WO2007055357A1 - 低級オレフィンの製造方法 - Google Patents

低級オレフィンの製造方法 Download PDF

Info

Publication number
WO2007055357A1
WO2007055357A1 PCT/JP2006/322577 JP2006322577W WO2007055357A1 WO 2007055357 A1 WO2007055357 A1 WO 2007055357A1 JP 2006322577 W JP2006322577 W JP 2006322577W WO 2007055357 A1 WO2007055357 A1 WO 2007055357A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
olefin
reactor
producing
catalyst
Prior art date
Application number
PCT/JP2006/322577
Other languages
English (en)
French (fr)
Inventor
Hirofumi Ito
Kazunori Honda
Koji Oyama
Nobuyasu Chikamatsu
Kazutaka Hiraoka
Atsushi Okita
Original Assignee
Jgc Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005329106A external-priority patent/JP5051998B2/ja
Priority claimed from JP2006257708A external-priority patent/JP2008074791A/ja
Application filed by Jgc Corporation filed Critical Jgc Corporation
Priority to EP06823351.9A priority Critical patent/EP1955989B1/en
Priority to CN2006800424229A priority patent/CN101309886B/zh
Priority to US12/085,055 priority patent/US8530714B2/en
Publication of WO2007055357A1 publication Critical patent/WO2007055357A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • B01J2229/62Synthesis on support in or on other molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • the present invention relates to a method for producing lower olefins such as propylene from a raw material gas containing dimethyl ether. More specifically, the present invention relates to a method for producing lower olefin capable of obtaining propylene in high yield from a raw material gas containing dimethyl ether using a catalyst.
  • a dehydration reaction is continuously carried out while supplying a raw material gas containing dimethyl ether to the zeolite.
  • the deposited carbonaceous matter adheres to the pore surface of the zeolite over time, and the reaction to the reaction is continued. Since the active sites that act effectively are poisoned, the zeolite catalyst is gradually deactivated (temporary deactivation). Therefore, it is necessary to repeat the operation of regenerating the zeolite catalyst with reduced activity and restoring the activity.
  • Temporary deactivation is poisoning of catalytic active sites due to the accumulation of carbonaceous matter and can be regenerated by air calcination.
  • permanent deactivation is the disappearance of active sites due to dealumination due to exposure to steam or heat, and regeneration is impossible due to irreversible structural changes.
  • reaction progresses sequentially along the path and carbonaceous matter is generated.
  • reaction heat which is desirable to prevent an excessive temperature rise of the catalyst layer.
  • ability to remove reaction heat is also important from the viewpoint of operating the equipment safely. For this reason, various methods have been proposed to reduce the temperature rise of the catalyst layer.
  • a reactor that converts methanol into dimethyl ether is installed in advance, and the reaction is divided into two stages to reduce the increase in the temperature of the catalyst layer.
  • the method is adopted.
  • a method of reducing the temperature rise by adding a dilution gas to the raw material gas is also employed.
  • Patent Document 1 discloses hydrogen, helium, nitrogen, carbon dioxide, c to c saturated carbonization as the dilution gas. Hydrogen to methanol raw material
  • the regenerated catalyst has a sufficient activity while suppressing the carbonaceous deposition on the catalyst to prolong the time until the zeolite catalyst is temporarily deactivated and the permanent deactivation of the catalyst is small.
  • a process for producing lower olefins with a raw material strength including dimethyl ether which can produce lower olefins, particularly propylene, in a high yield with a low cost and a low cost.
  • Non-Patent Document 1 describes a method in which a reactor for converting methanol into dimethyl ether is installed in front of a hydrocarbon synthesis reactor to disperse the heat generated.
  • 4 describes a method of reducing the temperature rise by adding a dilution gas to the raw material gas.
  • this is a different type of catalyst, the lower In the olefin production process, fluidized bed reactors are used as a heat countermeasure!
  • Patent Document 5 proposes a method in which a plurality of reactors are used in series and raw materials are dividedly supplied to each reactor to react in multiple stages. Propylene is used without using an expensive tubular reactor. It is described that the yield of can be increased. This method is expected to reduce the temperature rise per reactor by using at least two shaft reactors.
  • Patent Document 5 the reason why the propylene yield is improved is not particularly described.
  • the increase in the propylene yield is achieved by reducing the raw material partial pressure. It is thought that. When multiple reactors are used, there is an effect of reducing the temperature rise even if they are installed in parallel, but if they are installed in series, the partial pressure of the raw material in each reactor can be reduced, so the propylene in the lower olefin produced An improvement in yield can be expected.
  • Non-Patent Document 2 when producing propyl ether with propylene, the reaction of the lower olefins produced to aromatics, etc., by reducing the partial pressure of the raw material is performed. This is thought to be due to the suppression of the above.
  • Patent Document 1 US Patent No. 4083888
  • Patent Document 2 Japanese Translation of Special Publication 2003-535069
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-104912
  • Patent Document 4 US Patent No. 4083888
  • Patent Document 5 Special Table 2003-535069
  • Non-Patent Document 1 Chemical Engineering, 1980 (8) 87.
  • Non-Patent Document 2 Journal of Catalysis, 56 (1979) 169. Disclosure of the invention
  • the present invention suppresses carbonaceous deposition on the catalyst to lengthen the time until the temporary deactivation of the zeolite catalyst and suppresses the permanent deactivation of the catalyst.
  • Propylene can be produced especially in high yields, reducing the amount of water recycled to increase the thermal efficiency of the process, and eliminating equipment related to water recycling and steam generation or greatly reducing the size and simplifying operation
  • An object of the present invention is to provide a method for producing a lower polyolefin from a raw material containing dimethyl ether.
  • Another object of the present invention is to provide a method capable of efficiently improving the propylene yield even under actual machine operating conditions in the case of producing lower olefins with a raw material gas power containing dimethyl ether. .
  • the method for producing the first lower olefin of the present invention comprises:
  • Feed gas containing dimethyl ether and additive gas is used, and a feed gas with a steam ratio of 5 to 30 vol% in the total amount is introduced into the olefin production reactor, and the raw material gas is converted into a zeolite catalyst in the reactor.
  • a feed gas with a steam ratio of 5 to 30 vol% in the total amount is introduced into the olefin production reactor, and the raw material gas is converted into a zeolite catalyst in the reactor.
  • the hydrocarbon product power is characterized in that at least a part of propylene and, if necessary, a residue obtained by separating ethylene is used as at least a part of the additive gas.
  • the raw material gas is a gas containing dimethyl ether and methanol.
  • dimethyl ether in the raw material gas and the The molar fraction of tanol is preferably in the range of 6: 0 to 6: 5.
  • the additive gas is derived from the hydrocarbon product force propylene and, if necessary, a residue obtained by separating ethylene, c and
  • the ratio of added gas excluding steam with respect to the raw gas introduced into the olefin production reactor (excluding steam, the number of moles of added gas, the number of moles of Z based on carbon of the raw material gas),
  • a range of 0.2 to 5.0 is preferable.
  • the zeolite catalyst has an MFI structure.
  • the atomic ratio of silicon to aluminum (SiZAl) in the zeolite catalyst is from 50 to 50 in molar ratio. It is also preferable to be in the range of 300.
  • the zeolite catalyst power Alkaline earth metal M is included, and the atomic ratio of the alkaline earth metal M and aluminum in the zeolite catalyst
  • (M / A1) is 0.5 or more in molar ratio.
  • the second method for producing lower olefins of the present invention comprises:
  • the space velocity represented by the feed rate of all raw material gas per unit time relative to the total amount of catalyst in the all-olefin production reactor is WHSV based on dimethyl ether.
  • a feed gas containing dimethyl ether is divided and supplied to two or more olefin production reactors connected in series under the condition of 5 to 50 h 1 ,
  • the source gas is brought into contact with the zeolite catalyst in the reactor,
  • the space velocity is 1.0 to: LOh
  • the raw material gas preferably contains dimethyl ether and methanol.
  • an additive gas may be introduced into the reaction system. preferable.
  • the steam has a specific force of 5 to 30 vol% in the feed gas which is the total amount of the raw material gas and the additive gas introduced into all the reactors.
  • the additive gas is a residue obtained by separating lower olefins containing propylene from the product obtained from the most downstream olefin production reactor. At least one of hydrocarbons It is preferable that a part is included.
  • the additive gas contains hydrocarbon pyrolysis and
  • hydrocarbons which are a residue obtained by separating lower olefins containing propylene from products obtained from an olefin-producing apparatus that produces olefins by Z or catalytic cracking.
  • the zeolite catalyst preferably has an MFI structure.
  • the atomic ratio of silicon to aluminum (SiZAl) in the zeolite catalyst is from 50 to 50 in molar ratio. It is also preferable that it is in the range of 300.
  • the zeolite catalyst power Al force includes the earth metal M, and the atomic ratio (MZA1) of the alkaline earth metal M and aluminum in the zeolite catalyst is 0.5 in molar ratio. It is also preferable to be more than that.
  • the space velocity represented by the total feed gas supply rate per unit time relative to the total amount of catalyst in the all-olefin production reactor is based on dimethyl ether.
  • the source gas is brought into contact with the zeolite catalyst in the reactor,
  • the hydrocarbon product power is characterized in that at least a part of propylene and, if necessary, a residue obtained by separating ethylene is used as at least a part of the additive gas.
  • the carbonaceous deposition on the catalyst is suppressed, the time until the zeolite catalyst is temporarily deactivated is prolonged, and the permanent deactivation of the catalyst is reduced.
  • the thermal efficiency of the process can be increased, and the equipment related to water recycling and steam generation can be eliminated or the size can be greatly reduced and the operation can be simplified.
  • the propylene yield can be improved efficiently even under actual machine operating conditions by a simple method.
  • FIG. 1 is a schematic view showing an embodiment of the first invention when one olefin-producing reactor is used.
  • FIG. 2 is a schematic view showing an embodiment of the first invention when two olefin-producing reactors connected in series are used.
  • FIG. 3 is a schematic view showing an embodiment of the first invention when two olefin-producing reactors connected in parallel are used.
  • FIG. 4 shows an example of an outline of an embodiment suitable for carrying out the second invention.
  • FIG. 5 is an example of an outline of an embodiment suitable for carrying out the second invention, and shows an embodiment using a recycling gas as an additive gas.
  • FIG. 6 is an example of an outline of an embodiment suitable for carrying out the second invention, and is an embodiment in which hydrocarbons derived from the product obtained as the additive gas are used as olefin-generating apparatus power outside the system. Indicates.
  • FIG. 7 shows an embodiment of the production of lower olefins of Comparative Examples 9 and 11.
  • FIG. 8 shows an embodiment of production of lower olefins in Examples 3 to 9 and Comparative Examples 10 and 12.
  • a raw material gas containing dimethyl ether is contacted with a zeolite catalyst in an olefin production reactor, and C to C olefins are obtained.
  • the source gas may be a gas containing dimethyl ether, even if the total amount is dimethyl ether, and a mixed gas of dimethyl ether and other components. Even so.
  • the raw material gas used in the present invention is preferably a gas containing dimethyl ether alone or dimethyl ether and methanol as reaction components.
  • the raw material gas may contain a gas inert to the reaction such as steam (water vapor) or nitrogen as a component other than the reaction component. Examples of such a raw material gas used in the present invention include a gas composed of dimethyl ether alone, a gas composed of dimethyl ether and methanol, and a mixed gas of these and a gas inert to the reaction.
  • a raw material gas for example, a mixed gas (containing dimethyl ether, unreacted methanol and steam), which is a crude product obtained by a reaction in which methanol methanol also produces dimethyl ether, is suitable.
  • a mixed gas containing dimethyl ether, unreacted methanol and steam
  • Production of dimethyl ether from methanol can be performed, for example, by a reaction of dehydrating methanol using a catalyst such as alumina.
  • the reaction components in the raw material gas are dimethyl ether and methanol. It is preferable to satisfy a range of 6: 5 to 6: 5 (dimethyl ether: methanol) force ratio with respect to the water.
  • the content ratio of methanol is larger than the above range, the catalyst layer temperature rises excessively, and the temperature rise may not be sufficiently suppressed.
  • the ratio of the reaction components contained in the raw material gas depends on the amount of the additive gas used and is not particularly limited, but is 50% by volume or more, preferably 75 to about LOO volume%. It is desirable.
  • a zeolite catalyst is used in the olefin production reaction. That is, in the method for producing lower olefins of the present invention, an olefin production reactor equipped with a zeolite catalyst is used. In the case of using a plurality of olefin production reactors, the zeolite catalyst provided in each olefin production reactor may be the same or different for each reactor, but they are the same type of catalyst. It is preferable.
  • a zeolite catalyst having an MFI structure such as ZSM-5 which can be used as a zeolite catalyst capable of converting dimethyl ether to lower olefin, is preferably used.
  • Zeolite may contain other oxides other than silica and alumina in its crystal structure.
  • the zeolite catalyst used in the present invention preferably has a molar ratio of silicon to aluminum (SiZAl) in the catalyst in the range of 50 to 300, preferably 50 to 200! /, .
  • the zeolite catalyst used in the present invention contains alkaline earth metal M such as calcium and strontium, and the atomic ratio (MZA 1) of the alkaline earth metal M to aluminum in the catalyst is 0. It is desirable that the number be 5 or more, preferably 0.75 to 15, more preferably 2 to 8.
  • MZA 1 the atomic ratio of the alkaline earth metal M to aluminum in the catalyst.
  • the number be 5 or more, preferably 0.75 to 15, more preferably 2 to 8.
  • Such a zeolite catalyst containing an alkaline earth metal M can be prepared by a known method, for example, it can be suitably prepared by the method described in JP-A-2005-138000.
  • the atomic ratios SiZAl and MZA1 are determined based on the force obtained by a conventional analytical method such as atomic absorption spectrometry or inductively coupled plasma emission spectrometry, or the silicon-containing properties used in the synthesis of the zeolite.
  • the stoichiometric ratio between the compound and the aluminum-containing compound, or the stoichiometry between the compound containing the alkaline earth metal M and the aluminum-containing compound It can be obtained by reasoning.
  • a raw material gas containing dimethyl ether or dimethyl ether and methanol is introduced into an olefin production reactor filled with a zeolite catalyst together with an additive gas, and the raw material gas is introduced into a zeolite catalyst.
  • a hydrocarbon product containing c-colefin from the raw material gas.
  • the olefin production reactor used here may be a fixed bed, a moving bed, or a fluidized bed.
  • the additive gas means a gas supplied through a line separate from the raw material gas.
  • the ratio of steam is 5 in the feed gas composed of the raw material gas and the additive gas, that is, in all the gaseous components introduced into the olefin production reactor. It is desired to be in the range of -30 vol%, preferably 8-25 vol%.
