WO2007049778A1 - 触媒担体及び排ガス浄化用触媒 - Google Patents

触媒担体及び排ガス浄化用触媒 Download PDF

Info

Publication number
WO2007049778A1
WO2007049778A1 PCT/JP2006/321589 JP2006321589W WO2007049778A1 WO 2007049778 A1 WO2007049778 A1 WO 2007049778A1 JP 2006321589 W JP2006321589 W JP 2006321589W WO 2007049778 A1 WO2007049778 A1 WO 2007049778A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
electron
accepting
oxide
lanthanum
Prior art date
Application number
PCT/JP2006/321589
Other languages
English (en)
French (fr)
Inventor
Shinichi Takeshima
Akio Koyama
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2006800394261A priority Critical patent/CN101291731B/zh
Priority to US12/084,050 priority patent/US7776783B2/en
Priority to EP06832403A priority patent/EP1946836B1/en
Publication of WO2007049778A1 publication Critical patent/WO2007049778A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a catalyst carrier for supporting noble metal catalyst particles, and an exhaust gas purifying catalyst in which noble metal catalyst particles are supported on the catalyst carrier.
  • the noble metal particles are finely supported on the carrier in order to improve the activity. This is to make the specific surface area of the catalyst component as wide as possible.
  • the particle size of the catalyst component is reduced, its surface energy increases, thus making it mutually sintered (synthetic).
  • the catalyst is exposed to a high temperature of several hundred degrees due to the heat of the exhaust gas and the heat generated by the reaction, so that the sintering of the noble metal particles proceeds and the particle size increases. The activity tends to decrease.
  • a catalyst carrier capable of preventing the synthesizing of the noble metal catalyst particles is described in Japanese Patent Laid-Open Nos. 4-1800835 and 200-280. Yes. .
  • Japanese Patent Application Laid-Open No. Hei 4 1 8 0 8 3 5 discloses an exhaust gas purification catalyst in which a white metal catalyst metal is supported as large particles of colloid particles on a highly active ceramic powder. According to Japanese Patent Laid-Open No. 4-186035, according to this exhaust gas purification catalyst, it is possible to prevent synthesizing between catalyst metals and solid powder with powder and powder.
  • Japanese Patent Laid-Open No. 2 0 2 — 3 4 6 3 8 7 an intermediate layer is arranged on a support, and on this intermediate layer, a composite of a noble metal particle such as a velovite complex oxide particle and platinum is used.
  • An exhaust gas purifying catalyst carrying a nitrogen oxide removing catalyst is disclosed.
  • the intermediate layer is compatible with both the nitrogen oxide removal catalyst and the carrier, and is difficult to alter the nitrogen oxide removal catalyst component, such as zirconia, oxide oxide, barium oxide, titania. It is made of rare earth oxide.
  • this intermediate layer can prevent the nitrogen oxide removal catalyst from being thinned, and the nitrogen oxide removal catalyst reacts with the carrier. It is said that the alteration can be suppressed.
  • the Zirconia system is used.
  • stabilizing elements such as alkaline earth metals and rare earths are added to zirconia to improve the BET specific surface area and thermal stability of zirconia. Is disclosed. Disclosure of the invention
  • the present invention has been made by paying attention to the above technical problem, and provides a catalyst carrier capable of preventing the synthesizing of the metal catalyst particles carried thereon, and an exhaust gas purifying catalyst using the carrier. It is intended to provide.
  • the noble metal-supporting catalyst carrier of the present invention has an electron accepting property that accepts electrons from the noble metal element of the noble metal catalyst particles when approaching or comes into contact, and has no change in valence due to the oxidation-reduction reaction. It is composed of complex oxides of accepting elements and other elements.
  • the electron-accepting element can be selected from the group consisting of lanthanum, neodymium, yttrium, magnesium and combinations thereof, particularly the group consisting of lanthanum, neodymium and combinations thereof.
  • the other elements are silicon, aluminum, di It can be selected from the group consisting of ruconium, titanium and combinations thereof, in particular the group consisting of silicon, titanium and combinations thereof.
  • the composite oxide may have an electronegativity of 2.55 to 2.80.
  • the molar ratio of the electron accepting element to the sum of the electron accepting element and the other element may be 0.3 or more.
  • the electron accepting element is selected from the group consisting of lanthanum, neodymium, yttrium, magnesium, and combinations thereof, and the other element is The molar ratio of the electron-accepting element selected from the group consisting of aluminum, zirconium, titanium, and combinations thereof, and the sum of the electron-accepting element and other elements is 0.3 or more.
  • the electron-accepting element is selected from the group consisting of lanthanum, neodymium, yttrium, and combinations thereof, and the other element is a key element.
  • the molar ratio of the electron-accepting element to the sum of the electron-accepting element and the other elements is 0.5 to 0.7.
  • the electron-accepting element is lanthanum
  • the other element is kaen
  • the molar ratio of lanthanum to the sum of lanthanum and kaen (L a Z (L a + S i)), 0.5 to 0.7.
  • the electron accepting element is selected from the group consisting of lanthanum, neodymium, yttrium, magnesium, and combinations thereof, and the other elements are zirconium, titanium.
  • the molar ratio of the electron-accepting element to the sum of the electron-accepting element and the other elements is 0.3 to 0.7.
  • the electron-accepting element is neodymium, the other element is zirconium, and the mole ratio of neodymium to the total of neodymium and zirconium (N d (N d + Z r)) is 0.3 to 0. .7.
  • the composite oxide may be supported on other support particles having higher heat resistance than the composite oxide.
  • the exhaust gas purification catalyst of the present invention is obtained by supporting noble metal catalyst particles on the catalyst carrier of the present invention.
  • the noble metal catalyst particles can be selected from the group consisting of platinum, palladium, and combinations thereof.
  • the method of the present invention for producing the catalyst carrier of the present invention provides a dispersion in which an aqueous phase is dispersed in a hydrophobic solvent phase; in the aqueous phase dispersed in the dispersion, The metal oxide precursor and other element salts are hydrolyzed to precipitate a metal oxide precursor, which is then aggregated; and the agglomerated metal oxide precursor is dried. And firing.
  • the catalyst carrier of the present invention is composed of a composite oxide of an electron-accepting element and another element, so that when the noble metal catalyst particles are supported on this catalyst carrier, electrons possessed by the noble metal element are supported by the carrier. They are coordinated to the complex oxide that constitutes and bonds to each other. Furthermore, in the catalyst carrier of the present invention, since the valence of the electron-accepting element does not change by the oxidation-reduction reaction, the bonding state between the complex oxide and the noble metal element does not change particularly.
  • FIG. 1 is a diagram conceptually showing the mechanism of the catalyst carrier of the present invention.
  • FIG. 2 is a diagram showing a crystal structure of a ferrite complex oxide having a composition of La S i O x .
  • FIG. 3 is a view showing the results of XRD analysis of the lanthanum oxide-silica composite oxide catalyst carrier of the present invention.
  • FIG. 4 is a diagram showing the measurement results of the effect of suppressing the synthesizing white metal particles of the lanthanum oxide-silica composite oxide carrier according to the present invention.
  • FIG. 5 is a diagram showing the measurement results of the platinum particle synthesizing suppression effect of the neodymium oxide-zirconia composite oxide support according to the present invention.
  • FIG. 6 is a graph showing the H 2 C 50% purification temperature in the exhaust gas purification catalyst of the present invention in which white metal is supported on the lanthanum oxide-silica composite oxide catalyst support of the present invention.
  • FIG. 7 is a view schematically showing a state in which the lanthanum oxide-silica composite oxide support according to the present invention is supported on alumina.
  • FIG. 8 is a diagram showing the difference in palladium particle sintering depending on the carrier.
  • Fig. 9 is a diagram showing the difference in palladium particle syn- therization depending on the carrier based on an empirical formula.
  • FIG. 10 is a diagram showing the difference of rhodium particle synthesizing depending on the carrier.
  • Fig. 11 shows the difference between rhodium particle syn- therizations depending on the carrier based on empirical formulas.
  • the catalyst carrier of the present invention is for supporting noble metal catalyst particles and is composed of a composite oxide.
  • this composite oxide is It consists of an electron-accepting element that accepts electrons from the noble metal elements that make up the catalyst particles, and that does not change its valence by oxidation-reduction reactions, and other elements.
  • the mechanism shown in FIG. 1 for lanthanum (L a) as the electron-accepting element and kaen (S i) as the other element is coordinated with the noble metal element. It is considered that the noble metal element is fixed on the carrier by supplying electrons to the electron-accepting element and binding to the carrier. Moreover, according to XPS analysis after H 2 reduction at 400 ° C., platinum was oxidized despite the reduction, and results supporting this mechanism were obtained.
  • “electronegativity as a metal oxide” means the electronegativity due to the polling of the metal elements constituting the umbrella oxide and oxygen, and these elements contained in the metal oxide. It is a weighted average according to the ratio.
  • the electronegativity of silica (S i 0 2 ) as a metal oxide is calculated as follows:
  • the electron-accepting element constitutes a complex oxide together with other elements.
  • This electron-accepting element when combined with other elements to form a complex oxide, has an electron-accepting property that accepts electrons from the noble metal catalyst particles when approached or contacted, and is redox. It can be selected as an element with no change in valence in the reaction.
  • the electron-accepting element is at least one of an alkaline earth metal or a rare earth element.
  • the electron-accepting element is, for example, lanthanum, neodymium, yttrium, magnesium, and the like. It is an element selected from the group consisting of
  • the electron-accepting element is an element of a rare-earth element ion that has a small atomic number and is free in the 4f orbit (there are many vacancies).
  • a preferred electron accepting element is an element selected from the group consisting of lanthanum (L a), neodymium (N d), and combinations thereof.
  • the noble metal catalyst particles are intended to be supported or fixed to the composite oxide constituting the support by coordination bonds.
  • the environment in which the catalyst is placed can change to both an oxidizing atmosphere and a reducing atmosphere. Therefore, in order to stably support the noble metal catalyst particles in any atmosphere, the catalyst of the present invention is used.
  • the catalyst carrier of the present invention is different from the conventional catalyst carrier using ceria.
  • the electron-accepting element is not used alone, but is used as a complex oxide with other elements, particularly with other metal elements. This is because, in addition to improving the heat resistance, the basicity of the electron-accepting element is weakened so that the composite oxide becomes neutral or nearly neutral as a whole. Therefore, the other element may be a metal element conventionally used as a support or base material for an exhaust gas catalyst.
  • the element (C i), aluminum (A 1) It can be selected from the group consisting of zirconium (Zr), titanium (Ti), and combinations thereof.
  • the other element is selected from the group consisting of key (S i), titanium (T i), and combinations thereof.
  • the composite oxide constituting the catalyst carrier of the present invention has an electronegativity of preferably 2.55 to 2.80, more preferably 2.60 to 2.73. According to this electronegativity, the catalyst activity can be maintained in a good state by appropriate acid basicity.
  • the electronegativity of the composite oxide is the polling value (Pauling value) for each element constituting the composite oxide as in the case of the electronegativity as the metal oxide described above.
  • Pauling value for each element constituting the composite oxide as in the case of the electronegativity as the metal oxide described above.
  • a simple weighted average is adopted because a unique value cannot be obtained.
  • the composite oxide used in the present invention is neutral or close to neutrality, and if the electronegativity is out of the above range, the effect of suppressing noble metal catalyst particles is reduced.
  • the electronegativity of oxygen used for the calculation of the electronegativity of the metal oxide is 3.4.4, and the electron-accepting elements and other elements that can be used in the present invention
  • the electronegativity of is as follows.
  • Electron accepting elements La (1.10), Nd (1.14), Y (1.22), ⁇ g (1.31).
  • Si (1.90), A1 (1.61), Zr (1.33), Ti (1.54).
  • the metal oxide having a higher electroanhydrity than alumina based on alumina is acidic,
  • a metal oxide having a lower electrical anionicity than alumina is basic.
  • the catalyst carrier for the exhaust gas purification catalyst is the same as alumina. It may be preferable to have such a relatively neutral electronegativity.
  • the electronegativity of the composite metal oxide with respect to the ratio of the silica in the acidic metal oxide (S i ⁇ 2) and lanthanum oxide as a basic metal oxide (L a 2 O 3) The results are shown in Table 2 below.
  • the electronegativity of alumina (A l 2 O 3) is 2.71.
  • Table 2 Electronegativity of lanthanum oxide-silica composite oxide
  • the molar ratio of the electron-accepting element to the total of elements such as neodymium and other elements is about 0.01 to 0.3.
  • an oxide of another element is stabilized by an element such as neodymium and the heat resistance as a catalyst carrier is improved.
  • the present inventors unexpectedly, when the molar ratio of elements such as neodymium is large, for example, 0.3 or more, particularly 0.4 or more, the heat resistance of the carrier is lowered, thereby Even when the surface area of the support is reduced, the affinity between the element such as neodymium and the noble metal is found to prevent the noble metal from being supported on the support. did.
  • the electron-accepting element is selected from the group consisting of lanthanum, neodymium, yttrium, 'magnesium and combinations thereof, and the other elements are Selected from the group consisting of aluminum, zirconium, titanium, and combinations thereof, and the molar ratio of the electron-accepting element to the total of the electron-accepting element and other elements is 0.3 or more, particularly 0.4 or more. is there. '
  • the catalyst carrier can be stabilized by making the complex oxide constituting the catalyst carrier constitute an apatite type complex oxide.
  • the crystal structure of an apatite-type composite oxide having a composition of La S i O x baked at 1,500 is represented by S. Nakayama, T. kageyama, H. A ono, and Y. S adaoka, J. Mater. Chem., 5, 1 8 0 1-1 8 0 5 (1 9 9 5) 'quoted from Figure 2
  • the complex complex oxide when used as the complex oxide constituting the catalyst carrier of the present invention, the noble metal particles are relatively compared to the electron accepting element such as lanthanum. It is in an easily accessible state, so that the noble metal particle sintering is particularly suppressed.
  • the electron accepting element is selected from the group consisting of lanthanum, neodymium, yttrium, and combinations thereof, and the other elements are the keys.
  • the molar ratio of the electron-accepting element to the sum of the electron-accepting element and other elements is 0.5 to 0.7.
  • the electron-accepting element is lanthanum
  • the other element is geiene
  • the catalyst carrier can be stabilized by making the complex oxide constituting the catalyst carrier constitute a pyrochlore type or beropskite type complex oxide.
  • the electron-accepting element is selected from the group consisting of lanthanum, neodymium, yttrium, magnesium and combinations thereof, and other elements are aluminum, zirconium, titanium and
  • the molar ratio of the electron-accepting element to the total of the electron-accepting element and other elements selected from the group consisting of those combinations is 0.3 to 0.7.
  • the electron accepting element is neodymium, the other element is zirconium, and the molar ratio of neodymium to the total of neodymium and zirconium (N d Z (N d + Z r)) force, 0.3 to 0.7.
  • a composite oxide of an electron accepting element and another metal can be used in the form of particles.
  • the composite oxide can be supported on other carrier particles having higher heat resistance than the composite oxide. According to this, even when exposed to a high temperature by being configured as an exhaust gas purification catalyst or the like, the structure of the composite oxide can be easily maintained, and as a result, the heat resistance can be further improved. .
  • the exhaust gas purifying catalyst of the present invention can be obtained by supporting a noble metal catalyst on the carrier.
  • a noble metal catalyst include platinum (P t), rhodium (rhodium), palladium (P d) and a noble metal selected from a combination thereof, and particularly as an exhaust gas purification catalyst. Selected from the group consisting of platinum particles, palladium and combinations thereof, which tend to be relatively thin during use. Mention may be made of the precious metals selected.
  • a conventionally known impregnation method slurry method
  • dipping method or the like can be used.
  • the exhaust gas purifying catalyst of the present invention it is possible to prevent the noble metal catalyst particles from synthesizing and obtain a catalyst having an excellent exhaust gas purifying ability over a long period of time.
  • the method of the present invention for producing the catalyst support of the present invention provides a dispersion in which an aqueous phase is dispersed in a hydrophobic solvent phase; in the aqueous phase dispersed in the dispersion, Add elemental salt and other elemental
  • the catalyst carrier of the present invention by depositing a metal oxide precursor containing an electron-accepting element and other elements in a minute water droplet, an electron-accepting element oxide and other elements are deposited. It is possible to obtain a metal oxide precursor in which an elemental oxide precursor is highly dispersed. Therefore, according to the method of the present invention, the catalyst carrier of the present invention can be obtained.
  • a dispersion in which an aqueous phase is dispersed in a hydrophobic solvent phase particularly by using a surfactant, in particular, the droplet diameter of the aqueous phase is 2 ⁇ 100 nm, preferably 2 ⁇ 5
  • microphone ⁇ emulsion that is 0 nm, more preferably 2400 nm
  • hydrophobic solvent As a hydrophobic solvent that can be used here,
  • Hydrocarbons such as benzene, linear alcohols such as hexanol
  • the surfactant may be any of a nonionic surfactant, an anionic surfactant, and a cationic surfactant, and can be selected in combination with a hydrophobic solvent.
  • anionic surfactants include sodium 2-ethyl hexylsulfosuccinate
  • force-based surfactants include cetyltrimethylammonium chloride. Examples include cetyl trimethyl ammonium promide.
  • the salt of the electron-accepting element and the salt of the other element are then added in the aqueous phase dispersed in the dispersion obtained as described above. It is hydrolyzed to deposit a metal oxide precursor, and the metal oxide precursor is aggregated.
  • a basic solution such as ammonia water or an aqueous sodium hydroxide solution is added to the dispersion to make the dispersion relatively basic.
  • a basic solution such as ammonia water or an aqueous sodium hydroxide solution is added to the dispersion to make the dispersion relatively basic.
  • aqueous ammonia is preferred because it can be easily removed.
  • any salt having a water-soluble property can be selected, for example, an inorganic acid salt such as nitrate and chloride, Alternatively, organic acid salts such as acetate, lactate, and oxalate, particularly nitrate can be used.
  • the metal salt constituting the metal oxide can be hydrolyzed together with the salt of the electron accepting element in the aqueous phase.
  • the metal oxide precursor aggregated as described above is dried and calcined.
  • the metal oxide precursor can be dried and calcined at any temperature at which a salt of an electron-accepting element and a composite oxide of another element can be obtained. This can be done, for example, by placing the metal oxide precursor in an oven at 120 ° C. and drying, and then drying the thus dried metal oxide precursor at a temperature commonly used in metal oxide synthesis, For example, it can be carried out by firing at a temperature of 500 to 1100 ° C.
  • a lanthanum oxide-silica composite oxide catalyst support having a composition of Lai 0 S 16 O 2 7 was prepared by the microemulsion method as described below. Synthesized.
  • lanthanum (L a) As a source of lanthanum (L a), lanthanum nitrate aqueous solution (0.3 0 1 6010 1, concentration 1. 6 7 5 M) and aqueous ammonia (0.3 7 4 8 mo 1, concentration 2. 0 8 2 M
  • a microemulsion solution was prepared by mixing in a solvent dissolved in 5 ml.
  • Si (Si) source As an Si (Si) source, an alkoxide solution in which tetraethoxysilane (TEOS) 0.180 0 9 mo 1 was dissolved in cyclohexane 1 00 O m 1 was prepared.
  • TEOS tetraethoxysilane
  • the agglomerate is taken out, and the adhering surfactant is washed with alcohol, dried and calcined in accordance with a conventional method, and a catalyst comprising a lanthanum oxide-silica composite oxide (L S l, Si 6 O 2 7 ).
  • a carrier was obtained.
  • a neodymium zirconia composite oxide catalyst support having a composition of N′d Zr 0 35 was synthesized by the microemulsion method.
  • Neodymium As a source of (N d), a concentration of 0.1 1 4 4 M zirconium nitrate 0. 0 1 3 7 ml and a concentration of 1. 1 4 4 M neodymium nitrate 0.13 7 2 ml and an aqueous solution with a concentration of 2.09 3 M ammonia water 0.25 1 1 mo 1 and 1 2 0 ml were mixed with 2-butanol 45.2 m 1 Alkyl surfactant BC — 5.5 (trade name) 3 0 4.6 g was mixed in a solvent dissolved in cyclohexane 4 3 2 3 ml to prepare a microemulsion solution.
  • Zr zirconium
  • an alkoxide solution prepared by dissolving 0.01 2 4 mo 1 of zirconium 2-propylate in 11 lml of cyclohexane solution was prepared.
  • aqueous ammonia having a concentration of 14.8 M and 0.1 ml of a cyclohexane solution having a concentration of 0. 1 1 1 2 mo 1 Zirconium-2-butylate dissolved alkoxide solution was added.
  • pH is 8.1 and the mixing time is 1 minute.
  • the pH is 10.0
  • the ratio of the aqueous phase to the surfactant (W / S) is 34.2
  • the duration is 60 minutes.
  • yttrium As the source of yttrium (Y), an aqueous solution of yttrium nitrate (0.20 1 4 mo 1, concentration 1. 3 4 3 M) and ammonium nitrate water (0.16 3 mol, Polyoxyethylene, which is an alkyl surfactant, is added to a mixed aqueous solution (1550 m 1) (nitrate ions: 0.64 mol, 4.08 8 M) with a concentration of 2.7 7 6 M). ( ⁇ 5.5) Cetile Itel, (BC—5.5 (trade name)) 1 7 1. 3 g was mixed in a solvent dissolved in cyclohexane 2 4 3 2 m 1, A liquid was prepared.
  • the microemulsion solution as the titanium source is mixed with the alkoxide solution as the key source, and the concentration of 14.8 M ammonia water 3 2.6.6 ml and distilled water 3. 15 ml was added.
  • the ratio of organic solvent to surfactant ( ⁇ ⁇ S) is 63.6 and H is 7.2.
  • the mixing time is 5 minutes. As a result, hydrolysis occurs, primary particles of the precursor of the yttrium oxide-silica composite oxide are generated, and the primary particles are aggregated to generate secondary particles.
  • magnesium oxide-silica composite oxide catalyst support 30 g having the composition of “M g S i O 3 was obtained. Synthesized.
  • magnesium nitrate aqueous solution (0.29 8 8 2 7 mol, concentration 3.3 2 0 3 M) and ammonium nitrate water (0.2 4 9 9 mol, concentration) 2.7 7 6 M) and a mixed aqueous solution (90 ml) (nitrate ions: 0.8 4 8 mol, 9.4 1 7 M) were added to polyoxyethylene (n 5. 5) Cetyl ether (BC — 5.5 (trade name)) 2 5 1.3 g was mixed in a solvent dissolved in cyclohexane 4 3 2 3 m 1 to prepare a microemulsion solution. .
  • an alkoxide solution in which tetraethoxysilane (TEOS) 0.29 8 8 27 mol was dissolved in cyclohexane 100 mL was prepared as a source of silicon (S 1).
  • TEOS tetraethoxysilane
  • the microemulsion solution as the magnesium source is mixed with the alkoxide solution as the key source, and 40.3 3 ml of ammonia water with a concentration of 14.8 M and distilled water 3.8 8 ml was added.
  • the ratio of the organic solvent to the surfactant (OZ S) is 90; the ratio of the oil phase to the aqueous phase (OZW) is 6, and the pH is 7.8.
  • the mixing time is 5 minutes. As a result, hydrolysis occurs, primary particles of the precursor of magnesium oxide-silica composite oxide are generated, and the primary particles aggregate to generate secondary particles.
  • magnesium oxide-silica composite oxide (Mg S i O a) A catalyst carrier was obtained.
  • a pyrochlore structure lanthanum oxide-titania composite oxide having a composition of 5 (30 g) was synthesized.
  • lanthanum (L a) As a source of lanthanum (L a), an aqueous solution of lanthanum nitrate (0.08 2 4 mol, 1. 0 30 M) 80 ml and 0.1 8 M chlorinated chloride 3.0 0 1 6 m 1 and the aqueous solution mixed with alkyl surfactant BC—5.5 (trade name) 1 0 4.5 5 g in a solvent dissolved in cyclohexane 2 5 9 4 ml, A microemulsion solution was prepared. On the other hand, as a titanium (T i) source, an alkoxide solution in which 0.08 24 4 mol of titanium-butylate was dissolved in 100 000 ml of cyclohexane was prepared.
  • Ti titanium
  • the concentration of 13.5 M aqueous ammonia 66.57 ml, 35% alkyl ammonium 4.2 7 ml, and hexane solution with 100 ml of hexane were added to an alkoxide solution in which 0.08 24 4 mo 1 of titanium-butyrate was dissolved.
  • PH is 10.0 and mixing time is 5 minutes.
  • the microemulsion solution was brought to the two-phase region at a ratio (wzs) to the second phase, and aged to further agglomerate the secondary particles while stirring.
  • the pH at that time is 10.0, and the duration is 5 minutes.
  • the agglomerate is taken out, and the adhering surfactant is washed with alcohol, dried, and calcined according to a standard method, and a catalyst comprising a lanthanum oxide-titanium oxide (L a ⁇ ⁇ ⁇ 35).
  • a carrier was obtained.
  • the oxidized neodymium monosilica composite oxide of the present invention (N di Q S i 60 2 7 ) catalyst carrier, lanthanum oxide monoalumina composite oxide (L a Al ⁇ 3 ) Catalyst support, neodymium oxide-alumina composite oxide (N d A 10 3 ) Catalyst support, lanthanum oxide-zirconia composite oxide (L a ZrO 3 5 ) Catalyst support, magnesium oxide-alumina composite oxide (M g A 1_Rei 2.5) catalyst carrier, oxide Lee Tsu Application Benefits Umujirukonia composite oxide (YZ r ⁇ 3 '5) catalyst carrier, a neodymium oxide over titania composite oxide (N d T i O 3 5 ) catalyst A support, and an yttrium oxide titania composite oxide (YT i O 3 5) catalyst support were synthesized.
  • Electronegativity was determined for the catalyst supports of the present invention and the prior art.
  • lwt% of platinum particles were supported on these catalyst supports according to a conventional method, and the particle size of the platinum particles after calcining in air at 800 ° C. for 2 hours was measured. These measurement results are shown in Table 3 below. Table 3: Evaluation results
  • the composite oxide support of the present invention has a clear effect on the r-alumina, zirconia, titania, and silica of the comparative examples with respect to the suppression of platinum particle sintering.
  • the effect of suppressing the syn-ring is large: lanthanum oxide-siri force complex oxide (Lai Q Si 6 o 2 ' 7 ), neodymium oxide-zirconia complex oxide (N d Z ro 3 5), And yttrium oxide single-shear complex oxide (Y i 0 si 6 0 2 7 ), both having an electronegativity of around 2.70 and equivalent to r-alumina.
  • the particle diameter increases with distance from this electronegativity of 2.70.
  • the neodymium content does not increase sharply even if the neodymium content is outside the above range, and the neodymium content does not increase the synergistic effect. It was found that the influence of In this way, depending on the combination of metal elements constituting the composite oxide, the influence of the composition on the synergistic suppressing effect of the noble metal catalyst particles appears, so it is preferable to obtain a suitable composition by experiment.
  • the lanthanum oxide-siri force complex oxide (L a 1
  • the catalyst carrier is coated, and 1.2 g of the substrate on which the catalyst carrier is 3-h supported: L platinum is supported.
  • the exhaust gas purification catalyst was obtained.
  • the exhaust gas purifying catalyst of the present invention obtained as described above was supplied with a exhaust gas having the following composition at 1,00 ° C. for 2 hours, 10 hours and 20 hours, respectively, for durability. It was. Thereafter, the same sticky gas is supplied while increasing the temperature to the exhaust gas purification catalyst of the present invention that has not been durable and the exhaust gas purification catalyst of the present invention that has been durable.
  • Figure 6 shows the evaluation results of the HC 50% purification temperature. From FIG. 6, it is clear that platinum particle sym- boling progresses to some extent, but on the other hand, the extent of deterioration is very small, and the movement of platinum particles is suppressed by the lanthanum-silica composite oxide support. That is, it is understood that the interaction between the lanthanum-silica composite oxide and the platinum particles is very high.
  • Example 4 shows the evaluation results of the HC 50% purification temperature.
  • the composite oxide support according to the present invention was supported on the alumina, which is a support having higher heat resistance.
  • the structure is schematically shown in FIG. 7, where lanthanum oxide-silica composite oxide 2 is supported on alumina particles 1. Actually, the alumina particles are aggregated to form a porous structure.
  • alumina absorb the TEOS alcohol solution, blow off excess solution, and dry at 25 ° C. for 1 hour. Following this, the lanthanum nitrate solution is absorbed, and after the excess solution has been blown off, it is dried at 25 ° C. for 1 hour.
  • the catalyst carrier is calcined in air at 80 ° C. for 2 hours, and the lanthanum oxide-silica composite oxide composite oxide is supported on alumina. (L ai . S i 6 O 2 7 Essen-alumina) was obtained.
  • LaSi complex oxide (La 1 () S 0 2 7 ) Effect of surface-forming support As is apparent from Table 5, when the entire support is made of lanthanum oxide-silica composite oxide composite oxide, and r In any case where the silica composite oxide composite oxide is formed, the platinum particle diameter after firing is small, and the precious metal catalyst particles can be compared with the conventional carrier made of alumina. It was confirmed that the ring suppression effect is excellent.
  • S pr is the surface area of the noble metal particles
  • S. is the initial noble metal particle surface area
  • k and n are arbitrary constants
  • t is the time
  • the particle diameter d of the noble metal particles is inversely proportional to the surface area S pr of the noble metal particles. Therefore, the relationship between the particle diameter d of the noble metal particles and the surface area S pr of the noble metal particles is as follows:
  • d 2 (d is the particle diameter of the noble metal particles, S pr is the surface area of the noble metal particles). Therefore, d 2 can be taken on the vertical axis.
  • time is taken on the horizontal axis.
  • the carrier with different surface area In order to correctly evaluate the interaction between the support and the noble metal, a method of taking the dimensionless time t on the horizontal axis is used.
  • the time to collision of the supported noble metal particles proportional to the average distance between particles, the average distance is proportional to 1 Bruno square of surface area of the support (S sup 1/2).
  • S sup 1/2 surface area of the support
  • a catalyst is obtained by carrying palladium on the carrier obtained in the same manner as in Example 1, and this catalyst is mounted at the exhaust gas-hold position in the exhaust system of the gasoline engine, and the air-fuel ratio is set.
  • the air-fuel ratio was set.
  • the exhaust gas temperature was 90 ° C for 2 hours.
  • Figure 8 shows the results for palladium.
  • Figure 9 shows the results for palladium, organized according to the previous relationship.
  • the horizontal axis represents the 1 Z square of the carrier surface area, and the vertical axis represents the square of the diameter of the palladium particles.
  • FIGS. 8 and 9 it is understood that a clearing suppression effect is obtained with the carrier of the present invention with respect to the carrier of the prior art.
  • the greatest effect was obtained with the silica-based composite oxide, and the effect was small with the zirconia-based oxide.
  • the carrier of the present invention is located on the lower right side of the carrier of the prior art. In the carrier of the present invention, although the surface area of the carrier is relatively small, the palladium thin film is This means that the ring is suppressed.
  • Fig. 11 shows the results of rum, organized according to the previous relationship.
  • the horizontal axis represents the square of the carrier surface area
  • the vertical axis represents the square of the diameter of the palladium particle.
  • the carrier of the present invention has a small surface area, it was confirmed that the sintering of the noble metal particles was suppressed.
  • the carrier of the present invention becomes an exhaust gas purification catalyst each time the noble metal catalyst particles are supported, and is exposed to an oxidizing atmosphere and a reducing atmosphere at high temperatures.
  • the synthesizing of the noble metal particles having catalytic activity is suppressed, the increase in the particle size is suppressed, and the specific surface area of the noble metal particles is maintained at a large state.
  • the purification function is well maintained over a long period of time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

貴金属触媒粒子のシンタリング抑制効果に優れた触媒担体及び排ガス浄化用触媒を提供する。貴金属元素(Pt)が接近若しくは接触することによりその貴金属元素から電子を受容する電子受容性があり且つ酸化還元反応で原子価の変化がない電子受容性元素(La)、及び他の元素(Si)の複合酸化物から構成されている、貴金属担持用触媒担体とする。また、この触媒担体に貴金属触媒粒子が担持されている排ガス浄化用触媒とする。

Description

触媒担体及び排ガス浄化用触媒
技術分野
本発明は、 貴金属触媒粒子を担持するための触媒担体、 及びこの 触媒担体に貴金属触媒粒子が担持されてなる排ガス浄化用触媒に関 するものである。 明
背景技術
貴金属粒子を触媒成分と して担体に担持した触媒では、 その活性 を良好なものとするために、 貴金属粒子を微粒状で担体に担持させ ている。 これは、 触媒成分の比表面積を可及的に広くするためであ る。 しかしながら、 触媒成分の粒径を小さくすると、 その表面エネ ルギ'が増大し、 従って相互に焼結 (シン夕リ ング) しゃすくなる。 特に、 排ガス浄化触媒においては、 排ガスの有する熱や反応による 生じる熱によって、 触媒が数百度の高温に曝されるので、 貴金属粒 子のシン夕リ ングが進行し、 その粒径が増大して活性が低下する傾 向がある。
貴金属触媒粒子のシン夕リ ングを防止することのできる触媒担体 が、 特開平 4— 1 8 0 8 3 5号公報ゃ特開 2 0 0 2 — 3 4 6 3 8 7 号公報に記載されている。 .
特開平 4一 1 8 0 8 3 5号公報では、 高活性セリ ア粉末に白金属 触媒金属をコロイ ド粒子の大きな粒子として担持させた排ガス浄化 触媒を開示している。 特開平 4— 1 8 0 8 3 5号公報では、 この排 ガス浄化触媒によれば、 触媒金属同士のシン夕リ ング及びセリ ア粉 , 末との固溶を防止できる、 としている。 特開 2 0 0 2 — 3 4 6 3 8 7号公報では、 担体上に中間層を配置 し、 この中間層上に, ベロブスカイ ト型複合酸化物粒子と白金等の 貴金属粒子との複合物からなる窒素酸化物除去触媒を担持させた排 ガス浄化触媒を開示している。 ここでこの中間層は、 窒素酸化物除 去触媒及び担体の双方に親和性があり、 且つ窒素酸化物除去触媒成 分を変質させ難い材料、 例えばジルコニァ、 酸化セリ ア、 酸化バリ ゥム、 チタニア、 希土類酸化物で形成されている。 特開 2 0 0 2 — 3 4 6 3 8 7号公報では、 この中間層によって、 窒素酸化物除去触 媒のシン夕 リ ングを防止でき、 且つ窒素酸化物除去触媒が担体と反 応して変質することを抑制できる、 と している。
また、 特開平 9一 1 4 1 0 9 8号公報、 特開平 4— 2 8 4 8 4 7 号公報、 特開 2 0 0 1 — 3 1 4 7 6 3号公報では、 .ジルコ二ァ系触 媒担体を用いた触媒の耐熱性を改良するために、 ジルコニァに、 ァ ルカ リ土類金属、 希土類等の安定化元素を添加して、 ジルコニァの B E T比表面積、 熱的安定性等を改良することを開示している。 発明の開示
上記の特開平 4一 1 8 0 8 3 5号公報に記載されているように、' セリア上に白金などの貴金属触媒粒子を担持させると、 両者の相互 作用によって貴金属触媒粒子が担体に対して固定される。 しかしな がら、 セリアは酸化雰囲気で酸素を吸蔵し、 還元雰囲気で酸素を放 出するいわゆる酸素吸蔵能 (O S C) がある。 従ってセリアは、 還 元雰囲気では酸素を放出して原子価が 4価から 3価に変化するので 、 貴金属粒子との相互作用が低下する。 よって、 還元雰囲気では、 貴金属粒子のシン夕 リ ング抑制効果が低下し、 若しく はシン夕 リ ン グを促進してしまう可能性があつた。
上記の特開 2 0 0 2 一 3 4 6 3 8 7号公報に記載された触媒によ れば、 窒素酸化物除去触媒粒子のシン夕 リ ングを防止することがで きる。 しかしながらこの特開 2 0 0 2 - 3 4 6 3 8 7号公報の触媒 では、 窒素酸化物除去触媒粒子を、 ベロブスカイ ト型複合酸化物と 貴金属粒子との混合物と して構成する必要があり、 また上記の中間 層を設けなければならないので、 構成が複雑化する。 また、 貴金属 粒子を単独で担持した場合には、 そのシン夕 リ ングを必ずしも防止 若しく は抑制できない可能性がある。 . .
特開平 9一 1 4 1 0 9 8号公報、 特開平 4一 2 8 4 8 4 7号公報 、 特開 2 0 0 1 — 3 1 4 7 6 3号公報でのように、 ジルコニァに、 アルカ リ土類金属、 希土類等の安定化元素を添加して、 ジルコニァ の B E T比表面積、 熱的安定性等を改良することができる。 しかし ながら、 これらの安定化ジルコニァ担体は、 そこに担持される貴金 属粒子、 特に白金及びパラジウム粒子のシンタリ ング防止に関して は十分でないことがあった。
本発明は上記の技術的課題に着目 してなされたものであり、 担持 している金属触媒粒子のシン夕リ ングを防止することのできる触媒 担体、 及びその担体を使用した排ガス浄化用触媒を提供することを 目的とするものである。
本発明の貴金属担持用触媒担体は、 貴金属触媒粒子の貴金属元素 が接近若しく は接触することによりその貴金属元素から電子を受容 する電子受容性があり且つ酸化還元反応で原子価の変化がない電子 受容性元素と他の元素との複合酸化物から構成されている。
本発明の触媒担体では、 電子受容性元素は、 ランタン、 ネオジム 、 イ ッ ト リ ウム、 マグネシウム及びそれらの組み合わせからなる群 、 特にランタン、 ネオジム及びそれらの組み合わせからなる群より 選択することができる。
本発明の触媒担体では、 他の元素は、 ケィ素、 アルミニウム、 ジ ルコニゥム、 チタン及びそれらの組み合わせからなる群、 特にケィ 素、 チタン及びそれらの組み合わせからなる群より選択することが できる。
本発明の触媒担体では、 複合酸化物の電気陰性度が、 2 . 5 5〜 2 . 8 0であってよい。
本発明の触媒担体では、 電子受容性元素と他の元素との合計に対 する電子受容性元素のモル比が、 0 . 3以上であってよい。
本発明の触媒担体の 1 つの態様では、 電子受容性元素が、 ラン夕 ン、 ネオジム、 イ ッ ト リ ウム、 マグネシウム及びそれらの組み合わ せからなる群より選択され、 他の元素が、 ケィ素、 アルミニウム、 ジルコニウム、 チタン及びそれらの組み合わせからなる群より選択 され、 且つ電子受容性元素と他の元素との合計に対する電子受容性 元素のモル比が、 0 . 3以上である。
また、 本発明の触媒担体の 1 つの態様では、 電子受容性元素が、 ラン 'タン、 ネオジム、 イ ッ ト リ ウム及びそれらの組み合わせからな る群より選択され、 他の元素が、 ケィ素であり、 且つ電子受容性元 素と他の元素との合計に対する電子受容性元素のモル比が 0 . 5〜 0 . 7である。 特に、 本発明の触媒担体のこの態様では、 電子受容 性元素がランタンであり、 他の元素がケィ素であり、 且つランタン とケィ素との合計に対するランタンのモル比 (L a Z ( L a + S i ) ) 、 0 . 5〜 0 . 7である。
また更に、 本発明の触媒担体の 1 つの態様では、 電子受容性元素 が、 ランタン、 ネオジム、 イ ッ ト リ ウム、 マグネシウム及びそれら の組み合わせからなる群より選択され、 他の元素が、 ジルコニウム 、 チタン及びそれらの組み合わせからなる群より選択され、 且つ電 子受容性元素と他の元素との合計に対する電子受容性元素のモル比 が、 0 . 3〜 0 . 7である。 特に、 本発明の触媒担体のこの態様で は、 電子受容性元素がネオジムであり、 他の元素がジルコニウムで あり、 且つネオジムとジルコニウムとの合計に対するネオジムのモ ル比 ( N d ( N d + Z r ) ) が、 0 . 3 〜 0 . 7である。
本発明の触媒担体では、 複合酸化物がこの複合酸化物より相対的 に耐熱性の高い他の担体粒子に担持されていてよい。
本発明の排ガス浄化触媒は、 本発明の触媒担体に、 貴金属触媒粒 子が担持されてなる。
ここでこの貴金属触媒粒子は特に、 白金、 パラジウム及びそれら の組み合わせからなる群より選択することができる。
〔触媒担体を製造する本発明の方法〕
本発明の触媒担体を製造する本発明の方法は、 疎水性溶媒相中に 水性相が分散している分散液を提供すること ; 分散液中に分散して いる水性相中において、 ¾子受容性元素の塩及び他の元素の塩を加 水分解して、 金属酸化物前駆体を析出させ、 この金属酸化物前駆体 を凝'集させること ; 並びに凝集させた金属酸化物前駆体を乾燥及び 焼成することを含む。
本発明の触媒担体は、 電子受容性元素と他の元素との複合酸化物 から構成されていることによって、 この触媒担体に貴金属触媒粒子 を担持させたときに、 貴金属元素の有する電子が、 担体を構成して いる複合酸化物に配位されて、 両者が結合する。 更に、 本発明の触 媒担体では、 電子受容性元素の原子価は、 酸化還元反応で変化しな いので、 複合酸化物と貴金属元素との結合状態は特には変化しない 。 そのため、 排ガスが酸化雰囲気や還元雰囲気に変化しても、 貴金 厲触媒粒子が担体に強固に固定された状態が維持され、 その結果、 貴金属触媒粒子の移動やそれに起因するシン夕リ ングを防止若しく は抑制することができる。 図面の簡単な説明
図 1 は、 本発明の触媒担体の機構を概念的に示す図である。
図 2は、 L a S i O x の組成のァパタイ ト型複合酸化物の結晶構 造を示す図である。
図 3 は、 本発明の酸化ランタン一シリカ複合酸化物触媒担体の X R D分析結果を示す図である。
図 4は、 本発明に係る酸化ランタン一シリカ複合酸化物担体の白 金粒子シン夕リ ング抑制効果の測定結果を示す線図である。
図 5は、 本発明に係る酸化ネオジムージルコニァ複合酸化物担体 の白金粒子シン夕 リ ング抑制効果の測定結果を示す線図である。 図 6 は、 本発明の酸化ランタン一シリカ複合酸化物触媒担体に白 金担持してなる本発明の排ガス浄化触媒での H C 5 0 %浄化温度を 示す図である。
図 7 は、 ァ —アルミナ上に本発明に係る酸化ランタン—シリカ複 合酸化物担体を担持させた状態を模式的に示す図である。
図 8 は、 パラジウム粒子シンタリ ングの担体による差を示す図で ある。
図 9 は、 パラジウム粒子シン夕リ ングの担体による差を経験式に 基づいて示す図である。
図 1 0 は、 ロジウム粒子シン夕リ ングの担体による差を示す図で ある。
図 1 1 は、 ロジウム粒子シン夕リ ングの担体による差を経験式に 基づいて'示す図である。 発明を実施するための最良の形態
本発明の触媒担体は、 貴金属触媒粒子を担持するためのものであ り、 複合酸化物から構成されている。 ここで、 この複合酸化物は、 触媒粒子を構成する貴金属元素から電子を受容する電子受容性があ り、 且つ酸化還元反応で原子価の変化しない電子受容性元素と、 他 の元素とから構成される。
本発明の触媒担体では、 図 1 において電子受容性元素と してのラ ン夕ン (L a ) 及びその他の元素としてのケィ素 ( S i ) に関して 示す機構で、 貴金属元素が配位結合的に電子受容性元素に電子を供 給して担体に結合して、 貴金属元素が担体上で固定されているもの と考えられる。 また、 4 0 0 °Cでの H2 還元後の X P S分析によれ ば、 還元後にも関わらず白金が酸化されており、 この機構を支持す る結果が得られている。
特に、 この図 1で示されているように、 他の元素がケィ素 ( S 1 ) のような金属酸化物としての電気陰性度が大きい元素である場合 、 ランタン (L a ) のような電子受容性元素から電子を強く 引きつ け、 L aイオンの安定化効果が大きくなる。
尚'、 本発明に関して、 「金属酸化物としての電気陰性度」 は、 傘 属酸化物を構成する金属元素及び酸素のポーリ ングによる電気陰性 度を、 金属酸化物に含有されるこれらの元素の比に応じて加重平均 した値である。 すなわち例えば、 シリカ ( S i 02 ) の金属酸化物 としての電気陰性度は、 下記のようにして計算される :
{ 1. 9 0 (ケィ素の電気陰性度) X 1 + 3. 4 4 (酸素の電気 陰性度) X 2 } ノ 3 ^ 2. 9 3
参考のために、 いくつかの金属について、 金属酸化物としての電 気陰性度を下記の表 1 に示す : 表 1 :金属酸化物の電気陰性度
Figure imgf000009_0001
〔電子受容性元素〕
電子受容性元素は、 他の元素と共に複合酸化物を構成している。 この電子受容性元素は、 他の元素と組み合わせて複合酸化物とした ときに、 貴金属触媒粒子が接近若しく は接触することによりその貴 金属元素から電子を受容する電子受容性があり且つ酸化還元反応で 原子価の変化がない元素として選択できる。
特に電子受容性元素は、 アルカ リ土類金属又は希土類元素の少な く とも一種であり、 具体的には、 電子受容性元素は例えば、 ラン夕 ン、 ネオジム、 イ ッ ト リ ウム、 マグネシウム及びそれらの組み合わ せからなる群より.選択'される元素である。
より特に電子受容性元素は、 希土類元素のイオンで典型的な元素 のうち原子番号が若く、 4 f 軌道に空きがある (空きが多い) ィォ ンとなる元素である。 従って、 好ましい電子受容性元素は、 ランタ ン (L a ) 、 ネオジゥム (N d ) 及びそれらの組み合わせからなる 群より選択される元素である。
上述めように、 本発明では、 貴金属触媒粒子を、 担体を構成する 複合酸化物に配位結合によって担持若しく は固定させることを意図 している。 しかしながら、 触媒の置かれる環境は、 酸化雰囲気及び 還元雰囲気の両方に変化する可能性がある。 そこで、 いずれの雰囲 気でも安定的に貴金属触媒粒子を担持させるために、 本発明の触媒 担体では、 酸化還元反応で原子価が変化しない元素を電子受容性元 素として用いている。 この点で、 本発明の触媒担体は、 セリアを用 いる従来の触媒担体とは異なっている。
〔他の元素〕
電子受容性元素は単独で用いずに、 他の元素、 特に他の金属元素 との複合酸化物と して用いられる。 これは、 耐熱性を向上させるこ とに加えて、 電子受容性元素の塩基性を弱めて、 複合酸化物が全体 と して中性若しくは中性に近くなるようにするためである。 従って 、 当該他の元素は、 従来、 排ガス用触媒の担体若しく は基材として 用いら ^ ている金属元素で良く、 具体的には、 ケィ素 ( S i ) 、 ァ ルミニゥム (A 1 ) 、 ジルコニウム ( Z r ) 、 チタン (T i ) 及び それらの組み合わせからなる群より選択できる。
上述のように、 他の元素がケィ素 ( S i ) のような金属酸化物と しての電気陰性度が大きい元素である場合、 ランタン (L a ) のよ うな'電子受容性元素から雩子を強く 引きつけ、 それによつて貴金属 元素と電子受容性元素との間の配位結合的な結合を促進することが できる。 従って好ましく は他の元素は、 ケィ素 ( S i ) 、 チタン ( T i ) 及びそれらの組み合わせからなる群より選択される。
〔複合酸化物の電気陰性度〕
本発明の触媒担体を構成している複合酸化物は、 電気陰性度が、 好ましく は 2. 5 5〜 2. 8 0、 より好ましく は 2. 6 0〜 2. 7 3である。 この電気陰性度によれば、 適度な酸塩基性によって、 触 媒活性を良好な状態に維持することができる。
ここで、 複合酸化物の電気陰性度とは、 上記の金属酸化物として の電気陰性度の場合でのように、 複合酸化物を構成している各元素 毎のポーリ ング値 ( P a u l i n g値) を加重平均した値である。 量子化学的に電気陰性度を求める方法もあるが、 手法や条件設定な どによって一義的な値を得られないので、 本発明では単純な加重平 均を採用している。
本発明で使用する複合酸化物は、 中性若しく は中性に近いもので あり、 電気陰性度が上記の範囲を外れると、 貴金属触媒粒子のシン 夕リ ング抑制効果が低減する。
尚、 本発明に関して、 金属酸化物の電気陰性度の計算のために使 用される酸素の電気陰性度は 3. 4 4であり、 また本発明に関して 使用できる電子受容性元素及び他の元素についての電気陰性度は下 記のようなものである。
電子受容性元素 : L a ( 1. 1 0 ) 、 N d ( 1. 1 4 ) 、 Y ( 1 . 2 2 ) , Μ g ( 1. 3 1 ) 。
他の元素 : S i ( 1. 9 0 ) 、 A 1 ( 1. 6 1 ) 、 Z r ( 1. 3 3 ) 、 T i ( 1. 5 4 ) 。
尚、 排ガス浄化触媒のための触媒担体では、 アルミナ (A I 2 O 3 、 '電気陰性度 : 2. 7 1 ) を基準として、 アルミナより も電気陰 性度が大きい金属酸化物は酸性であり、 またアルミナより も電気陰 性度が小さい金属酸化物は塩基性であると考えることができる。
一般に、 排ガス浄化触媒のための触媒担体の塩基性が強い場合、 炭化水素 (H C) が担体に吸着しにく く、 従って H Cの酸化性能が 低くなる傾向がある。 またこの場合、 酸素が過剰であるリーシ雰囲 気においては酸素が触媒担体に吸着し、 それによつてこの触媒担体 に担持されている白金等の貴金属も酸素被毒し、 結果として触媒活 性が低下することがある。 一方で、 排ガス浄化触媒のための触媒担 体の酸性が強い場合、 その上に担持されている貴金属から電子を引 きつけ、 それによつて貴金属上での N O x の還元反応を妨げること がある。 ,
従って排ガス浄化触媒のための触媒担体と しては、 アルミナと同 様な比較的中性の電気陰性度を有することが好ましいことがある。 これに関し、 複合金属酸化物の電気陰性度を、 酸性金属酸化物と し てのシリカ ( S i 〇 2 ) と塩基性金属酸化物としての酸化ランタン ( L a 2 O 3 ) との比率に対して、 下記の表 2に示す。 尚、 アルミ ナ (A l 2 O 3 ) の電気陰性度は 2. 7 1である。 表 2 :酸化ランタン—シリカ複合酸化物の電気陰性度
Figure imgf000012_0001
〔電子受容性元素のモル比〕
ネオジム、 ランタン等の元素をジルコニウム等の他の元素の酸化 物に添加する場合、 ネオジム等の元素と他の元素との合計に対する 電子受容性元素のモル比が 0. 0 1〜 0. 3程度のときには、 一般 に、 ネオジム等の元素によって他の元素の酸化物が安定化され、 触 媒担体としての耐熱性が向上することが知られている。
しかしながら、 本件発明者等は予想外に、 このネオジム等の元素 のモル比が大きいとき、 例えば 0. 3以上、 特に 0. 4以上である ときに、 担体の耐熱性が低下し、 それによつて担体表面積が減少す る場合であっても、 ネオジム等の元素と貴金属との親和性によって 、 担体に担持される貴金属のシン夕リ ングが防止されることを見出 した。
従って例えば、 本発明の触媒担体では、 電子受容性元素が、 ラン タン、 ネオジム、 イ ッ ト リ ウム、' マグネシウム及びそれらの組み合 わせからなる群より選択され、 他の元素が、 ケィ素、 アルミニウム 、 ジルコニウム、 チタン及びそれらの組み合わせからなる群より選 択され、 且つ電子受容性元素と他の元素との合計に対する電子受容 性元素のモル比が、 0. 3以上、 特に 0. 4以上である。 '
また本発明の触媒担体では、 触媒担体を構成する複合酸化物がァ パタイ 卜型の複合酸化物を構成するようにして、 触媒担体を安定化 することができる。
参考までに、 1, 5 0 0でで焼成した L a S i O x の組成のァパ タイ ト型複合酸化物の結晶構造を、 S . N a k a y a m a , T. k a g e y a m a , H . A o n o , a n d Y . S a d a o k a , J . M a t e r . C h e m. , 5, 1 8 0 1 - 1 8 0 5 ( 1 9 9 5 ) から'引用して図 2 に示す。 この図 2から理解されるように、 本発明 の触媒担体を構成する複合酸化物と してァパタイ ト型複合酸化物を 用いる場合、 ランタン等の電子受容性元素に対して貴金属粒子が比 較的接近しやすい状態になっており、 それによつて貴金属粒子のシ ン夕 リ ングが特に抑制される。
ァパタイ ト型複合酸化物を用いる場合、 例えば本発明の触媒担体 では、 電子受容性元素が、 ランタン、 ネオジム、 イ ッ ト リ ウム及び それらの組み合わせからなる群より選択され、 他の元素が、 ケィ素 であり、 且つ電子受容性元素と他の元素との合計に対する電子受容 性元素のモル比が 0. 5〜 0. 7である。 またこの場合特に、 触媒 担体では、 電子受容性元素がランタンであり、 他の元素がゲイ素で あり、 且つランタンとケィ素との合計に対するランタンのモル比 ( L a Z (L a + S i ) ) 力^ 0. 5〜 0. 7である。 また本発明の触媒担体では、 触媒担体を構成する複合酸化物がパ ィ ロク ロア型又はべロプスカイ ト型の複合酸化物を構成するよう に して、 触媒担体を安定化することができる。
この場合、 本発明の触媒担体では、 電子受容性元素が、 ランタン 、 ネオジム、 イ ッ ト リ ウム、 マグネシウム及びそれらの組み合わせ からなる群より選択され、 他の元素が、 アルミニウム、 ジルコニゥ ム、 チタン及びそれらの組み合わせからなる群より選択され、 且つ 電子受容性元素と他の元素との合計に対する電子受容性元素のモル 比が、 0 . 3〜 0 . 7である。 またこの場合特に、 本発明の触媒担 体では、 電子受容性元素がネオジムであり、 他の元素がジルコニゥ ムであり、 且つネオジムとジルコニウムとの合計に対するネオジム のモル比 (N d Z ( N d + Z r ) ) 力 、 0 . 3〜 0 . 7である。
〔複合酸化物の形態〕
本発明の触媒担体では、 電子受容性元素と他の金属との複合酸化 物を、 粒子状に形成して用いることができる。
またこの複合酸化物は、 この複合酸化物より相対的に耐熱性の高 い他の担体粒子に担持させることができる。 これによれば、 排ガス 浄化用触媒などとして構成することにより高温に曝された場合であ つても、 上記の複合酸化物の構造を維持しやすく、 その結果、 耐熱 性を更に向上させることができる。
〔排ガス浄化触媒〕
上記の担体に貴金属触媒を担持することにより、 本発明の排ガス 浄化用触媒が得られる。 この貴金属触媒は、 具体的には白金 ( P t ) 、 ロジウム (ロジウム) 、 パラジウム ( P d ) 及びそれらの組み 合わせからなる群より選択される貴金属を挙げることができ、 特に 排ガス浄化触媒としての使用の間に比較的シン夕リ ングする傾向が 大きい白金粒子、 パラジウム及びそれらの組合せからなる群より選 択される貴金属を挙げることができる。 貴金属の担持のためには、 従来知られている含浸法 (スラリー法) 、 浸漬法等を用いることが できる。
本発明の排ガス浄化触媒によれば、 貴金属触媒粒子のシン夕 リ ン グを防止して、 長期に亘つて排ガス浄化能に優れる触媒を得ること ができる。
〔触媒担体を製造する本発明の方法〕
本発明の触媒担体を製造する本発明の方法は、 疎水性溶媒相中に 水性相が分散している分散液を提供すること ; 分散液中に分散して いる水性相中において、 電子受容性元素の塩及び他の元素の を加
、 水分解して、 金属酸化物前駆体を析出させ、 この金属酸化物 駆体 を凝集させること ; 並びに凝集させた金属酸化物前駆体を乾燥及び 焼成することを含む。
本発明の方法によれば、 電子受容性元素及び他の元素を含有して いる'金属酸化物前駆体を微小な水滴内で析出させる とによ て、 電子受容性元素の酸化物及び他の元素の酸化物の前 体が高度に分 散している金属酸化物前駆体を得ることができる。 従 て本発明の 方法によれば、 本発明の触媒担体を得ることができる
本発明の触媒担体を製造する本発明の方法では始めに、 一般に界 面活性剤の使用によって、 疎水性溶媒相中に水性相が分散している 分散液、 特に水性相の滴の径が 2 〜 1 0 0 n m、 好ましく は 2 〜 5
0 n m、 より好ましく は 2 4 0 n mであるマイク □ェマルショ ン を提供する
ここで用いることができる疎水性溶媒としては 、 シク口へキサン
、 ベンゼンのような炭化水素 、 へキサノ一ルのよ な直鎖アルコー
ル、 ァセ 卜ンのようなケ 卜ノ類を用いる とがでさる
またここで提供される分散液を得るために用いるしとができる界 面活性剤は、 非イオン系界面活性剤、 ァニオン系界面活性剤、 カチ オン系界面活性剤のいずれでもよく、 疎水性溶媒と組み合わせて選 択することができる。
非イオン系の界面活性剤としては、 ポリオキシエチレン ( n = 5 ) ノニルフエニルエーテルやポリオキシエチレン ( n = 1 0 ) ォク チルフエ二ルェ一テルのようなポリオキシエチレンアルキルフエ二 ルエーテル系、 ポリオキシエチレン ( n = 7 ) セチルエーテルのよ うなポリオキシエチレンアルキルエーテル系界面活性剤を挙げるこ とができる。 またァニオン系界面活性剤と しては、 ジー 2 —ェチレ ンへキシルスルフォコハク酸ナ ト リ ゥム等を挙げることができ、 力 チオン系界面活性剤としては、 セチルト リ メチルアンモニゥムクロ ライ ドゃセチル ト リメチルアンモニゥムプロマイ ドなどを挙げるこ とができる。
本発明の触媒担体を製造する本発明の方法では次に、 上記のよう にし'て得た分散液中に分散している水性相中において、 電子受容性 元素の塩及び他の元素の塩を加水分解して、 金属酸化物前駆体を析 出させ、 この金属酸化物前駆体を凝集させる。
ここで、 水滴内で金属酸化物前駆体を析出させるためには、 アン モニァ水、 水酸化ナト リ ゥム水溶液等の塩基性溶液を分散液に加え ることによって、 分散液を比較的塩基性の性質にして、 電子受容性 元素の塩等を加水分解することができる。 一般にアンモニア水の使 用は、 除去が容易な点で好ましい。
ここで使用される電子受容性元素の塩及び他の元素の塩としては 、 水溶性の性質を有する任意の塩を選択することができ、 例えば硝 酸塩、 塩化物のような無機酸塩、 又は酢酸塩、 乳酸塩、 シユウ酸塩 のような有機酸塩、 特に硝酸塩を用いることができる。
尚、 電子受容性元素及び他の元素の複合酸化物中に更に他の成分 の酸化物を含有させる場合、 この金属酸化物を構成する金属の塩を 、 水性相中において、 電子受容性元素の塩等と共に加水分解するこ とができる。
本発明の触媒担体を製造する本発明の方法では最後に、 上記のよ うにして凝集させた金属酸化物前駆体を乾燥及び焼成する。
金属酸化物前駆体の乾燥及び焼成は、 電子受容性元素の塩及び他 の元素の複合酸化物を得ることができる任意の温度で行う ことがで きる。 これは例えば、 金属酸化物前駆体を 1 2 0 °Cのオーブンに入 れて乾燥させ、 そしてこのように乾燥した金属酸化物前駆体を、 金 属酸化物合成において一般的に用いられる温度、 例えば 5 0 0〜 1 1 0 0 °cの温度で焼成して行う ことができる。
以下では、 実施例及び比較例を用いて本発明を説明する。 但し、 これらの実施例及び比較例は本発明をいかようにも限定するもので はない。
実施例
〔実施例 1〕
〔本発明の酸化ランタン一シリカ複合酸化物触媒担体の合成〕 下記に様にしてマイクロエマルシヨ ン法によって、 L a i 0 S 1 6 O 2 7 の組成の酸化ランタン一シリカ複合酸化物触媒担体を合成 した。
先ず、 ランタン (L a ) 源として、 硝酸ランタン水溶液 ( 0. 3 0 1 6010 1 、 濃度 1. 6 7 5 M) とアンモニア水 ( 0. 3 7 4 8 m o 1 、 濃度 2. 0 8 2 M) との混合水溶液 1 8 0 m l を、 2 —ブ 夕ノール 2 2. 6 m l と共に、 アルキル系界面活性剤 B C— 5. 5 (商品名) 4 5 6. 9 gをシクロへキサン 6 4 8 5 m l に溶解した 溶媒中に混合して、 マイクロエマルシヨ ン液を用意した。 一方、 ケ ィ素 ( S i ) 源として、 テトラエ トキシシラン (T E O S ) 0. 1 8 0 9 m o 1 をシク ロへキサン 1 0 0 O m 1 に溶解したアルコキシ ド溶液を用意した。
ランタン源としてのマイクロエマルショ ン液に、 ケィ素源として のアルコキシ ド溶液を混合するとともに、 濃度 1 4. 8 Mのアンモ ニァ水 7 9. 8 5 m l と蒸留水 7. 6 9 m l とを加えた。 この状態 での有機溶媒と界面活性剤との比率 (〇 S ) は 6 3. 6、 油相と 水相との比率 ( Oノ W ) は 6、 ミセルの予想直径 ( d w ) は 4 0 n m、 p Hは 8. 1である。 また、 混合時間は 5分である。 その結果 、 加水分解が生じ、 酸化ランタン—シリカ複合酸化物の前駆体の一 次粒子が生じ、 またその一次粒子が凝集して二次粒子が生じる。
つぎに、 エタノール 3 0 0 m l 、 濃度 1 4. 8 λ!のアンモニア水 1 9 2. 8 2 m l 及び蒸留水 1 8. 5 7 m l を加えて、 マイクロエ マルシヨ ン液を二相領域に持って行き, 撹袢しつつ、 二次粒子同士 を更に凝集させる熟成を行った。 そのときの p Hは 1 0. 0、 水相 と界面活性剤との比率 (W/ S ) は 3 4. 2、 継続時間は 6 0分で ある。
その後、 凝集物を取り出して付着している界面活性剤のアルコー ル洗浄、 乾燥、 焼成を定法に従って行い、 酸化ランタン一シリカ複 合酸化物 (L S l 。 S i 6 O 2 7 ) からなる触媒担体を得た。
〔本発明の酸化ネオジゥムージルコニァ複合酸化物触媒担体の合 成〕
下記のようにしてマイクロエマルショ ン法によって、 N 'd Z r 〇 3 5 の組成の酸化ネオジゥムージルコニァ複合酸化物触媒担体を 合成した。
ネオジム. (N d ) 源として、 濃度 0. 1 1 4 4 Mのォキシ硝酸ジ ルコニゥム 0. 0 1 3 7 m l と、 濃度 1. 1 4 4 Mの硝酸ネオジム 0 . 1 3 7 2 m l と、 濃度 2 . 0 9 3 Mのアンモニア水 0 . 2 5 1 1 m o 1 とを混合した水溶液 1 2 0 m l を、 2 —ブ夕ノール 4 5 . 2 m 1 と共に、 アルキル系界面活性剤 B C — 5 . 5 (商品名) 3 0 4 . 6 gをシクロへキサン 4 3 2 3 m l に溶解した溶媒中に混合し て、 マイクロエマルシヨ ン液を用意した。 一方、 ジルコニウム ( Z r ) 源として、 1 1 l m l のシクロへキサン溶液に、 0 . 0 1 2 4 m o 1 のジルコニウム一 2 —プチレー トを溶解したアルコキシ ド溶 液を用意した。
ネオジム源としてのマイクロエマルショ ン液に、 ジルコニウム源 としてのアルコキシ ド溶液を混合した。 この状態での有機溶媒と界 面活性剤との比率 (O Z S ) は 6 3 . 6、 油相と水相との比率 (0 ZW) は 6、 ミセルの予想直径 ( d w) は 4 7 n mである。 また、 混合時間は 3 0秒である。
さ らに、 一次粒子及びこれが凝集した二次粒子を形成させるため に、 濃度 1 4 . 8 Mのアンモニア水 3 9 . 8 5 m l と、 1 0 0 0 m 1 のシクロへキサン溶液に 0 . 1 1 1 2 m o 1 のジルコニウム— 2 ーブチレ一 トを溶解したアルコキシ ド溶液とを加えた。 この状態で 、 p Hは 8 . 1 であり、 混合時間は 1分である。 そして、 濃度 1 4 . 8 Mの希釈アンモニア水 1 0 4 . 2 m 1 及び蒸留水 1 2 1 m 1 を 加えて、 マイクロエマルシヨ ン液を二相領域に持って行き、 撹拌し つつ、 二次粒子同士を更に凝集させる熟成を行った。 そのときの p Hは 1 0 . 0、 水相と界面活性剤との比率 ( W / S ) は 3 4 . 2、 継続時間は 6 0分である。
その後、 凝集物を取り出して、 付着している界面活性剤のアルコ ール洗浄、 乾燥、 焼成を定法に従って行い、 酸化ネオジゥムージル コニァ複合酸化物 ( N d Z r O a 5 ) からなる触媒担体を得た。
〔本発明の酸化イ ツ ト リ ウム一シリカ複合酸化物触媒担体の合成 )
下記のようにしてマイク ロエマルシヨ ン法によって、 。 S i 6 O 2 7 の組成の酸化イ ッ ト リ ウム一シリカ複合酸化物触媒担体 2 0 gを合成した。
先ず、 イ ッ ト リ ウム (Y) 源として、 硝酸イ ッ ト リ ウム水溶液 ( 0. 2 0 1 4 m o 1 、 濃度 1. 3 4 3 M) と硝酸アンモニゥム水 ( 0. 1 6 3 m o l 、 濃度 2. 7 7 6 M) との混合水溶液 ( 1 5 0 m 1 ) (硝酸イオン : 0. 6 0 4 m o l、 4. 0 2 8 M) を、 アルキ ル系界面活性剤であるポリオキシエチレン (η 5. 5 ) セチルェ 一テル 、( B C— 5. 5 (商品名) ) 1 7 1. 3 gをシクロへキサン 2 4 3 2 m 1 に溶解した溶媒中に混合して、 マイクロエマルショ ン 液を用意した。 一方、 ケィ素 ( S i ) 源と して、 テ トラエ トキシシ ラン (T E O S ) 0. 1 2 0 8 4 1 m o l をシクロへキサン 1 0 0 0 m l に溶解したアルコキシ ド溶液を用意した。
ィ'ッ ト リ ウム源としてのマイクロエマルシヨ ン液に、 ケィ素源と してのアルコキシド溶液を混合するとともに、 濃度 1 4. 8 Mのァ ンモニァ水 3 2. .6 6 m l と蒸留水 3. 1 5 m l とを加えた。 この 状態での有機溶媒と界面活性剤との比率 (〇ノ S ) は 6 3. 6、 Hは 7. 2である。 また、 混合時間は 5分である。 その結果、 加水 分解が生じ、 酸化イ ツ ト リ ウム一シリカ複合酸化物の前駆体の一次 粒子が生じ、 またその一次粒子が凝集して二次粒子が生じる。
つぎに、 蒸留水 2 3 0. 0 m l , エタノール 2 0 0. 0 m l 、 及 び濃度 1 4. 8 Mのアンモニア水 8. 1 6 m l を加えて、 マイクロ エマルシヨ ン液を二相領域に持って行き、 撹拌しつつ、 二次粒子同 士を更に凝集させる熟成を行った。 そのときの p Hは 8. 8、 水相 と界面活性剤との比率 (WZ S ) は 3 4. 2、 継続時間は 6 0分で ある。 その後、 凝集物を取り出して 3回洗浄し、 乾燥し、 仮焼し、 そし て 8 0 0でで 2時間にわたって焼成を行って、 酸化イ ツ ト リ ウム一 シリカ複合酸化物 (Y i 。 S i 6 〇 2 7 ) からなる触媒担体を得た
〔本発明の酸化マグネシウム一シリカ複合酸化物触媒担体の合成 下記のようにしてマイクロエマルシヨ ン法によって、' M g S i O 3 の組成の酸化マグネシウム—シリカ複合酸化物触媒担体 3 0 gを 合成した。
先ず、. マグネシウム ( M g ) 源として、 硝酸マグネシウム水溶液 ( 0 . 2 9 8 8 2 7 m o l 、 濃度 3 . 3 2 0 3 M) と硝酸アンモニ ゥム水 ( 0 . 2 4 9 9 m o l 、 濃度 2 . 7 7 6 M) との混合水溶液 ( 9 0 m l ) (硝酸イオン : 0 . 8 4 8 m o l 、 9 . 4 1 7 M) を 、 アルキル系界面活性剤であるポリオキシエチレン ( n 5 . 5 ) セチルエーテル ( B C — 5 . 5 (商品名) ) 2 5 1 . 3 gをシク ロ へキサン 4 3 2 3 m 1 に溶解した溶媒中に混合して、 マイクロエマ ルシヨ ン液を用意した。 一方、 ゲイ素 ( S 1 ) 源として、 テ トラエ トキシシラン (T E O S ) 0 . 2 9 8 8 2 7 m o l をシクロへキサ ン 1 0 0 0 m l に溶解したアルコキシ ド溶液を用意した。
マグネシウム源と してのマイクロエマルショ ン液に、 ケィ素源と してのアルコキシ ド溶液を混合するとともに、 濃度 1 4 . 8 Mのァ ンモニァ水 4 0 . 3 3 m l と蒸留水 3 . 8 8 m l とを加えた。 この 状態での有機溶媒と界面活性剤との比率 (OZ S ) は 9 0 ; 油相と 水相との比率 (OZW) は 6 、 p Hは 7 . 8である。 また、 混合時 間は 5分である。 その結果、 加水分解が生じ、 酸化マグネシウム一 シリカ複合酸化物の前駆体の一次粒子が生じ、 またその一次粒子が 凝集して二次粒子が生じる。 つぎに、 蒸留水 2 3 0. 0 m l 及びエタノール 2 0 0. 0 m l を 加えて、 マイクロエマルシヨ ン液を二相領域に持って行き、 撹拌し つつ、 二次粒子同士を更に凝集させる熟成を行った。 そのときの p Hは 7. 8、 水相と界面活性剤との比率 (Wノ S ) は 3 4. 2、 継 韓時間は 6 0分である。
その後、 凝集物を取り出して 3回洗浄し、 乾燥し、 仮焼し、 そし て 8 0 0 ^で 2時間にわたって焼成を行って、 酸化マグネシウム一 シリカ複合酸化物 (M g S i O a ) からなる触媒担体を得た。
〔本発明の酸化ランタンーチタニア複合酸化物触媒担体の合成〕 下記に様にしてマイクロエマルショ ン法によって、 L a T i O 3
5 の組成のパイ ロクロア構造酸化ランタンーチタニア複合酸化物 触媒担体 3 0 gを合成した。
ランタン (L a ) 源として、 硝酸ランタン水溶液 ( 0. 0 8 2 4 m o l 、 1. 0 3 0 M) 8 0 m l と、 耐電促進剤としての 0. 1 8 M塩化コ リ ン 3. 0 1 6 m 1 とを混合した水溶液を、 アルキル系界 面活性剤 B C— 5. 5 (商品名) 1 0 4. 5 gをシクロへキサン 2 5 9 4 m l に溶解した溶媒中に混合して、 マイクロエマルシヨ ン液 を用意した。 一方、 チタン (T i ) 源として、 シクロへキサン 1 0 0 0 m l に、 0. 0 8 2 4 m o l のチタン—ブチレ一 トを溶解した アルコキシド溶液を用意した。
上記のマイクロエマルシヨ ン液に、 一次粒子及びこれが凝集した 二次粒子を形成させるために、 濃度 1 3. 5 Mのアンモニア水 6 6 . 5 7 m l 、 3 5 %アルキルアンモニゥム 4. 2 7 m l 、 及びシク 口へキサン溶液 1 0 0 0 m l 〖こ 0. 0 8 2 4 m o 1 のチタンーブチ レー トを溶解したアルコキシ ド溶液を加えた。 この状態で、 P Hは 1 0. 0であり、 また混合時間は 5分である。 そして、 蒸留水 2 3 0. 0 m 1 及びエタノール 2 0 0 m 1 を加えて、 水相と界面活性剤 との比率 (wzs) にして、 マイクロエマルシヨ ン液を二相領域に 持って行き、 撹拌しつつ、 二次粒子同士を更に凝集させる熟成を行 つた。 そのときの p Hは 1 0. 0、 継続時間は 5分である。
その後、 凝集物を取り出して、 付着している界面活性剤のアルコ ール洗浄、 乾燥、 焼成を定法に従って行い、 酸化ランタン一チタ二 ァ複合酸化物 (L a Τ ί Ο 3 5 ) からなる触媒担体を得た。
〔他の本発明の複合酸化物触媒担体の合成〕
上記と同様にしてマイクロエマルショ ン法によって、 本発明の酸 化ネオジゥム一シリカ複合酸化物 (N d i Q S i 62 7 ) 触媒担 体、 酸化ランタン一アルミナ複合酸化物 (L a A l 〇 3 ) 触媒担体 、 酸化ネオジゥム一アルミナ複合酸化物 (N d A 103 ) 触媒担体 、 酸化ランタンージルコニァ複合酸化物 (L a Z r O 3 5 ) 触媒 担体、 酸化マグネシウム一アルミナ複合酸化物 (M g A 1〇 2 . 5 ) 触媒担体、 酸化イ ッ ト リ ウムージルコニァ複合酸化物 ( Y Z r 〇 3 ' 5 ) 触媒担体、 酸化ネオジムーチタニア複合酸化物 (N d T i O 3 5 ) 触媒担体、 及び酸化イ ツ ト リ ウムーチタニア複合酸化物 (Y T i O 3 5 ) 触媒担体を合成した。
〔従来技術の触媒担体〕
従来技術の触媒担体として、 L a 2 03 、 A 1 2 03 、 Z r O 2 、 T i O 2 、 S i 〇 2 を得た。 '
〔評価〕
本発明及び従来技術の触媒担体について電気陰性度を求めた。 ま たこれらの触媒担体に l w t %の白金粒子を定法に従って担持し、 空気中において 8 0 0 °Cで 2時間にわたって焼成した後の白金粒子 の粒径を測定した。 これらの測定結果を、 下記の表 3 に示す。 表 3:評価結果
Figure imgf000024_0001
表 3から明らかなように白金粒子のシン夕 リ ング抑制に関して、 本発明の複合酸化物担体は、 比較例の r一アルミナ、 ジルコニァ、 チタニァ、 シリカに対して明らかな効果がある。 シン夕リ ング抑制 効果が大きいのは、 酸化ラン夕ン ―シリ力複合酸化物 (L a i Q S i 6 o2'7 ) 、 酸化ネオジゥム ―ジルコニァ複合酸化物 (N d Z r o3 5 ) 、 及び酸化ィ ッ ト リ ヴム一シリ力複合酸化物 ( Y i 0 s i 6 02 7 ) であり、 いずれも電気陰性度が 2. 7 0付近であって r一アルミナと同等であった。 一般に 、 この電気陰性度 2. 7 0か ら離れるほど粒子径が大きくな ている 。 ランタン、 ネオジムの 4 f 一 L U 0軌道に貴金属電子が配位することによって強い結合が 生じた とが、 シン夕 リ ング抑制を達成していると考えられる。 参考までに、 酸化ランタン一シリカ複合酸化物 (仕込み組成 L a
1 0 ° i 6 O 2 7 ) 触媒担体の X線回折 ( X R D ) 分析結果を図 3 に示す o
〔虫施例 2〕
この実施例では、 シン夕リ ング抑制効果に対する複合酸化物の組 成の影響について説明する。
ランタン含有率 (L a Z ( L a + S i ) ) の異なる複数の酸化ラ ンタン—シリカ複合酸化物を用意し、 それぞれに l w t %の白金粒 子を担持し、 空気中において 8 0 0でで 2時間にわたって焼成した 後で、 白金粒子径を測定した。 白金 ( P t ) 粒子径についての評価 結果を図 4に示す。 図 4から明らかなように、 ランタン含有率が 5 0 〜' 7 0 %付近で白金粒子の粒径が小さく維持されており、 シンタ リ ング抑制効果が大きいことが認められた。
同様に、 酸化ネオジムージルコニァ複合酸化物について、 ネオジ ム含有率 (N d Z ( N d + Z r ) ) の影響を調べた。 白金粒子の担 持量及び焼成条件は、 上記の酸化ランタン一シリカ複合酸化物の場 合と同様と した。 白金 ( P t ) 粒子径についての評価結果を図 5 に 示す。 図 5から明らかなように、 ネオジム含有率が 3 0 〜 7 0 %と 広い範囲で白金粒子の粒径が小さ く維持されており、 シン夕 リ ング 抑制効果が大きいことが認められた。 また、 上記の酸化ランタン一 シリカ複合酸化物の場合と比較すると、 ネオジム含有率が上記の範 囲を外れても白金粒子径の急激な増大がなく、 シン夕リ ング抑制効 果に対するネオジム含有率の影響が比較的少ないことが認められた このよう に、 複合酸化物を構成する金属元素の組み合わせによつ ては、 貴金属触媒粒子のシン夕リ ング抑制効果に対する組成の影響 が現れるので、 実験により好適な組成を求めることが好ましい。
〔実施例 3 〕
モノ Uス八二カム基材に、 ジルコ一ァゾルを用いて、 1 2 0 g /
― 、
基材 Lの量で本発明の酸化ラン夕ノ -シリ力複合酸化物 ( L a 1
0 S i 6 o 2 7 ) 触媒担体をコー ト し 、 そして触媒担体が 3— hさ れている基材に対して 1 . 2 g 基材一 : Lの白金を担持して、 本発 明の排ガス浄化触媒を得た。
しのようにして得た本発明の排ガス浄化触媒に 、 下記の組成のス 卜ィキガスを 1 , 0 0 0 °Cでそれぞれ 2時間 、 1 0時間及び 2 0時 間にわたって供給して耐久を行った。 その後 、 耐久を行っていない 本発明の排ガス浄化触媒、 及び耐久を行った本発明の排ガス浄化触 媒に'対して、 同じス トィキガスを、 温度を上昇させながら供給して
、 H C 5 0 %浄化温度 ( H Cの浄化率が 5 0 に達したときの触媒 温度 ) を調べた。 表 4 :ストィキガス組成
Figure imgf000026_0001
H C 5 0 %浄化温度の評価結果を図 6 に示す。 この図 6からは、 白金粒子のシン夕リ ングはある程度進むが、 一方で劣化幅は非常に 小さく、 ランタン一シリカ複合酸化物担体より 白金粒子の移動が抑 制されたことは明らかである。 すなわちランタン一シリカ複合酸化 物と白金粒子との相互作用が非常に高いことが理解される。 〔実施例 4〕
本発明に係る複合酸化物担体を、 これより耐熱性が高い担体であ るァーアルミナ上に担持した。 その構造を模式的に示せば図 7 のと おりであり、 ァ _アルミナ粒子 1 上に酸化ランタン—シリカ複合酸 化物 2が担持されている。 尚、 実際には、 このァ —アルミナ粒子が 凝集して多孔構造を形成している。
先ず、 ァ—アルミナを用意し、 これに T E O S アルコ ル溶液を 吸水させ、 余分な溶液を吹き払った後で、 2 5 0 °Cで 1 時間にわた つて乾燥する。 これに続けて、 硝酸ランタン溶液を吸水させ、 同様 に、 余分な溶液を吹き払った後で、 2 5 0 °Cで 1 時間にわたって乾 燥する。 このようにしてケィ素及びランタンを吸水担持させた後、 空気中 8 0 0で X 2時間の焼成を行い、 ァ —アルミナ上に酸化ラン タン一シリカ複合酸化物複合酸化物を担持した触媒担体 (L a i 。 S i 6 O 2 7 ノア —アルミナ) を得た。
ごれに触媒成分として 1 w t %の白金粒子を定法に従って担持し 、 空気中において 8 0 0でで 2時間にわたって焼成した後で、 白金 粒子の粒径を測定した。 その結果を、 上記の実施例 1 における酸化 ランタン—シリカ複合酸化物複合酸化物 (L a i Q S 1 6 O 2 7 ) 触媒担体についての測定結果及び r 一アルミナについての測定結果 と併せて下記の表 5 に示す。 ' 表 5 : LaSi系複合酸化物 (La1 () S 02 7 ) 表面形成担体の効果
Figure imgf000027_0001
表 5から明らかなように、 担体の全体を酸化ランタン一シリカ複 合酸化物複合酸化物とした場合、 及び r 一アルミナの表面に酸化ラ ン夕ン一シリカ複合酸化物複合酸化物を形成した場合のいずれであ つても、 焼成後の白金粒子径が小さ く、 従来のァ ーアルミナからな る担体に比較して貴金属触媒粒子のシン夕 リ ング抑制効果に優れて いることが確認された。
〔実施例 5〕
以下では、 白金以外の貴金厲粒子のシン夕 リ ングを抑制する効果 について説明する。
貴金属のシン夕 リ ングについては、 次に示す経験式に従ってシン 夕 リ ングの進行が起こることが知られている :
1 Z S p r n = 1 / S 。 n + k t … ( 1 )
( S p r は貴金属粒子の表面積、 S。 は初期の貴金属粒子表面積 、 k及び nは任意の定数、 t は時間である) 。
ここで次数 nは 2であることが多く、 従って上記の式は下記のよ うに'表すことができる :
l Z S p r 2 = l Z S。 2 + k t - ( 2 ) シン夕リ ングの影響を正しく評価するためには、 この式に実際の 物理量を入れる必要がある。
まず、 縦軸について、 触媒担体に担持された貴金属量が同一であ るとすると、 貴金属粒子の粒子径 dは、 貴金属粒子の表面積 S p r に反比例する。 従って貴金属粒子の粒子径 d と貴金属粒子の表面積 S p r との関係は以下のようになる :
1 / S p r x d … ( 3 )
. 1 / S p r 2 cx: d 2 ··· ( 4 )
( dは貴金属粒子の粒子径、 S p r は貴金属粒子の表面積) 。 よって、 縦軸には d 2 を採ることができる。
次に、 横軸には時間を採る。 ここでは、 表面積の異なる担体につ いて担体と貴金属との相互作用を正しく評価するために、 無次元化 した時間 t を横軸に採る方法を用いる。
これに関し、 担持された貴金属粒子の衝突までの時間は、 粒子間 の平均距離に比例し、 また平均距離は担体の表面積の 1ノ 2乗 ( S s u p 1 / 2 ) に比例する。 すなわち 担体の表面積が大きいと他 の粒子と衝突しないで自由に拡散できる時間が長くなり、 この平均 自由行程時間に対する実時間の割合は小さくなる。 '
従って無次元化した時間 t は、 実際の熱劣化 (耐久) 時間 t r に 対して、 下記のように表すことができる - t = t" / S 1 / 2
r z ^ S U p ( 5 )
また、 試験におけるそれぞれの試料に対する熱劣化時間 t r がー 定であるとすると、 式 ( 5 ) は下記の うに表すことができる : t oc 1 / S ^ s u p 1 / 2 ( 6 )
従って、 横軸には 1 Z S s u p 1 z 2 を採ることができる。
式 ( 2 ) ( 4 ) 及び ( 6 ) から、 貝金属のシン夕リ ングについ ての式は下記のようになる :
d 2 = ,k ' / S s u p 1 / 2 + Q - ( 7 )
( dは貴金属粒子の粒子径、 S s u P は担体表面積、 k ' 及び Q は定数)
このような前提の下に、 パラジウム ( P d ) 及びロジウム ( R h
) のシン夕 リ ングについて調べた結果を説明する。 パラジウム及び ロジウムともリーンでは、 酸化物とな Ό 、 その蒸気圧も小さいため
、 ほとんどシン夕 リ ングしない。 そこでパラジウムとロジウムとの 粒子のシンタリ ングについての調査は 理論空燃比で行つた。 理論 空燃比 (あるいは真空中) の貴金属のシン夕リ ングは、 その融点と 密接に関係する。 融点は、 ロジウム > >白金 >パラジウムであり、 融点が低いほどシン夕リ ングする。 従ってパラジウムで特に大きな シン夕リ ングが起こることになる。
まず、 シンタ リ ングする傾向が大きぃパラジゥムについて調べた
。 ここでは実施例 1 でのようにして得た担体にパラジゥムを担持し て触媒を得 、 この触媒を、 ガソ リ ンエンジンの排気系におけるェキ ゾース 卜マ一ホールド'位置に搭載し 、 空燃比を理論空燃比と して 、 排ガス温度 9 0 o °cで 2時間にわたつて連転した 。 また同様にして
、 シンタリ ングする傾向力 S小さ!^□ジゥムについて調べた。
結果を下記の表 6 に示す。 表 6 :パラジウム及びロジウムについての評価結果
Figure imgf000030_0001
パラジウムについての結果を、 図 8 に示す。 更にパラジウムにつ いての結果を、 先ほどの関係で整理して、 図 9 に示す。 この図 9で は、 横軸に担体表面積の一 1 Z 2乗を、 縦軸にパラジウム粒子の直 径の 2乗を採っている。
これら図 8及び 9からは、 従来技術の担体に対して、 本発明の担 体では明らかなシン夕リ ング抑制効果が得られたことが理解される 。 また、 シリカ系の複合酸化物で最も大きな効果が得られ、 ジルコ ニァ系のものでは効果が小さかった。 尚、 この図 9 において、 本発 明の担体が従来技術の担体の右下側にあることは、 本発明の担体で は、 担体の表面積が比較的小さいにもかかわらず、 パラジウムのシ ン夕リ ングを抑制していることを意味している。
また、 パラジウムについての結果を、 図 1 0 に示す。 更にパラジ ゥムについての結果を、 先ほどの関係で整理して、 図 1 1 に示す。 この図 1 1 では、 横軸に担体表面積の一 1 / 2乗を、 縦軸にパラジ ゥム粒子の直径の 2乗を採っている。
これら図 1 0及び 1 1 からは、 従来技術の担体に対して、 本発明 の担体では明らかなシン夕 リ ング抑制効果が得られたことが理解さ れる。 先ほどと同様な結果になったが、 複合酸化物の対の元素によ る差は非常に小さくなつた。 ただし、 この温度では担体の表面積の 大きさの効果が強く 出ており、 絶対値ではアルミナ上のロジウム粒 子が一番小さかった。
このように本発明の担体は表面積が小さいにも拘わらず、 貴金属 粒子のシン夕リ ングを抑制することが確認できた。 産業上の利用可能性'
以上説明したように、 本発明の担体は、 貴金属触媒粒子を担持す るごとにより排ガス浄化用触媒とされ、 高温下での酸化雰囲気及び 還元雰囲気に曝される。 本発明の排ガス浄化触媒では、 触媒活性の ある貴金属粒子のシン夕リ ングが抑制されてその粒径の増大が抑制 され、 貴金属粒子の比表面積が大きい状態に維持されるので、 排ガ スの浄化機能が長期に亘つて良好に維持される。

Claims

請 求 の 範 囲
1 . 貴金属触媒粒子の貴金属元素が接近若しく は接触することに よりその貴金厲元素から電子を受容する電子受容性があり且つ酸化 還元反応で原子価の変化がない電子受容性元素、 及び 他の元素、 の複合酸化物から構成されている、 貴金属担持用の触媒担体。
2 . 前記電子受容性元素が、 ランタン、 ネオジム、 イ ッ ト リ ウム 、 マグネシウム及びそれらの組み合わせからなる群より選択される 、 請求項 1 に記載の触媒担体。
3 . 前記電子受容性元素が、 ランタン、 ネオジム及びそれらの組 み合わせからなる群より選択される、 請求項 2 に記載の触媒担体。
4 . 前記他の元素が、 ケィ素、 アルミニウム、 ジルコニウム、 チ タン及びそれらの組み合わせからなる群より選択される、 請求項 1 〜 3のいずれかに記載の触媒担体。
5 . 前記他の元素が、 ケィ素、 チタン及びそれらの組み合わせか らなる群より選択される、 請求項 4 に記載の触媒担体。
6 . 前記複合酸化物の電気陰性度が、 2 . 5 5〜 2 . 8 0である 、 請求項 1 〜 5のいずれかに記載の触媒担体。
7 . 前記電子受容性元素と前記他の元素との合計に対する前記電 子受容性元素のモル比が、 0 . 3以上である、 請求項 1 〜 6 のいず れかに記載の触媒担体。
8 . 前記電子受容性元素が、 ランタン、 ネオジム、 イ ッ ト リ ウム 、 マグネシウム及びそれらの組み合わせからなる群より選択され、 前記他の元素が、 ケィ素、 アルミニウム、 ジルコニウム、 チタン 及びそれらの組み合わせからなる群より選択され、 且つ
前記電子受容性元素と前記他の元素との合計に対する前記電子受 容性元素のモル比が、 0 . 3以上である、 請求項 1 に記載の触媒担 体。
9. 前記電子受容性元素が、 ランタン、 ネオジム、 イ ッ ト リ ウム 及びそれらの組み合わせからなる群より選択され、
前記他の元素が、 ゲイ素であり、 且つ
前記電子受容性元素と前記他の元素との合計に対する前記電子受 容性元素のモル比が、 0. 5〜 0. 7である、 請求項 8 に記載の触 媒担体。
1 0. 前記電子受容性元素がランタンであり、 前記他の元素がケ ィ素であり、 且つランタンとケィ素との合計に対するランタンのモ ル比 (L a / (L a + S i ) ) 力 0. 5〜 0. 7である、 請求項 9に記載の触媒担体。
1 1. 前記電子受容性元素が、 ランタン、 ネオジム、 イ ツ 卜 リ ウ ム、 マグネシウム及びそれらの組み合わせからなる群より選択され 前記他の元素が、 アルミニウム、 ジルコニウム、 チタン及びそれ らの組み合わせからなる群より選択され、 且つ
前記電子受容性元素と前記他の元素との合計に対する前記電子受 容性元素のモル比が、 0. 3〜 0. 7である、 請求項 8に記載の触 媒担体。
1 2. 前記電子受容性元素がネオジムであり、 前記他の元素がジ ルコニゥムであり、 且つネオジムとジルコニウムとの合計に対する ネオジムのモル比 ( N d (N d + Z r ) ) 力 0. 3〜 0. 7で ある、 請求項 1 1 に記載の触媒担体。
1 3. 前記複合酸化物が、 この複合酸化物より相対的に耐熱性の 高い他の担体粒子に担持されている、 請求項 1〜 1 2のいずれかに 記載の触媒担体。
1 4. 請求項 1〜 1 3のいずれかに記載の触媒担体に、 貴金属触 媒粒子が担持されてなる、 排ガス浄化用触媒。
1 5 . 前記貴金属触媒粒子が、 白金、 パラジウム及びそれらの組 み合わせからなる群より選択される、 請求項 1 4に記載の排ガス浄 化触媒。
1 6 . 疎水性溶媒相中に水性相が分散している分散液を提供する こと、
前記分散液中に分散している水性相中において、 前記電子受容性 元素の塩及び前記他の元素の塩を加水分解して、 金厲酸化物前駆体 を析出させ、 この金属酸化物前駆体を凝集させること、 並びに 凝集させた前記金属酸化物前駆体を乾燥及び焼成すること、 を含む、 請求項 1 〜 1 1 のいずれかに記載の触媒担体の製造方法。
PCT/JP2006/321589 2005-10-24 2006-10-24 触媒担体及び排ガス浄化用触媒 WO2007049778A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800394261A CN101291731B (zh) 2005-10-24 2006-10-24 催化剂载体和排气净化用催化剂
US12/084,050 US7776783B2 (en) 2005-10-24 2006-10-24 Catalyst carrier and exhaust gas purification catalyst
EP06832403A EP1946836B1 (en) 2005-10-24 2006-10-24 Catalyst support and catalyst for exhaust-gas purification

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-308552 2005-10-24
JP2005308552 2005-10-24
JP2006-194548 2006-07-14
JP2006194548A JP4325648B2 (ja) 2005-10-24 2006-07-14 触媒担体及び排ガス浄化用触媒

Publications (1)

Publication Number Publication Date
WO2007049778A1 true WO2007049778A1 (ja) 2007-05-03

Family

ID=37967884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321589 WO2007049778A1 (ja) 2005-10-24 2006-10-24 触媒担体及び排ガス浄化用触媒

Country Status (4)

Country Link
US (1) US7776783B2 (ja)
EP (1) EP1946836B1 (ja)
JP (1) JP4325648B2 (ja)
WO (1) WO2007049778A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179396A (zh) * 2016-07-08 2016-12-07 宁波钛安新材料科技有限公司 一种分解臭氧的复合催化剂及其制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5078062B2 (ja) * 2005-10-26 2012-11-21 三井金属鉱業株式会社 排ガス浄化用触媒
JP5140987B2 (ja) * 2006-10-24 2013-02-13 トヨタ自動車株式会社 触媒担体及びその製造方法、並びに排ガス浄化触媒
JP5205999B2 (ja) * 2008-02-07 2013-06-05 トヨタ自動車株式会社 排ガス浄化触媒
JP5131053B2 (ja) * 2008-06-24 2013-01-30 トヨタ自動車株式会社 貴金属担持触媒及び触媒装置
US8507403B2 (en) * 2008-06-27 2013-08-13 Cabot Corporation Process for producing exhaust treatment catalyst powders, and their use
JP5227363B2 (ja) * 2009-06-08 2013-07-03 三井金属鉱業株式会社 排ガス浄化用触媒
JP6294837B2 (ja) * 2013-01-31 2018-03-14 ユミコア日本触媒株式会社 排ガス浄化用触媒及び該触媒を用いた排ガス浄化方法
CN105050712B (zh) * 2013-03-29 2017-12-19 三井金属矿业株式会社 废气处理用催化结构体
JP6714989B2 (ja) 2015-01-19 2020-07-01 国立大学法人秋田大学 排ガス浄化触媒用担体及び排ガス浄化触媒
WO2016117240A1 (ja) * 2015-01-19 2016-07-28 三井金属鉱業株式会社 排ガス浄化触媒用担体及び排ガス浄化触媒
JP6769862B2 (ja) * 2016-12-26 2020-10-14 エヌ・イーケムキャット株式会社 排ガス浄化用三元触媒及びその製造方法、並びに排ガス浄化用触媒コンバータ
WO2018088201A1 (ja) * 2016-11-11 2018-05-17 エヌ・イーケムキャット株式会社 排ガス浄化用三元触媒及びその製造方法、並びに排ガス浄化用触媒コンバータ
JP6769839B2 (ja) * 2016-11-11 2020-10-14 エヌ・イーケムキャット株式会社 排ガス浄化用三元触媒及びその製造方法、並びに排ガス浄化用触媒コンバータ

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1369745A (en) * 1971-07-20 1974-10-09 Grace W R & Co Process of converting noxious components in the exhaust gas of and internal combustion engine to less harmful entities
JPS6135851A (ja) * 1984-07-30 1986-02-20 Hitachi Ltd 高温で安定な触媒用担体およびその調製方法
JPS63264150A (ja) * 1987-04-20 1988-11-01 Hitachi Ltd 触媒製造方法
JPH02175602A (ja) * 1988-12-28 1990-07-06 Ricoh Co Ltd 超微粒子状金属酸化物組成物の製法及びそれによって得られた超微粒子状酸化ジルコニウム組成物
JPH0352642A (ja) * 1989-07-17 1991-03-06 Babcock Hitachi Kk 燃焼用触媒の製造方法
JPH04298235A (ja) * 1991-03-27 1992-10-22 Sekiyu Sangyo Kasseika Center 窒素酸化物接触還元用触媒
JPH07136463A (ja) * 1993-11-17 1995-05-30 Mitsubishi Heavy Ind Ltd 排気ガス処理方法
JPH08117601A (ja) * 1994-10-21 1996-05-14 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒及び排ガス浄化方法
JPH09313938A (ja) * 1996-06-03 1997-12-09 Nissan Motor Co Ltd 排気ガス浄化用触媒
JPH11169728A (ja) * 1997-12-15 1999-06-29 Toho Gas Co Ltd メタン酸化触媒
JP2001252563A (ja) * 2000-03-10 2001-09-18 Toyota Motor Corp 排ガス浄化用触媒及び排ガス浄化装置
JP2002001120A (ja) * 2000-06-16 2002-01-08 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒
JP2002079094A (ja) * 2000-09-08 2002-03-19 Toyota Central Res & Dev Lab Inc 高温NOx吸蔵還元型触媒
JP2002233755A (ja) * 2001-02-08 2002-08-20 Toyota Central Res & Dev Lab Inc 飽和炭化水素酸化用触媒
JP2004262702A (ja) * 2003-02-28 2004-09-24 Toyota Motor Corp 複合酸化物の製造方法
WO2005014166A1 (ja) * 2003-08-06 2005-02-17 Honda Motor Co., Ltd. 排ガス浄化触媒及びその製造方法、並びに排ガス浄化触媒装置
WO2005039759A1 (ja) * 2003-10-24 2005-05-06 Toyota Jidosha Kabushiki Kaisha 排気ガス浄化用触媒
CN1657139A (zh) * 2004-02-16 2005-08-24 中国科学院大连化学物理研究所 一种氮氧化物存储-还原催化剂制备及存储-还原消除氮氧化物的方法
JP2006035153A (ja) * 2004-07-29 2006-02-09 Honda Motor Co Ltd 排ガス浄化触媒
JP2006116418A (ja) * 2004-10-21 2006-05-11 Honda Motor Co Ltd 排ガス浄化触媒及びそれを備えた車用排ガス浄化装置
JP2006137651A (ja) * 2004-11-15 2006-06-01 Toyota Central Res & Dev Lab Inc 複合酸化物及び排ガス浄化用触媒
JP2006297237A (ja) * 2005-04-18 2006-11-02 Toyota Motor Corp 排ガス浄化用触媒およびその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905918A (en) * 1972-09-16 1975-09-16 Heraeus Gmbh W C Catalyst for purifying exhaust gases
JPH01168343A (ja) * 1987-12-22 1989-07-03 Toyota Central Res & Dev Lab Inc 排気ガス用浄化触媒
US5023224A (en) * 1989-08-31 1991-06-11 Shell Oil Company Alkoxylation process catalyzed by lanthanum silicates and metasilicates
JPH0388800A (ja) * 1989-08-31 1991-04-15 Tokin Corp レーザ用酸化物単結晶
JPH04180835A (ja) 1990-11-13 1992-06-29 Toyota Motor Corp 排気ガス浄化用触媒の製造方法
JP2628798B2 (ja) 1991-03-14 1997-07-09 エヌ・イーケムキャット株式会社 耐熱性に優れた排気ガス浄化用触媒及びその製造方法
JP3498453B2 (ja) * 1995-11-27 2004-02-16 日産自動車株式会社 排気ガス浄化用触媒及びその製造方法
JP2001314763A (ja) 2000-05-10 2001-11-13 Johnson Matthey Japan Inc NOx吸蔵還元型触媒用支持材とそれを用いたNOx吸蔵還元型触媒
DE60031258T2 (de) * 2000-07-14 2007-05-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Katalysator zum Reinigen von Abgas
JP3858625B2 (ja) 2000-07-27 2006-12-20 株式会社豊田中央研究所 複合酸化物とその製造方法及び排ガス浄化用触媒とその製造方法
JP4284847B2 (ja) 2000-08-31 2009-06-24 パナソニック株式会社 便座・便蓋電動開閉装置
JP2002087896A (ja) * 2000-09-12 2002-03-27 Mitsubishi Heavy Ind Ltd 自己修復性高耐熱耐酸化性皮膜及び積層体
JP2002346387A (ja) 2001-05-23 2002-12-03 Isuzu Motors Ltd 排気ガス浄化触媒
US7371352B2 (en) * 2001-09-26 2008-05-13 Siemens Power Generation, Inc. Catalyst element having a thermal barrier coating as the catalyst substrate
JP4180835B2 (ja) 2002-05-07 2008-11-12 坂本工業株式会社 管端の加工装置
US6677064B1 (en) * 2002-05-29 2004-01-13 Siemens Westinghouse Power Corporation In-situ formation of multiphase deposited thermal barrier coatings
JP4298235B2 (ja) 2002-07-30 2009-07-15 古河機械金属株式会社 空気二次電池
US20040024071A1 (en) * 2002-08-01 2004-02-05 Meier Paul F. Perovskite compositions and method of making and process of using such compositions
JP2006131678A (ja) * 2004-11-02 2006-05-25 Lintec Corp 開環重合用固体酸触媒及び開環重合方法
EP1866083B1 (en) * 2005-03-24 2021-06-30 University of Regina Nickel on Ceria/Zirconia catalyst
JP2007283207A (ja) * 2006-04-17 2007-11-01 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒及びその製造方法

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1369745A (en) * 1971-07-20 1974-10-09 Grace W R & Co Process of converting noxious components in the exhaust gas of and internal combustion engine to less harmful entities
JPS6135851A (ja) * 1984-07-30 1986-02-20 Hitachi Ltd 高温で安定な触媒用担体およびその調製方法
JPS63264150A (ja) * 1987-04-20 1988-11-01 Hitachi Ltd 触媒製造方法
JPH02175602A (ja) * 1988-12-28 1990-07-06 Ricoh Co Ltd 超微粒子状金属酸化物組成物の製法及びそれによって得られた超微粒子状酸化ジルコニウム組成物
JPH0352642A (ja) * 1989-07-17 1991-03-06 Babcock Hitachi Kk 燃焼用触媒の製造方法
JPH04298235A (ja) * 1991-03-27 1992-10-22 Sekiyu Sangyo Kasseika Center 窒素酸化物接触還元用触媒
JPH07136463A (ja) * 1993-11-17 1995-05-30 Mitsubishi Heavy Ind Ltd 排気ガス処理方法
JPH08117601A (ja) * 1994-10-21 1996-05-14 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒及び排ガス浄化方法
JPH09313938A (ja) * 1996-06-03 1997-12-09 Nissan Motor Co Ltd 排気ガス浄化用触媒
JPH11169728A (ja) * 1997-12-15 1999-06-29 Toho Gas Co Ltd メタン酸化触媒
JP2001252563A (ja) * 2000-03-10 2001-09-18 Toyota Motor Corp 排ガス浄化用触媒及び排ガス浄化装置
JP2002001120A (ja) * 2000-06-16 2002-01-08 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒
JP2002079094A (ja) * 2000-09-08 2002-03-19 Toyota Central Res & Dev Lab Inc 高温NOx吸蔵還元型触媒
JP2002233755A (ja) * 2001-02-08 2002-08-20 Toyota Central Res & Dev Lab Inc 飽和炭化水素酸化用触媒
JP2004262702A (ja) * 2003-02-28 2004-09-24 Toyota Motor Corp 複合酸化物の製造方法
WO2005014166A1 (ja) * 2003-08-06 2005-02-17 Honda Motor Co., Ltd. 排ガス浄化触媒及びその製造方法、並びに排ガス浄化触媒装置
WO2005039759A1 (ja) * 2003-10-24 2005-05-06 Toyota Jidosha Kabushiki Kaisha 排気ガス浄化用触媒
CN1657139A (zh) * 2004-02-16 2005-08-24 中国科学院大连化学物理研究所 一种氮氧化物存储-还原催化剂制备及存储-还原消除氮氧化物的方法
JP2006035153A (ja) * 2004-07-29 2006-02-09 Honda Motor Co Ltd 排ガス浄化触媒
JP2006116418A (ja) * 2004-10-21 2006-05-11 Honda Motor Co Ltd 排ガス浄化触媒及びそれを備えた車用排ガス浄化装置
JP2006137651A (ja) * 2004-11-15 2006-06-01 Toyota Central Res & Dev Lab Inc 複合酸化物及び排ガス浄化用触媒
JP2006297237A (ja) * 2005-04-18 2006-11-02 Toyota Motor Corp 排ガス浄化用触媒およびその製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHENG HAO ET AL.: "NOx Storage Performance of Pt/Mg-Al-O Catalyst", CUIHUA XUEBAO (CHINESE JOURNAL OF CATALYSIS), vol. 25, no. 4, 2004, pages 272 - 276, XP003012412 *
FORNASARI G.: "Role of the Mg/Al atomic radio in hydrotalcite-based catalysts for NOx storage/reduction", APPLIED CLAY SCIENCE, vol. 29, June 2005 (2005-06-01), pages 258 - 266, XP004910244 *
FOTI G. ET AL.: "Electrochemical promotion of Rh catalyst in gas-phase reduction of NO by propylene", JOURNAL OF APPLIED ELECTROCHEMISTRY, vol. 30, 2000, pages 1223 - 1228, XP003012411 *
LI X. ET AL.: "A new NOx storage-reduction electrochemical catalyst", APPL. CAT. B: ENVIRONMENTAL, vol. 61, 11 July 2005 (2005-07-11), pages 267 - 273, XP005108086 *
OGATA A. ET AL.: "Enhancement effect of Mg2+ ion on direct nitric oxide decomposition over supported palladium catalysts", APPLIED CATALYSIS, vol. 65, 1990, pages L11 - L15, XP001246481 *
See also references of EP1946836A4 *
SILLETTI B.A. ET AL.: "A novel Pd/MgAlOx catalyst for NOx storage-reduction", CATALYSIS TODAY, vol. 114, 30 April 2006 (2006-04-30), pages 64 - 71, XP005367436 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179396A (zh) * 2016-07-08 2016-12-07 宁波钛安新材料科技有限公司 一种分解臭氧的复合催化剂及其制备方法
CN106179396B (zh) * 2016-07-08 2019-02-15 宁波钛安新材料科技有限公司 一种分解臭氧的复合催化剂及其制备方法

Also Published As

Publication number Publication date
EP1946836A1 (en) 2008-07-23
EP1946836B1 (en) 2013-01-16
US20090131249A1 (en) 2009-05-21
JP4325648B2 (ja) 2009-09-02
US7776783B2 (en) 2010-08-17
JP2007144393A (ja) 2007-06-14
EP1946836A4 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
WO2007049778A1 (ja) 触媒担体及び排ガス浄化用触媒
JP3466856B2 (ja) 排ガス浄化触媒およびその製造方法
JP5076377B2 (ja) 排ガス浄化触媒
EP2039425B1 (en) Process for production of an exhaust gas clean-up catalyst
KR100881300B1 (ko) 금속 산화물 입자의 제조 공정 및 배기 가스 정화용 촉매
RU2423177C1 (ru) Структура ядро-оболочка, способ ее получения и катализатор очистки выхлопных газов, содержащий структуру ядро-оболочка
JP2003117393A (ja) 排ガス浄化用触媒
WO2006067912A1 (ja) 排気ガス浄化触媒、及び排気ガス浄化触媒の製造方法
EP1452483B1 (en) Process for production of compound oxides
WO2006064684A1 (ja) 触媒、排ガス浄化触媒、及び触媒の製造方法
WO2013162029A1 (ja) 酸化鉄-ジルコニア系複合酸化物とその製造方法、および排ガス浄化触媒
WO2010007839A1 (ja) 排気ガス浄化用触媒及びその製造方法
JP4710744B2 (ja) 複合金属酸化物の製造方法
JP2012016685A (ja) 排気ガス浄化用触媒及びその製造方法
CN108136374A (zh) 废气净化用催化剂及其制造方法、以及使用它的废气净化装置
CN105517704B (zh) 用于机动车的排气净化催化剂
JP2006298683A (ja) 耐熱複合酸化物の製法
JP4770959B2 (ja) 触媒担体及び排ガス浄化用触媒
JP4552098B2 (ja) 排ガス浄化触媒用担体及びその製造方法と触媒
JP2002220228A (ja) 酸化物粉末とその製造方法及び触媒
JP4765381B2 (ja) 耐熱性を備えた複合酸化物の製法
JP5690372B2 (ja) 酸化鉄−ジルコニア系複合酸化物およびその製造方法
JP5131053B2 (ja) 貴金属担持触媒及び触媒装置
JP7262975B2 (ja) セリア・ジルコニア系複合酸化物酸素吸収放出材料および排ガス浄化触媒
WO2013098987A1 (ja) 排気ガス浄化用触媒のための担体、排気ガス浄化用触媒及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680039426.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12084050

Country of ref document: US

Ref document number: 2006832403

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE