WO2007046332A1 - Co2冷凍機 - Google Patents

Co2冷凍機 Download PDF

Info

Publication number
WO2007046332A1
WO2007046332A1 PCT/JP2006/320566 JP2006320566W WO2007046332A1 WO 2007046332 A1 WO2007046332 A1 WO 2007046332A1 JP 2006320566 W JP2006320566 W JP 2006320566W WO 2007046332 A1 WO2007046332 A1 WO 2007046332A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigeration cycle
refrigerant
refrigerant flow
condenser
intermediate cooler
Prior art date
Application number
PCT/JP2006/320566
Other languages
English (en)
French (fr)
Inventor
Hiroshi Yamaguchi
Katsumi Fujima
Nerson Mugabi
Choiku Yoshikawa
Original Assignee
Mayekawa Mfg. Co., Ltd.
The Doshisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Mfg. Co., Ltd., The Doshisha filed Critical Mayekawa Mfg. Co., Ltd.
Priority to EP06811830A priority Critical patent/EP1939548A1/en
Priority to JP2007540959A priority patent/JP4973872B2/ja
Publication of WO2007046332A1 publication Critical patent/WO2007046332A1/ja
Priority to US12/105,169 priority patent/US7818971B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Definitions

  • the present invention uses CO (carbon dioxide) as a refrigerant, and CO is at a pressure and temperature level below the triple point.
  • CO carbon dioxide
  • This is related to a CO refrigerator that enables simultaneous extraction of a heat source and a cold / hot heat source, stabilizes control, and improves the coefficient of performance.
  • the cooling fluid with a cooling load of minus tens of degrees Celsius Two cooling methods, the high temperature side (high element side) and the low temperature side (low element side), are used for cooling to extremely low temperatures. Two-way cooling means combined with a refrigerant cycle have been used in the past.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-170007 describes a CO cooling of a low refrigeration cycle using CO as a refrigerant in a high refrigeration cycle using ammonia as a refrigerant.
  • the pressure and temperature after passing through the valve should be below the triple point of CO and temperature level.
  • solid-gas two-phase CO is used, and the cooling heat generated by sublimation of solid CO is cooled by the cooling load.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-308972 discloses that CO gas is saturated with a saturated pressure or higher.
  • a compressor that compresses to a critical pressure and a CO-condensate with condenser power
  • Expansion device to reduce the pressure and temperature to a solid 'gas two-phase, and sublimation of the two-phase CO
  • the sublimated CO gas In addition to supplying the cooling heat of 2 to the cooled fluid with cooling load, the sublimated CO gas
  • a CO refrigerator having a sublimation means for sending to the compressor is disclosed, and the CO refrigerator
  • a cascade heat exchanger that cools the cooling fluid by exchanging heat with the high-source refrigerant of the high-side refrigeration cycle is provided.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-170007
  • Patent Document 2 JP 2004-308972 A
  • Patent Documents 1 and 2 can supply cryogenic cold heat to the fluid to be cooled from the cooling load, but at the same time can supply a high-temperature heat source. Absent.
  • the present invention has a zero ozone depletion coefficient and a global warming coefficient of 1. Therefore, the present invention is safe and inexpensive with no toxic and flammable effects on the environment.
  • the advantage of CO is that it is very efficient in supplying hot and hot water.
  • the purpose is to realize a CO refrigerator that enables simultaneous extraction of high-temperature heat sources and cold-heat sources, as well as stable control and improved coefficient of performance.
  • the first configuration of the CO refrigerator of the present invention is:
  • CO carbon dioxide
  • An intermediate cooler provided in the refrigerant flow path between the condenser and the expansion means of the first refrigeration cycle is used as an evaporation section
  • Second refrigeration configured to maintain a pressure and temperature level above the triple point
  • the second refrigeration cycle having the above configuration is combined with the first refrigeration cycle having the above configuration, whereby the first refrigeration cycle force second In the first refrigeration cycle, the refrigerant is supercooled, which makes it easy to reach the pressure and temperature level below the triple point in the next expansion stage, and the second refrigeration cycle.
  • a heat source is applied from the first refrigeration cycle, making it easy to maintain pressure and temperature levels above the triple point of CO.
  • the pressure can be reduced to a pressure and temperature level below the triple point to form a solid 'gas two-phase, and cryogenic cooling by sublimation of the two-phase CO in the evaporator, for example -56 ° C to -78 ° C ( Atmosphere
  • the coefficient of performance of the refrigeration cycle can be improved by providing multiple compressors.
  • a second intermediate cooler provided on the downstream side of the intermediate cooler in the first refrigeration cycle is used as an evaporation section, and a refrigerant flow path between the intermediate cooler and the second intermediate cooler is used. Branching off from the refrigerant and passing through the second intermediate cooler via expansion means and connected to the refrigerant flow path between the multistage compressors of the first refrigeration cycle, and the pressure above the triple point of CO.
  • the coefficient of performance of the refrigerator can be further improved.
  • CO carbon dioxide
  • a first refrigeration cycle configured to maintain a pressure and temperature level above the triple point of O.
  • Ammonia, HC, or CO is used as a refrigerant, and heat is exchanged with the evaporation section of the first refrigeration cycle.
  • a second refrigeration cycle configured to maintain at least two pressure and temperature levels, and a second cascading heat exchanger between the second refrigeration cycle and the evaporation section of the second refrigeration cycle using CO as a refrigerant.
  • Equipped with a cascade capacitor and the pressure below the triple point of CO It is characterized by comprising a third refrigeration cycle that evaporates by depressurizing to a temperature level.
  • the first refrigeration cycle compresses the CO gas to the supercritical region.
  • a high-temperature heat source for example, hot water of about 80 ° C can be supplied efficiently.
  • the second refrigeration cycle is a refrigeration using ammonia, HC gas or CO as a refrigerant.
  • the cycle is a refrigeration cycle that uses a refrigerant such as ammonia or HC
  • a refrigerant such as ammonia or HC
  • the efficiency of the entire refrigerator can be further improved, and a refrigeration cycle that uses CO as the refrigerant.
  • cryogenic cooling by sublimation of the two-phase CO in the evaporator, for example, -56 ° C to -78 ° C (under atmospheric pressure)
  • the fluid to be cooled from the cooling load can be supplied.
  • the third cascade condenser include a third cascade condenser that exchanges heat with the evaporation unit of the third refrigeration cycle using CH gas, air, or nitrogen gas as a refrigerant. If a refrigeration cycle is added, a cold source with a lower temperature, for example, a cold source near ⁇ 120 ° C. can be supplied.
  • a contact heat exchanger in which the first to third force cascade condensers interposed between the respective refrigeration cycles directly contact the high-side refrigerant and the low-side refrigerant.
  • You may comprise. Ammonia, HC gas, nitrogen gas, for the molecular weight of CO 44
  • a closed circuit loop arranged in a substantially horizontal manner in communication with the refrigerant flow path in the liquid phase portion of the first refrigeration cycle or the third refrigeration cycle in the second configuration of the present invention,
  • a heat circuit that takes out the liquid from the closed circuit loop, exchanges heat by its latent heat of vaporization, shifts from the liquid phase to the gas phase, and returns it to the gas side of the closed circuit loop. It is possible to supply a cold heat source that can correspond to each load.
  • Safe and harmless CO circulates in each of the closed circuit loops.
  • a refrigeration cycle can be configured by each individual thermal circuit, thereby providing a cooling source corresponding to various cooling loads. Can be supplied.
  • the closed circuit loop is connected to a refrigerant flow path in a liquid phase portion of the first refrigeration cycle or the third refrigeration cycle in the second configuration of the present invention via a gas-liquid separator. If it does so, a liquid refrigerant can be reliably taken out to the said heat circuit.
  • the expansion means used at the level is a capillary tube or an expansion turbine, it is possible to reliably prevent an increase in resistance or blockage due to clogging of solid-phase CO in the expansion means.
  • CO carbon dioxide
  • the compressors are arranged in multiple stages in series.
  • a first refrigeration cycle to be evaporated by the evaporator, and an intermediate cooler provided in a refrigerant flow path between the condenser and the expansion means of the first refrigeration cycle are used as an evaporation section, and the condenser and the intermediate cooler Branching from the refrigerant flow path between them and passing through the intermediate cooler via the expansion means and connected to the refrigerant flow path between the multistage compressors of the first refrigeration site, and the pressure and temperature above the triple point of CO
