WO2007052580A1 - 酸化物超微粒子を含有する樹脂組成物 - Google Patents

酸化物超微粒子を含有する樹脂組成物 Download PDF

Info

Publication number
WO2007052580A1
WO2007052580A1 PCT/JP2006/321613 JP2006321613W WO2007052580A1 WO 2007052580 A1 WO2007052580 A1 WO 2007052580A1 JP 2006321613 W JP2006321613 W JP 2006321613W WO 2007052580 A1 WO2007052580 A1 WO 2007052580A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrafine particles
inorganic oxide
resin composition
rutile
resin
Prior art date
Application number
PCT/JP2006/321613
Other languages
English (en)
French (fr)
Inventor
Tomonori Iijima
Toyoharu Hayashi
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to JP2007542715A priority Critical patent/JPWO2007052580A1/ja
Publication of WO2007052580A1 publication Critical patent/WO2007052580A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • C09C1/3661Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Definitions

  • the present invention relates to a resin composition containing inorganic oxide ultrafine particles or composite inorganic oxide ultrafine particles.
  • Inorganic glass is excellent in various physical properties such as excellent transparency, and is used in a wide range of fields as an optical member. However, it has the disadvantages of being heavy and easily damaged, poor workability and productivity, and the development of transparent optical resin as an alternative to inorganic glass has been actively conducted.
  • curable resin such as non-crystalline thermoplastic resin represented by polyamide resin, polyimide resin, epoxy resin, unsaturated polyester resin, etc.
  • High refractive index technology using general-purpose transparent resin such as amorphous thermoplastic resin represented by fats and polyimide resin, or curable resin such as epoxy resin and unsaturated polyester resin
  • a high refractive index resin having a refractive index of 1.7 or more is strongly demanded.
  • the core (the central part in one optical fiber cross section) is higher than the cladding (the same outer peripheral part).
  • the refractive index the larger the refractive index difference, the larger the numerical aperture corresponding to the maximum angle at which light can propagate.
  • a light emitting element portion is sealed with epoxy resin or the like.
  • the refractive index of a semiconductor constituting the semiconductor element portion is very high. If the refractive index of a material in contact with the semiconductor element is low, the critical angle is small and total reflection tends to occur. For this reason, the angle at which total reflection occurs can be increased by sandwiching the light emitting element with a material having a higher refractive index, and the efficiency of extracting the light flux outside is increased accordingly.
  • general-purpose resins used for optical members such as acrylic resins, styrene resins, polycarbonate resins, polyester resins, olefin resins, alicyclic acrylic resins, alicyclic resins.
  • High resin such as thermoplastic resin represented by resin, polyurethane resin, polyether resin, polyamide resin, polyimide resin, or curable resin such as epoxy resin and unsaturated polyester resin Refractive index ⁇ is strongly desired.
  • titanium oxide fine particles Since titanium dioxide has a particularly high refractive index and high transparency, it is possible to increase the refractive index of the resin with a smaller amount than other fine particles.
  • a resin such as an organic matrix and a titanium oxide fine particle particle has a drawback that its light resistance is lowered.
  • the photocatalytic action of titanium oxide causes organic matter decomposition by electron holes generated by light absorption, and transparency, light resistance, weather resistance, heat resistance, ultraviolet ray shielding, and the like become major problems.
  • anatase-type titanium oxide ultrafine particles for example, anatase-type acid-titanium as described in Patent Document 1 and an inorganic oxide are used.
  • Composite ultrafine particles or anatase-type titanium oxide with inorganic oxide The coated ultrafine particles and the sol solution are applied.
  • the anatase-type titanium oxide ultrafine particles by coating with an inorganic oxide.
  • the light resistance is improved by coating the ultrafine titanium oxide particles with the inorganic oxide.
  • the titanium oxide used is anatase type
  • the refractive index is about 2.5, and when coated with an oxide to improve light resistance, the refractive index is significantly higher.
  • the refractive index is lower than the original refractive index of anatase oxytitanium, and the effect of improving the refractive index of optical materials, hard coat materials, resin lenses, etc. is low.
  • the amount of the metal oxide to be coated is reduced and the refractive index is increased, the light resistance is insufficient, and the transparency, heat resistance, ultraviolet shielding properties, etc. of the resin composition are problematic.
  • ultra-fine particles with a high refractive index and sol solution that are excellent in transparency, dispersibility, light resistance, weather resistance, etc. are optical lenses (pickup lenses, digital lenses in information recording equipment such as eyeglass lenses, CDs, DVDs, etc.) Lenses for photographic equipment such as cameras, etc.), optical prisms, optical waveguides, optical fibers, thin film moldings, optical adhesives, materials for high refractive optical members such as optical semiconductor sealing materials, etc., as well as plastic degradation
  • Patent Document 1 JP 2001-123115 A
  • the object of the present invention has been achieved in view of the above circumstances, and the inorganic oxide ultrafine particles having high refractive index and excellent transparency, dispersibility, light resistance, weather resistance, and the like, and the ultrafine particles are separated.
  • An object of the present invention is to provide a dispersed high refractive index resin composition and an optical material.
  • thin and light optical lenses glass lenses, pickup lenses for information recording devices such as CDs and DVDs, lenses for photographing devices such as digital cameras
  • optical prisms optical waveguides, optical fibers, thin film moldings
  • optical members such as adhesives for optical materials and sealing materials for optical semiconductors.
  • Inorganic oxide ultrafine particles having a refractive index of 1.5 to 2.8 containing titanium oxide having a rutile crystal structure, or
  • a rosin composition comprising:
  • the tin ratio of tin to titanium (SnZTi) is 0.001 to 2.
  • the rosin composition according to (1) which is rutile-type acid-titanium ultrafine particles.
  • the content of titanium oxide having a rutile-type crystal structure contained in the inorganic oxide ultrafine particles is 5 to L00% by weight based on the weight of the inorganic oxide ultrafine particles.
  • the content power of the inorganic oxide ultrafine particles or the composite inorganic oxide ultrafine particles is 0.1 to 90% by weight, (1) to (5) A resin composition as described in any of the above.
  • the composite inorganic oxide ultrafine particle coating layer The resin composition according to any one of (1) to (6), wherein the weight ratio of Z core fine particles is 1Z99 to 90Z10.
  • the present invention includes the following configurations.
  • the rutile-type titanium oxide ultrafine particles of the present invention can be provided with high refractive index ultrafine particles that cannot be obtained by the anatase type, and that can be achieved by conventional methods. . Furthermore, by covering these rutile-type acid-titanium ultrafine particles with inorganic oxides, high-refractive-index composite inorganic oxide ultrafine particles with excellent transparency, dispersibility, light resistance, weather resistance, etc. can be obtained. It can also be provided. When these obtained ultrafine particles are applied to an optical material, a high refractive index resin composition excellent in transparency, light resistance, weather resistance, heat resistance, molding processability and the like and an optical member using the same It became possible to provide.
  • a new resin composition having excellent transparency and a high refractive index and used as an optical member can be provided.
  • it is composed of a high refractive index rutile-type titanium oxide ultrafine particle excellent in transparency, dispersibility, light resistance, weather resistance, etc., or a coating layer containing at least one inorganic oxide as a core fine particle. It is possible to provide a resin composition in which the composite inorganic oxide ultrafine particles are dispersed in an organic medium such as a transparent resin at a high concentration.
  • the resin composition of the present invention has characteristics such as a high refractive index and a high light transmittance due to the presence of ultrafine rutile titanium oxide particles, so that an optical lens (glass lens, CD, DVD, etc.) is used.
  • an optical lens glass lens, CD, DVD, etc.
  • the present invention provides an inorganic oxide ultrafine particle containing acid titanium having a rutile crystal structure with a refractive index of 1.5 to 2.8, or the ultrafine particle as a nuclear fine particle, and one or more kinds thereof.
  • a resin composition comprising composite inorganic oxide ultrafine particles composed of a coating layer containing an inorganic oxide.
  • the rutile type has a higher refractive index than the anatase type, a higher refractive index can be achieved by using ultrafine particles of rutile type titanium oxide. Further, in order not to impair the transparency and the like of the resin, the rutile-type titanium oxide needs to be ultrafine particles.
  • the inorganic oxide ultrafine particles containing titanium oxide having a rutile-type crystal structure as long as it contains rutile-type titanium oxide as ultrafine particles as described above.
  • the ratio of rutile-type titanium oxide in the inorganic oxide ultrafine particles is usually 5 to 100% (weight ratio), preferably 50 to 100%, more preferably 70 to: LOO%. .
  • the components other than the ultrafine particles of rutile titanium oxide are not particularly limited as long as they do not impair the transparency of the resin of the present invention. Desire ⁇ . Specifically, oxides such as Al, Si ⁇ V, Fe, Zn, Zr, Nb, Mo, Sn, Sb, W, etc. can be mentioned, preferably Al, Si, Zr, Sn, It is an oxide of Sb.
  • tin compound used as a sintering agent prevents long fiber formation and also prevents aggregation, tin-modified rutile type titanium oxide ultrafine particles, transparency, dispersibility It was found that a sol solution excellent in the above can be obtained. Furthermore, this is a core ultrafine particle, and it is coated with an inorganic oxide, which is excellent in transparency, dispersibility, light resistance, weather resistance, etc. High refractive index average particle diameter of 1 ⁇ : LOOnm composite inorganic oxide ultrafine particles It was found that a sol solution excellent in dispersibility can be obtained.
  • rutile-type titanium oxide ultrafine particle a Ti concentration in the coexistence of a tin compound having a tin to titanium molar ratio (SnZTi) of 0.001 to 2 is used. 0. Tin-modified rutile-type titanium oxide ultrafine particles obtained by reacting a titanium compound aqueous solution of O7 to 5 mol Zl in a range of ⁇ 1 to 3, wherein the SnZTi composition molar ratio of the ultrafine particles is The ultrafine particles are characterized in that they are 0.001 to 0.5, and the minor axis and major axis of the crystal diameter are 2 to 20 nm.
  • the crystal size referred to here is the so-called primary particle size, and is expressed by the lengths in the a and c axis directions as described in the Chemical Handbook Revised 3rd Edition (Maruzen Co., Ltd.). Is done. In this specification, they are called the short axis and the long axis, respectively.
  • the average aggregate particle diameter represents a particle diameter obtained by aggregating primary particles.
  • the crystal size of the prepared ultrafine particles and the average agglomerated particle size are a transmission type of a sample in which the prepared ultrafine particle sol solution is dropped onto an electron microscope observation mesh, or a sample obtained by cutting a section of ultrafine particle-containing dispersed resin with a microtome. It can be evaluated by observation with an electron microscope.
  • the tin compound used in the present invention is not particularly limited. Specifically, for example, tin compound such as tin chloride, tin nitrate, tin sulfate, stannate, etc. Or, tin compounds selected from oxides, hydroxides, metal tins and the like are preferred.
  • the titanium compound used in the present invention is not particularly limited. Specifically, for example, titanium chloride oxide, titanium sulfate, titanium nitrate, titanium alkoxide, hydrated titanium oxide (araca Preferred is a titanium compound or the like which is selected from such a force as a hydrolyzed titanium compound in an alkaline condition.
  • a tin compound is added to an aqueous solution, and a titanium compound is added thereto.
  • the tin compound and the titanium compound may be added at the same time, or either one may be added first. Also mixed It may be in the form of a compound.
  • the reaction medium is preferably water, but it may be an organic solvent such as alcohol or a mixed medium of water and organic solvent!
  • the amount of tin compound used in the reaction as a modifier for controlling the crystal growth of rutile-type titanium oxide is 0.001 to 2, preferably 0.1 to 2, in the molar ratio of tin to titanium (SnZTi). It is desirable to be 01-1. If the tin amount is less than the above range, rutile-type titanium oxide ultrafine particles are produced, but the crystal diameter and the aggregate particle diameter are increased, and therefore the dispersibility may be deteriorated. Moreover, the transparency of the rosin composition may be reduced. In addition, even if the amount is larger than the above range, it is possible to synthesize titanium oxide ultrafine particles having a rutile type. The time required for the force reaction becomes long.
  • the Ti concentration in the reaction solution is preferably from 0.07 to 5 molZl, and preferably from 0.1 ImolZl to ImolZl. If the Ti concentration is lower than the above range, anatase-type and rutile-type mixed acid-titanium ultrafine particles can be produced even if tin compounds are added in the range of 0.01-0.03 as SnZTi (molar ratio). There is sex. Similarly, when the Ti concentration is lower than the above range, SnZTi (molar ratio) is larger than 0.03, and when tin compound is added in the range, it is possible to produce tin oxide-tin oxide mixed ultrafine particles with rutile tin oxide. There is sex.
  • the pH of the reaction solution is preferably 1 to 3. Adjust with hydrochloric acid or nitric acid as necessary. If the reaction is carried out under conditions greater than the pH force, it will become anatase type acid titanium when no tin compound is added.To avoid this, a tin compound is added to obtain a rutile structure. In the case of rutile-type titanium oxide such as tin oxide, there is a possibility that different substances are generated.
  • the reaction temperature is not particularly limited as long as the Ti concentration and the pH are in the above ranges, but preferably -10 to 100 ° C, more preferably 20 to 60 ° C. Force to determine reaction completion time depending on reaction temperature Usually performed in 0.5 to 10 hours.
  • the tin-modified rutile-type titanium oxide ultrafine particles obtained by this method have a minor axis and a major axis of 2-20 nm, and an average aggregated particle diameter of 10-1 OOnm.
  • reaction mechanism for obtaining the tin-modified rutile-type titanium oxide ultrafine particles of the present invention is not sufficiently clear at present, but this indicates that the surface is modified with tin compounds. It is a feature. A tin compound used as a raw material, a tin compound dissociated in a solution, or a tin compound produced in a solution by hydrolysis, etc., adhered to the titanium oxide surface by coordination, adsorption, chemical bonding, etc. It is guessed.
  • the reaction product obtained as described above may be used as a tin-modified rutile-type titanium oxide ultrafine particle or sol solution as it is, or may be subjected to a desired post-treatment. That is, it can be purified by a known method such as vacuum concentration using an evaporator or ultrafiltration, and concentrated to an appropriate concentration. Centrifugation can yield a white precipitate that can be redispersed in water or any other desired medium.
  • the sol solution in which tin-modified rutile-type acid-titanium ultrafine particles are dispersed in water consists of alcohols such as methanol and cellosolves such as 2-methoxyethanol! It is also possible to use the organic solvent-dispersed tin-modified rutile-type titanium oxide ultrafine particle sol solution by substituting the solvent with another organic solvent.
  • the tin-modified rutile-type titanium oxide fine particles synthesized as described above or the sol solution thereof is used in the resin composition
  • the surrounding organic matter due to the photocatalytic property of titanium oxide is used.
  • tin-modified rutile-type titanium oxide fine particles are coated with inorganic oxides.
  • the coating means both a form in which the fine particle surface is completely covered or a form in which a gap is left.
  • Examples of the inorganic oxide used for the coating include Zr, Si, Al, Sb, Sn, Mo, Nb, Zn, Ta, Fe, W, Bi, Ce, Pb, Cu, Y, In, V, Oxides such as Mg and La are preferred. These can be used by coating only one kind, or by using two or more kinds. It may be in a form in which inorganic oxides are individually coated, coated in a composite form, coated as a solid solution, or coated with one kind and then coated with another. . Further, it may be an amorphous oxide, a crystalline oxide, or a hydrated state. Further, it may be adsorbed and bound to the surface of the fine nuclear particles in the form of acids such as cai acid and antimonic acid, oligomers thereof or salts thereof.
  • acids such as cai acid and antimonic acid, oligomers thereof or salts thereof.
  • the inorganic oxide-coated tin-modified rutile-type oxide-titanium ultrafine particles obtained in this way have a refractive index and light resistance of the ultrafine particles themselves, depending on the inorganic oxide species selected for the coating layer and the amount thereof.
  • the sex can be adjusted.
  • Light resistance can be imparted and the refractive index can be adjusted in the range of 1.5 to 2.8, and further, it can be adjusted in the range of 2.0 to 2.8.
  • the coating amount of the inorganic oxide used is not particularly limited, but the weight ratio of the coating layer Z core fine particles is preferably 1/99 to 90/10. If it is smaller than this range, the photocatalytic property of titanium oxide cannot be suppressed, and the light resistance may deteriorate. If it is larger than this range, the required refractive index may not be obtained.
  • the inorganic oxide can be coated by applying a known method to a sol solution of tin-modified rutile titanium oxide ultrafine particles. That is, the raw material compound is dissolved in water, mixed with the tin-modified rutile-type titanium oxide ultrafine particle sol solution, and stirred. Heating may be performed as necessary. Moreover, you may adjust pH as needed.
  • examples of raw material compounds used include sodium silicate and potassium silicate.
  • examples of the raw material compound used include sodium aluminate, aluminum sulfate, and aluminum chloride.
  • the raw material compounds used include antimony chloride, antimony alkoxide, antimony acetate, antimony oxide, antimol potassium tartrate, potassium hexahydroxoantimonate, Examples thereof include lithium antimonate and sodium antimonate.
  • zirconium oxide in the case of coating with zirconium oxide, it can be carried out according to the method described in Japanese Patent Application Laid-Open No. 2004-18311 found by the present inventors.
  • raw material compounds that can be used include zirconium oxide, zirconium oxide, zirconium oxysulfate, zirconium oxynitrate, and zirconium oxycarbonate.
  • niobium oxide niobium metoxide, sodium niobate and the like can be mentioned.
  • the dispersibility of the inorganic acid oxide-coated tin-modified rutile-type acid / titanium ultrafine particles may be changed by utilizing the difference in isoelectric point of the inorganic oxide used for coating.
  • a sol solution excellent in dispersibility can be obtained particularly under basic conditions.
  • Zr, Bi or the like a sol having excellent dispersibility can be obtained particularly under acidic conditions.
  • inorganic oxides used for coating include tin-modified rutile-type acid-titanium ultrafine particles coated with acid-antimony and acid-caine. These can be appropriately selected in consideration of the function to be imparted to the optical member.
  • the reaction product obtained as described above may be used as it is as an inorganic oxide-coated tin-modified rutile-type titanium oxide ultrafine particle sol solution, or may be subjected to a desired post-treatment.
  • it can be purified by a known method such as vacuum concentration using an evaporator or ultrafiltration, and concentrated to an appropriate concentration. Centrifugation can yield a white precipitate that can be redispersed in water or other desired media.
  • the aqueous sol solution in which the ultrafine particles of tin-modified rutile titanium oxide coated with inorganic oxide are dispersed is replaced with an organic solvent such as alcohol such as methanol, cellosolve such as 2-methoxyethanol, and the like.
  • Min The dispersed tin-modified rutile type acid / titanium ultrafine particle sol solution can be used as an inorganic oxide-coated tin-modified rutile type acid / titanium ultrafine particle sol solution.
  • JP-A-2003-037558 or JP-A-2002-047425 discloses a tin-modified rutile-type oxide-titanium ultrafine particle or inorganic acid-oxide-coated tin obtained by the present invention. Dispersibility of modified rutile-type titanium oxide ultrafine particles in organic solvent, resin or monomer by modifying the surface of the fine particles with carboxylic acid, amine, organic carbon oxide, organic polymer, or monomer thereof , Compatibility is improved.
  • carboxylic acid used for the surface treatment acetic acid, propionic acid, acrylic acid, methacrylic acid, tartaric acid, glycolic acid and the like are preferably used.
  • amine used for the surface treatment propylamine, diisopropylamine, butylamine and the like are preferably used.
  • a sol solution is mixed, a catalyst is added if necessary, and then left at room temperature for a predetermined time, or heat treatment is performed. It is good to do.
  • tetramethoxysilane, methyltrimethoxysilane, (3-glycidoxypropyl) trimethoxysilane, or the like is preferably used.
  • a sol solution is mixed with a solvent containing an organic key oxide, a catalyst is added if necessary, and after heating for a certain period of time from room temperature to 60 ° C, ultrafiltration, centrifugation, etc. This is done by removing unreacted components in the mixed solution by the above method.
  • the organic polymer a polymer having a functional group capable of interacting with the surface of the fine particles such as an amino group and a carboxylic acid group, such as reaction and adsorption, is desirable.
  • Acrylic resins such as polystyrene, aminated, chloromethylated, sulfonated, and their derivatives, such as styrene-based resins, polymethyl methacrylate, polyethyl acrylate, polyacrylic acid, and polyacrylamide. , Vinyl alcohol resin, epoxy resin and the like.
  • the amount of the surface treatment agent to be used is appropriately set in consideration of dispersibility into the organic solvent to be used, binders such as rosin and the like.
  • the minor axis and major axis of the crystal diameter of the tin-modified rutile type acid-titanium ultrafine particles or inorganic acid salt-coated tin-modified rutile type acid-titanium ultrafine particles obtained by the present invention are 1 to: LOOnm, more preferably 2 to 20 nm, and the average aggregate particle diameter is preferably 10: LOOnm. If the crystal diameter is less than 2 nm, the originally obtained refractive index may not be obtained. If it is larger than 20 nm, light scattering may occur. If the average agglomerated particle diameter is larger than lOOnm, the obtained rosin composition may become cloudy and opaque.
  • Optical oils have properties such as colorless and transparent, low birefringence, low hygroscopicity, no hygroscopic deformation, high heat resistance in the manufacturing process and usage environment, and excellent moldability. There is no particular limitation as long as it meets these requirements.
  • Conventional optical lenses glasses lenses, pickup lenses, etc.
  • optical prisms optical waveguides
  • optical fibers thin film moldings
  • optical adhesives optical semiconductors Used as a material for high refractive index optical members such as body sealing materials!
  • acrylic resin styrene resin, polycarbonate resin, polyester resin, olefin resin, alicyclic acrylic resin, alicyclic resin resin, polyurethane resin, polyether resin, polyamide resin
  • Non-crystalline thermoplastic resin typified by fat and polyimide resin, and curable resin such as epoxy resin and unsaturated polyester resin are preferable.
  • methyl methacrylate (PMMA) or the like is used as an acrylic resin
  • polystyrene (PS) polystyrene
  • SAN styrene / acrylonitrile copolymer
  • styrene / methyl methacrylate copolymer is used as a styrene resin.
  • polyester resin such as coalescence include polyethylene terephthalate and polyethylene naphthalate
  • examples of the olefin fin resin include polymethylpentene (TPX).
  • Polycarbonate resin is a polymer produced by the reaction of bisphenols and carbonates such as phosgene.
  • the alicyclic acrylic resin is an acrylic resin in which an aliphatic cyclic hydrocarbon such as tricyclodecane is introduced into an ester substituent, and examples thereof include polymetatalic acid tricyclodecane and polymethacrylic acid norbornane. It has excellent low birefringence, low moisture absorption, and heat resistance, and is used for pickup lenses, imaging lenses, and so on.
  • a cycloaliphatic olefin resin has a three-dimensionally rigid alicyclic group of olefinic polymers. Introduced into the main chain, it has excellent heat resistance and low hygroscopicity, and is used in lenses such as in-vehicle CD players! /
  • Polyether resin, polyamide resin, polyimide resin and the like which are polymers in which a benzene ring, an aliphatic ring, etc. are connected via an ether bond, can also be mentioned. It is also possible to use a resin in which sulfur atoms are introduced into these, for example, a urethane resin used in spectacle lens applications.
  • thermosetting epoxy resin is preferably used for a semiconductor sealant.
  • the method for producing the rosin composition in the present invention is not particularly limited, and any conventionally known method may be used as long as it is a method used to uniformly mix fine particles and rosin. Absent.
  • a resin component and an ultrafine particle sol solution or an ultrafine particle powder are prepared independently, and then both are mixed or kneaded.
  • V-shifting methods such as a method of creating a resin under existing conditions and a method of producing ultrafine particles under the condition of previously prepared resin can also be employed.
  • ultrafine particles treated with a silane coupling agent such as trimethoxypropylmethyl acrylate are dissolved and dispersed in an acrylate monomer, which is injected and molded into a desired mold, and then cured with an optical material such as a high refractive index lens by UV curing.
  • a silane coupling agent such as trimethoxypropylmethyl acrylate
  • the resin composition of the present invention is thermoplastic
  • conventionally known molding processes such as extrusion molding, injection molding, vacuum molding, blow molding, compression molding and the like are possible, and disks, films, and the like are possible.
  • Various molded products can be obtained.
  • the amount of the rosin matrix component used in the present invention is appropriately set according to the application in particular, but the ultrafine particle content contained in the rosin composition is 0.1-9. It is preferably 0% by weight. More preferably, it is 10 to 70% by weight. There is a possibility that characteristics of fine particles such as smaller V and higher refractive index are not given. Greater than this! There is a possibility that inertia and toughness are insufficient.
  • the ultrafine particles and sol solution used in the present invention are preferably only tin-modified rutile-type titanium oxide ultrafine particles or ultrafine particles obtained by coating the ultrafine particles with an inorganic oxide. As long as the effects of the present invention are not impaired, it can be used in combination with other inorganic oxide ultrafine particles that are inferior in the effect of improving the refractive index. Examples thereof include colloidal silica and antimony oxide colloid.
  • the resin composition of the present invention has an ultraviolet absorber, an antioxidant, a heat stabilizer, a light stabilizer, an antistatic agent, a release agent, a plasticizer, a disperse dye, a pigment, a dye, and an improvement in dyeing.
  • Arbitrary additives such as agents can be added as necessary.
  • the rutile type titanium oxide ultrafine particles according to the present invention or the composite inorganic oxide ultrafine particles composed of a coating layer containing one or more inorganic oxides with the ultrafine particles as the core fine particles are high. Since it is a refractive index and is excellent in transparency, dispersibility, light resistance, light resistance, etc., the resin composition formed using the ultrafine particles has a high refractive index, transparency, light resistance, weather resistance, heat resistance In addition, it can be used for an optical component because it can be adjusted with any refractive index.
  • optical member comprising the resin composition of the present invention
  • materials for high refractive index optical members such as optical lenses (glasses lenses, pickup lenses, etc.), optical prisms, optical waveguides, optical fibers, thin film molded products, optical adhesives, optical semiconductor sealing materials, etc. Etc.
  • A% antimonate aqueous solution was prepared.
  • the pH was 8.3.
  • a sol solution was prepared in the same manner as in Production Example 3 except that the tin-modified rutile-type titanium oxide ultrafine particle sol solution prepared in Production Example 2 was used.
  • the sol solution obtained in Production Example 1 was replaced with methanol by an evaporator to obtain a 4 wt% sol solution.
  • 50 g was taken out, 50 ml of acetic acid was added, and the mixture was stirred at room temperature for 60 hours.
  • the precipitate was centrifuged and washed three times with ethyl acetate.
  • the obtained cake was added in a wet state into 100 ml of 1-butanol and sonicated for 1 hour. To this was added 100 ml of toluene to obtain a solution in which ultrafine particles were uniformly dispersed.
  • a resin composition was prepared in the same manner as in Experimental Example 1 except that the sol solution obtained in Production Example 2 was used. Made.
  • a resin composition was prepared in the same manner as in Experimental Example 1 except that the sol solution obtained in Production Example 3 was used.
  • a resin composition was prepared in the same manner as in Experimental Example 1 except that the sol solution obtained in Production Example 4 was used.
  • the sol solution obtained in Production Example 3 was replaced with methanol by an evaporator to obtain a 4 wt% sol solution.
  • a sol solution 1.5 g of fine particles
  • acrylic acid was added and stirred.
  • a resin composition was prepared in the same manner as in Experimental Example 5 except that the sol solution obtained in Production Example 4 was used.
  • a resin composition was formed in the same manner as in Experimental Example 1 except that the sol solution obtained in Production Example 5 was used.
  • a resin composition was prepared in the same manner as in Experimental Example 5 except that the sol solution obtained in Experimental Example 7 was used.
  • a resin composition was formed in the same manner as in Experimental Example 1 except that the sol solution obtained in Production Example 6 was used.
  • Fine particle refractive index Soluble solution equivalent to 0.2g of solid content, 200mg of polybulurpyrrolidone, and 10g of ion-exchanged water were applied to a quartz substrate to a film thickness of about 700A by spin coating. The coating film was dried at 120 ° C. and immediately measured using an automatic wavelength scanning ellipsometer M-150 (manufactured by JASCO Corporation). From the volume fraction of the solid content contained, the refractive index of the solid content was evaluated.
  • the dissolved resin composition solution was applied on a quartz substrate by spin coating to a film thickness of about 700 A, and a coating film dried with hot air was measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 屈折率が1.5~2.8であるルチル型の結晶構造を有する酸化チタンを含有する無機酸化物超微粒子、または当該超微粒子を核微粒子とし、一種以上の無機酸化物を含む被覆層から構成される複合無機酸化物超微粒子を含有してなる樹脂組成物であり、また当該樹脂組成物を用いて形成した光学部材、である。

Description

明 細 書
酸化物超微粒子を含有する樹脂組成物
技術分野
[0001] 本発明は、無機酸化物超微粒子または複合無機酸化物超微粒子を含有する榭脂 組成物に関する。
背景技術
[0002] 無機ガラスは、透明性に優れているなどの諸物性に優れており、光学部材として広 い分野で用いられている。し力しながら、重くて破損しやすいこと、加工性、生産性が 悪い等の短所があり、無機ガラスに代わる素材として透明光学用榭脂の開発が盛ん に行われている。アクリル系榭脂、スチレン系榭脂、ポリカーボネート榭脂、ポリエステ ル系榭脂、ォレフィン系榭脂、脂環式アクリル系榭脂、脂環式ォレフイン系榭脂、ポリ ウレタン榭脂、ポリエーテル榭脂、ポリアミド榭脂、ポリイミド榭脂に代表される非晶性 熱可塑性榭脂、あるいはエポキシ榭脂、不飽和ポリエステル榭脂等の硬化性榭脂は 、可視領域波長における良好な透明性を有し、し力も無機ガラス材料に比べて成形 性、量産性、あるいは可撓性、強靱性、耐衝撃性等の優れた特徴を有する汎用透明 榭脂材料である。このような透明榭脂材料に高い屈折率を付与することによって、薄 肉軽量な光学レンズ (メガネレンズ、 CD、 DVDなどの情報記録機器におけるピック アップレンズ、デジタルカメラなどの撮影機器用レンズ等)、光学プリズム、光導波路、 光ファイバ一、薄膜成形物、光学用接着剤、光半導体用封止材料等の高屈折光学 部材の材料等への展開が期待されている。
[0003] 例えば、眼鏡レンズ分野においては、ファッション性豊かなニーズに対応するため には、レンズの中心厚、コバ厚、および曲率を下げ、全体的に肉薄であることが必要 である。この点から、ますます高い屈折率が求められている。近年、硫黄、ハロゲン元 素等の原子番号の大きな元素を含有するモノマーを用いることによる高屈折率化が 積極的に研究されて 、る。例えばチオール化合物とイソシァネート化合物を熱重合し チォウレタン結合を形成して得られる榭脂 (nd= l. 60〜: L 67程度)(特開平 9— 11 0956号)などがある。しかしながら非汎用の特殊モノマーを使用する特殊な高屈折 率榭脂であるために産業上の利用分野が極度に制限されるという問題があった。こ のようなハロゲン元素あるいは硫黄元素の導入によっても高くなるが、有機樹脂の屈 折率は使用される元素、分子構造により決まるため、通常 1. 4〜1. 7程度の範囲が 限度である。そこで、アクリル系榭脂、スチレン系榭脂、ポリカーボネート榭脂、ポリエ ステル樹脂、ォレフィン系榭脂、脂環式アクリル榭脂、脂環式ォレフイン榭脂、ポリウ レタン樹脂、ポリエーテル榭脂、ポリアミド榭脂、ポリイミド榭脂に代表される非晶性熱 可塑性榭脂、あるいはエポキシ榭脂、不飽和ポリエステル榭脂等の硬化性榭脂など の汎用透明榭脂を利用しての高屈折率ィヒ技術、特に屈折率 1. 7以上の高屈折率榭 脂が強く求められている。
[0004] また例えば、ポリメチルメタタリレート(PMMA)などアクリル系榭脂を利用したポリマ 一光ファイバーについては、コア部(光ファイバ一断面における中心部)はクラッド部( 同外周部)よりも高屈折率とすることで、この屈折率差が大きいほど光が伝播可能な 最大角度に対応する開口数を大きくすることができる。
[0005] また例えば、発光ダイオードでは発光素子部をエポキシ榭脂などで封止している。
一般に半導体素子部を構成している半導体の屈折率は非常に高ぐ接している物質 の屈折率が低ければ臨界角も小さく全反射が起こりやすい。そのため、より屈折率の 高い物質で発光素子をつつむことで全反射の起こる角度を大きくでき、その分外部 での光束取り出し効率が向上する。
[0006] さらには、例えば光ファイバ一や光導波路、一部のレンズのように、異なる屈折率を 有する複数の材料を併用したり、屈折率に分布を有する材料の開発も望まれている 。これらの材料に対応するためには、屈折率を任意に調節できることが不可欠となる
[0007] このように光学部材に用いられる汎用榭脂、例えばアクリル系榭脂、スチレン系榭 脂、ポリカーボネート榭脂、ポリエステル榭脂、ォレフィン系榭脂、脂環式アクリル榭 脂、脂環式ォレフイン榭脂、ポリウレタン榭脂、ポリエーテル榭脂、ポリアミド榭脂、ポリ イミド榭脂等に代表される熱可塑性榭脂、あるいはエポキシ榭脂、不飽和ポリエステ ル榭脂等の硬化性榭脂等の高屈折率ィ匕が強く望まれている。
[0008] 近年、榭脂の高屈折率化を目的として、 Zr、 Sn、 Sb、 Mo、 In、 Zn、 Ti等の結晶構 造を有する屈折率の高!ヽ透明性無機酸化物微粒子ある!ヽはそれらの複合酸化物を 、分散状態を保ったまま榭脂中に導入して、無色透明な高屈折率榭脂を形成する技 術が提案されている。このような用途に用いるためには高分散性や透明性が要求さ れるため、金属酸ィ匕物は超微粒子であることが望ましい。
[0009] し力しながら、上記の技術では、強度などを保持できるマトリックス量を用いながら高 い屈折率の榭脂を設計することは、未だ不十分であった。屈折率を上げようと微粒子 の含有量が多すぎると榭脂が脆弱となってしまうからである。
[0010] そこで酸ィ匕チタン微粒子を用いる方法が提案されている。酸ィ匕チタンは特に屈折 率が高ぐかつ透明性も高いため、他微粒子に比べて少ない量で樹脂の高屈折率 化が可能である。酸ィ匕チタンには代表的な結晶型としてルチル型とアナターゼ型とが ある。これまで高屈折率用の金属酸化物超微粒子ゾル液として、屈折率 no = 2. 56 、 ne = 2. 49を有するアナターゼ型酸ィ匕チタン超微粒子を主成分とした材料力 主に 用いられている。これに対し、ルチル型酸ィ匕チタンはその屈折率が屈折率 no = 2. 6 1、 ne = 2. 9 (no :常光線に対する屈折率、 ne :異常光線に対する屈折率)(実験科 学講座 日本化学会編)であり、アナターゼ型に比べて高屈折率、紫外線吸収といつ た光学特性などに優れて 、ることが知られており、このルチル型酸ィ匕チタン超微粒子 、及びゾル液を合成する試みが積極的に行われていた。し力しながら、産業的に用 V、得るルチル型酸ィ匕チタン超微粒子、及びゾル液は未だ得られて 、な 、のが現状 であった。例えば Jpn. J. Appl. Phys., 37, 4603(1998)に報告されているように長繊維 状のルチル型酸ィ匕チタンが寄せ集まった凝集粒子径 200〜400nmの凝集体が生 成する力 このままでは産業的には利用不可能であった。
[0011] 一方、有機マトリックスと酸ィ匕チタン微粒子カゝらなる榭脂は、その耐光性が低下する という欠点があった。すなわち、酸化チタンの光触媒作用により、光吸収で発生した 電子 ホールによる有機物分解を起こし、透明性、耐光性、耐候性、耐熱性、紫外 線遮蔽性等が大きな問題となって ヽる。
[0012] 現在ではこのようなアナターゼ型酸化チタン超微粒子を含有する榭脂組成物の耐 光性を改善させる目的で、例えば特許文献 1記載のようなアナターゼ型酸ィ匕チタンと 無機酸化物を複合した超微粒子、あるいはアナターゼ型酸化チタンを無機酸化物で 被覆した超微粒子及びそのゾル液が適用されて ヽる。
[0013] これらは ヽずれも無機酸化物被覆によるアナターゼ型酸化チタン超微粒子の不活 性化を目標としたものである。このように酸化チタン超微粒子を無機酸化物で被覆す ることで耐光性は改善される。しかし、使用されている酸ィ匕チタンはアナターゼ型であ るために、屈折率が約 2. 5であり、耐光性向上のために酸ィ匕物で被覆した場合には 大幅に屈折率が低下してしまい、本来のアナターゼ型酸ィヒチタンの屈折率よりは低く なり、光学材料、ハードコート材料、榭脂レンズ等の屈折率を向上させる効果は低い 。また、被覆する金属酸化物の量を減らし屈折率を上げたとしても耐光性が不十分と なり、榭脂組成物の透明性、耐熱性、紫外線遮蔽性などが問題となっている。
これに対して従来のアナターゼ型酸ィヒチタンより屈折率の高いルチル型酸ィ匕チタ ンは、前記した通り、用い得る超微粒子、ゾル液が無いのが現状であった。
[0014] 同様に透明性、分散性、耐光性、耐候性等に優れた高屈折率の超微粒子、ゾル液 が光学レンズ (メガネレンズ、 CD、 DVDなどの情報記録機器におけるピックアップレ ンズ、デジタルカメラなどの撮影機器用レンズ等)、光学プリズム、光導波路、光フアイ バー、薄膜成形物、光学用接着剤、光半導体用封止材料等の高屈折光学部材の材 料等だけでなくプラスチック劣化防止添加剤、化粧品添加剤、自動車用窓ガラス、プ ラズマディスプレイ、液晶ディスプレイ、 ELディスプレイ、光学フィルタ一等の光学部 材、金属材料、セラミックス材料、ガラス材料、プラスチック材料、光触媒などといった 製品分野でも求められている。
特許文献 1 :特開 2001—123115号公報
発明の開示
[0015] 本発明の目的は上記実状を鑑みて成し遂げられたものであり、高屈折率で透明性 、分散性、耐光性、耐候性等に優れた無機酸化物超微粒子及び当該超微粒子が分 散した高屈折率榭脂組成物及び光学材料を提供することにある。特に、薄肉軽量な 光学レンズ (メガネレンズ、 CD、 DVDなどの情報記録機器におけるピックアップレン ズ、デジタルカメラなどの撮影機器用レンズ等)、光学プリズム、光導波路、光フアイ バー、薄膜成形物、光学用接着剤、光半導体用封止材料等の光学部材の材料を提 供することにある。 本発明は、
(1) ルチル型の結晶構造を有する酸化チタンを含有する屈折率が 1. 5〜2. 8であ る無機酸化物超微粒子、または
当該超微粒子を核微粒子とし、一種以上の無機酸化物を含む被覆層から構成され る屈折率が 1. 5〜2. 8である複合無機酸化物超微粒子、
を含有してなる榭脂組成物。
(2) 前記ルチル型酸ィ匕チタンが、スズ修飾ルチル型の結晶構造を有する酸ィ匕チタ ンである、(1)記載の榭脂組成物。
(3) 前記超微粒子の SnZTi組成モル比が 0. 001以上 0. 5以下である、(2)記載 の榭脂組成物。
(4) 前記のルチル型の結晶構造を有する酸化チタンを含有する無機酸化物超微 粒子中のルチル型酸化チタン超微粒子力 チタンに対するスズのモル比(SnZTi) が 0. 001〜2のスズィ匕合物共存下、 Ti濃度が 0. 07〜5molZlのチタン化合物水溶 液を pHがー 1〜3の範囲で反応させて得られ、 SnZTi組成モル比が 0. 001〜0. 5 であるスズ修飾ルチル型酸ィ匕チタン超微粒子である(1)記載の榭脂組成物。
(5) 前記無機酸化物超微粒子に含有されるルチル型の結晶構造を有する酸化チ タンの含有量が、前記無機酸化物超微粒子の重量に基づいて、 5〜: L00重量 %であ る、(1)〜 (4)の何れかに記載の榭脂組成物。
(6) 榭脂組成物の全重量に基づいて、前記無機酸化物超微粒子または前記複合 無機酸ィ匕物超微粒子の含有量力 0. 1〜90重量 %である、(1)〜(5)の何れか〖こ記 載の榭脂組成物。
(7) 前記の複合無機酸化物超微粒子の被覆層 Z核微粒子の重量比が 1Z99〜9 0Z10である(1)〜(6)の何れかに記載の榭脂組成物。
(8) 前記無機酸化物超微粒子または前記複合無機酸化物超微粒子の結晶径の短 軸、長軸が 2〜20nmである(1)〜(7)の何れかに記載の榭脂組成物。
(9) 前記無機酸ィ匕物超微粒子または前記複合無機酸ィ匕物超微粒子カゝらなる凝集 体の平均凝集粒子径が、 10〜: LOOnmである(1)〜(8)の何れか〖こ記載の榭脂組成 物。 (10) 前記無機酸化物超微粒子または前記複合無機酸化物超微粒子が、水あるい は有機溶剤に分散してなるゾルである(1)〜(9)の何れかに記載の榭脂組成物。
(11) 屈折率が 1. 5〜2. 8である(1)〜( 10)の何れかに記載の榭脂組成物。
(12) (1)〜(11)の何れかに記載の榭脂組成物を含んでなる光学部材。
(13) 光学レンズ、光学プリズム、光導波路、光ファイバ一、薄膜成形物、光学用接 着剤又は光半導体用封止材料に用いることを特徴とする、(12)記載の光学部材、 に関するものである。
さらに、本発明は以下の構成も含む。
(A) チタンに対するスズのモル比(SnZTi)が 0. 001〜2のスズィ匕合物共存下、 Ti 濃度が 0. 07〜5molZlのチタン化合物水溶液を ρΗがー 1〜3の範囲で反応させて 、ルチル型の結晶構造を有する酸化チタンを含有する無機酸化物超微粒子を得る 工程を含み、前記無機酸ィ匕物超微粒子の SnZTi組成モル比が 0. 001-0. 5であ る、スズ修飾ルチル型酸化チタン超微粒子を含有する榭脂組成物の製造方法。
[0017] 本発明のルチル型酸ィ匕チタン超微粒子は、従来の製法では成し得な力つたもので あり、かつアナターゼ型では得られない高屈折率の超微粒子を提供することが出来 る。さら〖こ、このルチル型酸ィ匕チタン超微粒子を無機酸ィ匕物で被覆することで透明性 、分散性、耐光性、耐候性等に優れた高屈折率の複合無機酸化物超微粒子を提供 することも出来る。これらの得られた超微粒子を光学材料に適用した場合に、透明性 、耐光性、耐候性、耐熱性、成形加工性等に優れた高屈折率榭脂組成物及びそれ を用いた光学部材を提供することが可能になった。
[0018] 本発明によれば、優れた透明性、高い屈折率を有し、光学部材として用いられる新 規な榭脂組成物が提供できる。詳しくは、透明性、分散性、耐光性、耐候性等に優 れた高屈折率のルチル型酸化チタン超微粒子または当該超微粒子を核微粒子とし 、一種以上の無機酸化物を含む被覆層から構成される複合無機酸化物超微粒子を 高濃度に透明樹脂等の有機媒質へ分散させた樹脂組成物が提供できる。
[0019] 本発明の榭脂組成物はルチル型酸化チタン超微粒子の存在により、高い屈折率、 高い光線透過率等の特徴を有しているため、光学レンズ (メガネレンズ、 CD、 DVD などの情報記録機器におけるピックアップレンズ、デジタルカメラなどの撮影機器用 レンズ等)、光学プリズム、光導波路、光ファイバ一、薄膜成形物、光学用接着剤、光 半導体用封止材料等の高屈折率光学部材の材料等として利用できる。
発明を実施するための最良の形態
[0020] 以下、本発明についてさらに詳細に説明する。
[0021] 本発明は、屈折率が 1. 5〜2. 8であるルチル型の結晶構造を有する酸ィ匕チタンを 含有する無機酸化物超微粒子、または当該超微粒子を核微粒子とし、一種以上の 無機酸化物を含む被覆層から構成される複合無機酸化物超微粒子を含有してなる 榭脂組成物、である。
前述の通り、ルチル型はアナターゼ型に比べてより高い屈折率を有するため、超微 粒子化したルチル型酸ィ匕チタンを用いることで、より高屈折率ィ匕が可能となる。さらに 、榭脂の透明性等を損なわないためには、ルチル型酸ィ匕チタンは超微粒子である必 要がある。
[0022] 本発明における、ルチル型の結晶構造を有する酸化チタンを含有する無機酸化物 超微粒子、とは、上記のように、超微粒子化したルチル型酸ィ匕チタンを含んでいれば よぐ特に制限はないが、通常、当該無機酸化物超微粒子中、ルチル型酸化チタン の割合は 5〜100% (重量比)、好ましくは、 50〜100%、さらに好ましくは 70〜: LOO %である。
[0023] また、超微粒子化したルチル型酸化チタン以外の成分につ!ヽては、本発明の榭脂 の透明性を損なわないものであればよぐ特に制限はないが、中でも無機酸化物が 望まし ヽ。具体的には、 ί列えば、、 Al、 Siゝ V、 Fe、 Zn、 Zr、 Nb、 Mo、 Sn、 Sb、 W等の 酸化物が挙げられ、好ましくは、 Al、 Si、 Zr、 Sn、 Sbの酸化物である。
[0024] また、本発明者らは、焼結剤として用いられるスズィ匕合物が長繊維化を防止すると 共に凝集も防止し、スズ修飾ルチル型酸ィ匕チタン超微粒子、透明性、分散性等に優 れたゾル液が得られることを見出した。さらに、これを核超微粒子とし無機酸化物で 被覆することによって透明性、分散性、耐光性、耐候性等に優れた高屈折率の平均 粒子径が 1〜: LOOnmの複合無機酸化物超微粒子、分散性に優れたゾル液が得られ ることを見出した。そして、当該超微粒子を榭脂マトリックス中に高濃度に分散するこ とにより、従来のアナターゼ型酸化チタンを用いた場合では得られなかった高屈折率 、透明性、耐光性、耐候性、耐熱性、成形加工性等に優れた榭脂組成物、および光 学レンズ (メガネレンズ、ピックアップレンズ等)、光学プリズム、光導波路、光ファイバ 一、薄膜成形物、光学用接着剤、光半導体用封止材料等の光学材料が得られること を見出した。
[0025] 本発明にお 、て、好適な、ルチル型酸ィ匕チタン超微粒子としては、チタンに対する スズのモル比(SnZTi)が 0. 001〜2のスズィ匕合物共存下、 Ti濃度が 0. O7〜5mol Zlのチタンィ匕合物水溶液を ρΗが 1〜3の範囲で反応させて得られるスズ修飾ル チル型酸ィ匕チタン超微粒子であって、該超微粒子の SnZTi組成モル比が 0. 001 〜0. 5であり、且つ結晶径の短軸、長軸が 2〜20nmであることを特徴とする超微粒 子である。
[0026] なお、ここで言う結晶径とは、 、わゆる一次粒子径のことであって、化学便覧改訂 3 版 (基礎編 丸善株式会社)記載のように a、 c軸方向長さで表現される。本明細書で はそれぞれ短軸、長軸と呼ぶ。また、平均凝集粒子径とは、一次粒子が凝集してなる 粒子径を表す。
調製された超微粒子の結晶径ゃ平均凝集粒子径は調製した超微粒子ゾル液を電 子顕微鏡観察用メッシュに滴下した試料や、超微粒子含有分散榭脂をミクロトームで 切片を切り出した試料の透過型電子顕微鏡観察により評価することができる。
[0027] まず、スズ修飾ルチル型酸化チタン超微粒子の製造法について説明する。
本発明にお 、て用いられるスズィ匕合物としては、特に限定されるものではな 、が、 具体的には例えば塩化スズ、硝酸スズ、硫酸スズ、スズ酸塩などのスズ塩ィ匕合物ある いは酸化物、水酸化物、金属スズ等カゝら選ばれるスズィ匕合物等が好ましいものとして 挙げられる。
[0028] 本発明において用いられるチタンィ匕合物としては、特に限定されるものではないが 、具体的には例えば、塩化酸化チタン、硫酸チタン、硝酸チタン、チタンアルコキシド 、水和酸化チタン (あらカゝじめチタンィ匕合物をアルカリ条件で加水分解させたものも 含む)など力 選ばれるチタンィ匕合物等が好ま 、ものとして挙げられる。
[0029] まず、スズィ匕合物を水溶液に添カ卩しておき、これにチタンィ匕合物をカ卩える。スズィ匕 合物とチタンィ匕合物は同時に加えてもよいし、どちらが先であってもよい。また、混合 化合物の形態であってもよい。反応媒体は水が望ましいが、アルコール等の有機溶 剤あるいは水と有機溶剤の混合媒体でもよ!/、。
[0030] ルチル型酸ィ匕チタンの結晶成長制御のための修飾剤として反応に用いるスズィ匕合 物の量は、チタンに対するスズのモル比(SnZTi)が 0. 001〜2、好ましくは 0. 01〜 1であることが望ましい。スズ量を上記範囲より少なくしていくとルチル型酸ィ匕チタン超 微粒子は生成するが、結晶径、凝集粒子径が大きくなり、したがって分散性が悪くな る可能性がある。また、榭脂組成物の透明性が低下する可能性がある。また、上記範 囲より多くして ヽつても、ルチル型を有する酸化チタン超微粒子の合成は可能である 力 反応に要する時間が長くなり、この場合はルチル型酸ィ匕チタン超微粒子に多量 のスズィ匕合物が付着したものが得られる可能性がある。また、これより大きいと残存ス ズィ匕合物量が多くなり、粒子屈折率が低下する可能性がある。
[0031] 反応液中の Ti濃度は 0. 07〜5molZl、好ましくは 0. ImolZlから ImolZlが望ま しい。上記範囲より低い Ti濃度では、 SnZTi (モル比)として 0. 01-0. 03の範囲で スズィ匕合物を添加してもアナターゼ型とルチル型の混合酸ィ匕チタン超微粒子が生成 する可能性がある。同様に上記範囲より低い Ti濃度では、 SnZTi (モル比)として 0. 03より大き 、範囲でスズィ匕合物を添加すると、ルチル型酸化スズを有する酸化チタ ン酸化スズ混合超微粒子が生成する可能性がある。
[0032] 反応液の pHは 1〜3が望ましい。必要に応じて塩酸や硝酸などで調節する。 pH 力^より大きい条件で反応させると、スズィ匕合物を加えない場合ではアナターゼ型酸 ィ匕チタンになってしま ヽ、これを避けるためにスズ化合物を添加してルチル構造を得 ようとすると、酸化スズなどのルチル型酸ィ匕チタンではな 、異種物質が生成してしまう 可能性がある。
[0033] 反応温度に関しては、 Ti濃度と pHが上記の範囲であれば良ぐ特に制限は無いが 、好ましくは— 10〜100°C、さらに好ましくは 20〜60°Cが推奨される。反応温度に応 じて反応完了時間が決定される力 通常は 0. 5〜10時間で実施する。
[0034] 上記の反応により生成したスズ修飾ルチル型酸化チタン超微粒子中に含まれるス ズ化合物量として、 SnZTiモル比 =0. 001〜0. 5であることが好ましい。スズ量を 上記範囲より少なくしていくとルチル型酸ィ匕チタン超微粒子の粒子径が大きくなり、 分散性が悪くなる可能性がある。また、上記範囲より多くしていくと、より効率よく結晶 成長及び凝集を制御し、粒子径の小さな超微粒子が得られるが、ルチル型酸化チタ ン超微粒子に多量のスズィ匕合物が付着したものが得られ、結果として屈折率の低 ヽ 超微粒子が得られる可能性がある。
[0035] この方法により得られたスズ修飾ルチル型酸ィ匕チタン超微粒子の結晶径の短軸、 長軸は 2〜 20nm、平均凝集粒子径は 10〜 1 OOnmである。
[0036] 本発明のスズ修飾ルチル型酸化チタン超微粒子が得られる反応機構 (反応メカ二 ズム)は現在十分に明らかではないが、これは表面がスズィ匕合物で修飾されているこ とを特徴としている。原料に用いたスズィ匕合物、あるいは溶液中で解離したスズィォ ン、あるいは加水分解等により溶液中で生成したスズィ匕合物が、酸化チタン表面に 配位、吸着、化学結合等により付着したものと推測される。また、元々アナターゼ型で はなくルチル型酸ィ匕チタン生成条件でスズィ匕合物を修飾剤として添加したもので、長 軸方向への結晶成長が阻止された結果生じたものと推測される。このことは超微粒子 の結晶径が 2〜20nmであるスズ修飾酸ィ匕チタン超微粒子を得るために必要な修飾 スズィ匕合物量が酸ィ匕チタンを隙間無く被覆する量には程遠い、チタンに対するモル 比が 0. 001〜0. 5という少量であることからも窺える。
[0037] 上記により得られた反応生成物は、そのままスズ修飾ルチル型酸ィ匕チタン超微粒 子、ゾル液として用いてもよいし、所望の後処理を施してもよい。すなわち、エバポレ 一ターによる減圧濃縮、限外ろ過などの公知の方法で精製、適当な濃度に濃縮する ことも可能である。遠心分離して白色沈殿物を得、水、その他所望の媒体に対して再 分散させることも可能である。スズ修飾ルチル型酸ィ匕チタン超微粒子を水に分散させ たゾル液は、メタノールなどのアルコール類、 2—メトキシエタノールなどのセロソルブ 類と!/ヽつた有機溶媒に溶媒置換して、有機溶媒分散スズ修飾ルチル型酸化チタン 超微粒子ゾル液として用いることも可能である。
[0038] 次に複合無機酸化物超微粒子、すなわち無機酸化物被覆スズ修飾ルチル型酸ィ匕 チタン超微粒子の調製方法にっ 、て述べる。
[0039] 本発明にお 、て、上記で合成したスズ修飾ルチル型酸ィ匕チタン微粒子あるいはそ のゾル液を榭脂組成物に用いる場合、酸ィ匕チタンの光触媒性による周辺有機物の 劣化を防止するため、耐光性を付与することが必要になる。この目的のためにスズ修 飾ルチル型酸ィ匕チタン微粒子を無機酸ィ匕物で被覆することが行われる。なお、被覆 とは微粒子表面を完全に覆った形態、あるいは隙間が空いた形態両方を意味する。
[0040] 上記被覆に用いられる無機酸化物としては Zr、 Si、 Al、 Sb、 Sn、 Mo、 Nb、 Zn、 T a、 Fe、 W、 Bi、 Ce、 Pb、 Cu、 Y、 In、 V、 Mg、 La等の酸化物が好適である。これらを 一種のみで被覆して用いることも、 2種以上用いて被覆することも可能である。無機酸 化物同士が個々に被覆した形態、複合ィ匕して被覆した状態、固溶体となって被覆し た形態、あるいは一種で被覆した後、さらにもう一種で被覆した形態となっていてもよ い。また、無定形の酸化物、結晶性の酸ィ匕物、あるいは水和した状態であってもよい 。また、ケィ酸、アンチモン酸などの酸、それらのオリゴマーあるいはそれらの塩の形 態で核微粒子表面に吸着、結合した状態であってもよ 、。
[0041] このようにして得られる無機酸ィ匕物被覆スズ修飾ルチル型酸ィ匕チタン超微粒子は、 被覆層に選ばれる無機酸ィ匕物種とその量により、超微粒子自体の屈折率と耐光性を 調節することが出来る。耐光性を付与出来、かつ屈折率が 1. 5〜2. 8で調節するこ とが出来、さらには 2. 0〜2. 8の範囲で調製出来る。
[0042] 用いられる無機酸ィ匕物の被覆量は、特に制限されるものではないが、被覆層 Z核 微粒子の重量比が 1/99〜90/10であることが好ましい。この範囲より小さいと酸 化チタンの光触媒性を抑えることが出来ず、耐光性が悪くなる可能性がある。また、こ の範囲より大きいと必要な屈折率が得られなくなる可能性がある。
[0043] 無機酸化物の被覆方法は、公知の方法をスズ修飾ルチル型酸化チタン超微粒子 のゾル液に適用して行うことが出来る。すなわち、原料となる化合物を水に溶解させ、 スズ修飾ルチル型酸ィ匕チタン超微粒子ゾル液と混合し攪拌する。必要に応じて加熱 してもよい。また、必要に応じて pHを調整してもよい。
[0044] 例えばケィ素酸ィ匕物被覆を行う場合には、用いられる原料化合物として、ケィ酸ナ トリウム、ケィ酸カリウムなどを挙げることが出来る。
[0045] また、例えばアルミニウム酸ィ匕物被覆を行う場合には、用いられる原料化合物として 、アルミン酸ナトリウム、硫酸アルミニウム、塩ィ匕アルミニウムなどを挙げることが出来る [0046] また、例えばアンチモン酸ィ匕物被覆を行う場合には、用いられる原料化合物として 、塩化アンチモン、アンチモンアルコキシド、酢酸アンチモン、酸化アンチモン、酒石 酸アンチモ-ルカリウム、へキサヒドロキソアンチモン酸カリウム、アンチモン酸力リウ ム、アンチモン酸ナトリウムなどを挙げることが出来る。
[0047] また、例えばジルコニウム酸ィ匕物で被覆する場合には、本願発明者らが見出した特 開 2004— 18311号公報に記載の方法に従つて行うことも出来る。用 ヽられる原料 化合物として、ォキシ塩ィ匕ジルコニウム、ォキシ硫酸ジルコニウム、ォキシ硝酸ジルコ ユウム、ォキシ炭酸ジルコニウムなどが挙げられる。
[0048] また、例えばモリブデン酸ィ匕物で被覆する場合には、七モリブデン酸六アンモニゥ ム四水和物、酸ィ匕モリブデンなどが挙げられる。
[0049] また、例えばニオブ酸ィ匕物で被覆する場合には、二オビゥムェトキシド、ニオブ酸ナ トリウムなどが挙げられる。
[0050] 本発明では、被覆に用いる無機酸ィ匕物の等電点の違いを利用することによって、 無機酸ィ匕物被覆スズ修飾ルチル型酸ィ匕チタン超微粒子の分散性を変えることも可 能である。例えば、 Si、 Nb、 W、 Mo、 Sb等を用いた場合には、特に塩基性条件下で 分散性に優れたゾル液を得ることが出来る。また例えば、 Zr、 Bi等を用いた場合には 、特に酸性条件下で分散性に優れたゾルを得ることが出来る。
[0051] 本発明では、被覆に用いる無機酸ィ匕物を複数用いて被覆することによってさらに耐 光性、耐候性を向上させることも可能である。例えば酸ィ匕アンチモンと酸ィ匕ケィ素で 被覆したスズ修飾ルチル型酸ィ匕チタン超微粒子等が具体例として挙げられる。これら は光学部材に付与したい機能を考慮して適宜選択しうる。
[0052] 上記により得られた反応生成物は、そのまま無機酸化物被覆スズ修飾ルチル型酸 化チタン超微粒子ゾル液として用いてもよいし、所望の後処理を施してもよい。すな わち、エバポレーターによる減圧濃縮、限外ろ過などの公知の方法で精製、適当な 濃度に濃縮することも可能である。遠心分離して白色沈殿物を得、水、その他所望の 媒体に対して再分散させることも可能である。無機酸化物被覆スズ修飾ルチル型酸 化チタン超微粒子を分散させた水ゾル液は、メタノールなどのアルコール類、 2—メト キシエタノールなどのセロソルブ類と 、つた有機溶媒に溶媒置換して、有機溶媒に分 散したスズ修飾ルチル型酸ィ匕チタン超微粒子ゾル液ある!/、は無機酸化物被覆スズ 修飾ルチル型酸ィ匕チタン超微粒子ゾル液として用いることも可能である。
[0053] また、榭脂と微粒子の相溶性が不十分で、超微粒子を高濃度で添加すると微粒子 同士が凝集し大きな粒子を作るため榭脂組成物の透明性が失われる可能性がある。 特開 2003— 037558号公報ゃ特開 2002— 047425号公報に記載されているよう な方法で、本発明により得られたスズ修飾ルチル型酸ィ匕チタン超微粒子あるいは無 機酸ィ匕物被覆スズ修飾ルチル型酸ィ匕チタン超微粒子をカルボン酸、ァミン、有機ケ ィ素酸化物、有機ポリマー、あるいはそのモノマーなどで微粒子表面を修飾すること により有機溶剤、榭脂あるいはそのモノマー中への分散性、相溶性が向上する。
[0054] 表面処理に用いられるカルボン酸としては、酢酸、プロピオン酸、アクリル酸、メタク リル酸、酒石酸、グリコール酸などが好適に用いられる。
[0055] また、表面処理に用いられるァミンとしては、プロピルァミン、ジイソプロピルァミン、 ブチルァミンなどが好適に用いられる。これらで表面処理を行うには、例えばこれらの 水あるいはアルコールなどの溶液に超微粒子ある ヽはゾル液を混合し、必要に応じ て触媒を加えた後、所定時間常温で放置するか、加熱処理を行うとよい。
[0056] 有機ケィ素酸ィ匕物表面処理は、テトラメトキシシラン、メチルトリメトキシシラン、 (3- グリシドキシプロピル)トリメトキシシランなどが好適に用いられる。処理方法としては有 機ケィ素酸化物を含む溶剤にゾル液を混合し、必要に応じて触媒を加えた後、一定 時間室温から 60°Cの範囲で加熱した後に限外ろ過、遠心分離などの方法で混合液 中の未反応分を除去する等の方法で行われる。
[0057] また有機ポリマーとしてはァミノ基、カルボン酸基など微粒子表面と反応、吸着等相 互作用を有することが可能な官能基を有するポリマーが望ましい。ポリスチレンをアミ ノ化、クロロメチル化、スルホン化した、さらにはそれらの誘導体であるスチロール系 榭脂、ポリメチルメタタリレート、ポリェチルアタリレート、ポリアクリル酸、ポリアクリルァ ミド等のアクリル系榭脂、ビニルアルコール系榭脂、エポキシ系榭脂等が挙げられる 。表面処理方法は上記記載の方法で行えばょ 、。
[0058] 用いられる表面処理剤の量は、用いる有機溶剤、榭脂などのバインダー等への分 散性を考慮して適宜設定される。 [0059] 本発明により得られたスズ修飾ルチル型酸ィ匕チタン超微粒子、または無機酸ィ匕物 被覆スズ修飾ルチル型酸ィ匕チタン超微粒子の結晶径の短軸、長軸は 1〜: LOOnm、 さらには 2〜20nm、平均凝集粒子径は 10〜: LOOnmであることが好ましい。結晶径 力 2nmより小さいと、本来得られる屈折率が得られなくなる可能性がある。 20nmより 大きいと、光の散乱が生じる可能性がある。平均凝集粒子径が lOOnmより大きいと、 得られる榭脂組成物が白濁し、不透明となる可能性がある。
[0060] 次に本発明に用いられる榭脂について述べる。光学材料用榭脂には無色透明で 複屈折率が小さいこと、吸湿性が小さく吸湿変形しないこと、製造工程や使用環境で の耐熱性が高いこと、成形性が優れていることなどの特性が要求され、これらを満た すものであれば特に限定されず、従来光学レンズ (メガネレンズ、ピックアップレンズ 等)、光学プリズム、光導波路、光ファイバ一、薄膜成形物、光学用接着剤、光半導 体用封止材料等の高屈折率光学部材の材料等に用いられて!/、るもので力まわな!/、 。例えば、アクリル系榭脂、スチレン系榭脂、ポリカーボネート榭脂、ポリエステル榭脂 、ォレフィン系榭脂、脂環式アクリル榭脂、脂環式ォレフイン榭脂、ポリウレタン榭脂、 ポリエーテル榭脂、ポリアミド榭脂、ポリイミド榭脂に代表される非晶性熱可塑性榭脂 、あるいはエポキシ榭脂、不飽和ポリエステル榭脂等の硬化性榭脂などが好適であ る。
[0061] 具体的には、アクリル系榭脂としてはメタクリル酸メチル (PMMA)等、スチレン系榭 脂としてはポリスチレン(PS)、スチレンとアクリロニトリル共重合体(SAN)、スチレンと メタクリル酸メチル共重合体等、ポリエステル榭脂としては、ポリエチレンテレフタレー トゃポリエチレンナフタレート等、ォレフィン系榭脂としてはポリメチルペンテン (TPX) 等が挙げられる。
[0062] ポリカーボネート榭脂はビスフエノール類と、ホスゲン等の炭酸エステル類との反応 により製造される重合体である。脂環式アクリル榭脂としては、トリシクロデカンなどの 脂肪族環状炭化水素をエステル置換基に導入したアクリル系榭脂であり、ポリメタタリ ル酸トリシクロデカン、ポリメタクリル酸ノルボルナンなどが挙げられる。優れた低複屈 折率性、低吸湿性、耐熱性を有し、ピックアップレンズ、結像用レンズなどに用いられ ている。脂環式ォレフイン榭脂は、立体的に剛直な脂環基をォレフイン系ポリマーの 主鎖に導入したものであり、優れた耐熱性と低吸湿性を有し、車載用 CDプレーヤー などのレンズに用いられて!/、る。
[0063] ベンゼン環、脂肪族環等がエーテル結合を介して結ばれた重合体であるポリエー テル榭脂、ポリアミド榭脂、ポリイミド榭脂なども挙げることが出来る。またこれらに硫黄 原子を導入した榭脂、例えばメガネレンズ用途に用いられて 、るチォウレタン榭脂な ども用 、ることも可會である。
[0064] また、半導体封止剤用途には熱硬化型のエポキシ榭脂が好適に用いられる。
[0065] 本発明における榭脂組成物の製造方法は特に限定されるものではなぐ微粒子と 榭脂を均一に混合するのに用いられる方法であれば良ぐ通常用いられる従来公知 の方法で何ら構わない。
[0066] すなわち、具体的には例えば、榭脂成分と超微粒子ゾル液あるいは超微粒子粉末 をそれぞれ独立して作成し、その後に両者を混合させる、あるいは混練する方法、予 め作成した超微粒子が存在する条件で榭脂を作成する方法、予め作成した榭脂が 存在する条件で超微粒子を作成する方法など、 Vヽずれの方法も採用できる。
また、超微粒子をトリメトキシプロピルメチルアタリレートなどのシランカップリング剤 で処理したものをアタリレートモノマーに溶解分散させ、これを所望の型に注入成型 し、紫外線硬化により高屈折率レンズなどの光学部材を作成する方法も採用できる。
[0067] 超微粒子の分散安定性の観点カゝらは、超微粒子ゾル液と樹脂が溶解した溶液を均 一に混合し、溶剤を除去することで榭脂組成物を得る方法、あるいは榭脂モノマー中 に超微粒子を分散させておき重合させて直接榭脂組成物を作成する方法などが好 ましく挙げられる。
[0068] 本発明の榭脂組成物は、熱可塑性である場合、押し出し成形、射出成形、真空成 形、ブロー成形、圧縮成形等の従来公知の成型加工が可能であり、ディスク、フィル ム等種々の成形体を得ることが出来る。
[0069] 本発明において用いられる上記榭脂マトリックス成分の量は、特に制限はなぐ用 途に応じて適宜設定されるが、榭脂組成物中に含まれる超微粒子含有量は 0. 1〜9 0重量%であることが好ましい。さらに好ましくは 10〜70重量%である。これより小さ V、と高屈折率ィ匕など微粒子の特性が付与されな 、可能性がある。これより大き!/、と可 橈性、強靱性等が不足する可能性がある。
[0070] 本発明にお ヽて用いられる超微粒子、ゾル液はスズ修飾ルチル型酸化チタン超微 粒子又は該超微粒子を無機酸ィ匕物で被覆してなる超微粒子のみが望ま Uヽが、本 発明の効果を阻害しない範囲で、屈折率向上などの効果が劣るものの他の無機酸 化物超微粒子と併用することも可能である。例えばコロイダルシリカ、酸化アンチモン コロイドなどを挙げることが出来る。
[0071] また、本発明の榭脂組成物に、紫外線吸収剤、酸化防止剤、熱安定剤、光安定剤 、帯電防止剤、離型剤、可塑剤、分散染料、顔料、色素、染色向上剤等、必要に応 じて任意の添加物を添加することも可能である。
[0072] 従って、本発明に係るルチル型酸ィ匕チタン超微粒子、または当該超微粒子を核微 粒子とし、一種以上の無機酸化物を含む被覆層から構成される複合無機酸化物超 微粒子は高屈折率であり、透明性、分散性、耐光性、耐光性等に優れているため、 該超微粒子を用いて形成した榭脂組成物は高屈折率、透明性、耐光性、耐候性、 耐熱性、成形加工性等を併せ持ち、任意に屈折率を調節できるものであり、光学部 材に好適に用いられる。
[0073] 本発明の榭脂組成物を含んで構成される光学部材には特に制限はなぐ例えば部 材の全部あるいは一部に使用することが出来る。より具体的には光学レンズ (メガネレ ンズ、ピックアップレンズ等)、光学プリズム、光導波路、光ファイバ一、薄膜成形物、 光学用接着剤、光半導体用封止材料等の高屈折率光学部材の材料等が挙げられ る。
[0074] 以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるもの ではない。
[0075] (スズ修飾ルチル型酸ィ匕チタン超微粒子、ゾル液の調製)
[製造例 1]
四塩化スズ五水和物 0. 27gを 100mlナス型フラスコに仕込み、イオン交換水 50m 1に溶解し、酸化塩化チタンの塩酸水溶液 (Ti 15重量%含有) 5mlをカ卩えた。溶液 の pHは— 0. 1であった。(仕込み Ti濃度 =0. 45、 Sn/Ti=0. 03)マグネチックス ターラーで攪拌し、 50°Cで 1時間加熱したところ、白色の沈殿を得た。遠心分離を行 い、白色沈殿を回収し、イオン交換水(pH6. 2)を 20mLカ卩ぇ pHを上昇させると再分 散した。これを限外ろ過し、固形分 2重量%のゾル液を得た。 120°Cで 2時間熱風乾 燥を行った後に粉末 X線回折測定を行ったところ、ルチル型酸ィ匕チタンであった。結 晶径は回折ピークの半値幅力も Debye— Sherrerの式を用いて計算した。その結果 、結晶径が平均それぞれ短軸 5nm、長軸 8nmであった。電子顕微鏡観察は透過型 電子顕微鏡を用い、メッシュに希薄ゾル液を滴下したものを倍率 20万倍、 200万倍 で観察した。その結果、平均凝集粒子径が 23nmのルチル型酸ィ匕チタンであった。 誘導結合プラズマ法分析による SnZTiの元素モル比は 0. 02であった。
[0076] [製造例 2]
製造例 1で四塩化スズ五水和物を 0. 9g用いた以外は製造例 1と同様に実施した。 (仕込み Ti濃度 =0. 45、 Sn/Ti=0. 1)得られたゾル液の固形分を製造例 1と同 様に分析したところ、結晶径が平均それぞれ短軸 5nm、長軸 8nmで、平均凝集粒子 径が 20nmのルチル型酸化チタンであった。 SnZTiの元素モル比は 0. 06であった
[0077] (無機酸ィ匕物被覆スズ修飾ルチル型酸ィ匕チタン超微粒子ゾル液の調製)
[製造例 3]
三酸化アンチモン 30gの水懸濁液 240gに水酸化カリウム 20gを加えて 70°Cに加 熱した後、 35重量%過酸化水素水 30gを滴下し、五酸化アンチモン換算で 10重量
%アンチモン酸塩水溶液を調製した。 pH = 8. 3であった。
[0078] 水ガラス (酸ィ匕ケィ素 35重量%含有)〖こイオン交換水を加えて酸ィ匕ケィ素換算で
3重量%の水溶液とした。
水溶液を陽イオン交換樹脂に通液し、 pH = 2. 6のケィ酸ゾル液を調製した。つづ いて pH = 8. 2となるまで 10重量%水酸ィ匕ナトリウム水溶液を滴下し、 2重量%の安 定ィ匕ケィ酸ゾル液とした。
[0079] 製造例 1で調製した 2重量%スズ修飾ルチル型酸ィ匕チタン超微粒子ゾル液 1500g に上記のアンチモン酸塩水溶液 66gを加えて 85°Cで 8時間加熱した。限外ろ過を行
V、精製し、 4重量%のアンチモン酸化物被覆スズ修飾ルチル型酸化チタン超微粒子 ゾル液とした。 [0080] このアンチモン酸化物被覆スズ修飾ルチル型酸化チタン超微粒子ゾル液 2500gを 90°Cに加熱した。減圧にして水を除去しながら液量を 2500gに保ちながら上記の安 定ィ匕ケィ酸ゾル液 630gを 90時間かけて滴下し、さらに 3時間加熱した。限外ろ過を 行 、精製し、 10重量%のアンチモン酸ィ匕物 +ケィ素酸化物被覆スズ修飾ルチル型 酸ィ匕チタン超微粒子ゾル液を調製した。 120°Cで 2時間熱風乾燥を行った後に誘導 結合プラズマ法による元素分析を行ったところ、酸ィ匕物換算で酸ィ匕アンチモン Z酸 化ケィ素 Zスズ修飾酸ィ匕チタン重量比 =0. 12/0. 9Z1であった。
[0081] [製造例 4]
製造例 2で調製したスズ修飾ルチル型酸ィ匕チタン超微粒子ゾル液を用いた以外は 製造例 3と同様にしてゾル液を調製した。
[0082] (榭脂組成物の調製)
(実験例 1)
製造例 1で得られたゾル液をエバポレーターによりメタノール置換を行 、、 4重量% ゾル液とした。 50gを取り出し、酢酸 50mlを加えて室温で 60時間攪拌した。沈殿を 遠心分離した後、酢酸ェチルで三回洗浄した。得られたケーキを湿潤状態で 1ーブ タノール 100ml中に加え、超音波処理を一時間実施した。これにトルエン 100mlを 加え、超微粒子が均一に分散した溶液を得た。この溶液に n—へキシルァミン 50ml を添加し、 1時間攪拌した後、生成した沈殿を遠心分離して回収した後、メタノール 洗浄と遠心分離の操作を二回繰り返した。この酢酸'へキシルァミン複合修飾超微粒 子の沈殿をクロ口ホルム 40ml中に均一分散させた溶液に、別に調製した精製済み のビスフエノール Aとェピクロロヒドリンの共重合ポリマー(シグマアルドリッチジャパ ン (株)製)のペレット 2gをクロ口ホルム 20mlに溶解させた溶液を混合し、 30分間攪 拌した。溶液の一部をエバポレーターで濃縮した後、キャスト 60°Cで一昼夜乾燥させ 、 2mm厚みのフィルムを作成した。フィルムは無色透明であった。また、溶液の一部 をヘプタン中に投入し、得られた白色粉末を 60°C減圧乾燥後、熱プレスをし、無色 透明な 2mm厚みのフィルムを作成した。 (微粒子 Z榭脂重量比 =0. 5)
[0083] (実験例 2)
製造例 2で得られたゾル液を用いた以外は実験例 1と同様にして榭脂組成物を作 成した。
[0084] (実験例 3)
製造例 3で得られたゾル液を用いた以外は実験例 1と同様にして榭脂組成物を作 成した。
[0085] (実験例 4)
製造例 4で得られたゾル液を用いた以外は実験例 1と同様にして榭脂組成物を作 成した。
[0086] (実験例 5)
製造例 3で得られたゾル液をエバポレーターによりメタノール置換を行い 4重量%ゾ ル液とした。ゾル液 37. 5g (微粒子分 1. 5g)にアクリル酸 0. 2gをカ卩えて攪拌した。さ らにジペンタエリスリトールペンタアタリレートとジペンタエリスリトールへキサアタリレー トの混合物 1. 3g (DPHA、 日本ィ匕薬 (株)製)、光開始剤として 2, 4, 6—トリメチルベ ンゾィルージフエ-ルーフォスフィンオキサイド (TMDPO)を 0. 17g添加し、充分攪 拌し混合後溶媒を除去し、メタルノ、ライドランプ (強度 120WZcm)を 60秒間照射し 、 2mm厚のフィルムを作成した。 (微粒子 Z榭脂重量比 =0. 5)
[0087] (実験例 6)
製造例 4で得られたゾル液を用いた以外は実験例 5と同様にして榭脂組成物を作 成した。
[0088] (無機酸化物被覆アナターゼ型酸化チタン超微粒子ゾル液、榭脂組成物の調製)
(製造例 5)
イオン交換水 2Lに酸化塩化チタンの塩酸水溶液 (Ti含有率 15重量%) 20mlをカロ え、 60°Cで 6時間加熱した。酸ィ匕塩ィ匕ジルコニウム八水和物 32gを溶解した水溶液 5 Ogを滴下し、 90°Cに昇温し、 1時間加熱した。室温まで冷却した後、限外ろ過を行つ た。室温まで冷却した後、限外ろ過により濃縮、脱イオン処理を行い、 4重量%ゾル 液とした。得られたゾル液の固形分を実施例 1と同様に分析したところ、結晶径が短 軸、長軸共に平均 5nmのアナターゼ型酸ィ匕チタンであった。酸化ジルコニウム被覆 アナターゼ型酸化チタン超微粒子の組成は酸化物換算で酸化ジルコニウム/酸ィ匕 チタン重量比 =0. 85Z1であった。 [0089] (実験例 7)
製造例 5で得られたゾル液用いた以外は、実験例 1と同様にして榭脂組成物を形 成した。
[0090] (実験例 8)
実験例 7で得られたゾル液を用いた以外は実験例 5と同様にして榭脂組成物を作 成した。
[0091] (ルチル型酸ィ匕チタンの合成、榭脂組成物の調製)
(製造例 6)
四塩化スズ五水和物を添加しな 、以外は製造例 1と同様に実施した。得られた白 色沈殿は再分散しな力つた。同様に分析したところ、凝集粒子径 200nm以上のルチ ル型酸ィ匕チタンであった。
[0092] (実験例 9)
製造例 6で得られたゾル液用いた以外は、実験例 1と同様にして榭脂組成物を形 成した。
[0093] 上記方法により調製した超微粒子、榭脂組成物について、以下に示すように屈折 率を評価した。その結果を表 1に示す。
[0094] (a)屈折率の測定:
•微粒子屈折率:固形分 0. 2g相当のゾル液にポリビュルピロリドン 200mgをカ卩え、さ らにイオン交換水 10gをカ卩えたものを石英基板にスピンコート法により膜厚約 700A に塗布し、塗布膜を 120°Cで乾燥後、すみやかに自動波長走査型エリプソメーター M— 150 (日本分光 (株)製)を用いて測定した。含有される固形分の体積分率から 固形分の屈折率を評価した。
'榭脂組成物:溶解した榭脂組成物溶液を石英基板上にスピンコート法により膜厚約 700 Aに塗布し、熱風乾燥した塗布膜を測定した。
[0095] (表 1) 用いた微粒子ゾル液 微粒子屈折率 樹脂屈折率 微粒子の Snm組成モル比 の製造方法
実験倒 1 製造例 1 2.71 1.80 0.02 実験側 2 製造倒 2 2.65 1.79 0.06
実験例 3 製造例 3 2.46 1.77 0.02 実験倒 4 製造例 4 2.45 1.77 0.06
実験側 5 製造例 3 2.46 1.74 0.02 実験側 6 製造例 4 2.45 1.73 0.06
実験例 7 製造例 5 2.12 1.68 (Zr/Ti= 0.85/1) 実験例 8 製造例 5 2.12 1.65 (Zr/Ti= 0.85/1) 実験側 9 製造倒 6 測定不可 測定不可 Sn含まず
[0096] また、上記方法により調製した無機酸ィ匕物被覆スズ修飾ルチル型酸ィ匕チタン超微 粒子、榭脂組成物について、以下に示すように耐光性を評価した。その結果を表 2に 示す。
[0097] (b)耐光性:得られた榭脂組成物をソーラーシユミレーター(Type : sss— 252161— ER ゥシォ電機 (株)製)による 300時間照射後のクラックの発生、および黄変、褐色 化がないものを Aとした。
八… 変化無し
… 褐色化、クラック発生
[0098] (表 2)
Figure imgf000022_0001
実験例 1〜6ではスズ修飾ルチル型酸ィ匕チタン超微粒子を用 、た。上記結果から ゎカゝるように、スズ修飾ルチル型酸ィ匕チタン超微粒子を用いることでアナターゼ型酸 化チタンの場合よりも高屈折率、かつ無機酸化物で被覆することにより耐光性を有す る複合無機酸化物超微粒子、榭脂組成物が得られて 、ることが分かる。

Claims

請求の範囲
[1] ルチル型の結晶構造を有する酸化チタンを含有する屈折率が 1. 5〜2. 8である無 機酸化物超微粒子、または
当該超微粒子を核微粒子とし、一種以上の無機酸化物を含む被覆層から構成され る屈折率が 1. 5〜2. 8である複合無機酸化物超微粒子、
を含有してなる榭脂組成物。
[2] 前記ルチル型酸ィ匕チタンが、スズ修飾ルチル型の結晶構造を有する酸ィ匕チタンで ある、請求項 1記載の榭脂組成物。
[3] 前記超微粒子の SnZTi組成モル比が 0. 001以上 0. 5以下である、請求項 2記載 の榭脂組成物。
[4] 前記のルチル型の結晶構造を有する酸化チタンを含有する無機酸化物超微粒子 中のルチル型酸化チタン超微粒子力 チタンに対するスズのモル比(SnZTi)が 0. 001〜2のスズィ匕合物共存下、 Ti濃度が 0. 07〜5molZlのチタン化合物水溶液を P Hがー 1〜3の範囲で反応させて得られ、 SnZTi組成モル比が 0. 001-0. 5である スズ修飾ルチル型酸ィ匕チタン超微粒子である請求項 1記載の榭脂組成物。
[5] 前記無機酸化物超微粒子に含有されるルチル型の結晶構造を有する酸化チタン の含有量が、前記無機酸化物超微粒子の重量に基づいて、 5〜: L00重量 %である、 請求項 1〜4の何れかに記載の榭脂組成物。
[6] 榭脂組成物の全重量に基づ!、て、前記無機酸化物超微粒子または前記複合無機 酸化物超微粒子の含有量が、 0. 1〜90重量 %である、請求項 1〜5の何れか〖こ記載 の榭脂組成物。
[7] 前記の複合無機酸化物超微粒子の被覆層 Z核微粒子の重量比が 1Z99〜90Z
10である請求項 1〜6の何れかに記載の榭脂組成物。
[8] 前記無機酸化物超微粒子または前記複合無機酸化物超微粒子の結晶径の短軸、 長軸が 2〜20nmである請求項 1〜7の何れかに記載の榭脂組成物。
[9] 前記無機酸ィ匕物超微粒子または前記複合無機酸ィ匕物超微粒子カゝらなる凝集体の 平均凝集粒子径が、
10〜: LOOnmである請求項 1〜8の何れかに記載の榭脂組成物 [10] 前記無機酸化物超微粒子または前記複合無機酸化物超微粒子が、水あるいは有 機溶剤に分散してなるゾルである請求項 1〜9の何れかに記載の榭脂組成物。
[11] 屈折率が 1. 5〜2. 8である請求項 1〜10の何れかに記載の榭脂組成物。
[12] 請求項 1〜11の何れかに記載の榭脂組成物を含んでなる光学部材。
[13] 光学レンズ、光学プリズム、光導波路、光ファイバ一、薄膜成形物、光学用接着剤 又は光半導体用封止材料に用いることを特徴とする、請求項 12記載の光学部材。
PCT/JP2006/321613 2005-11-02 2006-10-30 酸化物超微粒子を含有する樹脂組成物 WO2007052580A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007542715A JPWO2007052580A1 (ja) 2005-11-02 2006-10-30 酸化物超微粒子を含有する樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005319581 2005-11-02
JP2005-319581 2005-11-02

Publications (1)

Publication Number Publication Date
WO2007052580A1 true WO2007052580A1 (ja) 2007-05-10

Family

ID=38005731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321613 WO2007052580A1 (ja) 2005-11-02 2006-10-30 酸化物超微粒子を含有する樹脂組成物

Country Status (3)

Country Link
JP (1) JPWO2007052580A1 (ja)
TW (1) TW200728378A (ja)
WO (1) WO2007052580A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046579A (ja) * 2007-08-20 2009-03-05 Mitsubishi Chemicals Corp 粒子含有組成物、粒子含有樹脂フィルム及びそれを含んで構成される光学部材
JP2009096835A (ja) * 2007-10-13 2009-05-07 Konica Minolta Opto Inc 複合樹脂組成物の製造方法、及び光学素子
WO2010098366A1 (en) * 2009-02-25 2010-09-02 Fujifilm Corporation Metal oxide fine particles, dispersion liquid of metal oxide fine particles, and molded product
JPWO2013081136A1 (ja) * 2011-12-02 2015-04-27 日産化学工業株式会社 ルチル型酸化チタンゾルの製造方法
WO2018096914A1 (ja) * 2016-11-24 2018-05-31 信越化学工業株式会社 無機粒子-シロキサン複合物およびその製造方法、並びに無機粒子含有シリコーン組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250826A1 (ja) * 2019-06-11 2020-12-17 住友電気工業株式会社 樹脂組成物、光ファイバのセカンダリ被覆材料、光ファイバ及び光ファイバの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255532A (ja) * 1989-03-30 1990-10-16 Catalysts & Chem Ind Co Ltd ルチル型酸化チタンゾルの製造法
WO1998039253A1 (fr) * 1997-03-03 1998-09-11 Nissan Chemical Industries, Ltd. Procede de production de sols de composites, de composition de revetement et d'elements optiques
JP2000063119A (ja) * 1998-08-10 2000-02-29 Nissan Chem Ind Ltd 変性された酸化チタン−酸化ジルコニウム−酸化第二スズ複合ゾル及びその製造方法
JP2000204301A (ja) * 1999-01-14 2000-07-25 Catalysts & Chem Ind Co Ltd 被膜形成用塗布液および合成樹脂製レンズ
JP2001122621A (ja) * 1999-08-16 2001-05-08 Nissan Chem Ind Ltd 変性金属酸化物ゾル及びその製造方法
JP2002363442A (ja) * 2001-06-08 2002-12-18 Catalysts & Chem Ind Co Ltd アンチモン酸化物被覆酸化チタン含有複合酸化物粒子および該粒子分散ゾル、該微粒子含有透明被膜形成用塗布液、透明被膜付基材。
JP2004271612A (ja) * 2003-03-05 2004-09-30 Fuji Photo Film Co Ltd 高屈折率層、反射防止膜、偏光板、及びそれを用いた画像表示装置
JP2005263854A (ja) * 2004-03-16 2005-09-29 Hoya Corp コーティング組成物の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4851685B2 (ja) * 2003-10-31 2012-01-11 三井化学株式会社 ルチル型酸化チタン超微粒子の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255532A (ja) * 1989-03-30 1990-10-16 Catalysts & Chem Ind Co Ltd ルチル型酸化チタンゾルの製造法
WO1998039253A1 (fr) * 1997-03-03 1998-09-11 Nissan Chemical Industries, Ltd. Procede de production de sols de composites, de composition de revetement et d'elements optiques
JP2000063119A (ja) * 1998-08-10 2000-02-29 Nissan Chem Ind Ltd 変性された酸化チタン−酸化ジルコニウム−酸化第二スズ複合ゾル及びその製造方法
JP2000204301A (ja) * 1999-01-14 2000-07-25 Catalysts & Chem Ind Co Ltd 被膜形成用塗布液および合成樹脂製レンズ
JP2001122621A (ja) * 1999-08-16 2001-05-08 Nissan Chem Ind Ltd 変性金属酸化物ゾル及びその製造方法
JP2002363442A (ja) * 2001-06-08 2002-12-18 Catalysts & Chem Ind Co Ltd アンチモン酸化物被覆酸化チタン含有複合酸化物粒子および該粒子分散ゾル、該微粒子含有透明被膜形成用塗布液、透明被膜付基材。
JP2004271612A (ja) * 2003-03-05 2004-09-30 Fuji Photo Film Co Ltd 高屈折率層、反射防止膜、偏光板、及びそれを用いた画像表示装置
JP2005263854A (ja) * 2004-03-16 2005-09-29 Hoya Corp コーティング組成物の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046579A (ja) * 2007-08-20 2009-03-05 Mitsubishi Chemicals Corp 粒子含有組成物、粒子含有樹脂フィルム及びそれを含んで構成される光学部材
JP2009096835A (ja) * 2007-10-13 2009-05-07 Konica Minolta Opto Inc 複合樹脂組成物の製造方法、及び光学素子
WO2010098366A1 (en) * 2009-02-25 2010-09-02 Fujifilm Corporation Metal oxide fine particles, dispersion liquid of metal oxide fine particles, and molded product
JPWO2013081136A1 (ja) * 2011-12-02 2015-04-27 日産化学工業株式会社 ルチル型酸化チタンゾルの製造方法
US9023147B2 (en) * 2011-12-02 2015-05-05 Nissan Chemical Industries, Ltd. Method for producing rutile type titanium oxide sol
WO2018096914A1 (ja) * 2016-11-24 2018-05-31 信越化学工業株式会社 無機粒子-シロキサン複合物およびその製造方法、並びに無機粒子含有シリコーン組成物

Also Published As

Publication number Publication date
TW200728378A (en) 2007-08-01
JPWO2007052580A1 (ja) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4749200B2 (ja) 高屈折率樹脂組成物
JP4749201B2 (ja) 半導体発光素子封止用組成物
KR100809758B1 (ko) 주석 변성 루틸형 산화티탄 미립자
TWI428282B (zh) 金屬氧化物複合溶膠,塗佈組成物及光學構件
KR101907882B1 (ko) 이산화규소-산화제2주석 복합산화물 피복 산화티탄 함유 금속 산화물 입자
TWI433816B (zh) 改性金屬氧化物複合溶膠,塗覆組成物及光學構件
JP4792320B2 (ja) 高屈折率硬化膜
JP4841880B2 (ja) 無機酸化物粒子
KR101437200B1 (ko) 표면 피복된 이산화티탄졸, 그 제조법 및 그것을 포함한 코팅 조성물
EP1930298B1 (en) Zirconium oxide-tin oxide composite sol, coating composition and optical member
JP5096014B2 (ja) 有機無機複合組成物とその製造方法、成形体および光学部品
JP2006342311A (ja) 高屈折率薄膜
WO2007052580A1 (ja) 酸化物超微粒子を含有する樹脂組成物
JP4906361B2 (ja) 無機酸化物超微粒子およびその製造法
JP5070180B2 (ja) 有機シロキサンオリゴマー修飾無機酸化物超微粒子
JP4673664B2 (ja) コーティング用高屈折率樹脂組成物
JP2007270098A (ja) 高屈折率コーティング用組成物
JPWO2009025127A1 (ja) 光学用樹脂材料及び光学素子
JP5037393B2 (ja) 金属酸化物微粒子分散液及び成形体
JP6080583B2 (ja) 表面改質無機複合酸化物微粒子、その製造方法、該微粒子を含む分散液、光学基材用塗布液、光学基材用塗膜および塗膜付基材
JP2008239920A (ja) 金型成形用樹脂組成物および成形体
JPH10245224A (ja) 酸化チタン−酸化スズ複合ゾルの製造方法
JP2007093893A (ja) 光学部品
JP4641212B2 (ja) 複合酸化物超微粒子およびその製造法
JP2009217114A (ja) 光学部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007542715

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822570

Country of ref document: EP

Kind code of ref document: A1