は、好ましくは 5〜50nm、より好ましくは 7〜50nm、最も好ま しくは 10〜50nmである。 5nm未満では発光層形成が困難となり、色度の調整が困 難となる恐れがあり、 50nmを超えると駆動電圧が上昇する恐れがある。
(5)正孔注入'輸送層(正孔輸送帯域)
正孔注入'輸送層は発光層への正孔注入を助け、発光領域まで輸送する層であつ て、正孔移動度が大きぐイオンィ匕エネルギーが通常 5. 5eV以下と小さい。このよう な正孔注入 ·輸送層としては、より低 、電界強度で正孔を発光層に輸送する材料が 好ましぐさらに正孔の移動度力 例えば 104〜106VZcmの電界印加時に、少なく とも 10— 4cm2 /V ·秒であれば好まし!/、。
本発明の芳香族ァミン誘導体を正孔輸送帯域に用いる場合、本発明の芳香族アミ ン誘導体単独で正孔注入、輸送層を形成してもよぐ他の材料と混合して用いてもよ い。
本発明の芳香族ァミン誘導体と混合して正孔注入'輸送層を形成する材料としては 、前記の好ましい性質を有するものであれば特に制限はなぐ従来、光導伝材料に
ぉ 、て正孔の電荷輸送材料として慣用されて 、るものや、有機 EL素子の正孔注入 · 輸送層に使用される公知のものの中から任意のものを選択して用いることができる。 具体例としては、トリァゾール誘導体 (米国特許 3, 112, 197号明細書等参照)、ォ キサジァゾール誘導体 (米国特許 3, 189, 447号明細書等参照)、イミダゾール誘導 体 (特公昭 37— 16096号公報等参照)、ポリアリールアルカン誘導体 (米国特許 3, 615, 402号明細書、同第 3, 820, 989号明細書、同第 3, 542, 544号明細書、特 公昭 45— 555号公報、同 51— 10983号公報、特開昭 51— 93224号公報、同 55 — 17105号公報、同 56— 4148号公報、同 55— 108667号公報、同 55— 156953 号公報、同 56— 36656号公報等参照)、ピラゾリン誘導体及びピラゾロン誘導体( 米国特許第 3, 180, 729号明細書、同第 4, 278, 746号明細書、特開昭 55— 880 64号公報、同 55— 88065号公報、同 49— 105537号公報、同 55— 51086号公報 、同 56— 80051号公報、同 56— 88141号公報、同 57— 45545号公報、同 54— 1 12637号公報、同 55— 74546号公報等参照)、フ -レンジァミン誘導体 (米国特 許第 3, 615, 404号明細書、特公昭 51— 10105号公報、同 46— 3712号公報、同 47— 25336号公報、特開昭 54— 53435号公報、同 54— 110536号公報、同 54— 119925号公報等参照)、ァリールァミン誘導体 (米国特許第 3, 567, 450号明細書 、同第 3, 180, 703号明細書、同第 3, 240, 597号明細書、同第 3, 658, 520号 明細書、同第 4, 232, 103号明細書、同第 4, 175, 961号明細書、同第 4, 012, 3 76号明糸田書、特公昭 49— 35702号公報、同 39— 27577号公報、特開昭 55— 14 4250号公報、同 56— 119132号公報、同 56— 22437号公報、西独特許第 1, 110 , 518号明細書等参照)、ァミノ置換カルコン誘導体 (米国特許第 3, 526, 501号明 細書等参照)、ォキサゾール誘導体 (米国特許第 3, 257, 203号明細書等に開示の もの)、スチリルアントラセン誘導体 (特開昭 56— 46234号公報等参照)、フルォレノ ン誘導体 (特開昭 54— 110837号公報等参照)、ヒドラゾン誘導体 (米国特許第 3, 7 17, 462号明細書、特開昭 54— 59143号公報、同 55— 52063号公報、同 55— 52 064号公報、同 55— 46760号公報、同 55— 85495号公報、同 57— 11350号公報 、同 57— 148749号公報、特開平 2— 311591号公報等参照)、スチルベン誘導体( 特開昭 61— 210363号公報、同第 61— 228451号公報、同 61— 14642号公報、
同 61— 72255号公報、同 62— 47646号公報、同 62— 36674号公報、同 62— 10 652号公報、同 62— 30255号公報、同 60— 93455号公報、同 60— 94462号公報 、同 60— 174749号公報、同 60— 175052号公報等参照)、シラザン誘導体 (米国 特許第 4, 950, 950号明細書)、ポリシラン系(特開平 2— 204996号公報)、ァニリ ン系共重合体 (特開平 2— 282263号公報)、特開平 1— 211399号公報に開示され て 、る導電性高分子オリゴマー(特にチォフェンオリゴマー)等を挙げることができる。
[0053] 正孔注入'輸送層の材料としては上記のものを使用することができる力 ボルフイリ ン化合物 (特開昭 63— 2956965号公報等に開示のもの)、芳香族第三級アミンィ匕 合物及びスチリルアミンィ匕合物(米国特許第 4, 127, 412号明細書、特開昭 53— 2 7033号公報、同 54— 58445号公報、同 54— 149634号公報、同 54— 64299号 公報、同 55— 79450号公報、同 55— 144250号公報、同 56— 119132号公報、同 61— 295558号公報、同 61— 98353号公報、同 63— 295695号公報等参照;)等 が挙げられ、特に芳香族第三級アミンィ匕合物を用いることが好ましい。
また、米国特許第 5, 061, 569号に記載されている 2個の縮合芳香族環を分子内 に有する、例えば、 4, 4,一ビス(N— (1—ナフチル) N フエ-ルァミノ)ビフエ- ル (以下 NPDと略記する)、また特開平 4— 308688号公報に記載されて 、るトリフエ -ルァミンユニットが 3つスターバースト型に連結された 4, 4,, 4"—トリス(N— (3—メ チルフエ-ル)—N—フエ-ルァミノ)トリフエ-ルァミン(以下 MTDATAと略記する) 等を挙げることができる。
さらに、発光層の材料として示した前述の芳香族ジメチリディン系化合物の他、 p型 Si、 p型 SiC等の無機化合物も正孔注入'輸送層の材料として使用することができる。
[0054] 正孔注入'輸送層は本発明の芳香族ァミン誘導体を、例えば、真空蒸着法、スピン コート法、キャスト法、 LB法等の公知の方法により薄膜化することにより形成すること ができる。正孔注入'輸送層としての膜厚は特に制限はないが、通常は 5ηπ!〜 5 m である。この正孔注入'輸送層は、正孔輸送帯域に本発明の芳香族ァミン誘導体を 含有して!/ヽれば、上述した材料の一種又は二種以上からなる一層で構成されてもよ く、前記正孔注入 ·輸送層とは別種の化合物カゝらなる正孔注入 ·輸送層を積層したも のであってもよい。
また、発光層への正孔注入又は電子注入を助ける層として有機半導体層を設けて もよぐ 10— 1QSZcm以上の導電率を有するものが好適である。このような有機半導体 層の材料としては、含チォフェンオリゴマーゃ特開平 8— 193191号公報に開示して ある含ァリールァミンオリゴマー等の導電性オリゴマー、含ァリールァミンデンドリマー 等の導電性デンドリマー等を用いることができる。
[0055] (6)電子注入'輸送層
次に、電子注入層'輸送層は、発光層への電子の注入を助け、発光領域まで輸送 する層であって、電子移動度が大きぐまた付着改善層は、この電子注入層の中で 特に陰極との付着が良い材料力もなる層である。
また、有機 EL素子は発光した光が電極 (この場合は陰極)により反射するため、直 接陽極から取り出される発光と、電極による反射を経由して取り出される発光とが干 渉することが知られている。この干渉効果を効率的に利用するため、電子輸送層は 数 nm〜数 mの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避ける ために、 104〜10V/cmの電界印加時に電子移動度が少なくとも 10— 5cm2ZVs以 上であることが好ましい。
電子注入層に用いられる材料としては、 8—ヒドロキシキノリンまたはその誘導体の 金属錯体ゃォキサジァゾール誘導体が好適である。上記 8—ヒドロキシキノリンまたは その誘導体の金属錯体の具体例としては、ォキシン (一般に 8—キノリノール又は 8— ヒドロキシキノリン)のキレートを含む金属キレートォキシノイドィ匕合物、例えばトリス(8 —キノリノール)アルミニウムを電子注入材料として用いることができる。
[0056] 一方、ォキサジァゾール誘導体としては、以下の一般式で表される電子伝達化合 物が挙げられる。
(式中、 Ar1 , Ar2 , Ar3 , Ar5 , Ar6 , Ar9はそれぞれ置換または無置換のァリール基 を示し、それぞれ互いに同一であっても異なっていてもよい。また Ar4 , Ar7 , Ar8は 置換または無置換のァリーレン基を示し、それぞれ同一であっても異なっていてもよ い)
ここでァリール基としてはフエ-ル基、ビフエ-ル基、アントラ-ル基、ペリレニル基、 ピレニル基が挙げられる。また、ァリーレン基としてはフエ-レン基、ナフチレン基、ビ フエ-レン基、アントラ-レン基、ペリレニレン基、ピレニレン基などが挙げられる。また 、置換基としては炭素数 1〜10のアルキル基、炭素数 1〜10のアルコキシ基または シァノ基等が挙げられる。この電子伝達ィ匕合物は薄膜形成性のものが好ま 、。 上記電子伝達性ィ匕合物の具体例としては下記のものを挙げることができる。
[化 21]
[化 22]
[0058] (一般式 (Α)及び (Β)中、 A1〜A3は、それぞれ独立に、窒素原子又は炭素原子で ある。
Ar1は、置換もしくは無置換の核炭素数 6〜60のァリール基、又は置換もしくは無 置換の核炭素数 3〜60のへテロアリール基であり、 Ar2は、水素原子、置換もしくは 無置換の核炭素数 6〜60のァリール基、置換もしくは無置換の核炭素数 3〜60のへ テロアリール基、置換もしくは無置換の炭素数 1〜20のアルキル基、又は置換もしく は無置換の炭素数 1〜20のアルコキシ基、あるいはこれらの 2価の基である。ただし 、 Ar1及び Ar2のいずれか一方は、置換もしくは無置換の核炭素数 10〜60の縮合 環基、又は置換もしくは無置換の核炭素数 3〜60のモノへテロ縮合環基である。
L1、 L2及び Lは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数 6〜6 0のァリーレン基、置換もしくは無置換の核炭素数 3〜60のへテロアリーレン基、又は 置換もしくは無置換のフルォレニレン基である。
Rは、水素原子、置換もしくは無置換の核炭素数 6〜60のァリール基、置換もしくは 無置換の核炭素数 3〜60のへテロアリール基、置換もしくは無置換の炭素数 1〜20 のアルキル基、又は置換もしくは無置換の炭素数 1〜20のアルコキシ基であり、 nは 0〜5の整数であり、 nが 2以上の場合、複数の Rは同一でも異なっていてもよぐまた 、隣接する複数の R基同士で結合して、炭素環式脂肪族環又は炭素環式芳香族環 を形成していてもよい。)で表される含窒素複素環誘導体。
[0059] HAr-L-Ar'-Ar2 (C)
(式中、 HArは、置換基を有していてもよい炭素数 3〜40の含窒素複素環であり、 L は、単結合、置換基を有していてもよい炭素数 6〜60のァリーレン基、置換基を有し て!、てもよ 、炭素数 3〜60のへテロアリーレン基又は置換基を有して!/、てもよ!/、フル ォレニレン基であり、 Ar1は、置換基を有していてもよい炭素数 6〜60の 2価の芳香族 炭化水素基であり、 Ar2は、置換基を有していてもよい炭素数 6〜60のァリール基又 は置換基を有して 、てもよ 、炭素数 3〜60のへテロアリール基である。 )で表される 含窒素複素環誘導体。
[0060] [化 23]
[0061] (式中、 X及び Yは、それぞれ独立に炭素数 1〜6の飽和若しくは不飽和の炭化水素 基、アルコキシ基、ァルケ-ルォキシ基、アルキ-ルォキシ基、ヒドロキシ基、置換若 しくは無置換のァリール基、置換若しくは無置換のへテロ環又は Xと Yが結合して飽 和又は不飽和の環を形成した構造であり、 R 〜Rは、それぞれ独立に水素、ハロ
1 4
ゲン原子、置換もしくは無置換の炭素数 1から 6までのアルキル基、アルコキシ基、ァ リールォキシ基、パーフルォロアルキル基、パーフルォロアルコキシ基、アミノ基、ァ ルキルカルボ-ル基、ァリールカルボ-ル基、アルコキシカルボ-ル基、ァリールォ キシカルボニル基、ァゾ基、アルキルカルボニルォキシ基、ァリールカルボ二ルォキ シ基、アルコキシカルボ-ルォキシ基、ァリールォキシカルボ-ルォキシ基、スルフィ -ル基、スルフォ-ル基、スルファ-ル基、シリル基、力ルバモイル基、ァリール基、 ヘテロ環基、アルケニル基、アルキニル基、ニトロ基、ホルミル基、ニトロソ基、ホルミ ルォキシ基、イソシァノ基、シァネート基、イソシァネート基、チオシァネート基、イソチ オシァネート基もしくはシァノ基又は隣接した場合には置換若しくは無置換の環が縮 合した構造である。 )で表されるシラシクロペンタジェン誘導体。
[0062] [化 24]
[0063] (式中、 R 〜R及び Zは、それぞれ独立に、水素原子、飽和もしくは不飽和の炭化
1 8 2
水素基、芳香族基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ基又はァリ 一ルォキシ基を示し、 X、 Y及び Zは、それぞれ独立に、飽和もしくは不飽和の炭化
1
水素基、芳香族基、ヘテロ環基、置換アミノ基、アルコキシ基またはァリールォキシ基 を示し、 Zと Zの置換基は相互に結合して縮合環を形成してもよぐ nは 1
1 2 〜3の整数 を示し、 nが 2以上の場合、 Zは異なってもよい。但し、 nが 1
1 、 X、 Y及び R力メチル基
2 であって、 R力 水素原子又は置換ボリル基の場合、及び nが 3で Z力メチル基の場
8 1
合を含まない。)で表されるボラン誘導体。
[0064] [化 25]
[0065] [式中、 Q1及び Q2は、それぞれ独立に、下記一般式 (G)で示される配位子を表し、 Lは、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロ アルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基、 OR1 (R1は、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシ クロアルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基 である。)または— O Ga Q3 (Q4) (Q3及び Q4は、 Q1及び Q2と同じ)で示される配
位子を表す。 ]
[0066] [化 26]
( G )
[式中、環 A1及び A2は、置換基を有してよい互いに縮合した 6員ァリール環構造であ る。]
[0067] この金属錯体は、 n型半導体としての性質が強ぐ電子注入能力が大きい。さらに は、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子 との結合性も強固になり、発光材料としての蛍光量子効率も大きくなつている。
一般式 (G)の配位子を形成する環 A1及び A2の置換基の具体的な例を挙げると、 塩素、臭素、ヨウ素、フッ素のハロゲン原子、メチル基、ェチル基、プロピル基、プチ ル基、 sec ブチル基、 tert ブチル基、ペンチル基、へキシル基、ヘプチル基、ォ クチル基、ステアリル基、トリクロロメチル基等の置換もしくは無置換のアルキル基、フ ェ-ル基、ナフチル基、 3—メチルフエ-ル基、 3—メトキシフエ-ル基、 3—フルォロ フエ-ル基、 3—トリクロロメチルフヱ-ル基、 3—トリフルォロメチルフヱ-ル基、 3— - トロフエ-ル基等の置換もしくは無置換のァリール基、メトキシ基、 n—ブトキシ基、 ter t—ブトキシ基、トリクロロメトキシ基、トリフルォロエトキシ基、ペンタフルォロプロポキ シ基、 2, 2, 3, 3—テ卜ラフルォロプロポキシ基、 1, 1, 1, 3, 3, 3 へキサフルォロ 2 プロポキシ基、 6 (パーフルォロェチル)へキシルォキシ基等の置換もしくは 無置換のアルコキシ基、フエノキシ基、 p -トロフエノキシ基、 p— tert ブチルフエ ノキシ基、 3—フルオロフエノキシ基、ペンタフルォロフエ-ル基、 3—トリフルォロメチ ルフエノキシ基等の置換もしくは無置換のァリールォキシ基、メチルチオ基、ェチル チォ基、 tert—ブチルチオ基、へキシルチオ基、ォクチルチオ基、トリフルォロメチル チォ基等の置換もしくは無置換のアルキルチオ基、フエ二ルチオ基、 p -トロフエ-
ルチオ基、 ptert—ブチルフヱ-ルチオ基、 3—フルオロフヱ-ルチオ基、ペンタフル オロフェ-ルチオ基、 3—トリフルォロメチルフエ-ルチオ基等の置換もしくは無置換 のァリールチオ基、シァノ基、ニトロ基、アミノ基、メチルァミノ基、ジェチルァミノ基、 ェチルァミノ基、ジェチルァミノ基、ジプロピルアミノ基、ジブチルァミノ基、ジフエ-ル アミノ基等のモノまたはジ置換アミノ基、ビス(ァセトキシメチル)アミノ基、ビス(ァセト キシェチル)アミノ基、ビスァセトキシプロピル)アミノ基、ビス(ァセトキシブチル)ァミノ 基等のァシルァミノ基、水酸基、シロキシ基、ァシル基、メチルカルバモイル基、ジメ チルカルバモイル基、ェチルカルバモイル基、ジェチルカルバモイル基、プロイピル 力ルバモイル基、ブチルカルバモイル基、フエ-ルカルバモイル基等の力ルバモイル 基、カルボン酸基、スルフォン酸基、イミド基、シクロペンタン基、シクロへキシル基等 のシクロアルキル基、フ -ル基、ナフチル基、ビフヱ-ル基、アントラ-ル基、フエナ ントリル基、フルォレニル基、ピレニル基等のァリール基、ピリジ-ル基、ビラジニル基 、ピリミジニル基、ピリダジニル基、トリアジ-ル基、インドリニル基、キノリニル基、ァク リジニル基、ピロリジ -ル基、ジォキサ-ル基、ピベリジ-ル基、モルフオリジ-ル基、 ピペラジ-ル基、トリアチュル基、カルバゾリル基、フラ-ル基、チオフヱ-ル基、ォキ サゾリル基、ォキサジァゾリル基、ベンゾォキサゾリル基、チアゾリル基、チアジアゾリ ル基、ベンゾチアゾリル基、トリァゾリル基、イミダゾリル基、ベンゾイミダゾリル基、プラ -ル基等の複素環基等がある。また、以上の置換基同士が結合してさらなる 6員ァリ ール環もしくは複素環を形成しても良い。
本発明の有機 EL素子の好ま 、形態に、電子を輸送する領域または陰極と有機 層の界面領域に、還元性ドーパントを含有する素子がある。ここで、還元性ドーパント とは、電子輸送性化合物を還元ができる物質と定義される。したがって、一定の還元 性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土 類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲンィ匕物、アル力 リ土類金属の酸化物、アルカリ土類金属のハロゲンィ匕物、希土類金属の酸化物また は希土類金属のハロゲンィ匕物、アルカリ金属の有機錯体、アルカリ土類金属の有機 錯体、希土類金属の有機錯体からなる群から選択される少なくとも一つの物質を好 適に使用することができる。
また、より具体的に、好ましい還元性ドーパントとしては、 Na (仕事関数: 2. 36eV) 、K (仕事関数: 2. 28eV)、Rb (仕事関数: 2. 16eV)および Cs (仕事関数: 1. 95eV )力 なる群力 選択される少なくとも一つのアルカリ金属や、 Ca (仕事関数: 2. 9eV ;)、 Sr (仕事関数: 2. 0〜2. 5eV)、および Ba (仕事関数: 2. 52eV)からなる群から 選択される少なくとも一つのアルカリ土類金属が挙げられる仕事関数が 2. 9eV以下 のものが特に好ましい。これらのうち、より好ましい還元性ドーパントは、 K、 Rbおよび Csからなる群力 選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、 Rbまたは Csであり、最も好ましのは、 Csである。これらのアルカリ金属は、特に還元 能力が高ぐ電子注入域への比較的少量の添加により、有機 EL素子における発光 輝度の向上や長寿命化が図られる。また、仕事関数が 2. 9eV以下の還元性ドーパ ントとして、これら 2種以上のアルカリ金属の組合せも好ましぐ特に、 Csを含んだ組 み合わせ、例えば、 Csと Na、 Csと K、 Csと Rbあるいは Csと Naと Κとの組み合わせで あることが好ましい。 Csを組み合わせて含むことにより、還元能力を効率的に発揮す ることができ、電子注入域への添加により、有機 EL素子における発光輝度の向上や 長寿命化が図られる。
本発明においては陰極と有機層の間に絶縁体や半導体で構成される電子注入層 をさらに設けても良い。この時、電流のリークを有効に防止して、電子注入性を向上さ せることができる。このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土 類金属カルコゲナイド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロ ゲンィ匕物からなる群力 選択される少なくとも一つの金属化合物を使用するのが好ま しい。電子注入層がこれらのアルカリ金属カルコゲナイド等で構成されていれば、電 子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ 金属カルコゲナイドとしては、例えば、 Li 0、 LiO、 Na S、 Na Se及び NaOが挙げら
2 2 2
れ、好ましいアルカリ土類金属カルコゲナイドとしては、例えば、 CaO、 BaO、 SrO、 BeO、 BaS及び CaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物とし ては、例えば、 LiF、 NaF、 KF、 LiCl、 KC1および NaCl等が挙げられる。また、好ま しいアルカリ土類金属のハロゲン化物としては、例えば、 CaF 、BaF 、 SrF 、M
2 2 2 gF及び BeFといったフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
また、電子輸送層を構成する半導体としては、 Ba、 Ca、 Sr、 Yb、 Al、 Ga、 In、 Li、 Na、 Cd、 Mg、 Si、 Ta、 Sb及び Znの少なくとも一つの元素を含む酸化物、窒化物ま たは酸ィ匕窒化物等の一種単独または二種以上の組み合わせが挙げられる。また、電 子輸送層を構成する無機化合物が、微結晶または非晶質の絶縁性薄膜であることが 好ましい。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜 が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、こ のような無機化合物としては、上述したアルカリ金属カルコゲナイド、アルカリ土類金 属カルコゲナイド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン 化物等が挙げられる。
[0070] (7)陰極
陰極としては、電子注入'輸送層又は発光層に電子を注入するため、仕事関数の 小さい (4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質 とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム 'カリウム合金、マグネシウム、リチウム、マグネシウム '銀合金、アルミニウム/酸ィ匕ァ ルミ-ゥム、アルミニウム 'リチウム合金、インジウム、希土類金属などが挙げられる。 この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成さ せること〖こより、作製することができる。
ここで発光層からの発光を陰極力 取り出す場合、陰極の発光に対する透過率は 1 0%より大きくすることが好ましい。
また、陰極としてのシート抵抗は数百 Ω Ζ口以下が好ましぐ膜厚は通常 ΙΟηπ!〜 1 m、好ましくは 50〜200nmである。
[0071] (8)絶縁層
有機 EL素子は超薄膜に電界を印可するために、リークやショートによる画素欠陥 が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を挿入する ことが好ましい。
絶縁層に用いられる材料としては例えば酸ィ匕アルミニウム、弗化リチウム、酸化リチ ゥム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カル シゥム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸ィ匕ゲルマニウ
ム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が 挙げられ、これらの混合物や積層物を用いてもよい。
[0072] (9)有機 EL素子の製造方法
以上例示した材料及び形成方法により陽極、発光層、必要に応じて正孔注入 '輸 送層、及び必要に応じて電子注入'輸送層を形成し、さらに陰極を形成することによ り有機 EL素子を作製することができる。また陰極から陽極へ、前記と逆の順序で有 機 EL素子を作製することもできる。
以下、透光性基板上に陽極 Z正孔注入層 Z発光層 Z電子注入層 Z陰極が順次 設けられた構成の有機 EL素子の作製例を記載する。
まず、適当な透光性基板上に陽極材料からなる薄膜を 1 μ m以下、好ましくは 10〜 200nmの範囲の膜厚になるように蒸着やスパッタリング等の方法により形成して陽極 を作製する。次に、この陽極上に正孔注入層を設ける。正孔注入層の形成は、前述 したように真空蒸着法、スピンコート法、キャスト法、 LB法等の方法により行うことがで きるが、均質な膜が得られやすぐかつピンホールが発生しにくい等の点力 真空蒸 着法により形成することが好ましい。真空蒸着法により正孔注入層を形成する場合、 その蒸着条件は使用する化合物 (正孔注入層の材料)、目的とする正孔注入層の結 晶構造や再結合構造等により異なるが、一般に蒸着源温度 50〜450°C、真空度 10— 7〜: LO— 3torr、蒸着速度 0. 01〜50nmZ秒、基板温度— 50〜300°C、膜厚 5nm〜 5 μ mの範囲で適宜選択することが好ましい。
[0073] 次に、正孔注入層上に発光層を設ける発光層の形成も、所望の有機発光材料を 用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により有機発 光材料を薄膜ィ匕することにより形成できるが、均質な膜が得られやすぐかつピンホ ールが発生しにく 、等の点から真空蒸着法により形成することが好まし 、。真空蒸着 法により発光層を形成する場合、その蒸着条件は使用する化合物により異なるが、 一般的に正孔注入層と同じような条件範囲の中から選択することができる。
次に、この発光層上に電子注入層を設ける。正孔注入層、発光層と同様、均質な 膜を得る必要から真空蒸着法により形成することが好ま ヽ。蒸着条件は正孔注入 層、発光層と同様の条件範囲から選択することができる。
本発明の芳香族ァミン誘導体は、発光帯域ゃ正孔輸送帯域のいずれの層に含有 させるかによつて異なるが、真空蒸着法を用いる場合は他の材料との共蒸着をするこ とができる。また、スピンコート法を用いる場合は、他の材料と混合することによって含 有させることができる。
最後に陰極を積層して有機 EL素子を得ることができる。
陰極は金属力も構成されるもので、蒸着法、スパッタリングを用いることができる。し 力 下地の有機物層を製膜時の損傷力も守るためには真空蒸着法が好ましい。 この有機 EL素子の作製は一回の真空引きで一貫して陽極から陰極まで作製する ことが好ましい。
[0074] 本発明の有機 EL素子の各層の形成方法は特に限定されない。従来公知の真空 蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有 機 EL素子に用いる、前記一般式 (1)で示される化合物を含有する有機薄膜層は、 真空蒸着法、分子線蒸着法 (MBE法)あるいは溶媒に解かした溶液のデイツビング 法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布 法による公知の方法で形成することができる。
本発明の有機 EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄 すぎるとピンホール等の欠陥が生じやすぐ逆に厚すぎると高い印加電圧が必要とな り効率が悪くなるため、通常は数 nmから 1 μ mの範囲が好ましい。
なお、有機 EL素子に直流電圧を印加する場合、陽極を +、陰極を一の極性にして 、 5〜40Vの電圧を印加すると発光が観測できる。また、逆の極性で電圧を印加して も電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が +、陰極が一の極性になった時のみ均一な発光が観測される。印加する交流の波形 は任意でよい。
実施例
[0075] 次に、実施例を用いて本発明をさらに詳しく説明する。
合成例 1 (中間体 1の合成)
200mlの三つ口フラスコに、 4ーブロモビフエ-ル 20.0g (東京化成社品)、 tーブトキ シナトリウム 8.64g (和光純薬社製)、酢酸パラジウム 84mg (和光純薬社製)を入れた。
さらに攪拌子を入れ、フラスコの両側にラバーキャップをセットし、中央の口に還流用 蛇管、その上に三方コックとアルゴンガスを封入した風船をセットし、系内を真空ボン プを用いて 3回、風船内のアルゴンガスで置換した。
次に、脱水トルエン 120ml (広島和光社製)、ベンジルァミン 4.08ml (東京化成社製) 、トリス— t—ブチルホスフィン 338 1 (アルドリッチ社製、 2.22mol/Lトルエン溶液)、を シリンジでラバーセプタムを通して加え、 5分間室温で攪拌した。
次に、フラスコをオイルバスにセットし、溶液を攪拌しながら徐々に 120°Cまで昇温し た。 7時間後、オイルバス力 フラスコを外し反応を終了させ、アルゴン雰囲気下、 12 時間放置した。
反応溶液を分液ロートに移し、ジクロロメタン 600mlをカ卩えて沈殿物を溶解させ、飽 和食塩水 120mlで洗浄後、有機層を無水炭酸カリウムで乾燥した。炭酸カリウムを濾 別して得られた有機層の溶媒を留去し、得られた残渣にトルエン 400ml、エタノール 8 0mlを加え、乾燥管を付けて 80°Cに加熱し、残渣を完全に溶解した。その後、 12時間 放置し、室温まで除冷することにより再結晶化させた。
析出した結晶を濾別し、 60°Cで真空乾燥することにより 13.5gの N, N—ジー(4ービ フエ-リル)一ベンジルァミンを得た。
300mlの一口フラスコに、 1.35gの N, N—ジ一(4—ビフエ-リル)一ベンジルァミン、 ノ《ラジウム—活性炭素 135mg (広島和光社製、パラジウム含有量 10重量0 /0)を入れ、 クロ口ホルム 100ml、エタノール 20mlをカ卩えて溶解した。
次に、フラスコに攪拌子を入れた後、水素ガス 2Lが充填された風船を装着した三方 コックをフラスコに取り付け、真空ポンプを用いてフラスコ系内を水素ガスで 10回置換 した。減った水素ガスを新たに充填し、水素ガスの容積を再び 2Lにした後、室温で激 しく溶液を攪拌した。 30時間攪拌後、ジクロロメタン 100mlを加え、触媒を濾別した。 次に、得られた溶液を分液ロートに移し、炭酸水素ナトリウム飽和水溶液 50mlで洗 浄後、有機層を分別し、無水炭酸カリウムで乾燥した。濾過後、溶媒を留去し、得ら れた残渣にトルエン 50mlを加え、再結晶化させた。析出した結晶を濾別し、 50°Cで真 空乾燥することにより 0.99gの下記ジ— 4—ビフエ-リルァミン(中間体 1)を得た。 合成例 2 (中間体 2の合成)
アルゴン気流下、ジー4ービフエ-リルァミン 10g、 4, 4, 一ジブロモビフエ-ル 9.7g( 東京化成社製)、 t—ブトキシナトリウム 3g (広島和光社製)、ビス(トリフエニルホスフィ ン)塩ィ匕パラジウム(II) 0.5g (東京化成社製)及びキシレン 500mlを入れ、 130°Cにて 24 時間反応した。
冷却後、水 1000mlを加え、混合物をセライト濾過し、濾液をトルエンで抽出し、無水 硫酸マグネシウムで乾燥させた。これを減圧下で濃縮し、得られた粗生成物をカラム 精製し、トルエンで再結晶し、それを濾取した後、乾燥したところ、 9.1gの下記 4'—ブ ロモ一 N, N ジビフエ-リル一 4 ァミノ一 1, 1, 一ビフエ-ル(中間体 2)を得た。
[0077] 合成例 3 (中間体 3の合成)
アルゴン気流下、 500mlの三つ口フラスコに 1ーブロモナフタレンを 20.7g、脱水エー テル 80ml及び脱水トルエン 80mlを入れた。 30°Cにて n— BuLiZへキサン溶液を 1 20mmol投入し、 0°Cにて 1時間反応した。—70°Cに冷却し、 70mlの B(OiPr) (iPrは
3 イソプロピル基)を投入し、ゆっくり室温まで昇温して 1時間撹拌した。 10%塩酸を 80m
1加えたものを酢酸ェチル Z水で抽出した後、無水硫酸ナトリウムで乾燥した。溶液を 濃縮し、へキサンで洗浄することでボロン酸ィ匕合物を 19.3g得た。
アルゴン気流下、 500mlの三つ口フラスコに上記得られたボロン酸化合物を 19.3g、 4 ョードブロムベンゼンを 26.5g、 Pd(PPh ) (Phはフエ-ル基)を 3.8g、 2Mの Na C
3 4 2
O溶液を 100ml、ジメトキシェタンを 160ml入れた後、 8時間還流した。反応液をトルェ
3
ン Z水で抽出し、無水硫酸ナトリウムで乾燥した。これを減圧下で濃縮し、得られた 粗生成物をカラム精製することで 17.6gの白色粉末として下記中間体 3を得た。 FD— MS (フィールドディソープシヨンマススペクトル)の分析により、 C H Br=283に対し
16 11
、 mZz = 283の主ピークが得られたので、下記中間体 3と同定した。
[0078] 合成例 4 (中間体 4の合成)
アルゴン気流下、 300mlの三つ口フラスコにベンズアミドを 4.2g、中間体 3を 21.1g、ョ ゥ化銅 (I) (広島和光社製) 1.14g、 N, N '—ジメチルエチレンジァミン (アルドリッチ社 製) 1.06g、炭酸カリウム (広島和光社製) 20.0g及びキシレン 100mlを入れ、 130°Cにて 36時間反応した。
冷却後、ろ過しトルエンで洗浄した。さらに水とメタノールで洗浄した後、乾燥したと
ころ、 14.7gの淡黄色粉末を得た。
300mlの三つ口フラスコに上記粉末 14.7g、水酸ィ匕カリウム(広島和光社製) 15. lg、 イオン交換水 13ml、キシレン (広島和光社製) 17ml、 EtOH (広島和光社製) 9mlを入 れ、 36時間還流した。反応終了後、トルエンで抽出し、硫酸マグネシウムで乾燥した 。これを減圧下で濃縮し、得られた粗生成物をカラム精製した。トルエンで再結晶し、 それを濾取した後、乾燥したところ、 9.4gの白色粉末として下記中間体 5を得た。 FD — MSの分析により、 C H N=421に対し、
32 23 mZz=421の主ピークが得られたので、 下記中間体 4と同定した。
[0079] 合成例 5 (中間体 5の合成)
アルゴン気流下、 4 ァミノ一 p ターフェ-ルを 12.0g、 4 ブロモ p ターフェ- ルを 15.5g、 t—ブトキシナトリウム 6.5g (広島和光社製)、トリス (ジベンジリデンアセトン )ジパラジウム(0) 465mg (アルドリッチ社製)、トリー t ブチルホスフィン 205mg及び脱 水トルエン 300mlを入れ、 80°Cにて 8時間反応した。
冷却後、水 500mlを加え、混合物をセライト濾過し、濾液をトルエンで抽出し、無水 硫酸マグネシウムで乾燥させた。これを減圧下で濃縮し、得られた粗生成物をカラム 精製し、トルエンで再結晶し、それを濾取した後、乾燥したところ、 16.2gの淡黄色粉 末を得た。 FD— MSの分析により、 C H N=473に対し、
36 27 mZz=473の主ピークが 得られたので、下記中間体 5と同定した.
[0080] 合成例 6 (中間体 6の合成)
合成例 4において、ベンズアミドの代わりに 1 ァセトアミドナフタレンを 11.5g、中間 体 3の代わりに 1—ブロモナフタレン 13.9g用いた以外は同様に反応を行ったところ、 5 .8gの白色粉末として下記中間体 6を得た。 FD— MSの分析により、 C H N = 269
20 15 に対し、 mZz = 269の主ピークが得られたので、下記中間体 8と同定した。
[0081] 合成例 7 (中間体 7の合成)
アルゴン気流下、 N, N ジフエ-ルァミン 1058g (東京化成社製)、 4, 4,—ジョード ビフエ-ル 1953g (和光純薬社製)、炭酸カリウム 1296g (和光純薬社製)、銅粉 39.8g ( 和光純薬社製)、デカリン 4L (和光純薬社製)を仕込み、 200°Cにて 6日間反応した。 反応後、熱時濾過し、不溶分はトルエンで洗浄し、濾液を併せ濃縮した。残渣にト
ルェン 3Lを加え析出晶を濾取して除き、濾液を濃縮した。次いで残渣にメタノール 10 Lを加え、攪拌後上澄み液を廃棄し、更に 3Lのメタノールを加え、攪拌後上澄み液を 廃棄してカラム精製したところ、黄色粉末を得た。これを 1.5Lのトルエンに加熱溶解し 、へキサン 1.5Lをカ卩ぇ冷却し、析出した結晶を濾取したところ、中間体 7を 1168g得た 。 FD— MSの分析により、 C H BrN=400に対し、
24 18 mZz=400の主ピークが得られ たので、下記中間体 7と同定した。
[0082] 合成例 8 (中間体 8の合成)
合成例 3において、 1ーブロモナフタレンの代わりに中間体 7を 40.0g用いた以外は 同様に反応を行ったところ、 23.8gの白色粉末として下記中間体 8を得た。 FD-MS の分析により、 C H BrN=476に対し、 mZz=476の主ピークが得られたので、下
30 22
記中間体 8と同定した。
[0083] [化 27]
アルゴン気流下、中間体 2を 5.5g、中間体 5を 4.7g、t—ブトキシナトリウム 1.3g (広島 和光社製)、トリス (ジベンジリデンアセトン)ジパラジウム (0) 93mg (アルドリッチ社製) 、トリー t ブチルホスフィン 41mg及び脱水トルエン 100mlを入れ、 80°Cにて 8時間反 応した。
冷却後、水 500mlを加え、混合物をセライト濾過し、濾液をトルエンで抽出し、無水 硫酸マグネシウムで乾燥させた。これを減圧下で濃縮し、得られた粗生成物をカラム 精製し、トルエンで再結晶し、それを濾取した後、乾燥したところ、 5.9gの淡黄色粉末 を得た。 FD— MSの分析により、 C H N =945に対し、 m/z = 945の主ピークが得
られたので、上記化合物 HIと同定した。
[0085] 合成実施例 2 (化合物 H2の合成)
合成実施例 1にお 、て、中間体 2の代わりに中間体 7を 4.0g用いた以外は同様に反 応を行ったところ、 4.2gの淡黄色粉末を得た。 FD— MSの分析により、 C H N =79
60 44 2
3に対し、 mZz = 793の主ピークが得られたので、上記化合物 H2と同定した。
合成実施例 3 (化合物 H3の合成)
合成実施例 1にお ヽて、中間体 5の代わりに中間体 4を 4.2g用いた以外は同様に反 応を行ったところ、 5.4gの淡黄色粉末を得た。 FD— MSの分析により、 C H N =89
68 48 2
3に対し、 mZz = 893の主ピークが得られたので、上記化合物 H3と同定した。
[0086] 合成実施例 4 (化合物 H4の合成)
合成実施例 1にお 、て、中間体 5の代わりに中間体 6を 2.7g用いた以外は同様に反 応を行ったところ、 4.8gの淡黄色粉末を得た。 FD— MSの分析により、 C H N =74
56 40 2
0に対し、 mZz = 740の主ピークが得られたので、上記化合物 H4と同定した。
合成実施例 5 (化合物 H5の合成)
合成実施例 1にお 、て、中間体 2の代わりに中間体 8を 4.8g用いた以外は同様に反 応を行ったところ、 5.9gの淡黄色粉末を得た。 FD— MSの分析により、 C H N =86
66 48 2
9に対し、 mZz = 869の主ピークが得られたので、上記化合物 H5と同定した。
[0087] 実施例 1 (有機 EL素子の製造)
25mm X 75mm X 1. 1mm厚の ITO透明電極付きガラス基板(ジォマティック社製 )をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 3 0分間行なった。
洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し 、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして膜 厚 60nmの下記化合物 Η232を成膜した。この H232膜は、正孔注入層として機能 する。この H232膜上に正孔輸送材料として膜厚 20nmの上記化合物 HI層を成膜 した。この膜は正孔輸送層として機能する。さらに膜厚 40nmの下記化合物 EM1を 蒸着し成膜した。同時に発光分子として、下記のスチリル基を有するァミン化合物 D1 を、 EM1と D1の重量比が 40 : 2になるように蒸着した。この膜は、発光層として機能
する。
この膜上に膜厚 lOnmの下記 Alq膜を成膜した。これは、電子注入層として機能す る。この後、還元性ドーパントである Li (Li源:サエスゲッター社製)と Alqを二元蒸着 させ、電子注入層(陰極)として Alq :Li膜 (膜厚 lOnm)を形成した。この Alq :Li膜上 に金属 A1を蒸着させ金属陰極を形成し有機 EL素子を形成した。
得られた有機 EL素子について、発光効率を測定し、発光色を観察した。発光効率 はミノルタ製 CS1000を用いて輝度を測定し、 lOmAZcm2における発光効率を算 出した。さらに、初期輝度 5000nit、室温、 DC定電流駆動での発光の半減寿命を測 定した結果を表 1に示す。
[0088] [化 28]
[0089] 実施例 2〜5 (有機 EL素子の製造)
実施例 1にお 、て、正孔輸送材料として化合物 HIの代わりに表 1に記載の化合物 を用いた以外は同様にして有機 EL素子を作製した。
得られた有機 EL素子について、発光効率を測定し、発光色を観察し、さら〖こ、初期 輝度 5000nit、室温、 DC定電流駆動での発光の半減寿命を測定した結果を表 1に 示す。
[0090] 比較例 1
実施例 1において、正孔輸送材料として化合物 HIの代わりに比較ィ匕合物 1 (比較 例 1)を用いた以外は同様にして有機 EL素子を作製した。
得られた有機 EL素子について、発光効率を測定し、発光色を観察し、さら〖こ、初期 輝度 5000nit、室温、 DC定電流駆動での発光の半減寿命を測定した結果を表 1に 示す。
[化 29]
比較化合物 1
[0092] 実施例 6 (有機 EL素子の製造)
実施例 1にお 、て、スチリル基を有するアミンィ匕合物 D1の代わりに下記ァリールァ ミンィ匕合物 D2を用いた以外は同様にして有機 EL素子を作製した。 Meはメチル基。 得られた有機 EL素子について、発光効率を測定したところ 5. 2cdZAであり、発 光色は青色であった。さらに、初期輝度 5000nit、室温、 DC定電流駆動での発光の 半減寿命を測定したところ 440時間であった。
[化 30]
D 2
[0093] 比較例 2
実施例 6において、正孔輸送材料として化合物 HIの代わりに上記比較ィ匕合物 1を 用いた以外は同様にして有機 EL素子を作製した。
得られた有機 EL素子について、発光効率を測定したところ 4. 8cdZAであり、発 光色は青色であった。さらに、初期輝度 5000nit、室温、 DC定電流駆動での発光の 半減寿命を測定したところ 270時間であった。
[0094] 以上の結果力 判るように、本発明の芳香族ァミン誘導体を有機 EL素子の正孔輸 送材料に用いた場合、比較例 1〜2の公知の材料に比べ高発光効率でありながら、 長 命であった。
産業上の利用可能性
[0095] 以上詳細に説明したように、本発明の芳香族ァミン誘導体及びそれを用いた有機 E L素子は、分子が結晶化しにくぐ有機 EL素子を製造する際の歩留りが向上し、寿命 が長いものである。このため、本発明の有機 EL素子は、実用性の高い素子として極 めて有用である。
Claims
[化 1]
Bは、下記一般式(3)で表されるジァリールアミノ基である。
[化 2]
{一般式(2)及び(3)において、 Ar 及び Ar は、それぞれ独立に、置換もしくは無
1 2
置換の核原子数 5〜50のァリール基である。ただし、 Aと Bは同一ではない。 }] [2] 前記一般式(2)における Ar及び一般式(3)における Ar力 それぞれ独立に、置
1 2
換もしくは無置換のフエ二ル基、置換もしくは無置換のビフヱ-ル基、置換もしくは無
置換のターフェニル基、置換もしくは無置換のフルォレニル基、又は置換もしくは無 置換のナフチル基である請求項 1に記載の芳香族ァミン誘導体。
[3] 下記一般式 (4)で表される請求項 1に記載の芳香族ァミン誘導体。
[化 3]
[式中、 R〜Rは、それぞれ独立に、水素原子、置換もしくは無置換の核原子数 5〜
1 5
50のァリール基、置換もしくは無置換の炭素数 1〜50のアルキル基、置換もしくは無 置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の核原子数 6〜50のァラ ルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、置換もしくは 無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭素数 2〜50の アルコキシカルボ-ル基、置換もしくは無置換の核原子数 5〜50のァリール基で置 換されたアミノ基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基又はカルボキシ ル基であり、
a、 b、 c及び dはそれぞれ 0〜4の整数であり、 eは 1〜3の整数であり、 R〜Rは互
1 5 いに結合して置換されて 、てもよ 、飽和もしくは不飽和の 5員環又は 6員環の環状構 造を形成してもよぐ Ar〜Arは、それぞれ独立に、置換もしくは無置換の核原子数
3 6
5〜50のァリール基である。 ]
下記一般式 (5)で表される請求項 1に記載の芳香族ァミン誘導体。
[化 4]
( 5
[式中、 R〜R は、それぞれ独立に、水素原子、置換もしくは無置換の核原子数 5
6 14
〜50のァリール基、置換もしくは無置換の炭素数 1〜50のアルキル基、置換もしくは 無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の核原子数 6〜50のァ ラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、置換もしく は無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭素数 2〜50 のアルコキシカルボ-ル基、置換もしくは無置換の核原子数 5〜50のァリール基で 置換されたァミノ基、ハロゲン基、シァノ基、ニトロ基、ヒドロキシル基又はカルボキシ ル基であり、
f、 i、 j及び mはそれぞれ 0〜4の整数であり、 g、 h、 k、 1及び nはそれぞれ 0〜3の整 数であり、 oは 1〜3の整数であり、
R〜R は互いに結合して置換されていてもよい飽和もしくは不飽和の 5員環又は 6
6 14
員環の環状構造を形成してもよぐ Ar〜Ar は、それぞれ独立に、置換もしくは無置
7 14
換の核原子数 5〜50のァリール基であり、 p、 q、 r、 s、 t及び uはそれぞれ 0〜3の整 数である。 ]
有機エレクト口ルミネッセンス素子用材料である請求項 1に記載の芳香族ァミン誘導 体。
有機エレクト口ルミネッセンス素子用正孔輸送材料である請求項 1に記載の芳香族 ァミン誘導体。
陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟 持されている有機エレクト口ルミネッセンス素子において、該有機薄膜層の少なくとも
1層が、請求項 1に記載の芳香族ァミン誘導体を単独もしくは混合物の成分として含 有する有機エレクト口ルミネッセンス素子。
[8] 前記有機薄膜層が正孔輸送層を有し、該正孔輸送層が、前記芳香族ァミン誘導体 を単独もしくは混合物の成分として含有する請求項 7に記載の有機エレクト口ルミネッ センス素子。
[9] 前記発光層が、ァリールァミン化合物及び Z又はスチリルァミン化合物を含有する 請求項 7に記載の有機エレクト口ルミネッセンス素子。
[10] 青色系発光する請求項 7に記載の有機エレクト口ルミネッセンス素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06821940A EP1950193A1 (en) | 2005-11-15 | 2006-10-18 | Aromatic amine derivative and organic electroluminescent element employing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-330438 | 2005-11-15 | ||
JP2005330438A JP2007137784A (ja) | 2005-11-15 | 2005-11-15 | 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007058044A1 true WO2007058044A1 (ja) | 2007-05-24 |
Family
ID=38041211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/320746 WO2007058044A1 (ja) | 2005-11-15 | 2006-10-18 | 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20070111028A1 (ja) |
EP (1) | EP1950193A1 (ja) |
JP (1) | JP2007137784A (ja) |
KR (1) | KR20080067344A (ja) |
CN (1) | CN101300222A (ja) |
TW (1) | TW200730475A (ja) |
WO (1) | WO2007058044A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006073059A1 (ja) * | 2005-01-05 | 2006-07-13 | Idemitsu Kosan Co., Ltd. | 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 |
KR101169901B1 (ko) | 2005-01-05 | 2012-07-31 | 이데미쓰 고산 가부시키가이샤 | 방향족 아민 유도체 및 이를 이용한 유기 전기발광 소자 |
JP2008007424A (ja) * | 2006-06-27 | 2008-01-17 | Idemitsu Kosan Co Ltd | 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子 |
CN103824943A (zh) * | 2012-11-19 | 2014-05-28 | 海洋王照明科技股份有限公司 | 太阳能电池器件及其制备方法 |
CN106810456B (zh) * | 2016-12-28 | 2019-12-10 | 上海天马有机发光显示技术有限公司 | 一种空穴传输材料、包含其的oled显示面板和电子设备 |
CN108933198B (zh) * | 2018-08-27 | 2020-08-25 | 长春海谱润斯科技有限公司 | 一种含有芳胺化合物的有机电致发光器件 |
Citations (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1110518B (de) | 1959-04-09 | 1961-07-06 | Kalle Ag | Material fuer die elektrophotographische Bilderzeugung |
US3112197A (en) | 1956-06-27 | 1963-11-26 | Azoplate Corp | Electrophotographic member |
JPS3927577B1 (ja) | 1962-01-29 | 1964-12-01 | ||
US3180729A (en) | 1956-12-22 | 1965-04-27 | Azoplate Corp | Material for electrophotographic reproduction |
US3180703A (en) | 1963-01-15 | 1965-04-27 | Kerr Mc Gee Oil Ind Inc | Recovery process |
US3189447A (en) | 1956-06-04 | 1965-06-15 | Azoplate Corp | Electrophotographic material and method |
US3240597A (en) | 1961-08-21 | 1966-03-15 | Eastman Kodak Co | Photoconducting polymers for preparing electrophotographic materials |
US3257203A (en) | 1958-08-20 | 1966-06-21 | Azoplate Corp | Electrophotographic reproduction material |
JPS45555B1 (ja) | 1966-03-24 | 1970-01-09 | ||
US3526501A (en) | 1967-02-03 | 1970-09-01 | Eastman Kodak Co | 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography |
US3542544A (en) | 1967-04-03 | 1970-11-24 | Eastman Kodak Co | Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types |
JPS463712B1 (ja) | 1966-04-14 | 1971-01-29 | ||
US3567450A (en) | 1968-02-20 | 1971-03-02 | Eastman Kodak Co | Photoconductive elements containing substituted triarylamine photoconductors |
US3615402A (en) | 1969-10-01 | 1971-10-26 | Eastman Kodak Co | Tetra-substituted methanes as organic photoconductors |
US3615404A (en) | 1968-04-25 | 1971-10-26 | Scott Paper Co | 1 3-phenylenediamine containing photoconductive materials |
US3658520A (en) | 1968-02-20 | 1972-04-25 | Eastman Kodak Co | Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups |
JPS4725336B1 (ja) | 1969-11-26 | 1972-07-11 | ||
US3717462A (en) | 1969-07-28 | 1973-02-20 | Canon Kk | Heat treatment of an electrophotographic photosensitive member |
US3820989A (en) | 1969-09-30 | 1974-06-28 | Eastman Kodak Co | Tri-substituted methanes as organic photoconductors |
JPS4935702B1 (ja) | 1969-06-20 | 1974-09-25 | ||
JPS49105537A (ja) | 1973-01-15 | 1974-10-05 | ||
JPS5110105B2 (ja) | 1972-02-09 | 1976-04-01 | ||
JPS5110983B2 (ja) | 1971-09-10 | 1976-04-08 | ||
JPS5193224A (ja) | 1974-12-20 | 1976-08-16 | ||
US4012376A (en) | 1975-12-29 | 1977-03-15 | Eastman Kodak Company | Photosensitive colorant materials |
JPS5327033A (en) | 1976-08-23 | 1978-03-13 | Xerox Corp | Image forming member and image forming method |
US4127412A (en) | 1975-12-09 | 1978-11-28 | Eastman Kodak Company | Photoconductive compositions and elements |
JPS5453435A (en) | 1977-10-01 | 1979-04-26 | Yoshikatsu Kume | Portable bicycle equipped with foldable type triangle frame |
JPS5458445A (en) | 1977-09-29 | 1979-05-11 | Xerox Corp | Electrostatic photosensitive device |
JPS5459143A (en) | 1977-10-17 | 1979-05-12 | Ibm | Electronic photographic material |
JPS5464299A (en) | 1977-10-29 | 1979-05-23 | Toshiba Corp | Beam deflector for charged particles |
JPS54110837A (en) | 1978-02-17 | 1979-08-30 | Ricoh Co Ltd | Electrophotographic photoreceptor |
JPS54110536A (en) | 1978-02-20 | 1979-08-30 | Ichikoh Ind Ltd | Device for time-lag putting out room lamp for motorcar |
JPS54112637A (en) | 1978-02-06 | 1979-09-03 | Ricoh Co Ltd | Electrophotographic photoreceptor |
JPS54119925A (en) | 1978-03-10 | 1979-09-18 | Ricoh Co Ltd | Photosensitive material for electrophotography |
JPS54149634A (en) | 1978-05-12 | 1979-11-24 | Xerox Corp | Image forming member and method of forming image using same |
US4175961A (en) | 1976-12-22 | 1979-11-27 | Eastman Kodak Company | Multi-active photoconductive elements |
JPS5517105A (en) | 1978-07-21 | 1980-02-06 | Konishiroku Photo Ind Co Ltd | Electrophotographic photoreceptor |
JPS5546760A (en) | 1978-09-29 | 1980-04-02 | Ricoh Co Ltd | Electrophotographic photoreceptor |
JPS5551086A (en) | 1978-09-04 | 1980-04-14 | Copyer Co Ltd | Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it |
JPS5552064A (en) | 1978-10-13 | 1980-04-16 | Ricoh Co Ltd | Electrophotographic receptor |
JPS5552063A (en) | 1978-10-13 | 1980-04-16 | Ricoh Co Ltd | Electrophotographic receptor |
JPS5574546A (en) | 1978-11-30 | 1980-06-05 | Ricoh Co Ltd | Electrophotographic photoreceptor |
JPS5579450A (en) | 1978-12-04 | 1980-06-14 | Xerox Corp | Image formation device |
JPS5585495A (en) | 1978-12-18 | 1980-06-27 | Pacific Metals Co Ltd | Method of composting organic waste |
JPS5588065A (en) | 1978-12-12 | 1980-07-03 | Konishiroku Photo Ind Co Ltd | Electrophotographic receptor |
JPS5588064A (en) | 1978-12-05 | 1980-07-03 | Konishiroku Photo Ind Co Ltd | Electrophotographic receptor |
JPS55108667A (en) | 1979-02-13 | 1980-08-21 | Ricoh Co Ltd | Electrophotographic receptor |
US4232103A (en) | 1979-08-27 | 1980-11-04 | Xerox Corporation | Phenyl benzotriazole stabilized photosensitive device |
JPS55144250A (en) | 1979-04-30 | 1980-11-11 | Xerox Corp | Image formation device |
JPS55156953A (en) | 1979-05-17 | 1980-12-06 | Mitsubishi Paper Mills Ltd | Organic semiconductor electrophotographic material |
JPS564148A (en) | 1979-06-21 | 1981-01-17 | Konishiroku Photo Ind Co Ltd | Electrophotographic receptor |
JPS5622437A (en) | 1979-08-01 | 1981-03-03 | Ricoh Co Ltd | Electrophotographic receptor |
JPS5636656A (en) | 1979-09-03 | 1981-04-09 | Mitsubishi Paper Mills Ltd | Electrophotographic material |
JPS5646234A (en) | 1979-09-21 | 1981-04-27 | Ricoh Co Ltd | Electrophotographic receptor |
JPS5680051A (en) | 1979-12-04 | 1981-07-01 | Ricoh Co Ltd | Electrophotographic receptor |
US4278746A (en) | 1978-06-21 | 1981-07-14 | Konishiroku Photo Industry Co., Ltd. | Photosensitive elements for electrophotography |
JPS5688141A (en) | 1979-12-20 | 1981-07-17 | Konishiroku Photo Ind Co Ltd | Electrophotographic receptor |
JPS56119132A (en) | 1979-11-23 | 1981-09-18 | Xerox Corp | Image forming element |
JPS5711350A (en) | 1980-06-24 | 1982-01-21 | Fuji Photo Film Co Ltd | Electrophotographic receptor |
JPS5745545A (en) | 1980-09-03 | 1982-03-15 | Mitsubishi Paper Mills Ltd | Electrophotographic receptor |
JPS57148749A (en) | 1981-03-11 | 1982-09-14 | Fuji Photo Film Co Ltd | Electrophotographic receptor |
JPS6093455A (ja) | 1983-10-28 | 1985-05-25 | Fuji Xerox Co Ltd | 電子写真用現像剤 |
JPS6094462A (ja) | 1983-10-28 | 1985-05-27 | Ricoh Co Ltd | スチルベン誘導体及びその製造法 |
JPS60175052A (ja) | 1984-02-21 | 1985-09-09 | Ricoh Co Ltd | 電子写真用感光体 |
JPS60174749A (ja) | 1984-02-21 | 1985-09-09 | Ricoh Co Ltd | スチリル化合物及びその製造法 |
JPS6114642A (ja) | 1984-06-29 | 1986-01-22 | Konishiroku Photo Ind Co Ltd | 電子写真感光体 |
JPS6172255A (ja) | 1984-09-14 | 1986-04-14 | Konishiroku Photo Ind Co Ltd | 電子写真感光体 |
JPS6198353A (ja) | 1984-10-19 | 1986-05-16 | ゼロツクス コーポレーシヨン | 芳香族エーテル正孔移送層を含む感光装置 |
JPS61210363A (ja) | 1985-03-15 | 1986-09-18 | Canon Inc | 電子写真感光体 |
JPS61228451A (ja) | 1985-04-03 | 1986-10-11 | Canon Inc | 電子写真感光体 |
JPS61295558A (ja) | 1985-06-24 | 1986-12-26 | ゼロツクス コ−ポレ−シヨン | アルコキシアミン電荷移送分子を含有する光導電性像形成部材 |
JPS6210652A (ja) | 1985-07-08 | 1987-01-19 | Minolta Camera Co Ltd | 感光体 |
JPS6230255A (ja) | 1985-07-31 | 1987-02-09 | Minolta Camera Co Ltd | 電子写真感光体 |
JPS6236674A (ja) | 1985-08-05 | 1987-02-17 | Fuji Photo Film Co Ltd | 電子写真感光体 |
JPS6247646A (ja) | 1985-08-27 | 1987-03-02 | Konishiroku Photo Ind Co Ltd | 感光体 |
US4720432A (en) | 1987-02-11 | 1988-01-19 | Eastman Kodak Company | Electroluminescent device with organic luminescent medium |
JPH01211399A (ja) | 1988-02-19 | 1989-08-24 | Toshiba Corp | スキャン機能付きダイナミックシフトレジスタ |
JPH02204996A (ja) | 1989-02-01 | 1990-08-14 | Nec Corp | 有機薄膜el素子 |
US4950950A (en) | 1989-05-18 | 1990-08-21 | Eastman Kodak Company | Electroluminescent device with silazane-containing luminescent zone |
JPH02282263A (ja) | 1988-12-09 | 1990-11-19 | Nippon Oil Co Ltd | ホール輸送材料 |
JPH02311591A (ja) | 1989-05-25 | 1990-12-27 | Mitsubishi Kasei Corp | 有機電界発光素子 |
US5061569A (en) | 1990-07-26 | 1991-10-29 | Eastman Kodak Company | Electroluminescent device with organic electroluminescent medium |
JPH0753955A (ja) * | 1993-08-12 | 1995-02-28 | Yasuhiko Shirota | 有機el素子 |
JPH08193191A (ja) | 1995-01-19 | 1996-07-30 | Idemitsu Kosan Co Ltd | 有機電界発光素子及び有機薄膜 |
JPH08259934A (ja) * | 1995-03-20 | 1996-10-08 | Matsushita Electric Ind Co Ltd | 電界発光素子 |
US6242115B1 (en) | 1997-09-08 | 2001-06-05 | The University Of Southern California | OLEDs containing thermally stable asymmetric charge carrier materials |
JP2003171366A (ja) | 2001-12-10 | 2003-06-20 | Mitsui Chemicals Inc | 非対称アリールアミン化合物の製造方法、該製造方法により製造された非対称アリールアミン化合物、および、該非対称アリールアミン化合物を使用した有機電界発光素子。 |
JP2003272857A (ja) * | 2002-03-19 | 2003-09-26 | Idemitsu Kosan Co Ltd | 白色系有機エレクトロルミネッセンス素子 |
WO2005094133A1 (ja) * | 2004-03-25 | 2005-10-06 | Hodogaya Chemical Co., Ltd. | アリールアミン化合物および有機エレクトロルミネッセンス素子 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006006505A1 (ja) * | 2004-07-14 | 2006-01-19 | Idemitsu Kosan Co., Ltd. | 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 |
-
2005
- 2005-11-15 JP JP2005330438A patent/JP2007137784A/ja not_active Withdrawn
-
2006
- 2006-10-18 KR KR1020087011556A patent/KR20080067344A/ko not_active Application Discontinuation
- 2006-10-18 EP EP06821940A patent/EP1950193A1/en not_active Withdrawn
- 2006-10-18 WO PCT/JP2006/320746 patent/WO2007058044A1/ja active Application Filing
- 2006-10-18 CN CNA2006800413417A patent/CN101300222A/zh active Pending
- 2006-10-24 US US11/552,194 patent/US20070111028A1/en not_active Abandoned
- 2006-10-24 TW TW095139224A patent/TW200730475A/zh unknown
Patent Citations (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3189447A (en) | 1956-06-04 | 1965-06-15 | Azoplate Corp | Electrophotographic material and method |
US3112197A (en) | 1956-06-27 | 1963-11-26 | Azoplate Corp | Electrophotographic member |
US3180729A (en) | 1956-12-22 | 1965-04-27 | Azoplate Corp | Material for electrophotographic reproduction |
US3257203A (en) | 1958-08-20 | 1966-06-21 | Azoplate Corp | Electrophotographic reproduction material |
DE1110518B (de) | 1959-04-09 | 1961-07-06 | Kalle Ag | Material fuer die elektrophotographische Bilderzeugung |
US3240597A (en) | 1961-08-21 | 1966-03-15 | Eastman Kodak Co | Photoconducting polymers for preparing electrophotographic materials |
JPS3927577B1 (ja) | 1962-01-29 | 1964-12-01 | ||
US3180703A (en) | 1963-01-15 | 1965-04-27 | Kerr Mc Gee Oil Ind Inc | Recovery process |
JPS45555B1 (ja) | 1966-03-24 | 1970-01-09 | ||
JPS463712B1 (ja) | 1966-04-14 | 1971-01-29 | ||
US3526501A (en) | 1967-02-03 | 1970-09-01 | Eastman Kodak Co | 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography |
US3542544A (en) | 1967-04-03 | 1970-11-24 | Eastman Kodak Co | Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types |
US3567450A (en) | 1968-02-20 | 1971-03-02 | Eastman Kodak Co | Photoconductive elements containing substituted triarylamine photoconductors |
US3658520A (en) | 1968-02-20 | 1972-04-25 | Eastman Kodak Co | Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups |
US3615404A (en) | 1968-04-25 | 1971-10-26 | Scott Paper Co | 1 3-phenylenediamine containing photoconductive materials |
JPS4935702B1 (ja) | 1969-06-20 | 1974-09-25 | ||
US3717462A (en) | 1969-07-28 | 1973-02-20 | Canon Kk | Heat treatment of an electrophotographic photosensitive member |
US3820989A (en) | 1969-09-30 | 1974-06-28 | Eastman Kodak Co | Tri-substituted methanes as organic photoconductors |
US3615402A (en) | 1969-10-01 | 1971-10-26 | Eastman Kodak Co | Tetra-substituted methanes as organic photoconductors |
JPS4725336B1 (ja) | 1969-11-26 | 1972-07-11 | ||
JPS5110983B2 (ja) | 1971-09-10 | 1976-04-08 | ||
JPS5110105B2 (ja) | 1972-02-09 | 1976-04-01 | ||
JPS49105537A (ja) | 1973-01-15 | 1974-10-05 | ||
JPS5193224A (ja) | 1974-12-20 | 1976-08-16 | ||
US4127412A (en) | 1975-12-09 | 1978-11-28 | Eastman Kodak Company | Photoconductive compositions and elements |
US4012376A (en) | 1975-12-29 | 1977-03-15 | Eastman Kodak Company | Photosensitive colorant materials |
JPS5327033A (en) | 1976-08-23 | 1978-03-13 | Xerox Corp | Image forming member and image forming method |
US4175961A (en) | 1976-12-22 | 1979-11-27 | Eastman Kodak Company | Multi-active photoconductive elements |
JPS5458445A (en) | 1977-09-29 | 1979-05-11 | Xerox Corp | Electrostatic photosensitive device |
JPS5453435A (en) | 1977-10-01 | 1979-04-26 | Yoshikatsu Kume | Portable bicycle equipped with foldable type triangle frame |
JPS5459143A (en) | 1977-10-17 | 1979-05-12 | Ibm | Electronic photographic material |
JPS5464299A (en) | 1977-10-29 | 1979-05-23 | Toshiba Corp | Beam deflector for charged particles |
JPS54112637A (en) | 1978-02-06 | 1979-09-03 | Ricoh Co Ltd | Electrophotographic photoreceptor |
JPS54110837A (en) | 1978-02-17 | 1979-08-30 | Ricoh Co Ltd | Electrophotographic photoreceptor |
JPS54110536A (en) | 1978-02-20 | 1979-08-30 | Ichikoh Ind Ltd | Device for time-lag putting out room lamp for motorcar |
JPS54119925A (en) | 1978-03-10 | 1979-09-18 | Ricoh Co Ltd | Photosensitive material for electrophotography |
JPS54149634A (en) | 1978-05-12 | 1979-11-24 | Xerox Corp | Image forming member and method of forming image using same |
US4278746A (en) | 1978-06-21 | 1981-07-14 | Konishiroku Photo Industry Co., Ltd. | Photosensitive elements for electrophotography |
JPS5517105A (en) | 1978-07-21 | 1980-02-06 | Konishiroku Photo Ind Co Ltd | Electrophotographic photoreceptor |
JPS5551086A (en) | 1978-09-04 | 1980-04-14 | Copyer Co Ltd | Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it |
JPS5546760A (en) | 1978-09-29 | 1980-04-02 | Ricoh Co Ltd | Electrophotographic photoreceptor |
JPS5552064A (en) | 1978-10-13 | 1980-04-16 | Ricoh Co Ltd | Electrophotographic receptor |
JPS5552063A (en) | 1978-10-13 | 1980-04-16 | Ricoh Co Ltd | Electrophotographic receptor |
JPS5574546A (en) | 1978-11-30 | 1980-06-05 | Ricoh Co Ltd | Electrophotographic photoreceptor |
JPS5579450A (en) | 1978-12-04 | 1980-06-14 | Xerox Corp | Image formation device |
JPS5588064A (en) | 1978-12-05 | 1980-07-03 | Konishiroku Photo Ind Co Ltd | Electrophotographic receptor |
JPS5588065A (en) | 1978-12-12 | 1980-07-03 | Konishiroku Photo Ind Co Ltd | Electrophotographic receptor |
JPS5585495A (en) | 1978-12-18 | 1980-06-27 | Pacific Metals Co Ltd | Method of composting organic waste |
JPS55108667A (en) | 1979-02-13 | 1980-08-21 | Ricoh Co Ltd | Electrophotographic receptor |
JPS55144250A (en) | 1979-04-30 | 1980-11-11 | Xerox Corp | Image formation device |
JPS55156953A (en) | 1979-05-17 | 1980-12-06 | Mitsubishi Paper Mills Ltd | Organic semiconductor electrophotographic material |
JPS564148A (en) | 1979-06-21 | 1981-01-17 | Konishiroku Photo Ind Co Ltd | Electrophotographic receptor |
JPS5622437A (en) | 1979-08-01 | 1981-03-03 | Ricoh Co Ltd | Electrophotographic receptor |
US4232103A (en) | 1979-08-27 | 1980-11-04 | Xerox Corporation | Phenyl benzotriazole stabilized photosensitive device |
JPS5636656A (en) | 1979-09-03 | 1981-04-09 | Mitsubishi Paper Mills Ltd | Electrophotographic material |
JPS5646234A (en) | 1979-09-21 | 1981-04-27 | Ricoh Co Ltd | Electrophotographic receptor |
JPS56119132A (en) | 1979-11-23 | 1981-09-18 | Xerox Corp | Image forming element |
JPS5680051A (en) | 1979-12-04 | 1981-07-01 | Ricoh Co Ltd | Electrophotographic receptor |
JPS5688141A (en) | 1979-12-20 | 1981-07-17 | Konishiroku Photo Ind Co Ltd | Electrophotographic receptor |
JPS5711350A (en) | 1980-06-24 | 1982-01-21 | Fuji Photo Film Co Ltd | Electrophotographic receptor |
JPS5745545A (en) | 1980-09-03 | 1982-03-15 | Mitsubishi Paper Mills Ltd | Electrophotographic receptor |
JPS57148749A (en) | 1981-03-11 | 1982-09-14 | Fuji Photo Film Co Ltd | Electrophotographic receptor |
JPS6093455A (ja) | 1983-10-28 | 1985-05-25 | Fuji Xerox Co Ltd | 電子写真用現像剤 |
JPS6094462A (ja) | 1983-10-28 | 1985-05-27 | Ricoh Co Ltd | スチルベン誘導体及びその製造法 |
JPS60175052A (ja) | 1984-02-21 | 1985-09-09 | Ricoh Co Ltd | 電子写真用感光体 |
JPS60174749A (ja) | 1984-02-21 | 1985-09-09 | Ricoh Co Ltd | スチリル化合物及びその製造法 |
JPS6114642A (ja) | 1984-06-29 | 1986-01-22 | Konishiroku Photo Ind Co Ltd | 電子写真感光体 |
JPS6172255A (ja) | 1984-09-14 | 1986-04-14 | Konishiroku Photo Ind Co Ltd | 電子写真感光体 |
JPS6198353A (ja) | 1984-10-19 | 1986-05-16 | ゼロツクス コーポレーシヨン | 芳香族エーテル正孔移送層を含む感光装置 |
JPS61210363A (ja) | 1985-03-15 | 1986-09-18 | Canon Inc | 電子写真感光体 |
JPS61228451A (ja) | 1985-04-03 | 1986-10-11 | Canon Inc | 電子写真感光体 |
JPS61295558A (ja) | 1985-06-24 | 1986-12-26 | ゼロツクス コ−ポレ−シヨン | アルコキシアミン電荷移送分子を含有する光導電性像形成部材 |
JPS6210652A (ja) | 1985-07-08 | 1987-01-19 | Minolta Camera Co Ltd | 感光体 |
JPS6230255A (ja) | 1985-07-31 | 1987-02-09 | Minolta Camera Co Ltd | 電子写真感光体 |
JPS6236674A (ja) | 1985-08-05 | 1987-02-17 | Fuji Photo Film Co Ltd | 電子写真感光体 |
JPS6247646A (ja) | 1985-08-27 | 1987-03-02 | Konishiroku Photo Ind Co Ltd | 感光体 |
US4720432A (en) | 1987-02-11 | 1988-01-19 | Eastman Kodak Company | Electroluminescent device with organic luminescent medium |
JPS63295695A (ja) | 1987-02-11 | 1988-12-02 | イーストマン・コダック・カンパニー | 有機発光媒体をもつ電場発光デバイス |
JPH01211399A (ja) | 1988-02-19 | 1989-08-24 | Toshiba Corp | スキャン機能付きダイナミックシフトレジスタ |
JPH02282263A (ja) | 1988-12-09 | 1990-11-19 | Nippon Oil Co Ltd | ホール輸送材料 |
JPH02204996A (ja) | 1989-02-01 | 1990-08-14 | Nec Corp | 有機薄膜el素子 |
US4950950A (en) | 1989-05-18 | 1990-08-21 | Eastman Kodak Company | Electroluminescent device with silazane-containing luminescent zone |
JPH02311591A (ja) | 1989-05-25 | 1990-12-27 | Mitsubishi Kasei Corp | 有機電界発光素子 |
US5061569A (en) | 1990-07-26 | 1991-10-29 | Eastman Kodak Company | Electroluminescent device with organic electroluminescent medium |
JPH0753955A (ja) * | 1993-08-12 | 1995-02-28 | Yasuhiko Shirota | 有機el素子 |
JPH08193191A (ja) | 1995-01-19 | 1996-07-30 | Idemitsu Kosan Co Ltd | 有機電界発光素子及び有機薄膜 |
JPH08259934A (ja) * | 1995-03-20 | 1996-10-08 | Matsushita Electric Ind Co Ltd | 電界発光素子 |
US6242115B1 (en) | 1997-09-08 | 2001-06-05 | The University Of Southern California | OLEDs containing thermally stable asymmetric charge carrier materials |
JP2003171366A (ja) | 2001-12-10 | 2003-06-20 | Mitsui Chemicals Inc | 非対称アリールアミン化合物の製造方法、該製造方法により製造された非対称アリールアミン化合物、および、該非対称アリールアミン化合物を使用した有機電界発光素子。 |
JP2003272857A (ja) * | 2002-03-19 | 2003-09-26 | Idemitsu Kosan Co Ltd | 白色系有機エレクトロルミネッセンス素子 |
WO2005094133A1 (ja) * | 2004-03-25 | 2005-10-06 | Hodogaya Chemical Co., Ltd. | アリールアミン化合物および有機エレクトロルミネッセンス素子 |
Non-Patent Citations (1)
Title |
---|
C. W TANG; S. A. VANSLYKE, APPLIED PHYSICS LETTERS, vol. 51, 1987, pages 913 |
Also Published As
Publication number | Publication date |
---|---|
EP1950193A1 (en) | 2008-07-30 |
KR20080067344A (ko) | 2008-07-18 |
CN101300222A (zh) | 2008-11-05 |
TW200730475A (en) | 2007-08-16 |
US20070111028A1 (en) | 2007-05-17 |
JP2007137784A (ja) | 2007-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8088901B2 (en) | Azaindenofluorenedione derivative, material for organic electroluminescence device and organic electroluminescence device | |
KR101551591B1 (ko) | 방향족 아민 유도체 및 그들을 이용한 유기 전기 발광 소자 | |
KR101152999B1 (ko) | 방향족 아민 유도체 및 이를 이용한 유기 전기 발광 소자 | |
WO2008032631A1 (fr) | Dérivé d'amine aromatique et dispositif électroluminescent organique l'employant | |
WO2006073054A1 (ja) | 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2007080704A1 (ja) | 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2008072400A1 (ja) | 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子 | |
WO2006114921A1 (ja) | 芳香族トリアミン化合物及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2006006505A1 (ja) | 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2007102361A1 (ja) | 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子 | |
WO2006073059A1 (ja) | 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2007017995A1 (ja) | 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2008001551A1 (fr) | Dérivé d'amine aromatique et dispositif a électroluminescence organique utilisant celui-ci | |
WO2007018004A1 (ja) | 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2006046441A1 (ja) | 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2007111263A1 (ja) | 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
KR20100038193A (ko) | 방향족 아민 유도체 및 그것을 사용한 유기 전기 발광 소자 | |
WO2008062636A1 (en) | Aromatic amine derivative and organic electroluminescent element using the same | |
WO2007018007A1 (ja) | 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2009084268A1 (ja) | 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子 | |
WO2007007464A1 (ja) | 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2006001333A1 (ja) | 多環芳香族系化合物、発光性塗膜形成用材料及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2007111262A1 (ja) | 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 | |
WO2008072586A1 (ja) | 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子 | |
WO2008032766A1 (fr) | Élément électroluminescent organique et matériau pour élément électroluminescent organique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680041341.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006821940 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2394/CHENP/2008 Country of ref document: IN Ref document number: 1020087011556 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |