WO2007049598A1 - 難燃剤、難燃性樹脂組成物及び成形体 - Google Patents

難燃剤、難燃性樹脂組成物及び成形体 Download PDF

Info

Publication number
WO2007049598A1
WO2007049598A1 PCT/JP2006/321132 JP2006321132W WO2007049598A1 WO 2007049598 A1 WO2007049598 A1 WO 2007049598A1 JP 2006321132 W JP2006321132 W JP 2006321132W WO 2007049598 A1 WO2007049598 A1 WO 2007049598A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame retardant
compound
mass
flame
transition metal
Prior art date
Application number
PCT/JP2006/321132
Other languages
English (en)
French (fr)
Inventor
Seiji Matsui
Original Assignee
Konoshima Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co., Ltd. filed Critical Konoshima Chemical Co., Ltd.
Priority to US12/067,551 priority Critical patent/US7816440B2/en
Priority to EP06822112.6A priority patent/EP1942173B1/en
Priority to ES06822112.6T priority patent/ES2588935T3/es
Publication of WO2007049598A1 publication Critical patent/WO2007049598A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Definitions

  • the present invention relates to a magnesium hydroxide flame retardant as a so-called non-halogen flame retardant and
  • Thermoplastic resins are excellent in molding processability and electrical insulation, and are inexpensive, so they are widely used in indoor cables, household electrical appliances, thin wire covering materials for automobiles, and wallpaper. ing. Conventionally, a large amount of polychlorinated bur resin has been used for such applications.
  • cables made of polychlorinated bur resin generate a large amount of smoke in the event of a fire, causing trouble in evacuation and fire fighting activities in sealed spaces such as underground malls, subways, and ships, resulting in secondary disasters. There was a possibility of waking up. Therefore, there has been a demand for a resin material that generates a small amount of harmful gas such as carbon monoxide even when burned with little smoke during a fire. More recently, polysalt-bulu resins have been increasingly shunned due to concerns about environmental issues such as dioxin.
  • non-halogen-based resins are often replaced with, for example, polyolefin resins.
  • a magnesium hydroxide compound as a non-halogen flame retardant in order to make the polyolefin resin flame-retardant or immediately flame retardant compared to the polychlorinated bur resin. ing.
  • a magnesium hydroxide flame retardant having a total content of iron compound, manganese compound, cobalt compound, chromium compound, copper compound, vanadium compound and nickel compound is 0.01% by weight or less in terms of metal. It has been proposed (see Patent Document 1). And by reducing the amount of such a transition metal, the heat deterioration resistance when the resin is melt-kneaded at the time of blending is improved.
  • At least one divalent metal ion selected from the group consisting of Cu Zn 2+ A magnesium hydroxide flame retardant is proposed in which X is in the range of 0. 001 ⁇ X ⁇ 0. 005 or 0.7 ⁇ X ⁇ 0.9 (see Patent Document 2) ). By using such a composite magnesium hydroxide flame retardant, the acid resistance of the molded body (communication cable, etc.) is improved.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-002884
  • Patent Document 2 Japanese Patent Laid-Open No. 5-209084
  • an object of the present invention is to provide a magnesium hydroxide-based flame retardant having a low carbon monoxide generation amount and a small amount of fuming during combustion of a resin molded body in which the flame resistance of the resin molded body is high when blended with a resin.
  • the present invention is a flame retardant comprising magnesium hydroxide particles containing a transition metal compound, wherein the transition metal compound is at least one selected from a copper compound, a cobalt compound, a nickel compound, a zinc compound and a titanium compound.
  • the transition metal compound is at least one selected from a copper compound, a cobalt compound, a nickel compound, a zinc compound and a titanium compound.
  • One of the transition metal compounds is contained in an amount of 100 to 1000 mass ppm in terms of metal, and the total amount of the copper compound, the conodium compound and the nickel compound is 1000 mass in terms of metal.
  • the total amount of the zinc compound and the titanium compound is 1000 mass ppm or less in terms of metal.
  • the flame retardant of the present invention comprises magnesium hydroxide particles containing a transition metal compound, and the transition metal compound is at least one selected from five specific compounds, and these Of the compounds, any one of the four strengths is contained in an amount of 100 to 1000 ppm by mass in terms of metal. Therefore, a resin molded body containing this flame retardant exhibits high flame retardancy and produces a small amount of smoke. In addition, the total amount of copper compound, cobalt compound and Nikkenore compound is converted to metal. Since the total amount of the zinc compound and the titanium compound is 1000 mass ppm or less in terms of metal, the resin molded body containing this flame retardant is very little colored and burns. Sometimes the amount of carbon monoxide generated is small.
  • the magnesium hydroxide particles must contain any one of the above-mentioned transition metal compounds in an amount of 100 to 1000 mass ppm in terms of metal. This content is preferably ⁇ 100 to 600 ppm by mass, more preferably ⁇ 100 to 300 ppm by mass. Two or more transition metal compounds may each be contained in an amount of 100 to 1000 ppm by mass in terms of metal.
  • transition metal compound If the content of one kind of transition metal compound is less than 100 ppm by mass in terms of metal, the amount of carbon monoxide generated and the amount of smoke generated will not be sufficient for flame retardancy. Conversely, if any one transition metal compound exceeds 1000 mass ppm in terms of metal, copper, cobalt and nickel can be colored well, while zinc and titanium have no problem with coloring. The effect of reducing carbon dioxide deteriorates. Therefore, the total content of copper, cobalt, and nickel must be 1000 mass ppm or less, and the total content of zinc and titanium must be 1000 mass ppm or less.
  • the flame retardancy is improved because the above-mentioned transition metal acts as a catalyst for promoting carbonization of the surface of the resin molded body during combustion and exhibits an oxygen blocking effect.
  • the transition metal also acts as an oxidation catalyst and is thought to easily convert the generated carbon monoxide into carbon dioxide.
  • the transition metal compound is converted to an active oxide during combustion, and the generated incomplete combustion soot is thought to be effectively adsorbed.
  • the form of the transition metal compound may be a chloride, sulfate, nitrate, carboxylate, or the like, or an oxide, hydroxide, sulfide, or a single metal. May be.
  • the transition metal compound can be contained in the magnesium hydroxide particles by a raw material preparation step before hydrothermal treatment, or by a surface treatment such as stearic acid which may be added after the target particles are completed. You may add simultaneously. Furthermore, it can be mixed with magnesium hydroxide powder by dry method.
  • the flame retardant of the present invention contains BET (Brunauer, Emmett, Tel ler) preferably having a specific surface area of l to 20 m 2 / g and an average particle size of 0.5 to 5 ⁇ m.
  • BET Brunauer, Emmett, Tel ler
  • the BET ratio table area of the magnesium hydroxide particles used as the flame retardant is:! To 20 m 2 / g, and the average particle diameter is 0.5 to 5 zm.
  • the basic required properties of the composition can be satisfied. That is, when the BET specific surface area exceeds 20 m 2 Zg or the average particle diameter is less than 0.5 zm, re-aggregation is likely to occur when the flame retardant is blended with the resin, and the dispersibility in the resin is increased. This lowers the appearance of the molded product, and the tensile elongation decreases.
  • the BET specific surface area force is less than Slm 2 / g or the average particle diameter exceeds 5 / m, there is no problem in dispersibility in the resin, but flame retardancy is lowered and tensile strength is also lowered.
  • the magnesium hydroxide particles are selected from higher fatty acids, higher fatty acid metal salts, anionic surfactants, coupling agents, esters composed of polyhydric alcohols, and phosphate esters.
  • the ability to be surface-treated with at least one surface treatment agent is preferable.
  • the affinity with the resin is improved compared to the non-surface-treated one. This improves the tensile properties and impact resistance, and further improves the water resistance and acid resistance due to the water repellent effect of the surface treatment agent coating.
  • higher fatty acids include higher fatty acids having 10 or more carbon atoms such as stearic acid, erucic acid, palmitic acid, lauric acid, and behenic acid. Further, alkali metal salts of these higher fatty acids are also preferred.
  • anionic surfactants include sulfate esters of higher alcohols such as stearyl alcohol and oleyl alcohol, sulfate esters of polyethylene glycol ether, amide bond sulfates, ester bond sulfates, ester bond sulfonates, and amide bond sulfones.
  • Coupling agents include buluetoxysilane, bullytris (2-methoxymonoethoxy) silane, and ⁇ -methacryloxypropylene. Rutrimethoxysilane , ⁇ -_ (3,4_epoxycyclo
  • Titanate coupling systems such as isopropyltriisostearoyl titanate, isopropyltris (dioctylpyrophosphate) titanate, isopropyltri (N-aminoethylmonoaminoethyl) titanate, isopropyltridecylbenzenesulfonyl titanate, etc.
  • aluminum coupling agents such as acetoalkoxyaluminum diisopropylate.
  • esters composed of polyhydric alcohols include esters of polyhydric alcohols such as glycerin monostearate and glycerin monooleate and fatty acids.
  • phosphoric acid esters examples include mono- or diesters such as orthophosphoric acid and oleyl alcohol, stearyl alcohol, or a mixture of both, and their acid forms or phosphate esters such as alkali metal salts or amine salts. .
  • a known wet method or dry method can be employed.
  • a surface treating agent may be added in a liquid or emulsion form to a magnesium hydroxide slurry and mechanically mixed at a temperature up to about 100 ° C.
  • the powder of magnesium hydroxide may be added in a liquid, emulsion or solid state with stirring using a mixer such as a Henschel mixer, and mixed under heating if necessary.
  • the addition amount of the surface treatment agent can be selected as appropriate, but is preferably about 10% by mass or less based on the weight of the magnesium hydroxide particles.
  • the magnesium hydroxide particles after the surface treatment can be made into a final product form by appropriately performing means such as washing with water, dehydration, granulation, drying, pulverization, and classification as necessary.
  • the flame retardant resin composition of the present invention is characterized by blending 5 to 500 parts by mass of the above flame retardant with 100 parts by mass of a polyolefin resin.
  • the polyolefin resin includes polyethylene, polypropylene, ethylene Z propylene copolymer, polybutene, poly (4-methylpentene_ 1), and other polymers or copolymers of C to C polyolefin (co-olefin).
  • a polymer is mentioned.
  • the above flame retardant is added to the polyolefin resin. Because it contains a predetermined amount, it exhibits high flame retardancy and generates little carbon monoxide and smoke during combustion.
  • the blending amount of the flame retardant is preferably 20 to 400 parts by mass, more preferably 40 to 300 parts by mass.
  • the molded article of the present invention is characterized by comprising the above-mentioned flame retardant resin composition.
  • the flame retardant resin composition is prepared by blending a predetermined amount of the above-mentioned flame retardant with a polyolefin resin, so that the molded article has high flame retardancy. When burned, the amount of carbon monoxide and smoke generated is small.
  • a / dL emulsified slurry was prepared. 1 L of this emulsified slurry was collected in a 2 L SUS316 container (corresponding to 100 g as the solid mass of Mg (OH)), and the slurry was heated to 80 ° C with stirring. On the other hand, 0.027 g of CuCl ⁇ 2 ⁇ was weighed and added to a 200 mL capacity glass beaker filled with pure water 100, stirred with a magnetic stirrer, and this dissolved aqueous solution was heated to the aforementioned 80 ° C.
  • Polypropylene resin (BC-6D manufactured by Nippon Polypropylene Co., Ltd.) was used as the polyolefin resin. After blending 122 parts by mass of the flame retardant powder with 100 parts by mass of polypropylene resin at 180 ° C for 5 minutes using a Laboplast mill (manufactured by Toyo Seiki Co., Ltd.), at 180 ° C using a press molding machine, A molded body of 100 mm X width 100 mm X thickness 3 mm was produced.
  • the flame retardant (magnesium hydroxide) powder obtained by the preparation method described above is calcined at 600 ° C, completely dissolved with excess hydrochloric acid, and transition metal content (Cu, Co, Ni, Zn) is obtained by ICP method. Ti) was measured.
  • each flame retardant powder has a BET specific surface area of about 5 m 2 Zg, average particle The diameter was about 1.2 ⁇ m (all values were the same including examples and comparative examples described later).
  • the resulting molded article was evaluated as A if the toning was possible, and conversely as B if the toning was difficult toning.
  • each sample specimen is heated at a heater temperature of 660 ° C, radiation amount of 50kW / m 2 , exhaust flow rate 0 using a calorimeter (C3 type manufactured by Toyo Seiki).
  • Oxygen measured with an oximeter after burning at 024m 3 / sec This was done by converting the consumption rate to the maximum heat generation rate. Measurements were made from ignition to spontaneous digestion until the specimen sample burned out. This maximum heat release rate is a measure of flame retardancy.
  • the maximum heat generation rate is preferably 200 kWZm 2 or less.
  • each sample (molded body) is burned at a heater temperature of 660 ° C, radiation amount of 50kW / m 2 , and exhaust flow rate of 0.024m 3 / sec in a cone calorimeter (Toyo Seiki C3 type)
  • the maximum C0 concentration was measured with an infrared spectrometer. The measurement was performed from ignition to spontaneous digestion until the sample burned out.
  • the maximum CO generation concentration is preferably 1.6% by mass or less.
  • each sample specimen is combusted with a cone calorimeter (Toyo Seiki C3 type) at a heater temperature of 660 ° C, radiation amount of 50kW / m 2 , and exhaust flow rate of 0.024m 3 / sec.
  • the maximum smoke density was measured by laser light transmission method (unit: m _ 1 ).
  • the measurement was performed from ignition to spontaneous digestion until the test specimen was burned out.
  • the maximum smoke density is preferably 0. 057 ⁇ 1 below.
  • a flame retardant powder was obtained in the same manner as in Example 1, except that the amount was 59 g (Comparative Example 3).
  • Comparative Example 1 an aqueous solution in which CuCl 2 ⁇ 20 was dissolved was not added. Except for the above operations, a flame retardant and a molded product were produced in the same manner as in Example 1, and analyzed and evaluated. The results of Examples:! To 3 and Comparative Examples:! To 3 are shown in Table 1.
  • Example 12 Flame retardant and molding in the same manner as in Example 1 except that it was weighed and added to 0.034 g (Example 12), 0.027 g (Comparative Example 8), and 2.274 g (Comparative Example 9). The body was manufactured and analyzed. The results are shown in Table 4.
  • Example 2 Same as Example 1 except that, during the production of flame retardant, weighed CuCl 2 ⁇ to 0 ⁇ 027g and Zn (NO) ⁇ 6 ⁇ to 0 ⁇ 068g, and added all of this mixed solution lOOmL. A flame retardant and a molded product were manufactured and analyzed and evaluated.
  • Example 2 Same as Example 1 except that when the flame retardant was manufactured, CuCl ⁇ 2 ⁇ 0 was weighed to 0.148 g and Zn (NO) 6 ⁇ 0 to 0 ⁇ 205 g, and the total amount of lOOmL of this mixed aqueous solution was added. In addition, flame retardants and molded products were manufactured and analyzed and evaluated.
  • Example 1 except that 0.008 g, Zn (NO 3) -6H 2 O is 0.032 g, and [(CH 3) CHO] Ti is 0.030 g, and this mixed aqueous solution lOOmL was added in its entirety. In the same manner as above, flame retardants and molded products were manufactured and analyzed and evaluated. [0043] [Comparative Example 15]
  • Example 1 except that 182 g, Zn (NO 3) -6H 2 O 0.227 g, and [(CH 3) CHO] Ti were weighed to 0.326 g, and the total amount of this mixed aqueous solution lOOmL was added. In the same manner as above, flame retardants and molded products were manufactured and analyzed and evaluated.
  • Example 1 except that 579 g, Zn (NO 3) -6H 2 O 1.183 g, and [(CH 3) CHO] Ti 2.729 g were weighed and the total amount of this mixed aqueous solution lOOmL was added. In the same manner as above, flame retardants and molded products were manufactured and analyzed and evaluated.
  • Example 19 The results of Example 19 and Comparative Examples 14 to 16 are shown in Table 7.
  • the amount of the specific transition metal compound contained in the flame retardant is within a predetermined range. It can be seen that when the form is burned, it exhibits high flame retardancy and also produces less carbon monoxide and smoke.
  • Comparative Examples 1, 2, 4, 6, 8, 10, 12, and 14 the specific transition metal compound content (metal equivalent) is lower than 100 ppm by mass, so the flame retardancy is not sufficient. A large amount of carbon monoxide and smoke is generated. Further, as described in Comparative Example 14, even when the total amount (metal conversion) of the transition metal compound is simply lOOppm or more, the above-described effect is not sufficient.
  • the present invention can be suitably used as a non-halogen flame retardant for synthetic resin moldings.
  • it can be used widely for indoor and outdoor wire cables, or for thin wire covering materials for household electrical appliances and automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

 難燃剤は、遷移金属化合物を含有する水酸化マグネシウム粒子からなり、前記遷移金属化合物は、銅化合物、コバルト化合物、ニッケル化合物、亜鉛化合物及びチタン化合物から選ばれる少なくとも1種であり、前記遷移金属化合物のうちいずれか1種は、金属換算で100~1000質量ppm含有され、前記銅化合物、コバルト化合物及びニッケル化合物の合計量が金属換算で1000質量ppm以下であり、かつ、前記亜鉛化合物及びチタン化合物の合計量が金属換算で1000質量ppm以下である。

Description

明 細 書
難燃剤、難燃性樹脂組成物及び成形体
技術分野
[0001] 本発明は、いわゆるノンハロゲン系難燃剤としての水酸化マグネシウム系難燃剤と
、それを含有する難燃性樹脂組成物、及びその成形体に関する。
背景技術
[0002] 熱可塑性樹脂は、成形加工性や電気絶縁性に優れ、かつ安価であるため、屋内ケ 一ブル、家庭電気製品、自動車等の細物電線被覆材、及び壁紙等に幅広く使用さ れている。従来、このような用途には、ポリ塩化ビュル系の樹脂が大量に使用されて きた。
しかし、ポリ塩化ビュル系の樹脂を用いたケーブル等は、火災発生時に大量の煙を 発生させ、地下街、地下鉄、船舶等の密閉空間においては避難活動や消火活動に 支障をきたし、二次災害を起こす可能性があった。それ故、火災時に煙の発生が少 なぐ燃焼しても一酸化炭素等の有害ガスの発生量も少ない樹脂材料が望まれてき た。更に最近では、ポリ塩ィ匕ビュル系の樹脂には、ダイォキシン等の環境問題も懸念 され、一層敬遠されるようになってきた。
そのため、ノンハロゲン系樹脂として、例えばポリオレフイン系等の樹脂に代替され ることが多くなつている。しかし、ポリオレフイン系樹脂は、ポリ塩化ビュル系樹脂に較 ベて燃えやすぐポリオレフイン系樹脂を難燃化するために、ノンハロゲン系難燃剤と して水酸化マグネシウム系の化合物を添加することが検討されている。
[0003] 例えば、鉄化合物、マンガン化合物、コバルト化合物、クロム化合物、銅化合物、バ ナジゥム化合物およびニッケル化合物の合計含有量力 金属に換算して 0. 01重量 %以下である水酸化マグネシウム系難燃剤が提案されている(特許文献 1参照)。そ して、このような遷移金属の量を少なくすることで、配合時に樹脂を溶融混練した際 の耐熱劣化性を改良してレ、る。
また、化学式: Mg M2+ (OH)で表される複合金属水酸化物系(式中 M2+は、 Mn
1-X X 2
Fe
Figure imgf000002_0001
Cu Zn2+からなる群から選ばれた二価金属イオンの少なくとも 1種を 示し、 Xは 0. 001≤X≤0. 005または 0. 7≤X≤0. 9の範囲を示す)である水酸ィ匕 マグネシウム系難燃剤が提案されてレ、る(特許文献 2参照)。このような複合系の水酸 化マグネシウム系難燃剤を用いることで、成形体 (通信ケーブル等)の耐酸性を向上 させている。
[0004] 特許文献 1 :特開 2004— 002884号公報
特許文献 2:特開平 5 - 209084号公報
発明の開示
発明が解決しょうとする課題
[0005] しかしながら、特許文献 1や特許文献 2に記載された難燃剤では、難燃性や、一酸 化炭素発生量の低減化、及び発煙量の低減化に関しては必ずしも十分とは言えな かった。
そこで、本発明の目的は、樹脂に配合した際に樹脂成形体の難燃性が高ぐ樹脂 成形体の燃焼時に一酸化炭素発生量及び発煙量も少ない水酸化マグネシウム系の 難燃剤、それを含有する難燃性樹脂組成物、及びその成形体を提供することにある 課題を解決するための手段
[0006] 本発明は、遷移金属化合物を含有する水酸化マグネシウム粒子からなる難燃剤で あって、前記遷移金属化合物は、銅化合物、コバルト化合物、ニッケル化合物、亜鉛 化合物及びチタン化合物から選ばれる少なくとも 1種であり、前記遷移金属化合物の うちいずれカゝ 1種は、金属換算で 100〜: 1000質量 ppm含有され、前記銅化合物、コ ノ^レト化合物及びニッケル化合物の合計量が金属換算で 1000質量 ppm以下であり 、かつ、前記亜鉛化合物及びチタン化合物の合計量が金属換算で 1000質量 ppm 以下であることを特徴とする。
[0007] 本発明の難燃剤によれば、遷移金属化合物を含有する水酸化マグネシウム粒子か らなり、この遷移金属化合物が、特定の 5種の化合物から選ばれる少なくとも 1種であ り、これらの化合物のうちいずれ力 4種力 金属換算で 100〜1000質量 ppm含有さ れているので、この難燃剤を配合した樹脂成形体は、高い難燃性を示し、発煙量も 少ない。さらに、銅化合物、コバルト化合物及びニッケノレ化合物の合計量が金属換 算で 1000質量 ppm以下であり、かつ、前記亜鉛化合物及びチタン化合物の合計量 が金属換算で 1000質量 ppm以下であるため、この難燃剤を配合した樹脂成形体は 、着色が非常に少な かつ燃焼時に一酸化炭素の発生量も少ない。
[0008] ここで、水酸化マグネシウム粒子には、上述の遷移金属化合物のいずれか 1種が、 金属換算で 100〜: 1000質量 ppm含有されていることが必要である。この含有量は、 好まし <は、 100〜600質量 ppmであり、より好まし <は 100〜300質量 ppmである。 また、 2種以上の遷移金属化合物が、金属換算で各々 100〜1000質量 ppm含有さ れていてもよい。
いずれ力 1種の遷移金属化合物の含有量が金属換算で 100質量 ppmよりも少ない と、難燃性が十分ではなぐ一酸化炭素の発生量や発煙量も多くなる。また逆に、い ずれか 1種の遷移金属化合物が金属換算で 1000質量 ppmを超えてしまうと、銅、コ バルト、ニッケノレでは着色がきつくなり、亜鉛、チタンでは着色に問題はないが、一酸 化炭素低減効果が悪化する。それ故、銅、コバルト、ニッケルの合計含有量が 1000 質量 ppm以下であるとともに亜鉛、チタンの合計含有量も 1000質量 ppm以下である 必要がある。
[0009] なお、難燃性が向上するのは、燃焼時に上述の遷移金属が樹脂成形体表面の炭 化を促進する触媒として働き、酸素遮断効果を発揮するためと考えられる。また、遷 移金属は酸化触媒としても働き、発生した一酸化炭素を二酸化炭素へ容易に転化 すると考えられる。さらに、燃焼時に遷移金属化合物が活性な酸化物に変化し、発生 した不完全燃焼のススを効果的に吸着するものと思われる。
[0010] 遷移金属化合物の形態としては、塩化物、硫酸塩、硝酸塩、カルボン酸塩等の塩、 あるいは、酸化物、水酸化物、硫化物であってもよぐさらには、金属単体であっても よい。
水酸化マグネシウム粒子への遷移金属化合物の含有方法としては、水熱処理を行 う前の原料調整段階、あるいは、 目的粒子が出来上がった後に添加してもよぐ後述 するステアリン酸等の表面処理を行う際に同時添加しても良い。更にまた、水酸化マ グネシゥム粉末に乾式法で混合しても良レ、。
[0011] 本発明の難燃剤は、前記水酸化マグネシウム粒子の BET (Brunauer, Emmett, Tel ler)比表面積が l〜20m2/gであり、平均粒子径が 0. 5〜5 μ mであることが好まし レ、。
この発明によれば、難燃剤として用いられる水酸化マグネシウム粒子の BET比表 面積が:!〜 20m2/gであり、平均粒子径が 0. 5〜5 z mであるので、難燃性樹脂組 成物の基礎的な要求特性を満足し得る。すなわち、 BET比表面積が 20m2Zgを越 え、あるいは平均粒子径が 0. 5 z m未満の場合は、難燃剤を樹脂に配合したときに 再凝集を起こし易くなり、樹脂中での分散性が低下して、成型体の外観不良を引き 起こし、さらに引張伸び率も低下する。 BET比表面積力 Slm2/g未満、あるいは平均 粒子径が 5 / mを越えると、樹脂中での分散性には問題ないが、難燃性が低下し、ま た引張強度も低下する。
[0012] 本発明の難燃剤は、前記水酸化マグネシウム粒子が、高級脂肪酸、高級脂肪酸金 属塩、ァニオン系界面活性剤、カップリング剤、多価アルコールからなるエステル類、 リン酸エステル類から選ばれた少なくとも 1種の表面処理剤により表面処理されてい ること力 S好ましレ、。
この発明によれば、水酸化マグネシウム粒子力 所定の表面処理剤により表面処 理されているので、表面処理されていないものに較べ、樹脂との親和性がよくなること で、樹脂中での分散性が向上して、引張特性ゃ耐衝撃性が向上し、更には、表面処 理剤の被覆による撥水効果によって耐水性や耐酸性も向上する。
[0013] 表面処理剤として、具体的には下記のようなものが好適に使用される。高級脂肪酸 としては、例えばステアリン酸、エル力酸、パルミチン酸、ラウリン酸、ベへニン酸等の 炭素数 10以上の高級脂肪酸が挙げられる。またこれら高級脂肪酸のアルカリ金属塩 も好ましい。ァニオン界面活性剤としては、ステアリルアルコール、ォレイルコール等 の高級アルコールの硫酸エステル塩や、ポリエチレングリコールエーテルの硫酸エス テル塩、アミド結合硫酸エステル塩、エステル結合硫酸エステル塩、エステル結合ス ルホネート、アミド結合スルホン酸塩、エーテル結合スルホン酸塩、エーテル結合ァ ルキルァリールスルホン酸塩、エステル結合アルキルァリールスルホン酸塩、アミド結 合アルキルァリールスルホン酸塩等が挙げられる。カップリング剤としては、ビュルェ トキシシラン、ビュル一トリス(2—メトキシ一エトキシ)シラン、 Ί—メタクリロキシプロピ ルトリメトキシシラン、 Ί - _ (3,4_エポキシシクロ
Figure imgf000006_0001
Figure imgf000006_0002
イソプロピルトリイソ ステアロイルチタネート、イソプロピルトリス(ジォクチルパイロフォスフェート)チタネー ト、イソプロピルトリ(N—アミノエチル一アミノエチル)チタネート、イソプロピルトリデシ ルベンゼンスルホニルチタネート等のチタネート系カップリング斉 1J、さらには、ァセトァ ルコキシアルミニウムジイソプロピレート等のアルミニウム系カップリング剤が挙げられ る。多価アルコールからなるエステル類としては、グリセリンモノステアレート、グリセリ ンモノォレエート等の多価アルコールと脂肪酸のエステル類が挙げられる。リン酸ェ ステル類としては、オルトリン酸とォレイルアルコール、ステアリルアルコール等のモノ またはジエステルまたは両者の混合物であって、それらの酸型またはアルカリ金属塩 またはアミン塩等のリン酸エステル類が挙げられる。
[0014] 前記した表面処理剤を使用して、水酸化マグネシウム粒子の表面処理を行うには、 公知の湿式法または乾式法を採用することができる。例えば湿式法としては、水酸化 マグネシウムのスラリーに表面処理剤を液状またはェマルジヨン状で加え、約 100°C までの温度で機械的に混合すればよい。乾式法としては、水酸化マグネシウムの粉 末をヘンシェルミキサー等の混合機により、攪拌下で表面処理剤を液状、ェマルジョ ン状、あるいは固体のまま加え、必要により加熱下で混合すればよい。表面処理剤の 添加量は、適宜選択できるが、該水酸化マグネシウム粒子の重量に基づいて、約 10 質量%以下とすることが好ましレ、。
表面処理後の水酸化マグネシウム粒子は、必要により、水洗、脱水、造粒、乾燥、 粉砕、及び分級等の手段を適宜行って、最終的な製品形態とすることができる。
[0015] 本発明の難燃性樹脂組成物は、ポリオレフイン系樹脂 100質量部に対し、前記した 難燃剤を 5〜500質量部配合したことを特徴とする。
ここで、ポリオレフイン系樹脂としては、ポリエチレン、ポリプロピレン、エチレン Zプ ロピレン共重合体、ポリブテン、ポリ ·4—メチルペンテン _ 1等のような C〜Cォレフ イン(ひ—ォレフイン)の重合体もしくは共重合体が挙げられる。
本発明の難燃性樹脂組成物によれば、ポリオレフイン系樹脂に、前記した難燃剤を 所定量配合しているので、高い難燃性を示し、燃焼時に一酸化炭素発生量や発煙 量も少ない。
難燃剤の配合量が 5質量部未満では、十分な難燃効果が発揮できず、配合量が 5 00質量部を越えると、樹脂の機械的性質 (強度、耐衝撃性)が悪化する。難燃剤の 配合量は、 20〜400質量部であることが好ましぐ 40〜300質量部配合することがよ り好ましい。
[0016] 本発明の成形体は、前記した難燃性樹脂組成物よりなることを特徴とする。
本発明の成形体によれば、難燃性樹脂組成物としてポリオレフイン系樹脂に上述の 難燃剤を所定量配合したものを用いているので、成形体の難燃性が高ぐまた、成形 体を燃焼させた際に、一酸化炭素発生量や発煙量も少ない。
実施例
[0017] 以下の実施例により本発明を具体的に説明するが、本発明はこれに限定されるも のではない。
[実施例 1]
(難燃剤の製造)
3L容量のポリエチレン製容器に、高純度 MgCl ·6Η 0 (マナック製)を 480g秤量し、 純水 1Lを加えて攪拌し、 gCl水溶液を調製した。これに 8. 3Nの NaOH水溶液 510 mLを攪拌下にゆっくりと添加し(Mg2+モル数: OH—モル数は 1 : 1. 8である)、さらに純 水をカ卩え、 2Lのサスペンジョンを調製した。このサスペンジョンを 3L容量のハステロィ C-276製接液部を有するオートクレープ内に流し込み、攪拌下で 140°C、 5時間の水 熱処理を行った。水熱処理後のスラリーを真空ろ過後、固形分に対し 20倍容量以上 の純水で充分洗浄した。その後、再び純水に戻し、 Mg(OH)固形分濃度として 10g
/dLの乳化スラリーを調整した。この乳化スラリー 1Lを 2L容量の SUS316製容器に 採取し (Mg(OH)固形分質量として 100g相当)、攪拌しながら 80°Cになるまでスラリ 一をカロ温した。一方、 CuCl · 2Η〇を 0. 027g秤量し、純水 100 を張った 200mL 容量のガラスビーカーに添加して、マグネティックスターラーで攪拌し、この溶解した 水溶液を、前記の 80°Cに加温されたスラリーに攪拌下で全量カ卩えた (遷移金属化合 物の正確な含有量は、後述する ICP (Inductively Coupled Plasma)法による分析を行 つて求めた)。その後、 80°Cで、 5質量%に調製したステアリン酸ナトリウム水溶液を、 Mg(OH)固形分質量に対しステアリン酸として 2. 8質量%添加し、 80°Cで 1時間攪
2
拌して表面処理を行い、真空ろ過 ·水洗 (Mg(OH)固形分質量に対し 5倍容量以上)
2
、乾燥、粉砕して難燃剤の粉末を得た。
[0018] (難燃性樹脂組成物及び成形体の製造)
ポリオレフイン樹脂としてポリプロピレン樹脂(日本ポリプロピレン株式会社製 BC-6D )を用いた。ポリプロピレン樹脂 100質量部に対して前記の難燃剤粉末 122質量部を 、ラボプラストミル (東洋精機製)により 180°Cで 5分間混練した後、プレス成形機によ り、 180°Cで、縦 100mm X横 100mm X厚み 3mmの成形体を製造した。
[0019] (分析'評価方法)
前記した方法で得られた難燃剤及び成形体について、以下のような分析及び評価 を行った。
( 1 )難燃剤中の遷移金属量の分析
前記した調製方法により得られた難燃剤 (水酸化マグネシウム)粉末を 600°Cで焼 成し、過剰の塩酸で完全に溶解して、 ICP法で遷移金属含有量(Cu、 Co、 Ni、 Zn、 Ti )を測定した。
[0020] (2) BET比表面積と平均粒子径の測定
得られた難燃剤粉末の、 BET比表面積を窒素吸着法で測定し、平均粒子径を粒 度分布計で測定した結果、何れの難燃剤粉末も、 BET比表面積が約 5m2Zg、平均 粒子径が約 1. 2 μ mであった(後述する実施例 ·比較例も含めてすべて同じ値であつ た)。
[0021] (3)成形体の色調
得られた成形体を目視により、調色が可能と認められるものは A、逆に、着色がきつ く調色が困難と認められるものは Bと評価した。
[0022] (4)発熱速度の測定
ISO (InternationalOrganization for Standardization; 5660 parti ίこ準拠し、コ' ~ン カロリーメータ(東洋精機製 C3タイプ)にて、各試験体試料をヒータ温度 660°C、輻射 量 50kW/m2、排気流量 0. 024m3/secで燃焼させ、酸素濃度計で測定した酸素 消費量より最大発熱速度に換算することによって行った。なお、着火から自然消化ま で、試験体試料が燃え尽きるまで測定を行った。この最大発熱速度は難燃性の尺度 となる。最大発熱速度としては、 200kWZm2以下であることが好ましい。
[0023] (5)—酸化炭素 (C〇)発生量の測定
ISO 5660 partiに準拠し、コーンカロリーメータ(東洋精機製 C3タイプ)にて、各 試料 (成形体)をヒータ温度 660°C、輻射量 50kW/m2、排気流量 0. 024m3/sec で燃焼させ、赤外分光計で最大 C〇発生濃度を測定した。なお、着火から自然消化 まで、試料が燃え尽きるまで測定を行った。最大 CO発生濃度としては、 1. 6質量% 以下であることが好ましい。
[0024] (6)煙濃度の測定
ISO 5660 part2に準拠し、コーンカロリーメータ(東洋精機製 C3タイプ)にて、各 試験体試料をヒータ温度 660°C、輻射量 50kW/m2、排気流量 0. 024m3/secで 燃焼させ、レーザー光透過法によって最大煙濃度を測定した(単位: m_ 1)。
なお、着火から自然消化まで、試験体試料が燃え尽きるまで測定を行った。最大煙 濃度としては、 0. 057Π 1以下であることが好ましい。
[0025] [実施例 2、 3及び比較例:!〜 3]
CuCl · 2Η 0を 0. 134g (実施例 2)、 0. 242g (実施例 3)、 0. 013g (比較例 2)、 0· 8
59g (比較例 3)とした以外は、実施例 1と同様な操作を行って難燃剤の粉末を得た。 比較例 1では、 CuCl ·2Η 0を溶解した水溶液を加えなかった。上記の操作以外は、 実施例 1と同様に難燃剤及び成形体を製造し、分析 ·評価を行った。実施例:!〜 3及 び比較例:!〜 3の結果を表 1に示す。
[0026] [表 1]
Figure imgf000010_0001
[0027] [実施例 4〜6、比較例 4、 5]
難燃剤製造時に、 CoCl · 6Η Οを 0· 061g (実施例 4)、 0. 162g (実施例 5)、 0. 36 4g (実施例 6)、 0. 004g (比較例 4)、及び 0. 606g (比較例 5)となるように秤量して カロえた以外は、実施例 1と同様に難燃剤及び成形体を製造し、分析'評価を行った。 結果を表 2に示す。
[0028] [表 2]
Figure imgf000010_0002
[0029] [実施例 7〜9、比較例 6、 7]
難燃剤製造時に、 NiCl · 6Η Οを 0. 101g (実施例 7)、 0. 263g (実施例 8)、 0. 32
4g (実施例 9)、 0. 032g (比較例 6)、及び 1. 174g (比較例 7)となるように枰量して 加えた以外は、実施例 1と同様に難燃剤及び成形体を製造し、分析'評価を行った。 結果を表 3に示す。
[0030] [表 3]
Figure imgf000011_0001
[0031] [実施例 10〜: 12、比較例 8、 9」
難燃剤製造時に、 Ζη(ΝΟ ) ·6Η 0を 0. 077g (実施例 10)、 0. 159g (実施例 11)、
0. 341g (実施例 12)、 0. 027g (比較例 8)、及び 2. 274g (比較例 9)となるように秤 量して加えた以外は、実施例 1と同様に難燃剤及び成形体を製造し、分析'評価を行 つた。結果を表 4に示す。
[0032] [表 4] 実施例 10 実施例 1 1 実施例 12 比較例 8 比較例 9
Cu (貧量 ppm) 1 1 1 1 1
Co(gftppm) <1 <1 <1 ぐ 1 <1
Ni (質量 ppm) 1 1 1 1 1
Zn (質量 ppm) 175 353 763 66 5044
ΤΊ (貧量 ppm) <1 <1 ぐ 1 ぐ 1 ぐ 1
Cu+Co+Ni <3 <3 ぐ 3 <3 <3 (貧量 ppm)
Zn+Ti(Sfippm) く 176 く 354 く 764 く 67 く 5045 最大発熱速度 (kW/m2) 173 191 195 219 205 最大 CO発生激度 (質量 %) 1.33 1 ,45 1.53 1.69 1.68 最大煙澴度 0.054 0.055 0.056 0.061 0.059 )
色 A A A A A
[0033] [実施例 13〜: 15、比較例 10、 11]
難燃剤製造時に、 [(CH ) CHO] Tiを 0. 119g (実施例 13)、 0. 267g (実施例 14)
、 0. 475g (実施例 15)、 0. 018g (比較例 10)、及び 2. 373g (比較例 11)となるよう に枰量して加えた以外は、実施例 1と同様に難燃剤及び成形体を製造し、分析'評 価を行った。結果を表 5に示す。
[0034] [表 5]
T JP2006/321132
12
Figure imgf000013_0001
[0035] [実施例 16]
難燃剤製造時に、 CuCl · 2Η◦を 0· 027g、及び Zn(NO ) · 6Η Οを 0· 068gとなるよ うに秤量して、この混合水溶液 lOOmLを全量加えた以外は、実施例 1と同様に難燃 剤及び成形体を製造し、分析'評価を行った。
[0036] [実施例 17]
難燃剤製造時に、 CuCl ·2Η Οを 0. 148g、及び Zn(NO ) ·6Η Οを 0· 205gとなるよ うに秤量して、この混合水溶液 lOOmLを全量加えた以外は、実施例 1と同様に難燃 剤及び成形体を製造し、分析 ·評価を行った。
[0037] [実施例 18]
難燃剤製造時に、 CuCl · 2Η Οを 0. 188g、及び Zn(NO ) · 6Η Ο^0· 409g なるよ うに秤量して、この混合水溶液 lOOmLを全量加えた以外は、実施例 1と同様に難燃 剤及び成形体を製造し、分析 ·評価を行った。
[0038] [比較例 12]
難燃剤製造時に、 CuCl · 2Η Οを 0. 011g、及び Zn(NO ) · 6Η Οを 0. 032gとなるよ うに秤量して、この混合水溶液 lOOmLを全量カ卩えた以外は、実施例 1と同様に難燃 剤及び成形体を製造し、分析'評価を行った。 2
13
[0039] [比較例 13]
難燃剤製造時に、 CuCl · 2Η Οを 0. 403g、及び Zn(NO ) · 6Η Οを 0. 955gとなるよ うに秤量して、この混合水溶液 lOOmLを全量カ卩えた以外は、実施例 1と同様に難燃 剤及び成形体を製造し、分析'評価を行った。
実施例 16〜: 18、及び比較例 12、 13の結果を表 6に示す。
[0040] [表 6]
Figure imgf000014_0001
[0041] [実施例 19]
難燃剤製造時に、 CuCl · 2Η Οを 0. 054g、 CoCl ·6Η Oを 0. 044g、 NiCl ·6Η Oを
0. 053g、 Zn(NO ) · 6Η Oを 0. 091g、及び [(CH ) CHO] Tiを 0. 089gとなるように 秤量して、この混合水溶液 lOOmLを全量カ卩えた以外は、実施例 1と同様に難燃剤及 び成形体を製造し、分析 ·評価を行った。
[0042] [比較例 14]
難燃斉' J製造時に、 CuCl · 2Η Οを 0. 008g、 CoCl ·6Η Oを 0. 032g、 NiCl ·6Η Oを
0. 008g、 Zn(NO ) - 6H Oを 0. 032g、及び [(CH ) CHO] Tiを 0. 030gとなるように 秤量して、この混合水溶液 lOOmLを全量加えた以外は、実施例 1と同様に難燃剤及 び成形体を製造し、分析 ·評価を行った。 [0043] [比較例 15]
難燃剤製造時に、 CuCl · 2Η Οを 0. 081g、 CoCl ·6Η Oを 0. 202g、 NiCl ·6Η Oを
0. 182g、 Zn(NO ) - 6H Oを 0. 227g、及び [(CH ) CHO] Tiを 0. 326gとなるように 秤量して、この混合水溶液 lOOmLを全量加えた以外は、実施例 1と同様に難燃剤及 び成形体を製造し、分析 ·評価を行った。
[0044] [比較例 16]
難燃剤製造時に、 CuCl · 2Η Οを 1. 342g、 CoCl ·6Η Oを 0. 687g、 NiCl ·6Η Oを
1. 579g、 Zn(NO ) - 6H Oを 1. 183g、及び [(CH ) CHO] Tiを 2. 729gとなるように 秤量して、この混合水溶液 lOOmLを全量加えた以外は、実施例 1と同様に難燃剤及 び成形体を製造し、分析 ·評価を行った。
実施例 19、及び比較例 14〜: 16の結果を表 7に示す。
[0045] [表 7]
Figure imgf000015_0001
[0046] (結果)
表 1〜7より、実施例では、いずれも、難燃剤(水酸化マグネシウム)に含有される特 定の遷移金属化合物の量が所定の範囲内であるので、この難燃剤が配合された成 形体を燃焼させた際に、高い難燃性を示し、さらに、一酸化炭素や煙の発生量も少 ないことがわかる。
一方、比較例 1、 2、 4、 6、 8、 10、 12、及び 14では、特定の遷移金属化合物の含 有量 (金属換算)が 100質量 ppmより低いため、難燃性が十分ではなぐ一酸化炭素 や煙の発生量も多い。また、比較例 14のように、遷移金属化合物の合計量 (金属換 算)が単に lOOppm以上であっても、前記した効果は十分ではない。
また、比較例 3、 5、 7、 13、及び 16では、銅、コバルト及びニッケルの含有量が合 計で 1000質量 ppmを越えているため、成形体が強く着色しており、調色が困難とな る。また、これらの遷移金属の含有量が lOOOppmを越えると、前記した効果に対して はむしろややマイナスに働くこともわかる。比較例 9、 11では、亜鉛及びチタンの含有 量が合計で 1000質量 ppmを越えているため、色調はよくても、前記した効果に関し てはかなり悪化する。
産業上の利用可能性
本発明は、合成樹脂成形体用のノンハロゲン系難燃剤として好適に利用できる。特 に、屋内外の電線ケーブル用、あるいは家庭電気製品、自動車等の細物電線被覆 材用として広く使用することができる。

Claims

請求の範囲
[1] 遷移金属化合物を含有する水酸化マグネシウム粒子からなる難燃剤であって、 前記遷移金属化合物は、銅化合物、コバルト化合物、ニッケル化合物、亜鉛化合 物及びチタン化合物から選ばれる少なくとも 1種であり、
前記遷移金属化合物のうちいずれ力 4種は、金属換算で 100〜1000質量 ppm含 有され、
前記銅化合物、コバルトィ匕合物及びニッケノレ化合物の合計量が金属換算で 1000 質量 ppm以下であり、かつ、前記亜鉛化合物及びチタン化合物の合計量が金属換 算で 1000質量 ppm以下であることを特徴とする難燃剤。
[2] 請求項 1に記載の難燃剤におレ、て、
前記水酸化マグネシウム粒子の BET比表面積が l〜20m2/gであり、平均粒子径 が 0. 5〜5 μ mであることを特徴とする難燃剤。
[3] 請求項 1または請求項 2に記載の難燃剤において、
前記水酸化マグネシウム粒子が、高級脂肪酸、高級脂肪酸金属塩、ァニオン系界 面活性剤、カップリング剤、多価アルコールからなるエステル類、リン酸エステル類か ら選ばれた少なくとも 1種の表面処理剤により表面処理されている難燃剤。
[4] ポリオレフイン系樹脂 100質量部に対し、請求項 1〜請求項 3のいずれかに記載の 難燃剤を 5〜500質量部配合したことを特徴とする難燃性樹脂組成物。
[5] 請求項 4に記載の難燃性樹脂組成物よりなる成形体。
PCT/JP2006/321132 2005-10-25 2006-10-24 難燃剤、難燃性樹脂組成物及び成形体 WO2007049598A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/067,551 US7816440B2 (en) 2005-10-25 2006-10-24 Flame retardant, flame-retardant resin composition and molded body
EP06822112.6A EP1942173B1 (en) 2005-10-25 2006-10-24 Flame retardant, flame-retardant resin composition and molded body
ES06822112.6T ES2588935T3 (es) 2005-10-25 2006-10-24 Retardante de la llama, composición de resina retardante de la llama y cuerpo moldeado

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-309176 2005-10-25
JP2005309176A JP4201792B2 (ja) 2005-10-25 2005-10-25 難燃剤、難燃性樹脂組成物及び成形体

Publications (1)

Publication Number Publication Date
WO2007049598A1 true WO2007049598A1 (ja) 2007-05-03

Family

ID=37967710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321132 WO2007049598A1 (ja) 2005-10-25 2006-10-24 難燃剤、難燃性樹脂組成物及び成形体

Country Status (8)

Country Link
US (1) US7816440B2 (ja)
EP (1) EP1942173B1 (ja)
JP (1) JP4201792B2 (ja)
KR (1) KR101212537B1 (ja)
CN (2) CN101090956A (ja)
ES (1) ES2588935T3 (ja)
TW (1) TWI391477B (ja)
WO (1) WO2007049598A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101763500B1 (ko) * 2013-02-19 2017-07-31 코노시마카가쿠코우교우 가부시키가이샤 난연제, 난연성 조성물 및 성형체

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8243013B1 (en) 2007-05-03 2012-08-14 Sipix Imaging, Inc. Driving bistable displays
US20080303780A1 (en) 2007-06-07 2008-12-11 Sipix Imaging, Inc. Driving methods and circuit for bi-stable displays
US9019318B2 (en) 2008-10-24 2015-04-28 E Ink California, Llc Driving methods for electrophoretic displays employing grey level waveforms
US20100194789A1 (en) * 2009-01-30 2010-08-05 Craig Lin Partial image update for electrophoretic displays
US9460666B2 (en) 2009-05-11 2016-10-04 E Ink California, Llc Driving methods and waveforms for electrophoretic displays
US11049463B2 (en) 2010-01-15 2021-06-29 E Ink California, Llc Driving methods with variable frame time
US9224338B2 (en) 2010-03-08 2015-12-29 E Ink California, Llc Driving methods for electrophoretic displays
JP5148648B2 (ja) 2010-03-19 2013-02-20 富士フイルム株式会社 難燃性樹脂組成物、その製造方法、及び成形品
JP5650033B2 (ja) * 2011-03-29 2015-01-07 富士フイルム株式会社 難燃性樹脂組成物、その製造方法、及び成形品
TWI550332B (zh) 2013-10-07 2016-09-21 電子墨水加利福尼亞有限責任公司 用於彩色顯示裝置的驅動方法
US10380931B2 (en) 2013-10-07 2019-08-13 E Ink California, Llc Driving methods for color display device
US10726760B2 (en) 2013-10-07 2020-07-28 E Ink California, Llc Driving methods to produce a mixed color state for an electrophoretic display
CN108752980A (zh) * 2018-05-16 2018-11-06 唐山师范学院 改性氢氧化镁阻燃剂的制备方法及改性氢氧化镁阻燃剂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03505863A (ja) * 1989-05-05 1991-12-19 ファイトシェル・マグネジット ヴェルケ―アクチエン―ゲゼルシャフト 微粉末状水酸化マグネシウム及びその調製方法
JPH05209084A (ja) 1991-12-24 1993-08-20 Kaisui Kagaku Kenkyusho:Kk 複合金属水酸化物およびその使用
JPH0641441A (ja) * 1991-02-06 1994-02-15 Kaisui Kagaku Kenkyusho:Kk 複合金属水酸化物およびその使用
JPH10245456A (ja) * 1997-03-06 1998-09-14 Showa Electric Wire & Cable Co Ltd 難燃性ポリオレフィン組成物及び該組成物を使用した電力ケーブル
JP2004002884A (ja) 1995-12-19 2004-01-08 Kyowa Chem Ind Co Ltd 耐熱劣化性難燃剤

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980753A (en) * 1970-02-20 1976-09-14 Veitscher Magnesitwerke-Aktiengesellschaft Industrial process of preparing magnesia of high purity
US5286285A (en) * 1989-05-05 1994-02-15 Veitscher Magnesitwerke-Actien-Gesellschaft Finely powdery magnesium hydroxide and a process for preparing thereof
JPH0341132A (ja) * 1989-07-10 1991-02-21 Kyowa Chem Ind Co Ltd 難燃剤および難燃性樹脂組成物
US5401442A (en) * 1991-02-06 1995-03-28 Kabushiki Kaisha Kaisui Kagau Kenkyujo Composite metal hydroxide and its use
JPH05112669A (ja) * 1991-10-18 1993-05-07 Kyowa Chem Ind Co Ltd 難燃剤、その製造方法および難燃性樹脂組成物
US5422092A (en) * 1992-09-08 1995-06-06 Kabushiki Kaisha Kaisui Kagaku Kenkyujo Flame retardant and flame-retardant resin composition
JP3339154B2 (ja) * 1993-12-10 2002-10-28 住友電気工業株式会社 難燃性組成物及び電線、ケーブル
MY115740A (en) * 1995-08-03 2003-08-30 Tateho Kagaku Kogyo Kk A method of producing composite metal hydroxide, composite metal hydroxide obtained thereby and a flame retardant high-molecular composition obtained thereby and therewith
JP3505863B2 (ja) 1995-08-11 2004-03-15 松下電工株式会社 こたつプラグ
US6025424A (en) * 1995-12-19 2000-02-15 Kyowa Chemical Industry Co Ltd Heat deterioration resistant flame retardant, resin composition and molded articles
JP3773247B2 (ja) 2003-03-10 2006-05-10 神島化学工業株式会社 リンフリーの水酸化マグネシウム系難燃剤の製造方法
JP2004359839A (ja) 2003-06-05 2004-12-24 Konoshima Chemical Co Ltd 水酸化マグネシウム系難燃剤及びその製造方法とそれを用いた難燃性樹脂組成物
WO2005012435A1 (en) * 2003-07-31 2005-02-10 World Properties, Inc. Electrically conductive, flame retardant fillers, method of manufacture, and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03505863A (ja) * 1989-05-05 1991-12-19 ファイトシェル・マグネジット ヴェルケ―アクチエン―ゲゼルシャフト 微粉末状水酸化マグネシウム及びその調製方法
JPH0641441A (ja) * 1991-02-06 1994-02-15 Kaisui Kagaku Kenkyusho:Kk 複合金属水酸化物およびその使用
JPH05209084A (ja) 1991-12-24 1993-08-20 Kaisui Kagaku Kenkyusho:Kk 複合金属水酸化物およびその使用
JP2004002884A (ja) 1995-12-19 2004-01-08 Kyowa Chem Ind Co Ltd 耐熱劣化性難燃剤
JPH10245456A (ja) * 1997-03-06 1998-09-14 Showa Electric Wire & Cable Co Ltd 難燃性ポリオレフィン組成物及び該組成物を使用した電力ケーブル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1942173A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101763500B1 (ko) * 2013-02-19 2017-07-31 코노시마카가쿠코우교우 가부시키가이샤 난연제, 난연성 조성물 및 성형체
US9982195B2 (en) 2013-02-19 2018-05-29 Konoshima Chemical Co., Ltd. Flame retardant, flame retardant composition and shaped body

Also Published As

Publication number Publication date
TWI391477B (zh) 2013-04-01
JP4201792B2 (ja) 2008-12-24
TW200716727A (en) 2007-05-01
US7816440B2 (en) 2010-10-19
CN103923344A (zh) 2014-07-16
JP2007119508A (ja) 2007-05-17
EP1942173B1 (en) 2016-08-17
CN101090956A (zh) 2007-12-19
KR101212537B1 (ko) 2012-12-14
US20090182082A1 (en) 2009-07-16
EP1942173A1 (en) 2008-07-09
ES2588935T3 (es) 2016-11-07
EP1942173A4 (en) 2012-04-04
KR20080059351A (ko) 2008-06-27

Similar Documents

Publication Publication Date Title
WO2007049598A1 (ja) 難燃剤、難燃性樹脂組成物及び成形体
CA2320133C (en) Magnesium hydroxide particles, method of the production thereof, and resin composition containing the same
JP4157560B2 (ja) 難燃剤のポリオレフィンまたはその共重合体への使用
Li et al. Mitigation the release of toxic PH3 and the fire hazard of PA6/AHP composite by MOFs
DE69838659T2 (de) Flammgeschützte Harzzusammensetzung
WO2014155764A1 (ja) 酸化マグネシウム粒子、樹脂組成物、ゴム組成物及び成形体
WO2014128993A1 (ja) 難燃剤、難燃性組成物及び成形体
JP7132800B2 (ja) 水酸化マグネシウム粒子及びその製造方法
JP3093388B2 (ja) 複合金属水酸化物およびその製造方法
IL94273A (en) Finely powdered magnesium hydroxide for use as fla
JP3107926B2 (ja) 難燃剤および難燃性樹脂組成物
JP3700295B2 (ja) 難燃剤及びそれを配合してなる難燃性樹脂組成物
JP4366364B2 (ja) 難燃剤、難燃性樹脂組成物および成形体
JP2005171036A (ja) 金属水酸化物及び難燃性樹脂組成物
JPH05112669A (ja) 難燃剤、その製造方法および難燃性樹脂組成物
JP2002053722A (ja) 塩素含有樹脂組成物
JP2001187832A (ja) 塩素含有樹脂組成物
JPWO2018198650A1 (ja) アルミナ水和物粒子、難燃剤、樹脂組成物及び電線・ケーブル
JPH05194787A (ja) 赤リン系難燃剤及びその製造法
CN113637228A (zh) 一种膨胀型水镁石基复合阻燃剂及其制备方法和应用
Nadjia et al. O Spinel Synthesis, Ni0. 6 Characterization Zn0. 4Fe24 Nano-Catalyst: and Heterogeneous Fenton-like Degradation of Congo Red Azo-Dye
Nadjia et al. 1 st Euro-Mediterranean Conference for Environmental Integration (EMCEI) Spinel Ni0. 6Zn0. 4Fe2O4 nano-catalyst: Synthesis, characterization and heterogeneous Fenton-like degradation of Congo red azo-dye
JPS607940A (ja) オゾン分解用触媒の製造方法
JP2010030882A (ja) 複合水酸化マグネシウム粒子、難燃剤組成物および難燃性ポリオレフィン樹脂組成物
JPH01113488A (ja) 熱可塑性樹脂用無機難燃剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680001604.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077021370

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2006822112

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006822112

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12067551

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE