WO2007052765A1 - Rnaの抽出方法及びrnaの検出方法 - Google Patents

Rnaの抽出方法及びrnaの検出方法 Download PDF

Info

Publication number
WO2007052765A1
WO2007052765A1 PCT/JP2006/322010 JP2006322010W WO2007052765A1 WO 2007052765 A1 WO2007052765 A1 WO 2007052765A1 JP 2006322010 W JP2006322010 W JP 2006322010W WO 2007052765 A1 WO2007052765 A1 WO 2007052765A1
Authority
WO
WIPO (PCT)
Prior art keywords
rna
sample
solution
treatment
rnase
Prior art date
Application number
PCT/JP2006/322010
Other languages
English (en)
French (fr)
Inventor
Hiroshi Tonoike
Yoshinari Shirasaki
Naoyuki Nishimura
Shigeru Tamatsukuri
Kuhomi Watanabe
Yasuhiko Sakakura
Hiroyuki Nakayama
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to US12/092,067 priority Critical patent/US20090269745A1/en
Priority to JP2007542815A priority patent/JP4735645B2/ja
Priority to EP06822928A priority patent/EP1944364B1/en
Publication of WO2007052765A1 publication Critical patent/WO2007052765A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2523/00Reactions characterised by treatment of reaction samples
    • C12Q2523/10Characterised by chemical treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/101Temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/119Reactions demanding special reaction conditions pH
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/125Specific component of sample, medium or buffer

Definitions

  • the present invention relates to a method for inactivating an RNase present in a sample or the like, from an RNA inclusion (cell, fungus, bacterium, virus, etc.) present in the sample, or from the sample.
  • the present invention relates to a method for easily and stably extracting RNA from separated RNA inclusions, a method for detecting the RNA, and a reagent used in those methods.
  • the present invention relates to an RNA amplification method, and more particularly to an RNA amplification method by a reverse transcription-polymerase chain reaction (hereinafter abbreviated as RT-PCR) method.
  • RT-PCR reverse transcription-polymerase chain reaction
  • RNA inclusions cells, fungi, bacteria, viruses, etc.
  • RNA inclusions cells, fungi, bacteria, viruses, etc.
  • RNA inclusions are separated and collected from the test substance, and then RNA is extracted from the RNA inclusions and the extracted RNA is purified.
  • a process is required.
  • RNases are ubiquitous and are extremely difficult to inactivate. For this reason, when purifying RNA from RNA inclusion bodies in biological samples, RNase control (inhibition of activity) and RNase removal must be performed in the RNA extraction process from the inside of RNA inclusions. A very rigorous and cumbersome method was needed.
  • RNA is extracted and extracted with phenol or phenol / chloroform. Purification methods are used. Recently, a method in which an ion exchange resin, glass filter, glass beads, magnetic beads, or a reagent having a protein agglutinating action is used in the process of RNA extraction and purification has been reported. Extraction and purification of RNA is, Chomczynski & Sacchi (1987) Analytical Biochemistry, 162: 156- 159.
  • the RT-PCR method is a method of amplifying cDNA by PCR after converting RNA into complementary DNA (cDNA) using Reverse Transcriptase.
  • the RT-PCR method is used as one of the most sensitive and highly quantitative analysis methods today because it can quantitatively analyze even small amounts of RNA. For example, detection of viruses carrying RNA as a gene, quantitative detection of mRNA, analysis of expression genes by sequencing of mRNA, and analysis and production of expression products by cloning of cDNA are essential. Sena, become technology!
  • the PCR method followed by the RT reaction can amplify the target DNA fragment hundreds of thousands of times by repeating the DNA synthesis reaction between primers sandwiching a specific region in the DNA strand. Is the method.
  • the PCR method is disclosed in Japanese Patent Laid-Open No. 61-274697, which is an invention of Maris et al.
  • RNA is easily degraded by RNase that is universally present in all biological samples.
  • RNA inclusions cells, fungi, bacteria, viruses and the like (hereinafter referred to as RNA inclusions) are separated from the test substance, and then RNA is removed from the RNA inclusions.
  • a process of extraction and purification is required.
  • US Pat. No. 6,825,340 and US Pat. No. 6,777,210 include a heat treatment in the presence of a reducing agent to inactivate RNase as well as from cultured cells after washing with PBS. RNA extraction and RT-PCR are disclosed.
  • Japanese Laid-Open Patent Publication No. 2001-29078 discloses a direct RT-PCR from a sample containing an RNA inclusion.
  • JP-A-2004-301684 discloses a dilution for norovirus specimen using an alkaline buffer and an antigen-antibody reaction using the dilution. Norovirus detection is disclosed.
  • Non-Patent Document 1 Chomczynski and Sacchi, “Analytical Bar Analytical Biochemistry, 1987, 162, p. 156-159
  • Non-patent document 2 Joseph. Sambrook and David W. Russell, “Molecules” Cloning: Laboratory Manual Third Edition (2001)
  • Patent Document 1 Japanese Patent Laid-Open No. 61-274697
  • Patent Document 2 U.S. Patent No. 6825340
  • Patent Document 3 US Patent No. 6777210
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-29078
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-301684
  • RNA is always exposed to the risk of degradation by RNases that are ubiquitously present in any environment in which the organism exists, as well as in vivo. Therefore, when RNA is extracted from within the RNA inclusions, it must be treated with a rapid RNase inactive enzyme, as well as in a rigorous manner that does not contaminate RNase during or after the purification process. Operation and management are required.
  • RNA in a sample is purified using conventional methods, it is often difficult to remove contaminants or the amount of RNA recovered in the sample is not constant. In particular, when the target RNA content in the sample is low, subsequent RNA analysis may be difficult. Also, these purification methods are complicated and time consuming, and there is a high chance of contamination during operation. For these reasons, conventional purification methods require skill. Therefore, in order to solve these problems, a simpler and more effective sample pretreatment method has been desired.
  • the purpose of the present invention is a sample such as a biological sample, excrement sample, and environmental sample, or a biological sample, excrement-derived sample, environment-derived sample obtained by separating RNA inclusions from the sample, etc. It is intended to provide a method for inactivating RNases that are universally present in samples.
  • the purpose of the present invention is a sample such as a biological sample, excrement sample, environmental sample, or a sample such as a biological sample obtained by separating RNA inclusions from the sample, a sample derived from excrement, an environment-derived sample, Provide a method for efficiently extracting RNA from RNA inclusions in food There is.
  • An object of the present invention is to easily extract the sample force RNA, further suppress the action of an inhibitory substance on the nucleic acid synthesis reaction, and efficiently amplify the RNA in the sample. It is intended to provide a method for detecting RNA present in a sample quickly and stably.
  • An object of the present invention is to provide a treatment reagent that can be used in these methods.
  • the present inventors have performed the above-mentioned book by inactivating RNase in a biological sample and extracting RNA from the RNA inclusion body in one step, and subsequently performing RNA amplification.
  • the inventors have found that the object of the invention can be achieved and have completed the present invention.
  • the following relates to a method for inactivating RNase.
  • the following RNase deactivation method comprises inactivating a RNase under heating conditions using an alkaline treatment reagent containing at least a reducing agent for a sample containing RNase. This is an enzyme deactivation method.
  • a method of inactivating the RNase by maintaining the mixture under the heating condition to inactivate the RNase.
  • the alkalinity of the treatment reagent is such that the pH of the mixture becomes 8.1 or more (at 25 ° C) when mixed with the sample to form a mixture. Under heating conditions of 30 ° C or higher
  • V A method for inactivating the RNase using the treatment reagent.
  • the treatment reagent includes a Tris buffer solution, a Good buffer solution, a borate buffer solution, and an alkaline buffer that also has a group strength that is a carbonate buffer solution.
  • RNA-degrading enzyme which is contained in the treatment reagent as sodium hydroxide and / or potassium hydroxide ImM ⁇ : LOO mM as the alkaline substance.
  • the thiol type reducing agent is a general term for reducing agents having a thiol group.
  • the thiol-type reducing agent power dithiothreitol and mercaptoethanol power are selected from the group consisting of the above-mentioned RNase deactivation methods.
  • the method for deactivating RNA-degrading enzyme wherein the reducing agent is contained in the treatment reagent at a concentration of 0. ImM to a saturated concentration.
  • the RNase deactivation method wherein the sample is selected from the group consisting of a biological sample, a biological sample, an environmental sample, and an environmental sample.
  • the R is selected from the group consisting of a waste sample and a waste-derived sample.
  • RNA inclusion body is selected from the group power of cells, fungi, bacteria, and RNA viruses.
  • RNA virus is selected from the group consisting of retrovirus, norovirus (SRSV), rotavirus, and hepatitis C virus (HCV). Law.
  • SRSV norovirus
  • HCV hepatitis C virus
  • the retrovirus is an AIDS virus.
  • the pH of the mixture containing the RNase in the solution containing at least the reducing agent and the mixture of the sample and the reducing agent is 8.1 or more at 25 ° C.
  • RNA-degrading enzyme comprising subjecting said RNA-degrading enzyme to deactivation by subjecting said pH-adjusted mixed solution to heating conditions.
  • the inactivation of RNase in the above method is performed by subjecting the sample to an alkaline environment having a reducing agent in the pH of 8.1 or higher.
  • the following (1) to (11) relate to RNA extraction methods.
  • the extraction method of the present invention uses an alkaline treatment reagent containing at least a reducing agent for a sample containing RNA inclusion bodies and RNase, and inactivates the RNase under heating conditions. And RNA extraction from the RNA inclusion body.
  • RNA extraction from the inside of an RNA inclusion means that RNA contained in the membrane structure is extracted by destroying the membrane structure of the RNA inclusion and exposed to the environment outside the membrane. Defined as In addition, performing any treatment on the exposed RNA or the external environment exposed to the exposed RNA is not included in the definition of extraction in the present invention.
  • a method of extracting RNA comprising the step of deactivating the RNase and extracting RNA from RNA inclusions by maintaining the mixture under the heating condition.
  • the alkalinity of the treatment reagent is such that the pH of the mixture becomes 8.1 or more (at 25 ° C) when mixed with the sample to form a mixture.
  • RNA extraction according to (1) wherein the treatment reagent includes a Tris buffer solution, a Good buffer solution, a borate buffer solution, and an alkaline buffer that also has a group strength that can be a carbonate buffer.
  • RNA extraction method according to (1) or (2), wherein the treatment reagent contains an alkaline substance selected from the group power of hydroxide, ammonia, and amine.
  • RNA of the RNA wherein the hydroxide is sodium hydroxide and / or potassium hydroxide Extraction method.
  • the thiol-type reducing agent is a general term for reducing agents having a thiol group.
  • RNA extraction method according to any one of the above, wherein dithiothreitol is included in the treatment reagent as ImM ⁇ : LOOmM as the reducing agent.
  • RNA The method for extracting RNA according to any one of (1) to (4), wherein the sample is selected from the group consisting of a biological sample, a biological sample, an environmental sample, and an environmental sample. .
  • the sample is selected from a group of excrement samples and excrement-derived samples.
  • RNA extraction method according to any one of to (5).
  • RNA extraction method according to any one of (1) to (6), wherein the RNA inclusion body is selected from a group power consisting of cells, fungi, bacteria, and RNA viruses.
  • the RNA virus is a retrovirus, norovirus (SRSV), rotavirus, and
  • RNA according to (7) wherein hepatitis C virus (HCV) force is selected.
  • HCV hepatitis C virus
  • RNA virus is a retrovirus
  • the retrovirus is AIDS virus (HIV).
  • An RNA extraction method comprising the steps of deactivating the RNA degrading enzyme and extracting RNA from the RNA inclusion body strength by subjecting the pH-adjusted mixed solution to heating conditions. That is, inactivation of RNAse and RNA extraction in the above (1) to (10) are performed by subjecting the sample to an alkaline environment of pH 8.1 or higher in the presence of a reducing agent.
  • the following (12) to (22) relate to an RNA detection method.
  • the RNA detection method of the present invention comprises the steps of inactivating the RNase under heating conditions using an alkaline treatment reagent containing at least a reducing agent for a sample containing an RNA inclusion body and an RNase.
  • RNA extracted from the RNA inclusion body internal force is extracted, a sample treatment solution is obtained, and the sample treatment solution and the amplification reaction solution are mixed to perform an RNA amplification reaction.
  • RNA extraction from the inside of an RNA inclusion is defined as the removal of RNA contained in the membrane structure by breaking the membrane structure of the RNA inclusion and exposing it to the environment outside the membrane. To do. Further, any treatment for the exposed RNA or the external environment to which the exposed RNA is exposed is not included in the definition of extraction in the present invention.
  • RNA detection method in which the sample treatment solution and the amplification reaction solution are mixed to perform an RNA amplification reaction
  • the degree of alkalinity of the treatment reagent is such that the pH of the mixture becomes 8.1 or more (at 25 ° C) when mixed with the sample to form a mixture.
  • the treatment reagent includes a Tris buffer solution, a Good buffer solution, a borate buffer solution, and an alkaline buffer that also has a carbonate buffer solution strength.
  • RNA detection method according to (12) or (13), wherein the treatment reagent contains an alkaline substance selected from the group power of hydroxide, ammonia, and amine.
  • RNA detection method described above, wherein the hydroxide is sodium hydroxide and / or potassium hydroxide.
  • RNA detection method wherein the alkaline substance is contained in the treatment reagent at a concentration of 0. ImM to a saturated concentration.
  • the thiol-type reducing agent is a general term for reducing agents having a thiol group.
  • RNA detection method as described above, wherein the thiol-type reducing agent power dithiothreitol and mercaptoethanol power are selected.
  • RNA detection method wherein the reducing agent is contained in the treatment reagent at a concentration of 0. ImM to a saturated concentration.
  • RNA detection method as described above, wherein dithiothreitol is contained in the treatment reagent as ImM ⁇ : LOOmM as the reducing agent.
  • RNA detection method according to any one of (12) to (15), wherein the sample is selected from the group consisting of a biological sample, a biological sample, an environmental sample, and an environmental sample.
  • the sample is selected from a group of excrement samples and excrement-derived samples.
  • RNA detection method according to any one of (12) to (17), wherein the RNA inclusion body is selected from the group power of cells, fungi, bacteria, and RNA viruses.
  • RNA virus is a retrovirus, norovirus (SRSV), rotavirus, and
  • RNA detection method according to (19), wherein when the RNA virus is a retrovirus, the retrovirus is AIDS virus (HIV).
  • RNA detection method according to any one of (12) to (20), wherein the RNA is mRNA.
  • the mixed solution of the sample processing solution and the amplification reaction solution further includes an additive that selects a sulfated polysaccharide, a polyamine, albumin, and a group force that also has a nonionic surfactant power.
  • RNA detection method RNA detection method.
  • RNA detection method described above wherein the nonionic surfactant is selected from the group consisting of polyoxyethylene sorbitan monolaurate and polyoxyethylene octylphenol ether.
  • RNA detection method described above, wherein the treatment reagent further contains a sulfated polysaccharide.
  • RNA is extracted from the RNA inclusion body, and a sample processing solution containing the extracted RNA is prepared.
  • An RNA detection method comprising a step of mixing the sample treatment solution and an amplification reaction solution to perform an RNA amplification reaction.
  • the deactivation of RNAse and RNA extraction in the above methods (12) to (21) are performed by subjecting the sample to an alkaline environment of pH 8.1 or higher in which a reducing agent is present.
  • the following relates to processing reagents for samples containing RNases.
  • a reagent for treating a sample containing an RNA-degrading enzyme comprising at least an alkaline substance and / or an alkaline buffer and a reducing agent.
  • the inactivation method of the RNA degrading enzyme, the RNA extraction method according to any one of (1) to (11), or the RNA detection method according to any one of (12) to (22) Contains at least an RNase containing alkaline substances and / or alkaline buffers and reducing agents for use in Sample processing reagent.
  • an RNase that is universally present in a sample such as a biological sample or an environmental sample, or a sample such as a biological sample obtained by separating RNA inclusions from the biological sample or the like.
  • a method of deactivation can be provided.
  • RNA is efficiently extracted from RNA inclusions present in samples such as biological samples and environmental samples, or samples such as biological samples obtained by separating RNA inclusions therefrom.
  • a method of extraction can be provided.
  • RNase present in a sample can be easily and stably obtained by performing inactivation of RNase in the sample and RNA extraction from the RNA inclusion body in one step. Can be amplified. Further, by suppressing the action of an inhibitor on nucleic acid synthesis, it becomes possible to amplify RNA present in the sample more simply, stably, efficiently and rapidly. This can provide a simple, “stable”, efficient and rapid method for detecting RNA in a sample.
  • a treatment reagent that can be used in these methods can be provided.
  • FIG. 1 shows the treatment of a sample obtained by adding RNA inclusions to human serum using distilled water or three kinds of treatment reagents having different compositions in Example 1.
  • FIG. 4 is an electrophoretogram showing the results of RNA detection by subsequent RNA amplification.
  • FIG. 2 shows the results of Example 2 in which the sample treated with distilled water or three kinds of processing reagents having different compositions in Example 1 was stored in a refrigerator for 1 day.
  • FIG. 4 is an electrophoretogram showing the results of RNA detection by subsequent RNA amplification.
  • FIG. 3 is a graph showing the relationship between the temperature and time of heat treatment and the amount of RNA detected obtained in Example 3.
  • FIG. 4 is a graph showing the relationship between the heat treatment time at 85 ° C. and the amount of RNA detected obtained in Example 4.
  • FIG. 5 shows the relationship between the temperature and time of the heat treatment and the RNA detection amount obtained in Example 5. It is the graph which showed the relationship.
  • FIG. 6 shows the results of treatment of a sample obtained by adding RNA inclusion bodies to human serum with 15 treatment reagents having different compositions in Example 8, followed by RNA amplification.
  • FIG. 6 is an electrophoretogram showing the results of detecting RNA.
  • FIG. 7 shows that in Example 9, a sample obtained by adding RNA inclusion bodies to human serum was treated with one of the treatment reagents in Example 8 under various heating conditions, and thereafter FIG. 6 is an electrophoretogram showing the results of detecting RNA by performing RNA amplification.
  • FIG. 8 shows a treatment sample obtained by adding RNA inclusion bodies to human serum in Example 9, using a treatment reagent containing one of the treatment reagents in Example 8 and further containing EGTA.
  • FIG. 3 is an electrophoretogram showing the results of detecting RNA by performing RNA amplification under various heating conditions and then performing RNA amplification.
  • FIG. 9 shows a case where eight treatment reagents having different compositions of NaOH concentration were used in the stool sample solution mixed with the pseudo-norovirus positive stool sample in Example 10.
  • FIG. 3 is an electrophoretogram showing the results of RNA detection after treatment and subsequent RNA amplification.
  • FIG. 10 shows a treatment using seven treatment reagents each having a different DTT concentration in the stool sample solution mixed with the pseudo-norovirus positive stool sample in Example 11.
  • FIG. 2 is an electrophoretogram showing the results of detecting RNA by performing RNA amplification after that.
  • Fig. 11 is an electrophoretogram showing the results of RNA detection performed in Example 12 without RNA purification on infected stool samples having different virus concentrations.
  • FIG. 12 is an electrophoretogram showing the results of RNA detection performed by purifying RNA in Norovirus-infected stool samples with different virus concentrations in Example 12.
  • FIG. 13 is an electrophoretogram showing the results of RNA detection using Norovirus-infected stool samples derived from 18 different specimens infected with Norovirus in Example 13.
  • FIG. 13 is an electrophoretogram showing the results of RNA detection using Norovirus-infected stool samples derived from 18 different specimens infected with Norovirus in Example 13.
  • FIG. 14 shows the results of RNA detection using norovirus-uninfected stool samples derived from 10 different specimens not infected with Norovirus in Example 13, respectively. It is an electropherogram.
  • FIG. 15 shows a stool sample liquid mixed with pseudo-norovirus-positive stool sample in Example 14, which is treated with a treatment reagent under various heating conditions, and then RNA amplification is performed. It is an electrophoretic diagram which shows the result of having detected RNA by this.
  • FIG. 16 is a graph showing the results of quantification of amplified RNA by real-time PCR in Example 14.
  • FIG. 17 is a photograph showing a state after the sample specimen was mixed with 15 types of processing reagents and heat-treated in Example 8.
  • the upper row shows the results of using DTT OmM treatment reagent. From left, [1], [2], [3], [4], [5], [6], [7] It is the result using.
  • the bottom row shows the results using DTT 20 mM treatment reagent from the left [8], [9], [10], [11], [12], [13], [14], [15] It is a result using the processing reagent.
  • the RNase deactivation method and RNA extraction method of the present invention are realized in an alkaline environment and in the presence of a reducing agent.
  • the RNA detection method of the present invention includes a step of inactivating RNase in a sample and RNA extraction from the RNA inclusion body, and a step of performing an RNA amplification reaction.
  • RNA can be amplified directly from a sample without special purification of RNA.
  • the present invention can be applied to any sample to be processed as long as it can contain RNase.
  • samples include biological samples, biological samples, environmental samples, environmental samples, excrement samples, excrement samples, and the like.
  • an RNA inclusion is a structure surrounded by a membrane structure and having RNA therein. Specifically, it refers to cells, fungi, bacteria, viruses and the like.
  • the cells include leukocytes derived from blood, cerebrospinal fluid and the like, oral mucosal cells and the like.
  • the cells include food-derived cells, exfoliated cells from the body, and the like.
  • RNA such as mRNA
  • viruses include RNA viruses.
  • RNA viruses include retroviruses (AIDS virus (HIV), etc.), norovirus (SRSV), rotavirus, hepatitis C virus (HCV), etc.
  • Examples of biological samples include animal and plant tissues and body fluids.
  • Body fluids include blood samples, cerebrospinal fluid, saliva, milk, and the like.
  • the blood sample includes whole blood, plasma, serum and the like.
  • the biological sample includes a sample obtained by subjecting the biological sample to some treatment.
  • Examples of environmental samples include any sample containing air, soil, water, etc., as long as they contain RNA inclusions.
  • the environment-derived sample includes a sample obtained by treating the environmental sample.
  • the excreta includes urine, feces, vomit, and the like.
  • the excrement sample includes the excretion itself excreted from the living body, or the excrement itself suspended in water, physiological saline, pH buffer solution or the like.
  • Examples of the living body include humans, livestock, insects, and all other animals.
  • the excrement-derived sample includes a sample obtained by subjecting the excrement sample to some treatment.
  • An example of a treatment that may be performed on the sample includes a recovery treatment of RNA inclusion bodies.
  • a method for recovering RNA inclusions any method can be used as long as it can separate RNA inclusions from the sample. For example, centrifugation / ultracentrifugation operation, filtration / ultrafiltration operation; a method using a coprecipitation agent such as polyethylene glycol, an adsorbent bile body such as an antibody, etc. in combination with the operation; A separation method using a membrane or the like is used. RNase can remain with either method The present invention is effective in the case of recovery treatment of a characteristic RNA inclusion.
  • the sample in the present invention is allowed to contain a substance that inhibits the RNA amplification reaction.
  • a substance that inhibits the RNA amplification reaction are usually contained in samples such as biological samples, biological samples, environmental samples, environmental samples, excrement samples, excrement samples, and the like.
  • Substances that inhibit the RNA amplification reaction include substances that exist inside or outside the cell, such as pigments, proteins, sugars, and unknown contaminants present in biological samples.
  • the sample may be subjected to an alkaline environment containing at least a reducing agent.
  • an alkaline mixed solution in which at least the reducing agent and the sample are finally mixed is prepared, there is no limitation on the river page to be mixed.
  • the mixed solution since the mixed solution is to be subjected to heating conditions (item 3 described later), the preparation operation of the mixed solution and the heating operation do not matter.
  • the mixed solution should be in a state where the sample is mixed in an alkaline solution containing at least a reducing agent when subjected to heating conditions.
  • one or both of the sample and the processing reagent can be heated, and then both can be mixed. That is, the mixed solution may be subjected to heating conditions at the same time as being prepared.
  • a mixed solution of a sample and a processing reagent may be prepared at room temperature, and the obtained mixed solution may be subjected to heating conditions.
  • the treatment reagent is usually used as an aqueous solution.
  • mixed at room temperature with a solution and a sample containing at least a reducing agent, resulting reducing agent - the P H of the sample mixture was adjusted (described later), pH adjusted reductant - sample mixture heated condition You may use below.
  • the treatment reagent itself having the following composition is not used, but the pH-adjusted reducing agent-sample mixture corresponds to the above-mentioned sample-treatment reagent mixture.
  • this pH-adjusted reducing agent sample mixture shall also be included.
  • the pH of the mixture of the treatment reagent and the sample (treatment reagent-sample mixture) can be pH 8.1 or higher, for example, pH 8.1 to 11.1 at 25 ° C. Depending on the sample, a pH of 9.0 to 11.1 may be preferred.
  • Such a case includes a case where a sample of excrement (especially a stool sample) or a sample derived therefrom is used as a sample.
  • an alkaline buffer and / or an alkaline substance may be included in the processing reagent.
  • the alkaline buffer is not particularly limited as an alkaline buffer.
  • Examples of the alkaline buffer include Tris buffer solution, Good buffer solution, borate buffer solution, and carbonate buffer solution.
  • the buffer that constitutes the Good buffer is not particularly limited, and examples include Tricine, MOPS, HEPES, and CHES.
  • hydroxide As an alkaline substance contained in the processing reagent, hydroxide, ammonia, and amine power may be selected.
  • hydroxide examples include sodium hydroxide and potassium hydroxide.
  • amines examples include trishydroxymethylaminomethane. These can be used alone or in combination of two or more.
  • the concentration of the alkaline substance in the treatment reagent is different depending on the type of alkaline substance, the type and concentration of the sample, the mixing ratio with the sample, etc. 0. ImM to saturated concentration (saturated concentration at room temperature), preferably ImM to saturation concentration (saturation concentration at room temperature).
  • a thiol-type reducing agent As a reducing agent contained in the processing reagent, a thiol-type reducing agent may be used.
  • the thiol type reducing agent is a general term for reducing agents having a thiol group.
  • thiol type reducing agent examples include dithiothreitol (DTT) and mercaptoethanol.
  • DTT dithiothreitol
  • mercaptoethanol is usually 2-mercaptoethanol.
  • the concentration of the reducing agent in the treatment reagent varies depending on the type of reducing agent, the type and concentration of the sample, the mixing ratio with the sample, and the like. Preferably, it can be set to ImM-saturation concentration (saturation concentration at room temperature).
  • the concentration of the reducing agent in the mixture of the treatment reagent and the sample can be, for example, 0. ImM to LM, preferably ImM to LOOmM. 0 if the sample is a blood sample. In some cases, it is more preferable that the concentration be from 05 mM to 20 mM. In addition, when the sample is an excrement sample or an excrement-derived sample, it may be more preferable to use 2.5 mM to 25 mM depending on the type of reducing agent, the type of the sample, and the like!
  • the processing reagent may further include a chelating agent.
  • RNA hydrolysis is known to be promoted by divalent metal ions. Therefore, it is effective to add chelating agents (EGTA, EDTA, etc.) that chelate divalent metal ions to the treatment reagent.
  • chelating agents EGTA, EDTA, etc.
  • the treatment reagent may further contain a sulfated polysaccharide.
  • the difference in the amount of RNase in the sample, the difference in the fragility of the membrane structure due to the difference in the type of RNA inclusions, and the pH due to the difference in the amount of alkaline substances used It is not particularly limited because it differs depending on the difference.
  • the treatment time can be, for example, about 60 minutes for 1 second, preferably 30 seconds to 30 minutes, and more preferably about 30 seconds to 15 minutes.
  • the treatment temperature is preferably 30 ° C or higher.
  • the processing temperature is, for example, from 30
  • the processing temperature is 60 ° C or higher, for example, 60 ° C or higher and 100 ° C or lower, preferably 70 ° C to 90 ° C, more preferably 80 ° C force is also about 85 ° C. It can be.
  • the processing time can be 30 seconds to 5 minutes.
  • both the inactivation of RNase contained in the sample and the extraction of RNA from the RNA inclusion body are realized.
  • RNA extraction occurs simultaneously with RNase inactivation or subsequent to RNase inactivation.
  • both of the above treatments can be performed by a simple operation of only the heat treatment using the above treatment reagent, so that RNA can be rapidly and stably extracted.
  • RNase is denatured so that the enzyme active site does not function. Even under heating conditions, RNases are usually stable to heat and are not easily inactivated. However, such a RNase can be inactivated by a heating operation using the treatment reagent of the present invention.
  • RNA from inside the RNA inclusion body means that the membrane structure of the RNA inclusion body is destroyed, and the RNA contained in the membrane structure is exposed to the environment outside the membrane. RNases that existed in the environment outside the RNA inclusion membrane are inactivated by the same treatment reagent. For this reason, exposed RNA has a very high risk of degradation by nature! Despite exposure to the RNA envelope outer membrane environment, the risk of degradation is extremely low. For this reason, in the present invention, in order to achieve RNA extraction from the inside of the RNA inclusion body, it is not necessary to immediately purify the exposed RNA as long as the RNA is exposed to the environment outside the RNA inclusion body. A can exist stably.
  • a sample treatment solution in which RNase is inactivated and RNA is exposed is obtained.
  • the sample treatment solution can be used in various processes. For example, it can be used for steps such as RNA amplification and hybridization performed for RNA analysis.
  • RNase is inactivated. For this reason, since RNA is stably contained, it can use for said process without performing any treatment.
  • Even if the sample processing solution obtained by the method of the present invention is obtained by subjecting it to some further processing, it can be used for the above-mentioned steps. For example, treatment for adjusting pH such as neutralization, and RNA purification treatment such as centrifugation and RNA isolation can be mentioned.
  • RNase is inactivated, and a sample treatment solution with exposed RNA is obtained.
  • the obtained sample treatment solution can be used for the preparation of an amplification reaction solution.
  • the sample treatment solution used for the amplification reaction solution may be obtained without any treatment after the heat treatment, or the supernatant obtained by performing a centrifugation after the heat treatment. Or as a filtrate obtained by performing filtration. May be.
  • the sample treatment solution is mixed with the RNA amplification reaction solution to be the final reaction solution.
  • the pH of the mixture of the sample treatment solution and the amplification reaction solution is If it deviates from the reaction conditions, it is necessary to adjust the pH of the mixture to be within the optimum conditions at an appropriate stage between the heat treatment and the start of the amplification reaction.
  • a person skilled in the art can appropriately determine the optimum pH and the pH adjustment method.
  • the optimum pH condition as described later, when a substance that inhibits the RNA amplification reaction is present in the reaction system, the pH may be adjusted to an alkaline range in order to suppress the action of the inhibitor. It is valid.
  • the optimum pH refer to Japanese Patent No. 3494509 and Japanese Patent No. 3452717.
  • RNA amplification reaction method any method can be used as long as it is a method for performing RNA amplification, including RT-PCR method.
  • the composition of the amplification reaction solution is not particularly limited and can be appropriately determined by those skilled in the art.
  • RT-PCR When RT-PCR is performed as an RNA amplification reaction, the form is such that a mixture of a sample treatment solution and an RT reaction solution is prepared in a tube, the RT reaction is performed in the tube, and the RT reaction is performed.
  • a reaction form (Two tube-Two step) that is performed by adding a part of the product to the PCR reaction solution prepared in another tube and carrying out the PCR reaction; the sample treatment solution and the RT reaction solution in the tube Prepare a mixture, perform an RT reaction in the tube, add a PCR reaction solution to the RT reaction product in the tube, and perform a PCR reaction (One tube-Two step); Also, prepare both RT reaction solution and PCR reaction solution in the tube, mix with sample treatment solution, and perform the RT reaction and PCR reaction in a continuous manner (One tube-One step).
  • the RNA amplification reaction solution to be mixed with the sample treatment solution may be an RT reaction solution or a mixture of an RT reaction solution and a PCR reaction solution, depending on the above execution form. May be a liquid.
  • Any known RT reaction solution can be used without limitation. Usually, pH buffer, salts, primers, deoxyribonucleotides, and reverse transcriptase are included.
  • the above-mentioned salts may be changed to other salts as appropriate, using the power of MgCl, KC1, etc.
  • a primer refers to an oligonucleotide that serves as a starting point for synthesis during cDNA synthesis.
  • the reverse transcriptase used in the RT reaction means an enzyme that can reverse transcribe RNA into cDNA.
  • Reverse transcriptases include reverse transcriptases derived from avian retroviruses such as Rous associated virus (RAV) and Avian myeloblastosis virus (AMV); reverse transcriptases derived from mouse retroviruses such as Moloney murine leukemia virus (MMLV); And forces including Tth DNA polymerase derived from Thermus thermophilus are not limited to these.
  • Any known PCR reaction solution can be used without limitation. Usually, pH buffer solution, salts, primers, deoxyribonucleotides, and thermostable DNA polymerase are included. The above-mentioned salts can be used with MgCl, KC1, etc.
  • a primer is an oligonucleotide that serves as a starting point for synthesis during nucleic acid amplification.
  • the thermostable DNA polymerase used in PCR means a polymerase with excellent thermostability that synthesizes DNA based on a primer.
  • Suitable thermostable DNA polymerases include Taq DNA polymerase from Thermus aquaticus; Tth DNA polymerase from Thermus thermophilus; KOD DNA polymerase, Pfo DNA polymerase, Pwo DNA polymerase from Pyrococcus; and these thermostable DNA polymerases The power to raise the mixture etc. It is not limited only to these.
  • Tth DNA polymerase has both RT and PCR activity! /, When RT-PCR is performed in One tube-One step, it can be covered with one kind of enzyme. It has features that can be done.
  • the substance that inhibits the RNA amplification reaction includes, for example, a dye in a biological sample.
  • a dye in a biological sample examples include substances that exist inside and outside the cell, such as seed proteins and sugars.
  • an additive capable of selecting a sulfated polysaccharide and a polyamine power can be used in the present invention.
  • sulfate-polysaccharides examples include heparin, dextran sulfate, heparan sulfate, chondroitin sulfate, dermatan sulfate, funolan, sulfate diagarose, carrageenan, borhuilan, fucoidan, sulfated curdlan, and their Salt power can also be selected and used. Among these, heparin and its salt, dextran sulfate and its salt are preferable.
  • the sulfated polysaccharides can be used alone or in combination of several kinds.
  • the sulfate polysaccharide may be contained in the reaction system during the RNA amplification reaction. Therefore, the sulfated polysaccharide is, for example, any one of the processing reagent used for the heat treatment, the sample treatment liquid after the heat treatment, the amplification reaction liquid, and the mixture of the sample treatment liquid and the amplification reaction liquid. Can be added.
  • the effective concentration range varies depending on the molecular weight of the sulfated polysaccharide, the presence of the amplification reaction inhibitor, and the like.
  • heparin an example of a sulfated polysaccharide
  • a sulfated polysaccharide such as heparin
  • the amount used thereof is the above-mentioned amount except for the amount of sulfated polysaccharide itself that inhibits RT reaction and PCR reaction.
  • the amount that suppresses the action of an inhibitor of the RT reaction and PCR reaction is not particularly limited and is acceptable.
  • specific amounts relating to sulfated polysaccharides the above-mentioned matters relating to sulfated polysaccharides are described in JP-A-2000-93176.
  • the amount of heparin used is, for example, 0.1 g / ml or more, preferably 0.3 g / mL to 50 in the final reaction solution in which the sample treatment solution and the RNA amplification reaction solution are mixed. It is better to add g / mL.
  • Polyamine is a general term for hydrocarbons having two or more primary or secondary amino groups. Certain types of polyamines are present in the living body and are abundant in tissues where protein and nucleic acid synthesis is active, and have various physiological effects. In the present invention, The polyamine is not particularly limited as long as it is a hydrocarbon having two or more primary or secondary amino groups in one molecule, which does not necessarily require such action. Specific examples of polyamines include ethylene diamine, trimethylene diamine, spermine, penremidine, diethylene triamine, triethylene tetramine, tetraethylene pentamine and pentaethylene hexamine.
  • the polyamine may be contained in the reaction system during the RNA amplification reaction. Therefore, the polyamine can be stored in, for example, any of the sample processing solution after the heat treatment, the amplification reaction solution, and the mixture of the sample processing solution and the amplification reaction solution.
  • the above-mentioned matters concerning polyamines are described in detail in JP-A-6-2777061, and the amount of polyamine used can also be referred to.
  • an additive selected from albumin (Bovine Serum Albumin; BSA) and a nonionic surfactant is added to the final mixture of the sample treatment solution and the RNA amplification reaction solution. It can be further contained in the reaction solution. These additives may be used together with the above polyamine.
  • Albumin is a general term for a group of soluble proteins contained in animal cells, plant cells, and body fluids. Representative examples include ovalbumin, lactalbumin in milk, serum albumin, wheat and wheat leucosin, and ricin in castor bean (castor) seeds. Of these, serum albumin is particularly preferred, and ushi serum albumin is particularly preferred. However, it is not limited to these albumins. Albumin may be contained in the reaction system during the RNA amplification reaction. Therefore, albumin can be used in any of the power of the sample treatment solution, amplification reaction solution after heat treatment and pH adjustment, and the mixture of the sample treatment solution and amplification reaction solution after heat treatment and pH adjustment. be able to.
  • albumin is uniformly contained in the final reaction solution, and the state (for example, when albumin is added to the sample treatment solution after heat treatment and pH adjustment and the RNA amplification reaction solution is mixed without stirring).
  • the state for example, when albumin is added to the sample treatment solution after heat treatment and pH adjustment and the RNA amplification reaction solution is mixed without stirring.
  • albumin is uniformly contained in the final reaction solution, and the state (for example, when albumin is added to the sample treatment solution after heat treatment and pH adjustment and the RNA amplification reaction solution is mixed without stirring).
  • the above-mentioned matters concerning albumin are described in detail in JP-A-2001-8685, and the amount of albumin used can also be referred to.
  • nonionic surfactants include polyoxyethylene sorbitan monolaurate. And polyoxyethylene octylphenol ether.
  • Polyoxyethylene sorbitan monolaurate includes polyoxyethylene sorbitan (20) monolaurate (Tween 20).
  • polyoxyethylene octyl ether include polyoxyethylene (9) octyl ether (nodette P-4O (NP40)) and polyoxyethylene (10) octyl ether (Triton X 100).
  • RNA amplification method As a procedure of the RNA amplification method, a sample is heat-treated using the above-described treatment reagent, the obtained sample treatment solution and the reaction solution are mixed, and the pH is adjusted appropriately. An amplification reaction can be performed based on the method.
  • the reaction is performed for about 30 minutes to 1 hour at a reaction temperature suitable for the selected primer and reverse transcriptase.
  • PCR DNA is converted into single-stranded DNA by heat denaturation; an annealing step that amplifies the region-neutralizing primer; and DNA in the presence of deoxyribonucleotides.
  • the region sandwiched between the primers is amplified by repeating the three steps of the polymerization step, which is performed by applying a polymerase to the primer extension reaction.
  • the RNase inactivation method and RNA extraction method of the present invention RNase inactivation in a biological sample and RNA extraction from the RNA inclusion body can be performed, so that the RNA inclusion in the biological sample can be purified.
  • a simple and stable RNA sample treatment solution can be obtained without performing the step.
  • the influence of adsorption and embedding by extracted contaminants such as proteins contained in biological samples can be suppressed for the extracted RNA. Therefore, the RNA extraction method of the present invention is effective for the subsequent detection and analysis of RNA.
  • the sample treatment solution can be used for subsequent processes such as RNA detection and analysis without any treatment or by performing minimal treatment such as dilution, pH adjustment, and addition of additives. be able to.
  • the present invention can be used as a pre-step for RNA purification.
  • RNA detection method of the present invention RNase inactivation in a biological sample and extraction of RNA contained in the RNA inclusion body are performed in a sample in a simple 'stable' and efficient manner. It becomes possible to amplify RNA. Even when nucleic acid synthesis inhibitors are included in the sample treatment solution, the effects of inhibitors on nucleic acid synthesis can be reduced or suppressed by dilution, pH adjustment, and addition of appropriate additives to the amplification reaction solution. Simple and stable 'Efficiently and efficiently amplifies RNA present in the sample.
  • RNA viruses such as retrovirus (AIDS virus (HIV)), norovirus (SRSV), rotawinoles, type C, which are hidden in a biological sample
  • HCV Hepatitis virus
  • fungi, bacteria, etc. fungi, bacteria, etc.
  • mutant cells eg, cancer cells, etc.
  • the analysis of expressed genes by detecting mRNA transcribed in cells and sequencing, and the analysis and production of expression products by cloning of cDNA can be performed easily and rapidly. Can be done.
  • the present invention is applied to environmental samples such as air, soil, and water, it is considered possible to develop the method for testing microorganisms in environmental samples.
  • RNA extracted by the treatment reagent of the present invention can be stored in the present treatment reagent, stored after neutralization, or the like.
  • a model sample prepared by adding RNA inclusions to human serum (containing RNase) is used as a sample, and distilled water (for comparison), NaOH aqueous solution (for comparison), and DTT aqueous solution are used.
  • a solution (for comparison) or NaOH-DTT aqueous solution as a treatment reagent of the present invention was added to the sample and heat-treated, and then RNA extraction was confirmed.
  • Ambion Armored RNA Hepatitis C Virus (Genotype 2b) Catalog #: 42011 was used as the RNA inclusion.
  • Human serum and Armored RNA Hepatitis C Virus solution An equal volume (v / v) mixed model specimen was prepared as a sample. Prepare four 4 ml samples in a 0.5 ml tube. (1) Distilled water (for comparison), (2) 10 mM NaOH aqueous solution (for comparison), (3) 10 mM DTT aqueous solution (For comparison) or (4) 16 ⁇ l of an aqueous solution containing 10 mM NaOH and 10 mM DTT as a treatment reagent of the present invention was collected and heated at 85 ° C. for 1 minute.
  • RT-PCR was performed using primers specific to HCV RNA, using each sample treatment solution after heat treatment as a saddle.
  • RT-PCR was performed with 1 ⁇ l of the sample treatment solution per 50 1 reaction solution.
  • the primer for the RT reaction uses an oligonucleotide with a base sequence complementary to HCV RNA.
  • an oligonucleotide with a base sequence complementary to the cDNA synthesized in the RT reaction is added. I went.
  • the RNA-derived product in the RT-PCR of this experiment is 244 bp.
  • the primer sequences used are as follows. (5, primer) 5, -CTTCACGCAGAAAGCGTCTAGCCATGGCGT-3, (SEQ ID NO: 1)
  • the RT reaction solution contained 10 mM Tris-HC1, 35 mM KC1, 1.5 mM MgCl, 200 ⁇ M each of dATP.
  • the RT reaction was performed at 55 ° C for 30 minutes. After the reaction, it was treated at 95 ° C for 5 minutes to inactivate reverse transcriptase.
  • PCR was performed by adding 20 pmol of 5 'primer and 1.25 units of Taq DNA polymerase (Platinum Taq: Invitrogen, CA, USA) to the RT reaction solution.
  • Taq DNA polymerase Platinum Taq: Invitrogen, CA, USA
  • PCR was performed at 94 ° C for 2 minutes, followed by polymerization at 94 ° C for 30 seconds, 60 ° C for 30 seconds, 72 ° C for 60 seconds, and finally at 72 ° C for 7 minutes. .
  • FIG. 1 shows the electropherogram of the amplified product.
  • M is a size marker (250 ng of ⁇ X174-RF DNA cut with Hindi)
  • 1, 2, 3 and 4 are distilled water (for comparison), 10 mM NaOH aqueous solution (for comparison), 10 mM, respectively. It is the result of using DTT aqueous solution (for comparison) and lOmM NaOH-lOmM DTT aqueous solution (treatment reagent of this invention).
  • Example 2 shows the electropherogram of the amplified product.
  • M is a size marker (250 ng ⁇ X174-RF DNA cut with Hindi)
  • 1, 2, 3 and 4 are distilled water (for comparison), lOmM NaOH aqueous solution (for comparison), lOmM DTT, respectively. It is the result of using an aqueous solution (for comparison) and lOmM NaOH-lOmM DTT aqueous solution (treatment reagent of the present invention).
  • RNA after extraction with the treatment reagent of the present invention is stably present.
  • RNA of serum can be analyzed by the treatment reagent of the present invention. Therefore, it was confirmed that by using the treatment reagent of the present invention, RNA can be extracted by a simple operation such as the strength of RNA inclusion contained in a biological sample or the like.
  • HCV positive about lOOIU / ml
  • PEG aqueous solution (Roche Diagnostics Inc. “Amplicon (R) HBV monitor for sample processing” HBV SOL A included in “Reagent for use”, and the same as in Examples 4, 5, 6, and 7).
  • FIG. 3 is a graph showing the average value at each temperature of Data 1, with the vertical axis representing absorbance and the horizontal axis representing heating time.
  • RNA can be detected by heating for about 15 seconds, and the heating time can be appropriately selected according to the heating temperature.
  • total OD was measured from the same sample as in Example 4 above by the procedure of the quantitative method shown in the package insert of the Amplcore (R) HCV v2.0 kit. . In the comparative example, this operation was further repeated 5 times, and a total of 6 measurements were performed. Each measurement result is 0.75, 0.76, 1.14, 0.77, 1.30, and 1.06 in terms of total OD (absorbance), which is an HCV signal, and the average of these six measurements is 0.96.
  • the method of the Amplicon (R) HCV v2.0 kit package insert performed in Comparative Example 1 obtains 1,000 ⁇ L of RNA extract from 100 ⁇ L of plasma.
  • 100 L of RNA extract was obtained from 100 ⁇ L of plasma (that is, the RNA extract obtained in Example 4 was 10 times more concentrated). Therefore, since the total OD in Comparative Example 1 is 0.96, if the total OD in Example 4 is 9.6, it can be said that the sensitivity equivalent to that of the conventional method was obtained.
  • Example 4 the total OD in the range of 9 to 10 was obtained by the heat treatment time of 80 to 160 seconds. From this, the method of the present invention represented by Example 4 is comparative example 1 It is thought that the sensitivity not inferior to the conventional method illustrated in (1) was obtained.
  • HCV RNA can be detected by heating for a long time, for example, 5 minutes or more, even at a temperature of 60 ° C or lower.
  • HCV RNA can be detected by heating for a short time, for example, 30 seconds to 3 minutes, even at a heating temperature higher than 85 ° C.
  • the heating time depends A stable signal with low sensitivity was obtained, and it was shown to be highly sensitive. Therefore, it can be said that 80 ° C. to 85 ° C. is a particularly preferable temperature condition under the conditions shown in Examples 3 to 5.
  • the heating time can be 30 seconds to 10 minutes, more preferably 30 seconds to 5 minutes, and still more preferably 80 seconds to 160 seconds.
  • Example 6 PEG aqueous solution was added to a total of 4 plasma samples, 3 types of plasma samples known to be HCV positive (approximately 100, 500, 5000 IU / ml) and a sample of plasma samples known to be HCV negative, and centrifuged. After that, the obtained precipitate was used as a sample.
  • the PEG aqueous solution precipitate from plasma, not only viruses but also many plasma components are precipitated, and RNase is also present in them. For each sample, RNase was inactivated and RNA was extracted from the RNA inclusion body according to the method of the present invention, and RT-PCR was performed using primers specific for HCV RNA.
  • HCV concentration (IU / ml) 0 100 500 5000
  • HCV TOD value 0.06 0.58 4.01 51.63 [0143] As shown in Data 4 above, a signal was obtained in the positive specimen, and it was possible to detect HCV RNA. This result indicates that RNase was inactivated by the method of the present invention, and HCV RNA was extracted from the inside of the HCV virus, resulting in an RT-PCR type.
  • RNA samples known to be HIV positive approximately 700 copies / ml
  • plasma samples known to be HIV negative were used as a sample.
  • Each specimen was centrifuged with an aqueous PEG solution, and the resulting precipitate was used as a sample.
  • RNase was inactivated and RNA was extracted from the RNA inclusion body according to the method of the present invention, and RT-PCR was performed using primers specific for HIV RNA.
  • sample treatment solution 50 1 in the tube is mixed with 50 ⁇ L of the master mix from the Amplicore® HIV Monitor vl.5 kit (Roche Diagnostats ) prepared in a separate tube, and GeneAmp9600 (Applied Systems)
  • RT-PCR was carried out in accordance with the attached document of Amplicor (R) HIV monitor vl.5 kit. Even after RT-PCR, HIV-1 signal was quantified according to the prescribed procedure according to the package insert. The TOD value for HIV copy / ml is shown in Data 5 below.
  • HIV TOD value 0.05 1.10 As shown in Data 5 above, a signal was obtained in the positive sample, and it was possible to detect HIV RNA.
  • RNA inclusion body-1 TSM III noffer solution was prepared by mixing the above RNA inclusion body-1 TSM III noffer solution and human serum in a volume ratio of 1: 1.
  • concentration of the above RNA inclusion-TSM III noffer solution is defined as “73,000 IU / mL when 5 (v / v)% of the plasma is added to the plasma” and mixed with serum at a 1: 1 (volume ratio). 730IU / ⁇ L.
  • RNA detection gene amplification was first performed using Amplicor HCV v2.0 amplification reagent set (Roche Diagnostics). In the RT-PCR temperature program, the number of cycles of PCR reaction according to the manufacturer's recommended method was 38.
  • RNA in a sample could be extracted with a processing reagent containing an alkaline substance and a reducing agent.
  • a 200 L plastic tube was mixed with 2 L of a model sample and 8 ⁇ L of each processing reagent (15 types) shown in Table 6 and heat-treated at 85 ° C for 3 minutes. Add 90 ⁇ L of TE Buffer (pH 8.0) to this, and add 5 ⁇ L of this to AMPVRYMIX (Roche Diagnostics: HCV Master Mix v2 included in the AMPLICORE HCV v2.0 amplification reagent set) .0 and HCV manganese test solution mixed at a ratio of 7: 1) were mixed with 5 L and RT-PCR was performed. Table 6 also shows the pH of each processing reagent (before adding the model sample) and the pHO deviation of the model sample-processing reagent mixture (after adding the model sample) at 25 ° C).
  • FIG. 6 shows an agarose electrophoresis photograph.
  • Fig. 17 shows photographs showing the condition after heat treatment under each condition.
  • the top row in Fig. 17 shows the results using the DTT OmM treatment reagent. From left, [1], [2], [3], [4], [5], [6], [7] It is the result using a processing reagent.
  • the bottom row shows the results of using DTT 20 mM treatment reagent from the left [8], [9], [10], [11], [12], [13], [14], [15] It is a result using the processing reagent.
  • RNA hydrolysis may have occurred because the extracted RNA force was exposed to both high heating temperature (85 ° C) and pH (10.1) under high conditions.
  • the following conditions should be adjusted. That is, the pH is lowered by adjusting the NaOH concentration and the type and concentration of the buffer agent (preferably the conditions [10] to [14] described above); the temperature is lowered (for example, by not heating the RNA It has been confirmed by the present inventors that detection is possible); or a chelating agent that chelates divalent ions such as EGTA is added without changing the temperature and NaOH concentration (Example 9 below). ).
  • RNA could not be detected in the neutral range may be due to the adsorbed and embedded RNA in the contaminated component such as denatured protein.
  • the reason why RNA could not be detected under the condition [15] is presumed to be due to RNA hydrolysis not due to the influence of denatured protein, as described above.
  • This example is an example showing that EGTA reduces the hydrolysis of RNA under hot alkaline conditions. It is known that divalent metal ions promote RNA hydrolysis. Depending on the sample targeted by the present invention, since it contains divalent metal ions, it is effective to add chelating agents (EGTA, etc.) that chelate them to the processing reagent.
  • chelating agents EGTA, etc.
  • the temperature in the heat treatment is 65 ° C to 100 ° C, more preferably 70 ° C to 100 ° C. It has been found that it can be set at ° C, more preferably between 70 ° C and 95 ° C.
  • RT-PCR RT reactions Ampdirect (R) Plus (P / N: 241-08800-98: Shimadzu Corporation), 0.4 ⁇ pseudo-norovirus RNA reverse primer (5,- ACTGACAATTTCATCAT CACC-3 ': SEQ ID NO: 3) and 3.75U
  • AMV reverse transcriptase mixed RT-PCR reaction solution 25 ⁇ L is mixed with the above sample treatment solution 20 L, under conditions of 42 ° C for 1 hour. Reaction was performed.
  • RNA forward primer 5, -TGGAATTCCATCGCCCACTGG-3, SEQ ID NO: 4
  • Nova Taq TM Hot Start DNA Polymerase EMD Biosciences
  • Example 10 Eight types of processing reagents ⁇ -1 to ⁇ -8 having the compositions described in Table 7 below were prepared as processing reagents, and the above operation was performed for each of the eight types. .
  • A-2 to A-8 are processing reagents in the present invention
  • A-1 is a processing reagent prepared for comparison.
  • Lane M is molecular weight (hindi digest of ⁇ X174 RF DNA)
  • Lane 1 is the result of using treatment reagent A-1
  • Lane 2 is the result of using treatment reagent A-2
  • Lane 3 is the result.
  • Lane 4 is the result using treatment reagent A-4
  • Lane 5 is the result using treatment reagent A-5
  • Lane 6 is the result using treatment reagent A-6
  • Lane 7 shows the results using treatment reagent A-7
  • lane 8 shows the results using treatment reagent A-8.
  • Example 10 The same operations as in Example 10 were performed except that seven treatment reagents B-1 to B-7 having the following compositions were prepared and used as treatment reagents, respectively.
  • B-2 to B-7 are processing reagents in the present invention
  • B-1 is a processing reagent prepared for comparison.
  • Fig. 10 shows the electrophoretogram obtained in Example 11.
  • lane M is a molecular weight marker (hindi digest of ⁇ X174 RF DNA)
  • lane 1 is the result using treatment reagent B-1
  • lane 2 is the result using treatment reagent B-2
  • lane 3 is the treatment
  • Reagent B-3 Lane 4 is the result of using Reagent B-4
  • Lane 5 is the result of using Reagent B-5
  • Lane 6 is the result of using Reagent B-6
  • Lane 7 shows the results using treatment reagent B-7.
  • NaOH in the treatment reagent is 20 mM to 60 mM
  • DTT is
  • the stool of a person infected with Norovirus was suspended in physiological saline at a concentration of 20% (w / v) and centrifuged for 5 minutes in a microcentrifuge to obtain a supernatant.
  • the stool of healthy norovirus-negative individuals was suspended in physiological saline at a concentration of 20% (w / v), and the suspension was centrifuged for 5 minutes using a microcentrifuge to obtain a supernatant. .
  • the supernatant derived from the stool of the infected person was diluted 10-fold with the supernatant derived from the stool of the healthy person to prepare six types of stool sample solutions D-1 to D-6. Specifically, the noble Shakuritsu 1 ⁇ D-1, D-2 dilution 10 times, D-3 of the dilution ratio 10 twice, 10 3 times dilution of D-4, D- The dilution ratio of 5 is 10 4 times, and the dilution ratio of D-6 is 10 5 times.
  • a treatment reagent having a composition of 30 mM NaOH, 20 mM DTT, and lOmM EGTA was used.
  • RNA forward primer 5, -TGGAATTCCATCGCCCACTGG-3, SEQ ID NO: 4
  • Nova Taq TM Hot Start DNA Polymerase EMD Biosciences
  • Lane 1 is the result of using fecal sample solution D-1
  • Lane 2 is the result of using fecal sample solution D-2
  • Lane 3 is the result of using fecal sample solution D-3
  • Lane 4 is the result of using fecal sample solution D-3.
  • sample solution D-4 shows the result of using fecal sample solution D-5
  • lane 6 shows the result of using fecal sample solution D-6.
  • Lane 7 shows the result of the same operation except that negative control (Negative Control), that is, stool of non-norovirus-infected healthy subjects was used instead of stool of norovirus-infected subjects.
  • Lane M is a molecular weight marker (Hindi digest of ⁇ X174 RF DNA).
  • E-1 to E-6 were used as controls for solutions D-1 to D-6.
  • E-1 is a purified RNA solution corresponding to D-1 (1x)
  • E-2 is a purified RNA solution corresponding to D-2 (10x)
  • E-3 is compatible with D-3
  • E-4 is a purified RNA solution corresponding to D-4 (10 3 times)
  • E-5 is a purified RNA solution corresponding to D-5 (10 4 times)
  • E- 6 is a purification RN a solution corresponding to D-6 (10 5 times).
  • Fig. 12 shows the electropherogram obtained by ⁇ 2>.
  • Lane 1 is the result using purified RNA solution E-1
  • Lane 2 is the result using purified RNA solution E-2
  • Lane 3 is the result using purified RNA solution E-3
  • Lane 4 is the purified RNA solution.
  • lane 5 shows the result using purified RNA solution E-5
  • lane 6 shows the result using purified RNA solution E-6
  • Lane 7 shows the result of the same operation except that negative control (Negative Control), that is, fecal stool that is not infected with norovirus, was used instead of fecal stool that was not infected with norovirus.
  • Lane ⁇ is a molecular weight marker (Hindi digest of ⁇ X174 RF DNA).
  • Example 12 1> For 18 kinds of norovirus positive stool derived from 18 different specimens (Specimen Nos. 1 to 18) infected with Norovirus, the same procedure as in Example 12 1> was performed. The obtained electropherogram is shown in FIG. In Fig. 13, the numbers in the lanes correspond to the sample numbers. Lane M is a molecular weight marker (Hindi digest of ⁇ X174 RF DNA).
  • treatment reagents with the composition of 30 mM NaOH, 20 mM DTT, and lOmM EGTA as treatment reagents, heat treatment at various temperatures from 20 ° C to 100 ° C and for various times from 1 minute to 60 minutes The same operation as in Example 10 was performed except that the above was performed.
  • Example 14 An electropherogram obtained by Example 14 is shown in FIG. In FIG. 15, five lanes correspond to the case where the heat treatment time is 1 min (min), 5 min, 15 min, 30 min, and 60 min, and the heat treatment temperature for each lane is 25 ° C (for comparison), 35 ° C, 45 ° C, 50 ° C, 55 ° C, 60 ° C, 65 ° C, 70 ° C, 75 ° C, 80 ° C, 85 ° C, 90 ° The results for C, 95 ° C, and 100 ° C are shown.
  • RNA was quantified by real-time PCR. Specifically, lO X SYBR (TM) Green I (Molecular Probes) was added to the obtained RT-PC R reaction solution, followed by preheating at 95 ° C for 5 minutes as a temperature program. Then, a cycle of 92 ° C., 30 seconds, 58 ° C., 30 seconds, and 72 ° C., 1 minute was performed for 30 cycles, and then a polymerization of 72 ° C., 7 minutes was performed.
  • the fluorescence intensity at the 30th cycle is shown in FIG. In FIG. 16, the horizontal axis represents the heat treatment temperature (° C.), and the vertical axis represents the fluorescence intensity (relative fluorescence intensity: RFU).
  • SEQ ID Nos: 1 to 5 are synthetic primers.
  • an RNase that is universally present in a sample such as a biological sample or an environmental sample, or a sample such as a biological sample obtained by separating RNA inclusions therefrom, or the like. Deactivation Can be provided.
  • RNA is efficiently extracted from RNA inclusions present in samples such as biological samples and environmental samples, or samples such as biological samples obtained by separating RNA inclusions therefrom.
  • a method of extraction can be provided.
  • RNase present in a sample can be easily and stably obtained by performing inactivation of RNase in the sample and RNA extraction from the RNA inclusion body in one step. Can be amplified. Further, by suppressing the action of an inhibitor on nucleic acid synthesis, it becomes possible to amplify RNA present in the sample more simply, stably, efficiently and rapidly. This can provide a simple, “stable”, efficient and rapid method for detecting RNA in a sample.
  • a treatment reagent that can be used in these methods can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 生体試料(特に排泄物試料)等の試料、もしくは、そこからRNA包含体の分離等を行って得た生体由来試料(特に排泄物由来試料)等の試料の中に普遍的に存在するRNaseを失活させる方法、当該試料からRNAを抽出及び検出する方法を提供する。RNA包含体及びRNA分解酵素が含まれる試料と、少なくとも還元剤を含むアルカリ性処理試薬との混合物であって、pHが8.1以上の混合物を、加熱条件下において得る工程と、前記混合物を前記加熱条件下で維持することによって、前記RNA分解酵素の失活とRNA包含体からのRNA抽出とを行う工程とを含む、RNAの抽出方法。当該抽出方法によって抽出されたRNAを含む試料処理液と、増幅用反応液とを混合してRNA増幅反応を行う、RNA検出方法。

Description

RNAの抽出方法及び RNAの検出方法
技術分野
[0001] 本発明は、試料等の中に存在する RNA分解酵素を失活させる方法、当該試料の中 に存在する RNA包含体 (細胞、真菌、細菌、ウィルス等)から、或いは、当該試料から 分離した RNA包含体から、 RNAを簡易かつ安定的に抽出する方法、当該 RNAを検出 する方法、及びそれら方法に用いる試薬に関する。本発明は、 RNA増幅法、特に、 逆 与一ポリ フ ~~セ連鎖 i¾J'i (Reverse Transcription - Polymerase Chain Reaction :以下 RT— PCRと略す)法による RNA増幅法に関する。
背景技術
[0002] 分子生物学的な解析に用いる RNAを調製するためには、 RNA分解酵素 (RNase)の 作用しない環境下で RNAを調製する必要がある。通常、被験物から細胞、真菌、細 菌、ウィルス等(以下、 RNA包含体と総称する。)を分離回収し、その後、その RNA包 含体内部から RNAを抽出し、抽出した RNAを精製する過程が必要となる。しかしなが ら、 RNaseは偏在し、その上不活性化がきわめて困難な物質である。このため、生体 等試料中の RNA包含体力ゝら RNAを精製する際には、 RNA包含体内部からの RNAの 抽出過程における RNase制御 (活性の抑制)と RNase除去とを行わなければならず、き わめて厳格かつ煩雑な方法が必要であった。そこで、この過程を行う方法として、従 来から、酵素、界面活性剤、カオトロピック剤等により生体試料を処理し、その後、フ ェノールある 、はフエノール ·クロ口ホルム等を用いて、 RNAを抽出及び精製する方法 が使用されている。最近では、 RNA抽出及び精製の過程において、イオン交換榭脂 、ガラスフィルター、ガラスビーズ、磁気ビーズあるいはタンパク凝集作用を有する試 薬等が使用される方法も報告されている。 RNAの抽出及び精製法は、 Chomczynski & Sacchi (1987) Analytical Biochemistry, 162: 156- 159. (アシッド'グァ-ジゥム 'チォ ンァ不 ~~トーフエノ1 ~~ノレ一クロロホノレム抽出 (acid guanidinium thiocyanate— phenol— ch loroform extraction)法:
Figure imgf000003_0001
Molecularし loning: A Laboratory Manual Thir d Edition (2001) Joseph. Sambrook, David W. Russellなどに記載されている。 [0003] RT— PCR法は、逆転写酵素 (Reverse Transcriptase)を用いて RNAを相補的な D NA(cDNA)に転換した後に、 PCR法で cDNAを増幅する方法である。 RT— PCR 法は、微量の RNAでも定量的に解析できるため、今日最も検出感度の高い定量性 に優れた解析法の 1つとして用いられている。例えば、 RNAを遺伝子として保有して いるウィルスの検出、 mRNAの定量的検出、 mRN Aの塩基配列決定による発現遺 伝子の解析、さらには cDNAのクローユングによる発現産物の解析及び生産等には 欠かせな 、技術になって!/、る。
[0004] RT—PCR法において、 RT反応に引き続き行う PCR法は、 DNA鎖中の特定領域 を挟んだプライマー間の DNA合成反応を繰り返すことによって目的の DNA断片を 数十万倍にも増幅できる方法である。 PCR法はマリス氏らの発明である特開昭 61— 274697号公報【こ述べられて!/、る。
し力し前記の方法をはじめとした RNA増幅法は全て酵素反応をベースとして 、る ため、生体試料中に存在する色素、タンパク、糖類あるいは未知の夾雑物によって 反応が強く阻害されることが広く知られている。
[0005] さらに、 RNAは、全ての生体試料中に普遍的に存在する RNA分解酵素 (RNase)によ り容易に分解される。
[0006] そこで、上述したように、前記の RNA増幅に先立って、被験物から細胞、真菌、細 菌、ウィルス等(以下、 RNA包含体と称する)を分離後、その RNA包含体から RNA を抽出精製する過程が必要となる。例えば、米国特許第 6825340号明細書や米国 特許第 6777210号明細書〖こは、還元剤の存在下、加熱処理を行うことで、 RNaseの 失活、並びに、 PBSで洗浄後の培養細胞からの RNA抽出と RT-PCRとが開示されて いる。
一方で、特開 2001— 29078号公報〖こは、 RNA包含体を含む試料からの、直接 RT -PCRが開示されている。
[0007] RNA増幅を伴わないウィルス検出技術に関しては、特開 2004— 301684号公報 に、アルカリ性緩衝剤を用いたノロウィルス検体用希釈液、及び当該希釈液を用いた 、抗原抗体反応〖こよるノロウィルス検出が開示されて 、る。
非特許文献 1:チヨムチンスキ(Chomczynski)及びサチ(Sacchi)、「アナリティカル ·バ ィォケミストリー(Analytical Biochemistry)」、 1987年、第 162卷、 p. 156— 159 非特許文献 2:ジヨセフ ·サンブルック(Joseph. Sambrook)及びデビッド · W ·ラッセノレ ( David W. Russell)、「分子クロー-ング:実験室マニュアル第 3版(Molecular Cloning: A Laboratory Manual Third Edition)」 2001年
特許文献 1:特開昭 61— 274697号公報
特許文献 2 :米国特許第 6825340号明細書
特許文献 3 :米国特許第 6777210号明細書
特許文献 4:特開 2001— 29078号公報
特許文献 5:特開 2004— 301684号公報
発明の開示
発明が解決しょうとする課題
[0008] RNAは、生体内はもちろんのこと、その生体が存在するあらゆる環境中に普遍的に 存在している RNaseによる分解の危険性に常にさらされている。従って、 RNA包含体 内部からの RNA抽出の際に、迅速な RNase不活性ィ匕の処理を行うべきことはもちろん のこと、精製過程においても、精製後においても、 RNaseが混入しないような厳重な操 作や管理が要求される。
[0009] しかし、従来の方法を用いて試料中の RNAの精製を行っても、夾雑物の除去が困 難な場合や試料中の RNAの回収量が一定しない場合も多い。とりわけ試料中の目的 とする RNAの含量が少ない場合には、引き続く RNA解析が困難な場合もある。また、 これら精製法は、操作が煩雑で時間を要し、操作中のコンタミネーシヨンの機会が高 い。これらの理由により、従来の精製法は熟練を要する。従って、これらの問題点を 解決するためには、より簡便で、かつ効果的な試料前処理法が望まれていた。
[0010] 本発明の目的は、生体試料、排泄物試料、環境試料等の試料、もしくは、そこから RNA包含体の分離等を行って得た生体由来試料、排泄物由来試料、環境由来試料 等の試料、の中に普遍的に存在する RNaseを失活させる方法を提供することにある。 本発明の目的は、生体試料、排泄物試料、環境試料等の試料、もしくは、そこから RNA包含体の分離等を行って得た生体由来試料、排泄物由来試料、環境由来試料 等の試料、の中に存在する RNA包含体から RNAを効率よく抽出する方法を提供する ことにある。
本発明の目的は、該試料力 RNAを効率よく抽出することにより、さらには、核酸合 成反応に対する阻害物質の作用を抑制して、該試料中の RNAを効率よく増幅させ ることにより、簡便、迅速且つ安定的に、試料中に存在する RNAを検出する方法を提 供することにある。
本発明の目的は、これらの方法に用いることができる処理試薬を提供することにあ る。
課題を解決するための手段
[0011] 本発明者らは、鋭意検討の結果、生体試料中の RNaseの失活と RNA包含体内部か らの RNAの抽出とを一工程で行い、引き続き RNA増幅を行うことによって、上記本発 明の目的が達成されることを見出し、本発明を完成するに至った。
[0012] < RNA分解酵素失活方法 >
下記は、 RNA分解酵素 (RNase)の失活方法に関する。下記の RNA分解酵素失活 方法は、 RNA分解酵素が含まれる試料に対し、少なくとも還元剤を含むアルカリ性処 理試薬を用いて、加熱条件下において、前記 RNA分解酵素の失活を行う、 RNA分解 酵素の失活方法である。
[0013] RNA分解酵素が含まれる試料と、少なくとも還元剤を含むアルカリ性処理試薬 (trea ting reagent)との混合物であって、 pHが 8. 1以上の混合物を、加熱条件下において 得る工程と、
前記混合物を前記加熱条件下で維持することによって、前記 RNA分解酵素の失活 を行う工程とを含む、 RNA分解酵素の失活方法。
[0014] 上記処理試薬のアルカリ性の程度は、試料と混合されて混合物となった際に混合 物の pHが 8. 1以上(25°Cの場合)となる程度である。 30°C以上の加熱条件下にお
V、て前記処理試薬を用いる、前記の RNA分解酵素の失活方法。
[0015] 前記処理試薬は、 Tris緩衝液、 Good緩衝液、ホウ酸塩緩衝液、及び炭酸塩緩衝液 力もなる群力も選ばれるアルカリバッファを含む、前記の RNA分解酵素の失活方法。
[0016] 前記処理試薬は、水酸化物、アンモニア、及びアミンカ なる群力 選ばれるアル カリ物質を含む、前記の RNA分解酵素の失活方法。 [0017] 前記水酸化物が、水酸ィ匕ナトリウム及び/又は水酸ィ匕カリウムである、前記の RNA分 解酵素の失活方法。
前記アルカリ物質が、 0. ImM〜飽和濃度で前記処理試薬に含まれる、前記の RN A分解酵素の失活方法。
前記アルカリ物質として水酸ィ匕ナトリウム及び/又は水酸ィ匕カリウム力 ImM〜: LOO mMで前記処理試薬に含まれる、前記の RNA分解酵素の失活方法。
[0018] 前記還元剤がチオール型還元剤である、前記の RNA分解酵素の失活方法。
ここで、チオール型還元剤とは、チオール基を有する還元剤の総称である。
前記チオール型還元剤力 ジチオスレィトール及びメルカプトエタノール力 なる群 から選ばれる、前記の RNA分解酵素の失活方法。
前記還元剤が、 0. ImM〜飽和濃度で前記処理試薬に含まれる、前記の RNA分 解酵素の失活方法。
前記還元剤としてジチオスレィトールが、 ImM〜: LOOmMで前記処理試薬に含ま れる、前記の RNA分解酵素の失活方法。
[0019] 前記試料が、生体試料、生体由来試料、環境試料、及び環境由来試料からなる群 から選ばれる、前記の RNA分解酵素の失活方法。
[0020] 前記試料が、排泄物試料及び排泄物由来試料からなる群から選ばれる、前記の R
NA分解酵素の失活方法。
[0021] 前記 RNA包含体は、細胞、真菌、細菌、及び RNAウィルス力 なる群力 選ばれ る、前記の RNA分解酵素の失活方法。
[0022] 前記 RNAウィルスは、レトロウイルス、ノロウィルス (SRSV)、ロタウィルス、及び C型 肝炎ウィルス (HCV)カゝらなる群カゝら選ばれる、前記に記載の RNA分解酵素の失活方 法。
[0023] 前記 RNAウィルスがレトロウイルスである場合、前記レトロウイルスはエイズウイルス
(HIV)である、前記の RNA分解酵素の失活方法。
[0024] 前記 RNAが mRNAである、前記の RNA分解酵素の失活方法。
[0025] RNA分解酵素が含まれる試料を、少なくとも還元剤を含む溶液中に混在させるェ 程と、前記試料と前記還元剤との混合液を、 25°Cにおける pHが 8. 1以上となるよう に調整する工程と、
pH調整された前記混合液を加熱条件下に供することによって、前記 RNA分解酵 素の失活を行う工程とを含む、 RNA分解酵素の失活方法。
[0026] すなわち、上記の方法における RNA分解酵素の失活は、試料を還元剤が存在する pH8. 1以上のアルカリ性環境に供することによって行われる。
[0027] < RNA抽出方法 >
下記(1)〜(11)は、 RNAの抽出方法に関する。すなわち本発明の抽出方法は、 R NA包含体及び RNA分解酵素が含まれる試料に対し、少なくとも還元剤を含むアル力 リ性処理試薬を用いて、加熱条件下において、前記 RNA分解酵素の失活と前記 RN A包含体からの RNAの抽出とを行う、 RNAの抽出方法である。
なお、本発明の方法において、 RNA包含体内部からの RNAの抽出とは、 RNA包含 体の膜構造を破壊することによって膜構造中に包含されていた RNAを抽出し、膜外 の環境へ露出させることとして定義する。そして、露出した RNAや、露出した RNAがさ らされている外部環境に対して何らかの処理を行うことは、本発明における抽出の定 義に含めない。
[0028] (1) RNA包含体及び RNA分解酵素が含まれる試料と、少なくとも還元剤を含むアル カリ性処理試薬 (treating reagent)との混合物であって、 pHが 8. 1以上の混合物を、 加熱条件下において得る工程と、
前記混合物を前記加熱条件下で維持することによって、前記 RNA分解酵素の失活 と RNA包含体からの RNA抽出とを行う工程とを含む、 RNAの抽出方法。
[0029] 上記処理試薬のアルカリ性の程度は、試料と混合されて混合物となった際に混合 物の pHが 8. 1以上(25°Cの場合)となる程度である。
[0030] 前記加熱条件は 30°C以上である、前記の RNA抽出方法。
[0031] (2)前記処理試薬は、 Tris緩衝液、 Good緩衝液、ホウ酸塩緩衝液、及び炭酸塩緩 衝液カもなる群力も選ばれるアルカリバッファを含む、(1)に記載の RNA抽出方法。
[0032] (3)前記処理試薬は、水酸化物、アンモニア、及びアミンカ なる群力 選ばれるァ ルカリ物質を含む、(1)又は(2)に記載の RNAの抽出方法。
[0033] 前記水酸化物が、水酸ィ匕ナトリウム及び/又は水酸ィ匕カリウムである、前記の RNAの 抽出方法。
前記アルカリ物質が、 0. ImM〜飽和濃度で前記処理試薬に含まれる、前記の RN Aの抽出方法。
前記アルカリ物質として水酸ィ匕ナトリウム及び/又は水酸ィ匕カリウム力 ImM〜: LOO mMで前記処理試薬に含まれる、前記の RNAの抽出方法。
[0034] (4)前記還元剤がチオール型還元剤である、(1)〜(3)のいずれかに記載の RNA の抽出方法。
[0035] ここで、チオール型還元剤とは、チオール基を有する還元剤の総称である。
前記チオール型還元剤力 ジチオスレィトール及びメルカプトエタノール力 なる群 力 選ばれる、前記の RNAの抽出方法。
前記還元剤が、 0. ImM〜飽和濃度で前記処理試薬に含まれる、前記の RNAの 抽出方法。
前記還元剤としてジチオスレィトールが、 ImM〜: LOOmMで前記処理試薬に含ま れる、前記のいずれかに記載の RNAの抽出方法。
[0036] (5)前記試料が、生体試料、生体由来試料、環境試料、及び環境由来試料からな る群力 選ばれる、 (1)〜(4)の 、ずれかに記載の RNAの抽出方法。
[0037] (6)前記試料が、排泄物試料及び排泄物由来試料カゝらなる群カゝら選ばれる、 (1)
〜(5)のいずれかに記載の RNAの抽出方法。
[0038] (7)前記 RNA包含体は、細胞、真菌、細菌、及び RNAウィルス力 なる群力 選 ばれる、(1)〜(6)のいずれかに記載の RNAの抽出方法。
[0039] (8)前記 RNAウィルスは、レトロウイルス、ノロウィルス(SRSV)、ロタウィルス、及び
C型肝炎ウィルス (HCV)力 なる群力 選ばれる、 (7)に記載の RNAの抽出方法。
[0040] (9)前記 RNAウィルスがレトロウイルスである場合、前記レトロウイルスはエイズウイ ルス (HIV)である、(8)に記載の RNAの抽出方法。
[0041] (10)前記 RNAが mRNAである、(1)〜(9)のいずれかに記載の RNAの抽出方法
[0042] (11) RNA包含体及び RNA分解酵素が含まれる試料を、少なくとも還元剤を含む溶 液中に混在させる工程と、前記試料と前記還元剤との混合液を、 25°Cにおける pH が 8. 1以上となるように調整する工程と、
pH調整された前記混合液を加熱条件下に供することによって、前記 RNA分解酵素 の失活と前記 RNA包含体力ゝらの RNAの抽出とを行う工程とを含む、 RNA抽出方法。 すなわち、上記(1)〜(10)における RNA分解酵素の失活及び RNA抽出は、試料を 還元剤が存在する pH8. 1以上のアルカリ性環境に供することによって行われる。
[0043] < RNA検出方法 >
下記(12)〜(22)は、 RNA検出方法に関する。本発明の RNA検出方法は、 RNA 包含体及び RNA分解酵素(RNase)が含まれる試料に対し、少なくとも還元剤を含む アルカリ性処理試薬を用いて、加熱条件下において、前記 RNA分解酵素の失活と前 記 RNA包含体内部力ゝらの RNAの抽出とを行い、試料処理液を得て、前記試料処理 液と増幅用反応液とを混合して RNA増幅反応を行う、 RNA検出方法である。
ここで、 RNA包含体内部からの RNAの抽出とは、 RNA包含体の膜構造を破壊するこ とによって膜構造中に包含されて 、た RNAを取り出し、膜外の環境へ露出させること として定義する。そして、露出した RNAや露出した RNAがさらされている外部環境に 対して何らかの処理を行うことは、本発明における抽出の定義に含めない。
[0044] ( 12) RNA包含体及び RNA分解酵素が含まれる試料と、少なくとも還元剤を含むァ ルカリ性処理試薬 (treating reagent)との混合物であって、 pHが 8. 1以上の混合物 を、加熱条件下において得る工程と、
前記混合物を前記加熱条件下で維持することによって、前記 RNA分解酵素の失活 と RNA包含体からの RNA抽出とを行 ヽ、抽出された RNAを含む試料処理液 (treated sample liquid) 得る工程と、
前記試料処理液と増幅用反応液とを混合して RNA増幅反応を行う、 RNA検出方法
[0045] 上記処理試薬のアルカリ性の程度は、試料と混合されて混合物となった際に混合 物の pHが 8. 1以上(25°Cの場合)となるものである。
[0046] 前記加熱条件は 30°C以上である、前記の RNA検出方法。
[0047] ( 13)前記処理試薬は、 Tris緩衝液、 Good緩衝液、ホウ酸塩緩衝液、及び炭酸塩 緩衝液力もなる群力も選ばれるアルカリバッファを含む、(12)に記載の RNA検出方 法。
[0048] (14)前記処理試薬は、水酸化物、アンモニア、及びアミンカ なる群力 選ばれる アルカリ物質を含む、(12)又は(13)に記載の RNA検出方法。
[0049] 前記水酸化物が、水酸ィ匕ナトリウム及び/又は水酸ィ匕カリウムである、前記の RNA検 出方法。
前記アルカリ物質が、 0. ImM〜飽和濃度で前記処理試薬に含まれる、前記の RN A検出方法。
前記アルカリ物質として水酸ィ匕ナトリウム及び/又は水酸ィ匕カリウム力 ImM〜: LOO mMで前記処理試薬に含まれる、前記の RNA検出方法。
[0050] (15)前記還元剤がチオール型還元剤である、(12)〜( 14)のいずれかに記載の R NA検出方法。
[0051] ここで、チオール型還元剤は、チオール基を有する還元剤の総称である。
前記チオール型還元剤力 ジチオスレィトール及びメルカプトエタノール力 なる群 カゝら選ばれる、前記の RNA検出方法。
前記還元剤が、 0. ImM〜飽和濃度で前記処理試薬に含まれる、前記の RNA検 出方法。
前記還元剤としてジチオスレィトールが、 ImM〜: LOOmMで前記処理試薬に含ま れる、前記の RNA検出方法。
[0052] (16)前記試料が、生体試料、生体由来試料、環境試料、及び環境由来試料から なる群力も選ばれる、(12)〜(15)のいずれかに記載の RNA検出方法。
[0053] (17)前記試料が、排泄物試料及び排泄物由来試料カゝらなる群カゝら選ばれる、 (12
;)〜(16)の 、ずれかに記載の RNA検出方法。
[0054] (18)前記 RNA包含体は、細胞、真菌、細菌、及び RNAウィルス力 なる群力 選 ばれる、(12)〜(17)のいずれかに記載の RNA検出方法。
[0055] (19)前記 RNAウィルスは、レトロウイルス、ノロウィルス(SRSV)、ロタウィルス、及び
C型肝炎ウィルス (HCV)力 なる群力 選ばれる、 (18)に記載の RNA検出方法。
[0056] (20)前記 RNAウィルスがレトロウイルスである場合、前記レトロウイルスはエイズゥ ィルス (HIV)である、 (19)に記載の RNA検出方法。 [0057] (21)前記 RNAが mRNAである、(12)〜(20)のいずれかに記載の RNA検出方法
[0058] 前記試料処理液と前記増幅用反応液との混合液が、硫酸化多糖、ポリアミン、アル ブミン、及び非イオン性界面活性剤力もなる群力も選ばれる添加物をさらに含む、前 記の RNA検出方法。
[0059] 前記非イオン界面活性剤が、ポリオキシエチレンソルビタンモノラウレート及びポリ ォキシエチレンォクチルフエ-ルエーテルからなる群から選ばれる、前記の RNA検 出方法。
[0060] 前記処理試薬が、さらに硫酸ィ匕多糖を含む、前記の RNA検出方法。
[0061] (22) RNA包含体及び RNA分解酵素が含まれる試料を、少なくとも還元剤を含む溶 液中に混在させる工程と、
前記試料と前記還元剤との混合液を、 25°Cにおける pHが 8. 1以上となるように調 整する工程と、
pH調整された前記混合液を加熱条件下に供することによって、前記 RNA分解酵素 の失活と前記 RNA包含体からの RNAの抽出とを行!、、抽出された RNAを含む試料処 理液を得る工程と、
前記試料処理液と増幅用反応液とを混合して RNA増幅反応を行う工程とを含む、 R NA検出方法。
[0062] すなわち、上記(12)〜(21)の方法における RNA分解酵素の失活及び RNA抽出は 、試料を還元剤が存在する pH8. 1以上のアルカリ性環境に供することによって行わ れる。
[0063] <処理試薬 >
下記は、 RNA分解酵素を含む試料に対する処理試薬に関する。
[0064] 少なくとも、アルカリ物質及び/又はアルカリバッファと還元剤とを含む、 RNA分解酵 素を含む試料の処理試薬。
[0065] 前記の RNA分解酵素の失活方法、(1)〜(11)のいずれかに記載の RNAの抽出方 法、又は、(12)〜(22)のいずれかに記載の RNA検出方法に用いるための、少なくと も、アルカリ物質及び/又はアルカリバッファと還元剤とを含む、 RNA分解酵素を含む 試料の処理試薬。
発明の効果
[0066] 本発明によると、生体試料、環境試料等の試料、もしくは、そこから RNA包含体の分 離等を行って得た生体由来試料等の試料、の中に普遍的に存在する RNaseを失活 させる方法を提供することができる。
本発明によると、生体試料、環境試料等の試料、もしくは、そこから RNA包含体の分 離等を行って得た生体由来試料等の試料、の中に存在する RNA包含体から RNAを 効率よく抽出する方法を提供することができる。
本発明によると、該試料中の RNaseの失活と RNA包含体内部からの RNAの抽出とを 一工程で行うことによって、簡便'安定的'効率的且つ迅速に、試料中に存在する RN Aを増幅することが可能となる。そして、核酸合成に対する阻害物質の作用を抑制す ることにより、さらに簡便 ·安定的 ·効率的且つ迅速に、試料中に存在する RNAを増幅 することが可能となる。このことにより、簡便'安定的'効率的且つ迅速に、試料中の R NAを検出する方法を提供することができる。
本発明によると、これらの方法に用いることができる処理試薬を提供することができ る。
図面の簡単な説明
[0067] [図 1]図 1は、本実施例 1で、ヒト血清に RNA包含体を添カ卩した検体について、蒸留水 、又は、組成の異なる 3種の処理試薬を用いて処理を行い、その後 RNA増幅を行うこ とにより RNAを検出した結果を示す電気泳動図である。
[図 2]図 2は、本実施例 2で、実施例 1において蒸留水、又は、組成の異なる 3種の処 理試薬を用いて処理した後の検体を、冷蔵にて 1日保存し、その後 RNA増幅を行うこ とにより RNAを検出した結果を示す電気泳動図である。
[図 3]図 3は、本実施例 3で得られた、加熱処理の温度及び時間と、 RNA検出量との 関係を示したグラフである。
[図 4]図 4は、本実施例 4で得られた、 85°Cでの加熱処理の時間と、 RNA検出量との 関係を示したグラフである。
[図 5]図 5は、本実施例 5で得られた、加熱処理の温度及び時間と、 RNA検出量との 関係を示したグラフである。
[図 6]図 6は、本実施例 8で、ヒト血清に RNA包含体を添カ卩した検体について、組成の 異なる 15種の処理試薬を用いて処理を行い、その後 RNA増幅を行うことにより RNAを 検出した結果を示す電気泳動図である。
[図 7]図 7は、本実施例 9で、ヒト血清に RNA包含体を添加した検体について、実施例 8における処理試薬の 1つを用いた処理を、さまざまな加熱条件下で行い、その後 RN A増幅を行うことにより RNAを検出した結果を示す電気泳動図である。
[図 8]図 8は、本実施例 9で、ヒト血清に RNA包含体を添加した検体について、実施例 8における処理試薬の 1つ〖こさらに EGTAを含ませた処理試薬を用 、た処理を、さま ざまな加熱条件下で行 ヽ、その後 RNA増幅を行うことにより RNAを検出した結果を示 す電気泳動図である。
[図 9]図 9は、実施例 10において、擬似ノロウィルス陽性の糞便試料が混合された糞 便試料液にっ 、て、 NaOHの濃度がそれぞれ異なる組成を有する 8種の処理試薬 を用いた処理を行い、その後 RNA増幅を行うことにより RNAを検出した結果を示す 電気泳動図である。
[図 10]図 10は、実施例 11において、擬似ノロウィルス陽性の糞便試料が混合された 糞便試料液にっ 、て、 DTTの濃度がそれぞれ異なる組成を有する 7種の処理試薬 を用いた処理を行い、その後 RNA増幅を行うことにより RNAを検出した結果を示す 電気泳動図である。
[図 11]図 11は、実施例 12において、ウィルス濃度の異なる感染糞便試料について R NA非精製で実施した RNA検出の結果を示す電気泳動図である。
[図 12]図 12は、実施例 12において、ウィルス濃度の異なるノロウィルス感染糞便試 料について RNAを精製し実施した RNA検出の結果を示す電気泳動図である。
[図 13]図 13は、実施例 13において、ノロウィルスに感染している 18の異なる検体に それぞれ由来するノロウィルス感染糞便試料を用いた RNA検出の結果を示す電気 泳動図である。
[図 14]図 14は、実施例 13において、ノロウィルスに感染していない 10の異なる検体 にそれぞれ由来するノロウィルス非感染糞便試料を用いた RNA検出の結果を示す 電気泳動図である。
[図 15]図 15は、実施例 14において、擬似ノロウィルス陽性の糞便試料が混合された 糞便試料液に対し、処理試薬を用いた処理をさまざまな加熱条件下で行い、その後 RNA増幅を行うことにより RNAを検出した結果を示す電気泳動図である。
[図 16]図 16は、実施例 14において、増幅された RNAをリアルタイム PCRによって定量 した結果を示すグラフである。
[図 17]図 17は、実施例 8における、モデル検体を 15種類の各処理試薬と混合し、熱 処理した後の様子を示す写真である。上の段が、 DTT OmMの処理試薬を用いた結 果であり、左から [1]、 [2]、 [3]、 [4]、 [5]、 [6]、 [7]の処理試薬を用いた結果である。下の 段は、 DTT 20mMの処理試薬を用いた結果であり、左から [8]、 [9]、 [10]、 [11]、 [12]、 [13]、 [14]、 [15]の処理試薬を用いた結果である。
発明を実施するための最良の形態
[0068] 本発明の RNase失活方法及び RNA抽出方法は、アルカリ環境及び還元剤の存在 下で実現される。本発明の RNA検出方法は、試料中の RNase失活及び RNA包含体 内部からの RNA抽出を行う工程と、 RNA増幅反応を行う工程とを含む。
試料中の RNase失活及び RNA包含体内部からの RNA抽出を行う工程により得られ る試料処理液は、 RNA増幅用反応液と直接混合され、 RNA増幅反応に供される。こ のため、 RNAの特別な精製を行うことなぐ試料から直に RNA増幅させることができる
[0069] 1.試料
本発明は、処理対象となる試料として、 RNaseが含まれ得るものであればどのような ものにも適用することができる。このような試料として、生体試料、生体由来試料、環 境試料、環境由来試料、排泄物試料、排泄物由来試料などが挙げられる。
本発明は、処理対象となる試料として、 RNaseにカ卩えて RNA包含体が含まれている ものである場合に、特に有用に適用することができる。このような試料として、生体試 料、生体由来試料、環境試料、環境由来試料、排泄物試料、排泄物由来試料など が挙げられる。この場合、 RNaseの失活と RNA包含体内部からの RNAの抽出とをーェ 程で行うことができる。 [0070] 本発明において、 RNA包含体とは、膜構造に囲まれ且つ内部に RNAを有する構造 体である。具体的には、細胞、真菌、細菌、ウィルス等をいう。細胞には、血液や髄液 等に由来する白血球、口腔粘膜細胞等が含まれる。また、細胞には、食品由来細胞 、体内からの剥離細胞等も含まれる。本発明においてこのような細胞を RNA包含体と する場合、 mRNA等の RNAについて抽出及び検出を行うことができる。ウィルスとして は、 RNAウィルスが挙げられる。 RNAウィルスとしては、レトロウイルス(エイズウイルス( HIV)等)、ノロウィルス(SRSV)、ロタウィルス、 C型肝炎ウィルス (HCV)等が挙げられる
[0071] 生体試料としては、動植物組織や体液等が挙げられる。体液には、血液試料、髄 液、唾液、乳等が含まれる。ここで、血液試料には、全血、血漿、血清等が含まれる。 一方、生体由来試料としては、上記生体試料に対して何らかの処理をしたものが含 まれる。
[0072] 環境試料としては、 RNA包含体を含むものであれば、大気、土壌、水等を含むあら ゆる試料が挙げられる。
一方、環境由来試料としては、上記環境試料に対して何らかの処理をしたものが含 まれる。
[0073] 排泄物には、尿、糞便、吐物等が含まれる。
排泄物試料には、生体カゝら排泄された排泄物そのもの、或いは、排泄物そのものを 、水、生理食塩水、 pH緩衝液等に懸濁させたものが含まれる。前記生体としては、ヒ ト、家畜、昆虫、その他あらゆる動物が挙げられる。
一方、排泄物由来試料には、上記排泄物試料に対して何らかの処理をした試料が 含まれる。
[0074] 上記試料に対して行われても良い何らかの処理としては、 RNA包含体の回収処理 が挙げられる。 RNA包含体の回収方法としては、上記試料から RNA包含体を分離で きる方法であればどのような方法を用いることもできる。例えば、遠心'超遠心操作、 濾過 ·限外濾過操作;当該操作に、ポリエチレングリコール等の共沈剤 ·抗体等の吸 着胆体等を併用する方法;及び当該吸着担体を結合した磁気ビーズや膜等を用い て分離する方法等が用いられる。いずれの方法であっても、 RNaseが残存する可能 性のある RNA包含体の回収処理の場合に、本発明は有効である。
[0075] また、本発明における試料中には、 RNA増幅反応を阻害する物質が含まれることが 許容される。 RNA増幅反応を阻害する物質は、生体試料、生体由来試料、環境試料 、環境由来試料、排泄物試料、排泄物由来試料などの試料中に通常含まれている。 RNA増幅反応を阻害する物質としては、生体試料中に存在する色素、タンパク質、 糖類、未知の夾雑物など、細胞内'外を問わず存在している物質を挙げることができ る。
[0076] 2.処理試薬
2- 1.処理試薬 試料混合物の pH
試料中の RNase失活、さらには試料中の RNA包含体内部からの RNA抽出を行うた めには、少なくとも還元剤を含むアルカリ環境に、試料を供すればよい。少なくとも還 元剤と試料とが最終的に混合されたアルカリ性の混合液が調製されれば、混合する 川頁序などは問わない。
[0077] さらに、本発明において、当該混合液は加熱条件 (後述項目 3. )下に供されるべき ものであるため、当該混合液の調製操作と加熱操作とは、順序を問わない。すなわち 前記の混合液は、加熱条件下に供されるときに、少なくとも還元剤を含むアルカリ性 溶液中に試料が混在して!/ヽる状態であればょ ヽ。
例えば、試料及び処理試薬の一方又は両方を加熱しておき、その後両者を混合す ることができる。すなわち当該混合液は調製されると同時に加熱条件に供されてよい また例えば、試料と処理試薬との混合液を室温で調製し、得られた混合液を加熱 条件下に供しても良い。この場合、処理試薬は、通常水溶液として用いられる。 さらに例えば、少なくとも還元剤を含む溶液と試料とを室温で混合し、得られた還元 剤—試料混合液の PHを調整 (後述)し、 pH調整された還元剤—試料混合液を加熱 条件下に供しても良い。この場合は、下記組成の処理試薬そのものが用いられること はないが、 pH調整された還元剤—試料混合液は、上記の試料—処理試薬混合物 に相当する。下記において、試料—処理試薬混合物と記載する場合は、この、 pH調 整された還元剤 試料混合液も含むものとする。 [0078] 処理試薬と試料との混合物(処理試薬—試料混合物)の pHは、 25°Cにおいて、 p H8. 1以上、例えば pH8. 1〜11. 1とすることができる。試料によっては、 pH9. 0〜 11. 1であることが好ましい場合がある。このような場合としては、試料として排泄物試 料 (特に糞便試料)やそれに由来する試料が用いられた場合が挙げられる。
[0079] このようなアルカリ環境に調整するためには、アルカリ性バッファ及び/又はアルカリ 物質を処理試薬に含ませるとよい。
[0080] 処理試薬に含まれてよ!、アルカリ性バッファとしては、特に限定されな!ヽが、 Tris緩 衝液、 Good緩衝液、ホウ酸塩緩衝液、炭酸塩緩衝液が挙げられる。 Good緩衝液を 構成する緩衝剤としては、特に限定されないが、 Tricine、 MOPS, HEPES、 CHESなど が挙げられる。
[0081] 処理試薬に含まれてょ 、アルカリ物質としては、水酸化物、アンモニア、及びアミン 力 選択すると良い。例えば、水酸化物としては、水酸化ナトリウムや水酸化カリウム などが挙げられる。ァミンとしては、トリスヒドロキシメチルァミノメタンなどが挙げられる 。これらは単独でまたは複数種を組み合わせて用いることができる。
[0082] 処理試薬中のアルカリ物質の濃度としては、アルカリ物質の種類や、試料の種類や 濃度、試料との混合比などにより異なる力 0. ImM〜飽和濃度(室温における飽和 濃度)、好ましくは ImM〜飽和濃度(室温における飽和濃度)とすることができる。
[0083] 2- 2.還元剤
処理試薬に含まれる還元剤としては、チオール型還元剤を用いると良い。チオール 型還元剤とは、チオール基を有する還元剤の総称である。
チオール型還元剤としては、ジチオスレィトール(DTT)、メルカプトエタノールなど が挙げられる。メルカプトエタノールは、通常、 2—メルカプトエタノールである。これら 還元剤は、単独で又は複数種を組み合わせて用いることができる。
[0084] 処理試薬中の還元剤の濃度としては、還元剤の種類や、試料の種類や濃度、試料 との混合比などにより異なるが、 0. ImM〜飽和濃度(室温における飽和濃度)、好 ましくは ImM〜飽和濃度(室温における飽和濃度)とすることができる。
[0085] 処理試薬と試料との混合物中の還元剤の濃度としては、例えば、 0. ImM〜: LM 、好ましくは ImM〜: LOOmMとすることができる。試料が血液試料である場合は、 0. 05mMから 20mMとすることが更に好ましい場合がある。また、試料が排泄物試料又 は排泄物由来試料である場合、還元剤の種類、試料の種類'濃度などによっては、 2 . 5mM〜25mMとすることが更に好まし!/、場合がある。
[0086] 2- 3.添カロ物
処理試薬は、キレート剤をさらに含んでよい。 RNAの加水分解は 2価の金属イオン が促進する事が知られている。従って、 2価の金属イオンをキレートするキレート剤(E GTAや EDTAなど)を処理試薬に添加することが有効である。
[0087] また、処理試薬は、硫酸ィ匕多糖をさらに含んでいても良い。
[0088] 3.加熱条件
加熱処理における温度および時間の条件については、試料中の RNase存在量の 違い、 RNA包含体の種類の違いに起因する膜構造の壊れやすさの違い、アルカリ物 質使用量の違いに起因する pHの違い等によって異なるため、特に限定されるもので はない。処理時間は、例えば、 1秒力も 60分程度、好ましくは 30秒から 30分、更に好 ましくは 30秒から 15分程度とすることができる。
[0089] 処理温度は、 30°C以上であることが好ましい。
試料が排泄物試料又は排泄物由来試料である場合、処理温度は、例えば 30から
100°C程度、或いは 45°Cから 100°C程度、好ましくは、加熱時間によって異なるが 5 5°Cから 80°C程度、さらに好ましくは、加熱時間によって異なるが 60°Cから 75°C程度 とすることができる。
その他の試料の場合は、処理温度は、 60°C以上、例えば 60°C以上 100°C以下程 度、好ましくは 70°Cから 90°C程度、更に好ましくは 80°C力も 85°C程度とすることがで きる。 80〜85°Cで処理する場合は、処理時間は 30秒〜 5分とすることができる。
[0090] 4. RNA分解酵素失活及び RNA抽出
上記の処理試薬を用いて加熱処理することによって、試料に含まれる RNaseの失活 と、 RNA包含体内部からの RNAの抽出との両方の処理が実現する。 RNAの抽出は、 R Naseの失活と同時に、又は RNaseの失活に引き続いて起こる。本発明では、上記の 処理試薬を用いた加熱処理のみの簡便な操作によって、上記両方の処理を行うこと ができるため、 RNAを迅速かつ安定に抽出することが可能である。 [0091] なお、 RNaseの失活にお 、ては、 RNaseを変性させ、酵素活性部位が機能しなくな る状態にする。加熱条件下におかれたとしても、 RNaseは通常熱に安定であるため簡 単には失活しない。し力しながら、本発明の処理試薬を用いた加熱操作により、この ような RNaseの失活を可能にする。
[0092] そして、 RNA包含体内部からの RNAの抽出とは、 RNA包含体の膜構造が破壊され、 膜構造中に包含されて ヽた RNAが膜外の環境へ露出することを ヽぅ。 RNA包含体膜 外環境において存在していた RNaseは、同じ処理試薬によって失活する。このため、 露出した RNAは、本来ならば分解を受ける危険性が極めて高!ヽ RNA包含体膜外環 境にさらされるにもかかわらず、分解を受ける危険性は極めて低くなる。このため、本 発明において、 RNA包含体内部からの RNAの抽出を達成するためには、 RNA包含体 の膜外の環境へ RNAが露出すればよぐ露出した RNAをただちに精製しなくとも、 RN Aは安定に存在することができる。
[0093] 5.試料処理液
このようにして、 RNaseが失活し、 RNAが露出した試料処理液が得られる。なお、試 料処理液は、さまざまな工程に供することができる。例えば、 RNA解析を行うために行 われる、 RNA増幅法、ハイブリダィゼーシヨン法などの工程に供することができる。本 発明の方法で得られる試料処理液は、 RNaseが失活している。このため、安定に RNA を含んでいるため、なんらの処理を行うことなぐ上記の工程に供することができる。い うまでもなぐ本発明の方法で得られる試料処理液が、さらに何らかの処理に供され ることにより得たものであっても上記工程に供することができる。例えば、中和などの、 pHを調整するための処理や、遠心分離や RNA単離などの、 RNAの精製処理が挙げ られる。
[0094] 6.増幅反応液
既に述べた方法で、 RNaseが失活し、 RNAが露出した試料処理液が得られる。得ら れた試料処理液は、増幅反応液の調製に用いることができる。
増幅反応液に用いる試料処理液は、上述のように、前記の加熱処理後いかなる処 理も行わないものとして得ても良いし、加熱処理後、遠心操作を行うことにより得られ た上清液として、或いは、フィルトレーシヨンを行うことによって得られた濾液として得 ても良い。
また、試料処理液は、 RNA増幅用反応液と混合され、最終反応液となるが、上記試 料処理液はアルカリ性のため、試料処理液と増幅用反応液との混合物の pHが、酵素 の反応条件からはずれる場合には、上記の加熱処理後から増幅反応開始までの間 の適当な段階で、混合物の pHが至適条件内になるよう調整する必要がある。至適 pH や pHの調整法に関しては、当業者が適宜決定することができる。 pHの至適条件とし ては、後述するように、反応系中に RNA増幅反応を阻害する物質が存在する場合は 、当該阻害物質の作用を抑制するために pHをアルカリ域に調整することも有効であ る。当該至適 pHについては、特許 3494509号公報や特許 3452717号公報を参考にす ることがでさる。
[0095] 6- 1.増幅反応液の基本的組成
RNA増幅反応法としては、 RT-PCR法が挙げられる力 RNA増幅を行う方法であれ ば、これに限定されることなぐどのような方法も用いることができる。増幅反応液の組 成としては特に限定されることなぐ当業者が適宜決定することができる。
[0096] RNA増幅反応として RT- PCRを実行する場合、その形態としては、チューブ内に試 料処理液と RT用反応液との混合物を用意し、前記チューブ内で RT反応を行い、 RT 反応産物の一部を他のチューブ内に用意した PCR反応液に添加して PCR反応を行う ことにより実行する反応形態 (Two tube-Two step);チューブ内に試料処理液と RT反 応液との混合物を用意し、前記チューブ内で RT反応を行い、前記チューブ内の RT 反応産物に対して PCR用反応液を添加して PCR反応を行うことにより実行する反応 形態(One tube-Two step);及び、チューブ内に RT反応液と PCR反応液との両方を 用意しておいて、試料処理液と混合することによって、 RT反応と PCR反応とを連続し て行うことにより実行する反応形態(One tube-One step)が挙げられる。
[0097] 従って、 RT-PCRを実行する場合、試料処理液と混合する RNA増幅用反応液は、 上記実行形態により、 RT反応液である場合や、 RT反応液と PCR反応液との混合反 応液である場合がある。
[0098] RT反応液には、公知のものを限定することなく用いることができる。通常は、 pH緩 衝液、塩類、プライマー、デォキシリボヌクレオチド類、及び逆転写酵素が含まれる。 上記の塩類は、 MgClや KC1などが用いられる力 適宜、他の塩類に変更しても良い
2
。プライマーは、 cDNA合成の際の合成開始点として働くオリゴヌクレオチドをいう。 RT 反応に使用する逆転写酵素は、 RNAを cDNAに逆転写出来る酵素を意味する。逆転 写酵素としては、 Rous associated virus (RAV)や Avian myeloblastosis virus(AMV)等 のトリのレトロウイルス由来の逆転写酵素; Moloney murine leukemia virus(MMLV)等 のマウスのレトロウイルス由来の逆転写酵素;及び Thermus thermophilus由来の Tth DNAポリメラーゼ等が挙げられる力 これらにのみ限定されるものではない。
[0099] PCR反応液には、公知のものを限定することなく用いることができる。通常は、 pH緩 衝液、塩類、プライマー、デォキシリボヌクレオチド類、及び耐熱性 DNAポリメラーゼ が含まれる。上記の塩類は、 MgClや KC1などが用いられる力 適宜、他の塩類に変
2
更しても良い。プライマーは、核酸増幅の際の合成開始点として働くオリゴヌクレオチ ドをいう。 PCRに使用する耐熱性 DNAポリメラーゼは、プライマーを基点として DNAを 合成する耐熱性にすぐれたポリメラーゼを意味する。適切な耐熱性 DNAポリメラーゼ としては、 Thermus aquaticus由来の Taq DNAポリメラーゼ; Thermus thermophilus由 来の Tth DNAポリメラーゼ; Pyrococcus由来の KOD DNAポリメラーゼ、 Pfo DNAポリメ ラーゼ、 Pwo DNAポリメラーゼ;及び、これら耐熱性 DNAポリメラーゼの混合物等が挙 げられる力 これらにのみ限定されるものではない。
[0100] なお、 Tth DNAポリメラーゼは RT活性と PCR活性との両方を有して!/、るため、 RT- P CRを One tube-One stepで行うときに、 1種類の酵素で賄うことが出来る特徴を有して いる。
[0101] 6- 2.増幅反応液中の添加物
RNA包含体及び RNaseを含む試料として生体試料や生体由来試料を用 ヽた場合、 上記の RNase失活 *RNA包含体内部からの RNA抽出のための処理後に得られる試料 処理液には、 RNA増幅反応を阻害する物質が含まれていることがある。そして、この ような試料処理液を増幅用反応液と混合させると、反応系中に RNA増幅反応を阻害 する物質が存在することとなり、これが原因して増幅反応が十分に進行しない虞があ る。
[0102] 具体的に、 RNA増幅反応を阻害する物質には、例えば、生体試料中の色素、ある 種のタンパク質や糖など細胞の内外を問わず存在する物質が挙げられる。
[0103] そこで、このような阻害物質の作用を抑制するため、本発明では硫酸ィ匕多糖及びポ リアミン力も選ばれる添加物を用いることができる。
[0104] 硫酸ィ匕多糖としては、へパリン、デキストランサルフェイト、へパラン硫酸、コンドロイ チン硫酸、デルマタン硫酸、フノラン、硫酸ィ匕ァガロース、カラギーナン、ボルフイラン 、フコィダン、硫酸ィ匕カードラン、及びそれらの塩力も選択して用いることができる。こ れらの中でも、へパリン及びその塩、デキストランサルフ イト及びその塩が好ましい。 硫酸ィ匕多糖は単独で又は数種を組み合わせて用いることができる。
[0105] 硫酸ィ匕多糖は、 RNA増幅反応の際に反応系中に含まれて 、ればよ 、。従って、硫 酸化多糖は、例えば、上記の加熱処理に用いられる処理試薬、加熱処理後の試料 処理液、増幅用反応液、及び、試料処理液と増幅用反応液との混合物、のいずれか に加えることができる。
[0106] 硫酸化多糖の使用量については、硫酸化多糖の分子量、増幅反応阻害物質の存 在量などによって有効な濃度範囲が変動する。
例えば、硫酸ィ匕多糖の一例であるへパリンは、血液の坑凝血剤として頻繁に用いら れるが、それ自体が PCR阻害物質として知られているため、 PCR反応液中に存在さ せるのに好ましくない物質とされている。し力しながら本発明でへパリンなどの硫酸ィ匕 多糖が用いられる場合、その使用量としては、硫酸化多糖自体が RT反応及び PCR 反応の阻害物質となる量を除!、て、上記の RT反応及び PCR反応の阻害物質の作用 を抑制する量が特に限定されることなく許容される。硫酸ィ匕多糖に関する具体的な量 としては、硫酸ィ匕多糖に関する上記事項は、特開 2000— 93176号公報に記載され ている。
具体的にへパリンの使用量としては、試料処理液と RNA増幅反応液とが混合された 最終反応液中に、例えば、 0. 1 g/ml以上、好ましくは 0. 3 g/mL〜50 g/mL 添加するのがよい。
[0107] ポリアミンは、第一級又は第二級アミノ基を二つ以上有する炭化水素の総称である 。ある種のポリアミンは、生体内に存在しており、タンパク質や核酸合成の盛んな組織 に多く含まれており、多様な生理的作用を有している。し力しながら、本発明における ポリアミンにこのような作用が必ずしも要求されるわけではなぐ第一級又は第二級ァ ミノ基を二つ以上一分子内に有する炭化水素であれば特に限定されるものではない 。ポリアミンの具体例としては、エチレンジァミン、トリメチレンジァミン、スペルミン、ス ぺノレミジン、ジエチレントリァミン、トリエチレンテトラミン、テトラエチレンペンタミンおよ びペンタエチレンへキサミン等が挙げられる。
[0108] ポリアミンは、 RNA増幅反応の際に反応系中に含まれていればよい。従って、ポリア ミンは、例えば、加熱処理後の試料処理液、増幅用反応液、及び、試料処理液と増 幅用反応液との混合物のいずれかにカ卩えることができる。ポリアミンに関する上述の 事項は、特開平 6— 277061号公報に詳述されており、ポリアミンの使用量について も当該公報を参考にすることができる。
[0109] 本発明にお 、ては、アルブミン(Bovine Serum Albumin; BSA)、及び非イオン性界 面活性剤から選ばれる添加物を、試料処理液と RNA増幅反応液とが混合された最 終反応液中にさらに含ませることができる。これら添加物は、上記のポリアミンとともに 用いても良い。
[0110] アルブミンは、動.植物の細胞.体液中に含まれる一群の可溶性タンパク質の総称 である。代表的なものとして、卵白アルブミン、乳中のラクトアルブミン、血清アルブミ ン、コムギ.ォォムギのロイコシン、トウゴマ(ヒマ)種子中のリシンなどを挙げることがで きる。これらのうち、特に血清アルブミンが好ましぐ更にはゥシ血清アルブミンが好ま しい。但し、これらアルブミンには限定されない。アルブミンは、 RNA増幅反応の際に 反応系中に含まれていればよい。従って、アルブミンは、例えば、加熱処理及び pH 調整後の試料処理液、増幅用反応液、及び、加熱処理及び pH調整後の試料処理 液と増幅用反応液との混合物のいずれ力にカ卩えることができる。また、アルブミンは、 最終反応液に均一に入って 、な 、状態 (たとえば加熱処理及び pH調整後の試料処 理液にアルブミンを加えて、攪拌することなく RNA増幅反応液を混合させた場合な ど)でも同様の効果がある。 アルブミンに関する上述の事項は、特開 2001— 8685 号公報に詳述されており、アルブミンの使用量についても、当該公報を参考にするこ とがでさる。
[0111] 非イオン性界面活性剤としては、例えば、ポリオキシエチレンソルビタンモノラウレー ト及びポリオキシエチレンォクチルフエ-ルエーテルから選ばれる。ポリオキシェチレ ンソルビタンモノラウレートとしては、ポリオキシエチレンソルビタン (20)モノラウレート( Tween 20)が挙げられる。ポリオキシエチレンォクチルフエ-ルエーテルとしては、ポ リオキシエチレン (9)ォクチルフエ-ルエーテル(ノ-デット P— 4O(NP40))、ポリオキシ エチレン (10)ォクチルフエ-ルエーテル(Triton X 100)が挙げられる。
非イオン性界面活性剤に関する上記事項は、特開平 10— 80279号公報に詳述さ れており、非イオン界面活性剤の使用量についても、当該公報を参考にすることがで きる。
[0112] RNA増幅法の手順としては、試料を上記記載の処理試薬を使用して加熱処理し、 得られた試料処理液と反応液とを混合し、適宜 pHを調整した後は、公知の方法に基 づ 、て増幅反応を行うことができる。
RT反応にぉ 、ては選択したプライマーと逆転写酵素に適した反応温度で、 30分〜 1時間程度の反応を行う。 PCRにおいては、 DNAを熱変性により 1本鎖の DNAにする ディナチユレーシヨン工程;増幅させた 、領域を挟むプライマーをノヽイブリダィズさせ るアニーリング工程;及びデォキシリボヌクレオチド類の共存下に DNAポリメラーゼを 作用させ、プライマーの伸長反応を行うポリメライゼーシヨン工程の 3工程を繰り返す ことで、プライマーに挟まれた領域を増幅する。
[0113] 7.効果
本発明の RNase失活方法及び RNA抽出方法によると、生体試料中の RNaseの失活 と RNA包含体内部からの RNAの抽出とを行うことができるため、生体試料中の RNA包 含体の精製を行うことなしに簡便'安定的に RNAの試料処理液を得ることができる。さ らに、抽出された RNAに対して、生体試料に含まれるタンパク等の夾雑物による吸着 '包埋といった影響を抑制することができると考えられる。このため、本発明の RNA抽 出方法は、その後の RNAの検出や解析などに有効である。すなわち、試料処理液に 対しては、なんらの処理を行うことなぐ或いは、希釈、 pHの調整、添加物を加える等 の最低限の処理を行うだけで、 RNA検出や解析などの引き続く工程に供することが できる。従って、本発明の方法を行うことにより、従来力も行われてきた RNAの抽出、 精製時などにおいて危惧されてきた RNaseによる RNAの分解による影響を心配するこ となぐそのような工程を簡便 ·迅速に行うことが可能となる。例えば、本発明は、 RNA 精製のための前段階として使用することができる。
[0114] 本発明の RNA検出方法によると、生体試料中の RNaseの失活と RNA包含体内部 力 の RNAの抽出とを行うことによって、簡便'安定的'効率的に、試料中に存在する RNAを増幅することが可能となる。そして、試料処理液に核酸合成の阻害物質が含 まれる場合でも、希釈、 pHの調整、相応しい添加物を増幅反応液に含ませる等によ り、核酸合成に対する阻害物質の作用を緩和又は抑制し、簡便 ·安定的 '効率的に、 試料中に存在する RNAを増幅することが可能となる。
[0115] また、本発明を使用することにより、生体試料中に潜む外来生物 (例えば、 RNAウイ ルスとして、レトロウイルス(エイズウイルス (HIV)等)、ノロウィルス (SRSV)、ロタウイノレ ス、 C型肝炎ウィルス (HCV)等、及び、真菌、細菌等)や、変異細胞 (例えば、癌細胞 等)を、簡便 '迅速に解析することが可能となる。さらに本発明を使用することにより、 細胞中で転写される mRNAなどの検出や塩基配列決定による発現遺伝子の解析、さ らには cDNAのクローユングによる発現産物の解析及び生産等を、簡便'迅速に行う ことが可能となる。さらに、大気 ·土壌 ·水等の環境試料に対して本発明を用いると、 環境試料中の微生物検査等へ展開も可能と考えられる。
[0116] また、本発明の処理試薬によって抽出された RNAは、本処理試薬中での保存や中 和処理後の保存等が可能である。
実施例
[0117] 以下に実施例により本発明をさらに詳しく説明するが、本発明はこれらにより限定さ れるものではない。
[0118] く実施例 1 >
本実施例においては、ヒト血清(RNaseが含まれている)に RNA包含体を添カ卩したモ デル検体を試料として使用し、蒸留水(比較用)、 NaOH水溶液 (比較用)、 DTT水溶 液 (比較用)、又は、本発明の処理試薬としての NaOH-DTT水溶液を試料に加えて 加熱処理し、その後に RNA抽出の確認を行った。
[0119] 具体的には、 RNA包含体としては、 Ambion社 Armored RNA Hepatitis C Virus (Gen otype 2b) Catalog #: 42011を用いた。ヒト血清と Armored RNA Hepatitis C Virus液を 等量 (v/v)混合したモデル検体を試料として用意した。 0.5mlチューブに検体 4 1を 入れたものを 4本用意し、それぞれのチューブ内に、(1)蒸留水(比較用)、(2)10mM NaOH水溶液 (比較用)、(3)10mM DTT水溶液 (比較用)、又は、(4)本発明の処理試 薬としての 10mM NaOH及び 10mM DTTを含む水溶液 16 μ 1をカ卩えて、 85°C1分間加 熱を行った。
[0120] RNA抽出の確認として、加熱処理後のそれぞれの試料処理液を铸型として、 HCV RNAに特異的なプライマーを使用して RT-PCRを行った。
具体的には、加熱処理後直ちに、 50 1の反応液当たり上記試料処理液を 1 μ 1カロ えて RT-PCRを行った。 RT反応のプライマーは、 HCV RNAに相補的な塩基配列を持 つオリゴヌクレオチドを使用し、続いて行う PCRでは、 RT反応で合成された cDNAに相 補的な塩基配列を持つオリゴヌクレオチドを追加して行った。本実験の RT- PCRにお ける RNA由来の産物は 244 bpである。使用したプライマー配列は次の通りである。 (5,プライマー) 5, -CTTCACGCAGAAAGCGTCTAGCCATGGCGT-3,(配列番号: 1)
(3,プライマー) 5, -CTCGCAAGCACCCTATCAGGCAGTACCACA-3,(配列番号: 2)
[0121] RT反応液には、 10mM Tris- HC1、 35mM KC1、 1.5mM MgCl、各々 200 μ Mの dATP
2
、 dCTP、 dGTP及び dTTP、 2mM DTTゝ 0.4 μ Mの 3,プライマー、 50units/50 μ 1の Ribo nuclease Inhibitor (Takara Bio, Shiga, Japan)、及び 5units/50 μ 1の AMV XL逆転写 酵素(Takara Bio, Shiga, Japan)に、 ImMのトリエチレンテトラミンと 0.5 μ g/mlのへパリ ンナトリウムとを添加したものを使用した。
RT反応は、 55°C、 30分間行った。反応後、 95°C、 5分間処理し、逆転写酵素を不活 化した。
[0122] RT反応後、前記 RT反応液に各々 20pmolの 5'プライマー、及び 1.25 unitsの Taq D NAポリメラーゼ(PlatinumTaq: Invitrogen, CA, USA)を添カ卩して PCRを行った。
PCRは、 94°C 2分間の後、 94°C 30秒間、 60°C 30秒間、 72°C 60秒間の条件で 40サ イタル、最後に 72°C 7分間のポリメライゼーシヨンを行った。
[0123] PCR終了後、反応液 5 μ 1を用いて、 2.5%ァガロースを含む、 0.5 μ g/ml臭化工チジ ゥム添カ卩 TAE(40mM Tris- acetate, ImM EDT A)液中で電気泳動を行い検出した。増 幅産物の電気泳動図を図 1に示す。図 1中、 Mはサイズマーカー(Hindiで切断した 2 50ngの φ X174-RF DNA)、 1、 2、 3及び 4はそれぞれ、蒸留水(比較用)、 10mM Na OH水溶液(比較用)、 10mM DTT水溶液(比較用)、及び lOmM NaOH- lOmM DTT 水溶液 (本発明の処理試薬)を用いた結果である。
[0124] 図 1が示すように、検体に本発明の処理試薬を添加した場合に(レーン 4)、 HCV R NAに特異的な 244bpの増幅産物(図中矢印)が得られたことがわ力つた。
[0125] <実施例 2>
本実施例においては、実施例 1で得た 4種の試料処理液を、冷蔵にて 1日間保存 後に、実施例 1と同様に RT-PCRを行い、抽出後の RNAの保存安定性を見たもので ある。 RT反応、 PCR反応、及び電気泳動条件は実施例 1と同じである。増幅産物の 電気泳動図を図 2に示す。図 2中、 Mはサイズマーカー(Hindiで切断した 250ngの φ X174-RF DNA)、 1、 2、 3及び 4はそれぞれ、蒸留水(比較用)、 lOmM NaOH水 溶液(比較用)、 lOmM DTT水溶液(比較用)、及び lOmM NaOH-lOmM DTT水溶液 (本発明の処理試薬)を用いた結果である。
[0126] 図 2が示すように、抽出処理後 1日経過しても、本発明の処理試薬を用いた場合に (レーン 4)、 HCV RNAに特異的な 244bpの増幅産物(図中矢印)が得られたことがわ かった。これは、本発明の処理試薬による抽出後の RNAが安定的に存在することを 示すものである。
[0127] 以上の実施例 1及び 2の結果は、本発明の処理試薬により、血清中ウィルスの RNA が解析できることを示している。従って、本発明の処理試薬を使用することにより、生 体試料等に含まれる RNA包含体力ゝら簡便な操作で RNAを抽出することが可能となる ことが確認された。
[0128] <実施例 3:加熱処理の温度及び時間による影響 (1)>
1.5mLザルステッドチューブに、 HCV陽性 (約 lOOIU/ml)の血漿検体 100 /z Lを分注し 、さらに PEG水溶液(ロシュ'ダイァグノスティック株式会社「アンプリコア (R)HBVモニタ 一用 検体処理用試薬」に同梱の HBV SOL A。以下、実施例 4、 5、 6、 7において同 じ。 )を 50 μ L加えて撹拌した。これをベンチトップ微量遠心機にて 15000rpm、 5分 間遠心分離し、上清を除去した。残った沈さに、処理試薬として、 12mM NaOH, 12 mM DTT,及び 6 μ g/mLへパリンナトリウムを含む水溶液 100 μ Lを加えて、ボルテック スにてよく撹拌し、下表に示す条件にてインキュベートした。加温後直ちに、チューブ 内の試料処理液 50 μ Lを、別のチューブに用意したアンプリコア (R)HCV v2.0キットの マスターミックス 50 Lと混合し、 GeneAmp9600(アプライドバイオシステム )にて、ァ ンプリコア (R)HCV v2.0キットの添付文書に示される定性法の手順で HCVシグナル (0 D)を測定した。その結果をデータ 1及び図 3に示す。データ 1は、 HCVシグナルであ る吸光度を表記したものである。なお、データ 1においては、追試を行ったため合計 2 回分の測定結果を示している。図 3は、データ 1の各温度での平均値を、縦軸を吸光 度、横軸を加熱時間として示したグラフである。
[0129] [表 1] データ 1
Figure imgf000029_0001
[0130] 上記データ 1が示すように、熱処理が本法による HCVの検出に有効であることがわ かった。この結果は、本発明の方法によって、 RNaseが失活し、かつ HCVウィルス内 部より HCV RNAが取り出され、 RT-PCRの铸型となったことを示している。
図 3に示すように、 15秒程度の加熱で RNAの検出が可能となり、加熱時間について は加熱温度に応じて適宜選択することができることが解った。
[0131] <実施例 4 :加熱処理の温度が 85°Cにおける加熱時間の影響 >
1.5mLザルステッドチューブに、 HCV陽性 (約 l,000IU/ml)の血漿検体 100 /z Lを分 注し、さらに PEG水溶液を 50 /z Lカ卩えて撹拌した。これをベンチトップ微量遠心機にて 15000rpm、 5分間遠心分離し、上清を除去した。残った沈さに、処理試薬として、 12m M NaOH, 12mM DTT,及び 6 μ g/mLへパリンナトリウムを含む水溶液 100 μ Lを加え て、ボルテックスにてよく撹拌し、下表に示す時間、 85°Cで加温した。加温後直ちに、 チューブ内の試料処理液 50 μ Lを、別のチューブに用意したアンプリコア (R)HCV v2.0 キットのマスターミックス 50 μ Lと混合し、 GeneAmp9600(アプライドバイオシステム ) にて、アンプリコア (R)HCV v2.0キットの添付文書に示される定量法の手順で HCVシグ ナル (トータル OD)を測定した。結果をデータ 2及び図 4に示す。
[0132] [表 2] データ 2
Figure imgf000030_0001
[0133] 上記データ 2が示すように、 80秒〜 160秒の処理時間によって最高レベルの検 出感度が得られた。
[0134] <比較例 1 >
本発明の検出方法の有効性を検証するため、上記実施例 4と同一の検体から、ァ ンプリコア (R)HCV v2.0キットの添付文書に示される定量法の手順でトータル ODを測 定した。比較例では、この操作をさらに 5回の追試を行うことによって、合計 6回の測 定を行った。それぞれの測定結果は、 HCVのシグナルであるトータル OD (吸光度)で 示すと、 0.75、 0.76、 1.14、 0.77、 1.30、及び 1.06であり、これら 6回の測定値の平均は 0.96である。
[0135] 比較例 1において行ったアンプリコア (R)HCV v2.0キット添付文書の方法は、血漿 10 0 μ Lより RNA抽出液 1,000 μ Lを得る。上記実施例 4では、血漿 100 μ Lより RNA抽出 液を 100 L得ている (すなわち、実施例 4で得られた RNA抽出液のほうが 10倍濃い)。 従って、比較例 1におけるトータル ODが 0.96であることから、実施例 4におけるトータ ル ODが仮に 9.6であれば、従来法と同等の感度が得られたと言うことができる。
実際に、実施例 4では、 80〜160秒の熱処理時間により、 9〜10の範囲のトータル ODが得られている。このことから、実施例 4に代表される本発明の方法は、比較例 1 に例示される従来法に劣らない感度が得られたと考えられる。
[0136] <実施例 5:加熱処理の温度及び時間による影響 (2) >
1.5mLザルステッドチューブに、 HCV陽性 (約 l,000IU/ml)の血漿検体 100 /z Lを分 注し、さらに PEG水溶液を 50 /z Lカ卩えて撹拌した。これをベンチトップ微量遠心機にて 15000rpm、 5分間遠心分離し、上清を除去した。残った沈さに、処理試薬として、 12m M NaOH, 12mM DTT,及び 6 μ g/mLへパリンナトリウムを含む水溶液 100 μ Lを加え て、ボルテックスにてよく撹拌し、下表に示す条件にてインキュベートした。加温後直 ちに、チューブ内の試料処理液 50 Lを、別のチューブに用意したアンプリコア (R)HC V v2.0キットのマスターミックス 50 μ Lと混合し、 GeneAmp9600(アプライドバイオシステ ム )にて、アンプリコア (R)HCV v2.0キットの添付文書に示される定量法の手順で HC Vシグナル (トータル OD)を測定した。 HCVの濃度(IU/ml)に対するトータル OD値(吸 光度の積算値)を以下のデータ 3及び図 5に示す。図 5はデータ 3を、横軸を加熱時 間、縦軸をトータル ODとして示したグラフである。なお、近似線は実施例 4の結果(図 4)を元に ci載し7こ。
[0137] [表 3] デ一タ 3
Figure imgf000031_0001
[0138] データ 3により、 60°Cの加熱温度によってもシグナルが得られ、 HCVの RNAを検 出することが可能であることが解った。
図 5からわ力るように、 60°C以下の温度であっても、長い時間、例えば 5分以上の 加熱を行うことで、 HCVの RNAの検出が可能であることは容易に想到し得る。また、 85°Cより高い加熱温度であっても、短い時間、例えば 30秒から 3分の加熱を行うこと で、 HCVの RNAの検出が可能であることは容易に想到し得る。
[0139] 実施例 3〜5においては、加熱温度が 80°C〜85°Cであるときに、加熱時間の依存 性が低い安定したシグナルが得られ、なおかつ高感度であることが示された。このた め、実施例 3〜5に示された条件のもとでは、 80°C〜85°Cは特に好ましい温度条件 であることが言える。温度条件が 80°C〜85°Cの場合、加熱時間は、 30秒〜 10分、 更に好ましくは 30秒〜 5分、更に好ましくは 80秒〜 160秒とすることができる。
[0140] <実施例 6 >
実施例 6では、 HCV陽性既知の血漿検体 3種(約 100, 500, 5000 IU/ml)及び HCV 陰性既知の血漿検体の合計 4種の血漿検体に、 PEG水溶液を添加して遠心操作を 施した後、得られた沈殿物を試料として使用した。血漿からの PEG水溶液沈殿物中 には、ウィルスのみでなく多くの血漿成分も沈殿しており、その中には RNaseも存在し ている。それぞれの試料について、本発明の方法に従って、 RNaseの失活及び RNA 包含体内部からの RNAの抽出を行い、 HCV RNAに特異的なプライマーを使用して R T- PCRを行った。
[0141] 具体的には、 1.5mLザルステッドチューブに血漿 100 μ Lを分注し、さらに PEG水溶液 を 50 Lカ卩えて攪拌した。これをベンチトップ微量遠心機にて 15000rpm、 5分間遠心 分離し、上清を除去した。残った沈さに、処理試薬として、 12mM NaOH、 12 mM DTT 、及び 6 μ g/mlへパリンナトリウムを含む水溶液 100 μ Lを加えて、ボルテックスにて よく攪拌し、 85°Cで 2分間インキュベートした。加温後直ちに、チューブ内の試料処理 液 50 Lを、別のチューブに用意したアンプリコア (R)HCV v2.0キット(ロシュ'ダイァグ ノスティックス)のマスターミックス 50 μ Lと混合し、 GeneAmp9600 (アプライドバイオシ ステムズ)にて、アンプリコア (R)HCV v2.0キットの添付文書に従って RT-PCRを行った 。 RT-PCR後もキットの添付文書に従い、所定の手順で HCVシグナルを定量した。 H CVの濃度 (IU/ml)に対する TOD値(吸光度の積算値)を以下のデータ 4に示す。
[0142] [表 4] デ一タ 4
HCV濃度 (IU/ml) 0 100 500 5000
HCV TOD値 0.06 0.58 4.01 51.63 [0143] 上記データ 4が示すように、陽性検体においてシグナルが得られ、 HCVの RNAを検 出することが可能であった。この結果は、本発明の方法によって、 RNaseが失活し、か つ HCVウィルス内部より HCV RNAが取り出され、 RT- PCRの铸型となったことを示し ている。
また、 HCV濃度に依存した HCV TOD値が得られていることより、定量的に HCV RN Aが検出されて 、ることも示して 、る。
[0144] <実施例 7>
本実施例では、 HIV陽性既知の血漿検体 (約 700コピー/ ml)及び HIV陰性既知の 血漿検体の 2種の検体を用いた。それぞれの検体について、 PEG水溶液による遠心 操作を行い、得られた沈殿物を試料として使用した。それぞれの試料について、本 発明の方法に従って、 RNaseの失活及び RNA包含体内部からの RNAの抽出を行い、 HIV RNAに特異的なプライマーを使用して RT-PCRを行った。
[0145] 1.5mLザルステッドチューブに血漿 50 μ Lを分注し、さらに PEG水溶液を 25 μ Lカロえ て攪拌した。これをベンチトップ微量遠心機にて 15000rpm、 5分間遠心分離し、上清 を除去した。残った沈さに、処理試薬として、 12 mM NaOH、 12 mM DTT、及び 6 μ g /mlへパリンナトリウムを含む水溶液 100 μ Lをカ卩えて、ボルテックスにてよく攪拌し、 8 5°Cで 2分間インキュベートした。その後直ちに、チューブ内の試料処理液 50 1を、 別のチューブに用意したアンプリコア (R)HIVモニター vl.5キット(ロシュ'ダイァグノステ イツタス)のマスターミックス 50 μ Lと混合し、 GeneAmp9600 (アプライドバイォシステム ズ)にて、
アンプリコア (R)HIVモニター vl.5キットの添付文書に従って RT-PCRを行った。 RT- PC R後もキットの添付文書に従い、所定の手順で HIV-1シグナルを定量した。 HIVのコピ 一数/ mlに対する TOD値を以下のデータ 5に示す。
[0146] [表 5] デ一タ 5
HIVコピー ¾/ml 0 700
HIV TOD値 0.05 1.10 [0147] 上記データ 5が示すように、陽性検体においてシグナルが得られ、 HIVの RNAを検 出することが可能であった。
[0148] 下記実施例 8及び 9では、ヒト血清に RNA包含体を添カ卩したものをモデル検体とし た (血清には RNaseが含まれている)。ここで RNA包含体には、 Ambion Diagnostics社 製 Armored RNA Hepatitis C Virus (Genotype 2b)in TSM III Buffer Amplicor HCV M onitor Qualified Positive Control(Cat# 42011)を用いた。本実施例におけるモデル検 体は、上記 RNA包含体一 TSM IIIノ ッファ液とヒト血清とを、 1 : 1の体積比で混合して 調製した。上記 RNA包含体— TSM IIIノッファ液の濃度は「血漿に 5 (v/v) %添カロし た場合 73,000IU/mL」と規定されており、血清と 1 : 1 (体積比)で混和すれば 730IU/ μ Lと考えられる。
また、 RNAの検出について、先ず遺伝子増幅をアンプリコア HCV v2.0増幅試薬セ ット (ロシュ'ダイァグノスティックス社製)を用いて行った。 RT-PCRの温度プログラムは 、メーカの推奨法に準じた力 PCR反応のサイクル数を 38とした。
遺伝子増幅後、ァガロース電気泳動を用いて検出した。電気泳動写真中の「M」は 、 DNAサイズマーカを表す。ここで用いている DNAサイズマーカーは、 Φ Χ174 Hindi digestである。
[0149] <実施例 8 >
本実施例は、アルカリ物質と還元剤を含む処理試薬で、検体中の RNAが抽出でき たことを示した例である。
200 L容プラスチックチューブにモデル検体 2 L、表 6に示す各処理試薬 (15種) を 8 μ Lとって混和し、 85°C3分熱処理した。これに TE Buffer(pH8.0)を 90 μ L添加し、 このうち 5 μ Lを、アンプリミックス(ロシュ'ダイァグノスティックス社:アンプリコア HCV v2.0増幅試薬セットに含まれる HCVマスターミックス v2.0 と HCVマンガン試液 を 7: 1の比率で混ぜ合わせたもの)5 Lと混和し、 RT-PCRを行った。なお、各々の処 理試薬 (モデル検体添加前)の pH及びモデル検体—処理試薬混合物(モデル検体 添加後)の pHOヽずれも 25°Cにて測定)も表 6に示す。
[0150] [表 6]
Figure imgf000035_0001
[0151] また、ァガロース電気泳動写真を図 6に示す。さらに、図 17に、各条件の熱処理後 の様子を示す写真を示す。図 17において上の段が、 DTT OmMの処理試薬を用い た結果であり、左から [1]、 [2]、 [3]、 [4]、 [5]、 [6]、 [7]の処理試薬を用いた結果である。 下の段は、 DTT 20mMの処理試薬を用いた結果であり、左から [8]、 [9]、 [10]、 [11]、 [ 12]、 [13]、 [14]、 [15]の処理試薬を用いた結果である。
[0152] 図 6が示すように、処理試薬が還元剤とアルカリとの両方を含む場合のみ、 RNAが 検出された。
[15]で検出されていないのは、 RNAが加水分解されたためと考えられる。 RNAの加 水分解が起こったのは、抽出された RNA力 加熱温度(85°C)と pH (10.1)との両方が 高い条件下にさらされたためであると考えられる。 RNAを効率よく抽出しなお且つ露 出した RNAを加水分解しないような条件にするためには、以下の条件に調整すると 良い。すなわち、 NaOH濃度や Buffer剤の種類や濃度を調整することによって pHを下 げる(好ましくは前述の [10]〜[14]の条件)こと;温度を下げる(例えば加熱を行わない ことによって RNA検出が可能になることが本発明者らによって確認されている)こと; 或いは、温度及び NaOH濃度を変えることなく EGTAなどの 2価イオンをキレートする キレート剤をさらに添加すること(下記実施例 9)、を行うと良い。
[0153] DTTが入った場合、処理試薬の pHが下がって ヽるが、これは、アルカリ域で DTTが 酸として働くためと考えられる。
[0154] 図 17において、 [8]、 [9]といった中性域の条件の場合、変性タンパク質と見られる白 沈が顕著に観察されたが、使用した処理試薬の pHが高くなるにつれて透明度が増し ていることが解った。このことにより、中性域において RNAが検出できなかった原因と して、変性タンパク質等の夾雑成分が RNAに吸着 ·包埋した可能性が考えられる。一 方、 [15]の条件で RNAが検出できな力つた原因としては、上述の通り、変性タンパク 質の影響ではなぐ RNAの加水分解によるものと推測される。
[0155] <実施例 9 >
本実施例は、 EGTAは RNAの熱アルカリ条件による加水分解を低減することを示し た例である。 RNAの加水分解を、 2価金属イオンが促進する事が知られている。本発 明の対象とする検体によっては、 2価金属イオンを含むので、これをキレートするキレ ート剤 (EGTA等)を処理試薬に添加するのは有効である。
[0156] 処理試薬として、表 6に示す処理試薬 [12]と、これに EGTA 5mMを加えた処理試薬 との 2種を用意した。 200 L容プラスチックチューブにモデル検体 2 Lをとり、ここに 8 Lの各処理試薬を添加して混和した。このとき、処理温度として、 25°C (比較用)、 3 7°C、 45°C、 50°C、 55°C、 60°C、 65°C、 70°C、 75°C、 80°C、 85°C、 90°C、 95°C、及び 10 0°C、処理時間として、 1分、 3分、 10分、 30分、及び 60分の条件を検討した。処理後、 これに TE Buffer(pH8.0)を 90 μ L添加し、このうち 5 μ Lを、アンプリミックス 5 μ Lと混和 し、 RT-PCRを行った。
[0157] 得られた電気泳動写真を図 7 (処理試薬中の EGTA濃度は OmM)及び図 8 (処理試 薬中の EGTA濃度は 5mM)に示す。
[0158] 図 7及び図 8が示すように、処理試薬力 ¾GTAを含まな 、場合、 30分以上の熱処理 ではほとんどシグナルが認められなくなった。しかし、処理試薬に EGTAを添加した場 合、 1時間の熱処理を経てもシグナルが検出された。 EGTAの添カ卩により、 RNAの加 水分解の速度が著しく小さくなるものと考えられる。
[0159] 本実施例より、処理試薬に 2価の金属イオンをキレートするキレート剤を添加した場 合、加熱処理における温度は、 65°C〜100°C、更に好ましくは、 70°C〜100°C、更 に好ましくは、 70°C〜95°Cに設定することができることがわかった。
[0160] <実施例 10 >
ノロウィルス陰性の健常者の糞便を生理食塩水に 20%(w/v)の濃度で懸濁し、懸 濁液を微量遠心機を用いて 5分間遠心分離し、上清を得た。得られた上清 198 しに 、擬似ノロウィルス RNA包含体(Armored RNA(R) Norwalk Virus (Genogroupll) in TSMI II Buffer: Ambion Diagnostics) 2 Lを添加し、擬似ノロウィルス陽性の糞便試料液を 調製した。この試料液 10 Lと、処理試薬 10 Lとを、チューブ内で混合し、最終液量 を 20 Lとした後、 85°Cで 5分間加熱処理した。このようにして、試料処理液を得た。
[0161] RT- PCRの RT反応にお!、ては、 Ampdirect(R) Plus(P/N: 241-08800-98:島津製作所 )、 0.4 μ Μ擬似ノロウィルス RNA用リバースプライマー(5,- ACTGACAATTTCATCAT CACC-3':配列番号 3)、及び 3.75U AMV逆転写酵素を混合した RT-PCR反応液 25 μ Lを、上記試料処理液 20 Lと混合し、 42°C, 1時間の条件で反応を行った。 95°C, 2分の条件で酵素失活処理を行った後、 RT反応後のチューブに、 0.2 M擬似ノロゥ ィルス RNA用フォワードプライマー(5, -TGGAATTCCATCGCCCACTGG-3,:配列 番号 4)、及び、 1.25U Nova Taq(TM) Hot Start DNA Polymerase(EMD Biosciences) を混和し、最終液量 50 しとした。 PCRは、 95°C, 5分のプレヒーティングに続いて、 92 °C, 30秒、 58°C, 30秒、及び 72°C, 1分のサイクルを 40サイクル行い、その後、 72°C, 7 分のポリメライゼーシヨンを行う温度プログラムで行った。
[0162] なお、本実施例 10においては、処理試薬として、下記表 7に記載の組成を有する 8 種の処理試薬 Α—1〜Α—8を調製し、 8種各々について上記操作を行った。これら 処理試薬のうち、 A—2〜A—8は、本発明における処理試薬であり、 A—1は、比較 用に調製した処理試薬である。
[0163] [表 7]
処理試薬の 処理試薬の 処理試薬単独 処理 糞便
処理試薬
NaOH濃度 DTT濃度 の pH (混合比 1 :1 ) の pH
A-1 (比較用) Om 20mM 7.5 6.5
A-2 10mM 20mM 9.1 8.4
A-3 20mM 20mM 9.8 9.4
A- 30mM 20mM 10.2 9.9
A-5 40mM 20mM 11.4 10.5
A-6 50mM 20mM 12.0 11.1
A-7 60mM 20m 12.3 11.6
A-8 70mM 20mM 12.5 11.8
[0164] PCR産物の検出は、反応終了後の反応液 5 μ Lを用い、 2.5%ァガロースゲルを含む 0.5 μ g/mL臭化工チジゥム添加 TAE (40mM Tris- acetate、 ImM EDTA)液中での電 気泳動により行った。
[0165] 実施例 10によって得られた電気泳動図を図 9に示す。図中、レーン Mは分子量マ 一力( φ X 174 RF DNAの Hindi消化物)、レーン 1は処理試薬 A— 1を用いた結果、 レーン 2は処理試薬 A— 2を用いた結果、レーン 3は処理試薬 A— 3を用いた結果、 レーン 4は処理試薬 A— 4を用いた結果、レーン 5は処理試薬 A— 5を用いた結果、 レーン 6は処理試薬 A— 6を用いた結果、レーン 7は処理試薬 A— 7を用いた結果、 及び、レーン 8は処理試薬 A— 8を用いた結果を示す。
[0166] <実施例 11 >
処理試薬として、以下の組成を有する 7種の処理試薬 B— 1〜B— 7を調製してそ れぞれ用いたことを除いては、実施例 10と同様の操作を行った。これら処理試薬のう ち、 B— 2〜B—7は、本発明における処理試薬であり、 B—1は、比較用に調製した 処理試薬である。
[0167] B—l . 30mM NaOH、 OmM DTT (比較用)
B- 2. 30mM NaOH, 5mM DTT
B— 3. 30mM NaOH, lOmM DTT B— 4. 30mM NaOH、 20mM DTT
B— 5. 30mM NaOH、 30mM DTT
B— 6. 30mM NaOH、 40mM DTT
B- 7. 30mM NaOH、 50mM DTT
[0168] 実施例 11によって得られた電気泳動図を図 10に示す。図中、レーン Mは分子量 マーカ(φ X 174 RF DNAの Hindi消化物)、レーン 1は処理試薬 B—1を用いた結果 、レーン 2は処理試薬 B— 2を用いた結果、レーン 3は処理試薬 B— 3を用いた結果、 レーン 4は処理試薬 B— 4を用いた結果、レーン 5は処理試薬 B— 5を用いた結果、レ ーン 6は処理試薬 B— 6を用いた結果、及び、レーン 7は処理試薬 B— 7を用いた結 果を示す。
[0169] 上記実施例 10及び 11では、処理試薬中に、 NaOHは 20mM〜60mM、 DTTは
5mM〜50mM含まれて!/、ることが好まし!/、ことが分かる。
[0170] <実施例 12 >
< 1 > RNAを精製しな 、糞便試料を用 V、た RNA検出
ノロウィルス感染者の糞便を生理食塩水にて 20% (w/v)の濃度で懸濁、微量遠心 機にて 5分間遠心分離し、上清を得た。
一方、ノロウィルス陰性の健常者の糞便を生理食塩水に 20%(w/v)の濃度で懸濁 し、懸濁液を微量遠心機を用いて 5分間遠心分離し、上清を得た。
感染者糞便に由来する上清に対し、健常者糞便に由来する上清を用い 10倍段階 希釈を行い、 6種の糞便試料液 D— 1〜D— 6を調製した。具体的には、 D—1の希 釈率は 1倍、 D— 2の希釈率は 10倍、 D— 3の希釈率は 102倍、 D— 4の希釈率は 10 3倍、 D— 5の希釈率は 104倍、 D— 6の希釈率は 105倍である。
[0171] 処理試薬としては、 30mM NaOH, 20mM DTT、 lOmM EGTAの組成を有する処理 試薬を用いた。
段階希釈を行った上記糞便試料液 10 ;z Lと、上記処理試薬 10 ;z Lとを加えて攪拌 後、 85°Cで 5分間加熱した。
[0172] RT- PCRの RT反応にお!、ては、 Ampdirect(R) Plus(P/N: 241-08800-98:島津製作所 ), 0.4 μ Μノロウィルス RNA用リバースプライマー(5,— TGTCACGATCTCATCATCA CC-3':配列番号 5)、及び 3.75U AMV逆転写酵素を混合した RT-PCR反応液 25 μ L を、上記試料処理液 20 Lと混合し、 42°C, 1時間の条件で反応を行った。 95°C, 2分 の条件で酵素失活処理を行った後、 RT反応後のチューブに、 0.2 Mノロウィルス RN A用フォワードプライマー(5, -TGGAATTCCATCGCCCACTGG-3,:配列番号 4)、 及び、 1.25U Nova Taq(TM) Hot Start DNA Polymerase(EMD Biosciences)を混和し 、最終液量 50 しとした。 PCRは、 95°C, 5分のプレヒーティングに続いて、 92°C, 30秒 、 58°C, 30秒、及び 72°C, 1分のサイクルを 40サイクル行い、その後、 72°C, 7分のポリ メライゼーションを行う温度プログラムで行つた。
[0173] PCR産物の検出は、反応終了後の反応液 5 μ Lを用い、 2.5%ァガロースゲルを含む 0.5 μ g/mL臭化工チジゥム添加 TAE (40mM Tris- acetate、 ImM EDTA)液中での電 気泳動により行った。
[0174] く 1 >によって得られた電気泳動図を、図 11に示す。図中、レーン 1は糞便試料液 D— 1を用いた結果、レーン 2は糞便試料液 D— 2を用いた結果、レーン 3は糞便試 料液 D— 3を用いた結果、レーン 4は糞便試料液 D— 4を用いた結果、レーン 5は糞 便試料液 D— 5を用いた結果、レーン 6は糞便試料液 D— 6を用いた結果を示す。レ ーン 7は、ネガティブコントロール(Negative Control)、すなわちノロウィルス感染者糞 便のかわりにノロウィルス非感染の健常者糞便を用いたことを除いて同様の操作を行 つた結果を示す。レーン Mは分子量マーカ( φ X 174 RF DNAの Hindi消化物)であ る。
[0175] < 2> 糞便試料力も精製した RNAを用いた RNA検出
上記 < 1 >で得られた各希釈感染者糞便に由来する上清に対し、 QIAamp Viral RN A Mini Kit (QIAGEN社)を適用することによって RNA精製を行い、これらを上記く 1 >の糞便試料液 D— 1〜D— 6に対するコントロールとして、 6種の精製 RNA液 E— 1 〜E— 6とした。具体的には、 E— 1は D— 1に対応した精製 RNA液(1倍)、 E— 2は D— 2に対応した精製 RNA液(10倍)、 E— 3は D— 3に対応した精製 RNA液(102 倍)、 E— 4は D— 4に対応した精製 RNA液(103倍)、 E— 5は D— 5に対応した精製 RNA液 ( 104倍)、 E— 6は D— 6に対応した精製 RN A液 ( 105倍)である。
[0176] 糞便試料液 D— 1〜D— 6の代わりに、それぞれ精製 RNA液 E— 1〜E— 6を用い た以外は、上記く 1 >と同様の操作を行った。
く 2>によって得られた電気泳動図を、図 12に示す。図中、レーン 1は精製 RNA 液 E— 1を用いた結果、レーン 2は精製 RNA液 E— 2を用いた結果、レーン 3は精製 RNA液 E— 3を用いた結果、レーン 4は精製 RNA液 E— 4を用いた結果、レーン 5は 精製 RNA液 E— 5を用いた結果、レーン 6は精製 RNA液 E— 6を用いた結果を示す 。レーン 7は、ネガティブコントロール(Negative Control) ,すなわちノロウィルス感染 者糞便のかわりにノロウィルス非感染の健常者糞便を用いたことを除いて同様の操 作を行った結果を示す。レーン Μは分子量マーカ( φ X 174 RF DNAの Hindi消化物 )である。
[0177] 図 11及び図 12に基づき、 RNAを精製しない糞便試料を用いた場合と、糞便試料 力も精製した RNAを用いた場合とについて、 RNA検出の感度'特異性を比較すると 、検出限界は、両試料共に希釈率 104倍であった。
[0178] 糞便上清中にはウィルスだけでなく多くの細菌や生体由来物質も浮遊しており、そ のなかには RNA分解酵素も多量に存在している。上記の実施例が示す結果は、本 発明の実施により、糞便中に多量に存在する RNA分解酵素の失活と RNAウィルスか らの RNAの抽出、さらには RT-PCR阻害物質の制御が有効に働いたことによるものと 解釈できる。
[0179] <実施例 13 >
ノロウィルスに感染して ヽる 18の異なる検体 (検体番号 1〜 18)にそれぞれ由来す る 18種のノロウィルス陽性糞便について、実施例 12のく 1 >と同様の操作を行った 。得られた電気泳動図を、図 13に示す。図 13中、レーンの数字は、それぞれ検体番 号に相当する。レーン Mは分子量マーカ( φ X 174 RF DNAの Hindi消化物)である。
[0180] 一方、ノロウィルスに感染していない 10の異なる検体 (検体番号 19〜28)にそれぞ れ由来する 10種のノロウィルス陰性糞便につ 、て、実施例 12の < 1 >と同様の操作 を行った。得られた電気泳動図を、図 14に示す。図 14中、レーンの数字は、それぞ れ検体番号に相当する。レーン Mは分子量マーカ( φ X 174 RF DNAの Hindi消化 物)である。
[0181] 図 13及び図 14が示すように、ノロウィルス陽性糞便試料からは全て(18検体中 18 検体)において特異産物が検出された。一方、ノロウィルス陰性糞便試料からは全て
(10検体中 10検体)において擬似産物は検出されな力つた。
[0182] <実施例 14 >
処理試薬として、 30mM NaOH、 20mM DTT、 lOmM EGTAの組成を有する処理試 薬を用い、 20°Cから 100°Cまでの様々な温度及び 1分から 60分までの様々な時間の 条件下で加熱処理を行った以外は、実施例 10と同様の操作を行った。
[0183] 実施例 14によって得られた電気泳動図を図 15に示す。図 15では、 5つのレーンは 、加熱処理時間が、 1 min (分)、 5 min、 15 min、 30 min、及び 60minであった場合に対 応し、それぞれのレーンにつき、加熱処理温度が、 25°C (比較用)、 35°C、 45°C、 50°C 、 55°C、 60°C、 65°C、 70°C、 75°C、 80°C、 85°C、 90°C、 95°C、及び 100°Cであった場合 の結果を示している。
[0184] 増幅された RNAをリアルタイム PCRによって定量した。具体的には、得られた RT-PC R反応液に lO X SYBR(TM) Green I (Molecular Probes)を添カ卩し、温度プログラムとし て、 95°C, 5分のプレヒーティングに続いて、 92°C, 30秒、 58°C, 30秒、及び 72°C, 1分 のサイクルを 30サイクル行い、その後、 72°C, 7分のポリメライゼーシヨンを実行した。 3 0サイクル目の蛍光強度を、図 16に示す。図 16においては、横軸に熱処理温度 (°C) 、縦軸に蛍光強度 (相対蛍光強度: RFU)を示す。
[0185] 本実施例においても、 EGTAの添カ卩により、 RNAの加水分解の速度が著しく小さく なり、広範囲な加熱条件で、安定して RNAの検出が可能となったと考えられる。
[0186] 上記実施例では、本発明の範囲における具体的な形態にっ 、て示したが、本発明 は、これらに限定されることなく他の色々な形態で実施することができる。そのため、 上記実施例はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さら に、クレームの均等範囲に属する変更は、すべて本発明の範囲内である。
なお、配列表フリーテキスト(人工配列の記載 (Description of Artificial Sequence)) において、配列番号 1〜5は、合成プライマーである。
産業上の利用可能性
[0187] 本発明によると、生体試料、環境試料等の試料、もしくは、そこから RNA包含体の分 離等を行って得た生体由来試料等の試料、の中に普遍的に存在する RNaseを失活 させる方法を提供することができる。
本発明によると、生体試料、環境試料等の試料、もしくは、そこから RNA包含体の分 離等を行って得た生体由来試料等の試料、の中に存在する RNA包含体から RNAを 効率よく抽出する方法を提供することができる。
本発明によると、該試料中の RNaseの失活と RNA包含体内部からの RNAの抽出とを 一工程で行うことによって、簡便'安定的'効率的且つ迅速に、試料中に存在する RN Aを増幅することが可能となる。そして、核酸合成に対する阻害物質の作用を抑制す ることにより、さらに簡便 ·安定的 ·効率的且つ迅速に、試料中に存在する RNAを増幅 することが可能となる。このことにより、簡便'安定的'効率的且つ迅速に、試料中の R NAを検出する方法を提供することができる。
本発明によると、これらの方法に用いることができる処理試薬を提供することができ る。

Claims

請求の範囲
[I] RNA包含体及び RNA分解酵素が含まれる試料と、少なくとも還元剤を含むアルカリ 性処理試薬との混合物であって、 pHが 8. 1以上の混合物を、加熱条件下において 得る工程と、
前記混合物を前記加熱条件下で維持することによって、前記 RNA分解酵素の失活 と RNA包含体からの RNA抽出とを行う工程とを含む、 RNAの抽出方法。
[2] 前記処理試薬は、 Tris緩衝液、 Good緩衝液、ホウ酸塩緩衝液、及び炭酸塩緩衝液 力 なる群力も選ばれるアルカリバッファを含む、請求の範囲第 1項に記載の RNA抽 出方法。
[3] 前記処理試薬は、水酸化物、アンモニア、及びアミンカ なる群力 選ばれるアル カリ物質を含む、請求の範囲第 1項に記載の RNAの抽出方法。
[4] 前記還元剤がチオール型還元剤である、請求の範囲第 1項に記載の RNAの抽出 方法。
[5] 前記試料が、生体試料、生体由来試料、環境試料、及び環境由来試料からなる群 力 選ばれる、請求の範囲第 1項に記載の RNAの抽出方法。
[6] 前記試料が、排泄物試料及び排泄物由来試料カゝらなる群カゝら選ばれる、請求の範 囲第 1項に記載の RNAの抽出方法。
[7] 前記 RNA包含体は、細胞、真菌、細菌、及び RNAウィルス力 なる群力 選ばれ る、請求の範囲第 1項に記載の RNAの抽出方法。
[8] 前記 RNAウィルスは、レトロウイルス、ノロウィルス、ロタウィルス、及び C型肝炎ウイ ルスカ なる群力も選ばれる、請求の範囲第 7項に記載の RNAの抽出方法。
[9] 前記 RNAウィルスがレトロウイルスである場合、前記レトロウイルスはエイズウイルス である、請求の範囲第 8項に記載の RNAの抽出方法。
[10] 前記 RNAが mRNAである、請求の範囲第 1項に記載の RNAの抽出方法。
[II] RNA包含体及び RNA分解酵素が含まれる試料を、少なくとも還元剤を含む溶液中 に混在させる工程と、前記試料と前記還元剤との混合液を、 25°Cにおける pHが 8. 1 以上となるように調整する工程と、
pH調整された前記混合液を加熱条件下に供することによって、前記 RNA分解酵素 の失活と前記 RNA包含体力ゝらの RNAの抽出とを行う工程とを含む、 RNA抽出方法。
[12] RNA包含体及び RNA分解酵素が含まれる試料と、少なくとも還元剤を含むアルカリ 性処理試薬との混合物であって、 pHが 8. 1以上の混合物を、加熱条件下において 得る工程と、
前記混合物を前記加熱条件下で維持することによって、前記 RNA分解酵素の失活 と RNA包含体からの RNA抽出とを行 、、抽出された RNAを含む試料処理液を得るェ 程と、
前記試料処理液と増幅用反応液とを混合して RNA増幅反応を行う、 RNA検出方法
[13] 前記処理試薬は、 Tris緩衝液、 Good緩衝液、ホウ酸塩緩衝液、及び炭酸塩緩衝液 力もなる群力も選ばれるアルカリバッファを含む、請求の範囲第 12項に記載の RNA 検出方法。
[14] 前記処理試薬は、水酸化物、アンモニア、及びアミンカ なる群力 選ばれるアル カリ物質を含む、請求の範囲第 12項に記載の RNA検出方法。
[15] 前記還元剤がチオール型還元剤である、請求の範囲第 12項に記載の RNA検出方 法。
[16] 前記試料が、生体試料、生体由来試料、環境試料、及び環境由来試料からなる群 力も選ばれる、請求の範囲第 12項に記載の RNA検出方法。
[17] 前記試料が、排泄物試料及び排泄物由来試料カゝらなる群カゝら選ばれる、請求の範 囲第 12項に記載の RNA検出方法。
[18] 前記 RNA包含体は、細胞、真菌、細菌、及び RNAウィルス力 なる群力 選ばれ る、請求の範囲第 12項に記載の RNA検出方法。
[19] 前記 RNAウィルスは、レトロウイルス、ノロウィルス、ロタウィルス、及び C型肝炎ウイ ルスカ なる群力も選ばれる、請求の範囲第 18項に記載の RNA検出方法。
[20] 前記 RNAウィルスがレトロウイルスである場合、前記レトロウイルスはエイズウイルス である、請求の範囲第 19項に記載の RNA検出方法。
[21] 前記 RNAが mRNAである、請求の範囲第 12項に記載の RNA検出方法。
[22] RNA包含体及び RNA分解酵素が含まれる試料を、少なくとも還元剤を含む溶液中 に混在させる工程と、
前記試料と前記還元剤との混合液を、 25°Cにおける pHが 8. 1以上となるように調 整する工程と、
pH調整された前記混合液を加熱条件下に供することによって、前記 RNA分解酵素 の失活と前記 RNA包含体からの RNAの抽出とを行!、、抽出された RNAを含む試料処 理液を得る工程と、
前記試料処理液と増幅用反応液とを混合して RNA増幅反応を行う工程とを含む、 R NA検出方法。
PCT/JP2006/322010 2005-11-02 2006-11-02 Rnaの抽出方法及びrnaの検出方法 WO2007052765A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/092,067 US20090269745A1 (en) 2005-11-02 2006-11-02 Rna extraction method and rna detection method
JP2007542815A JP4735645B2 (ja) 2005-11-02 2006-11-02 Rnaの検出法
EP06822928A EP1944364B1 (en) 2005-11-02 2006-11-02 Rna extraction method and rna detection method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005-319332 2005-11-02
JP2005319333 2005-11-02
JP2005-319334 2005-11-02
JP2005319334 2005-11-02
JP2005-319333 2005-11-02
JP2005319332 2005-11-02
JP2006116310 2006-04-20
JP2006-116310 2006-04-20

Publications (1)

Publication Number Publication Date
WO2007052765A1 true WO2007052765A1 (ja) 2007-05-10

Family

ID=38005917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322010 WO2007052765A1 (ja) 2005-11-02 2006-11-02 Rnaの抽出方法及びrnaの検出方法

Country Status (5)

Country Link
US (1) US20090269745A1 (ja)
EP (1) EP1944364B1 (ja)
JP (1) JP4735645B2 (ja)
KR (1) KR20080066727A (ja)
WO (1) WO2007052765A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001737A1 (ja) * 2007-06-22 2008-12-31 Tosoh Corporation 改良されたノロウイルスrna検出方法
CN102911930A (zh) * 2012-09-18 2013-02-06 湖南农业大学 一种红花檵木叶片总rna的提取方法
JP2013042750A (ja) * 2011-08-26 2013-03-04 Kanto Chem Co Inc 核酸抽出方法、核酸抽出試薬キットおよび核酸抽出用試薬
CN103882009A (zh) * 2014-03-19 2014-06-25 信阳市农业科学院 小贯小绿叶蝉成虫总rna的提取方法
JP2014525753A (ja) * 2011-08-17 2014-10-02 キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング アニオン性ポリマーを含む、rt−pcr用組成物及び方法
JP2015023874A (ja) * 2008-09-03 2015-02-05 タカラバイオ株式会社 Rnaの検出方法
CN105385680A (zh) * 2015-12-24 2016-03-09 天津脉络生物科技有限公司 用于dna和rna同时提取的试剂,提取方法和用途
JP2018166410A (ja) * 2017-03-29 2018-11-01 東ソー株式会社 生体試料中の核酸の長期保存方法
WO2019017452A1 (ja) * 2017-07-21 2019-01-24 タカラバイオ株式会社 非エンベロープ型rnaウイルスの有無を検出する方法
JP2020513815A (ja) * 2017-03-15 2020-05-21 ザ・ブロード・インスティテュート・インコーポレイテッド クラスター化短鎖反復回文配列エフェクター系に基づくウイルス検出用診断法
JP2020080806A (ja) * 2018-11-30 2020-06-04 株式会社島津製作所 Rnaウイルス検出方法
JP2021016357A (ja) * 2019-07-22 2021-02-15 株式会社島津製作所 核酸の検出方法
JPWO2021193853A1 (ja) * 2020-03-27 2021-09-30

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9057673B2 (en) 2012-08-24 2015-06-16 The Board Of Trustees Of The Leland Stanford Junior University Method of preparing RNA from ribonuclease-rich sources
JP5904153B2 (ja) * 2013-03-29 2016-04-13 ソニー株式会社 核酸増幅反応用試料の調製方法、核酸増幅方法、固相状核酸増幅反応用試薬及びマイクロチップ
US9828600B2 (en) 2013-09-20 2017-11-28 University Of Massachusetts Compositions and methods for constructing cDNA libraries that allow for mapping the 5′ and 3′ ends of RNAs
CN103820433A (zh) * 2014-03-10 2014-05-28 北京诺禾致源生物信息科技有限公司 从富含脂肪的组织中提取mRNA的方法
CN116083530A (zh) 2016-01-29 2023-05-09 普瑞珍生物系统公司 用于核酸纯化的等速电泳
CN115569515A (zh) 2017-08-02 2023-01-06 普瑞珍生物系统公司 用于等速电泳的系统、设备和方法
KR102200041B1 (ko) * 2018-12-11 2021-01-08 중앙대학교 산학협력단 핵산 정제 및 추출용 조성물 및 이를 이용한 핵산 검출 키트 및 방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274697A (ja) 1985-03-28 1986-12-04 エフ.ホフマン―ラ ロシュ アクチェンゲゼルシャフト 核酸配列の増幅及び検出方法
JPH06277061A (ja) 1993-03-30 1994-10-04 Shimadzu Corp 核酸合成法
JPH1080279A (ja) 1996-09-09 1998-03-31 Shimadzu Corp 核酸合成法
JP2000093176A (ja) 1998-09-21 2000-04-04 Shimadzu Corp 核酸合成法
JP2001008685A (ja) 1999-06-25 2001-01-16 Shimadzu Corp 核酸合成法
JP2001029078A (ja) 1999-07-16 2001-02-06 Shimadzu Corp Rna増幅法
JP3452717B2 (ja) 1996-03-08 2003-09-29 株式会社島津製作所 核酸合成法
JP3494509B2 (ja) 1995-06-28 2004-02-09 株式会社島津製作所 核酸合成法
US6777210B1 (en) 1998-09-24 2004-08-17 Ambion, Inc. Method and reagents for inactivating ribonucleases RNase A, RNase I and RNase T1
JP2004301684A (ja) 2003-03-31 2004-10-28 Denka Seiken Co Ltd ノロウイルス又はサポウイルス検体用希釈液及びウイルス検出試薬

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310652A (en) * 1986-08-22 1994-05-10 Hoffman-La Roche Inc. Reverse transcription with thermostable DNA polymerase-high temperature reverse transcription
US6413747B1 (en) * 1994-10-03 2002-07-02 Shimadzu Corporation Enhancement of nucleic acid amplification by the addition of a polyamine
US20060024712A1 (en) * 2004-06-25 2006-02-02 Invitrogen Corporation Separation of nucleic acid

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274697A (ja) 1985-03-28 1986-12-04 エフ.ホフマン―ラ ロシュ アクチェンゲゼルシャフト 核酸配列の増幅及び検出方法
JPH06277061A (ja) 1993-03-30 1994-10-04 Shimadzu Corp 核酸合成法
JP3494509B2 (ja) 1995-06-28 2004-02-09 株式会社島津製作所 核酸合成法
JP3452717B2 (ja) 1996-03-08 2003-09-29 株式会社島津製作所 核酸合成法
JPH1080279A (ja) 1996-09-09 1998-03-31 Shimadzu Corp 核酸合成法
JP2000093176A (ja) 1998-09-21 2000-04-04 Shimadzu Corp 核酸合成法
US6777210B1 (en) 1998-09-24 2004-08-17 Ambion, Inc. Method and reagents for inactivating ribonucleases RNase A, RNase I and RNase T1
US6825340B2 (en) 1998-09-24 2004-11-30 Ambion, Inc. Methods and reagents for inactivating ribonucleases
JP2001008685A (ja) 1999-06-25 2001-01-16 Shimadzu Corp 核酸合成法
JP2001029078A (ja) 1999-07-16 2001-02-06 Shimadzu Corp Rna増幅法
JP2004301684A (ja) 2003-03-31 2004-10-28 Denka Seiken Co Ltd ノロウイルス又はサポウイルス検体用希釈液及びウイルス検出試薬

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHOMCZYNSKI; SACCHI, ANALYTICAL BIOCHEMISTRY, vol. 162, 1987, pages 156 - 159
JOSEPH. SAMBROOK; DAVID W. RUSSELL, MOLECULAR CLONING: A LABORATORY MANUAL THIRD, 2001
JOSEPH; SAMBROOK; DAVID W. RUSSELL, MOLECULAR CLONING: A LABORATORY MANUAL THIRD, 2001
See also references of EP1944364A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001737A1 (ja) * 2007-06-22 2008-12-31 Tosoh Corporation 改良されたノロウイルスrna検出方法
JP2009000063A (ja) * 2007-06-22 2009-01-08 Tosoh Corp 改良されたノロウイルスrna検出方法
JP2015023874A (ja) * 2008-09-03 2015-02-05 タカラバイオ株式会社 Rnaの検出方法
US10760074B2 (en) 2008-09-03 2020-09-01 Takara Bio Inc. Composition for detection of RNA
JP2014525753A (ja) * 2011-08-17 2014-10-02 キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング アニオン性ポリマーを含む、rt−pcr用組成物及び方法
JP2013042750A (ja) * 2011-08-26 2013-03-04 Kanto Chem Co Inc 核酸抽出方法、核酸抽出試薬キットおよび核酸抽出用試薬
CN102911930A (zh) * 2012-09-18 2013-02-06 湖南农业大学 一种红花檵木叶片总rna的提取方法
CN103882009A (zh) * 2014-03-19 2014-06-25 信阳市农业科学院 小贯小绿叶蝉成虫总rna的提取方法
CN105385680A (zh) * 2015-12-24 2016-03-09 天津脉络生物科技有限公司 用于dna和rna同时提取的试剂,提取方法和用途
JP2020513815A (ja) * 2017-03-15 2020-05-21 ザ・ブロード・インスティテュート・インコーポレイテッド クラスター化短鎖反復回文配列エフェクター系に基づくウイルス検出用診断法
JP2018166410A (ja) * 2017-03-29 2018-11-01 東ソー株式会社 生体試料中の核酸の長期保存方法
WO2019017452A1 (ja) * 2017-07-21 2019-01-24 タカラバイオ株式会社 非エンベロープ型rnaウイルスの有無を検出する方法
JPWO2019017452A1 (ja) * 2017-07-21 2020-05-28 タカラバイオ株式会社 非エンベロープ型rnaウイルスの有無を検出する方法
JP7140762B2 (ja) 2017-07-21 2022-09-21 タカラバイオ株式会社 非エンベロープ型rnaウイルスの有無を検出する方法
JP2020080806A (ja) * 2018-11-30 2020-06-04 株式会社島津製作所 Rnaウイルス検出方法
JP2023024808A (ja) * 2018-11-30 2023-02-16 株式会社島津製作所 Rnaウイルス検出方法
JP2021016357A (ja) * 2019-07-22 2021-02-15 株式会社島津製作所 核酸の検出方法
JP7434742B2 (ja) 2019-07-22 2024-02-21 株式会社島津製作所 核酸の検出方法
JPWO2021193853A1 (ja) * 2020-03-27 2021-09-30
WO2021192370A1 (ja) * 2020-03-27 2021-09-30 株式会社島津製作所 新型コロナウイルスの検査方法および検査試薬
WO2021193853A1 (ja) * 2020-03-27 2021-09-30 株式会社島津製作所 新型コロナウイルスの検査方法および検査試薬
WO2021192320A1 (ja) * 2020-03-27 2021-09-30 株式会社島津製作所 新型コロナウイルスの検査方法および検査試薬

Also Published As

Publication number Publication date
EP1944364A1 (en) 2008-07-16
JPWO2007052765A1 (ja) 2009-04-30
KR20080066727A (ko) 2008-07-16
EP1944364A4 (en) 2009-06-24
US20090269745A1 (en) 2009-10-29
JP4735645B2 (ja) 2011-07-27
EP1944364B1 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP4735645B2 (ja) Rnaの検出法
Hedman et al. Overcoming inhibition in real-time diagnostic PCR
JP2017503521A (ja) 高温核酸合成で使用するための新規な逆転写酵素
EP1069190B1 (en) Method for amplification of RNA
US20060240409A1 (en) Method for extraction and identification of nucleic acids
JP2022088403A (ja) 改変された耐熱性dnaポリメラーゼ
WO2009016652A1 (en) A buffer system and a method for direct pcr amplification
JP2001352982A (ja) 核酸合成法
JP2022191442A (ja) 非特異的な核酸増幅を抑制する方法
CN101297037A (zh) Rna的提取方法及rna的检测方法
JP4186270B2 (ja) 核酸合成法
JP2001008680A (ja) 核酸合成法
WO2016003809A1 (en) Methods for amplifying nucleic acids on substrates
JP6893174B2 (ja) 粒子に含まれる逆転写酵素活性の検出
JP3724321B2 (ja) 核酸合成法
JP4187057B2 (ja) 核酸合成法
JP4629167B2 (ja) 核酸合成法
JP2007000040A (ja) B型肝炎ウイルスの検出方法
JP2001008685A (ja) 核酸合成法
JPWO2019212023A1 (ja) Rnaウイルスの処理方法
JP2003267989A (ja) 核酸抽出法
Ritchie et al. Development of a Strand-specific RT-PCR Assay for ISAV
JP2005323617A (ja) 核酸合成法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680040074.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007542815

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087010140

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12092067

Country of ref document: US

Ref document number: 2006822928

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE