WO2007052516A1 - ビフェニル誘導体の製造方法 - Google Patents

ビフェニル誘導体の製造方法 Download PDF

Info

Publication number
WO2007052516A1
WO2007052516A1 PCT/JP2006/321305 JP2006321305W WO2007052516A1 WO 2007052516 A1 WO2007052516 A1 WO 2007052516A1 JP 2006321305 W JP2006321305 W JP 2006321305W WO 2007052516 A1 WO2007052516 A1 WO 2007052516A1
Authority
WO
WIPO (PCT)
Prior art keywords
biphenyl derivative
biphenyl
general formula
producing
mol
Prior art date
Application number
PCT/JP2006/321305
Other languages
English (en)
French (fr)
Inventor
Tamio Hayashi
Jiro Nakatani
Original Assignee
Toray Fine Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Fine Chemicals Co., Ltd. filed Critical Toray Fine Chemicals Co., Ltd.
Priority to CN2006800403241A priority Critical patent/CN101296889B/zh
Priority to US12/092,466 priority patent/US7893306B2/en
Priority to EP06822282A priority patent/EP1955990B1/en
Publication of WO2007052516A1 publication Critical patent/WO2007052516A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • C07B37/04Substitution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B49/00Grignard reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • C07C17/2632Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions involving an organo-magnesium compound, e.g. Grignard synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C22/00Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
    • C07C22/02Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings
    • C07C22/04Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings
    • C07C22/08Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/18Polycyclic aromatic halogenated hydrocarbons

Definitions

  • the present invention relates to a method for producing a bifur derivative, and more particularly to a method for producing an industrially superior biphenyl derivative.
  • Biphenyl derivatives are compounds widely used in the fields of organic chemistry and polymer chemistry, and are used in a wide variety of industrial applications, such as fine chemicals, raw materials for pharmaceuticals and agricultural chemicals, raw materials for plastics, electronic information materials, and optical materials. It is a useful compound.
  • Patent Document 1 proposes a method of reacting an aromatic chlorinated Grignard reagent with an aromatic bromide in the presence of a nickel catalyst.
  • Non-Patent Documents 1 and 2 show that after an aromatic iodide or bromide is reacted with magnesium and converted to a Grignard reagent, an iron (III) chloride catalyst is used and a Grignard reagent is used in the presence of an oxidizing agent. The manufacturing method which couples each other is proposed.
  • Patent Document 1 when the substrate to be reacted with the Grignard reagent is an aromatic chlorinated product, the yield of the biphenyl derivative is low, and it cannot be industrially applied. .
  • the production methods described in Non-Patent Documents 1 and 2 are highly reactive as starting substrates, expensive aromatic iodinated or aromatic brominated products are used, and thus the produced biphenyl derivatives are also used. It has become expensive.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 63-295520 (Examples 1, 2, 3, 4)
  • Non-Patent Document 1 Organic 'Letters (ORGANIC LETTERS) Vol.7, No.3 (2005), 491 493
  • Non-Patent Literature 2 Organic 'Letters (ORGANIC LETTERS) Vol.7, No.lO (2005), 19 43- 1946
  • the object of the present invention is to produce industrially by using inexpensive and easily available raw materials.
  • the object is to provide a method for producing a biphenyl derivative having excellent productivity.
  • a method for producing a biphenyl derivative of the present invention that achieves the above object is represented by the following general formula (2) in the method for producing a biphenyl derivative represented by the following general formula (1).
  • the chlorine atom of the benzene derivative is reacted with magnesium metal, converted to a Grignard reagent, and the Grignard reagent is subjected to a coupling reaction in the presence of a catalyst.
  • A represents at least one selected from a trifluoromethyl group and fluorine force, and n is an integer of 1 to 4.
  • A represents at least one selected from a trifluoromethyl group and a fluorine force, and n is an integer of 1 to 4.
  • the method for producing a biphenyl derivative of the present invention uses an inexpensive aromatic chlorinated compound as a starting substrate, and thus can produce a Grignard reagent as an intermediate at low cost. By carrying out a ring reaction, a biphenyl derivative can be efficiently produced with high productivity.
  • the method for producing a biphenyl derivative of the present invention uses a benzene derivative represented by the following general formula (2) as a starting substrate.
  • A represents at least one selected from trifluoromethyl group and fluorine force, and n is An integer from 1 to 4.
  • n is an integer of 1 to 4, preferably 1. This is because when n is 1, a cheaper starting substrate can be used, and the reaction proceeds more efficiently because there is little steric reaction inhibition effect due to substituents in this reaction.
  • the starting substrate include: o black benzotrifluoride, m-black benzotrifluoride, ⁇ -black benzotrifluoride, di (trifluoromethyl) black benzene , Tri (trifluoromethyl) black-opened benzene, tetra (trifluoromethyl) black-opened benzene, o chloro-funoleo-opened benzene, m-chloro-funoleo-opened benzene, p-chloro-fluoro-noreobenzene, chloro-di-fureno-reo-opened benzene, chloro-trif
  • Examples include, but are not limited to, o benzotrifluoride, m benzotrifluoride, p benzotrifluoride, o chlorotribenzene.
  • Funole Roben m—Kuroguchi Funore Robenzene, p Kuroguchi Funole It is
  • the chlorine atom of the benzene derivative of the formula (2) is reacted with magnesium metal to convert to a Grignard reagent.
  • the transfer reaction to the Grignard reagent can be a known transfer reaction without particular limitation.
  • the magnesium metal is not particularly limited, but it is preferable to use a powdered metal.
  • the reaction to convert to the Grignard reagent is performed in a dehydrated system. It is preferable to use a dehydrated solvent V or to add an inexpensive Grignard reagent to remove water.
  • iodine, bromine, or an inexpensive compound containing these may be added in order to take a magnesium oxide surface oxide film and increase the reactivity.
  • Preferred examples of such a compound include methyl iodide, methyl bromide, iodinated chill, bromide til and the like.
  • the catalyst used in the coupling reaction between Grignard reagents preferably includes Fe, Ag, Cu, Co, Zn, Ni, Pd metal or a compound thereof.
  • These metal chlorides, bromides, iodides, fluorides, acetates, acetyl cettonates, carbonates, hydroxides and nitrates are preferably used.
  • salty ferrous iron ( ⁇ ), salty ferric iron (III), ferrous bromide and ferric bromide are preferable.
  • the catalyst is used in an amount of 0.01 mol% to 20 mol% with respect to 1 mol of the starting substrate. 0.05 mol% to 10 mol% is more preferable. By making the amount of catalyst used in the above range, the coupling reaction can be carried out efficiently and economically.
  • the coupling reaction is preferably performed in the presence of an oxidizing agent.
  • the oxidizing agent is not particularly limited as long as it can oxidize metals, but from the viewpoint of handling and separation from products, halogenated aliphatic hydrocarbons are preferred.
  • a halogenated aliphatic hydrocarbon having a number of 1 to 5 is more preferable.
  • chloromethane dichloromethane, chloroform, carbon tetrachloride, bromomethane, dibromomethane, tribromomethane, tetrabromomethane, black ethane, dichloroethane, trichloroethane, tetrachloroethane, tetrachloroethylene, pentachloroethane , Hexachloroethane, bromoethane, dibromoethane, tribromoethane, tetrabromoethane, black propane, dichloropropane, trichloroprone, chlorobutane, dichlorobutane, black pentane, dichloropentane, bromopropane, dibromopropane, tribromopronone, bromo Examples include chloromethane and bromochloroethane.
  • chloromethane Chloromethane, dichloromethane, chloroethane, dichloroethane, dichloropropane, bromomethane, dibromomethane, bromoethane, dibromoethane, and dibromopropane are preferable, and dichloropropane is more preferable.
  • the amount of the oxidizing agent used is preferably 0.1 mol times to 5 mol times relative to 1 mol of the starting substrate, more preferably 0.2 mol times to 3 mol times. preferable. 0. If less than 1 mol, the effect of catalyst regeneration by the oxidant is small. If more than 5 mol, the amount of unreacted oxidant remains, which imposes load on isolation and purification of the target product, resulting in inefficiency. Is.
  • the solvent used in the production method of the present invention can be arbitrarily selected from any solvent as long as the reaction can proceed efficiently.
  • an ether-based solvent that easily produces a Grignard reagent is used.
  • Specific examples of the solvent include jetyl ether, diisopropyl ether, tetrahydrofuran, N, N dimethylformamide, N, N dimethylacetamide, N-methylpyrrolidone, 1,3 dioxane, 1,4 dioxane, and cyclopropynole.
  • Methinore Etenore Methinolator Shary Butinore Ete Nore, Ethylene Glyco Dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, benzene, toluene, xylene and the like.
  • the amount of the solvent used may be any amount depending on the solubility of the benzene derivative represented by the formula (2), the Grignard reagent and the product, the slurry concentration, or the properties of the reaction solution. However, it is preferably 0.5 to 100 mole times the amount of the benzene derivative represented by the formula (2). If the amount is less than 0.5 mole times, the yield of the Grignard reagent will be low.
  • the reaction temperature of the coupling reaction is preferably 45 100 ° C, more preferably 55 70 ° C. If the reaction temperature is lower than 45 ° C, the reaction hardly progresses, and even if the reaction proceeds, it may stop halfway. If the reaction temperature exceeds 100 ° C, the Grignard reagent will not react. It is not preferable because it may decompose.
  • A represents at least one selected from a trifluoromethyl group and a fluorine force, and n is an integer of 14.
  • A represents at least one selected from a trifluoromethyl group and a fluorine force
  • X represents a halogen atom
  • n is an integer of 14 and a and b are integers
  • Total is 1 8 To do.
  • the composition containing the biphenyl derivative obtained by the production method of the present invention preferably has a content of the halogenated biphenyl derivative represented by the formula (3) of 20% by weight or less. More preferred is 0.01% to 20% by weight. If the halogenated biphenyl derivative exceeds 20% by weight, it will cause a reduction in the quality of the final product when used as a raw material for fine chemicals, raw materials for pharmaceuticals and agricultural chemicals, resin materials for plastics, electronic information materials and optical materials. That is, it is not preferable because quality problems such as purity reduction, coloring, strength reduction, and optical property deterioration of the final product occur.
  • the isolation method include a distillation purification method, a crystallization method, an extraction method, force ram separation using silica, etc., a simulated moving bed adsorption separation method, and any of the isolation methods may be used. Purification is more preferred. In addition, it is possible to purify by combining a plurality of these isolation methods to further increase the purity.
  • the distillation purification method may use any of simple distillation, rectification, vacuum distillation, and atmospheric distillation. Preferably, vacuum distillation is used.
  • the halogenated biphenyl derivative since the halogenated biphenyl derivative has a higher boiling point than the desired biphenyl derivative, the biphenyl derivative is distilled and the halogenated biphenyl derivative is distilled as little as possible. Distillation operation such as leaving it in the remainder is necessary.
  • the content of the halogenated biphenyl derivative in the obtained biphenyl derivative may be 0.01 wt% to 20 wt% by V or any isolation method. More preferably, the content is 0.01% to 5% by weight.
  • the content of the halogen biphenyl derivative within the above range, it is possible to maintain the quality, such as purity, coloring, strength, and optical properties, of the final product made from the biphenyl derivative.
  • the biphenyl derivative obtained by the production method of the present invention can be converted into various compounds in a wide variety of fields, and it is highly significant that it can be obtained industrially at low cost and efficiently.
  • Tetrahydrofuran (143.6 g) (l. 99 mol; manufactured by nacalai tesque) and magnesium powder (16.lg) (0.664 mol; manufactured by Chuo Co., Ltd.) were charged into a reactor equipped with a thermometer. Stir. Tertiary 1-butylmagnesium chloride 2 g (0.017 mol; manufactured by Tokyo Chemical Industry Co., Ltd.) was added to remove water in the system. Next, 10 g (0.0554 mol; manufactured by MITENI) of o-benzotrifluoride was added, followed by 2 g of odor ether (0.018 mol; manufactured by nacal ai tesque). After stirring for a while, it was confirmed that exotherm occurred. Next, 90 g (0.
  • Example 1 In Example 1, except that the catalyst was changed to 5.86 g (0.0166 mol; Wako Pure Chemical Industries, Ltd.) Reaction was performed. The yield of 2,2 'trifluoromethyl biphenyl relative to o-black benzotrifluoride was 48%. The by-product black mouth 2,2'-trifluoromethyl biphenyl was 6.7% by weight with respect to 2,2'-trifluoromethyl biphenyl.
  • Execution column f Reaction was carried out in the same manner as in Example 1 except that 1,2 dichlorethane was changed to 124.7 g (0.664 mol; manufactured by Wako Pure Chemical Industries). went. o Black mouth The yield of 2,2'-trifluoromethylbiphenyl relative to benzotrifluoride was 38%. The by-product black mouth 2,2'-trifluoromethyl biphenyl was 29% by weight with respect to 2,2'-trifluoromethyl biphenyl.
  • Example 4 2.70 g (0.0166 mol; manufactured by Wako Pure Chemical Industries, Ltd.) of salted pig iron (III) was calorified with 3 g (0.04 mol) of tetrahydrofuran [this, 1, 2 dichloropronone 75 Reaction was performed in the same manner as in Example 4 except that the Grignard reagent solution was added dropwise to the catalyst-containing solution to which Og (0.664 mol; manufactured by Wako Pure Chemical Industries, Ltd.) was added while maintaining the reaction solution temperature at 45-60 ° C. Went. o The yield of 2,2'-trifluoromethylbiphenyl relative to black benzotrifluoride was 73%. The by-product black mouth 2,2'-trifluoromethyl biphenyl was 1.7% by weight with respect to 2,2'-trifluoromethyl biphenyl.
  • Example 6 The reaction was performed in the same manner as in Example 1 except that o-black benzotrifluoride was changed to m-black benzotrifluoride (manufactured by MITENI) in Example 1. The yield of 3,3'-trifluoromethyl biphenyl relative to m-black benzotrifluoride was 41%. The by-product black mouth 3,3'-trifluoromethyl biphenyl was 10.5% by weight with respect to 3,3'-trifluoromethyl biphenyl.
  • Example 4 10 g of o-black benzotrifluoride was changed to 7.2 g (0.0554 mol; Wako Pure Chemical Industries, Ltd.) of p-black fluobenzene, and o-black benzotrifluora
  • the reaction was carried out in the same manner as in Example 4 except that 90 g of id was changed to 65.2 g of p-chlorofluorobenzene (0. 499 mol; manufactured by Wako Pure Chemical Industries, Ltd.).
  • the yield of 4,4'-difluorobiphenyl relative to p-chlorofluorobenzene was 55%.
  • the by-product black mouth 4,4'-difluorobiphenyl was 3.5% by weight with respect to 4,4'-difluorobiphenyl.
  • Tetrahydrofuran (143.6 g) (l. 99 mol; manufactured by nacalai tesque) and magnesium powder (16.lg) (0.664 mol; manufactured by Chuo Co., Ltd.) were charged into a reactor equipped with a thermometer. Stir. Tertiary 1-butylmagnesium chloride 2 g (0.017 mol; manufactured by Tokyo Chemical Industry Co., Ltd.) was added to remove water in the system. Next, 10 g of o-black benzotrifluoride (0.0554 mol; manufactured by MITENI) was added, and then 2 g of odor ether (0.018 mol; manufactured by nacal ai tesque) was added. After stirring for a while, it was confirmed that exotherm occurred.
  • the reaction solution lOOg obtained in Example 1 was added to 1 OOg of 3% aqueous hydrochloric acid solution in a 300 ml separatory funnel, mixed well at room temperature for 30 minutes, and allowed to stand for 30 minutes. After standing, the solution was separated to obtain 78.3 g of an oil phase. Then, this oil phase was simply distilled under reduced pressure. After the initial distillation cut, 17.3 g of distillate was obtained at 100 to 130 ° C under a vacuum degree of 1.33 kPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

明 細 書
ビフエニル誘導体の製造方法
技術分野
[0001] 本発明は、ビフ -ル誘導体の製造方法に関し、さらに詳しくは、工業的に優れた ビフエニル誘導体の製造方法に関する。
背景技術
[0002] ビフ ニル誘導体は、有機化学 ·高分子化学分野で広く用いられる化合物であり、 ファインケミカル、医農薬原料、榭脂'プラスチック原料、電子情報材料、光学材料な ど、工業用途として多岐にわたる分野で有用な化合物である。
[0003] ビフエ二ル誘導体の製造方法としては、芳香族ハロゲン化物を出発基質とすること が知られている。特許文献 1はニッケル触媒存在下で、芳香族塩素化物のグリニヤー ル試薬と芳香族臭素化物とを反応させる方法を提案している。一方、非特許文献 1 及び 2は、芳香族ヨウ素化物又は芳香族臭素化物をマグネシウムと反応させ、グリニ ヤール試薬に転化した後、塩化鉄 (III)触媒を用い、酸化剤の共存下、グリニャール 試薬同士をカップリングさせる製造方法を提案している。
[0004] しかし、特許文献 1に記載された方法では、グリニャール試薬と反応させる基質が 芳香族塩素化物になった場合、ビフエニル誘導体の収率は低ぐ工業的に適用でき るものではな力つた。また、非特許文献 1及び 2に記載された製造方法は、出発基質 として反応性が高いものの、高価な芳香族ヨウ素化物又は芳香族臭素化物を使用す るため、製造されたビフエ-ル誘導体も高価なものとなってしまって 、た。
特許文献 1 :日本国特開昭 63— 295520号公報(実施例 1, 2, 3, 4)
非特許文献 1 :オーガニック 'レターズ(ORGANIC LETTERS) Vol.7,No.3 (2005),491 493
非特許文献 2 :オーガニック 'レターズ(ORGANIC LETTERS) Vol.7,No.lO (2005), 19 43- 1946
発明の開示
[0005] 本発明の目的は、安価で容易に入手可能な原料を使用することにより工業的に生 産性に優れたビフヱ-ル誘導体の製造方法を提供することである。
[0006] 上記目的を達成する本発明のビフエ二ル誘導体の製造方法は、下記一般式(1)で 示されるビフエ-ル誘導体の製造方法にお 、て、下記一般式(2)で示されるベンゼ ン誘導体の塩素原子をマグネシウム金属と反応させ、グリニャール試薬に転ィ匕し、該 グリニャール試薬同士を触媒存在下でカップリング反応させることを特徴とする。
[0007] [化 1]
Figure imgf000004_0001
(ただし、 Aは、トリフルォロメチル基、フッ素力も選ばれる少なくとも 1つを表し、 nは、 1〜4の整数とする。 )
[化 2]
Figure imgf000004_0002
(ただし、 Aは、トリフルォロメチル基、フッ素力も選ばれる少なくとも 1つを表し、 nは、 1〜4の整数とする。 )
[0009] 本発明のビフエニル誘導体の製造方法は、安価な芳香族塩素化物を出発基質とし て使用することから、低コストでグリニャール試薬を中間体として生成することができ、 このグリニャール試薬同士をカップリング反応させることにより効率的にビフエ-ル誘 導体を高 、生産性の下に製造することができる。
発明を実施するための最良の形態
[0010] 以下に本発明の詳細を記載する。
本発明のビフエ-ル誘導体の製造方法は、下記一般式 (2)で示されるベンゼン誘 導体を出発基質とする。
[0011] [化 3]
Figure imgf000004_0003
(ただし、 Aは、トリフルォロメチル基、フッ素力も選ばれる少なくとも 1つを表し、 nは、 1〜4の整数とする。 )
[0012] 前記式(2)において、 nは、 1〜4の整数であり、好ましくは 1である。 nが 1のときに、 より安価な出発基質が使用でき、さらに本反応において置換基による立体的な反応 阻害効果が少ないためより効率的に反応が進行するからである。
[0013] 出発基質の具体例としては、 o クロ口べンゾトリフルオライド、 m—クロ口べンゾトリ フルオライド、 ρ—クロ口べンゾトリフルオライド、ジ(トリフルォロメチル) クロ口べンゼ ン、トリ(トリフルォロメチル) クロ口ベンゼン、テトラ(トリフルォロメチル) クロ口ベン ゼン、 o クロローフノレオ口ベンゼン、 m—クロローフノレオ口ベンゼン、 p—クロローフ ノレォロベンゼン、クロロージフノレオ口ベンゼン、クロロートリフノレオ口ベンゼン、クロロー テトラフルォロベンゼンなどが挙げられ、中でも好ましいのは、 o クロ口べンゾトリフ ルォライド、 m クロ口べンゾトリフルオライド、 p クロ口べンゾトリフルオライド、 o ク ロロ一フノレ才ロベンゼン、 m—クロ口一フノレ才ロベンゼン、 p クロ口一フノレ才口べンゼ ンである。
[0014] 本発明にお 、て、前記式(2)のベンゼン誘導体の塩素原子をマグネシウム金属と 反応させて、グリニャール試薬に転ィ匕する。グリニャール試薬への転ィ匕反応は、特に 制限されることなぐ公知の転ィ匕反応を利用することができる。
[0015] マグネシウム金属は、特に限定されないが、粉末状のものを用いることが好ましい。
[0016] グリニャール試薬に転ィ匕する反応は、脱水された系で行われる。脱水した溶媒を用 V、ること或 、は安価なグリニャール試薬を添加し、水を除去することが好ま 、。
[0017] また、マグネシウム金属の表面酸ィ匕皮膜をとり、反応性を高めるため、ヨウ素、臭素 或いは、これらを含む安価な化合物を添加するとよい。このような化合物の例としては 、ヨウ化メチル、臭化メチル、ヨウ化工チル、臭化工チル等が好ましく挙げられる。
[0018] 本発明の製造方法において、グリニャール試薬同士のカップリング反応に用いられ る触媒は、 Fe、 Ag、 Cu、 Co、 Zn、 Ni、 Pd金属またはその化合物が好ましく挙げられ 、化合物としては、これら金属の塩化物、臭化物、ヨウ化物、フッ化物、酢酸塩、ァセ チルァセトナート塩、炭酸塩、水酸化物、硝酸塩が好ましく用いられる。中でも塩ィ匕第 一鉄 (Π)、塩ィ匕第二鉄 (III)、臭化第一鉄、臭化第二鉄が好ましい。
[0019] また、触媒の使用量は、出発基質 1モルに対し、 0. 01モル%〜20モル%を用いる のが好ましぐ 0. 05モル%〜10モル%がさらに好ましい。触媒の使用量を上記の範 囲とすることにより、カップリング反応を効率良くかつ経済的に行うことができる。
[0020] 本発明の製造方法は、カップリング反応を酸化剤の共存下で行うことが好ましい。
酸化剤共存下では、カップリング反応で還元された触媒が容易に酸化され、再生さ れるため、触媒のターンオーバー数が向上し、反応収率が向上するからである。
[0021] 酸化剤としては、金属を酸ィ匕できるものであれば、特に限定されるものではないが、 取り扱いおよび生成物との分離の観点から、ハロゲンィ匕脂肪族炭化水素が好ましぐ 炭素数 1〜5のハロゲンィ匕脂肪族炭化水素がより好ましい。具体的には、クロロメタン 、ジクロロメタン、クロ口ホルム、四塩化炭素、ブロモメタン、ジブロモメタン、トリブロモ メタン、テトラブロモメタン、クロ口エタン、ジクロロエタン、トリクロロェタン、テトラクロ口 ェタン、テトラクロロエチレン、ペンタクロロェタン、へキサクロロェタン、ブロモエタン、 ジブロモェタン、トリブロモェタン、テトラブロモェタン、クロ口プロパン、ジクロロプロパ ン、トリクロ口プロノ ン、クロロブタン、ジクロロブタン、クロ口ペンタン、ジクロロペンタン 、ブロモプロパン、ジブロモプロパン、トリブロモプロノ ン、ブロモクロロメタン、ブロモク ロロェタンなどが挙げられる。中でも好ましいのは、クロロメタン、ジクロロメタン、クロ口 ェタン、ジクロロエタン、ジクロロプロパン、ブロモメタン、ジブロモメタン、ブロモエタン 、ジブロモェタン、ジブロモプロパンであり、さらに好ましくは、ジクロロプロパンである
[0022] また、酸化剤の使用量は、出発基質 1モルに対し、 0. 1モル倍量〜 5モル倍量用い るのが好ましぐ 0. 2モル倍量〜 3モル倍量がより好ましい。 0. 1モル倍量より少ない と酸化剤による触媒再生の効果が少なぐ 5モル倍量よりも多いと、未反応の酸化剤 が残存し、 目的物の単離精製で負荷がかかり、非効率的である。
[0023] 本発明の製造方法に用いる溶媒は、反応を効率よく進行させることができるもので あれば、いずれの溶媒でも任意に選択できる力 好ましくは、グリニャール試薬が生 成しやすいエーテル系溶媒が好ましい。溶媒の具体例としては、ジェチルエーテル、 ジイソプロピルエーテル、テトラヒドロフラン、 N, N ジメチルホルムアミド、 N, N ジ メチルァセトアミド、 N—メチルピロリドン、 1, 3 ジォキサン、 1, 4 ジォキサン、シク 口プロピノレメチノレエーテノレ、メチノレーターシャリーブチノレエーテノレ、エチレングリコー ルジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコール ジメチルエーテル、テトラエチレングリコールジメチルエーテル、ベンゼン、トルエン、 キシレンなどが挙げられる。中でも好ましいのは、ジェチルエーテル、ジイソプロピル エーテル、テトラヒドロフラン、 1, 3 ジォキサン、 1, 4 ジォキサン、シクロプロピノレメ チルエーテル、メチルーターシャリーブチルエーテルである。
[0024] また、溶媒の使用量については、前記式(2)で示されるベンゼン誘導体、グリニャ ール試薬および生成物の溶解性やスラリー濃度または反応液の性状に応じ、任意の 量で構わないが、好ましくは、前記式(2)で示されるベンゼン誘導体に対し、 0. 5 1 00モル倍量である。 0. 5モル倍量未満だと、グリニャール試薬の収率が低くなり、 10 0モル倍量を超えると生産性が悪ぐ非経済的なプロセスとなる。
[0025] 本発明の製造方法において、カップリング反応の反応温度は、 45 100°Cが好ま しぐ 55 70°Cがさらに好ましい。反応温度が 45°Cより低いと、反応がほとんど進行 せず、例え反応が進行したとしても、途中で停止することがあり、また反応温度が 100 °Cを超えると、グリニャール試薬が反応する前に分解することがあり好ましくない。
[0026] 本発明の製造方法において、カップリング反応の際に、 目的とする下記一般式(1) で示されるビフエ-ル誘導体と共に、下記一般式(3)で示されるハロゲンィ匕ビフエ- ル誘導体が副生することから、ビフエ-ル誘導体を含む組成物が得られる。
[0027] [化 5]
Figure imgf000007_0001
(ただし、 Aは、トリフルォロメチル基、フッ素力も選ばれる少なくとも 1つを表し、 nは、 1 4の整数とする。 )
[化 6]
Figure imgf000007_0002
(ただし、 Aは、トリフルォロメチル基、フッ素力も選ばれる少なくとも 1つを表し、 Xは、 ハロゲン原子を表し、 nは、 1 4の整数、 a及び bは、整数であり aと bの合計が 1 8と する。)
[0029] 本発明の製造方法によって得られたビフ ニル誘導体を含む組成物は、前記式(3 )で示されるハロゲンィ匕ビフエ-ル誘導体の含量が 20重量%以下であることが好まし く、 0. 01重量%〜20重量%がより好ましい。ハロゲン化ビフエニル誘導体が 20重量 %を超えると、ファインケミカル、医農薬原料、榭脂'プラスチック原料、電子情報材料 、光学材料などの原料として用いると、最終製品の品質低下を引き起こす力 である 。すなわち、最終製品の純度低下、着色、強度低下、光学特性低下などの品質上の 問題が発生し好ましくない。
[0030] 従って、本発明の製造方法において、副生するハロゲン化ビフエ-ル誘導体の含 量が多 ヽ場合には、得られたカップリング反応液からハロゲン化ビフエニル誘導体の 分離除去操作を行い、その含量をできる限り少なくし、 目的のビフエニル誘導体を単 離することが好ましい。単離方法は、蒸留精製法、晶析法、抽出法、シリカ等による力 ラム分離、擬似移動床吸着分離法などが好ましく挙げられ、いずれの単離方法を用 いてもよいが、なかでも蒸留精製がより好ましい。また、これら単離方法のうち複数の 方法を組み合わせて精製し、さらに純度を高めることもできる。
[0031] 本発明にお 、て、反応液中に、活性なマグネシウム等が残存して 、る可能性がある ことから、反応液に水又は酸性水を加え、反応で生成したマグネシウム塩を水相に除 去した後、得られた油相から、ビフエ-ル誘導体を単離する方法が好ましい。例えば 、蒸留精製法は、単蒸留、精留、減圧蒸留、常圧蒸留のいずれを用いても構わない 力 好ましくは、減圧蒸留が用いられる。蒸留精製において、 目的のビフエ-ル誘導 体よりハロゲン化ビフエニル誘導体の方が高沸点であるため、ビフエ-ル誘導体を留 出させ、ハロゲンィ匕ビフエ-ル誘導体をできる限り留出させずに、缶残等に残すなど の蒸留操作が必要である。
[0032] 本発明の製造方法は、 V、ずれかの単離方法で、得られたビフエ-ル誘導体中のハ ロゲン化ビフ ニル誘導体含量を 0. 01重量%〜20重量%にすることが好ましぐさ らに好ましくは 0. 01重量%〜5重量%とするとよい。ハロゲンィ匕ビフエ-ル誘導体含 量を上記の範囲内とすることにより、ビフヱ-ル誘導体を原料とする最終製品の純度 、着色、強度、光学特性などの品質を維持することができる。 [0033] 本発明の製造方法により得られたビフヱニル誘導体は、多岐にわたる分野で種々 の化合物へ変換することが可能であり、安価かつ効率よく工業的に得られることの意 義は大きい。
[0034] 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれに限定される ものではない。
実施例
[0035] 以下の実施例及び比較例で用いて!/、る試薬類のメーカーグレードは、記載のな!ヽ 限りいずれも 1級レベル以上に相当するものである。
[0036] 実施例 1
テトラヒドロフラン 143. 6g (l . 99mol;nacalai tesque社製)、マグネシウム粉末 16. lg (0. 664mol ;中央ェ産社製)、を温度計付き反応器に投入し、系内を窒素置換し ながら、撹拌した。ターシャリ一-ブチルマグネシウムクロライド 2g (0. 017mol;東京 化成社製)を添加し、系内の水分を除去した。次に o クロ口べンゾトリフルオライド 10 g (0. 0554mol ;MITENI社製)を投入し、続いて、臭ィ匕ェチル 2g (0. 018mol ;nacal ai tesque社製)を加えた。暫く撹拌し、発熱が起こることを確認した。次に反応液温度 35〜50°Cに保ちな力 Sら、 o クロ口べンゾトリフルオライド 90g (0. 499mol)を滴下し た。滴下終了後、 45°Cで 3時間撹拌しながら、熟成した。グリニャール試薬の収率は 91 %であった。
[0037] 次に、塩ィ匕鉄 (III) 2. 70g (0. 0166mol ;和光純薬社製)にテトラヒドロフラン 3g(0 . 04mol)をカ卩えた液に、 1, 2 ジクロロエタン 65g (0. 664mol ;nacalai tesque社製) を加え、触媒含有溶液を調製した。これを上記グリニャール試薬溶液に、反応液温 度 45〜60°Cに保ちながら滴下し、カップリング反応を行った。滴下終了後、 65°Cで 3時間反応を行った。反応終了後、冷却し、反応液を水に展開し、ジェチルエーテル (nacalai tesque社製、特級)で油層を抽出し、これに内部標準物質であるァセトフエノ ン(nacalai tesque社製、特級)をカ卩えて、ガスクロマトグラフィー法(カラム: GLサイエ ンス社製:イナ一トキヤップ 1 長さ 60m X径 0. 25mm、膜厚 0. 40 m)で分析した 。 o クロ口べンゾトリフルオライドに対する 2, 2' トリフルォロメチルビフエ-ルの収 率は 69%であった。また、副生したクロ口 2, 2' —トリフルォロメチルビフエ-ルは、 2 , 2' —トリフルォロメチルビフエ-ルに対して、 11重量%であった。
[0038] 実施例 2
実施例 1において、触媒を塩ィ匕鉄 (III)力 鉄 (III)ァセチルァセトナート 5. 86g (0 . 0166mol ;和光純薬社製)に変更した以外は、実施例 1と同様に反応を行った。 o- クロ口べンゾトリフルオライドに対する 2, 2' トリフルォロメチルビフエ-ルの収率は 48%であった。また、副生したクロ口 2, 2' —トリフルォロメチルビフエ-ルは、 2, 2 ' —トリフルォロメチルビフエ-ルに対して、 6. 7重量%であった。
[0039] 実施例 3
実施 f列: Uこお 、て、 1, 2 ジクロ口エタンを 1, 2 ジブロモェタン 124. 7g (0. 664 mol ;和光純薬社製)に変更した以外は、実施例 1と同様に反応を行った。 o クロ口 ベンゾトリフルオライドに対する 2, 2' —トリフルォロメチルビフエ-ルの収率は 38% であった。また、副生したクロ口 2, 2' —トリフルォロメチルビフエ-ルは、 2, 2' —ト リフルォロメチルビフエ-ルに対して、 29重量%であった。
[0040] 実施例 4
実施 f列: Uこお 、て、 1, 2 ジクロ口エタンを 1, 2 ジクロロブロノ ン 75. Og (0. 664 mol ;和光純薬社製)に変更した以外は、実施例 1と同様に反応を行った。 o クロ口 ベンゾトリフルオライドに対する 2, 2' —トリフルォロメチルビフエ-ルの収率は 72% であった。また、副生したクロ口 2, 2' —トリフルォロメチルビフエ-ルは、 2, 2' —ト リフルォロメチルビフエ-ルに対して、 8. 5重量%であった。
[0041] 実施例 5
実施例 4において、塩ィ匕鉄 (III) 2. 70g (0. 0166mol ;和光純薬社製)にテトラヒド 口フラン 3g (0. 04mol)をカロえた液【こ、 1 , 2 ジクロロプロノ ン 75. Og (0. 664mol ; 和光純薬社製)を加えた触媒含有溶液へ反応液温度を 45〜60°Cに保ちながら、グ リニヤール試薬溶液を滴下した以外は、実施例 4と同様に反応を行った。 o クロ口べ ンゾトリフルオライドに対する 2, 2' —トリフルォロメチルビフエ-ルの収率は 73%で あった。また、副生したクロ口 2, 2' —トリフルォロメチルビフエ-ルは、 2, 2' —トリフ ルォロメチルビフエ-ルに対して、 1. 7重量%であった。
[0042] 実施例 6 実施例 1において、 o—クロ口べンゾトリフルオライドを m—クロ口べンゾトリフルオラィ ド (MITENI社製)に変更した以外は、実施例 1と同様に反応を行った。 m—クロ口ベン ゾトリフルオライドに対する 3, 3' —トリフルォロメチルビフエ-ルの収率は 41%であ つた。また、副生したクロ口 3, 3' —トリフルォロメチルビフエ-ルは、 3, 3' —トリフ ルォロメチルビフエ-ルに対して、 10. 5重量%であった。
[0043] 実施例 7
実施例 4において、 o—クロ口べンゾトリフルオライド 10gを p—クロ口フルォ口べンゼ ン 7. 2g (0. 0554mol;和光純薬社製)に変更し、および o—クロ口べンゾトリフルオラ イド 90gを p—クロ口フルォロベンゼン 65. 2g (0. 499mol;和光純薬社製)に変更し た以外は、実施例 4と同様に反応を行った。 p—クロロフルォロベンゼンに対する 4, 4 ' —ジフルォロビフエ-ルの収率は 55%であった。また、副生したクロ口 4, 4' —ジ フルォロビフエ-ルは、 4, 4' ージフルォロビフエ-ルに対して、 3. 5重量%であつ た。
[0044] 比較例 1
テトラヒドロフラン 143. 6g (l . 99mol;nacalai tesque社製)、マグネシウム粉末 16. lg (0. 664mol ;中央ェ産社製)、を温度計付き反応器に投入し、系内を窒素置換し ながら、撹拌した。ターシャリ一-ブチルマグネシウムクロライド 2g (0. 017mol;東京 化成社製)を添加し、系内の水分を除去した。次に o—クロ口べンゾトリフルオライド 10 g (0. 0554mol ;MITENI社製)を投入し、続いて、臭ィ匕ェチル 2g (0. 018mol ;nacal ai tesque社製)を加えた。暫く撹拌し、発熱が起こることを確認した。次に反応液温度 35〜50°Cに保ちな力 Sら、 o—クロ口べンゾトリフルオライド 90g (0. 499mol)を滴下し た。滴下終了後、 45°Cで 3時間撹拌しながら、熟成した。グリニャール試薬の収率は 91. 0%であった。
[0045] 次に、無水塩化ニッケル 3. 59g (0. 028mol ;nacalai tesque社製)をテトラヒドロフラ ン 30gに溶カゝした溶液を上記グリニャール試薬溶液に、液温 40°Cで保持しながら、 ゆっくりと投入した。次に、反応温度 60°Cに保ちながら o—クロ口べンゾトリフルォライ ド 100gを滴下した。反応終了後、実施例 1と同様にしてガスクロマトグラフィー法で分 祈した。 o—クロ口べンゾトリフルオライドに対する 2, 2' -トリフルォロメチルビフエ- ルの収率は 2%であった。また、クロ口 2, 2' -トリフルォロメチルビフエ-ルの副生は 認められなかった。
実施例 8
実施例 1で得られた反応液 lOOgを 300mlの分液ロートに入った 3%塩酸水溶液 1 OOgに投入し、室温で 30分間良く混合し、 30分静置した。静置後、分液して、油相 7 8. 3gを取得した。そして、この油相を減圧下で単蒸留した。初留カット後、真空度 1. 33kPaの条件下、 100〜130°Cでの留出分 17. 3gを取得した。取得した留出液中 の 2, 2' -トリフルォロメチルビフエ-ルの濃度は 95. 6重量0 /0であり、クロ口 2, 2' - トリフルォロメチルビフエ-ルの濃度は 3. 5重量0 /。であった。

Claims

請求の範囲
下記一般式(1)で示されるビフエニル誘導体の製造方法にお!、て、下記一般式(2 )で示されるベンゼン誘導体の塩素原子をマグネシウム金属と反応させ、グリニヤー ル試薬に転ィ匕し、該グリニャール試薬同士を触媒存在下でカップリング反応させるビ フエニル誘導体の製造方法。
一般式 (1)
Figure imgf000013_0001
(ただし、 Aは、トリフルォロメチル基、フッ素力も選ばれる少なくとも 1つを表し、 nは、 1〜4の整数とする。 )
一般式 (2)
Figure imgf000013_0002
(ただし、 Aは、トリフルォロメチル基、フッ素力も選ばれる少なくとも 1つを表し、 nは、 1〜4の整数とする。 )
[2] 前記式(2)にお 、て、前記置換基 Aの数 nが 1である請求項 1に記載のビフエニル 誘導体の製造方法。
[3] 前記触媒が、 Fe、 Ag、 Cu、 Co、 Zn、 Ni、 Pdから選ばれる少なくとも 1つの金属又 はその化合物である請求項 1又は 2に記載のビフヱニル誘導体の製造方法。
[4] 前記カップリング反応が、酸化剤の共存下で行われる請求項 1〜3のいずれかに記 載のビフエ二ル誘導体の製造方法。
[5] 前記酸化剤が、ハロゲンィ匕脂肪族炭化水素である請求項 4に記載のビフ ニル誘 導体の製造方法。
[6] 前記カップリング反応の反応温度力 45〜100°Cである請求項 1〜5のいずれかに 記載のビフエニル誘導体の製造方法。
[7] 前記ビフエ二ル誘導体を蒸留精製し、下記一般式 (3)で示されるハロゲン化ビフ
-ル誘導体の含有量を 0.01重量%〜20重量%とする請求項 1〜6のいずれかに記 載のビフヱニル誘導体の製造方法。
一般式 (3)
Figure imgf000014_0001
(ただし、 Aは、トリフルォロメチル基、フッ素力も選ばれる少なくとも 1つを表し、 Xは、 ハロゲン原子を表し、 nは、 1〜4の整数、 a及び bは、整数であり aと bの合計が 1〜8と する。)
請求項 1〜7のいずれかに記載の製造方法で得られたビフエ-ル誘導体を含む組 成物であって、下記一般式(3)で示されるハロゲン化ビフエ-ル誘導体の含有量が 0 .01重量%〜 20重量%であるビフエニル誘導体組成物。
一般式 (3)
Figure imgf000014_0002
(ただし、 Aは、トリフルォロメチル基、フッ素力も選ばれる少なくとも 1つを表し、 Xは、 ハロゲン原子を表し、 nは、 1〜4の整数、 a及び bは、整数であり aと bの合計が 1〜8と する。)
PCT/JP2006/321305 2005-11-04 2006-10-25 ビフェニル誘導体の製造方法 WO2007052516A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800403241A CN101296889B (zh) 2005-11-04 2006-10-25 联苯衍生物的制备方法
US12/092,466 US7893306B2 (en) 2005-11-04 2006-10-25 Process for production of biphenyl derivatives
EP06822282A EP1955990B1 (en) 2005-11-04 2006-10-25 Process for production of biphenyl derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-321405 2005-11-04
JP2005321405 2005-11-04

Publications (1)

Publication Number Publication Date
WO2007052516A1 true WO2007052516A1 (ja) 2007-05-10

Family

ID=38005667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321305 WO2007052516A1 (ja) 2005-11-04 2006-10-25 ビフェニル誘導体の製造方法

Country Status (5)

Country Link
US (1) US7893306B2 (ja)
EP (1) EP1955990B1 (ja)
KR (1) KR20080066746A (ja)
CN (1) CN101296889B (ja)
WO (1) WO2007052516A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059724A1 (fr) * 2006-11-13 2008-05-22 Toray Fine Chemicals Co., Ltd. Procédé de production de 2,2'-bis(trifluorométhyl)-4,4'-diaminobiphényle
EP2075241A1 (en) * 2006-10-16 2009-07-01 Toray Fine Chemicals Co., Ltd. Method for producing biphenyl derivative
US11827610B2 (en) 2021-09-15 2023-11-28 Enko Chem, Inc. Protoporphyrinogen oxidase inhibitors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113087592B (zh) * 2020-01-08 2022-07-26 浙江中欣氟材股份有限公司 一种4,4′-二溴八氟联苯的合成方法
CN115286493A (zh) * 2022-08-26 2022-11-04 北京格林凯默科技有限公司 4,4′-二乙氧基联苯的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295520A (ja) * 1987-05-26 1988-12-01 Yuki Gosei Yakuhin Kogyo Kk 非対称なビフェニル誘導体の製造法
JP2005126330A (ja) * 2003-10-21 2005-05-19 Toray Ind Inc ビフェニル誘導体の製造法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1996746A (en) 1932-03-08 1935-04-09 Dow Chemical Co Preparation of aryl magnesium chloride
US2959596A (en) 1957-11-22 1960-11-08 Metal & Thermit Corp Aryl chloride-cyclic ether grignard reagents
JPH0694430B2 (ja) * 1990-04-20 1994-11-24 セントラル硝子株式会社 ビストリフルオロメチルビフェニルの製造法
JPH075488B2 (ja) * 1990-10-31 1995-01-25 セントラル硝子株式会社 ビストリフルオロメチルビフェニルの製造法
WO2007128601A2 (en) * 2006-05-04 2007-11-15 Ludwig-Maximilians-Universitaet Muenchen Method for the preparation of a compound of the general formula r1-r1 and/or r1-r2 using homo and hetero coupling reactions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295520A (ja) * 1987-05-26 1988-12-01 Yuki Gosei Yakuhin Kogyo Kk 非対称なビフェニル誘導体の製造法
JP2005126330A (ja) * 2003-10-21 2005-05-19 Toray Ind Inc ビフェニル誘導体の製造法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAHIEZ G. ET AL.: "Iron-Catalyzed Homo-Coupling of Simple and Functionalized Arylmagnesium Reagents", ORGANIC LETTERS, vol. 7, no. 10, 12 May 2005 (2005-05-12), pages 1943 - 1946, XP003012553 *
NAGANO T. ET AL.: "Iron-Catalyzed Oxidative Homo-Coupling of Aryl Grignard Reagent's", ORGANIC LETTERS, vol. 7, no. 3, 3 February 2005 (2005-02-03), pages 491 - 493, XP003012552 *
See also references of EP1955990A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075241A1 (en) * 2006-10-16 2009-07-01 Toray Fine Chemicals Co., Ltd. Method for producing biphenyl derivative
EP2075241A4 (en) * 2006-10-16 2011-01-05 Toray Finechemicals Co Ltd METHOD FOR PRODUCING A BIPHENYL DERIVATIVE
JP5210639B2 (ja) * 2006-10-16 2013-06-12 民生 林 ビフェニル誘導体の製造方法
WO2008059724A1 (fr) * 2006-11-13 2008-05-22 Toray Fine Chemicals Co., Ltd. Procédé de production de 2,2'-bis(trifluorométhyl)-4,4'-diaminobiphényle
US11827610B2 (en) 2021-09-15 2023-11-28 Enko Chem, Inc. Protoporphyrinogen oxidase inhibitors

Also Published As

Publication number Publication date
KR20080066746A (ko) 2008-07-16
EP1955990A4 (en) 2009-02-18
CN101296889A (zh) 2008-10-29
US20080319238A1 (en) 2008-12-25
CN101296889B (zh) 2012-07-18
US7893306B2 (en) 2011-02-22
EP1955990B1 (en) 2012-08-22
EP1955990A1 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
JP6449791B2 (ja) クロロアルカンの製造方法
JP5210639B2 (ja) ビフェニル誘導体の製造方法
TWI394738B (zh) 1,2,3,4-tetrachlorohexafluorobutane
JP2015500807A (ja) 塩素化アルカンの製造方法
WO2007052516A1 (ja) ビフェニル誘導体の製造方法
JP5060098B2 (ja) ビフェニル誘導体の製造方法
JP2009079008A (ja) ビフェニル−3,4,3′,4′−テトラカルボン酸の製造方法
JP5212692B6 (ja) 2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルの製造方法
JPWO2008059724A6 (ja) 2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルの製造方法
JP6086163B2 (ja) 2’−トリフルオロメチル基置換芳香族ケトンの製造方法
JP5196341B2 (ja) ビフェニル誘導体の製造方法
JP6861060B2 (ja) 4,4′−ジヨード−3,3′−ジメチルビフェニルの製造方法
JP5208471B2 (ja) ビフェニル−2,3,2′,3′−テトラカルボン酸の製造方法
JP2915887B2 (ja) m−クロロベンゾトリフルオライドの製法
WO2022070992A1 (ja) フッ素化芳香族アルデヒドの製造方法
CN107446590A (zh) 一种合成末端含氟的双环己基烯类液晶的工艺
JP5572421B2 (ja) 3,5−ジ−tert−ブチルハロゲノベンゼンの製造方法
JP2008174519A (ja) テトラヒドロピランを溶媒とする対称ビフェニル化合物の製造方法
WO2012026477A1 (ja) β,β-ジフルオロ-α,β-不飽和カルボニル化合物の製造方法
JP2018002665A (ja) 1,5−ジブロモナフタレンの製造方法
JP2000302704A (ja) 臭素化トリフルオロメチルベンゼン類の製造方法
JP2007332140A (ja) 2−ブロモ−4,4’−ジアルキルビフェニルの製造方法
JP2003335720A (ja) 1−(tert−ブトキシフェニル)−ω−ハロアルカンの製造法
JP2003221354A (ja) 1−(tert−ブトキシフェニル)−ω−ハロアルカン

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680040324.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087010468

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12092466

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006822282

Country of ref document: EP