  • the amount of steam in such a feed gas is much smaller than that of a conventionally known method using a dilution gas containing steam, but suppresses carbon from being deposited on the surface of the zeolite catalyst. The effect can be sufficiently exerted, and permanent deactivation of the zeolite catalyst by steam can be effectively suppressed.
  • the olefin production reactor used in the first production method of the present invention may be single or plural. When multiple olefin production reactors are used, the olefin production reactors can be connected in series, in parallel, or a combination of these. For example, the reactors are used in series, and the raw material gas is used in multiple stages. Can be processed.
  • the feed gas means the sum of the raw material gas and the additive gas.
  • the raw material gas and the additive gas may be mixed in advance and introduced into the olefin production reactor as a feed gas, or may be introduced separately.
  • the total amount of gaseous components introduced into the entire reaction system Is the feed gas.
  • a raw material gas containing dimethyl ether is dividedly introduced into each reactor.
  • an additive gas is introduced into the most upstream reactor, and the raw material gas is brought into contact with the zeolite catalyst in each reactor to obtain a hydrocarbon product containing c to olefins.
  • the hydrocarbon products obtained in the upstream reactor are sequentially introduced into the downstream reactor, and propylene and, if necessary, ethylene are separated and recovered from the hydrocarbon products obtained from the most downstream reactor.
  • at least a portion of the residue obtained by separating propylene and, if necessary, ethylene can be used as at least a portion of the additive gas.
  • the ratio of the steam contained in the total amount is 5 to 30 vol% with respect to the total amount (feed gas) of all the raw material gases and the additive gas introduced into each reactor.
  • a lower olefin production reactor is manufactured using a two-stage olefin production reactor connected in series, and the most upstream olefin production reaction.
  • Feed gas (1) such as dimethyl ether and additive gas (3), which is a recycle gas, to reactor 1, and total amount of hydrocarbon products containing C to C olefins obtained in reactor 1
  • the hydrocarbon product obtained in the reactor 1 is a by-product in a dehydration reaction in which C to C-olefins are obtained from dimethyl ether (or dimethyl ether and methanol).
  • the steam to be introduced into the reactor 2 is not newly added.
  • the ratio of steam in the total amount is 5-30 vol. % Can be easily controlled.
  • the olefin production reactors 1 and 2 ' Carbon dioxide containing C to C olefins obtained in each reactor by supplying source gas (1 ') or (2') such as dimethyl ether and additive gas (3 ') which is recycle gas
  • source gas (1 ') or (2') such as dimethyl ether and additive gas (3 ') which is recycle gas
  • the raw product is introduced into a downstream separation and purification system to separate propylene (or ethylene and propylene), and at least a part of the separated residue is used as an additive gas (3 ′).
  • the feed gas defined in the present invention is the total of the raw material gases (1 ′), (2 ′) and the additive gas (3 ′).
  • the reaction conditions in each reactor when a plurality of olefin production reactors are used, the reaction conditions in each reactor, the type and amount of the catalyst, the feed gas supply amount, the ratio of the raw material gas to the additive gas in the feed gas, etc. Depending on the desired product output, etc., it may be different for each polyolefin production reactor.
  • the raw material gas and the zeolite catalyst are contacted in the olefin production reactor, and the hydrocarbon product containing c to c olefins is removed from the olefin production reactor.
  • the reaction conditions such as the feed rate of the raw material gas and additive gas to the olefin production reactor, the gas pressure and the reaction temperature are appropriately set in consideration of the desired yield of the lower olefin and the catalyst life.
  • the type of zeolite and reaction conditions 55% or more (carbon conversion) of the introduced raw material gas can be finally converted to propylene.
  • the pressure during the reaction is preferably 0.005-1.5 MPa as the partial pressure of the raw material gas, more preferably 0.02-1. OMPa.
  • the reaction temperature is preferably 350 to 750. C, more preferably 400-650. C.
  • ethylene and propylene or only propylene is separated and recovered as a product.
  • components other than ethylene and Z or propylene may be separated and recovered from the hydrocarbon product. Separation and recovery of the hydrocarbon product, ethylene and z or propylene, can be performed by a known method, for example, by fractional distillation.
  • Hydrocarbon product power The residue obtained by separating ethylene and Z or propylene contains light paraffins such as methane, C and C olefins, and aromatic compounds. In the present invention,
  • this residue is used as at least a portion of the additive gas described above.
  • the residue obtained by separating the hydrocarbon product propylene and ethylene as necessary can be recycled as it is and introduced into the olefin production reactor as an additive gas. A part of the minute may be separated and used.
  • the ethylene in the residue can be recycled as it is and used as an additive gas. It may be converted to hydrocarbons and used as part of the supplemental carogas.
  • the total amount of the additive gas includes a residue that may be derived from a residue obtained by separating propylene and ethylene as necessary from the hydrocarbon product, and other gases. You may go out.
  • a component derived from a recycle gas that is, a residue obtained by separating propylene and, if necessary, ethylene from a hydrocarbon product, is preferably 50 vol% or more of the additive gas, preferably about 60 to 90 vol%. It is preferable to use an additive gas contained in a proportion.
  • the amount of water recycled can be reduced by minimizing the dilution of the raw material gas by steam, and the thermal efficiency of the process is enhanced, which is economical.
  • the additive gas may be used according to the component and amount of the raw material gas so that the ratio of the steam in the total amount of the feed gas is 5 to 3 Ovol%. Is the ratio of the additive gas excluding steam to the raw material gas, the number of moles of additive gas excluding steam, and the amount of carbon in the raw material gas in the range of 0.2 to 5.0. Is desirable. Also, the total amount of C and C polyolefin in the additive gas relative to the total amount of methanol and dimethyl ether in the feed gas (C and C polyolefin in the additive gas).
  • the force is preferably in the range of 0.3 to 5.0 in terms of carbon-based molar ratio. If a feed gas that satisfies the relationship between the raw material gas and the additive gas and the force is used, the deposition of carbonaceous matter on the surface of the zeolite catalyst is effectively suppressed without adding a large amount of steam, and the catalyst temporarily Until deactivation The permanent deactivation due to the elimination of aluminum in the skeleton structure can be effectively suppressed in both the strength and the zeolite catalyst power.
  • the hydrocarbon product means the total amount of the fraction obtained from the outlet force of the olefin-producing reactor, so that "total hydrocarbon product" includes the components obtained by the reaction and unreacted components. Alternatively, both components that are inactive in this reaction are included. For this reason, the propylene selectivity obtained by the above formula is higher than the selectivity for propylene in the lower olefin obtained by the reaction, and the propylene selectivity in the lower olefin produced by the reaction is much higher.
  • a raw material gas containing dimethyl ether is brought into contact with a zeolite catalyst in a reactor using a plurality of olefin production reactors, and is about C to C.
  • a hydrocarbon product containing lower olefins is obtained from a hydrocarbon gas.
  • Each of the plurality of olefin production reactors used in the second production method of the present invention comprises a zeolite catalyst.
  • Each of the olefin-producing reactors may have the same zeolite catalyst, which may be the same or different for each reactor. preferable.
  • the additive gas is a gas supplied through a separate line from the source gas.
  • the additive gas contains a relatively large amount of inert components (components other than the reaction components) described above, it may not be used, but preferably, together with the source gas It is desirable to be introduced into the reaction system.
  • the additive gas may be introduced into the reaction system by mixing it with the raw material gas before it is introduced into the reactor, which may be directly introduced into the reactor.
  • the additive gas specifically, a gas mainly composed of a gas inert to the reaction for producing lower olefin such as nitrogen can be suitably used.
  • a gas containing hydrocarbons such as C and C olefin is also suitable.
  • a so-called recycle gas which is at least part of hydrocarbons, which is a residue obtained by separating lower olefins containing propylene from the product obtained from the olefin production reactor, can be suitably used.
  • the lower olefin according to the present invention is used as a gas containing hydrocarbons such as C and C olefin.
  • the gas introduced for example, containing propylene from products obtained from an olefin production device that produces olefins by pyrolysis and Z or catalytic cracking of hydrocarbons.
  • olefins are produced by thermal decomposition of hydrocarbons and Z or catalytic cracking to produce olefins, such as naphtha crackers and fluid catalytic cracking (FCC) equipment.
  • FCC fluid catalytic cracking
  • the hydrocarbon-containing gas is a gas containing a residue obtained by separating the lower olefin product from the product obtained by the reaction for producing lower olefin and the like.
  • Such a gas is preferably at least part of the hydrocarbon, which is a residue obtained by separating propylene, which is the desired lower olefin, and ethylene if necessary, from the product obtained by the reaction, specifically, C and
  • the additive gas used in the second method for producing lower olefins of the present invention may be only a gas inert from the reaction introduced from outside the system by thermal decomposition of hydrocarbons and Z or catalytic decomposition.
  • the equipment force outside the system such as an olefin generator that generates olefin, introduces c and Z or the most downstream olefin that may be only gas containing c olefin.
  • the additive gas used in the second method for producing lower olefins of the present invention is C and C introduced from a device outside the system.
  • the carogas contains c and Z or c olefin, the olefin is the most downstream
  • It is preferably derived from a recycle gas produced by a reactor that produces olefins, or a gas obtained from an olefin generator that produces olefins by thermal cracking and Z or catalytic cracking of hydrocarbons.
  • Device power outside the system may be derived from the gas obtained.
  • the feed gas refers to the feed gas introduced into all the reactors and the additive gas. It means the sum with gas.
  • steam is contained in the feed gas.
  • the specific force of steam in the feed gas is 5 to 30 vol. %, Preferably in the range of 8-25 vol%.
  • the presence of steam in the reaction system is expected to extend the catalyst life until temporary deactivation as a result of the suppression of carbonaceous production.
  • the temporary deactivation mentioned here is deactivation of the catalyst due to accumulation of carbonaceous material by-produced during the reaction, and indicates deactivation that can be regenerated by calcination in air.
  • the presence of a large amount of steam in the reaction system is not preferable because permanent deactivation occurs due to the elimination of aluminum in the zeolite catalyst.
  • Permanent deactivation refers to deactivation that cannot be regenerated by any treatment.
  • the amount of steam in the feed gas is preferably set to a ratio in the above range by controlling the composition of the raw material gas and additive gas and the amount used.
  • the amount of steam in the feed gas is much less than that of a conventionally known method using an additive gas containing steam. Effect of suppressing the precipitation of carbonaceous material on the surface of the zeolite catalyst In addition, the permanent deactivation of the zeolite catalyst by steam can be effectively suppressed.
  • components other than the reaction components excluding steam with respect to the reaction components total amount of dimethyl ether and methanol in the feed gas.
  • the ratio of the number of moles of components other than the reaction components excluding steam is preferably in the range of 0.2 to 5.0 in terms of the number of moles of carbon of the Z reaction components.
  • the feed gas force C and / or C olefin is used.
  • C and Z or colefin in the feed gas are usually
  • the additive gas may be contained in the raw material gas in advance as a component other than the reaction component.
  • the amount of C and C olefins in the feed gas is particularly limited
  • a ratio of about 0.3 to 5.0 in terms of carbon-based molar ratio with respect to the amount of the reaction components is preferable because it is particularly effective for improving the propylene yield. If the feed gas contains c and Z or colefin, these hydrocarbons are combined with the propylene feed.
  • the feed gas is C and
  • the propylene yield is improved, the catalyst layer temperature is stabilized, The effect of extending the life of the catalyst can be further expected.
  • each connected olefin production reactor may have the same processing capability or may be different. That is, each connected olefin production reactor may have the same amount of zeolite catalyst, or may have different amounts of zeolite catalyst.
  • the serial connection means for example, components discharged from the upstream reactor as shown in Figs. 4 to 6 illustrating the outline of a preferred embodiment of the second production method of the present invention. Is fed to the adjacent downstream reactor to which it is connected.
  • the components discharged from the upstream reactor are the reaction products produced by the reaction of the reaction components in the source gas and additive gas in the upstream reactor, and the non-reacted components in the source gas and additive gas. , And optionally unreacted components.
  • a cooling device such as a heat exchanger ⁇ may be provided between each connected polyolefin production reactor, thereby cooling the product of the upstream olefin production reactor power, May be introduced into downstream olefin production reactors.
  • the raw material gas is divided and supplied to two or more olefin production reactors. That is, when two olefin production reactors are connected in series, each of the two reactors, and when three or more olefin production reactors are connected in series, Introduce raw material gas beyond the base.
  • the raw material gas may be supplied equally to each olefin production reactor or may be divided and supplied at different ratios. When the same type and the same amount of catalyst are provided, it is preferable to supply them equally. When the type and / or amount of catalyst charged in each olefin production reactor is different and there is a difference in processing capacity, the raw material gas is divided and supplied at a ratio according to the processing capacity. I also like to do it.
  • the total amount of raw material gas per unit time (the total amount of raw material gases supplied to the all-olefin production reactor) with respect to the total amount (g) of catalyst in the all-olefin production reactor.
  • space velocity represented by the feed rate (GZh) of) is a important to be 0. 5 ⁇ 50H 1 in WHSV relative to the dimethyl ether, preferably 1. More preferably, it is in the range of 1.0 to 5. Oh— 1 .
  • the space velocity (WHSV) is, in other words, a reaction component converted to dimethyl ether (unit of dimethyl ether and methanol per unit time (h) and unit catalyst weight (g-cat). Total) supply weight (g—DME),
  • the space velocity (WHSV) is 1.0 to 4. In OH @ - 1 in the range of about, improves propylene yield Te Bantsu the increase in WHSV, in greater than about 4. Oh 1, the increase in WHSV Although the propylene yield is not expected to increase further according to the above, while maintaining a high propylene yield, the space-time yield will improve as the WHSV increases. However, if WHSV is larger than 50h- 1 , it is not practical because the time until the catalyst is temporarily deactivated by carbonaceous deposition is shortened.
  • the additive gas when the additive gas is introduced into the reaction system, the additive gas may be introduced into each of the polyolefin production reactors.
  • the additive gas is introduced into a plurality of series-connected reactors.
  • olefin production reactors are connected in series, and the total amount of additive gas and products supplied to the upstream reactor is continuously introduced into the downstream reactor, so that the most upstream reaction is achieved.
  • the pressure in the reaction system is 0.05 ⁇ : L 5 MPa as the partial pressure of the raw material gas, more preferably 0.02 ⁇ : L OMPa.
  • the reaction temperature is preferably 350 to 750 ° C, more preferably 350 to 650 ° C.
  • the product after the reaction containing lower olefin is all obtained from the most downstream olefin production reactor. Only ethylene and propylene, or propylene, is separated and recovered as a lower olefin product from the mixture containing the reaction product, which also provides the downstream olefin production reactor power.
  • a mixture containing ethylene and components other than ethylene and Z or propylene may be separated and recovered. Separation / recovery of ethylene and Z or propylene from the mixture containing the product can be carried out by a known method, for example, by separation by a separation / purification system such as a splitter.
  • the residue obtained by separating the lower olefin product such as propylene from the mixture containing the product contains light paraffin such as methane, C and C olefin, and aromatic compounds.
  • this residue can be used as a so-called recycle gas as at least a part of the aforementioned additive gas.
  • a recycle gas as at least a part of the aforementioned additive gas. Separating only propylene as a low-olefin product 'When recovering, the remaining ethylene can be used as a recycle gas or as a component of the additive gas. It may be converted into a hydrocarbon and used as a component of the additive gas.
  • the reaction component introduced as a raw material gas that is, dimethyl ether and, if necessary, the methanol power product is not present in an actual industrial operation.
  • the conversion rate of the reaction component is 95% or more, preferably 99% or more, and more preferably 99.9% or more.
  • the conversion rate can be obtained by the following formula. In Examples 3 to 9 and Comparative Examples 9 to 12 described later, the conversion rate is obtained by the following formula.
  • reaction component means the sum of dimethyl ether and methanol, and the supply speed and the outlet speed mean carbon-based speeds.
  • the second production method of the present invention can be preferably carried out, for example, by an apparatus having a configuration as shown in Figs.
  • the raw material gas is divided by lines (1) and (2) and introduced into each of the polyolefin production reactors.
  • the additive gas is a residue obtained by separating propylene and, if necessary, ethylene, from the hydrocarbon product containing lower olefin produced in the olefin production reactor. It is also preferable to include a so-called recycle gas which is a residue obtained by separating at least a part of the water, and the ratio of steam in the feed gas is in the range of 5 to 30 vol%.
  • the manufacturing method of this embodiment can be suitably implemented by the flow shown in FIG. 5, for example.
  • the preferred conditions such as the catalyst used, the raw material gas, and the feed rate condition of the raw material gas are the same as the preferred production conditions described above in the first production method and the second production method. Is mentioned.
  • the catalyst life was measured as the time until the conversion rate of dimethyl ether, which is a starting material for reaction initiation, was 0, and dimethyl ether and nitrogen gas were used.
  • the mixed gas used in 1: 1 is used as the feed gas (comparative example 1), it is expressed as a relative value when the catalyst life time when using a new (first use) zeolite catalyst is 1.00.
  • the raw material solution is dissolved in 750 g of water, and 500 g of Kita P Si—30 in 333 g of water.
  • a solution of water glass manufactured by Catalysts & Chemicals Industries
  • 6 wt% NaOH aqueous solution 177. 5 g, 2 1. 3 mass 0/0 tetra-propyl ammonium - with the ⁇ anhydrous solution 317.
  • 6 g a Zeoraito seed crystal Ammonium type zeolite with an average particle size of 0.5 ⁇ m (Zeolyst, Si / A1 atomic ratio is 70) 15.
  • Og (10% of the amount of zeolite catalyst synthesized without adding seed crystals) An amount corresponding to mass%) was added with stirring to obtain an aqueous gel mixture.
  • this aqueous gel mixture was placed in a 3 L autoclave container, and stirred at 160 ° C for 18 hours under self-pressure to perform hydrothermal synthesis.
  • the fired product was immersed in 0.6N hydrochloric acid and stirred at room temperature for 24 hours to change the zeolite type to the proton type.
  • the SiZAl atomic ratio was 100
  • the CaZAl atomic ratio was 3.7
  • the specific surface area was 320 m 2 Zg
  • the average particle size was 1.5 m.
  • dimethyl ether which is a raw material gas
  • an additive gas composed of nitrogen, steam and isobutene are combined, and the component catalyst shown in Table 1 is obtained.
  • the reaction conditions were normal pressure, reaction temperature of 530 ° C, and the weight-based space velocity (WHSV), which is the ratio of the feed amount of dimethyl ether per unit time to the catalyst unit amount, was 9.5g-DMEZ (lg-catalyst 'hour) It was.
  • the additive gas is a simulated recycle gas containing isobutene corresponding to the olefin component, a nitrogen gas corresponding to a component inert to the reaction for producing the lower olefin, and steam.
  • Example 1 The catalyst used in Example 1 and having reached the catalyst life was calcined in an air stream at 550 ° C for 10 hours to regenerate the catalyst. In the same manner as in Example 1, lower olefin was produced. The results are shown in Table 1.
  • Example 1 a mixed gas of dimethyl ether 50 vol% as the feed gas and nitrogen 50 vol% as the additive gas was used as the feed gas, and the production of lower polyolefin and component analysis of the reactor outlet gas were performed in the same manner as in Example 1. went. The results are shown in Table 1.
  • Example 1 a mixed gas containing 42 vol% of dimethyl ether as a feed gas and 34 vol% of nitrogen and 24 vol% of nitrogen as an additive gas was used as the feed gas, and production of lower olefin and reactor outlet gas were conducted in the same manner as in Example 1. The component analysis of was performed. The results are shown in Table 1.
  • Example 1 a mixed gas containing 25 vol% of dimethyl ether as a feed gas as feed gas and 50 vol% of nitrogen and 25 vol% of nitrogen as additive gas was used to produce lower olefin and reactor outlet gas in the same manner as in Example 1. The component analysis of was performed. The results are shown in Table 1.
  • Example 1 a mixed gas containing 33 vol% of dimethyl ether as a feed gas and 32 vol% of nitrogen and 35 vol% of nitrogen as an additive gas was used as the feed gas, and the production of lower olefin and the reactor outlet gas were conducted in the same manner as in Example 1. The component analysis of was performed. The results are shown in Table 1.
  • Comparative Example 1 Comparison of Comparative Example 1 in which the raw material gas was diluted with nitrogen alone and Comparative Example 5 in which the raw material gas was diluted with steam showed that when the raw material gas was diluted with steam, the catalyst life (until temporary deactivation due to carbonaceous precipitation). It can be seen that the time is greatly increased. Further, in Comparative Example 7 in which the steam addition concentration was further increased, the catalyst life was further increased, so that it can be seen that the catalyst life was increased in proportion to the steam concentration. On the other hand, from the results of Comparative Examples 1 and 2, Comparative Examples 5 and 6, and Comparative Examples 7 and 8, when the steam concentration in the feed gas is 30 vol% or more, the time until the regenerated catalyst deactivates rapidly. It has been shown that the presence of high-concentration steam has resulted in permanent deactivation where A1 is irreversibly detached from the skeletal structure of the zeolite catalyst and the active sites are reduced.
  • the life of the catalyst at the first use is greatly prolonged, and even when the regenerated catalyst is used, the same catalyst life as at the first use is shown. It has been shown that the time to temporary deactivation can be greatly prolonged with almost no permanent deactivation.
  • the reaction component (dimethyl ether and methanol) used as a raw material in the mixture containing low-grade olefins obtained from the most downstream olefin production reactor, The time until 0.1% of the total amount of sol was mixed was defined as the catalyst life.
  • the raw material solution was dissolved in 750 g of water, and a solution of 500 g of Kita P Si-30 water glass (manufactured by Catalyst Kasei Kogyo) in 333 g of water, 177.5 g of a 6 mass% NaOH aqueous solution, 2 1.3 mass 0/0 tetra-propyl ammonium - ⁇ anhydrous solution 317. 6 g and, ammonia an average particle size of 0.
  • this aqueous gel mixture was placed in a 3 L autoclave container and stirred at 160 ° C for 18 hours under self-pressure to perform hydrothermal synthesis.
  • the white solid product by hydrothermal synthesis was filtered and washed with water, dried at 120 ° C for 5 hours, and calcined in air at 520 ° C for 10 hours. The calcined product was then immersed in 0.6N hydrochloric acid and stirred at room temperature for 24 hours to change the zeolite type to the proton type.
  • Lower olefins were produced using an apparatus having the configuration shown in FIG. 7 in which two olefin production reactors filled with zeolite catalyst B obtained in Preparation Example 1 were connected in series.
  • the olefin production reactor-1 and the olefin production reactor-2 have the same scale and the same amount of zeolite catalyst B.
  • the space velocity (WHSV) based on dimethyl ether is 0.42h at a ratio of the feed gas composition shown in Table 2, with dimethyl ether, methanol and a mixed gas of steam as the source gas, and nitrogen as the additive gas. - 1 conditions, the total amount Orefin production reactor - was introduced into 1.
  • the entire reaction mixture obtained at the outlet temperature of 550 ° C. was introduced from the olefin producing reactor 1 into the olefin producing reactor 2 to obtain a reaction product-containing mixture.
  • the outlet temperature of the olefin production reactor-2 was 550 ° C.
  • the obtained reaction product-containing mixture was analyzed by gas chromatography to determine the raw material mixture amount and the propylene content. As a result, it was found that the raw material dimethyl ether and methanol were not present in the reaction product-containing mixture, and the conversion rate was 100%.
  • the feed gas was 1: 1. This was divided and introduced into olefin production reactor-1 and olefin production reactor-2 respectively by 50% to carry out the production reaction of lower olefin.
  • the feed gas composition is shown in Table 2.
  • the additive gas was introduced only into the polyolefin production reactor 1 , and the raw material was introduced into the system under the condition that the space velocity (WHSV) based on dimethyl ether was 1.
  • WHSV space velocity
  • the olefin production reactor-1 and the olefin production reactor-2 used were of the same scale and were equipped with the same amount of zeolite catalyst B, respectively, and those used in Comparative Example 9 respectively. It is the same.
  • reaction mixture obtained at the outlet temperature of 550 ° C from the olefin production reactor 1 was removed by the heat exchanger (4), and introduced into the olefin production reactor 12 together with the divided raw material gas.
  • the outlet temperature of the polyolefin production reactor 12 was 550 ° C.
  • the reaction product-containing mixture obtained from the olefin production reactor 2 was analyzed in the same manner as in Comparative Example 9. Further, the catalyst life was determined in the same manner as in Comparative Example 9.
  • Example 3 the lower olefin production reaction was carried out in the same manner as in Example 3, except that the introduction speed of the raw material gas was 4. Oh 1 in terms of space velocity (WHSV) based on dimethyl ether. It was.
  • WHSV space velocity
  • the outlet temperature of the olefin producing reactor 1 is 550 ° C, and the outlet of the olefin producing reactor 1 is 2 The temperature was 550 ° C.
  • Example 3 the production reaction of lower olefin was carried out in the same manner as in Example 3 except that the introduction speed of the raw material gas was 10. Oh 1 as the space velocity (WHSV) based on dimethyl ether. .
  • the outlet temperature of the olefin producing reactor 1-1 was 550 ° C
  • the outlet temperature of the olefin producing reactor 1-2 was 550 ° C.
  • Example 3 the production reaction of lower olefin was conducted in the same manner as in Example 3 except that the introduction speed of the raw material gas was 30. Oh 1 in terms of the space velocity (WHSV) based on dimethyl ether. .
  • the outlet temperature of the olefin producing reactor 1-1 was 550 ° C
  • the outlet temperature of the olefin producing reactor 1-2 was 550 ° C.
  • Example 3 the production reaction of lower olefin was carried out in the same manner as in Example 3, except that a gas containing nitrogen and isobutene in the proportions shown in Table 2 was used as the additive gas. It was.
  • this example using an additive gas containing isobutene contains C-olefin.
  • the outlet temperature of the olefin producing reactor 1-1 was 550 ° C
  • the outlet temperature of the olefin producing reactor 1-2 was 550 ° C.
  • Example 3 the production reaction of lower olefin was carried out in the same manner as in Example 3 except that the introduction speed of the raw material gas was 0.42h 1 in terms of space velocity (WHSV) based on dimethyl ether. .
  • WHSV space velocity
  • the outlet temperature of the olefin producing reactor 1-1 was 550 ° C
  • the outlet temperature of the olefin producing reactor 1-2 was 550 ° C.
  • Comparative Example 9 the lower olefin production reaction was carried out in the same manner as in Comparative Example 9, except that the introduction speed of the raw material gas was 1. Oh 1 as the space velocity (WHSV) based on dimethyl ether. It was.
  • WHSV space velocity
  • the outlet temperature of the olefin-producing reactor 1-1 was 550 ° C
  • the outlet temperature of the olefin-producing reactor 1-2 was 550 ° C.
  • Example 3 the introduction rate of the raw material gas, the addition of that was 75. Oh 1 in space velocity relative to the dimethyl ether (WHSV), was produced reaction of lower Orefin in the same manner as in Example 3 .
  • WHSV dimethyl ether
  • the outlet temperature of the olefin producing reactor 1-1 was 550 ° C
  • the outlet temperature of the olefin producing reactor 1-2 was 550 ° C.
  • Example 3 a lower olefin production reaction was carried out in the same manner as in Example 3 except that a gas consisting only of dimethyl ether was used as the raw material gas and the feed gas composition was in the ratio shown in Table 2. It was.
  • the outlet temperature of the olefin-producing reactor 1-1 was 550 ° C
  • the outlet temperature of the olefin-producing reactor 1-2 was 550 ° C.
  • Example 3 the lower olefin production reaction was carried out in the same manner as in Example 3 except that the raw material gas had the composition shown in Table 2 and the feed gas composition had the ratio shown in Table 2. It was.
  • the outlet temperature of the olefin producing reactor 1 was 550 ° C, and the outlet temperature of the olefin producing reactor 1 2 was 550 ° C.
  • Example 5 Example 6, Comparative Example 10, Comparative Example 12, the results of Examples 3 and 4, the WHSV of 4. OH @ - 1 or more ranges, an increase in WHSV Thus, although the propylene yield was not improved, it was found that a higher propylene yield was maintained than when WHSV was lower than 4. Oh 1 . However from the results of Comparative Example 12, when the WHSV is super Ete greater the 50h 1 becomes a catalyst life very short, Do the operating conditions that can industrially employed, it is I ChikaraTsuta.
  • the present invention is useful as a method for producing lower olefins that can suppress the deactivation of a zeolite catalyst and can also effectively suppress the deactivation of a regenerated zeolite catalyst.
  • the present invention is industrially useful as a method for efficiently producing raw material lower olefins containing dimethyl ether with a high propylene yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

 本発明は、ゼオライト触媒の一時失活までの時間を長くするとともに、触媒の永久失活を抑制して、経済的に、収率よくプロピレン等の低級オレフィンを製造でき、水のリサイクル量を低減してプロセスの熱効率を高め、設備および運転操作を簡略化できる、ジメチルエーテル(DME)を含む原料から低級オレフィンを製造する方法を提供することを課題としている。また本発明は、実機運転条件においても効率的にプロピレン収率を向上させることのできる方法を提供することを課題としている。  本発明では、DMEを含む原料ガスと添加ガスとからなり、特定割合でスチームを含むフィードガスを、オレフィン製造反応器内に導入し、ゼオライト触媒に接触させて、C2~C5オレフィンを含む炭化水素生成物を製造し、得られた炭化水素生成物からプロピレン等を分離回収し、その残分の少なくとも一部を、前記添加ガスの少なくとも一部として用いる。

Description

低級ォレフィンの製造方法
技術分野
[0001] 本発明は、ジメチルエーテルを含む原料ガスから、プロピレンなどの低級ォレフィン を製造する方法に関する。詳しくは、本発明は、ジメチルエーテルを含む原料ガスか ら、触媒を用いて、高収率でプロピレンを得ることのできる低級ォレフィンの製造方法 に関する。
背景技術
[0002] 従来より、ジメチルエーテル、またはジメチルエーテルとメタノールとの混合物を、ゼ オライト触媒に接触させて脱水反応を行い、エチレン、プロピレンを含む低級ォレフィ ンに転化する方法が知られて 、る。
[0003] この方法では、ジメチルエーテルを含む原料ガスをゼオライトに供給しながら継続 的に脱水反応を行っていくが、析出した炭素質がゼォライトの細孔表面に経時的に 付着して、反応に対して有効に作用する活性点が被毒されるため、ゼォライト触媒が 次第に失活する(一時失活)という問題がある。したがって、活性が低下したゼォライ ト触媒を再生して、活性を回復させる操作を繰り返す必要がある。
[0004] このため、低級ォレフィンの生産効率およびコストの点から、経時的な触媒活性の 低下を抑制して、ゼォライト触媒の寿命を向上させることが検討されてきた。
[0005] ここで、問題となる失活には先述した一時失活の他に、後述するように永久失活が ある。一時失活は、炭素質の蓄積による触媒活性点の被毒であり、空気焼成により再 生が可能である。一方、永久失活は、スチームや熱への暴露を原因とした脱アルミ- ゥムによる活性点の消失であり、不可逆的構造変化のため再生は不可能である。
[0006] メタノールおよびジメチルエーテル(DME)力 ゼォライト触媒の存在下に低級ォレ フィンを製造する際においては、
メタノール→ジメチルエーテル→ォレフイン→芳香族化合物→炭素質
という経路で逐次的に反応が進行して炭素質が生成すると考えられる。このような反 応による炭素質の生成を抑制し、また、熱損傷による触媒の劣化を抑制するために は、触媒層の過度な温度上昇を防ぐことが望ましぐ反応熱の除去が効果的である。 また、反応熱の除去は、装置を安全に運転する観点力 も重要である。このため、触 媒層の温度上昇を低減させるために、種々の方法が提案されて ヽる。
[0007] たとえば、低級ォレフィンを製造する反応器に導入する前に、予めメタノールをジメ チルエーテルに転化する反応器を設置し、反応を二段階に分割することで触媒層温 度の上昇を低減する方法が採用されている。また、原料ガス中に希釈ガスを添加して 温度上昇を低減させる方法も採用されており、例えば特許文献 1には、希釈ガスとし て、水素、ヘリウム、窒素、二酸化炭素、 c〜c飽和炭化水素をメタノール原料に対
1 7
して 2〜20倍量添加する例が示されて 、る。
[0008] 原料ガスを希釈して、原料ガス分圧を低減させると、触媒層の温度上昇を抑制でき るだけではなぐ生成したォレフィンがさらに逐次的に反応するのを抑制でき、低級ォ レフインの収率向上にも寄与する場合があることが知られており、希釈ガスとして多量 のスチームを用いる方法が広く採用されている。商業プロセスにおいては、ォレフィン 製造反応器の後段に、分離プロセスを配置する必要があるが、スチームは他の希釈 ガスに比べて分離が容易であり、また、原料ガスの脱水反応によって水が副生するこ とから、リサイクルして使用できることも、スチームを希釈ガスとして使用する需要の要 因である。例えば特許文献 2には、フィード中のスチーム分圧 40〜80vol%として低 級ォレフインの製造を行うことが記載されて 、る。
[0009] し力しながら、高濃度のスチームの添加では、炭素質の析出が緩和され、ゼォライト 触媒の一時失活までの時間は延びるものの、再生後に十分な触媒活性 ·寿命が得ら れないという問題がある。これは、触媒の活性点を形成している骨格アルミニウムがス チームの存在によってゼォライト骨格構造から脱離し、再生不可能な失活 (永久失活
)が引き起こされて 、るためと考えられる。
[0010] さらには、先述のように低級ォレフィンを製造する反応器の前段に設置したメタノー ルカゝらジメチルエーテルに転ィ匕する反応器で生成したスチームに加え、希釈ガスとし て更なるスチームを添加する場合には、スチームを発生させるために多大な蒸発ェ ネルギーを必要とするためプロセス全体の熱効率が低下する。また、スチームの発生 設備が必要となるため装置構成が複雑になりプロセス建設コストが上昇する。装置の 運転が複雑化すると!、つた問題も有して 、る。
[0011] また、炭素質の析出による触媒の一時失活を抑制するその他の方法として、触媒の 改良も検討されている。たとえば、 ZSM— 5中の SiZAl比を増大させる力、塩基性の 金属を担持して酸点の一部を被毒することにより、触媒上の活性点の密度を小さくす る方法が知られている。
[0012] し力しながら、これらのいずれの方法を採用しても、経時的な触媒上への炭素質の 析出による活性低下 (一時失活)は避けられず、定期的に炭素を燃焼除去させて触 媒を再生する必要がある。
[0013] 触媒の再生周期の長期化を目指す技術として、本願出願人は、ジメチルエーテル を含む原料ガス中に二酸ィ匕炭素を添加することにより、蓄積炭素量を減少させる方 法をすでに提案している(特許文献 3参照)。この方法では、炭酸ガスによる析出炭 素質のガス化により、触媒上への炭素質の蓄積が低減されるものと考えられ、触媒の 永久失活を促進することなぐ触媒上への炭素質の析出を抑制し、触媒の再生周期 の長期化を達成しているが、更なる技術の向上が望まれていた。
[0014] このような状況において、触媒上への炭素質析出を抑制してゼォライト触媒の一時 失活までの時間を長くするとともに、触媒の永久失活が少なぐ再生後の触媒が十分 な活性を長時間保持し、し力ゝも低コストで低級ォレフィン、特にプロピレンを収率よく 製造できるような、ジメチルエーテルを含む原料力も低級ォレフィンを製造する方法 の出現が強く望まれていた。
[0015] また一方、ジメチルエーテルやメタノールから、触媒を用いてプロピレンやエチレン などの低級ォレフィンを製造する反応には多大な発熱を伴うため、反応装置の構築 にあたっては触媒の劣化や熱による損傷を抑える観点から、また、装置を安全に運 転する観点から、その熱対策が重要な課題となる。このため、触媒層の温度上昇を 低減させるために種々の方法が提案されて 、る。
[0016] たとえば、非特許文献 1には、炭化水素合成反応器の前に、メタノールをジメチル エーテルに転換する反応器を設置して、発熱を分散させる方法が記載されており、ま た特許文献 4には、原料ガス中に希釈ガスを添加して温度上昇を低減させる方法が 記載されている。また、これと触媒の型は異なるが、 SAPO— 34触媒を使用した低級 ォレフィン製造プロセスにお 、て、熱対策として流動床反応器が用いられて!/、る。
[0017] 反応による発熱量は、原料供給量に比例することから、反応器を多段に分割して、 原料を分割供給することも触媒層の温度上昇低減に効果的である。特許文献 5には 、複数の反応器を直列に用い、原料を各反応器に分割供給して多段階で反応させ る方法が提案されており、費用のかかる管状反応器を用いずに、プロピレンの収率を 増加させることができると記載されている。この方法では、少なくとも 2つのシャフト反 応器を用いることにより、反応器 1基あたりの温度上昇の緩和が期待される。
[0018] この特許文献 5には、プロピレン収率が向上する理由については特に述べられてい ないが、特許文献 5に記載の方法において、プロピレン収率の増加は、原料分圧の 低減によって達成されているものと考えられる。複数の反応器を用いる場合、並列に 設置しても温度上昇の低減効果はあるが、直列に設置した方が、各反応器における 原料の分圧を低減できるため、生成する低級ォレフィン中のプロピレン収率の向上が 期待できる。このことは、例えば非特許文献 2などに報告されているように、ジメチル エーテル力もプロピレンを製造する場合に、原料分圧を低減させることによって、生 成する低級ォレフィンの芳香族などへの逐次反応が抑制されることに起因すると考え られる。
[0019] しかしながら、本発明者が実機運転条件を模擬可能な試験装置でデータを取得し 、解析した結果、実機運転条件においては、単に反応を多段にし、原料を分割供給 して原料分圧を低減させるのみでは、十分なプロピレン収率の増加は生じな 、ことが 明らかになった。このため、さらに効果的にプロピレン収率を向上させた低級ォレフィ ンの製造方法の出現が望まれて 、た。
特許文献 1:米国特許第 4083888号公報
特許文献 2:特表 2003 - 535069号公報
特許文献 3:特開 2005— 104912号公報
特許文献 4:米国特許第 4083888号
特許文献 5:特表 2003 - 535069号公報
非特許文献 1 : Chemical Engineering, 1980 (8) 87.
非特許文献 2 Journal of Catalysis, 56 (1979) 169. 発明の開示
発明が解決しょうとする課題
[0020] 本発明は、触媒上への炭素質析出を抑制してゼォライト触媒の一時失活までの時 間を長くするとともに、触媒の永久失活を抑制して、経済的に、低級ォレフィン、特に プロピレンを収率よく製造でき、水のリサイクル量を低減してプロセスの熱効率を高め 、かつ水のリサイクルとスチーム発生に関する設備の削除あるいは大幅な小型化およ び運転操作の簡略ィ匕を可能とする、ジメチルエーテルを含む原料カゝら低級ォレフィ ンを製造する方法を提供することを課題として 、る。
[0021] また本発明は、ジメチルエーテルを含む原料ガス力も低級ォレフィンを製造する場 合において、実機運転条件においても効率的にプロピレン収率を向上させることの できる方法を提供することを課題として 、る。
課題を解決するための手段
[0022] 本発明の第 1の低級ォレフィンの製造方法は、
ジメチルエーテルを含む原料ガスと添加ガスと力 なり、総量中におけるスチームの 割合が 5〜30vol%の範囲であるフィードガスを、ォレフィン製造反応器内に導入し、 原料ガスを反応器内でゼォライト触媒に接触させて、 C〜Cォレフィンを含む炭化
2 5
水素生成物を製造し、
得られた炭化水素生成物から、プロピレンおよび必要に応じてエチレンを分離して 回収し、
前記炭化水素生成物力 プロピレンおよび必要に応じてエチレンを分離した残分 の少なくとも一部を、前記添加ガスの少なくとも一部として用いることを特徴としている
[0023] このような本発明の低級ォレフィンの製造方法では、直列、並列、またはこれらを組 み合わせた形式で接続された、複数のォレフィン製造反応器を用いることが好ま ヽ
[0024] 本発明の低級ォレフィンの製造方法では、前記原料ガスが、ジメチルエーテルとメ タノールとを含むガスであることが好まし 、。
[0025] 本発明の低級ォレフィンの製造方法では、前記原料ガス中のジメチルエーテルとメ タノールのモル分率(ジメチルエーテル:メタノール)力 6: 0〜6: 5の範囲であること が好ましい。
[0026] 本発明の低級ォレフィンの製造方法では、前記添加ガスが、前記炭化水素生成物 力 プロピレンおよび必要に応じてエチレンを分離した残分に由来する cおよび
4 Zま たは Cォレフィンを含み、
5
前記原料ガス中のメタノールおよびジメチルエーテルの総量に対する、前記添加ガ ス中の Cおよび Zまたは Cォレフィンの総量の割合力 炭素基準のモル比で 0. 3〜
4 5
5. 0であり、かつ、
前記ォレフィン製造反応器に導入する原料ガスに対するスチームを除いた添加ガ スの割合 (スチームを除!、た添加ガスのモル数 Z原料ガスの炭素基準のモル数)が、
0. 2〜5. 0の範囲であることが好ましい。
[0027] 本発明の低級ォレフィンの製造方法では、前記ゼォライト触媒が、 MFI構造を有す ることが好ましぐ前記ゼォライト触媒中のケィ素とアルミニウムの原子比(SiZAl)が モル比で 50〜300の範囲であることも好ましぐまた前記ゼォライト触媒力 アルカリ 土類金属 Mを含み、ゼォライト触媒中のアルカリ土類金属 Mとアルミニウムの原子比
(M/A1)がモル比で 0. 5以上であることも好ましい。
[0028] 本発明の第 2の低級ォレフィンの製造方法は、
全ォレフイン製造反応器中の触媒量の総計に対する、単位時間あたりの全原料ガ スの供給速度で表される空間速度が、ジメチルエーテルを基準とした WHSVで. 0.
5〜50h 1の範囲となる条件で、ジメチルエーテルを含有する原料ガスを、直列に接 続された 2基以上のォレフィン製造反応器に分割して供給し、
原料ガスを反応器内でゼォライト触媒に接触させて、
プロピレンを含有する低級ォレフィンを製造することを特徴としている。
[0029] このような本発明の低級ォレフィンの製造方法では、前記空間速度が、 1. 0〜: LOh
1の範囲であることが好まし 、。
[0030] 本発明の低級ォレフィンの製造方法では、原料ガスが、ジメチルエーテルとメタノー ルとを含有することが好まし 、。
[0031] 本発明の低級ォレフィンの製造方法では、反応系内に添加ガスを導入することが 好ましい。
[0032] 本発明の低級ォレフィンの製造方法では、全ての反応器に導入される原料ガスお よび添加ガスの総量であるフィードガス中における、スチームの割合力 5〜30vol% であることが好ましい。
[0033] 本発明の低級ォレフィンの製造方法では、添加ガスが、最下流のォレフィン製造反 応器より得られた生成物から、プロピレンを含む低級ォレフィンを分離した残分である 炭化水素の少なくとも一部を含むことが好ましい。
[0034] 本発明の低級ォレフィンの製造方法では、添加ガスが、炭化水素の熱分解および
Zまたは接触分解によってォレフィンを生成するォレフイン生成装置より得られた生 成物から、プロピレンを含む低級ォレフィンを分離した残分である炭化水素の少なく とも一部を含むことも好まし 、。
[0035] 本発明の低級ォレフィンの製造方法では、直列に接続された複数のォレフィン製 造反応器のうち、最上流のォレフィン製造反応器のみに添加ガスを導入することが好 ましい。
[0036] 本発明の低級ォレフィンの製造方法では、前記ゼォライト触媒が、 MFI構造を有す ることが好ましぐ前記ゼォライト触媒中のケィ素とアルミニウムの原子比(SiZAl)が モル比で 50〜300の範囲であることも好ましぐまた、前記ゼォライト触媒力 アル力 リ土類金属 Mを含み、ゼォライト触媒中のアルカリ土類金属 Mとアルミニウムの原子 比(MZA1)がモル比で 0. 5以上であることも好まし 、。
[0037] また、本発明の低級ォレフィンの製造方法は、全ォレフイン製造反応器中の触媒量 の総計に対する、単位時間あたりの全原料ガスの供給速度で表される空間速度が、 ジメチルエーテルを基準とした WHSVで. 0. 5〜50 1の範囲となる条件で、 ジメチルエーテルを含有する原料ガスと添加ガスとからなり、総量中におけるスチー ムの割合が 5〜30vol%の範囲であるフィードガスを、直列に接続された 2基以上の ォレフィン製造反応器に分割して供給し、
原料ガスを反応器内でゼォライト触媒に接触させて、
c〜cォレフィンを含む炭化水素生成物を製造し、
2 5
得られた炭化水素生成物から、プロピレンおよび必要に応じてエチレンを回収し、 前記炭化水素生成物力 プロピレンおよび必要に応じてエチレンを分離した残分 の少なくとも一部を、前記添加ガスの少なくとも一部として用いることを特徴としている
[0038] なお、本出願は、特願 2005— 329106号および特願 2006— 257708号力もの優 先権を主張するが、引用することによりこれらを援用する。
発明の効果
[0039] 本発明の低級ォレフィンの製造方法によれば、触媒上への炭素質析出を抑制して ゼォライト触媒の一時失活までの時間を長くするとともに、触媒の永久失活が少なぐ 経済的に、高いプロピレン選択率で、ジメチルエーテルを含む原料力 低級ォレフィ ンを収率よく製造することができる。さらに、水のリサイクル量を低減することでプロセ スの熱効率が高まり、水のリサイクルとスチーム発生に関する設備の削除あるいは大 幅な小型化および運転操作の簡略ィ匕を達成できる。
[0040] また本発明の低級ォレフィンの製造方法によれば、簡便な方法により、実機運転条 件においても効率的にプロピレン収率を向上させることができる。
図面の簡単な説明
[0041] [図 1]図 1は、ォレフィン製造反応器を 1機用いた場合の、第 1の発明の実施態様を示 す概略図である。
[図 2]図 2は、直列に接続された 2つのォレフィン製造反応器を用いた場合の、第 1の 発明の実施態様を示す概略図である。
[図 3]図 3は、並列に接続された 2つのォレフィン製造反応器を用いた場合の、第 1の 発明の実施態様を示す概略図である。
[図 4]図 4は、第 2の発明を実施するのに好適な態様の概略の一例を示す。
[図 5]図 5は、第 2の発明を実施するのに好適な態様の概略の一例であって、リサイク ルガスを添加ガスに用いる態様を示す。
[図 6]図 6は、第 2の発明を実施するのに好適な態様の概略の一例であって、系外の ォレフィン生成装置力 得られた生成物由来の炭化水素を添加ガスに用いる態様を 示す。
[図 7]図 7は、比較例 9および 11の低級ォレフィン製造の態様を示す。 [図 8]図 8は、実施例 3〜9および比較例 10, 12の低級ォレフィン製造の態様を示す
符号の説明
[0042] (1)原料ガス供給ライン
(2)原料ガス供給ライン
(3)リサイクルガス供給ライン
(4)熱交
発明を実施するための最良の形態
[0043] 以下、本発明について具体的に説明する。
[0044] 第 1の低級ォレフィンの製造方法
本発明の第 1の低級ォレフィンの製造方法においては、ジメチルエーテルを含む原 料ガスを、ォレフィン製造反応器中でゼォライト触媒に接触させて、 C〜Cォレフィン
2 5 を含む炭化水素生成物に転ィ匕する。
く原料ガス〉
本発明の第 1の低級ォレフィンの製造方法において、原料ガスは、ジメチルエーテ ルを含有するガスであればよぐ全量がジメチルエーテルであるガスであっても、ジメ チルエーテルとその他の成分との混合ガスであってもよ ヽ。本発明で用いられる原料 ガスは、反応成分として、ジメチルエーテルのみ力、または、ジメチルエーテルとメタノ 一ルとを含有するガスであるのが好ましい。原料ガスは、反応成分以外の成分として 、スチーム (水蒸気)や窒素などの反応に不活性なガスを含有していてもよい。このよ うな本発明で用いられる原料ガスとしては、ジメチルエーテル単独で構成されるガス、 ジメチルエーテルとメタノールとから構成されるガス、これらと反応に不活性なガスの 混合ガスなどが挙げられる。このような原料ガスとしては、たとえば、メタノールカもジ メチルエーテルを製造する反応で得られた粗生成物である混合ガス (ジメチルエーテ ル、未反応のメタノールおよびスチームとを含有する)などを好適に用いることができ る。メタノールからのジメチルエーテルの製造は、例えば、メタノールをアルミナなどの 触媒を用いて脱水する反応により行うことができる。
[0045] 本発明にお ヽては、原料ガス中の反応成分は、その、ジメチルエーテルとメタノー ルとのモル比(ジメチルエーテル:メタノール)力 6: 0〜6: 5の範囲を満たすことが好 ましい。メタノールの含有割合が上記範囲よりも大きい場合には、触媒層温度の上昇 が過大となり、温度上昇の抑制を十分に達成できない場合がある。
[0046] 原料ガス中にしめる反応成分の割合は、添加ガスの使用量にもよるものであって特 に限定されるものではないが、 50容量%以上、好ましくは 75〜: LOO容量%程度であ るのが望ましい。
<ゼオライト触媒 >
本発明の第 1の低級ォレフィンの製造方法においては、ォレフィン製造反応にゼォ ライト触媒を用いる。すなわち本発明の低級ォレフィンの製造方法では、ゼォライト触 媒を具備したォレフィン製造反応器を用いる。複数のォレフィン製造反応器を用いる 場合には、各ォレフイン製造反応器が具備しているゼォライト触媒は、全て同種であ つてもよく、反応器毎に異なっていてもよいが、同種の触媒であることが好ましい。
[0047] ゼォライト触媒としては、ジメチルエーテルを低級ォレフィンに転ィ匕し得るゼォライト 触媒を 、ずれも用いることができる力 ZSM- 5などの MFI構造を有するゼォライト 触媒が好ましく用いられる。なお、ゼォライトには、その結晶構造中にシリカおよびァ ルミナ以外のほかの酸ィ匕物などを含んでいてもよい。また、本発明で用いるゼォライト 触媒は、触媒中のケィ素とアルミニウムの原子比(SiZAl)がモル比で 50〜300、好 ましくは 50〜200の範囲内にあるのが好まし!/、。
[0048] また、本発明で用いるゼォライト触媒は、カルシウム、ストロンチウムなどのアルカリ 土類金属 Mを含み、触媒中の該アルカリ土類金属 Mとアルミニウムの原子比(MZA 1)がモル比で 0. 5以上、好ましくは 0. 75〜15、より好ましくは 2〜8であることが望ま しい。このようなアルカリ土類金属 Mを含むゼォライト触媒は、公知の方法で調製する ことができ、たとえば、特開 2005— 138000号に記載の方法により好適に調製するこ とがでさる。
[0049] ここで、原子比 SiZAlおよび MZA1は、例えば原子吸光分析法や誘導結合型プ ラズマ発光分析法などのような従来の分析法により求める力、あるいはそのゼォライト の合成に使用したシリコン含有ィ匕合物とアルミニウム含有ィ匕合物との化学量論比、あ るいはアルカリ土類金属 Mを含有する化合物とアルミニウム含有ィ匕合物との化学量 論比により求めることができる。
<第 1の製造方法 >
本発明の第 1の低級ォレフィンの製造方法では、ゼォライト触媒が充填されたォレ フィン製造反応器内に、ジメチルエーテル、またはジメチルエーテルおよびメタノール を含む原料ガスを添加ガスとともに導入し、原料ガスをゼオライト触媒に接触させるこ とにより、原料ガスから c〜cォレフィンを含む炭化水素生成物を製造する反応を行
2 5
う。ここで用いるォレフィン製造反応器は、固定床、移動床、または流動床のいずれ であってもよい。本発明において、添加ガスとは、前記原料ガスとは別個のラインを通 じて供給されるガスを意味する。
[0050] 本発明の第 1の製造方法においては、前記原料ガスと、添加ガスとからなるフィード ガス中、すなわちォレフィン製造反応器内に導入する全ガス状成分中において、ス チームの割合が 5〜30vol%、好ましくは 8〜25vol%の範囲であることが望ましい。 このようなフィードガス中のスチーム量は、スチームを含む希釈ガスを用いる従来公 知の方法と比較して格段に少ないものではあるが、ゼォライト触媒の表面に炭素が析 出するのを抑制するという効果を十分に発揮することができ、しかもスチームによるゼ オライト触媒の永久失活を効果的に抑制することができる。
[0051] 本発明の第 1の製造方法で用いるォレフィン製造反応器は、単独であっても複数で あってもよい。ォレフィン製造反応器を複数用いる場合には、ォレフィン製造反応器 を直列、並列、またはこれらを組み合わせた形式で接続して用いることができ、たとえ ば、反応器を直列して用い、原料ガスを多段処理することができる。
[0052] 本発明にお ヽて、フィードガスは、原料ガスと添加ガスとの合計を意味する。本発明 において、原料ガスと添加ガスとは、あらかじめ混合してフィードガスとしてォレフィン 製造反応器内に導入してもよぐまた、それぞれ別個に導入してもよい。本発明にお いては、ォレフィン製造反応器へのガス導入口が複数ある場合、または複数のォレフ イン製造反応器を組み合わせて用いる場合には、反応系全体に導入されるガス状成 分の総計がフィードガスである。
[0053] ォレフィン製造反応器を複数用いる場合にぉ 、ては、反応系全体に導入されるフィ ードガス中のスチームの割合が 5〜30vol%の範囲にあればよぐ個々のォレフイン 製造反応器に導入されるフィードガス中のスチームの割合は特に限定されるもので はないが、好ましくは、各反応器内に導入されるフィードガス中のスチームの割合が 5 〜30vol%の範囲にあるのが望ましい。
[0054] 本発明にお 、て、直列に接続された複数のォレフィン製造反応器を用いて低級ォ レフインを製造する場合、好ましくは、ジメチルエーテルを含む原料ガスを各反応器 に分割して導入するとともに、最上流の反応器に添加ガスを導入して、各反応器内 で原料ガスをゼオライト触媒に接触させて、 c〜cォレフィンを含む炭化水素生成物
2 5
に転ィ匕させる。ここで、上流の反応器で得た炭化水素生成物を下流の反応器に順次 導入し、最下流の反応器から得られる炭化水素生成物から、プロピレンおよび必要 に応じてエチレンを分離して回収し、プロピレンおよび必要に応じてエチレンを分離 した残分の少なくとも一部を、前記添加ガスの少なくとも一部として用いることができる 。このとき、各反応器に導入する全原料ガスと添加ガスとの総量 (フィードガス)に対し て、該総量中に含まれるスチームの割合が 5〜30vol%の範囲であるのが好ましい。
[0055] ここで、図 2の概略フローに示すように、直列に接続された 2段のォレフィン製造反 応器を用いて低級ォレフィンの製造を行う場合であって、最上流のォレフィン製造反 応器 1にジメチルエーテルなどの原料ガス(1)およびリサイクルガスである添加ガス ( 3)を供給し、該反応器 1で得られた C〜Cォレフィンを含む炭化水素生成物を全量
2 5
下流の反応器 2に導入するとともに、該下流の反応器 2には原料ガス (2)を別途追カロ 供給する反応系では、(1)、(2)、(3)の合計が本発明におけるフィードガスに相当 する。このとき、反応器 1で得られた炭化水素生成物は、ジメチルエーテル (またはジ メチルエーテルおよびメタノール)から C〜Cォレフィンが得られる脱水反応で副成
2 5
するスチームを含むため、反応器 2へ導入するスチームを新たに追加することなぐ 反応器 1および反応器 2のそれぞれについて見た場合のフィードガスについても、総 量中のスチームの割合を 5〜30vol%に容易に制御することができる。
[0056] また、図 3の概略フローに示すような、並列に接続された 2機のォレフィン製造反応 器を用いて低級ォレフィンの製造を行う場合では、ォレフィン製造反応器 1,および 2 'に、それぞれ、ジメチルエーテルなどの原料ガス(1 ' )または(2' )と、リサイクルガス である添加ガス(3' )を供給し、各反応器で得られた C〜Cォレフィンを含む炭化水 素生成物を下流の分離精製系に導入してプロピレン (またはエチレンおよびプロピレ ン)を分離し、分離した残分の少なくとも一部を添加ガス (3' )とする。このとき本発明 で定義するフィードガスは、原料ガス( 1 ' )、(2 ' )および添加ガス(3 ' )の総計である 。図 3のフローにおいては炭化水素生成物の分離精製を一括して行っている力 ォ レフイン製造反応器を並列に複数用いる系では、それぞれのォレフィン製造反応器 力も得られる各炭化水素生成物の分離精製を、別個に行ってもよい。
[0057] 本発明において、ォレフィン製造反応器を複数用いる場合、各反応器における反 応条件、触媒の種類および量、フィードガスの供給量、フィードガス中の原料ガスと 添加ガスとの割合などは、所望の製品生産量などに応じて選択すればよぐ各ォレフ イン製造反応器で異なって 、てもよ 、。
[0058] 本発明では、ォレフィン製造反応器内において、原料ガスとゼォライト触媒との接 触が行われ、 c〜cォレフィンを含む炭化水素生成物がォレフィン製造反応器から
2 5
得られる。
[0059] ォレフィン製造反応器への原料ガスおよび添加ガスの供給速度、ガス圧力および 反応温度などの反応条件は、所望の低級ォレフィンの収量および触媒寿命などを考 慮して適宜設定される。本発明では、ゼォライトの種類と反応条件とを適切に設定す ることにより、導入した原料ガスの 55%以上 (炭素換算)を最終的にプロピレンに転ィ匕 することができる。原料ガスは、低級ォレフィンの収率およびゼォライト触媒の寿命な どの点から、その WHSV (重量時間空間速度)が 0. 025〜5h 1となるように流量を設 定することが好ましぐより好ましくは 0. l〜3h 1である。
[0060] 反応時の圧力としては、原料ガスの分圧として 0. 005-1. 5MPaであることが好ま しぐより好ましくは 0. 02-1. OMPaである。また、反応温度は、好ましくは 350〜7 50。C、より好ましくは 400〜650。Cである。
[0061] 得られた炭化水素生成物からは、エチレンおよびプロピレン、またはプロピレンのみ を製品として分離し回収する。本発明では、所望により、炭化水素生成物からェチレ ンおよび Zまたはプロピレン以外の成分をも分離 ·回収してもよい。炭化水素生成物 力 のエチレンおよび zまたはプロピレンの分離 ·回収は、公知の方法で行うことがで き、例えば、分留により行うことができる。 [0062] 炭化水素生成物力 エチレンおよび Zまたはプロピレンを分離した残分は、メタン 等の軽質パラフィンや、 Cおよび Cォレフィン、芳香族化合物を含む。本発明では、
4 5
この残分の少なくとも一部を、前述した添加ガスの少なくとも一部として用いる。すな わち、本発明では、炭化水素生成物力 プロピレンおよび必要に応じてエチレンを分 離した残分を、そのままリサイクルして、添加ガスとしてォレフィン製造反応器内に導 入してもよぐ残分の一部を分離して用いてもよい。炭化水素生成物からプロピレンの みを分離'回収する場合には、残分中のエチレンはそのままリサイクルして添加ガスと して用いてもよぐまた、ニ量ィ匕するなど炭素数 4以上の炭化水素に転ィ匕して、添カロ ガスの一部として用いてもよ 、。
[0063] また、本発明においては、添加ガスの全量力 炭化水素生成物からプロピレンおよ び必要に応じてエチレンを分離した残分に由来してもよぐ残分とその他のガスとを 含んでいてもよい。本発明では、好ましくは、リサイクルガス、すなわち炭化水素生成 物からプロピレンおよび必要に応じてエチレンを分離した残分に由来する成分を、添 加ガスの 50vol%以上、好ましくは 60〜90vol%程度の割合で含む添加ガスを用い るのが好ましい。本発明では、スチーム量と Cおよび Zまたは Cォレフィン量を仔細
4 5
に制御した添加ガスを使用するため、スチームによる原料ガスの希釈を最小限に抑 えて水のリサイクル量を低減させることができ、プロセスの熱効率が高められ経済的 である。
[0064] 本発明にお!/、て、添加ガスは、フィードガス総量中におけるスチームの割合が 5〜3 Ovol%となるよう、原料ガスの成分および量に応じて用いられればよいが、好ましくは 、原料ガスに対するスチームを除いた添加ガスの割合力 スチームを除いた添加ガス のモル数 Z原料ガスの炭素基準のモル数で 0. 2〜5. 0の範囲となる量で用いられ るのが望ましい。また、原料ガス中のメタノールおよびジメチルエーテルの総量に対 する、添加ガス中の Cおよび Cォレフィンの総量(添加ガス中の Cおよび Cォレフィ
4 5 4 5 ンの総量 z原料ガス中のメタノールおよびジメチルエーテルの総量)力 好ましくは 炭素基準のモル比で 0. 3〜5. 0の範囲にあるのが望ましい。原料ガスと添加ガスと 力 のような関係を満たすフィードガスを用いると、多量のスチームを添カ卩しなくても ゼォライト触媒の表面への炭素質の析出が効果的に抑制され、触媒の一時失活まで の使用時間を延ばすことができ、し力もゼオライト触媒力も骨格構造中のアルミニウム が脱離することによる永久失活を効果的に抑制することができる。
[0065] このような本発明の低級ォレフィンの製造方法では、一時失活したゼォライト触媒を 再生処理した際に、ゼォライト触媒が初回使用時と同等の高い触媒活性を示し、しか も再生後においてもゼォライト触媒の表面への炭素質の析出が効果的に抑制され、 長時間連続して低級ォレフィンの製造を行うことができる。プロピレン選択率は、単位 時間に反応系全体で得られる炭化水素生成物全量 (炭素基準)中の、プロピレン生 成量の割合を意味する。すなわち、炭化水素生成物中のプロピレン選択率は、下記 式で表すことができる。
[0066] [数 1]
(J5Mt7k泰^ fcfe^l3の炭素^のプロピレン
プロピレン; ¾K率 (%) = 1 0 0
( 素^^の鍵
[0067] ただし本発明において、炭化水素生成物はォレフイン製造反応器出口力 得られ る留分の総量を意味するため、「全炭化水素生成物」には反応で得られた成分と、未 反応または本反応にぉ ヽて不活性の成分の両方が含まれる。このため上記式で得ら れるプロピレン選択率は厳密に反応で得られた低級ォレフィン中におけるプロピレン の選択率ではなぐ反応で生成した低級ォレフィン中のプロピレン選択率はさらに高 いものである。
[0068] 第 2の低級ォレフィンの製诰方法
本発明の第 2の低級ォレフィンの製造方法にお 、ては、ジメチルエーテルを含む原 料ガスを、複数のォレフィン製造反応器を用いて、反応器中でゼォライト触媒に接触 させて、 C〜C程度の低級ォレフィンを含む炭化水素生成物に転ィ匕する。原料ガス
2 5
およびゼォライト触媒としては、上述した第 1の低級ォレフィンの製造方法にお!、て 用いられる原料ガスおよびゼォライト触媒と同様のものを好適に用いることができる。 本発明の第 2の製造方法で用いる複数のォレフィン製造反応器は、それぞれゼオラ イト触媒を具備して 、る。各ォレフイン製造反応器が具備して 、るゼオライト触媒は、 全て同種であってもよぐ反応器毎に異なっていてもよいが、同種の触媒であることが 好ましい。
<添加ガス >
本発明の第 2の低級ォレフィンの製造方法において、添加ガスとは、前記原料ガス とは別個のラインを通じて供給されるガスである。
[0069] 添加ガスは、前述した原料ガス力 比較的多量の不活性成分 (反応成分以外の成 分)を含有している場合には、用いられなくてもよいが、好ましくは、原料ガスとともに 反応系に導入されるのが望ましい。添加ガスの反応系への導入は、反応器に直接行 われてもよぐ反応器に導入する前の原料ガスに混合する形式で行われてもよ ヽ。
[0070] 添加ガスとしては、具体的には、窒素などの低級ォレフィン製造の反応に不活性な ガスを主成分としたガスを好適に用いることができる。
[0071] また、添加ガスとしては、 C、 Cォレフィンなどの炭化水素を含有するガスも好適に
4 5
用!、ることができる。
[0072] C、 Cォレフィンなどの炭化水素を含有するガスとしては、本発明に係る最下流の
4 5
ォレフィン製造反応器より得られた生成物から、プロピレンを含む低級ォレフィンを分 離した残分である炭化水素の少なくとも一部である、いわゆるリサイクルガスを、好適 に用いることができる。
[0073] また、 C、 Cォレフィンなどの炭化水素を含有するガスとして、本発明に係る低級ォ
4 5
レフインの製造の系外力 導入されるガスを用いることも好ましぐたとえば、炭化水 素の熱分解および Zまたは接触分解によってォレフィンを生成するォレフイン生成装 置より得られた生成物から、プロピレンを含む低級ォレフィンを分離した残分である炭 化水素の少なくとも一部のガスを好適に用いることができる。すなわち、炭化水素の 熱分解および Zまたは接触分解によってォレフィンを生成するォレフイン生成装置、 例えばナフサクラッカーや流動接触分解 (Fluid Catalytic Cracking, FCC)装 置などより得られた生成物から、プロピレンなどの低級ォレフィン製品を分離した残分 の一部もしくは全部を、添加ガスまたはその一部として利用することができる。
[0074] リサイクルガスあるいは系外から導入するガスである、これらの C、 Cォレフィンなど
4 5
の炭化水素を含有するガスは、 Vヽずれも低級ォレフィン等を製造する反応で得られ た生成物から、低級ォレフィン製品を分離した残分を含むガスであり、通常、 Cおよ び Zまたは cォレフィン、メタンなどの軽質パラフィン、ならびに芳香族などの混合ガ
5
スである力 またはこれらの一部の成分力 なる。このようなガスは、好ましくは、反応 で得られた生成物から、 目的とする低級ォレフィンであるプロピレンおよび必要に応 じてエチレンを分離した残分である炭化水素の少なくとも一部、具体的には、 Cおよ
4 び Zまたは cォレフィン留分を主成分とするガスである。
5
[0075] 本発明の第 2の低級ォレフィンの製造方法で用いる添加ガスは、系外から導入する 反応に不活性なガスのみであってもよぐ炭化水素の熱分解および Zまたは接触分 解によってォレフィンを生成するォレフイン生成装置のような系外の装置力 導入す る cおよび Zまたは cォレフィンを含むガスのみであってもよぐ最下流のォレフィン
4 5
製造反応器のような系内の反応器カゝら導入するリサイクルガスのみであってもよぐこ れら系内外カゝら導入するガスの混合ガスであってもよい。好ましくは、本発明の第 2の 低級ォレフィンの製造方法で用いる添加ガスは、系外の装置から導入する Cおよび
4
Zまたは cォレフィンを含むガスあるいはリサイクルガスに由来する成分を、添加ガス
5
の 50vol%以上、好ましくは 60〜: LOOvol%程度の割合で含むことが望ましい。
[0076] Cおよび Zまたは Cォレフィンが、添加ガス中に含まれている場合には、 C、 Cォ
4 5 4 5 レフインの反応により、プロピレンの収率を一層向上させることができる。このため、本 発明では、添加ガスが、 cおよび 含有することが好ましい。添
4 Zまたは cォレフィンを
5
カロガスが cおよび Zまたは cォレフィンを含有する場合、該ォレフインは最下流のォ
4 5
レフイン製造反応器力ゝらのリサイクルガス、あるいは、炭化水素の熱分解および Zま たは接触分解によってォレフィンを生成するォレフイン生成装置より得られるガスに 由来するものであるのが好ましいが、その他の系外の装置力 得られるガスに由来す るものであってもよい。
くフィードガス〉
本発明の第 2の低級ォレフィンの製造方法では、直列に接続された複数のォレフィ ン製造反応器を用いるが、本発明において、フィードガスとは、全ての反応器に導入 される原料ガスと添加ガスとの合計を意味する。
[0077] 本発明の第 2の低級ォレフィンの製造方法においては、フィードガス中にスチーム が含まれていることが好ましぐフィードガス中におけるスチームの割合力 5〜30vol %、好ましくは 8〜25vol%の範囲である。反応系内にスチームが存在すると、炭素 質生成が抑制される結果、一時失活までの触媒寿命が延びることが期待される。ここ で言う一時失活とは、反応中に副生した炭素質の蓄積に起因する触媒の失活であり 、空気中での焼成処理などによって再生が可能な失活を示す。一方反応系内に多 量のスチームが存在すると、ゼォライト触媒中のアルミニウムの脱離による永久失活 が生じるため好ましくない。永久失活とはいかなる処理によっても再生が不可能な失 活を示す。このため、フィードガス中のスチーム量を、原料ガスおよび添カ卩ガスの組 成ならびに使用量の制御により、上記範囲の割合とすることが好ましい。このようなフ イードガス中のスチーム量は、スチームを含む添加ガスを用いる従来公知の方法と比 較して格段に少ないものではある力 ゼォライト触媒の表面に炭素質が析出するのを 抑制するという効果を十分に発揮することができ、し力もスチームによるゼォライト触 媒の永久失活を効果的に抑制することができる。
[0078] 本発明の第 2の製造方法においては、特に限定されるものではないが、フィードガ ス中において、反応成分 (ジメチルエーテルとメタノールとの総量)に対する、スチー ムを除いた反応成分以外の成分の割合が、スチームを除いた反応成分以外の成分 のモル数 Z反応成分の炭素基準のモル数で 0. 2〜5. 0の範囲であることが好まし い。
[0079] また本発明の第 2の製造方法では、フィードガス力 Cおよび/または Cォレフィン
4 5 を含有することも好ましい。フィードガス中の cおよび Zまたは cォレフィンは、通常
4 5
、添加ガスに由来するが、原料ガス中に反応成分以外の成分としてあらかじめ含有さ れていてもよい。フィードガス中における、 C、 Cォレフィン量は、特に限定されるもの
4 5
ではないが、反応成分の量に対して、炭素基準のモル比で 0. 3〜5. 0程度の割合 であると、プロピレン収率の向上に特に効果的であるため好ましい。フィードガス中に cおよび Zまたは cォレフィンが含まれていると、これら炭化水素がプロピレン原料と
4 5
なること力もプロセスとしてのプロピレン収率が向上するば力りでなぐ希釈効果等に より触媒層の発熱量が低減され、さらに、触媒寿命が長くなるという効果をもたらす。 すなわち、本発明の第 2の製造方法においては、フィードガスが、 Cおよび
4 Zまたは
Cォレフィンを含有する場合には、プロピレン収率の向上、触媒層温度の安定効果、 触媒寿命の延命効果が一層期待できる。
<第 2の製造方法 >
本発明の第 2の低級ォレフィンの製造方法においては、直列に接続した複数のォ レフイン製造反応器を用いる。接続された各ォレフイン製造反応器は、同等の処理能 力を有するものであってもよぐ異なっていてもよい。すなわち接続された各ォレフィ ン製造反応器は、それぞれ同量のゼォライト触媒を具備していてもよぐまた、それぞ れ異なる量のゼォライト触媒を具備して 、てもよ 、。
[0080] 本発明において、直列に接続とは、例えば本発明の第 2の製造方法の、好ましい 態様の概略を図示した図 4〜6に示されるように、上流の反応器から排出される成分 の全量が、接続された隣接する下流の反応器に供給される状態である。上流の反応 器カゝら排出される成分には、上流の反応器で原料ガス中および添加ガス中の反応成 分が反応して生成した反応生成物、原料ガスおよび添加ガス中の非反応成分、およ び場合により未反応成分が含まれる。
[0081] 接続された各ォレフイン製造反応器の間には、熱交^^などの冷却装置が設けら れていてもよぐこれにより上流のォレフィン製造反応器力 の生成物を冷却して、下 流のォレフィン製造反応器に導入してもよ 、。
[0082] 本発明の第 2の製造方法では、 2基以上のォレフィン製造反応器に、原料ガスを分 割して供給する。すなわち、 2基のォレフィン製造反応器が直列に接続されている場 合には 2基の反応器それぞれに、 3基以上のォレフィン製造反応器が直列に接続さ れている場合にはそれらの 2基以上に、原料ガスを導入する。直列に接続された 3基 以上のォレフィン製造反応器を用いる場合にぉ 、ては、分割された原料ガスが新規 に供給されない反応器があってもよいが、少なくとも最上流の反応器には原料ガスを 供給する必要があり、好ましくは、全ての反応器に分割された原料ガスを供給する。
[0083] 原料ガスは、それぞれのォレフィン製造反応器に、等分して供給してもよぐまた、 異なった比率で分割して供給してもよいが、接続された各ォレフイン製造反応器が同 種、同量の触媒を具備している場合には、等分して供給することが好ましい。各ォレ フィン製造反応器に充填された触媒の種類または量あるいはその両方が異なり、処 理能力に差を有する場合には、処理能力に応じた比率で原料ガスを分割して供給 することも好まし ヽ。
[0084] 本発明の第 2の製造方法では、全ォレフイン製造反応器中の触媒量の総計 (g)に 対する、単位時間あたりの全原料ガス (全ォレフイン製造反応器に供給する原料ガス の総計)の供給速度 (gZh)で表される空間速度が、ジメチルエーテルを基準とした WHSVで 0. 5〜50h 1であることが肝要であり、好ましくは 1.
Figure imgf000021_0001
より好ましく は 1. 0〜5. Oh— 1の範囲であることが望ましい。
[0085] ここで、前記空間速度 (WHSV)は、言 ヽ換えると、単位時間(h)、単位触媒重量( g-cat)あたりの、ジメチルエーテルに換算した反応成分(ジメチルエーテルとメタノ ールとの合計)の供給重量(g— DME)であって、
(g-DME) / (g-cat) / (h)
により求められる値 (単位は h 1)である。
[0086] 前記空間速度 (WHSV)が 1. Oh— 1未満である場合には、生成する低級ォレフィン のプロピレン選択率が低ぐ原料ガスを分割して供給することに起因する本発明の効 果が得られないため、工業生産を行う実機運転には不向きである。
[0087] 前記空間速度 (WHSV)が 1. 0〜4. Oh— 1程度の範囲では、 WHSVの増加に伴つ てプロピレン収率が向上し、 4. Oh 1程度より大では、 WHSVの増加に応じたプロピレ ン収率の更なる増加は期待できないものの、高いプロピレン収率を維持するとともに 、 WHSVの増加に応じて空時収率が向上する。ただし WHSVが 50h— 1より大では、 炭素質析出による触媒の一時失活までの時間が短くなるため実用的ではない。
[0088] 本発明の第 2の製造方法では、反応系内に添加ガスを導入する場合、添加ガスを 各ォレフイン製造反応器に導入してもよいが、好ましくは、直列に接続された複数の ォレフィン製造反応器のうち、最上流の反応器のみに導入することが好ましい。本発 明では、ォレフィン製造反応器が直列に接続されており、上流の反応器に供給され た添加ガスおよび生成物の全量が連続的に下流の反応器に導入されるため、最上 流の反応器のみに添加ガスを導入することによって、各反応器における原料の分圧 を最も効率的に低減でき、その結果プロピレン収率の向上が期待でき、また、 1つの 反応器のみに添加ガスを供給すればょ ヽことで、設備および運転制御を簡素にする ことができる。 [0089] 各ォレフイン製造反応器にお!ヽて、反応系内の圧力は、原料ガスの分圧として 0. 0 05〜: L 5MPaであることが好ましぐより好ましくは 0. 02〜: L OMPaである。また、 反応温度は、好ましくは 350〜750°C、より好ましくは 350〜650°Cである。
[0090] 本発明の第 2の製造方法では、低級ォレフィンを含む反応後の生成物は、全て最 下流のォレフィン製造反応器から得られる。最下流のォレフィン製造反応器力も得ら れる、反応生成物を含む混合物からは、エチレンおよびプロピレン、またはプロピレン のみを、低級ォレフィン製品として分離し回収する。本発明では、所望により、生成物 を含む混合物力 エチレンおよび Zまたはプロピレン以外の成分をも分離 '回収して もよい。生成物を含む混合物からのエチレンおよび Zまたはプロピレンの分離'回収 は、公知の方法で行うことができ、例えば、スプリツターなどの分離精製系により、分 留すること〖こより行うことができる。
[0091] 生成物を含む混合物から、プロピレンなどの低級ォレフィン製品を分離した残分は 、メタン等の軽質パラフィンや、 Cおよび Cォレフィン、芳香族化合物を含む。本発明
4 5
では、この残分の少なくとも一部を、前述した添加ガスの少なくとも一部として、いわ ゆるリサイクルガスとして用いることができる。低級ォレフィン製品としてプロピレンの みを分離 '回収する場合には、残分中のエチレンはそのままリサイクルガスとして、添 加ガスの成分として用いてもよぐまた、ニ量ィ匕するなど炭素数 4以上の炭化水素に 転化して、添加ガスの成分として用いてもよい。
[0092] 本発明の第 2の製造方法では、工業的な実機運転上では、原料ガスとして導入さ れる反応成分、すなわちジメチルエーテルおよび必要に応じてメタノール力 生成物 中に存在しないことが好ましぐ反応成分の転ィ匕率が 95%以上、好ましくは 99%以 上、さらに好ましくは 99. 9%以上であるのが望ましい。ここで、転化率は、下記式で 求めることができ、後述する実施例 3〜9および比較例 9〜12においては、下記式に より転化率を求めている。
[0093] [数 2]
Figure imgf000022_0001
(Sifri¾»0)flti&iiSQiDl -C/hr] ) [0094] 上記式中、反応成分とは、ジメチルエーテルとメタノールとの合計を意味し、供給速 度および出口速度は、炭素基準の速度を意味する。
[0095] 本発明の第 2の製造方法においては、このように高度な反応成分の転ィ匕率で、低 級ォレフインが製造されることが望ましいため、所定の転ィ匕率を達成できなくなった時 点を触媒寿命として扱うことができる。
[0096] 本発明の第 2の製造方法は、たとえば、図 4〜図 6に示すような構成の装置により、 好適に実施することができる。これらの装置構成では、原料ガスが、ライン(1)および (2)により分割されて、各ォレフイン製造反応器に導入されている。
[0097] このような本発明の第 2の製造方法では、添加ガスが、ォレフィン製造反応器で製 造した、低級ォレフィンを含む炭化水素生成物から、プロピレンおよび必要に応じて エチレンを分離した残分の少なくとも一部を分離した残分である、いわゆるリサイクル ガスを含有し、かつ、フィードガス中のスチームの割合が 5〜30vol%の範囲である態 様も好ましい。この態様の製造方法は、たとえば図 5に示すフローにより好適に実施 することができる。このような製造方法においても、用いる触媒、原料ガス、原料ガス の供給速度条件などの好適な態様としては、第 1の製造方法および第 2の製造方法 において上述した好適な製造条件と同様の条件が挙げられる。
実施例
[0098] 以下、実施例に基づいて本発明をさらに具体的に説明する力 本発明はこれらの 実施例に限定されるものではな 、。
[0099] 実施例 1, 2および比較例 1〜8では、触媒寿命は、反応開始力 原料であるジメチ ルエーテルの転ィ匕率が 0になるまでの時間として測定し、ジメチルエーテルと窒素ガ スとを 1: 1で用いた混合ガスをフィードガスとした場合 (比較例 1)における新品(初回 使用時)ゼォライト触媒使用時の触媒寿命時間を 1. 00とした時の相対値として表す
[0100] [実施例 1]
<ゼォライト触媒 Aの調製 >
9. 50gの Α1 (ΝΟ ) · 9Η Οと、 10. 92gの Ca (CH COO) ·Η Oとからなるゼオラ
3 3 2 3 2 2
ト原料液を 750gの水に溶力し、これに、水 333g中に 500gのキヤタ P Si— 30 水ガラス (触媒化成工業製)を溶かした溶液と、 6質量%NaOH水溶液 177. 5gと、 2 1. 3質量0 /0臭化テトラプロピルアンモ-ゥム水溶液 317. 6gと、ゼォライト種結晶とし て平均粒子径 0. 5 μ mのアンモ-ゥム型の MFI構造ゼォライト(Zeolyst社製、 Si/ A1原子比は 70) 15. Og (種結晶を添加せずに合成したゼォライト触媒量の 10質量 %に相当する量)とを攪拌しながら加えて、水性ゲル混合物を得た。
[0101] 次いで、この水性ゲル混合物を 3Lオートクレーブ容器に入れ、自己圧力下で、 16 0°Cで 18時間攪拌して水熱合成を行った。
[0102] 水熱合成による白色固体生成物を濾過 ·水洗した後、 120°Cで 5時間乾燥し、空気 中で 520°Cで 10時間焼成した。
[0103] 焼成したものを 0. 6N塩酸中へ浸漬させ、室温で 24時間攪拌させてゼォライトの型 をプロトン型とした。
[0104] その後、生成物を濾過'水洗の後、 120°Cで 5時間乾燥し、空気中で 520°Cで 10 時間焼成して、プロトン型アルカリ土類金属含有 MFI構造ゼォライト触媒 Aを得た。
[0105] 得られたゼォライト触媒 A中における SiZAl原子比は 100、CaZAl原子比は 3. 7 、比表面積は 320m2Zg、平均粒子径は 1. 5 mであった。
<低級ォレフィンの製造 >
上記で調製したゼォライト触媒 Aを充填した固定床流通式反応器に、原料ガスであ るジメチルエーテル(DME)と、窒素、スチームおよびイソブテンからなる添加ガスと を合流した、表 1に示す成分カゝらなるフィードガスを導入し、連続的にォレフィン製造 反応を行った。反応条件は、常圧、反応温度 530°Cとし、触媒単位量に対する単位 時間あたりの原料のジメチルエーテル供給量比である重量基準空間速度 (WHSV) を 9. 5g-DMEZ (lg-触媒 '時間)とした。ここで添加ガスは、ォレフィン成分に相当 するイソブテンと、低級ォレフィンを製造する反応に不活性である成分に相当する窒 素ガスと、スチームとを含む模擬リサイクルガスである。
[0106] 反応器力もの出口ガスは、ガスクロマトグラフにより成分分析した。また、一時失活ま での触媒寿命を、触媒調製後の新品の触媒を用い、イソブテンおよびスチームを含 まないフィードガスを導入した後述する比較例 1の触媒寿命を 1としたときの相対寿命 c、 した。 [0107] 結果を表 1に示す。
[0108] [実施例 2]
実施例 1で使用し、触媒寿命となった触媒を、空気気流中において 550°Cで 10時 間焼成し、触媒の再生を行い、得られた再生触媒を用いたことの他は、実施例 1と同 様にして低級ォレフィンの製造を行った。結果を表 1に示す。
[0109] [比較例 1]
実施例 1において、フィードガスとして、原料ガスであるジメチルエーテル 50vol%、 添加ガスとして窒素 50vol%の混合ガスを用い、実施例 1と同様にして低級ォレフィ ンの製造及び反応器出口ガスの成分分析を行った。結果を表 1に示す。
[0110] [比較例 2]
比較例 1で使用し、触媒寿命となった触媒を、空気気流中において 550°Cで 10時 間焼成し、触媒の再生を行い、得られた再生触媒を用いたことの他は、比較例 1と同 様にして低級ォレフィンの製造を行った。結果を表 1に示す。
[0111] [比較例 3]
実施例 1において、フィードガスとして、原料ガスであるジメチルエーテル 42vol%、 添加ガスとして窒素 34vol%およびイソブテン 24vol%を含む混合ガスを用い、実施 例 1と同様にして低級ォレフィンの製造及び反応器出口ガスの成分分析を行った。 結果を表 1に示す。
[0112] [比較例 4]
比較例 3で使用し、触媒寿命となった触媒を、空気気流中において 550°Cで 10時 間焼成し、触媒の再生を行い、得られた再生触媒を用いたことの他は、比較例 3と同 様にして低級ォレフィンの製造を行った。結果を表 1に示す。
[0113] [比較例 5]
実施例 1において、フィードガスとして、原料ガスであるジメチルエーテル 25vol%、 添加ガスとして窒素 50vol%およびスチーム 25vol%を含む混合ガスを用い、実施例 1と同様にして低級ォレフィンの製造及び反応器出口ガスの成分分析を行った。結 果を表 1に示す。
[0114] [比較例 6] 比較例 5で使用し、触媒寿命となった触媒を、空気気流中において 550°Cで 10時 間焼成し、触媒の再生を行い、得られた再生触媒を用いたことの他は、比較例 5と同 様にして低級ォレフィンの製造を行った。結果を表 1に示す。
[0115] [比較例 7]
実施例 1において、フィードガスとして、原料ガスであるジメチルエーテル 33vol%、 添加ガスとして窒素 32vol%およびスチーム 35vol%を含む混合ガスを用い、実施例 1と同様にして低級ォレフィンの製造及び反応器出口ガスの成分分析を行った。結 果を表 1に示す。
[0116] [比較例 8]
比較例 7で使用し、触媒寿命となった触媒を、空気気流中において 550°Cで 10時 間焼成し、触媒の再生を行い、得られた再生触媒を用いたことの他は、比較例 7と同 様にして低級ォレフィンの製造を行った。結果を表 1に示す。
[0117] [表 1]
Figure imgf000027_0001
[0118] 実施例 1, 2および比較例 1〜8の結果から、以下のことが確認された。
[0119] 原料ガスを窒素のみで希釈した比較例 1と、スチームで希釈した比較例 5との比較 で、スチームで原料ガスを希釈した場合には触媒寿命 (炭素質の析出による一時失 活までの時間)が大幅に増大することがわかる。また、スチーム添加濃度をさらに多く した比較例 7では触媒寿命がさらに増大することから、触媒寿命はスチーム濃度に比 例して増大することが分かる。一方、比較例 1と 2、比較例 5と 6、比較例 7と 8の結果よ り、フィードガス中のスチーム濃度を 30vol%以上にすると、再生触媒が失活するま での時間が急激に短期化しており、高濃度のスチームの存在によりゼォライト触媒の 骨格構造から A1が不可逆的に脱離して活性点が減少する永久失活を生じることが示 されている。
[0120] これに対して、実施例 1および 2より、フィードガス中のスチーム量および Cォレフィ
4 ン量を特定の範囲とした本発明では、初回使用時の触媒の寿命を大幅に長期化さ せるとともに、再生触媒を用いた場合にも初回使用時と同等の触媒寿命を示しており 、永久失活をほとんど生じることなく一時失活までの時間を大幅に長期化できること が示されている。
[0121] 原料ガスを Cォレフィンであるイソブテンで希釈した比較例 3にお 、ても、スチーム
4
添加の場合と同様に触媒寿命が増大し、触媒再生後の比較例 4についても寿命の 短期化は確認されていない。しかし、実施例 1と比較例 3の相対寿命、実施例 2と比 較例 4の相対寿命を各々比較した場合には、実施例 1および実施例 2の相対寿命の 方が大きぐイソブテンにスチームが適当量加わった添加ガスを利用する方が、触媒 の相対寿命の延命効果がある。
[0122] 更に、実施例 1および 2では、添加ガスとして多量のスチームを使用しなくて済むた め、水のリサイクル量を低減させることによりプロセスの熱効率を高め、かつ水のリサ イタルとスチーム発生に関する設備の削除あるいは大幅な小型化が達成できることか ら運転コストや建設コストを大幅に低減することができる。
[0123] 以下の実施例 3〜9ならびに比較例 9〜12においては、反応成分の転化率が 99.
9%を下回るまでの時間、すなわち、最下流のォレフィン製造反応器から得られる低 級ォレフインを含む混合物中に、原料として用いた反応成分 (ジメチルエーテルとメタ ノールの総量)の 0. 1%が混入するまでの時間を触媒寿命とした。
[0124] [調製例 1]
<ゼオライト触媒 Bの調製 >
9. 50gの Α1 (ΝΟ ) · 9Η Οと、 10. 92gの Ca (CH COO) ·Η Oとからなるゼオラ
3 3 2 3 2 2
ト原料液を 750gの水に溶力し、これに、水 333g中に 500gのキヤタ P Si— 30 水ガラス (触媒化成工業製)を溶かした溶液と、 6質量%NaOH水溶液 177. 5gと、 2 1. 3質量0 /0臭化テトラプロピルアンモ-ゥム水溶液 317. 6gと、ゼォライト種結晶とし て平均粒子径 0. 5 μ mのアンモ-ゥム型の MFI構造ゼォライト(Zeolyst社製、 Si/ A1原子比は 70) 15. 0g (種結晶を添加せずに合成したゼォライト触媒量の 10質量 %に相当する量)とを攪拌しながら加えて、水性ゲル混合物を得た。
[0125] 次いで、この水性ゲル混合物を 3Lオートクレーブ容器に入れ、自己圧力下で 160 °Cで 18時間攪拌して水熱合成を行った。
[0126] 水熱合成による白色固体生成物を濾過 ·水洗した後、 120°Cで 5時間乾燥し、空気 中、 520°Cで 10時間焼成した。次いで焼成したものを 0. 6N塩酸中へ浸漬させ、室 温で 24時間攪拌させてゼォライトの型をプロトン型とした。
[0127] その後、生成物を濾過'水洗の後、 120°Cで 5時間乾燥し、空気中 520°Cで 10時 間焼成して、プロトン型アルカリ土類金属含有 MFI構造ゼォライト触媒 Bを得た。
[0128] [比較例 9]
調製例 1で得たゼォライト触媒 Bを充填したォレフィン製造反応器 2基が直列に接 続された、図 7に示す構成の装置を用い、低級ォレフィンの製造を行った。なお、ォ レフイン製造反応器— 1と、ォレフィン製造反応器— 2とは同規模であり、同量のゼォ ライト触媒 Bを具備している。
[0129] 原料ガスとして、ジメチルエーテル、メタノールおよびスチーム力 なる混合ガスを、 添加ガスとして窒素を、表 2に示すフィードガス組成となる割合で、ジメチルエーテル を基準とした空間速度 (WHSV)が 0. 42h— 1の条件で、全量ォレフィン製造反応器— 1に導入した。ォレフィン製造反応器— 1から、出口温度 550°Cで得られた反応混合 物をォレフイン製造反応器 2に全量導入し、反応生成物含有混合物を得た。ォレ フィン製造反応器— 2の出口温度は 550°Cであった。 [0130] 得られた反応生成物含有混合物を、ガスクロマトグラフィーにより分析して、原料混 入量およびプロピレンの含有量を求めた。この結果、反応生成物含有混合物中に原 料であるジメチルエーテルおよびメタノールは存在せず、転化率が 100%であること がわかった。
[0131] また、引き続いて連続的に反応を行い、転ィ匕率が 99. 9%となるまでの時間(触媒 寿命)を求めた。
[0132] [実施例 3]
調製例 1で得たゼォライト触媒 Bを充填したォレフィン製造反応器 2基が、熱交換器 を介して直列に接続された、図 8に示す構成の装置を用いて、原料ガスを 1 : 1に分 割してォレフィン製造反応器— 1およびォレフィン製造反応器— 2にそれぞれ 50% ずつ導入して、低級ォレフィンの製造反応を行った。フィードガス組成は表 2に示すと おり、添加ガスの導入はォレフイン製造反応器一 1のみとし、ジメチルエーテルを基 準とした空間速度 (WHSV)が 1. Oh— 1の条件で原料を系内に導入して反応を行った 。なお、用いたォレフィン製造反応器— 1と、ォレフィン製造反応器— 2とは同規模で あり、同量のゼォライト触媒 Bを具備しているものであって、それぞれ比較例 9で用い たものと同様である。
[0133] ォレフィン製造反応器 1から、出口温度 550°Cで得られた反応混合物を熱交換 器 (4)で除熱し、分割した原料ガスとともにォレフィン製造反応器一 2に導入した。ォ レフイン製造反応器一 2の出口温度を 550°Cとした。
[0134] ォレフィン製造反応器 2より得られた反応生成物含有混合物を、比較例 9と同様 にして分析した。また、比較例 9と同様にして触媒寿命を求めた。
[0135] 得られた結果より、プロピレン収率および触媒寿命を、比較例 9を 100%とした場合 の相対値でそれぞれ表し、表 2に示した。
[0136] [実施例 4]
実施例 3において、原料ガスの導入速度を、ジメチルエーテルを基準とした空間速 度 (WHSV)で 4. Oh 1としたことのほかは、実施例 3と同様にして低級ォレフィンの製 造反応を行った。
[0137] ォレフィン製造反応器一 1の出口温度を 550°C、ォレフィン製造反応器一 2の出口 温度を 550°Cとした。
[0138] ォレフィン製造反応器 2より得られた反応生成物含有混合物を、比較例 9と同様 にして分析した。また、比較例 9と同様にして触媒寿命を求めた。
[0139] 得られた結果より、プロピレン収率および触媒寿命を、比較例 9を 100%とした場合 の相対値でそれぞれ表し、表 2に示した。
[0140] [実施例 5]
実施例 3において、原料ガスの導入速度を、ジメチルエーテルを基準とした空間速 度 (WHSV)で 10. Oh 1としたことのほかは、実施例 3と同様にして低級ォレフィンの 製造反応を行った。
[0141] ォレフィン製造反応器一 1の出口温度を 550°C、ォレフィン製造反応器一 2の出口 温度を 550°Cとした。
[0142] ォレフィン製造反応器 2より得られた反応生成物含有混合物を、比較例 9と同様 にして分析した。また、比較例 9と同様にして触媒寿命を求めた。
[0143] 得られた結果より、プロピレン収率および触媒寿命を、比較例 9を 100%とした場合 の相対値でそれぞれ表し、表 2に示した。
[0144] [実施例 6]
実施例 3において、原料ガスの導入速度を、ジメチルエーテルを基準とした空間速 度 (WHSV)で 30. Oh 1としたことのほかは、実施例 3と同様にして低級ォレフィンの 製造反応を行った。
[0145] ォレフィン製造反応器一 1の出口温度を 550°C、ォレフィン製造反応器一 2の出口 温度を 550°Cとした。
[0146] ォレフィン製造反応器 2より得られた反応生成物含有混合物を、比較例 9と同様 にして分析した。また、比較例 9と同様にして触媒寿命を求めた。
[0147] 得られた結果より、プロピレン収率および触媒寿命を、比較例 9を 100%とした場合 の相対値でそれぞれ表し、表 2に示した。
[0148] [実施例 7]
実施例 3において、添加ガスとして、窒素およびイソブテンを表 2に記載の割合で含 むガスを用いたことの他は、実施例 3と同様にして低級ォレフィンの製造反応を行つ た。ここで、イソブテンを含有する添加ガスを用いた本実施例は、 Cォレフィンを含む
4
リサイクルガスを添加ガスとして用いた場合の効果を示す実験となって ヽる。
[0149] ォレフィン製造反応器一 1の出口温度を 550°C、ォレフィン製造反応器一 2の出口 温度を 550°Cとした。
[0150] ォレフィン製造反応器 2より得られた反応生成物含有混合物を、比較例 9と同様 にして分析した。また、比較例 9と同様にして触媒寿命を求めた。
[0151] 得られた結果より、プロピレン収率および触媒寿命を、比較例 9を 100%とした場合 の相対値でそれぞれ表し、表 2に示した。
[0152] [比較例 10]
実施例 3において、原料ガスの導入速度を、ジメチルエーテルを基準とした空間速 度 (WHSV)で 0. 42h 1としたことのほかは、実施例 3と同様にして低級ォレフィンの 製造反応を行った。
[0153] ォレフィン製造反応器一 1の出口温度を 550°C、ォレフィン製造反応器一 2の出口 温度を 550°Cとした。
[0154] ォレフィン製造反応器 2より得られた反応生成物含有混合物を、比較例 9と同様 にして分析した。また、比較例 9と同様にして触媒寿命を求めた。
[0155] 得られた結果より、プロピレン収率および触媒寿命を、比較例 9を 100%とした場合 の相対値でそれぞれ表し、表 2に示した。
[0156] [比較例 11]
比較例 9において、原料ガスの導入速度を、ジメチルエーテルを基準とした空間速 度 (WHSV)で 1. Oh 1としたことのほかは、比較例 9と同様にして低級ォレフィンの製 造反応を行った。
[0157] ォレフィン製造反応器一 1の出口温度は 550°C、ォレフィン製造反応器一 2の出口 温度は 550°Cであった。
[0158] ォレフィン製造反応器 2より得られた反応生成物含有混合物を、比較例 9と同様 にして分析した。また、比較例 9と同様にして触媒寿命を求めた。
[0159] 得られた結果より、プロピレン収率および触媒寿命を、比較例 9を 100%とした場合 の相対値でそれぞれ表し、表 2に示した。 [0160] [比較例 12]
実施例 3において、原料ガスの導入速度を、ジメチルエーテルを基準とした空間速 度 (WHSV)で 75. Oh 1としたことのほかは、実施例 3と同様にして低級ォレフィンの 製造反応を行った。
[0161] ォレフィン製造反応器一 1の出口温度を 550°C、ォレフィン製造反応器一 2の出口 温度を 550°Cとした。
[0162] ォレフィン製造反応器 2より得られた反応生成物含有混合物を、比較例 3と同様 にして分析した。また、比較例 3と同様にして触媒寿命を求めた。
[0163] 得られた結果より、プロピレン収率および触媒寿命を、比較例 3を 100%とした場合 の相対値でそれぞれ表し、表 2に示した。
[0164] [実施例 8]
実施例 3において、原料ガスとしてジメチルエーテルのみからなるガスを用い、フィ ードガスの組成が表 2に示す割合となる条件としたことの他は、実施例 3と同様にして 低級ォレフィンの製造反応を行った。
[0165] ォレフィン製造反応器一 1の出口温度を 550°C、ォレフィン製造反応器一 2の出口 温度を 550°Cとした。
[0166] ォレフィン製造反応器 2より得られた反応生成物含有混合物を、比較例 9と同様 にして分析した。また、比較例 9と同様にして触媒寿命を求めた。
[0167] 得られた結果より、プロピレン収率および触媒寿命を、比較例 9を 100%とした場合 の相対値でそれぞれ表し、表 2に示した。
[0168] [実施例 9]
実施例 3において、原料ガスを表 2に示す組成とし、フィードガスの組成が表 2に示 す割合となる条件としたことの他は、実施例 3と同様にして低級ォレフィンの製造反応 を行った。
[0169] ォレフィン製造反応器一 1の出口温度を 550°C、ォレフィン製造反応器一 2の出口 温度を 550°Cとした。
[0170] ォレフィン製造反応器 2より得られた反応生成物含有混合物を、比較例 9と同様 にして分析した。また、比較例 9と同様にして触媒寿命を求めた。 [0171] 得られた結果より、プロピレン収率および触媒寿命を、比較例 9を 100%とした場合 の相対値でそれぞれ表し、表 2に示した。
[0172] [表 2]
Figure imgf000035_0001
* 1) ジメチルエーテル (DME) 換算の原料 (DMEとメタノールとの合計) 供給量に対する、 プロピレンの収率
* 2 ) 転化率が 99. 9 %を下回るまでの時間を触媒寿命とした
* 3) 反応開始当初から生成物中に DMEが混入した。
[0173] 上記表 2に示される、実施例 3〜9および比較例 9〜12の結果から、以下のことが 確認された。
[0174] 1.比較例 9と比較例 11との比較から、 WHSVを 0. 42 1から 1. Oh— 1に増加させる ことで、プロピレン収率が向上していることがわかり、 WHSVの増加がプロピレン収率 の向上に効果的であることがわ力つた。
[0175] 2.比較例 9と比較例 10との比較から、 WHSVが 0. 42h 1の条件では、原料ガスを 一括して上流のォレフィン製造反応器のみに供給しても、原料ガスを分割して直列し た各反応器に供給しても、プロピレン収率はほとんど向上しないことがわ力つた。
[0176] 3.実施例 3と比較例 11との比較から、 WHSVが 1. Oh— 1の条件では、原料ガスを 一括して上流のォレフィン製造反応器のみに供給した場合と比較して、原料ガスを 分割して直列した各反応器に供給すると、プロピレン収率が大幅に向上することがわ かった。
[0177] 4.比較例 10、実施例 3および実施例 4の結果より、原料を分割して供給した場合 にも、本実施例および比較例の条件において、 WHSVが 4. Oh 1以下の範囲では、 WHSVの増加にしたがいプロピレン収率が向上することがわかった。
[0178] 5.実施例 5、実施例 6と、比較例 10、比較例 12と、実施例 3および実施例 4の結果 より、 WHSVが 4. Oh— 1以上の範囲では、 WHSVの増加にしたがってのプロピレン収 率の向上はないものの、 WHSVが 4. Oh 1より低い場合よりも高いプロピレン収率が 維持されることがわかった。しかしながら比較例 12の結果から、 WHSVが 50h 1を超 えて大きい場合には、触媒寿命が非常に短いものとなり、工業的に採用できる運転 条件ではな 、ことがわ力つた。
[0179] 6.実施例 3と実施例 8の結果より、フィードガス中のスチーム濃度が 5vol%以上で ある場合と、 5vol%未満である場合とでは、プロピレンの収率は同等であるものの、ス チーム濃度が 5vol%以上の場合の方が、触媒寿命が長 、ことがわ力つた。
[0180] 7.実施例 3と実施例 9の結果より、フィードガス中のスチーム濃度が 30vol%を超え る場合と、 30vol%以下の場合とでは、プロピレン収率は同等であるものの、スチーム 濃度 30vol%を超えて大きい実施例 9の場合では、当初力も転ィ匕率が不足すること がわかった。これは、スチーム濃度が著しく高い場合には、触媒の酸点が部分的に 覆われ、酸密度が減少したことによるものと考えられる。
[0181] 8.実施例 3と実施例 7の結果より、リサイクルガスとして C、 Cォレフィンを含むガス
4 5
を用いた場合のモデルである、添加ガス中にイソブテンを含有するケース(実施例 7) では、プロピレン収率が大幅に向上し、触媒寿命も長くなることがわかった。
[0182] これらの結果より、本発明の低級ォレフィンの製造方法が、簡便な制御方法でプロ ピレン収率よく低級ォレフィンを製造できる、実用性に優れた方法であることが確認さ れた。
産業上の利用の可能性
[0183] 本発明は、ゼォライト触媒の失活を抑制するとともに、再生したゼォライト触媒の失 活をも効果的に抑制し得る、低級ォレフィンの製造方法として有用である。また本発 明は、工業的に、高いプロピレン収率で、ジメチルエーテルを含む原料力 低級ォレ フィンを効率よく製造する方法として有用である。

Claims

請求の範囲
[1] ジメチルエーテルを含む原料ガスと添加ガスとカゝらなり、総量中におけるスチームの 割合が 5〜30vol%の範囲であるフィードガスを、ォレフィン製造反応器内に導入し、 原料ガスを反応器内でゼォライト触媒に接触させて、 C〜Cォレフィンを含む炭化
2 5
水素生成物を製造し、
得られた炭化水素生成物から、プロピレンおよび必要に応じてエチレンを分離して 回収し、
前記炭化水素生成物力 プロピレンおよび必要に応じてエチレンを分離した残分 の少なくとも一部を、前記添加ガスの少なくとも一部として用いることを特徴とする低 級ォレフインの製造方法。
[2] 直列、並列、またはこれらを組み合わせた形式で接続された、複数のォレフィン製 造反応器を用いることを特徴とする請求項 1に記載の低級ォレフィンの製造方法。
[3] 前記原料ガスが、ジメチルエーテルとメタノールとを含むガスであることを特徴とする 請求項 1または 2に記載の低級ォレフィンの製造方法。
[4] 前記原料ガス中のジメチルエーテルとメタノールのモル分率(ジメチルエーテル:メ タノール)力 6: 0〜6: 5の範囲であることを特徴とする請求項 1〜3の!、ずれかに記 載の低級ォレフィンの製造方法。
[5] 前記添加ガスが、前記炭化水素生成物力 プロピレンおよび必要に応じてェチレ ンを分離した残分に由来する Cおよび
4 Zまたは Cォレフィンを含み、
5
前記原料ガス中のメタノールおよびジメチルエーテルの総量に対する、前記添加ガ ス中の Cおよび Zまたは Cォレフィンの総量の割合力 炭素基準のモル比で 0. 3〜
4 5
5. 0であり、かつ、
前記ォレフィン製造反応器に導入する原料ガスに対するスチームを除いた添加ガ スの割合 (スチームを除!、た添加ガスのモル数 Z原料ガスの炭素基準のモル数)力
0. 2〜5. 0の範囲であることを特徴とする請求項 1〜4のいずれかに記載の低級ォレ フィンの製造方法。
[6] 全ォレフイン製造反応器中の触媒量の総計に対する、単位時間あたりの全原料ガ スの供給速度で表される空間速度が、ジメチルエーテルを基準とした WHSVで. 0. 5〜50h 1の範囲となる条件で、ジメチルエーテルを含有する原料ガスを、直列に接 続された 2基以上のォレフィン製造反応器に分割して供給し、
原料ガスを反応器内でゼォライト触媒に接触させて、
プロピレンを含有する低級ォレフィンを製造することを特徴とする低級ォレフィンの製 造方法。
[7] 前記空間速度が、 1. 0〜: LOh 1の範囲であることを特徴とする請求項 6に記載の低 級ォレフインの製造方法。
[8] 原料ガスが、ジメチルエーテルとメタノールとを含有することを特徴とする請求項 6ま たは 7に記載の低級ォレフィンの製造方法。
[9] 反応系内に添加ガスを導入することを特徴とする請求項 6〜8の 、ずれかに記載の 低級ォレフィンの製造方法。
[10] 全ての反応器に導入される原料ガスおよび添加ガスの総量であるフィードガス中に おける、スチームの割合力 5〜30vol%であることを特徴とする請求項 9に記載の低 級ォレフインの製造方法。
[11] 添加ガスが、最下流のォレフィン製造反応器より得られた生成物から、プロピレンを 含む低級ォレフィンを分離した残分である炭化水素の少なくとも一部を含むことを特 徴とする請求項 9または 10に記載の低級ォレフィンの製造方法。
[12] 添加ガスが、炭化水素の熱分解および Zまたは接触分解によってォレフィンを生成 するォレフィン生成装置より得られた生成物から、プロピレンを含む低級ォレフィンを 分離した残分である炭化水素の少なくとも一部を含むことを特徴とする請求項 9また は 10に記載の低級ォレフィンの製造方法。
[13] 直列に接続された複数のォレフィン製造反応器のうち、最上流のォレフィン製造反 応器のみに添加ガスを導入することを特徴とする請求項 9〜12のいずれか〖こ記載の 低級ォレフィンの製造方法。
[14] 前記ゼォライト触媒が、 MFI構造を有することを特徴とする請求項 1〜13のいずれ かに記載の低級ォレフィンの製造方法。
[15] 前記ゼォライト触媒中のケィ素とアルミニウムの原子比(SiZAl)がモル比で 50〜3
00の範囲であることを特徴とする請求項 1〜14のいずれかに記載の低級ォレフィン の製造方法。
[16] 前記ゼォライト触媒が、アルカリ土類金属 Mを含み、ゼォライト触媒中のアルカリ土 類金属 Mとアルミニウムの原子比(MZA1)がモル比で 0. 5以上であることを特徴と する請求項 1〜15のいずれかに記載の低級ォレフィンの製造方法。
[17] 全ォレフイン製造反応器中の触媒量の総計に対する、単位時間あたりの全原料ガ スの供給速度で表される空間速度が、ジメチルエーテルを基準とした WHSVで. 0. 5〜50h_1の範囲となる条件で、
ジメチルエーテルを含有する原料ガスと添加ガスとからなり、総量中におけるスチー ムの割合が 5〜30vol%の範囲であるフィードガスを、直列に接続された 2基以上の ォレフィン製造反応器に分割して供給し、
原料ガスを反応器内でゼォライト触媒に接触させて、
c〜cォレフィンを含む炭化水素生成物を製造し、
2 5
得られた炭化水素生成物から、プロピレンおよび必要に応じてエチレンを回収し、 前記炭化水素生成物力 プロピレンおよび必要に応じてエチレンを分離した残分 の少なくとも一部を、前記添加ガスの少なくとも一部として用いることを特徴とする低 級ォレフインの製造方法。
PCT/JP2006/322577 2005-11-14 2006-11-13 低級オレフィンの製造方法 WO2007055357A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06823351.9A EP1955989B1 (en) 2005-11-14 2006-11-13 Method for production of lower olefin
CN2006800424229A CN101309886B (zh) 2005-11-14 2006-11-13 低级烯烃的制备方法
US12/085,055 US8530714B2 (en) 2005-11-14 2006-11-13 Method for production of lower olefin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-329106 2005-11-14
JP2005329106A JP5051998B2 (ja) 2005-11-14 2005-11-14 低級オレフィンの製造方法
JP2006257708A JP2008074791A (ja) 2006-09-22 2006-09-22 低級オレフィンの製造方法
JP2006-257708 2006-09-22

Publications (1)

Publication Number Publication Date
WO2007055357A1 true WO2007055357A1 (ja) 2007-05-18

Family

ID=38023349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322577 WO2007055357A1 (ja) 2005-11-14 2006-11-13 低級オレフィンの製造方法

Country Status (3)

Country Link
US (1) US8530714B2 (ja)
EP (1) EP1955989B1 (ja)
WO (1) WO2007055357A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054307A1 (ja) * 2007-10-23 2009-04-30 Idemitsu Kosan Co., Ltd. 軽質オレフィン類の製造方法
WO2012026612A1 (ja) * 2010-08-27 2012-03-01 出光興産株式会社 軽質オレフィン類製造用触媒、その製造方法及びそれを用いた軽質オレフィン類の製造方法
CN104117389A (zh) * 2014-06-26 2014-10-29 安徽淮化股份有限公司 一种提高甲醇制烯烃催化剂原粉产量的制备方法
JP2015526401A (ja) * 2012-06-29 2015-09-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 酸素含有物質からオレフィンへの転化のための方法
US10213773B2 (en) 2012-06-29 2019-02-26 Basf Se Process for the conversion of oxygenates to olefins

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA022583B1 (ru) 2010-11-02 2016-01-29 Сауди Бейсик Индастриз Корпорейшн Способ получения низших олефинов с использованием катализатора на основе zsm-5
WO2015184598A1 (zh) * 2014-06-04 2015-12-10 中国科学院大连化学物理研究所 一种甲醇和/或二甲醚制备对二甲苯和丙烯的方法
CN112090375B (zh) * 2020-08-27 2022-05-10 大唐国际化工技术研究院有限公司 用于甲醇制丙烯的催化反应器以及甲醇制丙烯的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217928A (ja) * 1990-03-23 1992-08-07 Sued Chemie Ag 低級オレフィンの製造方法
JP2003535069A (ja) * 2000-05-31 2003-11-25 エムゲー・テヒノロギーズ・アクチエンゲゼルシャフト メタノールからプロピレンを製造する方法
JP2005232121A (ja) * 2004-02-23 2005-09-02 Mitsubishi Chemicals Corp プロピレンの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083888A (en) 1977-05-26 1978-04-11 Mobil Oil Corporation Process for manufacturing ethylene
JPS6124526A (ja) 1984-07-14 1986-02-03 Agency Of Ind Science & Technol 低級オレフインの製造法
US4550217A (en) * 1984-08-29 1985-10-29 Mobil Oil Corporation Conversion of methanol to olefins using large size catalyst particles
US5744680A (en) * 1995-08-10 1998-04-28 Uop Process for producing light olefins
RU2198867C2 (ru) * 1997-09-24 2003-02-20 Ван Дийк Текнолоджи Эл.Эл.Си. Способ превращения метоксисоединения - метанола и/или диметилового эфира в олефиновые продукты (варианты)
EP1019342A4 (en) * 1998-07-02 2001-10-17 Dijk Technology L L C Van MODIFIED CATALYST AND A METHOD FOR USING IT TO CONVERT METHANOL IN OLEFINE
JP4217928B2 (ja) 1998-11-26 2009-02-04 丸山工業株式会社 溶解性鉛直ドレーン材を用いた軟弱地盤の改良工法
US7102050B1 (en) * 2000-05-04 2006-09-05 Exxonmobil Chemical Patents Inc. Multiple riser reactor
DE10027159A1 (de) 2000-05-31 2001-12-13 Mg Technologies Ag Verfahren zum Erzeugen von Propylen aus Methanol
US6339182B1 (en) * 2000-06-20 2002-01-15 Chevron U.S.A. Inc. Separation of olefins from paraffins using ionic liquid solutions
US6441261B1 (en) * 2000-07-28 2002-08-27 Exxonmobil Chemical Patents Inc. High pressure oxygenate conversion process via diluent co-feed
EP1508555A1 (en) * 2003-08-19 2005-02-23 Total Petrochemicals Research Feluy Production of olefins
JP2005104912A (ja) 2003-09-30 2005-04-21 Jgc Corp 低級オレフィンの製造方法
KR101159087B1 (ko) * 2003-12-12 2012-06-25 미쓰비시 가가꾸 가부시키가이샤 프로필렌의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217928A (ja) * 1990-03-23 1992-08-07 Sued Chemie Ag 低級オレフィンの製造方法
JP2003535069A (ja) * 2000-05-31 2003-11-25 エムゲー・テヒノロギーズ・アクチエンゲゼルシャフト メタノールからプロピレンを製造する方法
JP2005232121A (ja) * 2004-02-23 2005-09-02 Mitsubishi Chemicals Corp プロピレンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1955989A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054307A1 (ja) * 2007-10-23 2009-04-30 Idemitsu Kosan Co., Ltd. 軽質オレフィン類の製造方法
JP2009102260A (ja) * 2007-10-23 2009-05-14 Idemitsu Kosan Co Ltd 軽質オレフィン類の製造方法
WO2012026612A1 (ja) * 2010-08-27 2012-03-01 出光興産株式会社 軽質オレフィン類製造用触媒、その製造方法及びそれを用いた軽質オレフィン類の製造方法
JP2015526401A (ja) * 2012-06-29 2015-09-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 酸素含有物質からオレフィンへの転化のための方法
US10213773B2 (en) 2012-06-29 2019-02-26 Basf Se Process for the conversion of oxygenates to olefins
CN104117389A (zh) * 2014-06-26 2014-10-29 安徽淮化股份有限公司 一种提高甲醇制烯烃催化剂原粉产量的制备方法

Also Published As

Publication number Publication date
US20100217054A1 (en) 2010-08-26
US8530714B2 (en) 2013-09-10
EP1955989B1 (en) 2017-01-25
EP1955989A1 (en) 2008-08-13
EP1955989A4 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
WO2007055357A1 (ja) 低級オレフィンの製造方法
US8603431B2 (en) Process for preparing silicoaluminophosphate (SAPO) molecular sieves, catalysts containing said sieves and catalytic dehydration processes using said catalysts
US7608746B2 (en) Process for producing propylene
JP5051998B2 (ja) 低級オレフィンの製造方法
JP3612323B2 (ja) 未精製メタノールからジメチルエーテルを製造する方法
EP2796197B1 (en) Method for preparing ethylene and propylene by using methyl alcohol and/or dimethyl ether,
JP2008516943A (ja) 断熱反応器での未精製メタノールからのジメチルエーテルの製造方法
WO2011013780A1 (ja) プロピレンの製造方法及びプロピレン製造用触媒
US20130197288A1 (en) Process for the conversion of synthesis gas to olefins
US8450550B2 (en) Process and apparatus for producing propylene
JPS6245210B2 (ja)
WO2002036532A2 (en) Carbon dioxide recovery in an ethylene to ethylene oxide production process
JP5600923B2 (ja) アルミノシリケートの製造方法
JP4826707B2 (ja) プロピレンの製造方法
US20120142986A1 (en) Process for producing aromatic hydrocarbon and transition-metal-containing crystalline metallosilicate catalyst for use in the production process
JP2008056593A (ja) プロピレンの製造方法
EP0161727B1 (en) Process for the preparation of an aromatic hydrocarbon mixture
JPS6270325A (ja) 低級オレフインの製造方法
WO2012015060A1 (ja) プロピレンの製造方法
JP2005104912A (ja) 低級オレフィンの製造方法
JP5388436B2 (ja) 軽質オレフィン類の製造方法
JPS6270324A (ja) 低級オレフインの製造法
JP2008074791A (ja) 低級オレフィンの製造方法
JP5156313B2 (ja) プロピレンの製造方法およびプロピレンの製造装置
EP3967400A1 (en) Method for partially regenerating catalyst for methanol and/or dimethyl ether-to-olefin and method for methanol and/or dimethyl ether-to-olefin

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680042422.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12085055

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2006823351

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006823351

Country of ref document: EP