  • the second refrigeration cycle configured to maintain the level enables the supply of a high-temperature heat source, for example, hot water at a high temperature around 80 ° C, and at the same time a very low temperature, for example, 56 ° C to 1 to 78 ° C (under atmospheric pressure) can be supplied to the cooled fluid from the cooling load.
  • a high-temperature heat source for example, hot water at a high temperature around 80 ° C
  • a very low temperature for example, 56 ° C to 1 to 78 ° C (under atmospheric pressure) can be supplied to the cooled fluid from the cooling load.
  • the second refrigeration cycle always maintains a pressure and temperature level above the triple point of CO.
  • the pressure and temperature level are below the triple point of CO.
  • CO carbon dioxide gas
  • CO gas is used as a supercritical state.
  • the first refrigeration cycle formed and ammonia, HC or CO as a refrigerant, the first cooling cycle.
  • a first cascade condenser that exchanges heat with the evaporation part of the refrigeration cycle is provided, and the pressure and temperature level above the triple point of CO are maintained on the downstream side of the expansion means.
  • a third refrigeration cycle comprising a second cascade condenser for exchanging heat between them and evaporating by depressurizing to a pressure and temperature level below the triple point of CO by passing through expansion means
  • a high-temperature heat source for example, hot water supply
  • a cryogenic cold source for example, a cryogenic cold source
  • the efficiency is further improved.
  • the refrigeration cycle using CO as a refrigerant it is natural.
  • the fourth cascade unit further includes a third cascade condenser that performs heat exchange with the evaporation unit of the third refrigeration cycle using CH gas, air, or nitrogen gas as a refrigerant.
  • a colder heat source having a lower temperature, for example, a cold heat source near ⁇ 120 ° C., can be supplied, or interposed between the refrigeration cycles.
  • the first to third cascade capacitors are configured with contact-type heat exchangers that directly contact the high-side refrigerant and the low-side refrigerant, the heat transfer efficiency can be further improved.
  • the closed circuit loop is arranged in a closed circuit loop that communicates with the refrigerant flow path portion of the liquid phase portion of the first refrigeration cycle or the third refrigeration cycle in the second configuration of the present invention and is arranged substantially horizontally.
  • Various heat sources such as hospitals, hotels, restaurants, etc. have been connected by connecting the heat circuit that takes out the liquid and performs heat exchange with its latent heat of vaporization to transfer it from the liquid phase to the gas phase and return it to the gas side of the closed circuit loop.
  • various heat sources corresponding to these cooling loads can be supplied from the heat circuit to cooling loads that require a low-temperature heat source, and the closed circuit loop is a harmless natural refrigerant that is not toxic. Since CO circulates,
  • FIG. 1 is a block diagram of a first embodiment of the present invention.
  • FIG. 2 is a Mollier diagram of the first embodiment.
  • FIG. 3 is a block diagram of the second embodiment of the present invention.
  • FIG. 4 is a Mollier diagram of the second embodiment.
  • FIG. 5 is a block diagram of a third embodiment of the present invention.
  • FIG. 6 is a block diagram of the fourth embodiment of the present invention.
  • FIG. 7A is an elevation view of the cascade capacitor 54 of the fourth embodiment.
  • FIG. 7B is a plan view of the cascade capacitor 54 of the fourth embodiment.
  • FIG. 8 is a block diagram of a fifth embodiment of the present invention.
  • FIG. 1 is a block diagram of the first embodiment of the present invention
  • FIG. 2 is a Mollier diagram of the first embodiment
  • FIG. 3 is a block diagram of the second embodiment of the present invention
  • FIG. Fig. 5 is a block diagram of the third embodiment of the present invention
  • Fig. 6 is a block diagram of the fourth embodiment of the present invention
  • Fig. 7A is a cascade of the fourth embodiment
  • FIG. 7B is a plan view of the capacitor 54
  • FIG. 8 is a block diagram of the fifth embodiment of the present invention.
  • reference numeral 1 denotes a refrigerant in the first refrigeration cycle using CO as a refrigerant.
  • a high-stage compressor that is also used in the refrigeration cycle 1 and the second refrigeration cycle 2, and 5 is a condenser that is also used in the first and second refrigeration cycles.
  • 6 is an intermediate cooler, and the refrigerant flow path 2 of the second refrigeration cycle branches on the upstream side of the intermediate cooler 6, and is connected to the evaporator 6 a of the intermediate cooler 6 via the expansion valve 9.
  • the refrigerant flow path 1 of the first refrigeration cycle is connected to the condensing part 6b of the intermediate cooler 6, and then connected to the evaporation part 8a of the evaporator 8 via the expansion valve 7.
  • [0028] 4 is a low-stage compressor
  • 9 is a hot water supply line
  • the water w supplied to the hot water supply line 9 is heated by the condenser 5 and supplied to a heat source load (not shown).
  • 10 is a cooling load line, and the fluid to be cooled! Supplied to the cooling load line 10 is:
  • Fig. 2 is an example Mollier diagram.
  • S1 is a saturated liquid line
  • Sy is a saturated vapor line
  • Tk is an isotherm
  • K is the critical point of CO (critical temperature 31.1 ° C, critical pressure 7. 38 MPa ).
  • Ptr is
  • the CO refrigerant is compressed by the high-stage compressor 3, and the critical point is
  • the condenser 5 condenses the water w with heat of condensation (same as B ⁇ C). Water w gains heat of condensation and is heated to about 80 ° C, not shown from hot water supply line 9! , Supplied to the heat source load.
  • a part of the refrigerant branches off downstream of the condenser 5 and enters the refrigerant flow path 2 of the second refrigeration cycle. Then, it expands through the expansion valve 9 and enters the evaporation section 6a of the intercooler 6 (same as C ⁇ D). The refrigerant passing through the refrigerant flow path 1 of the first refrigeration cycle enters the condensing unit 6b of the intercooler 6.
  • the latent heat of vaporization is absorbed from the refrigerant of the condenser 6b to the refrigerant of the evaporator 6a (same as C ⁇ E), and the refrigerant of the evaporator 6a gains the latent heat of vaporization and evaporates.
  • the refrigerant partially evaporated in the evaporation section 6a merges with the refrigerant in the first refrigeration cycle at the connection point c (same as D ⁇ A and H ⁇ A).
  • Refrigerant passage 2 and connection point c is the pressure and temperature level above the triple point of CO (-56 ° C and 0.518 MPa)
  • Cooled fluid supplied from evaporator 10 to evaporator 8 Force is also vaporized by subtracting latent heat of sublimation (same as F ⁇ G), while cooled fluid r is at a temperature below the triple point of CO. 78 ° C (atmospheric pressure
  • the refrigerant passing through the refrigerant flow path 1 is adiabatically compressed by the low-stage compressor 4 (same as G ⁇ H).
  • the refrigerant flow path 2 of the second refrigeration cycle is maintained at a pressure and temperature above the triple point of CO.
  • the CO refrigerant does not exhibit a solid phase.
  • FIGS. 3 and 4 the equipment and members having the same reference numerals as those in FIGS. 1 and 2 are the first. Same structure and function as the embodiment These descriptions are omitted.
  • a middle stage compressor 14 is provided between the high stage compressor 3 and the low stage compressor 4, and the refrigerant flow path 1 of the first refrigeration cycle is located downstream of the intermediate cooler 6.
  • the refrigerant flow path 11 of the third refrigeration cycle is branched, and the refrigerant in the refrigerant flow path 11 is adiabatically expanded via the expansion valve 13 and is decompressed and cooled to flow into the expansion portion 12a of the second intermediate cooler 12. To do.
  • the refrigerant flow path 1 is connected to the condensing part 12b of the second intermediate cooler 12, and the latent heat of evaporation is taken away from the condensing part 12b to the evaporation part 12a side by the second intermediate cooler 12,
  • the refrigerant in the refrigerant channel 11 evaporates.
  • the refrigerant evaporated in the refrigerant flow path 11 is connected at the connection point c ′ of the refrigerant flow path 1 between the middle stage compressor 14 and the low stage compressor 4 in the first refrigeration cycle. Note that the first refrigeration cycle that reaches the connection point c ′ through the expansion valve 13 is maintained at a pressure and temperature level higher than the triple point of CO.
  • the refrigeration operation is performed as shown in the Mollier diagram of FIG. That is, the refrigerant that has passed through the high stage compressor 3 enters the supercritical region (I ⁇ J in FIG. 4), and then condenses by heating the water w in the condenser 5 (same as _hJ ⁇ L).
  • the difference from the first embodiment is that the refrigerant cooled in the condenser 5 is cooled in two stages by the intermediate cooler 6 and the second intermediate cooler 12 (first stage in FIG. 4; L ⁇ C, 2nd stage; C ⁇ E), expansion valve 7 and pressure below triple point of CO
  • the pressure is reduced to the temperature level (same as E ⁇ F).
  • the refrigerant having passed through the expansion valve 9 in the second refrigeration cycle 2 is given latent heat of vaporization in the condensing part 6a of the intercooler 6 and evaporates to reach the connection point c (L ⁇ M ⁇ I).
  • the refrigerant having passed through the expansion valve 13 in the third refrigeration cycle is given latent heat of evaporation in the evaporation section 12a of the second intermediate cooler 12 and evaporates to reach the connection point c ′ (same as C ⁇ D ⁇ A).
  • the powerful second embodiment has the advantage that the coefficient of performance can be further improved by providing three stages of compressors in addition to the effects of the first embodiment.
  • the first refrigeration cycle 21 uses CO as a refrigerant, and includes a compressor 23, a condenser 24, an expansion valve 25, and a cascade co
  • the refrigerant adiabatically compressed by the compressor 23 reaches the supercritical region, and is then cooled by water w in the condenser 24 and passes through the expansion valve 25. Is adiabatically expanded and enters the evaporation section 26a of the cascade condenser 26.
  • the refrigerant in the second refrigeration cycle passing through the condenser 26b also takes away the latent heat of evaporation, evaporates and returns to the compressor 23.
  • the water w supplied from the hot water supply line 27 is heated to become high-temperature water h of about 80 ° C, and hot water is supplied to a high heat source load, not shown.
  • the second refrigeration cycle 31 uses ammonia or HC as a refrigerant, and in the refrigerant flow path 32, a compressor 33, a condenser part 26b of the cascade condenser 26, an expansion valve 34, an evaporation part 35a of the cascade condenser 35, etc. It is constituted by interposing.
  • the refrigerant compressed by the compressor 33 is supplied from the cascade condenser 2
  • condensation part 26b is deprived of the latent heat of evaporation by the CO refrigerant in the first refrigeration cycle and condensed.
  • the condenser part 35b of the cascade condenser 35, the expansion valve 44 and the evaporator 45 are interposed.
  • the refrigerant flow path after passing through the expansion valve 44 is maintained at a pressure and temperature level below the triple point of CO as shown in the figure, and accordingly, the expansion valve 44
  • the CO refrigerant After passing through, the CO refrigerant becomes a solid-gas two phase, and the solid phase CO refrigerant is cooled by the evaporator 45.
  • the fluid to be cooled supplied from the load line 46 to the evaporator 45 sublimates from the sublimation latent heat.
  • the cooled fluid r is cooled to 56 ° C, which is a cryogenic temperature, that is, a temperature below the triple point of CO.
  • the CO refrigerant does not enter the solid state, which increases resistance and clogs in the refrigerant flow path
  • the second refrigeration cycle 31 uses ammonia or HC as a refrigerant, high-efficiency operation is possible.
  • Example 4 Next, a fourth embodiment of the present invention will be described with reference to FIGS. 6 and 7, in this embodiment, air or nitrogen (N) is further added to the configuration of the third embodiment shown in FIG.
  • the fourth refrigeration cycle 51 uses air or nitrogen as a refrigerant, and is configured such that ammonia 53, a cascade capacitor 54, an expansion turbine 55, and an evaporator 57 are provided in the refrigerant flow path 52.
  • Reference numeral 56 denotes a regenerative motor that is regenerated by the operation of a power expansion turbine 55 that is a drive motor of the compressor 53.
  • the refrigerant adiabatically compressed by the compressor 53 is cooled by the cascade capacitor 54 with the latent heat of evaporation taken away by the refrigerant in the third refrigeration cycle 41. After that, it is adiabatically expanded through an expansion turbine 55, cooled to a temperature of 120 ° C., and reaches an evaporator 57.
  • the evaporator 57 takes away the latent heat of vaporization from the cooled fluid supplied from the cooling load line 58 by the evaporator 57 and evaporates, and cools the cooled fluid r to an ultra-low temperature around 100 ° C.
  • FIG. 7 shows the configuration of the cascade capacitor 54.
  • a in Fig. 7 is an elevation view, and B is a plan view.
  • the cascade condenser 54 is composed of a cyclone 540 having a hollow inside, and an upper side of an inlet pipe 541 of a CO refrigerant, which is a refrigerant of the second refrigeration cycle 41, is disposed horizontally.
  • Cyclone 540 Mounted tangential to Cyclone 540. Also, 543 is an inlet pipe of air or N refrigerant that is the refrigerant of the fifth refrigeration cycle 51.
  • [0044] 542 is a CO refrigerant outlet pipe provided at the bottom of the cyclone 540.
  • Cron 540. 544 Mounted tangential to Cron 540. 544 is the output of air or N refrigerant.
  • air or nitrogen supplied from the inlet pipe 543 is screwed along the inner surface of the cyclone 540. While drawing a turn, it rises because it is lighter than CO. CO and air or nitrogen
  • the first refrigeration cycle 21, the second refrigeration cycle 31, and the second refrigeration cycle 41 have the same configuration as the third embodiment, and are denoted by the same reference numerals as those in FIG. 5 showing the third embodiment. These explanations are omitted.
  • 28 is a gas-liquid separator, and its liquid phase part 28b communicates with the refrigerant flow path 22 (upstream of the expansion valve 25) of the liquid phase part of the first refrigeration cycle 21 via the branch pipe 29.
  • the gas-liquid separator 36 has a liquid phase part 36 b communicated with the refrigerant flow path 32 (upstream of the expansion valve 34) in the liquid phase part of the second refrigeration cycle 31 via a branch pipe 37.
  • Reference numerals 61 and 71 denote closed circuit loops disposed substantially horizontally inside a building (for example, a hospital, a hotel, a restaurant, etc.) 60 having various cooling loads.
  • the separator 28 is connected to the liquid phase part 28 b, and the terminal is connected to the gas phase part 28 a of the gas-liquid separator 28.
  • the closed circuit loop 62 has a start end connected to the liquid phase portion 36b of the gas-liquid separator 36 and an end connected to the gas phase portion 36a, and the refrigerant liquid flows in the direction of the arrow, respectively.
  • the liquid-phase line 61b of the closed circuit loop 61 is connected to the start end of the closed-circuit heat circuit 62, and the gas-phase line 61a of the closed-circuit heat circuit 61 is connected to the end of the closed-circuit heat circuit 62.
  • a heat exchange 63 is interposed in the closed circuit heat circuit 62, where the latent heat of vaporization of the CO refrigerant liquid taken out from the liquid phase line 6 lb of the closed circuit loop 61 is taken from the cooled fluid r on the cooling load side.
  • the cooling load side is cooled, and the refrigerant liquid evaporates into a gas phase and returns to the gas phase line 6 la of the closed circuit loop 61.
  • the start end is connected to the liquid phase line 71b and the end is connected to the gas phase line 71a.
  • An end-connected closed circuit 72 is provided, and the closed circuit 72 constitutes a refrigeration cycle in which an expansion valve 73, a heat exchanger 74, and a compressor 75 are interposed.
  • the CO refrigerant liquid taken out from the liquid phase line 71b is insulated by the expansion valve 73.
  • the refrigerant expands and the heat on the cooling load also takes away latent heat of evaporation in the heat exchanger 74 to cool the cooled fluid r on the cooling load side, and the refrigerant liquid evaporates into a gas phase, returning to the gas phase line 71a of the closed circuit loop 71.
  • It is configured as follows. (Note that the closed circuit loops 61 and 71 are disclosed in detail in Japanese Unexamined Patent Publication No. 2003-329318 previously proposed by the present inventors.)
  • a hot water supply at a high temperature of 80 ° C and a cryogenic cold at around 80 ° C can be simultaneously supplied, and a building having various cooling loads (for example, (Hospitals, hotels, restaurants, etc.)
  • the refrigerant supplied to the closed circuit loops 61 and 71 in the building is a natural and safe and harmless CO refrigerant that can be safely refrigerated and the first refrigeration cycle.
  • the second refrigeration cycle 31, and the closed circuit loops 61, 71 installed in the building 60 are always operated at a compressor and temperature level above the triple point of CO,
  • high-temperature hot water supply and extremely low-temperature cold heat can be supplied simultaneously, and it is possible to sufficiently meet the demands of places requiring various cooling loads such as hospitals, hotels, restaurants, etc., and stable refrigeration. Safe and inexpensive CO cooling with improved performance coefficient through operation and high efficiency

Abstract

安全で、温度差のある高温熱源と冷温熱源の同時取り出しを可能とするとともに、制御の安定化を図り、成績係数を向上させたCO2冷凍機を実現することを課題であり、CO2(炭酸ガス)を冷媒とし、超臨界域まで圧縮するとともに、膨張弁を経てCO2の三重点以下の圧力及び温度レベルまで減圧して蒸発させる冷凍サイクルをもつCO2冷凍機において、多段圧縮機3,4と、凝縮器5と膨張手段7との間の冷媒流路1に設けられた中間冷却器6と、凝縮器5と中間冷却器6の間の冷媒流路1から分岐し膨張手段9を介在して中間冷却器6を通り多段圧縮機3,4間の冷媒流路1に接続する第2の冷凍サイクル2とを備え、該第2の冷凍サイクルは、中間冷却器6において冷媒流路1との間で蒸発潜熱を吸収し、膨張手段9の後流側でもCO2の三重点Ptr以上の圧力及び温度レベルを維持するように構成した。

Description

CO冷凍機
2
技術分野
[0001] 本発明は、 CO (炭酸ガス)を冷媒とし、 COを三重点以下の圧力及び温度レベル
2 2
まで冷却して個体 ·ガス二相 COとした冷媒サイクルを用い、温度差のある高温熱源
2
と冷温熱源の同時取り出しを可能とするとともに、制御の安定化を図り、成績係数を 向上させた CO冷凍機に関する。
2
背景技術
[0002] 冷却負荷力 の被冷却流体をマイナス数十 °Cと!、う極低温に冷却する冷却手段と して、高温側(高元側)と低温側 (低元側)との 2つの冷媒サイクルを組み合わせた 2 元冷却手段が従来から用いられて 、る。
例えば特許文献 1 (特開 2004— 170007号公報)には、アンモニアを冷媒として用 いる高元側冷凍サイクルに、 COを冷媒として用いる低元側冷凍サイクルの CO冷
2 2 媒を冷却、液化するカスケードコンデンサを備えるとともに、 CO冷凍サイクルの膨張
2
弁通過後の圧力及び温度を COの三重点以下の圧力及び温度レベルとすることに
2
より、固体'ガス二相の COとし、固体 COの昇華による冷熱を冷却負荷力 の被冷
2 2
却流体に供給することにより、 COの三重点(一 56°C)以下の極低温域での冷却を
2
可能にした手段が開示されている。
[0003] また特許文献 2 (特開 2004— 308972号公報)には、 COガスを飽和圧力又は超
2
臨界圧力に圧縮する圧縮機と、凝縮器力 の CO凝縮体を COの三重点以下の圧
2 2
力及び温度レベルに減圧して固体'ガス二相とする膨張装置と、該二相 COの昇華
2 による冷熱を冷却負荷力 の被冷却流体に供給するとともに、昇華後の COガスを
2 前記圧縮機に送る昇華手段とを備えた CO冷凍機が開示され、またこの CO冷凍機
2 2 の凝縮器で高圧 COガスを冷却、凝縮する冷却流体とアンモニア冷凍サイクル等の
2
高元側冷凍サイクルの高元冷媒とを熱交換して、該冷却流体を冷却するカスケード 熱交換器を設けることが開示されている。
[0004] 特許文献 1:特開 2004— 170007号公報 特許文献 2:特開 2004— 308972号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら特許文献 1及び 2に開示された手段は、極低温の冷熱を冷却負荷から の被冷却流体に供給することは可能であるが、同時に高温熱源を供給できるもので はない。
また CO冷媒を COの三重点以下の圧力及び温度レベルまで減圧し、 COの固
2 2 2 体'ガス二相をつくり、固体 COの昇華による冷熱を供給するものであるため、冷媒
2
流路に詰まりを生じたり、あるいは冷媒流路に圧損等を生じて冷凍サイクルの運転が 不安定となるおそれがある。
[0006] 本発明は、力かる従来技術の課題に鑑み、オゾン破壊係数がゼロで、地球温暖化 係数が 1であるため、環境への負荷小さぐ毒性、可燃性がなく安全で安価であると いう COの長所を生かし、また温水及び給湯供給において非常に効率が良いという
2
長所をもつ CO冷媒を用いたヒートポンプサイクルの長所を生かし、かつ温度差のあ
2
る高温熱源と冷温熱源の同時取り出しを可能とするとともに、制御の安定ィ匕を図り、 成績係数を向上させた CO冷凍機を実現することを目的とする。
2
課題を解決するための手段
[0007] 前記目的を達成するため、本発明の CO冷凍機の第 1の構成は、
2
CO (炭酸ガス)を冷媒とし、
2
圧縮機を直列に多段に設けることにより COを超臨界域まで圧縮するとともに、
2
凝縮器力 出た CO凝縮体を膨張手段を通すことにより COの三重点以下の圧力
2 2
及び温度レベルまで減圧し、蒸発器で蒸発させる第 1の冷凍サイクルと、
前記第 1冷凍サイクルの凝縮器と膨張手段との間の冷媒流路に設けられた中間冷 却器を蒸発部とし、
前記凝縮器と該中間冷却器の間の冷媒流路から分岐し膨張手段を介して前記中 間冷却器を通り前記第 1の冷凍サイクルの多段圧縮機間の冷媒流路に接続され、 COの三重点以上の圧力及び温度レベルを維持するように構成された第 2の冷凍
2
サイクルとからなることを特徴とする。 [0008] 本発明の前記第 1の構成は、前記構成を有する第 1冷凍サイクルに、前記構成を 有する第 2の冷凍サイクルを組み合わせることにより、前記中間冷却器で第 1の冷凍 サイクル力 第 2の冷凍サイクルに熱吸収がなされ、これによつて第 1の冷凍サイクル では冷媒が過冷却され、次の膨張段階で三重点以下の圧力及び温度レベルへの到 達が容易になるとともに、第 2の冷凍サイクルでは、第 1の冷凍サイクルカゝら熱源が付 与されて COの三重点以上の圧力及び温度レベルを維持することが容易になる。
2
[0009] これによつて第 1の冷凍サイクルでは、凝縮器にお!、て高温の給湯、例えば 80°C 近辺の給湯が可能になるとともに、第 2の冷凍サイクルでは、膨張手段を経て COの
2 三重点以下の圧力及び温度レベルに減圧して固体'ガス二相とすることができ、蒸発 器において該二相 COの昇華による極低温の冷熱、例えば— 56°C〜― 78°C (大気
2
圧下)の冷熱を冷却負荷力 の被冷却流体に供給することができる。
[0010] また第 1の構成では、圧縮機を多段にすることにより、冷凍サイクルの成績係数を向 上することができる。また例えば第 1の冷凍サイクルの前記中間冷却器の下流側に設 けられた第 2の中間冷却器を蒸発部とし、前記中間冷却器と前記第 2の中間冷却器 との間の冷媒流路から分岐し膨張手段を介して前記第 2の中間冷却器を通り前記第 1の冷凍サイクルの多段圧縮機間の冷媒流路に接続され、 COの三重点以上の圧
2
力及び温度レベルを維持するように構成された第 3の冷凍サイクルとからなるように構 成すれば、さらに冷凍機の成績係数を向上させることができる。
[0011] 次に本発明の第 2の構成は、
CO (炭酸ガス)を冷媒とし、 COガスを超臨界域まで圧縮するとともに、
2 2
凝縮器カゝら出た CO凝縮体を膨張手段を通して減圧させ、蒸発部で蒸発させ、 C
2
Oの三重点以上の圧力及び温度レベルを維持するように構成された第 1の冷凍サイ
2
クルと、
アンモニア、 HC又は COを冷媒とし、前記第 1の冷凍サイクルの蒸発部との間で熱
2
交換を行なう第 1のカスケードコンデンサを備え、膨張手段の後流側でも COの三重
2 点以上の圧力及び温度レベルを維持するように構成された第 2の冷凍サイクルと、 COを冷媒とし、該第 2の冷凍サイクルの蒸発部との間で熱交換を行なう第 2のカス
2
ケードコンデンサを備え、膨張手段を通すことにより COの三重点以下の圧力及び 温度レベルまで減圧して蒸発させる第 3の冷凍サイクルとからなることを特徴とする。
[0012] 本発明の第 2の構成では、 COガスを超臨界域まで圧縮する第 1の冷凍サイクルで
2
高温の熱源、例えば約 80°Cの給湯を効率良く供給することができる。
また第 2の冷凍サイクルは、アンモニア、 HCガス又は COを冷媒として用いた冷凍
2
サイクルとし、アンモニア又は HC等の冷媒を用いた冷凍サイクルとすれば、冷凍機 全体の効率をさらに良くすることができ、 COを冷媒として用いた冷凍サイクルとする
2
と、前述した COの安全性及び無害等の長所を有するとともに、第 1冷凍サイクル及
2
び第 3冷凍サイクルの冷媒と同じ冷媒を用いることになり、装置全体として安全かつ 無害であり、安価となる。
[0013] また前記第 2の構成において、第 3の冷凍サイクルで CO冷媒を COの三重点以
2 2
下の圧力及び温度レベルまで減圧して蒸発させることにより、蒸発器において該ニ 相 COの昇華による極低温の冷熱、例えば— 56°C〜― 78°C (大気圧下)の冷熱を
2
冷却負荷からの被冷却流体に供給することができる。
[0014] 前記第 2の構成において、好ましくは、 CHガス、空気又は窒素ガスを冷媒とし前記 第 3の冷凍サイクルの蒸発部との間で熱交換を行なう第 3のカスケードコンデンサを 備えた第 4の冷凍サイクルを付設すれば、さらに低温の冷熱源、例えば—120°C付 近の冷熱源を供給することができる。
[0015] 前記第 2の構成において、前記夫々の冷凍サイクル間に介設された第 1〜第 3の力 スケードコンデンサを高元側冷媒と低元側冷媒とを直接接触させる接触式熱交換器 に構成してもよい。 COの分子量 44に対して、アンモニア、 HCガス、窒素ガス、ある
2
いは空気の分子量が十分小さいので、両者を直接混合しても重力分離が可能である 。例えばサイクロン型の熱交 を用い、サイクロン内で両者を直接接触させること により、容易に重力分離が可能となる。
[0016] また本発明の第 2の構成における前記第 1の冷凍サイクル又は前記第 3の冷凍サイ クルの液相部分の冷媒流路に連通し略水平状に配置された閉回路ループと、該閉 回路ループより液を取り出してその蒸発潜熱により熱交換を行なって液相より気相に 移行させ前記閉回路ループのガス側に戻す熱回路とを備えれば、該熱回路力 種 々の冷却負荷に対してそれぞれに対応し得る冷熱源を供給することができる。 [0017] 前記閉回路ループにはいずれも安全かつ無害な COが循環するので、ホテル又
2
はレストラン等種々の高温熱源及び低温熱源を必要とする建物内へ閉回路ループを 配設しても安全性を確保することができる。
また閉回路ループに設けられる熱回路には、膨張手段や圧縮機を設ければ、個々 の熱回路で冷凍サイクルを構成することができ、これによつて各種の冷却負荷に応じ た冷熱源を供給することができる。
[0018] また好ましくは、本発明の第 2の構成における前記第 1の冷凍サイクル又は前記第 3の冷凍サイクルの液相部分の冷媒流路に気液分離器を介して前記閉回路ループ を接続すれば、前記熱回路に確実に液冷媒を取り出すことができる。
また本発明の第 1構成又は第 2構成において、 COの三重点以下の圧力及び温度
2
レベルで使用される膨張手段をキヤビラリチューブ又は膨張タービンとすれば、膨張 手段における固相 COの詰まりによる抵抗増大又は閉塞を確実に防止することがで
2
きる。
発明の効果
[0019] 本発明の第 1構成によれば、 CO (炭酸ガス)を冷媒とし、圧縮機を直列に多段に
2
設けることにより COを超臨界域まで圧縮するとともに、凝縮器カゝら出た CO凝縮体
2 2 を膨張手段を通すことにより COの三重点以下の圧力及び温度レベルまで減圧し、
2
蒸発器で蒸発させる第 1の冷凍サイクルと、第 1冷凍サイクルの凝縮器と膨張手段と の間の冷媒流路に設けられた中間冷却器を蒸発部とし、前記凝縮器と該中間冷却 器の間の冷媒流路から分岐し膨張手段を介して前記中間冷却器を通り第 1の冷凍サ イタルの多段圧縮機間の冷媒流路に接続され、 COの三重点以上の圧力及び温度
2
レベルを維持するように構成された第 2の冷凍サイクルとからなることにより、高温熱 源の供給、例えば 80°C近辺の高温の給湯が可能になるとともに、同時に極低温の 冷熱、例えば 56°C〜一 78°C (大気圧下)の冷熱を冷却負荷からの被冷却流体に 供給することができる。
[0020] また第 2の冷凍サイクルでは常に COの三重点以上の圧力及び温度レベルを維持
2
するように構成されるので、固相の CO
2が生成されず、従って膨張手段での抵抗増 大ゃ詰まりを生じず、安定した冷凍運転を行なうことができる。またこれに併せ圧縮機 を多段にすることにより、冷凍サイクルの成績係数を向上することができる。
なお本発明において COの三重点以下の圧力及び温度レベルにすることによって
2
固気二相の COが形成される場合であっても、好ましくは膨張手段としてキヤビラリチ
2
ユーブゃ膨張タービンを用いることにより、冷媒流路での抵抗増大や詰まりを防止す ることがでさる。
[0021] また本発明の第 2の構成によれば、 CO (炭酸ガス)を冷媒とし、 COガスを超臨界
2 2
域まで圧縮するとともに、凝縮器から出た CO凝縮体を膨張手段を通して減圧させ、
2
蒸発部で蒸発させ、 COの三重点以上の圧力及び温度レベルを維持するように構
2
成された第 1の冷凍サイクルと、アンモニア、 HC又は COを冷媒とし、前記第 1の冷
2
凍サイクルの蒸発部との間で熱交換を行なう第 1のカスケードコンデンサを備え、膨 張手段の後流側でも COの三重点以上の圧力及び温度レベルを維持するように構
2
成された第 2の冷凍サイクルと、 COを冷媒とし、該第 2の冷凍サイクルの蒸発部との
2
間で熱交換を行なう第 2のカスケードコンデンサを備え、膨張手段を通すことにより C Oの三重点以下の圧力及び温度レベルまで減圧して蒸発させる第 3の冷凍サイクル
2
とからなることにより、前記第 1の構成と同様に、高温熱源の供給、例えば高温の給湯 が可能になるとともに、同時に極低温の冷熱源を供給することができる。
[0022] また第 2の冷凍サイクルで、 COの三重点以上の圧力及び温度レベルを維持する
2
ように構成されたことにより、冷媒流路での抵抗増大や詰まりが生ぜず、安定した冷 凍運転を行なうことができる。
なお第 2の冷凍サイクルでアンモニア又は HC等の冷媒を用いた冷凍サイクルとす れば、さらに効率が向上し、一方 COを冷媒として用いた冷凍サイクルとすると、自然
2
冷媒としての COの長所 (無害、安全等)を享受することができるとともに、第 1冷凍サ
2
イタル及び第 3冷凍サイクルと同じ CO冷媒を用いることにより、装置全体として安価
2
となる。
[0023] 前記第 2の構成において、好ましくは、 CHガス、空気又は窒素ガスを冷媒とし前記 第 3の冷凍サイクルの蒸発部との間で熱交換を行なう第 3のカスケードコンデンサを 備えた第 4の冷凍サイクルを付設すれば、さらに低温の冷熱源、例えば—120°C付 近の冷熱源を供給することができ、あるいは前記夫々の冷凍サイクル間に介設され た第 1〜第 3のカスケードコンデンサを高元側冷媒と低元側冷媒とを直接接触させる 接触式の熱交換器で構成するようにすれば、熱伝達効率をさらに向上させることがで きる。
[0024] また本発明の第 2の構成における第 1冷凍サイクル又は第 3冷凍サイクルの液相部 分の冷媒流路に連通し略水平状に配置された閉回路ループに、該閉回路ループよ り液を取り出してその蒸発潜熱により熱交換を行なって液相より気相に移行させ前記 閉回路ループのガス側に戻す熱回路を接続したことにより、病院、ホテル又はレスト ラン等種々の高温熱源及び低温熱源を必要とする冷却負荷に対して該熱回路から これら冷却負荷に対応した種々の冷熱源を供給することができ、また閉回路ループ にはいずれも毒性がない無害な自然冷媒である COが循環するので、建物内での
2
安全を確保することができる。
また第 1冷凍サイクル又は第 3冷凍サイクルの液相部分の冷媒流路と閉回路ルー プとの間に気液分離器を介在させることにより、閉回路ループに液相の COを確実
2 に供給することができる。
図面の簡単な説明
[0025] [図 1]本発明の第 1実施例のブロック線図である。
[図 2]前記第 1実施例のモリエル線図である。
[図 3]本発明の第 2実施例のブロック線図である。
[図 4]前記第 2実施例のモリエル線図である。
[図 5]本発明の第 3実施例のブロック線図である。
[図 6]本発明の第 4実施例のブロック線図である。
[図 7A]前記第 4実施例のカスケードコンデンサ 54の立面図である。
[図 7B]前記第 4実施例のカスケードコンデンサ 54の平面図である。
[図 8]本発明の第 5実施例のブロック線図である。
発明を実施するための最良の形態
[0026] 以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に 記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記 載がない限り、この発明をそれのみに限定する趣旨ではない。 図 1は、本発明の第 1実施例のブロック線図、図 2は、第 1実施例のモリエル線図、 図 3は、本発明の第 2実施例のブロック線図、図 4は、第 2実施例のモリエル線図、図 5は、本発明の第 3実施例のブロック線図、図 6は、本発明の第 4実施例のブロック線 図、図 7Aは、第 4実施例のカスケードコンデンサ 54の立面図、図 7Bはその平面図、 図 8は、本発明の第 5実施例のブロック線図である。
実施例 1
[0027] 第 1実施例を示す図 1において、 1は、 COを冷媒とした第 1の冷凍サイクルの冷媒
2
流路であり、 2は、 COを冷媒とした第 2の冷凍サイクルの冷媒流路である。 3は、第 1
2
冷凍サイクル 1及び第 2冷凍サイクル 2で兼用する高段圧縮機であり、 5は、同様に第 1及び第 2冷凍サイクル兼用の凝縮器である。 6は、中間冷却器であり、中間冷却器 6 の上流側で第 2冷凍サイクルの冷媒流路 2が分岐し、膨張弁 9を経て中間冷却器 6の 蒸発部 6aに接続する。
第 1冷凍サイクルの冷媒流路 1は、中間冷却器 6の凝縮部 6bに接続し、その後膨 張弁 7を経て蒸発器 8の蒸発部 8aに接続する。
[0028] 4は、低段圧縮機であり、 9は給湯ラインで、給湯ライン 9に供給された水 wは、凝縮 器 5で加熱されて図示しない温熱源負荷に給湯される。また 10は冷却負荷ラインで、 冷却負荷ライン 10に供給された被冷却流体!:は、蒸発器 8で CO冷媒の蒸発潜熱を
2
吸収され冷却されて図示しない冷却負荷に供給される。 Ptrは、 COの三重点ライン
2
を示す。
[0029] 力かる構成の CO冷凍機の作動を図 1及び図 2により説明する。図 2は、第 1実施
2
例のモリエル線図であり、図 2において、 S1は飽和液線、 Syは飽和蒸気線、 Tkは等 温線、 Kは COの臨界点(臨界温度 31. 1°C、臨界圧 7. 38Mpa)である。また Ptrは
2
CO冷媒の三重点の圧力(0· 518Mpa)を示す。
2
まず第 1冷凍サイクル 1において、 CO冷媒は、高段圧縮機 3で圧縮され、臨界点
2
Kを越えて超臨界域に達する(図 2中 A→B)。その後凝縮器 5で水 wに凝縮熱を付 与して凝縮する(同上 B→C)。水 wは凝縮熱を得て約 80°Cに加熱され、給湯ライン 9 から図示しな!、温熱源負荷に供給される。
[0030] 一方凝縮器 5の下流側で冷媒の一部が分岐して第 2冷凍サイクルの冷媒流路 2に 入り、その後膨張弁 9を経て膨張し、中間冷却器 6の蒸発部 6aに入る(同上 C→D)。 第 1冷凍サイクルの冷媒流路 1を通る冷媒は、中間冷却器 6の凝縮部 6bに入る。こ こで凝縮部 6bの冷媒から蒸発部 6aの冷媒に蒸発潜熱が吸収され (同上 C→E)、蒸 発部 6aの冷媒がその蒸発潜熱を得て蒸発する。蒸発部 6aで一部蒸発した冷媒は接 続点 cで第 1冷凍サイクルの冷媒に合流する(同上 D→A及び H→A)。冷媒通路 2及 び接続点 cは COの三重点(― 56°C及び 0. 518Mpa)以上の圧力及び温度レベル
2
を維持する。
[0031] 中間冷却器 6の凝縮部 6bを出た冷媒は、膨張弁 7を経て断熱膨張し、蒸発器 8の 蒸発部 8aに至る(同上 E→F)。膨張弁 7の下流側は COの三重点以下の圧力及び
2
温度レベルとなっており、ここで CO冷媒は固気二相となり、蒸発器 8で冷却負荷ライ
2
ン 10から蒸発器 8に供給された被冷却流体!:力も昇華潜熱を奪って気化し(同上 F→ G)、一方被冷却流体 rは COの三重点以下の温度である 56°C〜一 78°C (大気圧
2
下)の極低温度に冷却される。
その後冷媒流路 1を通る冷媒は、低段圧縮機 4で断熱圧縮させる(同上 G→H)。
[0032] このように第 1実施例によれば、超臨界域を形成する CO冷凍サイクルと、 COの
2 2 三重点以下の圧力及び温度まで減圧された冷凍サイクルとにより、約 80°Cの高温の 給湯と— 56°C以下の極低温の冷熱源を同時に供給することができる。
また第 2冷凍サイクルの冷媒流路 2は COの三重点以上の圧力及び温度に維持さ
2
れるので、 CO冷媒が固相を呈することがなぐこのため冷媒流路 2に抵抗の増大や
2
詰まりを生じることがない。また圧縮機を多段に構成しているので、成績係数を向上さ せることができる。
なお COの三重点以下の圧力及び温度となる膨張弁 7では、キヤビラリチューブや
2
膨張タービンを用いることにより、冷媒流路内部の抵抗の増大や詰まりを確実に防止 することができる。
実施例 2
[0033] 次に本発明の第 2実施例を図 3及び 4に基づいて説明する。第 2実施例は、前記第 1実施例において、さらに第 2の冷凍サイクルを付加したものであり、図 3及び 4にお いて、図 1及び 2と同一符号を付した機器、部材は第 1実施例と同一の構造及び機能 を有し、これらの説明は省略する。
図 3及び 4において、高段圧縮機 3と低段圧縮機 4との間に中段圧縮機 14が設けら れるとともに、第 1冷凍サイクルの冷媒流路 1は、中間冷却器 6の下流側で第 3冷凍サ イタルの冷媒流路 11が分岐し、冷媒流路 11の冷媒は、膨張弁 13を経て断熱膨張さ れ、減圧かつ低温となって第 2中間冷却器 12の膨張部 12aに流入する。
[0034] 一方冷媒流路 1は、第 2中間冷却器 12の凝縮部 12bに接続しており、第 2中間冷 却器 12で凝縮部 12bから蒸発部 12a側に蒸発潜熱が奪われて、冷媒流路 11の冷 媒が蒸発する。冷媒流路 11で蒸発した冷媒は、第 1冷凍サイクルの中段圧縮機 14と 低段圧縮機 4との間の冷媒流路 1の接続点 c'で接続する。なお膨張弁 13を経て接 続点 c'に至る第 1冷凍サイクルは、 COの三重点以上の圧力及び温度レベルに維
2
持される。
[0035] 力かる第 2実施例の構成では、図 4のモリエル線図に示すように冷凍運転がなされ る。即ち高段圧縮機 3を経た冷媒は超臨界域に入り(図 4中 I→J)、その後凝縮器 5で 水 wを加熱して凝縮する(同 _hJ→L)。第 1実施例と異なるところは、凝縮器 5で冷却 された冷媒は、中間冷却器 6及び第 2中間冷却器 12によって 2段に亘つて冷却され( 図 4中 1段目; L→C、 2段目; C→E)、膨張弁 7を経て COの三重点以下の圧力及び
2
温度レベルに減圧される(同上 E→F)。
[0036] 一方第 2冷凍サイクル 2で膨張弁 9を経た冷媒は、中間冷却器 6の凝縮部 6aで蒸 発潜熱を付与されて蒸発し接続点 cに至る(同上 L→M→I)。また第 3冷凍サイクル で膨張弁 13を経た冷媒は、第 2中間冷却器 12の蒸発部 12aで蒸発潜熱を付与され て蒸発し接続点 c'に至る(同上 C→D→A)。
力かる第 2実施例によれば、前記第 1実施例に作用効果に加えて、圧縮機を 3段に したことにより、成績係数をさらに向上することができる長所をもつ。
実施例 3
[0037] 次に本発明の第 3実施例を図 5に基づいて説明する。図 5において、第 1冷凍サイ クル 21は COを冷媒として用い、圧縮機 23、凝縮器 24、膨張弁 25及びカスケードコ
2
ンデンサ 26等を有する冷媒流路 22で構成される。まず圧縮機 23で断熱圧縮された 冷媒は、超臨界域に達し、その後凝縮器 24で水 wによって冷却され、膨張弁 25を経 て断熱膨張され、カスケードコンデンサ 26の蒸発部 26aに入る。
カスケードコンデンサ 26では、凝縮部 26bを通る第 2冷凍サイクルの冷媒カも蒸発 潜熱を奪い、蒸発して圧縮機 23に戻る。凝縮器 24では給湯ライン 27から供給された 水 wが加熱され、約 80°Cの高温水 hとなって図示しな 、高熱源負荷に給湯される。
[0038] 第 2冷凍サイクル 31は、アンモニア又は HCを冷媒として用い、冷媒流路 32に、圧 縮機 33、カスケードコンデンサ 26の凝縮部 26b、膨張弁 34及びカスケードコンデン サ 35の蒸発部 35a等を介設して構成される。
第 2冷凍サイクル 31では、圧縮機 33で圧縮された冷媒は、カスケードコンデンサ 2
6の凝縮部 26bで第 1冷凍サイクルの CO冷媒に蒸発潜熱を奪われて凝縮され、そ
2
の後膨張弁 34を経て断熱膨張され、カスケードコンデンサ 35の蒸発部 35aに入る。 カスケードコンデンサ 35で第 3冷凍サイクルの冷媒から蒸発潜熱を奪って蒸発し、 再び圧縮機 33に入る。なお第 2冷凍サイクル 31では、常に COの三重点以上の圧
2
力及び温度レベルに維持される。
[0039] 第 3冷凍サイクル 41では、 COを冷媒として用い、 CO冷媒流路 42に、圧縮機 43
2 2
、カスケードコンデンサ 35の凝縮部 35b、膨張弁 44及び蒸発器 45が介設されて構 成されている。第 3冷凍サイクル 41では、膨張弁 44を経た後の冷媒流路は、図示の とおり COの三重点以下の圧力及び温度レベルに維持されており、従って膨張弁 44
2
を経た後では、 CO冷媒は固気二相になり、蒸発器 45で固相の CO冷媒は冷却負
2 2
荷ライン 46から蒸発器 45に供給される被冷却流体!:から昇華潜熱を奪って昇華する 。これによつて被冷却流体 rを極低温、即ち COの三重点以下の温度である 56°C
2
〜一 78°Cに冷却することが可能となる。
[0040] このように第 3実施例によれば、約 80°Cの高温の給湯と— 56°C〜― 78°Cの極低 温の被冷却流体を供給することが可能になるとともに、第 1冷凍サイクル 21及び第 2 冷凍サイクル 31を常に COの三重点以上の圧力及び温度レベルで運転するため、
2
CO冷媒が固相状態とはならず、そのため冷媒流路で抵抗の増大や詰まりを生じる
2
ことなぐ安定した冷凍運転を可能とする。また第 2冷凍サイクル 31で冷媒としてアン モ-ァ又は HCを用いて 、るため、高効率の運転が可能となる。
実施例 4 [0041] 次に本発明の第 4実施例を図 6及び 7に基づいて説明する。図 6及び 7において、 本実施例は、図 5に示す前記第 3実施例の構成に、さらに空気又は窒素 (N )を冷媒
2 とする第 4冷凍サイクル 51を負荷したことにより、さらに超低温の冷熱源を供給可能と したものである。
図 6において、図 5と同一の符号を付した機器、部材は図 5に示す機器、部材と同 一の構成及び機能を有するものであり、これらの説明を省略する。第 4冷凍サイクル 5 1は、空気又は窒素を冷媒とし、冷媒流路 52に、アンモニア 53、カスケードコンデン サ 54、膨張タービン 55及び蒸発器 57を介設して構成されている。 56は、圧縮機 53 の駆動モータである力 膨張タービン 55の稼動により回生される回生モータとなって いる。
[0042] 第 4冷凍サイクル 51では、圧縮機 53で断熱圧縮された冷媒は、カスケードコンデン サ 54にお 、て第 3冷凍サイクル 41の冷媒に蒸発潜熱を奪われて冷却される。その 後膨張タービン 55を経て断熱膨張され、 120°Cの温度に冷却されて蒸発器 57に 至る。蒸発器 57で冷却負荷ライン 58から供給された被冷却流体!:から蒸発潜熱を奪 つて蒸発するとともに、被冷却流体 rを 100°C付近の超低温に冷却する。
[0043] 図 7にカスケードコンデンサ 54の構成を示す。図 7の Aはその立面図、 Bは平面図 である。図 7において、カスケードコンデンサ 54は、内部が中空のサイクロン 540から なり、上部に第 2冷凍サイクル 41の冷媒である CO冷媒の入口管 541が水平にかつ
2
サイクロン 540に対して接線方向に取り付けられている。また 543は、第 5冷凍サイク ル 51の冷媒である空気又は N冷媒の入口管で、サイクロン 540の下部に水平にか
2
つサイクロン 540に対して接線方向に取り付けられて 、る。
[0044] 542は、サイクロン 540の下部に設けられた CO冷媒の出口管で、水平にかつサイ
2
クロン 540に対して接線方向に取り付けられている。 544は、空気又は N冷媒の出
2 口管でサイクロン 540の上部に取り付けられて 、る。
力かる構成において、入口管 541からサイクロン 540の内部に供給された CO冷媒
2 は、固気二相状態でサイクロン 540の内面に沿って螺旋を描きながら、分子量が 44 と空気又は窒素に比べて重 、ために下方に沈降して 、く。
[0045] 一方入口管 543から供給された空気又は窒素は、サイクロン 540の内面沿って螺 旋を描きながら、 COより軽いために上昇していく。 COと空気又は窒素は、サイクロ
2 2
ン 540内に互いに交流方向に供給されているため、それぞれの出口管 542又は 544 力 出て行くが、このように直接接触式の熱交^^であるため、熱伝達効率が極めて 良い。また両者は、分子量が大きく異なるため、それらの分離が容易である。
このように第 4実施例によれば、 80°Cの高温の給湯と 100°C近辺の超低温の冷 熱源を同時に供給することができ、また安定した冷凍運転が可能で、効率の良い冷 媒サイクルを実現することができる。
実施例 5
[0046] 次に本発明の第 5実施例を図 8に基づいて説明する。図 8において、第 1冷凍サイ クル 21、第 2冷凍サイクル 31及び第 2冷凍サイクル 41は、前記第 3実施例と同一の 構成であり、第 3実施例を示す図 5と同一の符号を付しており、これらの説明を省略 する。
図 8において、 28は気液分離器であり、その液相部 28bが第 1冷凍サイクル 21の 液相部分の冷媒流路 22 (膨張弁 25の上流側)に分岐管 29を介して連通されて 、る 。また気液分離器 36は、その液相部 36bが第 2冷凍サイクル 31の液相部分の冷媒 流路 32 (膨張弁 34の上流側)に分岐管 37を介して連通されて 、る。
[0047] 61及び 71は、各種の冷却負荷を有する建物(例えば病院、ホテル、レストラン等) 6 0の内部に略水平に配置された閉回路ループであり、閉回路ループ 61の始端は気 液分離器 28の液相部 28bに接続され、終端は気液分離器 28の気相部 28aに接続 されている。また閉回路ループ 62の始端は、気液分離器 36の液相部 36bに、終端 は気相部 36aに接続されて、それぞれ冷媒液が矢印方向に流れている。
閉回路ループ 61の液相ライン 61bには、閉路状熱回路 62の始端が接続され、閉 路状熱回路 61の気相ライン 61aには閉路状熱回路 62の終端が接続されている。閉 路状熱回路 62には熱交 63が介設され、ここで閉回路ループ 61の液相ライン 6 lbから取り出した CO冷媒液の蒸発潜熱等を冷却負荷側の被冷却流体 rから奪って
2
冷却負荷側を冷却し、冷媒液は蒸発して気相となり、閉回路ループ 61の気相ライン 6 laに戻るように構成されて 、る。
[0048] また閉回路ループ 71では、液相ライン 71bに始端が接続され、気相ライン 71aに終 端が接続された閉路状熱回路 72が設けられ、閉路状熱回路 72では、膨張弁 73と、 熱交^^ 74と、圧縮機 75とが介設された冷凍サイクルが構成されている。閉路状熱 回路 72において、液相ライン 71bから取り出された CO冷媒液は、膨張弁 73で断熱
2
膨張し、熱交換器 74で冷却負荷側力も蒸発潜熱を奪って冷却負荷側の被冷却流体 rを冷却し、冷媒液は蒸発して気相となり、閉回路ループ 71の気相ライン 71aに戻る ように構成されている。(なお閉回路ループ 61, 71については、本発明者等が先に 提案した特開 2003— 329318号公報に詳しく開示されているのでこれを参照された い。)
[0049] このように第 5実施例によれば、 80°Cの高温の給湯と— 80°C付近の極低温の冷熱 を同時に供給することができるとともに、多様な冷却負荷を有する建物 (例えば病院、 ホテル、レストラン等)の需要に十分に応じることができる。
また建物内の閉回路ループ 61, 71に供給される冷媒は、自然冷媒であり安全かつ 無害な CO冷媒であり、安全に冷凍運転することができるとともに、第 1冷凍サイクル
2
21、第 2冷凍サイクル 31、及び建物 60内で配設される閉回路ループ 61, 71は、常 に COの三重点以上の圧縮機及び温度レベルで運転されるために、冷媒流路内部
2
での抵抗増大や詰まりを生ぜず、安定した高効率な運転が可能となる。
産業上の利用可能性
[0050] 本発明によれば、高温の給湯と極低温の冷熱を同時に供給できるとともに、病院、 ホテル、レストラン等多様な冷却負荷を要する場所の需要に十分に対応可能である とともに、安定した冷凍運転と高効率で成績係数を向上させた安全で安価な CO冷
2 凍機を実現することができる。

Claims

請求の範囲
[1] CO (炭酸ガス)を冷媒とし、
2
圧縮機を直列に多段に設けることにより COを超臨界域まで圧縮するとともに、
2
凝縮器力 出た CO凝縮体を膨張手段を通すことにより COの三重点以下の圧力
2 2
及び温度レベルまで減圧し、蒸発器で蒸発させる第 1の冷凍サイクルと、
前記第 1冷凍サイクルの凝縮器と膨張手段との間の冷媒流路に設けられた中間冷 却器を蒸発部とし、
前記凝縮器と該中間冷却器の間の冷媒流路から分岐し膨張手段を介して前記中 間冷却器を通り前記第 1の冷凍サイクルの多段圧縮機間の冷媒流路に接続され、 COの三重点以上の圧力及び温度レベルを維持するように構成された第 2の冷凍
2
サイクルとからなることを特徴とする CO冷凍機。
2
[2] 前記第 1の冷凍サイクルの前記中間冷却器の下流側に設けられた第 2の中間冷却 器を蒸発部とし、
前記中間冷却器と前記第 2の中間冷却器との間の冷媒流路から分岐し膨張手段を 介して前記第 2の中間冷却器を通り前記第 1の冷凍サイクルの多段圧縮機間の冷媒 流路に接続され、
COの三重点以上の圧力及び温度レベルを維持するように構成された第 3の冷凍
2
サイクルとからなることを特徴とする請求項 1記載の CO冷凍機。
2
[3] CO (炭酸ガス)を冷媒とし、 COガスを超臨界域まで圧縮するとともに、
2 2
凝縮器カゝら出た CO凝縮体を膨張手段を通して減圧させ、蒸発部で蒸発させ、 C
2
Oの三重点以上の圧力及び温度レベルを維持するように構成された第 1の冷凍サイ
2
クルと、
アンモニア、 HC又は COを冷媒とし、前記第 1の冷凍サイクルの蒸発部との間で熱
2
交換を行なう第 1のカスケードコンデンサを備え、膨張手段の後流側でも COの三重
2 点以上の圧力及び温度レベルを維持するように構成された第 2の冷凍サイクルと、 COを冷媒とし、該第 2の冷凍サイクルの蒸発部との間で熱交換を行なう第 2のカス
2
ケードコンデンサを備え、膨張手段を通すことにより COの三重点以下の圧力及び
2
温度レベルまで減圧して蒸発させる第 3の冷凍サイクルとからなることを特徴とする C o冷凍機。
2
[4] CHガス、空気又は窒素ガスを冷媒とし前記第 3の冷凍サイクルの蒸発部との間で 熱交換を行なう第 3のカスケードコンデンサを備えた第 4の冷凍サイクルを付設したこ とを特徴とする請求項 3記載の CO冷凍機。
2
[5] 前記夫々の冷凍サイクル間に介設された第 1〜第 3のカスケードコンデンサを高元 側冷媒と低元側冷媒とを直接接触させて熱交換する接触式熱交換器で構成したこと を特徴とする請求項 3又は 4記載の CO冷凍機。
2
[6] 前記第 1の冷凍サイクル又は前記第 3の冷凍サイクルの液相部分の冷媒流路に連 通し略水平状に配置された閉回路ループと、
該閉回路ループより液を取り出してその蒸発潜熱により熱交換を行なって液相より 気相に移行させ前記閉回路ループのガス側に戻す熱回路とを備えたことを特徴とす る請求項 3記載の CO冷凍機。
2
[7] 前記第 1の冷凍サイクル又は前記第 3の冷凍サイクルの液相部分の冷媒流路と前 記閉回路ループとの間に気液分離器を介在させてなることを特徴とする請求項 6記 載の CO冷凍機。
2
[8] COの三重点以下の圧力及び温度レベルで使用される前記膨張手段をキヤビラリ
2
チューブ又は膨張タービンとすることを特徴とする請求項 1又は 3記載の CO冷凍機
PCT/JP2006/320566 2005-10-17 2006-10-16 Co2冷凍機 WO2007046332A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06811830A EP1939548A1 (en) 2005-10-17 2006-10-16 Co2 refrigerator
JP2007540959A JP4973872B2 (ja) 2005-10-17 2006-10-16 Co2冷凍機
US12/105,169 US7818971B2 (en) 2005-10-17 2008-04-17 CO2 cooling and heating apparatus and method having multiple refrigerating cycle circuits

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-302346 2005-10-17
JP2005302346 2005-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/105,169 Continuation US7818971B2 (en) 2005-10-17 2008-04-17 CO2 cooling and heating apparatus and method having multiple refrigerating cycle circuits

Publications (1)

Publication Number Publication Date
WO2007046332A1 true WO2007046332A1 (ja) 2007-04-26

Family

ID=37962425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320566 WO2007046332A1 (ja) 2005-10-17 2006-10-16 Co2冷凍機

Country Status (5)

Country Link
US (1) US7818971B2 (ja)
EP (1) EP1939548A1 (ja)
JP (1) JP4973872B2 (ja)
CN (1) CN101326409A (ja)
WO (1) WO2007046332A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298406A (ja) * 2007-06-04 2008-12-11 Toyo Eng Works Ltd 多元ヒートポンプ式蒸気・温水発生装置
JP2010096360A (ja) * 2008-10-14 2010-04-30 Daikin Ind Ltd 空気調和装置
JP2010156497A (ja) * 2008-12-26 2010-07-15 Daikin Ind Ltd 冷凍装置
JP2010276230A (ja) * 2009-05-27 2010-12-09 Sanyo Electric Co Ltd 冷凍装置
EP2309204A1 (en) * 2008-05-02 2011-04-13 Daikin Industries, Ltd. Refrigeration device
WO2011004969A3 (ko) * 2009-07-07 2011-04-14 엘지전자 주식회사 공기조화기
WO2012060164A1 (ja) * 2010-11-04 2012-05-10 サンデン株式会社 ヒートポンプ式暖房装置
JP2012117712A (ja) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd 冷凍装置
CN102692096A (zh) * 2012-06-29 2012-09-26 罗良宜 开式热泵装置
CN101701755B (zh) * 2009-10-20 2013-01-02 李华玉 分段吸热-分段压缩-分段膨胀气体压缩式热泵
JP2013148331A (ja) * 2011-12-21 2013-08-01 Daikin Industries Ltd ヒートポンプシステム
JP2014528053A (ja) * 2011-09-30 2014-10-23 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 高温ヒートポンプおよび高温ヒートポンプにおける作動媒体の使用方法
WO2017026129A1 (ja) * 2015-08-10 2017-02-16 八洋エンジニアリング株式会社 アンモニア冷凍装置
CN110887265A (zh) * 2019-11-25 2020-03-17 珠海格力电器股份有限公司 内循环叠加热泵系统、控制方法及热泵烘干机
US11466903B2 (en) 2018-03-30 2022-10-11 Ihi Corporation Cooling system for fluid to be cooled
WO2022249565A1 (ja) * 2021-05-27 2022-12-01 三菱重工サーマルシステムズ株式会社 多段圧縮冷凍装置

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2135017A4 (en) * 2007-03-09 2010-03-10 Carrier Corp PREVENTING THE SOLIDIFICATION OF A REFRIGERANT FLUID
US20090260389A1 (en) * 2008-04-18 2009-10-22 Serge Dube Co2 refrigeration unit
KR101542121B1 (ko) 2009-07-07 2015-08-05 엘지전자 주식회사 공기조화기
ITBS20090153A1 (it) * 2009-08-12 2011-02-13 Turboden Srl Metodo e sistema di pressurizzazione localizzata per circuiti di olio diatermico
KR101639814B1 (ko) * 2009-11-20 2016-07-22 엘지전자 주식회사 냉장 및 냉동 복합 공조시스템
DK2504641T3 (en) * 2009-11-25 2019-02-25 Carrier Corp PROTECTION FROM LOW SUCTION PRESSURE IN COOLING STEAM COMPRESSION SYSTEM
WO2012027063A1 (en) * 2010-08-23 2012-03-01 Dresser-Rand Company Process for throttling a compressed gas for evaporative cooling
US10132529B2 (en) 2013-03-14 2018-11-20 Rolls-Royce Corporation Thermal management system controlling dynamic and steady state thermal loads
EP2994385B1 (en) 2013-03-14 2019-07-03 Rolls-Royce Corporation Adaptive trans-critical co2 cooling systems for aerospace applications
US9718553B2 (en) 2013-03-14 2017-08-01 Rolls-Royce North America Technologies, Inc. Adaptive trans-critical CO2 cooling systems for aerospace applications
US10302342B2 (en) 2013-03-14 2019-05-28 Rolls-Royce Corporation Charge control system for trans-critical vapor cycle systems
US9676484B2 (en) 2013-03-14 2017-06-13 Rolls-Royce North American Technologies, Inc. Adaptive trans-critical carbon dioxide cooling systems
US9353980B2 (en) * 2013-05-02 2016-05-31 Emerson Climate Technologies, Inc. Climate-control system having multiple compressors
DK201570281A1 (en) * 2015-05-13 2016-11-28 Nel Hydrogen As Cooling of a fluid with a refrigerant at triple point
DE102015111183B4 (de) 2015-07-10 2023-05-04 Technische Universität Dresden Kreislaufverfahren zur Kältebereitstellung mit Kohlendioxid als Kältemittel und Kälteanlage zur Durchführung des Verfahrens
DE102015214705A1 (de) * 2015-07-31 2017-02-02 Technische Universität Dresden Vorrichtung und Verfahren zum Durchführen eines Kaltdampfprozesses
DE102015118105B4 (de) * 2015-10-23 2019-05-09 Technische Universität Dresden Verfahren und Vorrichtung zum Betreiben eines Kältekreislaufes mit einem Sublimator für Kohlendioxid als Kältemittel
DE102016201485B3 (de) 2016-02-01 2017-04-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung und Verfahren zur Wellenfrontanalyse
CN106642786A (zh) * 2016-11-24 2017-05-10 松下冷机系统(大连)有限公司 一种采用中间压力供液的二氧化碳制冷循环系统
EP3366670A1 (en) * 2017-02-27 2018-08-29 Casale Sa A process and system to capture ammonia from a purge gas of a urea plant
FR3072160B1 (fr) * 2017-10-09 2019-10-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif et procede de refrigeration
US11585608B2 (en) 2018-02-05 2023-02-21 Emerson Climate Technologies, Inc. Climate-control system having thermal storage tank
US11149971B2 (en) 2018-02-23 2021-10-19 Emerson Climate Technologies, Inc. Climate-control system with thermal storage device
WO2019222394A1 (en) 2018-05-15 2019-11-21 Emerson Climate Technologies, Inc. Climate-control system with ground loop
CN108489130A (zh) * 2018-06-06 2018-09-04 深圳市派沃新能源科技股份有限公司 一种螺杆式单机三级压缩热泵供暖系统及控制方法
US11346583B2 (en) 2018-06-27 2022-05-31 Emerson Climate Technologies, Inc. Climate-control system having vapor-injection compressors
KR102120249B1 (ko) * 2018-11-23 2020-06-09 서울대학교산학협력단 보조 냉각 사이클을 포함한 이산화탄소 냉방 시스템
CN111380240A (zh) * 2018-12-28 2020-07-07 青岛海尔空调电子有限公司 具有双级压缩的空调系统
CN110030754B (zh) * 2019-03-20 2020-12-15 浙江大学宁波理工学院 一种提高多通道蒸发器入口制冷剂分配均匀性的制冷系统
DE102019113327A1 (de) * 2019-05-20 2020-11-26 Technische Universität Dresden Wärmeübertrager und Kühlungsverfahren
CN110513902B (zh) * 2019-09-05 2024-02-20 天津商业大学 一种多级蒸发冷凝机械过冷跨临界co2中高温热泵系统
CN113074466A (zh) * 2021-04-29 2021-07-06 山西山安蓝天节能科技股份有限公司 一种适用于回收电厂余热的大温差多级压缩纯质热泵系统
EP4317841A1 (de) * 2022-08-05 2024-02-07 Weiss Technik GmbH Prüfkammer und verfahren zur steuerung
CN115682456B (zh) * 2022-11-10 2024-04-09 中南大学 一种面向数据中心余热回收的co2热泵储能方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159826A (ja) * 1992-11-24 1994-06-07 Hitachi Ltd 多段圧縮冷凍装置
JPH1130599A (ja) * 1997-07-09 1999-02-02 Toyo Eng Works Ltd ドライアイスの蓄熱を利用する二元冷却設備の蓄熱量 計測方法及び同二元冷却設備
JP2001091074A (ja) * 1999-09-24 2001-04-06 Sanyo Electric Co Ltd カスケード式冷凍装置
JP2001153476A (ja) * 1999-11-30 2001-06-08 Sanyo Electric Co Ltd 冷凍装置
JP2003329318A (ja) * 2002-05-09 2003-11-19 Mayekawa Mfg Co Ltd 域間熱補完システム
JP2004085099A (ja) * 2002-08-27 2004-03-18 Mayekawa Mfg Co Ltd 排出co2の回収システム
JP2004170007A (ja) * 2002-11-20 2004-06-17 Hachiyo Engneering Kk アンモニアと二酸化炭素を組み合わせた二元冷凍システム
JP2004286289A (ja) * 2003-03-20 2004-10-14 Sanyo Electric Co Ltd 冷媒サイクル装置
JP2004308972A (ja) * 2003-04-03 2004-11-04 Mayekawa Mfg Co Ltd Co2冷凍機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5109678A (en) * 1989-01-03 1992-05-05 General Electric Company Apparatus for controlling a dual evaporator, dual fan refrigerator with independent temperature controls
US5134859A (en) * 1991-03-29 1992-08-04 General Electric Company Excess refrigerant accumulator for multievaporator vapor compression refrigeration cycles
US5191776A (en) * 1991-11-04 1993-03-09 General Electric Company Household refrigerator with improved circuit
US5235820A (en) * 1991-11-19 1993-08-17 The University Of Maryland Refrigerator system for two-compartment cooling
EP1215449A4 (en) * 1999-09-24 2005-01-19 Sanyo Electric Co COOLING DEVICE WITH MULTI-STAGE COMPACTION
US6698234B2 (en) * 2002-03-20 2004-03-02 Carrier Corporation Method for increasing efficiency of a vapor compression system by evaporator heating
US6923011B2 (en) * 2003-09-02 2005-08-02 Tecumseh Products Company Multi-stage vapor compression system with intermediate pressure vessel
US6883341B1 (en) * 2003-11-10 2005-04-26 Carrier Corporation Compressor with unloader valve between economizer line and evaporator inlet
JP2006053390A (ja) * 2004-08-12 2006-02-23 Fuji Photo Film Co Ltd 感光性フィルムの製造ライン
US7131285B2 (en) * 2004-10-12 2006-11-07 Carrier Corporation Refrigerant cycle with plural condensers receiving refrigerant at different pressure
US7228707B2 (en) * 2004-10-28 2007-06-12 Carrier Corporation Hybrid tandem compressor system with multiple evaporators and economizer circuit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159826A (ja) * 1992-11-24 1994-06-07 Hitachi Ltd 多段圧縮冷凍装置
JPH1130599A (ja) * 1997-07-09 1999-02-02 Toyo Eng Works Ltd ドライアイスの蓄熱を利用する二元冷却設備の蓄熱量 計測方法及び同二元冷却設備
JP2001091074A (ja) * 1999-09-24 2001-04-06 Sanyo Electric Co Ltd カスケード式冷凍装置
JP2001153476A (ja) * 1999-11-30 2001-06-08 Sanyo Electric Co Ltd 冷凍装置
JP2003329318A (ja) * 2002-05-09 2003-11-19 Mayekawa Mfg Co Ltd 域間熱補完システム
JP2004085099A (ja) * 2002-08-27 2004-03-18 Mayekawa Mfg Co Ltd 排出co2の回収システム
JP2004170007A (ja) * 2002-11-20 2004-06-17 Hachiyo Engneering Kk アンモニアと二酸化炭素を組み合わせた二元冷凍システム
JP2004286289A (ja) * 2003-03-20 2004-10-14 Sanyo Electric Co Ltd 冷媒サイクル装置
JP2004308972A (ja) * 2003-04-03 2004-11-04 Mayekawa Mfg Co Ltd Co2冷凍機

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298406A (ja) * 2007-06-04 2008-12-11 Toyo Eng Works Ltd 多元ヒートポンプ式蒸気・温水発生装置
EP2309204A4 (en) * 2008-05-02 2014-09-10 Daikin Ind Ltd COOLER
EP2309204A1 (en) * 2008-05-02 2011-04-13 Daikin Industries, Ltd. Refrigeration device
US8959951B2 (en) 2008-05-02 2015-02-24 Daikin Industries, Ltd. Refrigeration apparatus controlling opening degree of a second expansion mechanism based on air temperature at the evaporator or refergerant temperature at the outlet of a two stage compression element
JP2010096360A (ja) * 2008-10-14 2010-04-30 Daikin Ind Ltd 空気調和装置
JP2010156497A (ja) * 2008-12-26 2010-07-15 Daikin Ind Ltd 冷凍装置
JP2010276230A (ja) * 2009-05-27 2010-12-09 Sanyo Electric Co Ltd 冷凍装置
US8991204B2 (en) 2009-05-27 2015-03-31 Panasonic Intellectual Property Management Co., Ltd. Refrigerating apparatus
WO2011004969A3 (ko) * 2009-07-07 2011-04-14 엘지전자 주식회사 공기조화기
US8671713B2 (en) 2009-07-07 2014-03-18 Lg Electronics Inc. Air conditioner
CN101701755B (zh) * 2009-10-20 2013-01-02 李华玉 分段吸热-分段压缩-分段膨胀气体压缩式热泵
JP2012097993A (ja) * 2010-11-04 2012-05-24 Sanden Corp ヒートポンプ式暖房装置
WO2012060164A1 (ja) * 2010-11-04 2012-05-10 サンデン株式会社 ヒートポンプ式暖房装置
US9157667B2 (en) 2010-11-04 2015-10-13 Sanden Corporation Heat pump-type heating device
JP2012117712A (ja) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd 冷凍装置
JP2014528053A (ja) * 2011-09-30 2014-10-23 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 高温ヒートポンプおよび高温ヒートポンプにおける作動媒体の使用方法
JP2013148331A (ja) * 2011-12-21 2013-08-01 Daikin Industries Ltd ヒートポンプシステム
CN102692096A (zh) * 2012-06-29 2012-09-26 罗良宜 开式热泵装置
WO2017026129A1 (ja) * 2015-08-10 2017-02-16 八洋エンジニアリング株式会社 アンモニア冷凍装置
US11466903B2 (en) 2018-03-30 2022-10-11 Ihi Corporation Cooling system for fluid to be cooled
US11725852B2 (en) 2018-03-30 2023-08-15 Ihi Corporation Cooling system for fluid to be cooled
CN110887265A (zh) * 2019-11-25 2020-03-17 珠海格力电器股份有限公司 内循环叠加热泵系统、控制方法及热泵烘干机
WO2022249565A1 (ja) * 2021-05-27 2022-12-01 三菱重工サーマルシステムズ株式会社 多段圧縮冷凍装置

Also Published As

Publication number Publication date
JP4973872B2 (ja) 2012-07-11
US7818971B2 (en) 2010-10-26
JPWO2007046332A1 (ja) 2009-04-23
EP1939548A1 (en) 2008-07-02
US20080245505A1 (en) 2008-10-09
CN101326409A (zh) 2008-12-17

Similar Documents

Publication Publication Date Title
JP4973872B2 (ja) Co2冷凍機
ES2237717T3 (es) Ciclo hibrido para la produccion de gas natural licuado.
US9989280B2 (en) Cascade cooling system with intercycle cooling or additional vapor condensation cycle
JP5143563B2 (ja) 小型ガス液化装置
JP2865844B2 (ja) 冷凍システム
WO2008019689A2 (en) A transcritical refrigeration system with a booster
JP4832563B2 (ja) 冷凍システム
JP4317793B2 (ja) 冷却システム
WO1999008053A1 (fr) Cycle de refroidissement
JP2004279014A (ja) Co2冷凍サイクル
JP2006220351A (ja) 冷凍装置
JP2018028395A (ja) ヒートポンプ装置
WO2006027330A1 (en) Co2 compression refrigeration apparatus for low temperature applications
US4528823A (en) Heat pump apparatus
KR102173814B1 (ko) 다단 히트펌프 시스템
JP2004308972A (ja) Co2冷凍機
JP3321192B2 (ja) 冷凍回路
JP2004108616A (ja) Co2冷凍サイクルの給湯システム
JP2006003023A (ja) 冷凍装置
WO2022087491A1 (en) Heating and refrigeration system
JP4016882B2 (ja) ランキンサイクル
JP3256856B2 (ja) 冷凍システム
JP2766356B2 (ja) 家庭用冷蔵庫用の二重蒸発器付き冷凍システム
JP2009156563A (ja) 自己平衡する凝縮、蒸発熱交換器装置及びそれを組み込んだ冷凍サイクルとそれを用いた凝縮液の一部回収装置
US20230366599A1 (en) A heat pump system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680046293.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007540959

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006811830

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE