WO2007052341A1 - バルーンカテーテルシステム - Google Patents

バルーンカテーテルシステム Download PDF

Info

Publication number
WO2007052341A1
WO2007052341A1 PCT/JP2005/020140 JP2005020140W WO2007052341A1 WO 2007052341 A1 WO2007052341 A1 WO 2007052341A1 JP 2005020140 W JP2005020140 W JP 2005020140W WO 2007052341 A1 WO2007052341 A1 WO 2007052341A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
shaft
end portion
distal end
catheter system
Prior art date
Application number
PCT/JP2005/020140
Other languages
English (en)
French (fr)
Inventor
Shutaro Satake
Original Assignee
Japan Electel Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electel Inc. filed Critical Japan Electel Inc.
Priority to EP05805500A priority Critical patent/EP1946712B1/en
Priority to US12/091,967 priority patent/US8226637B2/en
Priority to JP2007542188A priority patent/JP4702704B2/ja
Priority to PCT/JP2005/020140 priority patent/WO2007052341A1/ja
Publication of WO2007052341A1 publication Critical patent/WO2007052341A1/ja
Priority to US13/358,639 priority patent/US20120123331A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1002Balloon catheters characterised by balloon shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B17/2202Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00089Thermal conductivity
    • A61B2018/00101Thermal conductivity low, i.e. thermally insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00898Alarms or notifications created in response to an abnormal condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B2018/044Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid
    • A61B2018/046Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid in liquid form

Definitions

  • the present invention relates to a balloon catheter system, and more particularly to a balloon catheter system for thermotherapy used for treating cardiovascular diseases.
  • a high-frequency energizing electrode is arranged inside a deflated balloon, and a tissue that comes in contact with the balloon by radiating a high-frequency electric field from it Has been proposed (see, for example, Patent Document 1).
  • Patent Document 1 JP 2005-177293 A
  • the present invention provides a balloon catheter system that can efficiently cauterize only the target site, and can securely adhere the balloon to the shape of the target site.
  • the purpose is to do.
  • a none catheter system includes a catheter shaft composed of an outer tube shaft and an inner tube shaft, and the outer tube system.
  • a balloon provided between the tip of the shaft and the tip of the inner cylinder shaft, a heating element provided inside the balloon, and a temperature sensor for detecting the temperature inside the balloon;
  • a vibration generator for applying a vibration wave to the balloon through the liquid feed path; and vibration in the inside of the balloon
  • the balloon catheter system including a vibration wave deflecting device that deflects a wave the balloon has a contact portion that contacts the target site and a non-contact portion that does not contact the target site, and the film thickness of the contact portion Is formed thinner than the film thickness of the non-contact portion.
  • the balloon catheter system according to claim 2 is characterized in that in claim 1, the heating element is
  • High frequency electrode High frequency electrode, nichrome wire, infrared generator, heating diode, laser irradiator, ultrasonic generator.
  • the balloon catheter system according to claim 3 is characterized in that, in claim 1, the balloon is formed in accordance with a shape of a target site.
  • the balloon catheter system according to claim 4 is the balloon catheter system according to claim 3, wherein the balloon has a substantially spherical shape or an onion shape, and the contact portion is provided in the vicinity of a distal end portion of the balloon. .
  • the balloon catheter system according to claim 5 is the balloon catheter system according to claim 3, wherein the balloon is fixed to a distal end portion of the outer cylindrical shaft, and the distal end of the inner cylindrical shaft is extended from the spherical portion.
  • a cylindrical part fixed to the part, the contact part is provided in the vicinity of the tip part of the spherical part, and the film thickness of the tip part of the cylindrical part is made thinner than the film thickness of the base end part of the cylinder part It is characterized by that.
  • the balloon catheter system according to claim 6 is characterized in that, in claim 3, the balloon has a substantially cylindrical shape, and the contact portion is provided near a central portion of the balloon.
  • the balloon catheter system according to claim 7 is the balloon catheter system according to claim 1, wherein the outer cylinder shaft and the inner cylinder shaft are configured to be slidable with each other, and the distal end portion of the outer cylinder shaft and the inner cylinder shaft By changing the distance from the tip of the cylindrical shaft, the length of the noren changes, and by changing the pressure of the liquid supplied to the balloon, the balloon It is characterized in that it is configured so that the diameter of the tube changes.
  • the balloon catheter system according to claim 8 is the balloon catheter system according to claim 1, wherein a distance between a distal end portion of the outer cylindrical shaft and a distal end portion of the inner cylindrical shaft is set at a proximal end portion of the force tail shaft.
  • a distance adjusting device for adjusting is provided.
  • the balloon catheter system according to claim 9 is the balloon catheter system according to claim 8, wherein the distance adjusting device includes a female screw portion fixed to a base end portion of the outer cylinder shaft, and the female screw.
  • the fixed valve is tightened, the fixed valve is elastically deformed and the inner cylinder shaft is fixed to the female screw portion.
  • the balloon catheter system according to claim 10 is the balloon catheter system according to claim 9, wherein the distance adjusting device includes a pointer fixed to the inner cylindrical shaft inside the rotating knob, and the rotating knob has a frame shape.
  • the movable range of the pointer that is formed is limited to the inside of the rotary knob.
  • the balloon catheter system according to claim 11, wherein the rotary knob is a scale indicating a distance between a distal end portion of the outer cylindrical shaft and a distal end portion of the inner cylindrical shaft according to a position of the pointer. It is provided with.
  • the balloon catheter system according to claim 12 includes a first lead wire connected to the heating element and a second lead wire connected to the temperature sensor.
  • the heating element and the temperature sensor are fixed to the distal end portion of the inner cylindrical shaft, and the first lead wire and the second second end portion are disposed between the distal end portion and the proximal end portion of the inner cylindrical shaft.
  • a lead wire is fixed to the inner cylinder shaft.
  • thermometer that displays the temperature detected by the thermocouple; and a low-frequency band cut filter that is provided between the high-frequency electrode and the high-frequency generator and cuts a low-frequency component of the high-frequency that is output from the high-frequency generator force And a high frequency band that is provided between the thermocouple and the thermometer and cuts a high frequency component input to the thermometer.
  • a cut filter, and a lead wire connecting the thermocouple and the high-frequency band cut filter are provided, and a high frequency is supplied to the high-frequency electrode through the lead wire.
  • the balloon catheter system according to claim 14 is provided between a catheter shaft composed of an outer tube shaft and an inner tube shaft, and between a distal end portion of the outer tube shaft and a front end portion of the inner tube shaft. Formed between the outer cylinder shaft and the inner cylinder shaft, and the inside of the balloon formed between the outer cylinder shaft and the inner cylinder shaft.
  • the balloon is heated by a heating element, and a vibration generator that applies a vibration wave to the balloon through a liquid feeding path, and a vibration wave inside the balloon.
  • the liquid inside the balloon is agitated by the deflected vibration wave, the temperature distribution of the liquid inside the balloon is made uniform, and the balloon
  • a contact portion that contacts the target site and a non-contact portion that does not contact the target site, and the contact portion formed thinly has a film thickness that is smaller than the film thickness of the non-contact portion.
  • the contacted target site is selectively heated, and heat hardly leaks from the thick non-contact portion, so that only the target site can be efficiently cauterized efficiently.
  • the heating element is a high-frequency electrode, a nichrome wire, an infrared generator, a heating diode, a laser irradiator, or an ultrasonic generator V. Therefore, a wide variety of heating elements can be used.
  • the balloon is formed in conformity with the shape of the target portion, so that the balloon can be brought into close contact with the shape of the target site. it can.
  • the balloon has a spherical portion fixed to the distal end portion of the outer cylindrical shaft, and extends from the spherical portion to the distal end portion of the inner cylindrical shaft.
  • the cylindrical portion is fixed, the contact portion is provided in the vicinity of the distal end portion of the spherical portion, and the thickness of the distal end portion of the cylindrical portion is made thinner than the thickness of the proximal end portion of the cylindrical portion.
  • the distal end of the cylindrical portion expands and the cylindrical portion is securely fixed in the blood vessel, and the contact portion provided in the vicinity of the distal end of the spherical portion allows the peripheral portion of the blood vessel inlet to be The target site can be cauterized reliably.
  • the balloon is substantially cylindrical, and the contact portion is provided in the vicinity of the central portion of the balloon, so that the vicinity of the central portion of the balloon is provided. Can cauterize the target site.
  • the outer cylinder shaft and the inner cylinder shaft are configured to be slidable with each other, and the tip of the outer cylinder shaft and the tip of the inner cylinder shaft
  • the length of the balloon is changed by changing the distance
  • the diameter of the balloon is changed by changing the pressure of the liquid supplied to the balloon.
  • the length and diameter of the balloon can be changed to allow the close contact with the target region.
  • the proximal end portion of the catheter shaft is provided with a distance adjusting device that adjusts the distance between the distal end portion of the outer cylindrical shaft and the distal end portion of the inner cylindrical shaft.
  • the length of the balloon can be adjusted.
  • the distance adjusting device is provided with a female screw portion fixed to the base end portion of the outer cylinder shaft, and provided inside the female screw portion.
  • a fixed valve into which the inner cylindrical shaft is inserted, and a rotary knob having a male screw portion that is screwed into the female screw portion and tightens the fixed valve, and turns the rotary knob to tighten the fixed valve.
  • the fixed valve is elastically deformed so that the inner cylinder shaft is fixed to the female screw portion, so that the inner cylinder shaft can be brought into an appropriate position with respect to the outer cylinder shaft by a simple operation. Can be fixed.
  • the distance adjusting device includes a pointer fixed to the inner cylindrical shaft inside the rotary knob, and the rotary knob is formed in a frame shape. Since the movable range of the pointer is limited to the inside of the rotary knob, the movable range of the inner cylinder shaft relative to the outer cylinder shaft can be maintained within an appropriate range.
  • the rotary knob includes a scale indicating a distance between the distal end portion of the outer cylindrical shaft and the distal end portion of the inner cylindrical shaft according to the position of the finger.
  • the length of the balloon can be set accurately.
  • the balloon catheter system of claim 12 comprising: a first lead wire connected to the heating element; and a second lead wire connected to the temperature sensor; A temperature sensor is fixed to the distal end portion of the inner cylindrical shaft, and the first lead wire and the second lead wire are connected to the inner cylindrical shaft between the distal end portion and the proximal end portion of the inner cylindrical shaft.
  • the heating element is a high-frequency electrode
  • the temperature sensor is a thermocouple
  • a high-frequency generator for supplying a high frequency to the high-frequency electrode
  • the thermocouple A thermometer for displaying the temperature detected by the high frequency electrode, a low frequency band cut filter provided between the high frequency electrode and the high frequency generator for cutting low frequency components of the high frequency output from the high frequency generator force, and the thermoelectric A high-frequency band cut filter provided between a pair and the thermometer for cutting a high-frequency component input to the thermometer; and a lead wire connecting the thermocouple and the high-frequency band cut filter.
  • thermometer Since only the components are input, it is possible to simultaneously supply high frequency and detect temperature using the high frequency electrode and thermocouple lead.
  • the balloon has a contact portion that contacts the target portion and a non-contact portion that does not contact the target site, and a heat insulating layer is formed on the non-contact portion. Because it is provided, heat is difficult to leak even in non-contact part force provided with a heat insulation layer Therefore, only the target site can be selectively cauterized efficiently.
  • 1 to 5 show a first embodiment of the balloon catheter system of the present invention.
  • Reference numeral 1 denotes a catheter shaft.
  • the catheter shaft 1 includes an outer cylindrical shaft 2 and an inner cylindrical shaft 3 that are configured to be slidable with respect to each other.
  • a balloon 6 is provided between the distal end portion 4 of the outer cylindrical shaft 2 and the distal end portion 5 of the inner cylindrical shaft 3.
  • a high-frequency electrode 7 as a heating element and a thermocouple 8 as a temperature sensor for detecting the temperature inside the balloon are provided at the tip of the high-frequency electrode 7.
  • a liquid supply path 9 that leads to the inside of the balloon 6 is formed between the outer cylinder shaft 2 and the inner cylinder shaft 3.
  • the balloon 6 has a contact part 11 that contacts the target site A of the pulmonary vein opening and a non-contact part 12 that does not contact the target site A.
  • the film thickness of the contact part 11 is the non-contact part 12 It is thinner than the film thickness.
  • the balloon 6 is formed of, for example, a synthetic resin such as polyurethane, and the contact portion 11 has a film thickness of 0.1 to 0.2 mm, and the non-contact portion 12 has a film thickness of 0.2 to 0.4 mm. Yes. With this configuration, it is possible to prevent the heat inside the balloon 6 from escaping from the non-contact portion 12 to the outside, and to efficiently heat and cauterize only the target site A that has contacted the contact portion 11. It becomes like this.
  • the lane 6 is preferably formed in accordance with the shape based on the CT image or MRI image of the target site A of the pulmonary vein opening.
  • the balloon 6 can be brought into close contact with the target site A, the blood flow B at the pulmonary vein opening can be completely blocked, and the target site A can be heated effectively.
  • the shape of the balloon 6 is formed in an onion shape, and the contact portion 11 is provided in the vicinity of the distal end portion of the balloon 6, so that the balloon 6 is in close contact with the target site A and blood flow B at the pulmonary vein opening To effectively heat target site A It is configured to be able to.
  • the shape of the balloon 6 for heating the target site A may be formed in an approximately spherical shape in addition to the onion shape.
  • the heating element can heat the inside of the force balloon 6 composed of the high-frequency electrode 7 that is wound around and fixed to the vicinity of the tip 5 of the inner cylindrical shaft 3.
  • a high frequency electrode it can comprise any of a nichrome wire, an infrared ray generator, a heating diode, a laser irradiator, and an ultrasonic generator.
  • the thermocouple 8 is fixed in the vicinity of the tip 5 of the inner cylindrical shaft 3.
  • the proximal end portion of the catheter shaft 1 is provided with a distance adjusting device 21 that adjusts the distance between the distal end portion 4 of the outer cylindrical shaft 2 and the distal end portion 5 of the inner cylindrical shaft 3.
  • the distance adjusting device 21 includes a female screw portion 22 that is fixed to the base end portion 16 of the outer cylindrical shaft 2, and a fixed valve 23 that is provided inside the female screw portion 22 and through which the inner cylindrical shaft 3 is inserted. And a rotary knob 25 having a male screw portion 24 that is screwed with the female screw portion 22 and tightens the fixed valve 23.
  • the rotary knob 25 is formed in a frame shape, and is configured such that the inner cylinder shaft 3 is fixed to the female screw portion 22 when the rotary knob 25 is turned to tighten the fixed valve 23.
  • the fixed valve 23 is formed in a donut shape with a plastic synthetic resin. When the fixed valve 23 is tightened, the fixed valve 23 is elastically deformed to reduce the diameter of the hole of the fixed valve 23, and the outer circumference of the inner cylindrical shaft 3 is reduced. I came to hold down.
  • the distance adjusting device 21 includes a pointer 26 inside a rotary knob 25 formed in a frame shape.
  • the rotary knob 25 includes a male screw portion 24 at one end and a support portion 27 that supports the inner cylindrical shaft 3 at the other end.
  • the base end portion 17 of the inner cylindrical shaft 3 is a male screw portion.
  • the rotary knob 25 is supported by both ends of the rotary knob 25 through the support 24 and the support 27.
  • the pointer 26 is fixed to the inner cylindrical shaft 3 inside the rotary knob 25.
  • the size of the pointer 26 is formed to be larger than the holes of the male screw portion 24 and the support portion 27 through which the inner cylindrical shaft 3 passes. Therefore, the movable range of the pointer 26 is inside the rotary knob 25, that is, the male portion.
  • the rotary knob 25 includes a scale 28 that indicates the distance between the distal end portion 4 of the outer cylinder shaft 2 and the distal end portion 5 of the inner cylinder shaft 3 depending on the position of the pointer 26. Then, the distance adjusting device 21 causes the distal end portion 4 of the outer cylindrical shaft 2 and the distal end portion 5 of the inner cylindrical shaft 3 to By changing the distance, the length of the balloon 6 is changed.
  • a high-frequency generator 31 serving as an energy generator for supplying an energy source to the high-frequency electrode 7 and a thermometer 32 for displaying the temperature detected by the thermocouple 8 are provided.
  • the high frequency electrode 7 and the high frequency generator 31 are electrically connected by a first lead wire 33, and the thermocouple 8 and the thermometer 32 are electrically connected by a second lead wire 34.
  • first lead wire 33 and the second lead wire 34 are fixed to the inner cylindrical shaft 3 between the distal end portion 5 and the proximal end portion 17 of the inner cylindrical shaft 3. With this configuration, when the outer cylinder shaft 2 and the inner cylinder shaft 3 are slid relative to each other, the first lead wire 33 and the second lead wire 34 are not entangled. .
  • a syringe 41 as a liquid supply means for supplying liquid to the balloon 6 through the liquid supply path 9, and vibration generation that applies a vibration wave C to the balloon 6 through the liquid supply path 9
  • a vessel 42 is provided between the base end portion 16 of the outer cylindrical shaft 2 and the female screw portion 22, a liquid feeding front chamber 29 communicating with the liquid feeding passage 9 is provided integrally with the female screw portion 22, and the liquid feeding front chamber 29 has a lateral side.
  • a liquid supply port 30 for supplying liquid from the liquid supply port 29 to the liquid supply front chamber 29 is provided, and a liquid supply pipe 43 is connected to the liquid supply port 30.
  • the liquid supply pipe 43 is branched in the middle, and the syringe 41 and the vibration generator 42 are connected to the liquid supply port 30 via the liquid supply pipe 43.
  • the diameter of the balloon 6 is changed by changing the pressure of the liquid supplied to the balloon 6 by the syringe 41.
  • the liquid supply means is constituted by the syringe 41.
  • the liquid supply means is not limited to a specific one as long as the liquid can be supplied, and may be constituted by a syringe pump or other pumps.
  • the liquid-feeding chamber 29 and the liquid-feeding path 9 have a sufficient volume to reliably propagate the vibration from the vibration wave deflecting device 10 to the balloon 6.
  • a vibration wave deflecting device 10 that deflects the vibration wave C propagated from the vibration generator 42 to the balloon 6 via the liquid supply pipe 43 and the liquid supply path 9 is provided inside the balloon 6.
  • the vibration wave deflecting device 10 is plate-shaped and is installed at an angle by projecting from the distal end portion 4 of the outer cylinder shaft 2 and directed toward the center of the balloon 6.
  • the vortex flow D is generated inside the balloon 6 by deflecting C. With this configuration, the liquid inside the balloon 6 is agitated and the temperature inside the balloon 6 is kept uniform.
  • a guide wire 18 for guiding the catheter shaft 1 to the target site A of the pulmonary vein opening is provided.
  • the inner cylinder shaft 3 is provided through.
  • FIGS. 1 to 3 and FIGS. 4 and 5 together the method for using the balloon catheter system of the present embodiment will be described. An example of how to do this will be described.
  • a sheath-like guiding sheath 100 for introducing the force tatel shaft 1 is inserted into the left atrium LA from the femoral vein via the inferior vena cava IVC and the right atrium RA. Then, the deflated balloon 6 is inserted into the guiding sheath 100, and the balloon 6 is placed in the left upper pulmonary vein LSPV.
  • the distance adjusting device 21 adjusts the distance between the distal end portion 4 of the outer cylindrical shaft 2 and the distal end portion 5 of the inner cylindrical shaft 3.
  • the length of the balun 6 becomes longer as shown in the upper part of FIG.
  • the pressure of the contrast agent supplied to the balloon 6 by the syringe 41 is adjusted.
  • the balloon 6 adjusted to an appropriate length and diameter is pressed against the target site A on the left atrial L A side of the left pulmonary vein LSPV.
  • the base end 17 of the inner cylindrical shaft 3 is connected to the high frequency electrode 7 and the thermocouple 8, respectively.
  • the first lead wire 33 and the second lead wire 34 thus connected are connected to the high frequency generator 31 and the thermometer 32, respectively.
  • the output of the high frequency generator 31 is increased.
  • the liquid feeding pipe 43 is connected to the vibration generator 42, and the 2 Hz vibration wave C is sent into the balloon 6.
  • the catheter shaft 1 is rotated to adjust the direction of the vibration wave deflecting device 10, and an upward / downward vortex D is generated inside the balloon 6 to cancel the temperature difference inside the balloon 6.
  • the diameter of the balloon 6 is measured, and the center temperature and energization time of the balloon 6 are set according to this.
  • the diameter of the balloon 6 is 25 mm
  • the center temperature of the balloon 6 is kept at 75 ° C
  • the temperature of the contact portion 11 that contacts the target site A becomes 65 ° C
  • the upper left part is energized for about 5 minutes.
  • Pulmonary vein mouth LSPV left atrium LA side target site A is cauterized circumferentially, and the left upper pulmonary vein LSPV and left atrium LA are electrically isolated.
  • the remaining three pulmonary veins, the left lower pulmonary vein LIPV, the right upper pulmonary vein RSPV, and the right lower pulmonary vein RIPV are electrically isolated from the left atrium LA and right atrium RA. 80 to 90% of atrial fibrillation originating in the pulmonary vein is cured.
  • the cauterization effect can be further enhanced by blocking the artery side with a blood flow blocking balloon.
  • a blood flow blocking balloon on the opposite side of the septum.
  • the balloon catheter system of the present embodiment includes the catheter shaft 1 constituted by the outer tube shaft 2 and the inner tube shaft 3, the distal end portion 4 of the outer tube shaft 2, and the inner tube.
  • a balloon 6 provided between the tip 5 of the shaft 3, a high-frequency electrode 7 as a heating element provided in the balloon 6, and a thermoelectric sensor as a temperature sensor for detecting the temperature inside the balloon 6
  • the vibration wave deflecting device 10 for deflecting the vibration wave inside the balloon 6, the liquid inside the balloon 6 is agitated by the deflected vibration wave C.
  • the inside of the balloon 6 The temperature distribution of the liquid of the liquid is uniform, and the balloon 6 has a contact portion 11 that contacts the target site A and A non-contact portion 12 that does not contact the target site A, and the contact portion 11 is made thinner than the non-contact portion 12 so that the contact portion 11 is made thinner. Since the target site A is selectively heated and the non-contact portion 12 force formed thick is difficult to leak heat, only the target site A can be cauterized efficiently and uniformly.
  • the balloon 6 is formed in accordance with the shape of the target site A, the balloon 6 can be reliably brought into close contact with the shape of the target site A.
  • the balloon 6 is substantially spherical or onion-shaped, and the contact portion 11 is provided in the vicinity of the tip of the balloon, so that the target site A is cauterized in the vicinity of the tip of the balloon 6. can do.
  • the outer cylindrical shaft 2 and the inner cylindrical shaft 3 are configured to be slidable with each other, and the distance between the distal end portion 4 of the outer cylindrical shaft 2 and the distal end portion 5 of the inner cylindrical shaft 3 is changed.
  • the length of the balloon 6 is changed, and the diameter of the balloon 6 is changed by changing the pressure of the liquid supplied to the balloon 6.
  • the balloon 6 can be brought into close contact with the target site A by changing the length and diameter of the balloon 6 in accordance with the shape of the balloon 6.
  • the proximal end portion of the catheter shaft 1 is provided with a distance adjusting device 21 that adjusts the distance between the distal end portion 4 of the outer cylindrical shaft 2 and the distal end portion 5 of the inner cylindrical shaft 3, The length of the screen 6 can be adjusted.
  • the distance adjusting device 21 includes a female screw portion 22 fixed to the base end portion 16 of the outer cylindrical shaft 2, and the inner cylindrical shaft provided inside the female screw portion 22. 3 and a rotary knob 25 provided with a male screw portion 24 that is screwed into the female screw portion 22 to tighten the fixed valve 23.
  • the rotary knob 25 is turned to turn the fixed valve By tightening 23, the fixed valve 23 is elastically deformed so that the inner cylindrical shaft 3 is fixed to the female screw portion 22.
  • the inner cylindrical shaft 3 can be easily connected to the outer cylindrical shaft 2 by a simple operation. Can be fixed at an appropriate position.
  • the distance adjusting device 21 includes a pointer 26 fixed to the inner cylindrical shaft 3 inside the rotary knob 25.
  • the rotary knob 25 is formed in a frame shape, and the movable range of the pointer 26 is increased. By being configured to be limited to the inside of the rotary knob 25, the outer cylinder shaft The movable range of the inner cylindrical shaft 3 relative to 2 can be maintained within an appropriate range.
  • the rotary knob 25 includes a scale 28 indicating the distance between the distal end portion 4 of the outer cylindrical shaft 2 and the distal end portion 5 of the inner cylindrical shaft 3 depending on the position of the pointer 26.
  • the length of 1-6 can be set accurately.
  • a first lead wire 33 connected to the high-frequency electrode 7 as the heating element and a second lead wire 34 connected to the thermocouple 8 are provided, and the high-frequency electrode 7 and the A thermocouple 8 is fixed to the distal end portion 5 of the inner cylindrical shaft 3, and the first lead wire 33 and the second lead wire 34 are disposed between the distal end portion 5 and the proximal end portion 17 of the inner cylindrical shaft 3. Is fixed to the inner cylinder shaft 3 to prevent the first lead wire 33 and the second lead wire 34 from being entangled when the outer cylinder shaft 2 and the inner cylinder shaft 3 are slid relative to each other. be able to.
  • FIG. 6 shows a second embodiment of the none catheter system of the present invention.
  • symbol is attached
  • the balloon catheter system of the present embodiment is the same as that in the first embodiment except that the left lower pulmonary vein LIPV and the right lower pulmonary vein RIPV are provided with a shape 51 suitable for electrical isolation. Similar to the example.
  • the balloon 51 includes a spherical portion 52 having a substantially spherical appearance and a cylindrical portion 53 having a substantially cylindrical appearance.
  • the high-frequency electrode 7 is located at the center of the spherical portion 52.
  • the base end portion 54 of the spherical portion 52 is fixed to the distal end portion 4 of the outer cylindrical shaft 2, and is formed integrally with the spherical portion 52 from the distal end portion 55 of the spherical portion 52 according to the shape of the blood vessel of the pulmonary vein.
  • the cylindrical part 53 is extended.
  • the distal end portion 56 of the cylindrical portion 53 is fixed to the distal end portion 5 of the inner cylinder shaft 3, and the inside of the cylindrical portion 53 communicates with the inside of the spherical portion 52.
  • the outer diameter of the spherical portion 52 is formed to be twice or more the outer diameter of the cylindrical portion 53.
  • the spherical part 52 of the balloon 51 has a contact part 57 that contacts the target site A of the pulmonary vein opening and a non-contact part 58 that does not contact the target part A. Is formed thinner than the film thickness of the non-contact part 58.
  • the contact portion 57 is formed around the portion where the proximal end portion 59 of the cylindrical portion 53 extends in the vicinity of the distal end portion 55 of the spherical portion 52.
  • the balloon 51 is made of, for example, a synthetic resin such as polyurethane, and the thickness of the contact portion 57 is 0.1 to 0.2 mm.
  • the film thickness of the non-contact part 58 is 0.2 to 0.4 mm.
  • the film thickness of the distal end portion 56 of the cylindrical portion 53 is formed to be thinner than the film thicknesses of the proximal end portion 59 and the central portion 60 of the cylindrical portion 53. Then, by pressurizing the inside of the nozzle 51, the tip 56 of the cylindrical portion 53 expands and the cylindrical portion 53 is fixed in the blood vessel of the pulmonary vein. Then, a balloon 51 is formed in accordance with the shape of the target site A of the pulmonary vein mouth and the pulmonary vein, and the distal end portion 56 of the cylindrical portion 53 is fixed in the blood vessel of the pulmonary vein, thereby bringing the balloon 51 into close contact with the target site A. It is configured to be able to effectively heat the target site A by completely blocking the pulmonary vein blood flow! RU
  • the balloon 51 includes the spherical portion 52 fixed to the distal end portion 4 of the outer cylindrical shaft 2, and the spherical portion 52 extending from the spherical portion 52 before
  • the cylindrical portion 53 is fixed to the distal end portion 5 of the inner cylindrical shaft 3, and the contact portion 57 is provided in the vicinity of the distal end portion 55 of the spherical portion 52, and the thickness of the distal end portion 56 of the cylindrical portion 53 is
  • the inside of the balloon 51 is pressurized so that the distal end portion 56 of the cylindrical portion 53 is expanded and the cylindrical portion 53 enters the blood vessel.
  • the target portion A around the blood vessel inlet portion can be cauterized reliably by the contact portion 57 that is securely fixed and provided near the tip portion 55 of the spherical portion 52.
  • FIG. 7 shows a third embodiment of the none catheter system of the present invention.
  • symbol is attached
  • the balloon catheter system of this embodiment is the same as that of the first embodiment except that the balloon 61 has a shape of a shape 61 suitable for electrically isolating the superior vena cava SVC. .
  • Nolane 61 is formed in a substantially cylindrical shape, and has a contact portion 62 that contacts the target site A of the superior vena cava SVC and a non-contact portion 63 that does not contact the target site A.
  • the film thickness is thinner than that of the non-contact portion 63.
  • the contact portion 62 is provided in the vicinity of the central portion of the balloon 61, and the non-contact portion 63 is formed in the vicinity of the distal end portion 64 and the proximal end portion 65 of the balloon 61.
  • the balloon 61 is made of, for example, a synthetic resin such as polyurethane, and the contact portion 62 has a thickness of 0.1 to 0.2 mm, and the non-contact portion 63 has a thickness of 0.2 to 0.4 mm.
  • the heat inside the balloon 61 can be prevented from escaping from the non-contact portion 63 to the outside, and only the target site A that has contacted the contact portion 62 can be efficiently heated and cauterized. It ’s like that.
  • the balloon 61 is formed in accordance with the shape of the target site A of the superior vena cava SVC, the balloon 61 is brought into close contact with the target site A, and the blood flow of the superior vena cava SVC is completely blocked. In other words, the target site A is configured to be heated.
  • the no- ule 61 is substantially cylindrical, and the contact portion 62 is provided in the vicinity of the central portion of the balloon 61.
  • the target site A can be cauterized near the center of the balloon 61.
  • FIG. 8 shows a fourth embodiment of the none catheter system of the present invention.
  • symbol is attached
  • the balloon catheter system of the present embodiment is the same as the first embodiment except that the electrical configuration is different.
  • the high frequency generator 31 is connected to a low frequency band cut filter 71 that cuts a high frequency low frequency component output from the high frequency generator 31.
  • the thermometer 32 is connected to a high frequency band cut filter 72 that cuts high frequency components input to the thermometer 32.
  • Two lead wires 73 are provided along the inner cylinder shaft 2 from the base end portion 17 to the tip end portion 5 of the inner cylinder shaft 2, and this lead wire 73 is common to the high frequency electrode 7 and the thermocouple 8. ing.
  • the two lead wires 73 connected to the thermocouple 8 are connected to the thermometer 32 via the high frequency band cut filter 72, and one lead wire 73 is further connected to the low frequency band cut filter 71. It is connected to the high frequency generator 31 via
  • the low frequency cut filter 71 is connected to a counter electrode plate 74 that sends electromagnetic waves to the high frequency electrode 7.
  • the high frequency output from the high frequency generator 31 is supplied to the force high frequency electrode 7 after the low frequency component is cut by the low frequency band cut filter 71. Further, the electrical signal of the temperature detected by the thermocouple 8 is input to the force thermometer 32 after the high frequency output from the high frequency generator 31 is cut by the high frequency band cut filter 72. Therefore, by using the low frequency band cut filter 71 and the high frequency band cut filter 72 to selectively use the high frequency band and the low frequency band of the electric signal, the high frequency electrode 7 and the thermocouple that do not interfere with the signals of the high frequency electrode 7 and the thermocouple 8 It is configured so that the pair of lead wires 73 can be shared.
  • the balloon catheter system of the present embodiment includes a high frequency generator 31 that supplies a high frequency to the high frequency electrode 7, a thermometer 32 that displays the temperature detected by the thermocouple 8, A low frequency band cut filter 71 provided between the high frequency electrode 7 and the high frequency generator 31 for cutting low frequency components of a high frequency output from the high frequency generator 31, the thermocouple 8 and the thermometer 32; A high frequency band cut filter 72 provided between the thermocouple 8 and the high frequency band cut filter 72, and a lead wire 73 connecting the thermocouple 8 and the high frequency band cut filter 72. Since the high frequency is supplied to the high frequency electrode 7 through the line 73, only the high frequency component is output from the high frequency generator 31, and only the low frequency component is input to the thermometer 32. Since, leaving in this transgression performing detection of high-frequency supply and temperature at the same time share the lead wire 73 of the high-frequency electrode 7 and the thermocouple 8.
  • Fig. 9 shows a fourth embodiment of the none catheter system of the present invention.
  • symbol is attached
  • the balloon catheter system of the present embodiment is the same as that of the first embodiment except that the configuration of the balloon 6 membrane is different.
  • the non-contact portion 12 has a thickness of 0.1 to 0.2 mm, similar to the thickness of the contact portion 11. Instead, the non-contact portion 12 has a heat insulating layer. 81 is coated. By configuring in this way, it is possible to prevent the heat inside the balloon 6 from escaping outside the non-contact portion 12 force, and to efficiently heat and cauterize only the target site A that contacts the contact portion 11. I can do it!
  • the balloon 6 has the contact part 11 that contacts the target part A and the non-contact part 12 that does not contact the target part A, and the front Since the non-contact portion 12 is provided with the heat insulating layer 81, heat does not easily leak from the non-contact portion 12 provided with the heat insulating layer 81, so that only the target site A can be selectively cauterized efficiently. wear.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the gist of the present invention.
  • the above embodiment has described a balloon catheter system for pulmonary vein electrical isolation for the treatment of atrial fibrillation, it may be used for treatment of other sites.
  • the shape of the balloon is not limited to the above shape, and may be formed in various shapes according to the treatment site.
  • FIG. 1 is an overall view showing a first embodiment of a balloon catheter system of the present invention.
  • FIG. 2 is a partially enlarged view of the vicinity of the balloon.
  • FIG. 3 is a partially enlarged view of the vicinity of the distance adjusting device.
  • FIG. 4 is a diagram showing a use state as above.
  • FIG. 5 is a partially enlarged view of the vicinity of the balloon showing the usage state.
  • FIG. 6 is an enlarged view of a portion near the balloon showing a second embodiment of the balloon catheter system of the present invention.
  • FIG. 7 is an enlarged view of a portion near the balloon showing a third embodiment of the balloon catheter system of the present invention.
  • FIG. 8 is an overall view showing a fourth embodiment of the balloon catheter system of the present invention.
  • FIG. 9 is an enlarged view of a portion in the vicinity of a balloon showing a fifth embodiment of the balloon catheter system of the present invention.
  • High-frequency electrode heating element
  • Thermocouple temperature sensor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Otolaryngology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Surgical Instruments (AREA)

Abstract

効率よく標的部位のみを焼灼することができ、さらに、標的部位の形状に合わせて確実にバルーンを密着させることのできるバルーンカテーテルシステムを提供する。バルーン6は、標的部位に接触する接触部11と、標的部位Aに接触しない非接触部12とを有し、接触部11の膜厚が前記非接触部12の膜厚よりも薄く形成されている。薄く形成された接触部11に接触した標的部位Aが選択的に加熱され、厚く形成された非接触部12からは熱が漏れにくいため、効率よく標的部位のみを焼灼することができる。

Description

明 細 書
ノ " レーン力テーテノレシステム
技術分野
[0001] 本発明は、バルーンカテーテルシステムに係り、特に循環器疾患を治療するために 用 ヽられる温熱治療用のバルーンカテーテルシステムに関する。
背景技術
[0002] 不整脈発生源や動脈硬化等の病変に対して、収縮自在なバルーンの内部に高周 波通電用電極を配設し、ここから高周波電界を放射してバルーンと接触する組織を 温熱治療する方法が提案されている(例えば、特許文献 1を参照)。
特許文献 1 :特開 2005— 177293号公報
発明の開示
発明が解決しょうとする課題
[0003] 血管や心臓の内部の治療の対象となる標的部位を均等に温熱治療するためには、 標的部位にバルーンを密着させ、血流を遮断して、標的部位を選択的に加温して焼 灼する必要がある。しかし、従来のバルーンカテーテルでは、バルーンの壁厚が均 一であったため、標的部位でない部位を焼灼してしまう虞があった。また、標的部位 に接触しな 、部分力 バルーン内部の熱エネルギーが漏れてしま 、、加温の効率が 悪力つた。
[0004] また、標的部位の位置は、心臓の拍動や血流により変化するため、バルーン内部を 加圧してバルーンの直径を変化させるのみでは、標的部位にバルーンを密着させる ことが難 、という問題があった。
[0005] そこで本発明は上記問題点に鑑み、効率よく標的部位のみを焼灼することができ、 さらに、標的部位の形状に合わせて確実にバルーンを密着させることのできるバル一 ンカテーテルシステムを提供することをその目的とする。
課題を解決するための手段
[0006] 上記目的を達成するために、本発明の請求項 1記載のノ レーンカテーテルシステ ムは、外筒シャフトと内筒シャフトとから構成されたカテーテルシャフトと、前記外筒シ ャフトの先端部と前記内筒シャフトの先端部との間に設けられたバルーンと、このバル ーンの内部に設けられた発熱体と、前記バルーンの内部の温度を検知する温度セン サ一と、前記外筒シャフトと前記内筒シャフトとの間に形成され前記バルーンの内部 に通じる送液路と、前記送液路を通じて前記バルーンへ振動波を与える振動発生器 と、前記バルーンの内部において振動波を偏向させる振動波偏向装置とを備えたバ ルーンカテーテルシステムにおいて、前記バルーンは、標的部位に接触する接触部 と、標的部位に接触しない非接触部とを有し、前記接触部の膜厚が前記非接触部の 膜厚よりも薄く形成されたことを特徴とする。
[0007] 請求項 2記載のバルーンカテーテルシステムは、請求項 1にお!/、て、前記発熱体は
、高周波電極、ニクロム線、赤外線発生器、発熱ダイオード、レーザー照射器、超音 波発生器の 、ずれかであることを特徴とする。
[0008] 請求項 3記載のバルーンカテーテルシステムは、請求項 1にお 、て、前記バルーン は、標的部位の形状に合わせて形成されたことを特徴とする。
[0009] 請求項 4記載のバルーンカテーテルシステムは、請求項 3において、前記バルーン は、略球形又はたまねぎ形であって、前記接触部が前記バルーンの先端部近傍に 設けられたことを特徴とする。
[0010] 請求項 5記載のバルーンカテーテルシステムは、請求項 3において、前記バルーン は、前記外筒シャフトの先端部に固定された球形部と、この球形部から延設され前記 内筒シャフトの先端部に固定された円筒部とからなり、前記接触部が前記球形部の 先端部近傍に設けられ、前記円筒部の先端部の膜厚が前記円筒部の基端部の膜 厚よりも薄く形成されたことを特徴とする。
[0011] 請求項 6記載のバルーンカテーテルシステムは、請求項 3において、前記バルーン は、略円筒形であって、前記接触部が前記バルーンの中央部近傍に設けられたこと を特徴とする。
[0012] 請求項 7記載のバルーンカテーテルシステムは、請求項 1にお 、て、前記外筒シャ フトと前記内筒シャフトは相互にスライド可能に構成され、前記外筒シャフトの先端部 と前記内筒シャフトの先端部との距離を変化させることにより前記ノ レーンの長さが 変化し、前記バルーンに供給される液体の圧力を変化させることにより前記バルーン の直径が変化するように構成されたことを特徴とする。
[0013] 請求項 8記載のバルーンカテーテルシステムは、請求項 1にお 、て、前記力テーテ ルシャフトの基端部に前記外筒シャフトの先端部と前記内筒シャフトの先端部との距 離を調節する距離調節装置を備えたことを特徴とする。
[0014] 請求項 9記載のバルーンカテーテルシステムは、請求項 8にお 、て、前記距離調節 装置は、前記外筒シャフトの基端部に固定されて設けられた雌螺子部と、この雌螺子 部の内部に設けられ前記内筒シャフトが挿通された固定バルブと、前記雌螺子部と 螺合して前記固定バルブを締め付ける雄螺子部を備えた回転ノブとを備え、この回 転ノブを回して前記固定バルブを締め付けると前記固定バルブが弾性変形して前記 内筒シャフトが前記雌螺子部に固定されるように構成されたことを特徴とする。
[0015] 請求項 10記載のバルーンカテーテルシステムは、請求項 9において、前記距離調 節装置は、前記回転ノブの内部において前記内筒シャフトに固定された指針を備え 、前記回転ノブが枠状に形成され前記指針の可動範囲が前記回転ノブの内側に制 限されるように構成されたことを特徴とする。
[0016] 請求項 11記載のバルーンカテーテルシステムは、請求項 10において、前記回転ノ ブは、前記指針の位置によって前記外筒シャフトの先端部と前記内筒シャフトの先端 部との距離を示す目盛を備えたことを特徴とする。
[0017] 請求項 12記載のバルーンカテーテルシステムは、請求項 7にお 、て、前記発熱体 に接続された第 1のリード線と、前記温度センサーに接続された第 2のリード線とを備 え、前記発熱体と前記温度センサーが前記内筒シャフトの先端部に固定されるととも に、前記内筒シャフトの先端部と基端部の間において前記第 1のリード線と前記第 2 のリード線が前記内筒シャフトに固定されたことを特徴とする。
[0018] 請求項 13記載のバルーンカテーテルシステムは、請求項 1にお 、て、前記発熱体 は高周波電極、前記温度センサーは熱電対であって、前記高周波電極に高周波を 供給する高周波発生器と、前記熱電対により検知された温度を表示する温度計と、 前記高周波電極と前記高周波発生器の間に設けられ前記高周波発生器力 出力さ れる高周波の低周波成分をカットする低周波帯カットフィルターと、前記熱電対と前 記温度計の間に設けられ前記温度計へ入力される高周波成分をカットする高周波帯 カットフィルターと、前記熱電対と前記高周波帯カットフィルターを接続するリード線と を備え、このリード線を通じて前記高周波電極へ高周波が供給されるように構成され たことを特徴とする。
[0019] 請求項 14記載のバルーンカテーテルシステムは、外筒シャフトと内筒シャフトとから 構成されたカテーテルシャフトと、前記外筒シャフトの先端部と前記内筒シャフトの先 端部との間に設けられたバルーンと、このバルーンの内部に設けられた発熱体と、前 記バルーンの内部の温度を検知する温度センサーと、前記外筒シャフトと前記内筒 シャフトとの間に形成され前記バルーンの内部に通じる送液路とを備えたバルーン力 テーテルシステムにおいて、前記バルーンは、標的部位に接触する接触部と、標的 部位に接触しない非接触部とを有し、前記非接触部に断熱層が設けられたことを特 徴とする。
発明の効果
[0020] 本発明の請求項 1記載のノ レーンカテーテルシステムによれば、バルーンは発熱 体により加熱され、送液路を通じて前記バルーンへ振動波を与える振動発生器と、 前記バルーンの内部において振動波を偏向させる振動波偏向装置とを備えたことに より、偏向された振動波によってバルーンの内部の液体が撹拌され、バルーンの内 部の液体の温度分布は均一化され、前記バルーンは、標的部位に接触する接触部 と、標的部位に接触しない非接触部とを有し、前記接触部の膜厚が前記非接触部の 膜厚よりも薄く形成されたことにより、薄く形成された接触部に接触した標的部位が選 択的に加熱され、厚く形成された非接触部からは熱が漏れにくいため、効率よく標的 部位のみを均一に焼灼することができる。
[0021] 請求項 2記載のバルーンカテーテルシステムによれば、前記発熱体は、高周波電 極、ニクロム線、赤外線発生器、発熱ダイオード、レーザー照射器、超音波発生器の V、ずれかであることにより、多種多様な発熱体を用いることができる。
[0022] 請求項 3記載のバルーンカテーテルシステムによれば、前記バルーンは、標的部 位の形状に合わせて形成されたことにより、標的部位の形状に合わせて確実にバル ーンを密着させることができる。
[0023] 請求項 4記載のバルーンカテーテルシステムによれば、前記バルーンは、略球形 又はたまねぎ形であって、前記接触部が前記バルーンの先端部近傍に設けられたこ とにより、ノ レーンの先端部近傍で標的部位を焼灼することができる。
[0024] 請求項 5記載のバルーンカテーテルシステムによれば、前記バルーンは、前記外 筒シャフトの先端部に固定された球形部と、この球形部から延設され前記内筒シャフ トの先端部に固定された円筒部とからなり、前記接触部が前記球形部の先端部近傍 に設けられ、前記円筒部の先端部の膜厚が前記円筒部の基端部の膜厚よりも薄く形 成されたことにより、バルーンの内部を加圧することによって円筒部の先端部が拡張 して円筒部が血管内に確実に固定され、球形部の先端部近傍に設けられた接触部 により血管入口部周辺の標的部位を確実に焼灼することができる。
[0025] 請求項 6記載のバルーンカテーテルシステムによれば、前記バルーンは、略円筒 形であって、前記接触部が前記バルーンの中央部近傍に設けられたことにより、バル ーンの中央部近傍で標的部位を焼灼することができる。
[0026] 請求項 7記載のバルーンカテーテルシステムによれば、前記外筒シャフトと前記内 筒シャフトは相互にスライド可能に構成され、前記外筒シャフトの先端部と前記内筒 シャフトの先端部との距離を変化させることにより前記バルーンの長さが変化し、前記 バルーンに供給される液体の圧力を変化させることにより前記バルーンの直径が変 化するように構成されたことにより、標的部位の形状に合わせてバルーンの長さと直 径を変化させ、標的部位にノ レーンを密着させることができる。
[0027] 請求項 8記載のバルーンカテーテルシステムによれば、前記カテーテルシャフトの 基端部に前記外筒シャフトの先端部と前記内筒シャフトの先端部との距離を調節す る距離調節装置を備えたことにより、バルーンの長さを調節することができる。
[0028] 請求項 9記載のバルーンカテーテルシステムによれば、前記距離調節装置は、前 記外筒シャフトの基端部に固定されて設けられた雌螺子部と、この雌螺子部の内部 に設けられ前記内筒シャフトが挿通された固定バルブと、前記雌螺子部と螺合して 前記固定バルブを締め付ける雄螺子部を備えた回転ノブとを備え、この回転ノブを 回して前記固定バルブを締め付けると前記固定バルブが弾性変形して前記内筒シ ャフトが前記雌螺子部に固定されるように構成されたことにより、簡単な操作で内筒シ ャフトを外筒シャフトに対して適切な位置に固定することができる。 [0029] 請求項 10記載のバルーンカテーテルシステムによれば、前記距離調節装置は、前 記回転ノブの内部において前記内筒シャフトに固定された指針を備え、前記回転ノ ブが枠状に形成され前記指針の可動範囲が前記回転ノブの内側に制限されるように 構成されたことにより、外筒シャフトに対する内筒シャフトの可動範囲を適切な範囲内 に維持することができる。
[0030] 請求項 11記載のバルーンカテーテルシステムによれば、前記回転ノブは、前記指 針の位置によって前記外筒シャフトの先端部と前記内筒シャフトの先端部との距離を 示す目盛を備えたことにより、バルーンの長さを正確に設定することができる。
[0031] 請求項 12記載のバルーンカテーテルシステムによれば、前記発熱体に接続された 第 1のリード線と、前記温度センサーに接続された第 2のリード線とを備え、前記発熱 体と前記温度センサーが前記内筒シャフトの先端部に固定されるとともに、前記内筒 シャフトの先端部と基端部の間において前記第 1のリード線と前記第 2のリード線が前 記内筒シャフトに固定されたことにより、外筒シャフトと内筒シャフトを相互にスライドさ せたときに第 1のリード線と第 2のリード線が絡み合うことを防止することができる。
[0032] 請求項 13記載のバルーンカテーテルシステムによれば、前記発熱体は高周波電 極、前記温度センサーは熱電対であって、前記高周波電極に高周波を供給する高 周波発生器と、前記熱電対により検知された温度を表示する温度計と、前記高周波 電極と前記高周波発生器の間に設けられ前記高周波発生器力 出力される高周波 の低周波成分をカットする低周波帯カットフィルターと、前記熱電対と前記温度計の 間に設けられ前記温度計へ入力される高周波成分をカットする高周波帯カットフィル ターと、前記熱電対と前記高周波帯カットフィルターを接続するリード線とを備え、こ のリード線を通じて前記高周波電極へ高周波が供給されるように構成されたことによ り、高周波発生器からは高周波成分のみが出力され、温度計には低周波成分のみ が入力されるので、高周波電極と熱電対のリード線を共用して高周波の供給と温度 の検知を同時に行うことができる。
[0033] 請求項 14記載のバルーンカテーテルシステムによれば、前記バルーンは、標的部 位に接触する接触部と、標的部位に接触しない非接触部とを有し、前記非接触部に 断熱層が設けられたことにより、断熱層が設けられた非接触部力もは熱が漏れにくい ため、効率よく標的部位のみを選択的に焼灼することができる。
発明を実施するための最良の形態
[0034] 以下、本発明のバルーンカテーテルシステムについて、心房細動治療のための肺 静脈口電気的隔離用のバルーンカテーテルシステムを例にとって、添付した図面を 参照しながら詳細に説明する。
実施例 1
[0035] 図 1〜図 5に本発明のバルーンカテーテルシステムの第 1実施例を示す。
[0036] まず、図 1〜図 3を参照しながら、本実施例のバルーンカテーテルシステムの構成 について説明する。 1はカテーテルシャフトであって、このカテーテルシャフト 1は、相 互にスライド可能に構成された外筒シャフト 2と内筒シャフト 3とから構成されている。 そして、外筒シャフト 2の先端部 4と内筒シャフト 3の先端部 5との間には、バルーン 6 が設けられている。バルーン 6の内部には発熱体としての高周波電極 7と、バルーン の内部の温度を検知する温度センサーとしての熱電対 8が高周波電極 7の先端に設 けられている。また、外筒シャフト 2と内筒シャフト 3との間には、バルーン 6の内部に 通じる送液路 9が形成されて ヽる。
[0037] バルーン 6は、肺静脈口の標的部位 Aに接触する接触部 11と、標的部位 Aに接触 しない非接触部 12とを有しており、接触部 11の膜厚が非接触部 12の膜厚よりも薄く形 成されている。バルーン 6は、例えばポリウレタンなどの合成樹脂から形成されており 、接触部 11の膜厚は 0. 1〜0. 2mm、非接触部 12の膜厚は 0. 2〜0. 4mmに形成 されている。このように構成することによって、バルーン 6の内部の熱が非接触部 12か ら外部へ逃げることを防止し、接触部 11に接触した標的部位 Aのみを効率的に加熱 し焼灼することができるようになって 、る。
[0038] なお、ノ レーン 6は、肺静脈口の標的部位 Aの CT画像又は MRI画像をもとに、そ の形状に合わせて形成するのが好ましい。そうすることによって、バルーン 6を標的部 位 Aに密着させ、肺静脈口の血流 Bを完全に遮断して効果的に標的部位 Aを加熱す ることができる。本実施例では、バルーン 6の形状はたまねぎ形に形成され、接触部 1 1がバルーン 6の先端部近傍に設けられることによって、バルーン 6が標的部位 Aに 密着し、肺静脈口の血流 Bを完全に遮断して効果的に標的部位 Aを加熱することが できるように構成されている。なお、標的部位 Aを加熱するためのバルーン 6の形状 はたまねぎ形のほか、略球形に形成してもよ 、。
[0039] 本実施例において、発熱体は内筒シャフト 3の先端部 5の近傍にコイル状に巻かれ て固定された高周波電極 7で構成されている力 バルーン 6の内部を加熱することが できるものであれば特定のものに限定されず、高周波電極のほか、ニクロム線、赤外 線発生器、発熱ダイオード、レーザー照射器、超音波発生器のいずれかでも構成す ることができる。また、熱電対 8は、内筒シャフト 3の先端部 5の近傍に固定されている
[0040] カテーテルシャフト 1の基端部には、外筒シャフト 2の先端部 4と内筒シャフト 3の先 端部 5との距離を調節する距離調節装置 21が備えられている。距離調節装置 21は、 外筒シャフト 2の基端部 16に固定されて設けられた雌螺子部 22と、雌螺子部 22の内 部に設けられ内筒シャフト 3が挿通された固定バルブ 23と、雌螺子部 22と螺合して固 定バルブ 23を締め付ける雄螺子部 24を備えた回転ノブ 25とを備えて 、る。回転ノブ 2 5は枠状に形成されており、回転ノブ 25を回して固定バルブ 23を締め付けると、内筒 シャフト 3が雌螺子部 22に固定されるように構成されている。なお、固定バルブ 23は 可塑性の合成樹脂によりドーナツ状に形成されており、固定バルブ 23を締め付けると 固定バルブ 23が弾性変形して固定バルブ 23の穴の径が小さくなり、内筒シャフト 3の 外周を押さえるようになって 、る。
[0041] また、距離調節装置 21は、枠状に形成された回転ノブ 25の内部に指針 26を備えて いる。回転ノブ 25は、一端に雄螺子部 24を備えているほか、他端には内筒シャフト 3 を支持する支持部 27を備えており、内筒シャフト 3の基端部 17は、雄螺子部 24と支持 部 27とを貫通して回転ノブ 25の両端に支持されている。そして、指針 26は、回転ノブ 2 5の内側において、内筒シャフト 3に固定されている。指針 26の大きさは、内筒シャフト 3が貫通する雄螺子部 24と支持部 27の穴よりも大きく形成されている、したがって、指 針 26の可動範囲は、回転ノブ 25の内側、すなわち雄螺子部 24と支持部 27の間に制 限されるように構成されている。また、回転ノブ 25は、指針 26の位置によって外筒シャ フト 2の先端部 4と内筒シャフト 3の先端部 5との距離を示す目盛 28を備えている。そし て、距離調節装置 21によって外筒シャフト 2の先端部 4と内筒シャフト 3の先端部 5と の距離を変化させることにより、バルーン 6の長さが変化するように構成されている。
[0042] カテーテルシャフト 1の外部には、高周波電極 7にエネルギー源を供給するエネル ギー発生器としての高周波発生器 31と、熱電対 8により検知された温度を表示する温 度計 32が設けられ、高周波電極 7と高周波発生器 31は第 1のリード線 33により電気的 に接続され、熱電対 8と温度計 32は第 2のリード線 34により電気的に接続されている。
[0043] また、内筒シャフト 3の先端部 5と基端部 17の間において、第 1のリード線 33と第 2の リード線 34は内筒シャフト 3に固定されている。このように構成することによって、外筒 シャフト 2と内筒シャフト 3を相互にスライドさせたときに、第 1のリード線 33と第 2のリー ド線 34が絡まな 、ようになって 、る。
[0044] さらに、カテーテルシャフト 1の外部には、送液路 9を通じてバルーン 6に液体を供 給する液体供給手段としてのシリンジ 41と、送液路 9を通じてバルーン 6へ振動波 C を与える振動発生器 42が設けられている。外筒シャフト 2の基端部 16と雌螺子部 22の 間には、送液路 9に通じる送液前室 29が雌螺子部 22と一体に設けられ、送液前室 29 には側方から液体を送液前室 29に供給する液体供給口 30が設けられ、この液体供 給口 30に送液管 43が接続している。送液管 43は途中で分岐しており、この送液管 43 を介して液体供給口 30にシリンジ 41と振動発生器 42が接続している。そして、シリン ジ 41によってバルーン 6に供給される液体の圧力を変化させることにより、バルーン 6 の直径が変化するように構成されている。なお、本実施例では液体供給手段をシリン ジ 41で構成したが、液体を供給できるものであれば特定のものに限定されず、シリン ジポンプやその他のポンプなどで構成してもよい。
[0045] 送液前室 29と送液路 9は、振動波偏向装置 10からの振動をバルーン 6まで確実に 伝播させるために十分な容積を有している。また、バルーン 6の内部には、振動発生 器 42から送液管 43、送液路 9を経由してバルーン 6に伝播した振動波 Cを偏向させる 振動波偏向装置 10が設けられている。この振動波偏向装置 10は板状であって、外筒 シャフト 2の先端部 4から突出してバルーン 6の中心に向力つて角度をつけて設置さ れており、送液路 9からの振動波 Cを偏向してバルーン 6の内部に渦流 Dが発生する ように構成されている。そして、このように構成することによって、バルーン 6の内部の 液体が撹拌されてバルーン 6の内部の温度が均一に保たれるようになって 、る。 [0046] また、カテーテルシャフト 1を肺静脈口の標的部位 Aに案内するガイドワイヤー 18が
、内筒シャフト 3を揷通して設けられている。
[0047] つぎに、図 1〜図 3に、図 4と図 5を併せて参照しながら、本実施例のバルーンカテ 一テルシステムの使用方法につ 、て、左上肺静脈口の電気的隔離を行う場合を例 にとつて説明する。
[0048] はじめに、カテーテル内腔、すなわち送液前室 29、送液路 9、バルーン 6の内部は 、生理食塩水や造影剤などの液体を送液管 43カゝら注入してエアー抜きを行う。そし て、外筒シャフト 2の先端 4と内筒シャフト 3の先端 5の距離が最大になるように外筒シ ャフト 2と内筒シャフト 3を相互にスライドさせた状態で、回転ノブ 25を回して固定バル ブ 23を締めて内筒シャフト 3を固定し、バルーン 6を収縮させる。
[0049] ガイドワイヤー 18を用いて、大腿静脈より下大静脈 IVCと右心房 RAを経由して、力 テーテルシャフト 1を導入するための鞘状のガイヂングシース 100を左心房 LAに挿入 する。そして、ガイヂングシース 100の中に収縮したバルーン 6を挿入し、バルーン 6を 左上肺静脈口 LSPVに留置する。
[0050] ここで、固定バルブ 23を緩め、指針 26を見ながら内筒シャフト 3をスライドさせて適当 な位置で止め、固定バルブ 23を締める。そして、送液管 43より造影剤を注入してバル ーン 6を拡張させる。
[0051] ここで、バルーン 6の長さを調整する場合は、距離調節装置 21によって外筒シャフト 2の先端部 4と内筒シャフト 3の先端部 5との距離を調整する。外筒シャフト 2の先端部 4と内筒シャフト 3の先端部 5との距離を長く調整すると、図 5の上に示すようにバル一 ン 6の長さが長くなり、外筒シャフト 2の先端部 4と内筒シャフト 3の先端部 5との距離を 短く調整すると、図 5の下に示すようにバルーン 6の長さが短くなる。また、バルーン 6 の直径を調整する場合は、シリンジ 41によってバルーン 6に供給される造影剤の圧力 を調整する。このようにバルーン 6の大きさを調節することにより、目標とする標的部位 Aにバルーン 6の接触部 11を確実に接触させることができる。
[0052] そして、適切な長さと直径に調整されたバルーン 6を左肺静脈口 LSPVの左心房 L A側の標的部位 Aに押し当てる。
[0053] つづいて、内筒シャフト 3の基端部 17から高周波電極 7と熱電対 8にそれぞれ接続 された第 1のリード線 33と第 2のリード線 34を、それぞれ高周波発生器 31と温度計 32 に接続する。そして、温度計 32を見ながら高周波発生器 31の出力を上げていく。また 、送液管 43を振動発生器 42に接続し、バルーン 6の内部に 2Hzの振動波 Cを送り込 む。そして、カテーテルシャフト 1を回転させて振動波偏向装置 10の向きを調節し、上 下方向の渦流 Dをバルーン 6の内部に発生させてバルーン 6の内部の温度格差を解 消させる。
[0054] そして、バルーン 6の直径を測定し、これに合わせてバルーン 6の中心温度と通電 時間を設定する。例えば、バルーン 6の直径が 25mmのときは、バルーン 6の中心温 度を 75°Cに保つと、標的部位 Aに接触する接触部 11の温度は 65°Cとなり、約 5分間 の通電で左上肺静脈口 LSPVの左心房 LA側の標的部位 Aが円周状に焼灼され、 左上肺静脈口 LSPVと左心房 LAが電気的に隔離される。
[0055] 同様に、残りの 3本の肺静脈である左下肺静脈口 LIPV、右上肺静脈口 RSPV、右 下肺静脈口 RIPVを、左心房 LA、右心房 RAと電気的に隔離することで、肺静脈を 発生源とする 80〜90%の心房細動が根治する。
[0056] なお、本実施例のバルーンカテーテルシステムを用いて静脈口を焼灼する際に、 動脈側を血流遮断バルーンで閉塞すれば、さらに焼灼効果を高めることができる。ま た、中隔を焼灼するときは、中隔の反対側に血流遮断バルーンを併用すれば、さら に焼灼効果を高めることができる。
[0057] 以上のように、本実施例のバルーンカテーテルシステムは、外筒シャフト 2と内筒シ ャフト 3とから構成されたカテーテルシャフト 1と、前記外筒シャフト 2の先端部 4と前記 内筒シャフト 3の先端部 5との間に設けられたバルーン 6と、このバルーン 6の内部に 設けられた発熱体としての高周波電極 7と、前記バルーン 6の内部の温度を検知する 温度センサーとしての熱電対 8と、前記外筒シャフト 2と前記内筒シャフト 3との間に形 成され前記バルーン 6の内部に通じる送液路 9とを備え、前記送液路 9を通じて前記 バルーン 6へ振動波 Cを与える振動発生器 42と、前記バルーン 6の内部において振 動波を偏向させる振動波偏向装置 10とを備えたことにより、偏向された振動波 Cによ つてバルーン 6の内部の液体が撹拌され、バルーン 6の内部の液体の温度分布を均 一にすることができるとともに、前記バルーン 6は、標的部位 Aに接触する接触部 11と 、標的部位 Aに接触しない非接触部 12とを有し、前記接触部 11の膜厚が前記非接触 部 12の膜厚よりも薄く形成されたことにより、薄く形成された接触部 11に接触した標的 部位 Aが選択的に加熱され、厚く形成された非接触部 12力 は熱が漏れにくいため 、効率よく標的部位 Aのみを均一に焼灼することができる。
[0058] また、前記バルーン 6は、標的部位 Aの形状に合わせて形成されたことにより、標的 部位 Aの形状に合わせて確実にバルーン 6を密着させることができる。
[0059] また、前記バルーン 6は、略球形又はたまねぎ形であって、前記接触部 11が前記バ ルーンの先端部近傍に設けられたことにより、バルーン 6の先端部近傍で標的部位 A を焼灼することができる。
[0060] また、前記外筒シャフト 2と前記内筒シャフト 3は相互にスライド可能に構成され、前 記外筒シャフト 2の先端部 4と前記内筒シャフト 3の先端部 5との距離を変化させること により前記バルーン 6の長さが変化し、前記バルーン 6に供給される液体の圧力を変 ィ匕させることにより前記バルーン 6の直径が変化するように構成されたことにより、標 的部位 Aの形状に合わせてバルーン 6の長さと直径を変化させ、標的部位 Aにバル ーン 6を密着させることができる。
[0061] また、前記カテーテルシャフト 1の基端部に前記外筒シャフト 2の先端部 4と前記内 筒シャフト 3の先端部 5との距離を調節する距離調節装置 21を備えたことにより、バル ーン 6の長さを調節することができる。
[0062] また、前記距離調節装置 21は、前記外筒シャフト 2の基端部 16に固定されて設けら れた雌螺子部 22と、この雌螺子部 22の内部に設けられ前記内筒シャフト 3が挿通され た固定バルブ 23と、前記雌螺子部 22と螺合して前記固定バルブ 23を締め付ける雄 螺子部 24を備えた回転ノブ 25とを備え、この回転ノブ 25を回して前記固定バルブ 23 を締め付けると前記固定バルブ 23が弾性変形して前記内筒シャフト 3が前記雌螺子 部 22に固定されるように構成されたことにより、簡単な操作で内筒シャフト 3を外筒シ ャフト 2に対して適切な位置に固定することができる。
[0063] また、前記距離調節装置 21は、前記回転ノブ 25の内部において前記内筒シャフト 3 に固定された指針 26を備え、前記回転ノブ 25が枠状に形成され前記指針 26の可動 範囲が前記回転ノブ 25の内側に制限されるように構成されたことにより、外筒シャフト 2に対する内筒シャフト 3の可動範囲を適切な範囲内に維持することができる。
[0064] また、前記回転ノブ 25は、前記指針 26の位置によって前記外筒シャフト 2の先端部 4と前記内筒シャフト 3の先端部 5との距離を示す目盛 28を備えたことにより、バル一 ン 6の長さを正確に設定することができる。
[0065] さらに、前記発熱体としての高周波電極 7に接続された第 1のリード線 33と、前記熱 電対 8に接続された第 2のリード線 34とを備え、前記高周波電極 7と前記熱電対 8が 前記内筒シャフト 3の先端部 5固定されるとともに、前記内筒シャフト 3の先端部 5と基 端部 17の間において前記第 1のリード線 33と前記第 2のリード線 34が前記内筒シャフ ト 3に固定されたことにより、外筒シャフト 2と内筒シャフト 3を相互にスライドさせたとき に第 1のリード線 33と第 2のリード線 34が絡み合うことを防止することができる。
実施例 2
[0066] 図 6に本発明のノ レーンカテーテルシステムの第 2実施例を示す。なお、上記第 1 実施例と同様の部分には同じ符号を付し、その詳細な説明を省略する。
[0067] 本実施例のバルーンカテーテルシステムは、左下肺静脈口 LIPV、右下肺静脈口 RIPVを電気的に隔離するのに適した形状のノ レーン 51を備えているほかは、上記 第 1実施例と同様である。
[0068] バルーン 51は、略球形の外観を有する球形部 52と、略円筒の外観を有する円筒部 53から構成されている。高周波電極 7は、球形部 52の中心に位置している。球形部 5 2の基端部 54は、外筒シャフト 2の先端部 4に固定されており、球形部 52の先端部 55 から球形部 52と一体に、肺静脈の血管の形状に合わせて形成された円筒部 53が延 設されている。そして、円筒部 53の先端部 56は、内筒シャフト 3の先端部 5に固定され ており、円筒部 53の内部は球形部 52の内部と連通している。なお、球形部 52の外径 は、円筒部 53の外径の 2倍以上に形成されている。
[0069] バルーン 51の球形部 52は、肺静脈口の標的部位 Aに接触する接触部 57と、標的部 位 Aに接触しない非接触部 58とを有しており、接触部 57の膜厚が非接触部 58の膜厚 よりも薄く形成されている。接触部 57は、球形部 52の先端部 55の近傍において、円筒 部 53の基端部 59が延設された部分の周囲に形成されている。バルーン 51は、例えば ポリウレタンなどの合成樹脂から形成されており、接触部 57の膜厚は 0. 1〜0. 2mm 、非接触部 58の膜厚は 0. 2〜0. 4mmに形成されている。このように構成することに よって、バルーン 51の内部の熱が非接触部 58から外部へ逃げることを防止し、接触 部 57に接触した標的部位 Aのみを効率的に加熱し焼灼することができるようになって いる。
[0070] また、円筒部 53の先端部 56の膜厚は、円筒部 53の基端部 59及び中央部 60の膜厚 よりも薄く形成されている。そして、ノ レーン 51の内部を加圧することによって、円筒 部 53の先端部 56が拡張して円筒部 53が肺静脈の血管内に固定されるようになってい る。そして、肺静脈口の標的部位 Aや肺静脈の形状に合わせてバルーン 51形成し、 円筒部 53の先端部 56を肺静脈の血管内に固定することによって、バルーン 51を標的 部位 Aに密着させ、肺静脈口の血流を完全に遮断して効果的に標的部位 Aを加熱 することができるように構成されて!、る。
[0071] 本実施例のバルーンカテーテルシステムを使用することによって、合併症なぐ左 下肺静脈口 LIPV、右下肺静脈口 RIPVの電気的隔離が容易に得られる。
[0072] 以上のように、本実施例のバルーンカテーテルシステムは、前記バルーン 51は、前 記外筒シャフト 2の先端部 4に固定された球形部 52と、この球形部 52から延設され前 記内筒シャフト 3の先端部 5に固定された円筒部 53とからなり、前記接触部 57が前記 球形部 52の先端部 55近傍に設けられ、前記円筒部 53の先端部 56の膜厚が前記円 筒部 53の基端部 59の膜厚よりも薄く形成されたことにより、バルーン 51の内部を加圧 することによって円筒部 53の先端部 56が拡張して円筒部 53が血管内に確実に固定さ れ、球形部 52の先端部 55近傍に設けられた接触部 57により血管入口部周辺の標的 部位 Aを確実に焼灼することができる。
実施例 3
[0073] 図 7に本発明のノ レーンカテーテルシステムの第 3実施例を示す。なお、上記第 1 実施例と同様の部分には同じ符号を付し、その詳細な説明を省略する。
[0074] 本実施例のバルーンカテーテルシステムは、上大静脈口 SVCを電気的に隔離す るのに適した形状のノ レーン 61を備えて 、るほかは、上記第 1実施例と同様である。
[0075] ノ レーン 61は、略円筒形に形成されており、上大静脈口 SVCの標的部位 Aに接触 する接触部 62と、標的部位 Aに接触しない非接触部 63とを有しており、接触部 62の 膜厚が非接触部 63の膜厚よりも薄く形成されている。接触部 62はバルーン 61の中央 部近傍に設けられており、非接触部 63はバルーン 61の先端部 64の近傍と基端部 65 の近傍に形成されている。バルーン 61は、例えばポリウレタンなどの合成樹脂から形 成されており、接触部 62の膜厚は 0. 1〜0. 2mm、非接触部 63の膜厚は 0. 2〜0. 4 mmに形成されている。このように構成することによって、バルーン 61の内部の熱が非 接触部 63から外部へ逃げることを防止し、接触部 62に接触した標的部位 Aのみを効 率的に加熱し焼灼することができるようになつている。そして、上大静脈口 SVCの標 的部位 Aの形状に合わせてバルーン 61形成することによって、バルーン 61を標的部 位 Aに密着させ、上大静脈口 SVCの血流を完全に遮断して効果的に標的部位 Aを 加熱することができるように構成されて 、る。
[0076] 本実施例のバルーンカテーテルシステムを使用することによって、上大静脈口 SV Cの電気的隔離が容易に得られ、上大静脈口 SVCを起源とする心房細動を根治す ることがでさる。
[0077] 以上のように、本実施例のバルーンカテーテルシステムは、前記ノ レーン 61は、略 円筒形であって、前記接触部 62が前記バルーン 61の中央部近傍に設けられたことに より、バルーン 61の中央部近傍で標的部位 Aを焼灼することができる。
実施例 4
[0078] 図 8に本発明のノ レーンカテーテルシステムの第 4実施例を示す。なお、上記第 1 実施例と同様の部分には同じ符号を付し、その詳細な説明を省略する。
[0079] 本実施例のバルーンカテーテルシステムは、電気的構成が異なるほかは、上記第 1実施例と同様である。
[0080] 高周波発生器 31には、高周波発生器 31から出力される高周波の低周波成分をカツ トする低周波帯カットフィルター 71が接続している。また、温度計 32には、温度計 32へ 入力される高周波成分をカットする高周波帯カットフィルター 72が接続して 、る。内筒 シャフト 2に沿って内筒シャフト 2の基端部 17から先端部 5まで 2本のリード線 73が設 けられており、このリード線 73は高周波電極 7と熱電対 8について共通となっている。 そして、熱電対 8に接続する 2本のリード線 73は高周波帯カットフィルター 72を経て温 度計 32に接続するとともに、リード線 73の一本は、さらに低周波帯カットフィルター 71 を経て高周波発生器 31に接続している。また、低周波カットフィルター 71には、電磁 波を高周波電極 7へ送る対極板 74が接続して 、る。
[0081] そして、高周波発生器 31から出力された高周波は、低周波数帯カットフィルター 71 により低周波成分がカットされて力 高周波電極 7へ供給されるようになって 、る。ま た、熱電対 8により検知された温度の電気信号は、高周波帯カットフィルター 72により 高周波発生器 31から出力された高周波がカットされて力 温度計 32に入力されるよう になっている。したがって、低周波数帯カットフィルター 71と高周波帯カットフィルター 72を用いて電気信号の高周波帯と低周波帯を使い分けることによって、高周波電極 7と熱電対 8の信号が干渉することなぐ高周波電極 7と熱電対 8のリード線 73を共通 とすることができるように構成されて 、る。
[0082] 以上のように、本実施例のバルーンカテーテルシステムは、前記高周波電極 7に高 周波を供給する高周波発生器 31と、前記熱電対 8により検知された温度を表示する 温度計 32と、前記高周波電極 7と前記高周波発生器 31の間に設けられ前記高周波 発生器 31から出力される高周波の低周波成分をカットする低周波帯カットフィルター 71と、前記熱電対 8と前記温度計 32の間に設けられ前記温度計 32へ入力される高周 波成分をカットする高周波帯カットフィルター 72と、前記熱電対 8と前記高周波帯カツ トフィルター 72を接続するリード線 73とを備え、このリード線 73を通じて前記高周波電 極 7へ高周波が供給されるように構成されたことにより、高周波発生器 31からは高周 波成分のみが出力され、温度計 32には低周波成分のみが入力されるので、高周波 電極 7と熱電対 8のリード線 73を共用して高周波の供給と温度の検知を同時に行うこ とがでさる。
実施例 5
[0083] 図 9に本発明のノ レーンカテーテルシステムの第 4実施例を示す。なお、上記第 1 実施例と同様の部分には同じ符号を付し、その詳細な説明を省略する。
[0084] 本実施例のバルーンカテーテルシステムは、バルーン 6の膜の構成が異なるほか は、上記第 1実施例と同様である。
[0085] ノ レーン 6は、非接触部 12の膜厚は、接触部 11の膜厚と同様に 0. 1〜0. 2mmに 形成されており、そのかわりに非接触部 12には断熱層 81がコーティングされている。 このように構成することによって、バルーン 6の内部の熱が非接触部 12力 外部へ逃 げることを防止し、接触部 11に接触した標的部位 Aのみを効率的に加熱し焼灼する ことができるようになって!/、る。
[0086] 以上のように、本実施例のバルーンカテーテルシステムは、前記バルーン 6は、標 的部位 Aに接触する接触部 11と、標的部位 Aに接触しない非接触部 12とを有し、前 記非接触部 12に断熱層 81が設けられたことにより、断熱層 81が設けられた非接触部 12からは熱が漏れにくいため、効率よく標的部位 Aのみを選択的に焼灼することがで きる。
[0087] なお、本発明は上記各実施例に限定されるものではなぐ本発明の要旨の範囲内 において種々の変形実施が可能である。例えば、上記実施例は心房細動治療のた めの肺静脈口電気的隔離用のバルーンカテーテルシステムについて説明したが、こ れ以外の部位の治療に用いられるものであってもよい。バルーンの形状も上述の形 状に限定されず、治療部位に応じた種々の形状に形成してもよい。
図面の簡単な説明
[0088] [図 1]本発明のバルーンカテーテルシステムの第 1実施例を示す全体図である。
[図 2]同上バルーン近傍の部分拡大図である。
[図 3]同上距離調節装置近傍の部分拡大図である。
[図 4]同上使用状態を示す図である。
[図 5]同上使用状態を示すバルーン近傍の部分拡大図である。
[図 6]本発明のバルーンカテーテルシステムの第 2実施例を示すバルーン近傍の部 分拡大図である。
[図 7]本発明のバルーンカテーテルシステムの第 3実施例を示すバルーン近傍の部 分拡大図である。
[図 8]本発明のバルーンカテーテルシステムの第 4実施例を示す全体図である。
[図 9]本発明のバルーンカテーテルシステムの第 5実施例を示すバルーン近傍の部 分拡大図である。
符号の説明
[0089] 1 力テーテノレシャフト 外筒シャフト 内筒シャフト 先端部
先端部
バルーン
高周波電極 (発熱体) 熱電対 (温度センサー) 送液路
振動波偏向装置 接触部
非接触部
基端部
基端部
距離調節装置 雌螺子部
固定バノレブ
雄螺子部
回転ノブ
指針
目盛
高周波発生器 温度計
第 1のリード線 第 2のリード線 振動発生器
バノレーン
球形部
円筒部 先端部
先端部
基端部
バノレーン
接触部
低周波帯カットフィルター 高周波帯カットフィルター 的部位

Claims

請求の範囲
[1] 外筒シャフトと内筒シャフトとから構成されたカテーテルシャフトと、前記外筒シャフト の先端部と前記内筒シャフトの先端部近傍との間に設けられた弾性バルーンと、この バルーンの内部に設けられた発熱体と、前記バルーンの内部の温度を検知する温 度センサーと、前記外筒シャフトと前記内筒シャフトとの間に形成され前記バルーン の内部に通じる送液路と、前記送液路を通じて前記バルーンへ振動波を与える振動 発生器と、前記バルーンの内部において振動波を偏向させる振動波偏向装置とを備 えたバルーンカテーテルシステムにおいて、前記バルーンは、標的部位に接触する 接触部と、標的部位に接触しない非接触部とを有し、前記接触部の膜厚が前記非接 触部の膜厚よりも薄く形成されたことを特徴とするバルーンカテーテルシステム。
[2] 前記発熱体は、高周波電極、ニクロム線、赤外線発生器、発熱ダイオード、レーザー 照射器、超音波発生器の 、ずれかであることを特徴とする請求項 1記載のバルーン 力テーテノレシステム。
[3] 前記バルーンは、標的部位の形状に合わせて形成されたことを特徴とする請求項 1 記載のバルーンカテーテルシステム。
[4] 前記バルーンは、略球形又はたまねぎ形であって、前記接触部が前記バルーンの 先端部近傍に設けられたことを特徴とする請求項 3記載のバルーンカテーテルシス テム。
[5] 前記バルーンは、前記外筒シャフトの先端部に固定された球形部と、この球形部から 延設され前記内筒シャフトの先端部に固定された円筒部とからなり、前記接触部が 前記球形部の先端部近傍に設けられ、前記円筒部の先端部の膜厚が前記円筒部 の基端部の膜厚よりも薄く形成されたことを特徴とする請求項 3記載のバルーンカテ ーテノレシステム。
[6] 前記バルーンは、略円筒形であって、前記接触部が前記バルーンの中央部近傍に 設けられたことを特徴とする請求項 3記載のバルーンカテーテルシステム。
[7] 前記外筒シャフトと前記内筒シャフトは相互にスライド可能に構成され、前記外筒シ ャフトの先端部と前記内筒シャフトの先端部との距離を変化させることにより前記バル ーンの長さが変化し、前記バルーンに供給される液体の圧力を変化させることにより 前記バルーンの直径が変化するように構成されたことを特徴とする請求項 1記載のバ ノレーン力テーテノレシステム。
[8] 前記カテーテルシャフトの基端部に前記外筒シャフトの先端部と前記内筒シャフトの 先端部との距離を調節する距離調節装置を備えたことを特徴とする請求項 1記載の ノノレーン力テーテノレシステム。
[9] 前記距離調節装置は、前記外筒シャフトの基端部に固定されて設けられた雌螺子部 と、この雌螺子部の内部に設けられ前記内筒シャフトが挿通された固定バルブと、前 記雌螺子部と螺合して前記固定バルブを締め付ける雄螺子部を備えた回転ノブとを 備え、この回転ノブを回して前記固定バルブを締め付けると前記固定バルブが弾性 変形して前記内筒シャフトが前記雌螺子部に固定されるように構成されたことを特徴 とする請求項 8記載のバルーンカテーテルシステム。
[10] 前記距離調節装置は、前記回転ノブの内部において前記内筒シャフトに固定された 指針を備え、前記回転ノブが枠状に形成され前記指針の可動範囲が前記回転ノブ の内側に制限されるように構成されたことを特徴とする請求項 9記載のバルーンカテ ーテノレシステム。
[11] 前記回転ノブは、前記指針の位置によって前記外筒シャフトの先端部と前記内筒シ ャフトの先端部との距離を示す目盛を備えたことを特徴とする請求項 10記載のバル ーンカテーテルシステム。
[12] 前記発熱体に接続された第 1のリード線と、前記温度センサーに接続された第 2のリ ード線とを備え、前記発熱体と前記温度センサーが前記内筒シャフトの先端部に固 定されるとともに、前記内筒シャフトの先端部と基端部の間において前記第 1のリード 線と前記第 2のリード線が前記内筒シャフトに固定されたことを特徴とする請求項 7記 載のバルーンカテーテルシステム。
[13] 前記発熱体は高周波電極、前記温度センサーは熱電対であって、前記高周波電極 に高周波を供給する高周波発生器と、前記熱電対により検知された温度を表示する 温度計と、前記高周波電極と前記高周波発生器の間に設けられ前記高周波発生器 力も出力される高周波の低周波成分をカットする低周波帯カットフィルターと、前記熱 電対と前記温度計の間に設けられ前記温度計へ入力される高周波成分をカットする 高周波帯カットフィルターと、前記熱電対と前記高周波帯カットフィルターを接続する リード線とを備え、このリード線を通じて前記高周波電極へ高周波が供給されるように 構成されたことを特徴とする請求項 1記載のノ レーンカテーテルシステム。
外筒シャフトと内筒シャフトとから構成されたカテーテルシャフトと、前記外筒シャフト の先端部と前記内筒シャフトの先端部との間に設けられたバルーンと、このバルーン の内部に設けられた発熱体と、前記バルーンの内部の温度を検知する温度センサー と、前記外筒シャフトと前記内筒シャフトとの間に形成され前記バルーンの内部に通 じる送液路とを備えたバルーンカテーテルシステムにおいて、前記バルーンは、標的 部位に接触する接触部と、標的部位に接触しない非接触部とを有し、前記非接触部 に断熱層が設けられたことを特徴とするバルーンカテーテルシステム。
PCT/JP2005/020140 2005-11-01 2005-11-01 バルーンカテーテルシステム WO2007052341A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05805500A EP1946712B1 (en) 2005-11-01 2005-11-01 Balloon catheter system
US12/091,967 US8226637B2 (en) 2005-11-01 2005-11-01 Balloon catheter system
JP2007542188A JP4702704B2 (ja) 2005-11-01 2005-11-01 バルーンカテーテルシステム
PCT/JP2005/020140 WO2007052341A1 (ja) 2005-11-01 2005-11-01 バルーンカテーテルシステム
US13/358,639 US20120123331A1 (en) 2005-11-01 2012-01-26 Balloon catheter system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/020140 WO2007052341A1 (ja) 2005-11-01 2005-11-01 バルーンカテーテルシステム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/358,639 Division US20120123331A1 (en) 2005-11-01 2012-01-26 Balloon catheter system

Publications (1)

Publication Number Publication Date
WO2007052341A1 true WO2007052341A1 (ja) 2007-05-10

Family

ID=38005505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020140 WO2007052341A1 (ja) 2005-11-01 2005-11-01 バルーンカテーテルシステム

Country Status (4)

Country Link
US (2) US8226637B2 (ja)
EP (1) EP1946712B1 (ja)
JP (1) JP4702704B2 (ja)
WO (1) WO2007052341A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4988044B2 (ja) * 2008-12-19 2012-08-01 有限会社日本エレクテル バルーンカテーテルシステム
WO2014020666A1 (ja) * 2012-07-30 2014-02-06 テルモ株式会社 医療用加熱処置具
WO2014157633A1 (ja) * 2013-03-28 2014-10-02 東レ株式会社 バルーン付きアブレーションカテーテル及びバルーン付きアブレーションカテーテルシステム
JP2017516523A (ja) * 2014-05-22 2017-06-22 カーディオノミック,インク. 電気的神経調節のためのカテーテル及びカテーテルシステム
JP2017536891A (ja) * 2014-11-25 2017-12-14 ラックスキャス・リミテッド・ライアビリティ・カンパニーLuxcath, Llc 視覚化カテーテル
CN108309432A (zh) * 2018-04-13 2018-07-24 山前(珠海)医疗科技有限公司 低温消融导管、低温消融操作装置及低温消融设备
US10448884B2 (en) 2016-03-09 2019-10-22 CARDIONOMIC, Inc. Methods of reducing duty cycle during neurostimulation treatment
US10493278B2 (en) 2015-01-05 2019-12-03 CARDIONOMIC, Inc. Cardiac modulation facilitation methods and systems
US10722716B2 (en) 2014-09-08 2020-07-28 Cardionomia Inc. Methods for electrical neuromodulation of the heart
US10905873B2 (en) 2006-12-06 2021-02-02 The Cleveland Clinic Foundation Methods and systems for treating acute heart failure by neuromodulation
US11077298B2 (en) 2018-08-13 2021-08-03 CARDIONOMIC, Inc. Partially woven expandable members
US11559687B2 (en) 2017-09-13 2023-01-24 CARDIONOMIC, Inc. Methods for detecting catheter movement
US11607176B2 (en) 2019-05-06 2023-03-21 CARDIONOMIC, Inc. Systems and methods for denoising physiological signals during electrical neuromodulation

Families Citing this family (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US7617005B2 (en) * 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
DE202004021950U1 (de) 2003-09-12 2013-06-19 Vessix Vascular, Inc. Auswählbare exzentrische Remodellierung und/oder Ablation von atherosklerotischem Material
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
EP3045110B1 (en) 2005-03-28 2019-07-31 Vessix Vascular, Inc. Intraluminal electrical tissue characterization and tuned rf energy for selective treatment of atheroma and other target tissues
US20070100405A1 (en) 2005-07-21 2007-05-03 Thompson Russell B Systems and methods for treating a hollow anatomical structure
US8066664B2 (en) * 2005-12-12 2011-11-29 Taheri Laduca Llc Tri-directional articulating catheter
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
EP2076198A4 (en) 2006-10-18 2009-12-09 Minnow Medical Inc Inducing Desired Temperatreating Effects on Body Weave
EP3257462B1 (en) 2006-10-18 2022-12-21 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
AU2007310988B2 (en) 2006-10-18 2013-08-15 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US8496653B2 (en) 2007-04-23 2013-07-30 Boston Scientific Scimed, Inc. Thrombus removal
JP4649506B2 (ja) * 2008-09-16 2011-03-09 有限会社日本エレクテル 高周波加温バルーンカテーテル
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US9561068B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
CN102238920B (zh) 2008-10-06 2015-03-25 维兰德.K.沙马 用于组织消融的方法和装置
US10064697B2 (en) 2008-10-06 2018-09-04 Santa Anna Tech Llc Vapor based ablation system for treating various indications
US9561066B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
AU2009314133B2 (en) 2008-11-17 2015-12-10 Vessix Vascular, Inc. Selective accumulation of energy with or without knowledge of tissue topography
JP5615508B2 (ja) 2009-03-31 2014-10-29 東レ株式会社 撹拌方法及びバルーン付きアブレーションカテーテルシステム
US8551096B2 (en) 2009-05-13 2013-10-08 Boston Scientific Scimed, Inc. Directional delivery of energy and bioactives
CN103068330B (zh) 2010-04-09 2016-06-29 Vessix血管股份有限公司 用于治疗组织的功率发生和控制装置
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
JP5916626B2 (ja) * 2010-12-13 2016-05-11 学校法人慶應義塾 バルーンカテーテル
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
WO2012122157A1 (en) * 2011-03-07 2012-09-13 Tidal Wave Technology, Inc. Radiofrequency ablation catheter device
KR20130131471A (ko) 2011-04-08 2013-12-03 코비디엔 엘피 신장 교감 신경의 신경차단 및 이온영동 약물 전달을 위한 이온영동 약물 전달 시스템 및 방법
WO2012148969A2 (en) 2011-04-25 2012-11-01 Brian Kelly Apparatus and methods related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls
CN103813745B (zh) 2011-07-20 2016-06-29 波士顿科学西美德公司 用以可视化、对准和消融神经的经皮装置及方法
AU2012287189B2 (en) 2011-07-22 2016-10-06 Boston Scientific Scimed, Inc. Nerve modulation system with a nerve modulation element positionable in a helical guide
WO2013055826A1 (en) 2011-10-10 2013-04-18 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
WO2013055815A1 (en) 2011-10-11 2013-04-18 Boston Scientific Scimed, Inc. Off -wall electrode device for nerve modulation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
EP2768568B1 (en) 2011-10-18 2020-05-06 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
EP3366250A1 (en) 2011-11-08 2018-08-29 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
WO2013074813A1 (en) 2011-11-15 2013-05-23 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
WO2013096913A2 (en) 2011-12-23 2013-06-27 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
WO2014006730A1 (ja) * 2012-07-05 2014-01-09 有限会社日本エレクテル バルーンカテーテルシステム
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
EP2895095A2 (en) 2012-09-17 2015-07-22 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
WO2014047454A2 (en) 2012-09-21 2014-03-27 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US20140088584A1 (en) * 2012-09-26 2014-03-27 Boston Scientific Scimed, Inc. Medical device balloon catheter
EP2906135A2 (en) 2012-10-10 2015-08-19 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
EP2945556A4 (en) 2013-01-17 2016-08-31 Virender K Sharma METHOD AND DEVICE FOR TISSUE REMOVAL
WO2014163987A1 (en) 2013-03-11 2014-10-09 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
JP6220044B2 (ja) 2013-03-15 2017-10-25 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 腎神経アブレーションのための医療用デバイス
JP6139772B2 (ja) 2013-03-15 2017-05-31 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 電極パッドと共に使用するための制御ユニットおよび漏電を推定するための方法
EP3444002A1 (en) 2013-04-22 2019-02-20 University of Maryland, Baltimore Coaptation ultrasound devices
EP3010436A1 (en) 2013-06-21 2016-04-27 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
WO2015002787A1 (en) 2013-07-01 2015-01-08 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
EP3019106A1 (en) 2013-07-11 2016-05-18 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
WO2015010074A1 (en) 2013-07-19 2015-01-22 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
US10342609B2 (en) 2013-07-22 2019-07-09 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
JP6159888B2 (ja) 2013-08-22 2017-07-05 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 腎神経変調バルーンへの接着性を向上させたフレキシブル回路
WO2015035047A1 (en) 2013-09-04 2015-03-12 Boston Scientific Scimed, Inc. Radio frequency (rf) balloon catheter having flushing and cooling capability
US9987082B2 (en) 2013-09-05 2018-06-05 Mitragen, Inc. Valve treatment devices, systems, and methods
US20150073515A1 (en) * 2013-09-09 2015-03-12 Medtronic Ardian Luxembourg S.a.r.I. Neuromodulation Catheter Devices and Systems Having Energy Delivering Thermocouple Assemblies and Associated Methods
EP3043733A1 (en) 2013-09-13 2016-07-20 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
WO2015057521A1 (en) 2013-10-14 2015-04-23 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
EP3057520A1 (en) 2013-10-15 2016-08-24 Boston Scientific Scimed, Inc. Medical device balloon
WO2015057961A1 (en) 2013-10-18 2015-04-23 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
US10271898B2 (en) 2013-10-25 2019-04-30 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
EP3091922B1 (en) 2014-01-06 2018-10-17 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
WO2015119890A1 (en) 2014-02-04 2015-08-13 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US10709490B2 (en) 2014-05-07 2020-07-14 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods
JP6320978B2 (ja) * 2015-09-28 2018-05-09 有限会社日本エレクテル 高周波バルーンカテーテルシステム
US20170143403A1 (en) * 2015-11-20 2017-05-25 Covidien Lp Instruments and methods for treating ulcerative colitis and other inflammatory bowel diseases
US11771491B2 (en) 2015-12-30 2023-10-03 Schuler Scientific Solutions, Llc Tissue mapping and treatment
WO2017176881A1 (en) 2016-04-05 2017-10-12 University Of Maryland, Baltimore Method and apparatus for coaptive ultrasound gastrostomy
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
US11890044B2 (en) 2016-12-09 2024-02-06 St. Jude Medical, Cardiology Division, Inc. Pulmonary vein isolation balloon catheter
US11737820B2 (en) 2017-01-06 2023-08-29 St. Jude Medical, Cardiology Division, Inc. Pulmonary vein isolation balloon catheter
WO2018194980A1 (en) * 2017-04-21 2018-10-25 Boston Scientific Scimed, Inc. Lithotripsy angioplasty devices and methods
US11766285B2 (en) 2017-10-27 2023-09-26 St. Jude Medical, Cardiology Division, Inc. Cryogenic ablation system
JP7535034B2 (ja) 2018-04-27 2024-08-15 コープテック,インコーポレイテッド 胃瘻管用のガイドワイヤを位置決めするためのシステム、装置、及び方法
EP3787497A4 (en) * 2018-05-04 2022-01-26 CoapTech, Inc. SYSTEMS, DEVICE AND METHODS FOR DELIVERING A MEDICAL DEVICE VIA A BRANCH IN A BODY LUMEN
AU2019279011A1 (en) 2018-06-01 2021-01-07 Santa Anna Tech Llc Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems
EP3870092A1 (en) 2018-10-24 2021-09-01 Boston Scientific Scimed, Inc. Photoacoustic pressure wave generation for intravascular calcification disruption
US11717139B2 (en) 2019-06-19 2023-08-08 Bolt Medical, Inc. Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium
WO2020256898A1 (en) 2019-06-19 2020-12-24 Boston Scientific Scimed, Inc. Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions
US11660427B2 (en) 2019-06-24 2023-05-30 Boston Scientific Scimed, Inc. Superheating system for inertial impulse generation to disrupt vascular lesions
US20200406009A1 (en) 2019-06-26 2020-12-31 Boston Scientific Scimed, Inc. Focusing element for plasma system to disrupt vascular lesions
US11583339B2 (en) 2019-10-31 2023-02-21 Bolt Medical, Inc. Asymmetrical balloon for intravascular lithotripsy device and method
US12102384B2 (en) 2019-11-13 2024-10-01 Bolt Medical, Inc. Dynamic intravascular lithotripsy device with movable energy guide
US11672599B2 (en) * 2020-03-09 2023-06-13 Bolt Medical, Inc. Acoustic performance monitoring system and method within intravascular lithotripsy device
US20210290286A1 (en) 2020-03-18 2021-09-23 Bolt Medical, Inc. Optical analyzer assembly and method for intravascular lithotripsy device
US11707323B2 (en) 2020-04-03 2023-07-25 Bolt Medical, Inc. Electrical analyzer assembly for intravascular lithotripsy device
US12016610B2 (en) 2020-12-11 2024-06-25 Bolt Medical, Inc. Catheter system for valvuloplasty procedure
US11672585B2 (en) 2021-01-12 2023-06-13 Bolt Medical, Inc. Balloon assembly for valvuloplasty catheter system
CN112933377B (zh) * 2021-01-21 2023-03-28 温州医科大学附属第一医院 一种环咽肌功能障碍康复训练装置
EP4319674A1 (en) * 2021-04-06 2024-02-14 Bolt Medical, Inc. Intravascular lithotripsy balloon
US11648057B2 (en) 2021-05-10 2023-05-16 Bolt Medical, Inc. Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device
US11806075B2 (en) 2021-06-07 2023-11-07 Bolt Medical, Inc. Active alignment system and method for laser optical coupling
US11839391B2 (en) 2021-12-14 2023-12-12 Bolt Medical, Inc. Optical emitter housing assembly for intravascular lithotripsy device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192227A (ja) * 1996-01-11 1997-07-29 Schneider Usa Inc 血管形成用カテーテルおよびバルーンのレーザー除去整形
JP2002011101A (ja) * 1989-05-15 2002-01-15 Advanced Cardiovascular Systems Inc 加熱されたバルーン要素を有する拡張カテーテル
JP2003144553A (ja) * 2001-11-12 2003-05-20 Kanegafuchi Chem Ind Co Ltd バルーンおよびバルーンカテーテル
JP2004223080A (ja) * 2003-01-24 2004-08-12 Shutaro Satake 高周波加温バルーンカテーテル
JP2005058507A (ja) * 2003-08-13 2005-03-10 Toray Ind Inc バルーン付きアブレーションカテーテル
JP2005177293A (ja) 2003-12-22 2005-07-07 Nippon Erekuteru:Kk 高周波加温バルーンカテーテル
JP3705832B2 (ja) * 1994-09-16 2005-10-12 フクダ電子株式会社 血管形成装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571153A (en) * 1991-09-20 1996-11-05 Wallst+E,Acu E+Ee N; Hans I. Device for hyperthermia treatment
US8025661B2 (en) * 1994-09-09 2011-09-27 Cardiofocus, Inc. Coaxial catheter instruments for ablation with radiant energy
US6500174B1 (en) 1997-07-08 2002-12-31 Atrionix, Inc. Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member
ATE353001T1 (de) * 1999-05-11 2007-02-15 Atrionix Inc Ballonverankerungsdraht
JP2003111848A (ja) * 2001-10-05 2003-04-15 Nihon Medix 加熱式バルーンカテーテル装置およびその加熱方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002011101A (ja) * 1989-05-15 2002-01-15 Advanced Cardiovascular Systems Inc 加熱されたバルーン要素を有する拡張カテーテル
JP3705832B2 (ja) * 1994-09-16 2005-10-12 フクダ電子株式会社 血管形成装置
JPH09192227A (ja) * 1996-01-11 1997-07-29 Schneider Usa Inc 血管形成用カテーテルおよびバルーンのレーザー除去整形
JP2003144553A (ja) * 2001-11-12 2003-05-20 Kanegafuchi Chem Ind Co Ltd バルーンおよびバルーンカテーテル
JP2004223080A (ja) * 2003-01-24 2004-08-12 Shutaro Satake 高周波加温バルーンカテーテル
JP2005058507A (ja) * 2003-08-13 2005-03-10 Toray Ind Inc バルーン付きアブレーションカテーテル
JP2005177293A (ja) 2003-12-22 2005-07-07 Nippon Erekuteru:Kk 高周波加温バルーンカテーテル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1946712A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11986650B2 (en) 2006-12-06 2024-05-21 The Cleveland Clinic Foundation Methods and systems for treating acute heart failure by neuromodulation
US10905873B2 (en) 2006-12-06 2021-02-02 The Cleveland Clinic Foundation Methods and systems for treating acute heart failure by neuromodulation
JP4988044B2 (ja) * 2008-12-19 2012-08-01 有限会社日本エレクテル バルーンカテーテルシステム
WO2014020666A1 (ja) * 2012-07-30 2014-02-06 テルモ株式会社 医療用加熱処置具
US11172983B2 (en) 2013-03-28 2021-11-16 Toray Industries, Inc. Balloon ablation catheter and balloon ablation catheter system
WO2014157633A1 (ja) * 2013-03-28 2014-10-02 東レ株式会社 バルーン付きアブレーションカテーテル及びバルーン付きアブレーションカテーテルシステム
JP2017516523A (ja) * 2014-05-22 2017-06-22 カーディオノミック,インク. 電気的神経調節のためのカテーテル及びカテーテルシステム
JP2019213925A (ja) * 2014-05-22 2019-12-19 カーディオノミック,インク. 電気的神経調節のためのカテーテル及びカテーテルシステム
US10576273B2 (en) 2014-05-22 2020-03-03 CARDIONOMIC, Inc. Catheter and catheter system for electrical neuromodulation
US10722716B2 (en) 2014-09-08 2020-07-28 Cardionomia Inc. Methods for electrical neuromodulation of the heart
JP2017536891A (ja) * 2014-11-25 2017-12-14 ラックスキャス・リミテッド・ライアビリティ・カンパニーLuxcath, Llc 視覚化カテーテル
US10493278B2 (en) 2015-01-05 2019-12-03 CARDIONOMIC, Inc. Cardiac modulation facilitation methods and systems
US11229398B2 (en) 2016-03-09 2022-01-25 CARDIONOMIC, Inc. Electrode assemblies for neurostimulation treatment
US10952665B2 (en) 2016-03-09 2021-03-23 CARDIONOMIC, Inc. Methods of positioning neurostimulation devices
US10448884B2 (en) 2016-03-09 2019-10-22 CARDIONOMIC, Inc. Methods of reducing duty cycle during neurostimulation treatment
US11806159B2 (en) 2016-03-09 2023-11-07 CARDIONOMIC, Inc. Differential on and off durations for neurostimulation devices and methods
US11559687B2 (en) 2017-09-13 2023-01-24 CARDIONOMIC, Inc. Methods for detecting catheter movement
US12042655B2 (en) 2017-09-13 2024-07-23 CARDIONOMIC, Inc. Systems for detecting catheter movement
CN108309432B (zh) * 2018-04-13 2024-04-09 山前(珠海)医疗科技有限公司 低温消融导管、低温消融操作装置及低温消融设备
CN108309432A (zh) * 2018-04-13 2018-07-24 山前(珠海)医疗科技有限公司 低温消融导管、低温消融操作装置及低温消融设备
US11077298B2 (en) 2018-08-13 2021-08-03 CARDIONOMIC, Inc. Partially woven expandable members
US11648395B2 (en) 2018-08-13 2023-05-16 CARDIONOMIC, Inc. Electrode assemblies for neuromodulation
US11607176B2 (en) 2019-05-06 2023-03-21 CARDIONOMIC, Inc. Systems and methods for denoising physiological signals during electrical neuromodulation

Also Published As

Publication number Publication date
EP1946712A4 (en) 2010-08-11
US20120123331A1 (en) 2012-05-17
JPWO2007052341A1 (ja) 2009-04-30
EP1946712B1 (en) 2012-08-29
EP1946712A1 (en) 2008-07-23
US8226637B2 (en) 2012-07-24
US20090157066A1 (en) 2009-06-18
JP4702704B2 (ja) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4702704B2 (ja) バルーンカテーテルシステム
US7112198B2 (en) Radio-frequency heating balloon catheter
JP2020503144A (ja) 肺静脈隔離バルーンカテーテル
EP0558297B1 (en) Heated balloon catheter
JP4377225B2 (ja) 心臓内部領域における生体組織のマッピング及び焼灼のためのシステム及び方法
JP5913739B2 (ja) バルーンカテーテルアブレーションシステム
DK2501316T3 (en) The microwave-koagulationsapplikator and system
JP5657236B2 (ja) カテーテル灌注管のよじれの防止
JP6320978B2 (ja) 高周波バルーンカテーテルシステム
US20030181901A1 (en) Surgical ablation probe for forming a circumferential lesion
WO2010070766A1 (ja) バルーンカテーテルシステム
WO2005060848A1 (ja) 高周波加温バルーンカテーテル
CN106994044B (zh) 温度受控的短持续时间消融
JP2019514463A (ja) バルーンカテーテル
AU8295998A (en) Circumferential ablation device assembly and method
JP2010505596A (ja) 断熱遠位出口を備えたアブレーション電極アセンブリ
JP2013132364A (ja) バルーンカテーテル
CN106994043B (zh) 温度受控的短持续时间消融
JP6797553B2 (ja) 音響フィードバックを伴うrfアブレーション
CN114305665A (zh) 分瓣囊状电极导管及包括该分瓣囊状电极导管的消融设备
JP6401856B2 (ja) 高周波バルーンカテーテルシステム
US10779886B2 (en) Thermal therapy systems and methods
WO2018217516A1 (en) Contact assessment assembly for intravascular catheter system
JPH08117263A (ja) 温熱治療器具
JPH0576612A (ja) 温熱治療装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12091967

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007542188

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005805500

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005805500

Country of ref document: EP