WO2007043582A1 - Sarsウイルスヌクレオカプシドタンパク質を測定するための測定方法、測定用試薬キット、試験具、sarsウイルスヌクレオカプシドタンパク質に対するモノクローナル抗体及び前記モノクローナル抗体を産生するハイブリドーマ - Google Patents

Sarsウイルスヌクレオカプシドタンパク質を測定するための測定方法、測定用試薬キット、試験具、sarsウイルスヌクレオカプシドタンパク質に対するモノクローナル抗体及び前記モノクローナル抗体を産生するハイブリドーマ Download PDF

Info

Publication number
WO2007043582A1
WO2007043582A1 PCT/JP2006/320330 JP2006320330W WO2007043582A1 WO 2007043582 A1 WO2007043582 A1 WO 2007043582A1 JP 2006320330 W JP2006320330 W JP 2006320330W WO 2007043582 A1 WO2007043582 A1 WO 2007043582A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
sars
region
recognizes
amino acid
Prior art date
Application number
PCT/JP2006/320330
Other languages
English (en)
French (fr)
Inventor
Kotaro Fujimoto
Tadahiro Kajita
Kazuhiko Takeda
Takashi Okamoto
Original Assignee
Sysmex Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corporation filed Critical Sysmex Corporation
Priority to US12/090,055 priority Critical patent/US20090280507A1/en
Priority to JP2007539969A priority patent/JPWO2007043582A1/ja
Publication of WO2007043582A1 publication Critical patent/WO2007043582A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1002Coronaviridae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • Measuring method for measuring SARS virus nucleoside psid protein measuring reagent kit, test device, monoclonal antibody against SARS virus nucleocapsid protein, and hybridoma producing said monoclonal antibody
  • the present invention relates to a measurement method, a reagent kit for measurement, and a test device for measuring SARS virus nucleopower psid protein (SARS-NP).
  • SARS-NP SARS virus nucleopower psid protein
  • the present invention also relates to a monoclonal antibody against SARS-NP and a hybridoma that produces the monoclonal antibody.
  • SARS Severe Acute Respiratory Syndrome
  • SARS virus a new type of virus classified in the Coronaviridae family.
  • a method for diagnosing SARS infection a method of detecting SARS virus in a specimen using an immunological method is known. Examples of such a method include the methods described in Non-Patent Document 1 and Non-Patent Document 2.
  • Non-Patent Document 1 describes a measurement method by enzyme immunoassay (ELISA) using a polyclonal antibody against SARS-NP. Specifically, a polyclonal antibody is immobilized on an ELISA plate, and a specimen and a labeled polyclonal antibody are sequentially added thereto to form a complex, which is detected.
  • ELISA enzyme immunoassay
  • Non-Patent Document 2 describes a measurement method by ELISA using a monoclonal antibody against SARS-NP and a polyclonal body against SARS-NP. Specifically, three types of monoclonal antibodies are immobilized on an ELISA plate, and a sample and a labeled polyclonal antibody are sequentially added thereto to form a complex, which is detected.
  • Non-Patent Document 1 and Non-Patent Document 2 The method described in Non-Patent Document 1 and Non-Patent Document 2 is ELISA.
  • ELISA is considered to be a comparatively highly sensitive measurement method among immunological measurement methods.
  • rapid and simple immunochromatography is often used for diagnosis of viral infection.
  • immunochromatography is a measurement method with lower sensitivity than ELISA, and it is assumed that polyclonal and monoclonal antibodies described in Non-Patent Document 1 and Non-Patent Document 2 are immunochromatographically. Even if it is used in the Mat method, there is a possibility that sufficient sensitivity cannot be obtained.
  • Non-Patent Document 1 Susanna KP Lau, Patrick CY Woo, Beatrice HL Wong, Hoi-Wah Tsoi, Gibson KS Woo, Rosana WS Poon, Kwok-Hung Chan, William I. Wei, J. S. Malik Peiris , and Kwok-Yung Yuen, “Detection of Severe Acute Respiratory Syndrome (SARS) Coronavirus Nucieoc apsid Protein in SARS Patients by Enzyme -Linked Immunosorbent Assay) '', Journal of Clinical Microbiology, Vol.42, No.7, P.2884-2889.
  • SARS Severe Acute Respiratory Syndrome
  • Non-Patent Document 2 Xiao-yan Che, Li-wen Qiu, Yu-xian Pan, Kun Wen, Wei Hao, Li-ya Zhang, Ya-di Wang, Zhi-yong Liao, Xu Hua, Vincent CC heng, and Kwok— yung Yuen, “Sensitive and Specific Monoclonal Antibody-Based Capture Enzyme Immunoassay for Sensitive and Specific Monoclonal Antibody-Based Capture Enzyme Immunoassay for Detection of Nucleopower Psid Antigen in Patients with Severe Acute Respiratory Syndrome Detection or Nucleocapsi d Antigen in Sera from Patients with Severe Acute Respiratory Syndrome) '', Journal of Clinical Microbiology, Vol.42, No.6, P. 2629-2635.
  • the object of the present invention is to provide relatively low sensitivity among immunological measurement methods and relatively low sensitivity among immunological measurement methods such as ELISA only in the measurement of SARS-NP.
  • Highly sensitive measurement methods that can be applied to measurement methods such as immunochromatography, and reagent kits, test devices, monoclonal antibodies, and high-pridomas that produce monoclonal antibodies. Is to provide.
  • the present invention uses a first antibody that specifically binds to SARS virus nucleopower psid protein (SARS-NP) and a second antibody that specifically binds to SARS-NP.
  • SARS-NP SARS virus nucleopower psid protein
  • a second antibody that specifically binds to SARS-NP is provided.
  • the present invention also provides SARS-NP using a first antibody that specifically binds to SARS virus nucleopower psid protein (SARS-NP) and a second antibody that specifically binds to SARS-NP.
  • a reagent kit for measurement comprising a SARS-NP measurement reagent kit that combines the solid phase on which the first antibody is immobilized and the reagent containing the second antibody labeled with a labeling substance.
  • the first antibody and the second antibody are antibodies that specifically bind to SARS-NP.
  • the first antibody or the second antibody is an antibody that recognizes an epitope present in the region 283 to 422 (region C) from the N-terminal side of the amino acid sequence of SARS-NP.
  • the present invention also provides a SARS virus using a first antibody that specifically binds to SARS virus nucleopower psid protein (SARS-NP) and a second antibody that specifically binds to SARS-NP.
  • SARS-NP SARS virus nucleopower psid protein
  • the first antibody is immobilized on a solid phase
  • the second antibody is labeled with a labeling substance
  • the immunochromatographic test device includes a sample addition part to which a measurement sample is added and a sample development part to which a measurement sample added to the sample addition part is developed, and the sample development part is the first.
  • a determination unit having an antibody immobilized thereon, and a measurement sample added to the sample addition unit is developed at least toward the determination unit;
  • test for immunochromatography wherein the first antibody or the second antibody is an antibody that recognizes an epitope present in the region 283 to 422 from the N-terminal side of the amino acid sequence of SARS-NP (region C) Provide ingredients.
  • the present invention also provides a monoclonal antibody that specifically binds to the SARS virus nucleopower psid protein (SARS-NP) and is produced by a hybridoma having a receipt number of FERM ABP-10678. .
  • SARS-NP SARS virus nucleopower psid protein
  • the present invention also provides a monoclonal antibody that specifically binds to a SARS virus nucleopower psid protein (SARS-NP) and is produced by a hybridoma having a receipt number of FERM ABP-10679. .
  • SARS-NP SARS virus nucleopower psid protein
  • the present invention also relates to a monomer produced by a hybridoma that specifically binds to SARS virus nucleopower psid protein (SARS-NP) and has a receipt number of FERM ABP-10680.
  • SARS-NP SARS virus nucleopower psid protein
  • ABP-10680 A clonal antibody is provided.
  • the present invention also provides a monoclonal antibody that specifically binds to SARS virus nucleopower psid protein (SARS-NP) and that is produced by a hybridoma having the receipt number FERM ABP-10686. .
  • SARS-NP SARS virus nucleopower psid protein
  • the present invention also provides a monoclonal antibody that specifically binds to a SARS virus nucleopower psid protein (SARS-NP) and is produced by a hybridoma having a receipt number of FERM ABP-10687. .
  • SARS-NP SARS virus nucleopower psid protein
  • the present invention also provides a hybridoma deposited with a receipt number FERM ABP-10678.
  • the present invention also provides a hybridoma deposited with a receipt number FERM ABP-10679.
  • the present invention also provides a hybridoma deposited under the receipt number FERM ABP-10680.
  • the present invention also provides a hybridoma deposited under the receipt number FERM ABP-10686.
  • the present invention also provides a hybridoma deposited under the receipt number FERM ABP-10687.
  • the measurement method of the present invention can measure SARS-NP with higher sensitivity than before. This makes it possible to detect the SARS virus easily and with high sensitivity.
  • FIG. 1 schematically shows an embodiment of a test device used in an immunochromatography method using the monoclonal antibody of the present invention.
  • FIG. 2 schematically shows one embodiment of a test device used in an immunochromatography method using the monoclonal antibody of the present invention.
  • FIG. 3 is a diagram schematically showing the amino acid sequence of SARS-NP and each region (region A, region B, region C) when the sequence is divided into three.
  • FIG. 4 shows the results of Example 3.
  • FIG. 5 shows the results of Example 4.
  • FIG. 6 shows the results of Example 5.
  • SARS-NP is measured by an immunological technique. Specifically, SARS-NP is measured by forming a complex comprising SARS-NP, a first antibody that specifically binds to SA RS-NP, and a second antibody that specifically binds to SARS-NP. As a result of intensive studies focusing on the specificity and combination of antibodies used for such measurement, the present inventors have completed the present invention.
  • SARS-NP a nucleoprotein
  • SARS-NP is measured using an antibody that specifically binds to SARS-NP as the first antibody and the second antibody.
  • Gen Bank accession Number; AY274119, protein id; AAP41047.1
  • the amino acid sequence (total length 422 residues) of the nucleoside psid protein of SARS TOR2 strain is shown! /.
  • the SARS-NP amino acid sequence was divided into three regions as shown in FIG. 3, and a plurality of antibodies recognizing epitopes present in each region were obtained. Then, SARS-NP was measured by various combinations of these antibodies.
  • sensitivity can be increased by using an antibody that recognizes an epitope present in the region 283 to 422 (region C) from the N-terminal side of the amino acid sequence of SARS-NP to the first antibody or the second antibody. We were able to obtain high measurement results.
  • the first antibody and the second antibody are preferably combined as an antibody that recognizes an epitope present in the first to 141st region (region A) from the N-terminal side of the amino acid sequence of SARS-NP. And an antibody that recognizes an epitope present in the 142nd to 282nd region (region B) from the N-terminal side of the amino acid sequence of SARS-NP. Examples include combinations of antibodies that recognize epitopes present in C.
  • preferred antibodies for use as the first antibody include an antibody that recognizes an epitope present in region A or an epitope present in region C. Recognizing antibodies are mentioned.
  • One antibody and a second antibody are preferably combined such that the first antibody is an antibody recognizing an epitope present in region A, or an antibody recognizing an epitope present in region B, and the second antibody is present in region C. And combinations that are antibodies that recognize epitopes.
  • the first antibody is an antibody recognizing an epitope present in region C
  • the second antibody is an antibody recognizing an epitope present in region A or an antibody recognizing an epitope present in region B The combination which is is mentioned.
  • amino acid sequence of SARS-NP does not have to completely match the amino acid sequence of SARS-NP disclosed in Gen Bank (accession Number; AY274119, protein ID; AAP41047.1). Compared to the SARS-NP amino acid sequence disclosed in the Gen Bank (accession Number; AY274119, protein id; AAP41047.1), a part of the amino acid has been deleted, substituted, or appended to SARS-NP. It may be an amino acid sequence.
  • the first antibody and the second antibody may be either a polyclonal antibody or a monoclonal antibody. From the viewpoint of specificity, it is preferable that one of the first antibody and the second antibody is a monoclonal antibody, and the first antibody and the second antibody are most preferably a monoclonal antibody.
  • immunological measurement methods include immunoturbidimetric method (Turbitometric Immunoassay: TIA), immunotrophic method (Nephelometric Immunoassay: NIA), latex immunoagglutination method (Latex Agglutination Immunoassay: LI, radiation) Sexual immunoassay U (Radio Immunoassay: RIA), Enzyme Immunoassay (EIA or Enzyme Linked Immunosorbent Assay: ELISA), Fluorescent Immunoassay (FIA), Chemiluminescence immunoassay (Chemilumiscent Immunoassay: CLIA), etc.
  • immunochromatography using a test device equipped with a membrane-like carrier on which an antibody is immobilized is also used in the diagnosis of virus infection. Therefore, immunochromatography is preferred as an immunological measurement method, and in order to prevent infection due to contact with a specimen containing a virus, it is preferable to automate the measurement. Automation, ELISA is preferable in terms of sensitivity and versatility as an immunological measurement method.
  • the antibody may be labeled with a labeling substance or immobilized on a carrier.
  • the labeling substance for labeling the antibody is appropriately selected according to the measurement method. For example, how to measure If the law is RIA, the labeling substances include radioisotopes such as 125 I, “C, 32 P”.
  • EIA and ELISA enzymes such as 13 galactosidase, peroxidase, and alkaline phosphatase are listed.
  • fluorescent dyes such as fluorescein derivatives and rhodamine derivatives are exemplified.
  • CLIA chemiluminescent substances such as luminol, isoluminol, and ataridinium derivatives are listed.
  • immunochromatography include gold colloid, colored latex particles, and fluorescent latex particles.
  • the carrier for immobilizing the antibody is not particularly limited as long as it has a high binding property with the antibody.
  • these may be introduced with a functional group such as an amino group, an aminoacyl group, a carboxyl group, an acyl group, a hydroxyl group, or a nitro group.
  • a functional group such as an amino group, an aminoacyl group, a carboxyl group, an acyl group, a hydroxyl group, or a nitro group.
  • the shape of the carrier include microtiter plates (ELISA plates), flat plates such as disks, particles such as beads, tubes such as test tubes and tubes, fibers, and membranes. It is selected as appropriate.
  • a known method such as a physical adsorption method, an ionic bond method, a covalent bond method, or a comprehensive method can be used.
  • the reagent containing the antibody used in the measurement method may be a solution depending on the measurement method.
  • the reagent can be combined with known components in addition to the antibody. That is, a buffer that gives the pH necessary for the antigen-antibody reaction, a reaction enhancer that promotes the antigen-antibody reaction, a reaction stabilizer or blocker that suppresses non-specific reactions, a preservative that enhances the storage stability of the reagent, and the like may be combined. .
  • the measurement sample used in the measurement method is a sample that may contain SARS virus, or a sample obtained by treating the sample with a buffer or the like, and does not inhibit the measurement reaction. If there is no particular limitation.
  • the specimen include body fluids such as blood, serum, nasal discharge, sputum, and throat swab.
  • an immunochromatography method to which the measurement method of the present invention is applied will be described.
  • a substance to be measured is reacted with a first antibody immobilized on a carrier and a second antibody labeled with a labeling substance, and the substance to be measured and the first antibody are reacted.
  • the second antibody is formed on a membrane-like carrier, and the presence of this complex is detected or quantified by detecting the labeling substance of the second antibody.
  • immune chromatographic methods include flow-through immunochromatography and lateral flow immunochromatography.
  • Flow-through immunochromatography is a method in which a solution containing a substance to be measured is passed in a vertical direction with respect to a membrane-like carrier on which a first antibody is immobilized.
  • the lateral flow immunochromatography method is a method in which a solution containing a substance to be measured is developed in a horizontal direction on a membrane-like carrier on which a first antibody is immobilized.
  • FIG. 1 is a schematic view of a lateral flow type test device.
  • Fig. 1 (a) is a plan view of the test device, and (b) is a side view of the test device.
  • the lateral flow type test device comprises a sample addition member 2, a label holding member 3, a chromatographic membrane carrier 4, and an absorption member 5 on a substrate 1 having an adhesive layer on the surface. Is provided.
  • the label holding member 3 is disposed in contact with the sample addition member 2 and holds the second antibody labeled with the labeling substance.
  • the chromatographic membrane carrier 4 is arranged in contact with the label holding member 3 and has a determination unit 6 on which the first antibody is immobilized.
  • the absorbing member 5 is disposed so as to contact the chromatographic membrane carrier 4.
  • the measurement sample when a measurement sample is dropped onto the sample addition member 2 of FIG. 1, the measurement sample becomes a sample addition member 2, a label holding member 3, a chromatographic membrane by capillary action.
  • the carrier 4 and the absorbent member 5 are moved sequentially.
  • a substance to be measured is mixed in the measurement sample, this substance to be measured reacts with the second antibody in the label holding member 3 to form a complex.
  • these complexes are captured by the first antibody immobilized on the determination part 6 of the chromatographic membrane carrier 4.
  • a band of the labeled substance of the second antibody appears in the determination unit 6, and the substance to be measured is detected visually.
  • the chromatographic membrane carrier 4 may further include a control unit on the downstream side of the determination unit 6 for confirming that the dropped measurement sample has passed through the determination unit 6.
  • a control unit on the downstream side of the determination unit 6 for confirming that the dropped measurement sample has passed through the determination unit 6.
  • the control part is fixed with piotin and avidin that binds to piotin is labeled with a labeling substance and held on the label holding member 3, the avidin in the label holding member 3 is on the chromatographic membrane carrier 4.
  • Avidin is not captured by the second antibody in determination unit 6, It is captured by some piotin.
  • a band of avidin labeled substance appears in the control part. Since the control part is provided downstream of the determination part 6, it can be confirmed that the sample has passed the determination part 6 by checking this band.
  • avidin may be immobilized on this control part, and piotin may be labeled with a labeling substance and held on the label holding member 3.
  • the substance immobilized on the control part and the substance to be held on the label holding member 3 may be other than the combination of avidin and piotin.
  • a substance that does not react with the substance to be measured and the secondary antibody immobilized on the determination unit is used as the substance to be held by the label holding member 3.
  • the test device may not have a marker holding member!
  • the second antibody is preliminarily mixed with the specimen to prepare a measurement sample, and this measurement sample can be dropped onto the sample addition member 2 of the test tool.
  • the present invention can be applied to a detection kit for immunochromatography for detecting SARS virus including the above-described test device.
  • a detection kit for immunochromatography for detecting SARS virus including the above-described test device.
  • a kit may include, for example, a pretreatment liquid for processing a specimen to prepare a measurement sample, a test tool, a reagent containing various antibodies, and the like.
  • a microplate such as an ELISA plate on which an antibody or antigen for a substance to be measured is immobilized is used.
  • the substance to be measured is an antigen
  • a microplate on which a first antibody against the substance to be measured is immobilized is used.
  • a measurement sample is added to the microplate to form a complex of the substance to be measured in the measurement sample and the immobilized first antibody.
  • a second antibody labeled with a labeling substance such as an enzyme is added to form a complex with the immobilized first antibody, the substance to be measured and the labeled second antibody on the microphone plate.
  • the substance to be measured is detected and quantified using the labeling substance of the second antibody of the complex.
  • Examples of the labeling substance for labeling the second antibody include enzymes such as peroxidase, galactosidase, and alkaline phosphatase.
  • the present invention can be applied to a detection kit for ELISA for detecting SARS virus including the microplate.
  • a detection kit for ELISA for detecting SARS virus including the microplate.
  • a kit includes, for example, a microplate on which the first antibody is immobilized, a washing solution for washing the wells of the microplate, It may contain a reagent for the body-labeled enzyme, various antibodies and the like.
  • the washing solution include a buffer solution having a predetermined salt concentration.
  • Monoclonal antibodies can be produced by the method of Kohler and Milstein (Koehlar & Milstein, Nature 256, 495-497, 1975). That is, spleen cells and myeloma cells of an animal immunized with an antigen are fused, and cells that produce antibodies specific to the antigen are selected from the obtained fused cells (hereinafter referred to as hyperidoma).
  • hyperidoma spleen cells and myeloma cells of an animal immunized with an antigen are fused, and cells that produce antibodies specific to the antigen are selected from the obtained fused cells (hereinafter referred to as hyperidoma).
  • a sputum in which the high-pridoma is cultured in large quantities can be grown in the abdominal cavity of an animal, and the sputum in a culture solution can be produced by isolating the monoclonal antibody from ascites.
  • [I] to [V] a method for obtaining a monoclonal antibody against SARS
  • Antigen used to prepare a monoclonal antibody against SARS-NP can be obtained by purification from a sample cartridge containing SARS virus.
  • examples of the sample containing SARS virus include blood collected from SARS patients and a culture solution obtained by artificially culturing SARS virus.
  • Antigens can also be obtained by genetic engineering techniques.
  • Immunization step Purified SARS-NP, or recombinant SARS-NP obtained by genetic engineering techniques and partial peptides thereof were dissolved or suspended in an appropriate buffer such as phosphate buffer Is used as the antigen solution.
  • the antigen solution is usually prepared so that the concentration of the antigen is about 50 to 500 / z g / ml. If the antigenicity of the peptide antigen alone is low, it can be used by cross-linking to a suitable carrier protein such as albumin or keyhole limpet mosyanin (KLH).
  • a suitable carrier protein such as albumin or keyhole limpet mosyanin (KLH).
  • mice examples include mammals such as mice, rats, hamsters, horses, goats, and rabbits. Rodents are preferable, and among them, mice are preferable.
  • Immunization can be carried out by administering the antigen solution by subcutaneous injection, intracutaneous, abdominal cavity or vein of the immunized animal by injection or the like.
  • the antigen solution may be mixed with an adjuvant and administered.
  • Adjuvant does not itself act as an antigen, but it is administered together with the antigen to immunize animals.
  • FCA Freud's complete adjuvant
  • FIA Freud's incomplete adjuvant
  • MPL MPL
  • TDM Ribi
  • MPL + TDM Bordetella pertussis vaccine
  • MDP Muramirudipeptide
  • ALUM aluminum adjuvant
  • FCA for the initial administration of the antigen solution to the immunized animal and FIA or Ribi adjuvant for the additional administration is preferred.
  • immunization methods will be shown.
  • a mouse when a mouse is used as an immunized animal, 0.05 to 1 ml of an antigen solution mixed with an adjuvant (antigen amount of 10 to 200 / zg) is injected intraperitoneally, subcutaneously, intramuscularly, or into the tail vein of the mouse.
  • Dosing force is also administered 1 to 4 times every 4 to 21 days, and the final dose is given after about 1 to 4 weeks.
  • an antigen solution containing no adjuvant For final administration, it is desirable to use an antigen solution containing no adjuvant.
  • Spleen cells are obtained from the immunized animals about 3-5 days after the last dose. The splenocytes obtained here are antibody-producing cells.
  • [III] Cell fusion step In this step, the spleen cells obtained from the immunized animal and myeloma cells are fused to produce a hyperidoma.
  • myeloma cells those derived from mice, rats, humans, etc. are used, such as mouse myeloma P3X63-Ag8, P3X63-Ag8-Ul, P3NS1-Ag4, SP2 / o-Agl4, P3X63-Ag8'653, etc.
  • myeloma cells that do not produce immunoglobulin light chains, such as P3X63-Ag8 • 653 and SP2 / o-Agl4.
  • the spleen cells and myeloma cells are preferably derived from the same species of animal, particularly from the same strain.
  • the myeloma cells can be preserved by freezing, for example, by subculturing in a general medium supplemented with horse, rabbit, or rabbit fetal serum.
  • Examples of a method for producing an ibridoma by fusing spleen cells and myeloma cells include a method using polyethylene glycol (PEG), a method using Sendai virus, and a method using an electrofusion device.
  • PEG polyethylene glycol
  • a method using Sendai virus and a method using an electrofusion device.
  • PEG polyethylene glycol
  • the PEG method about 30 to 60% PEG (average molecular weight 1 Spleen cells and myeloma cells in a suitable medium or buffer containing 1 to 10: 1, preferably 5 to 10: 1, and suspended at a temperature of about 25 to 37 ° C.
  • the reaction may be performed for about 30 seconds to 3 minutes under the condition of pH 6-8. After the reaction is complete, wash the cells, remove the PEG solution, resuspend in the medium, and inoculate in a microtiter plate to continue the culture.
  • the selection medium is a medium in which the parent cell line can be killed and only the hybridoma can grow, and hypoxanthine aminopterin thymidine (HAT) medium is usually used.
  • HAT hypoxanthine aminopterin thymidine
  • 1 to 7 days after the fusion operation a portion of the medium, preferably about half of the medium, is replaced with the selected medium, and the culture is repeated with the same medium exchange every two or three days. To do. Microwells are used to identify wells in which the hyperidoma colonies are growing.
  • the culture supernatant is collected and antibody titre is performed by a method known per se.
  • a secondary antibody anti-globulin antibody, anti-IgG antibody
  • RI radioisotope
  • the antibody When the antigen is an enzyme or the like, the antibody can be detected and the antibody titer can be measured based on the presence or absence of enzyme inhibition activity by reacting the enzyme with the supernatant and then reacting with an appropriate substrate. . Thus, the culture supernatant of each well is screened to produce appropriate antibodies!
  • a single clone is separated by a limiting dilution method, a soft agar method, a method using a fluorescence excitation cell sorter, or the like.
  • a limiting dilution method for example, in the case of limiting dilution, one cell of a hyperidoma colony
  • a high-pridoma clone producing an antibody of interest can be isolated by culturing after serial dilution in a medium so as to be around the Z-rule.
  • the resulting antibody-producing hybrid clone is about 10% (v / v) frozen in the presence of a cryoprotectant such as dimethyl sulfoxide (DMSO) or glycerin and stored at -70 to -196 ° C. It can be stored for half a year to semi-permanently. Cells should be used after thawing rapidly in a thermostatic chamber at around 37 ° C. It is desirable to wash thoroughly and use so that the cytotoxicity of the cryoprotectant does not remain.
  • DMSO dimethyl sulfoxide
  • the hybridoma In order to examine the immunoglobulin subclass of the antibody produced by the hybridoma, the hybridoma is cultured under general conditions, and the antibody secreted in the culture supernatant is determined as a commercially available antibody class / subclass. It can be known by analyzing with a kit for use.
  • the method for obtaining a monoclonal antibody can be appropriately selected depending on the required amount of monoclonal antibody and the nature of the hybridoma. For example, a method of obtaining from the peritoneal fluid in the peritoneal cavity of a mouse transplanted with the hybridoma, a method of obtaining the culture supernatant force by cell culture, and the like can be mentioned. In the case of a hybridoma that can grow in the abdominal cavity of a mouse, a monoclonal antibody with a high concentration of several mg / ml of ascites can be obtained.
  • Hypridoma which cannot grow in vivo, also obtains monoclonal antibodies in the culture supernatant of cell culture. Acquiring monoclonal antibodies by cell culture has the advantage that antibody production is lower than in vivo, but purification is easy with less contamination of immunoglobulins and other contaminants contained in the mouse abdominal cavity.
  • the monoclonal antibody is also obtained in the peritoneal fluid in the abdominal cavity of a mouse transplanted with an ibridoma
  • a substance having an immunosuppressive action such as pristane (2,6,10,14-tetramethylpentadecane) was administered beforehand Inoculate BALB / c mice into the abdominal cavity of abdomen and hybridomas (about 10 6 or more), and collect ascites collected after about 1 to 3 weeks.
  • heterologous hyperpridoma eg mouse and rat
  • a cell culture supernatant strength monoclonal antibody for example, in addition to the stationary culture method used for cell maintenance, there is a high-density culture method or a spinner flask culture method or the like.
  • the hyperidoma is cultured to obtain a culture supernatant containing the monoclonal antibody.
  • Serum that can be added to the medium contains other antibodies and contaminants such as albumin, and purification of the monoclonal antibody from the culture solution is often complicated, so it is desirable to reduce the amount of addition to the medium.
  • Hypridoma is acclimated to a serum-free medium by a conventional method and cultured using the serum-free medium.
  • Monoclonal antibody purification is facilitated by culturing in a serum-free medium.
  • Purification of monoclonal antibodies in ascites and culture supernatant can be performed by a method known per se.
  • conventionally known methods for purifying immunoglobulins include ammonium sulfate sulfate fractionation by salting out using sodium sulfate, polyethylene glycol fractionation method, ethanol fractionation method, DEAE ion exchange chromatography method, gel filtration.
  • a monoclonal antibody can be easily purified.
  • monoclonal antibody-powered mouse IgG it can be easily purified by affinity chromatography using a protein A binding carrier or an anti-mouse immunoglobulin binding carrier, which is convenient.
  • Example 1 Production of monoclonal antibody against SARS-NP
  • the monoclonal antibody of this example is produced through the following steps [I] to [V]. Specifically, [I] an antigen solution containing recombinant SARS-NP was prepared by a genetic engineering technique, [ ⁇ ] a mouse was immunized with this antigen solution, and [III] the spleen obtained by immunization. Cells and myeloma cells are fused, and [IV] the resulting high-pridoma force cells that produce antibodies specific to SARS-NP are selected. [V] This hyperidoma is propagated in the peritoneal cavity of mice. The monoclonal antibody was separated from the ascites. Details are shown below.
  • CDNA fragments corresponding to the 600th to 1269th cDNA fragments were synthesized and ligated with restriction enzymes to synthesize a SARS-NP cDNA having a total length of 1269 bp.
  • SARS-NP cDNA sequence Two types of recombinant SARS-NP (GST fusion type, His-tag addition type) were prepared. Details are shown below.
  • the first force of the SARS-NP cDNA sequence, 660th A vector containing the eye cDNA fragment was prepared.
  • eight types of primers SEQ ID NOs: 3 to 10
  • the reaction conditions of the first PCR are 16 cycles of 95 ° C for 30 seconds, 56.1 ° C for 30 seconds, and 72 ° C for 30 seconds.
  • the composition of the first PCR reaction solution is as follows.
  • Primer solution containing 10 ⁇ primer (SEQ ID NO: 3) 0.5 ⁇ L Primer solution containing 10 ⁇ primer (SEQ ID NO: 4) 0.5 ⁇ L Primer solution containing 10 ⁇ primer (SEQ ID NO: 5) 0.5 ⁇ L L Primer solution containing 10 ⁇ primer (SEQ ID NO: 6) 0.5 ⁇ L Primer solution containing 10 ⁇ primer (SEQ ID NO: 7) 0.5 ⁇ L Primer solution containing 10 ⁇ primer (SEQ ID NO: 8) 0.5 ⁇ L Primer solution containing 10 ⁇ primer (SEQ ID NO: 9) 0.5 ⁇ L Primer solution containing 10 ⁇ primer (SEQ ID NO: 10) 0.5 ⁇ L 2.5 mM dNTP solution (Takara Bio Inc.) 1.6 L
  • the reaction conditions for the second PCR are 30 cycles of 95 ° C for 30 seconds, 58.5 ° C for 30 seconds, and 72 ° C for 30 seconds.
  • the composition of the second PCR reaction solution is as follows.
  • Primer solution containing 10 ⁇ primer (SEQ ID NO: 11) 0.5 ⁇ L
  • Primer solution containing 10 ⁇ primer (SEQ ID NO: 12) 0.5 ⁇ L 2.5 mM dNTP solution (Takara Bio Inc.) 1.6 L
  • a vector containing the 600th to 1269th cDNA fragments of the SARS-NP cDNA sequence was prepared in the same manner as in (1) above.
  • Eight types of primers (SEQ ID NOs: 13 to 20) were synthesized, and PCR was performed using these primers (first PCR).
  • the first PCR reaction conditions are 16 cycles of 95 ° C for 30 seconds, 55.1 ° C for 30 seconds, and 72 ° C for 30 seconds.
  • the composition of the reaction solution of the first PCR uses each primer solution containing the primers of SEQ ID NOs: 13 to 20, and the other composition is the same as (1) above.
  • the second PCR and TA cloning are carried out in the same manner as in (1) above.
  • the vector pCR TOPO (600-1269) containing the cDNA fragment of base sequence 600-1269 is used. Obtained.
  • a vector containing SARS-NP cDNA having a total length of 1269 bp was prepared using pCR ⁇ (1-660) and pCR TOPO (600-1269).
  • pCR TOPO (1-660) was treated with restriction enzymes Smal and Hindlll to prepare a cDNA fragment containing a vector site and nucleotide sequences 1 to 660 from pCR TOPO (1-660).
  • pCR TOPO (600-1269) was treated with restriction enzymes Smal and Hindlll to prepare a cDNA fragment containing the nucleotide sequence 600-1269 from pCR TOPO (600-1269).
  • SEQ ID NO: 1 shows the base sequence of SARS-NP cDNA contained in pCR (1-1269).
  • amino acids encoded by these nucleotide sequences were the same as TOR2 SARS-NP cDNA (E.coli).
  • the amino acid sequence predicted from the nucleotide sequence of SARS-NP cDNA described in SEQ ID NO: 1 is shown in SEQ ID NO: 2.
  • E. coli containing the E. coli expression vector pGEX-2TK (SARS_NP) was cultured in LB medium. After the start of culture, the final concentration of ImM IPTG was added to the E. coli culture solution that reached the logarithmic growth phase, and cultured at room temperature for 18 hours. After culturing, E. coli cells were collected and suspended in PBS (l% TritonX). After disrupting E. coli in suspension with an ultrasonic disrupter, the precipitate fraction is washed with lOOmM Tris buffer (150 mM NaCl, pH 8.0) and lOOmM Tris buffer (8 M urea, 150 mM KC1, pH 8.0) Dissolved in. This was used as a GST-fused recombinant SARS-NP antigen solution.
  • PBS l% TritonX
  • the vector pCDNA3.1 (Invitrogen) was treated with restriction enzymes EcoRI and BamHI, and further treated with alkaline phosphatase to prepare a 5.0 kbp vector fragment.
  • the E. coli expression vector pGEX-2TK (SARS-NP) obtained in the above (4) was treated with restriction enzymes EcoRI and BamHI to prepare a DNA fragment containing SARS-NP cDNA having a total length of 1269 bp. Then, using 5.0 kbp vector fragment, DNA fragment containing SARS-NP cDNA and DNA Ligetion Kit Ver2.1 (Takara Bio Co., Ltd.), pCDNA3.1 (SARS-) containing 1269 bp SARS-NP cDNA NP).
  • pCDNA3.1 SARS-NP
  • E. coli expression vector pQE30 Qiagen
  • DNA fragment containing SARS-NP cDNA and DNA Ligation Kit Ver 2.1 Takara Bio Inc.
  • E. coli expression vector pQE30 SARS-NP containing SARS-NP cDNA of 1269bp in total length was made.
  • E. coli containing the E. coli expression vector pQE30 (SARS-NP) was added to 100 ⁇ g / mL ampicillary.
  • the cells were cultured in LB medium containing phosphorus.
  • ImM IPTG at the final concentration was added to the colon broth culture and cultured for 3.5 hours.
  • E. coli is recovered and suspended in 30 mL of 20 mM sodium phosphate buffer (0.5 M NaCl, ImM DTT, lmg / mL Pefablock (protease inhibitor), 20 mM imidazole, pH 7.4) on ice.
  • Balb / c mice (8-week-old female) were used as immunized animals.
  • GST-fused recombinant SARS-NP antigen solution obtained in [I] (4) and His-tag addition type recombinant SARS-NP antigen solution obtained in [I] (5) was used to immunize Balb / c mice according to the following schedule.
  • His-tag-added recombinant SARS-NP antigen solution mixed with RIBI final concentration of His-tag-added recombinant SARS-NP 50 ⁇ g was administered into the peritoneal cavity of mice. .
  • His-tag-added recombinant SARS-NP antigen solution mixed with RIBI final concentration of His-tag-added recombinant SARS-NP 50 ⁇ g was administered to the peritoneal cavity of mice. .
  • His-tag-added recombinant SARS-NP antigen solution (final concentration of His-tag-added recombinant SAR S-NP 50 ⁇ g) was injected into the tail vein.
  • spleen cells obtained from the immunized animal and myeloma cells are fused to produce a hyperidoma.
  • Splenocytes were also removed from Balb / c mice 3 days after immunization [II] (6).
  • Myeloma cells are obtained from a cultured cell line derived from Balb / c mouse myeloma (X63 cell line) X63 cells were used.
  • Cell fusion is performed by suspending in a RPMI-1640 culture medium containing about 50% polyethylene glycol 4000 (SIGMA) so that the mixing ratio of the splenocytes and the X63 cells is 7.5: 1.
  • SIGMA polyethylene glycol 4000
  • the ratio of HT medium (containing O.lmM hypoxantin and 0.016 mM thymidine in RPMI-16 40 medium supplemented with 10% immobilized fetal calf serum) and cloning medium (Sanko Junyaku) was 1: 1.
  • the number of splenocytes was suspended at 2.5 million per ml, seeded on each well of a 96-well microplate (Corning Inc.), and cultured.
  • the cells after the fusion operation are cultured in a selective medium to select a hyperidoma.
  • HAT medium was added to each well of a 96-well microplate seeded with cells and cultured. Further, 4 days, 6 days and 8 days after cell fusion, HT medium was added and cultured, and a hybridoma colony grew and ruwell was confirmed.
  • the reactivity of the monoclonal antibody produced by Hypridoma to SARS-NP was examined by ELISA using a plate in which thread-replaced SARS-NP was immobilized.
  • the His-tag-attached thread and the SARS-NP are immobilized on an ELISA plate.
  • the peroxidase-labeled goat anti-mouse antibody was added, and the peroxidase substrate solution was colored to measure the absorbance.
  • 30 hybridomas hybridomas (hybridoma Nos. 1 to 30) producing monoclonal antibodies showing strong reactivity with the His-tag-added recombinant SARS-NP were obtained.
  • region A l-141
  • region B 142-282
  • region C 283-4212. It was investigated in which area the epitopes were included.
  • each recombinant protein was prepared by first using the E. coli expression vector pGEX-2TK (SARS-NP) obtained in [I] (4) above as a saddle type and the SARS-NP amino acid sequence (amino acids 1 to 422).
  • SARS-NP amino acid sequence amino acids 1 to 422
  • a cDNA fragment encoding the amino acid sequence region from the 1st to the 282nd from the N-terminal side and a cDNA fragment encoding the amino acid sequence region from the 142nd to the 422th are respectively synthesized.
  • Synthesized cDNA fragment Recombinant protein (SARS-NP N-terminal protein) corresponding to the 1st to 282nd amino acid sequence region of SARS-NP amino acid sequence, and 142nd to 422th amino acid sequence region Recombinant protein (SARS-NP C-terminal protein) is obtained.
  • the method for obtaining the recombinant protein is shown in detail below.
  • PCR was performed using the E. coli expression vector pGEX-2TK (SARS-NP) and the primers of SEQ ID NO: 11 and SEQ ID NO: 21.
  • PCR reaction conditions are 30 cycles of 95 ° C for 30 seconds, 58.5 ° C for 30 seconds, and 72 ° C for 30 seconds.
  • the composition of the PCR reaction solution is as follows.
  • Primer solution containing 10 ⁇ M primer (SEQ ID NO: 11) 0.5 ⁇ L
  • Primer solution containing 10 ⁇ primer (SEQ ID NO: 21) 0.5 ⁇ L 2.5 mM dNTP solution (Takara Bio Inc.) 1.6 L
  • PCR was performed using the E. coli expression vector pGEX-2TK (SARS-NP) and the primers of SEQ ID NO: 22 and SEQ ID NO: 23.
  • the PCR conditions and the like are the same as in the case of preparing a vector containing a cDNA fragment encoding the amino acid sequence region up to the 282nd amino acid.
  • a vector pCR C (427 to 1269) containing a cDNA fragment corresponding to positions 427 to 1269 of the SARS-NP cDNA sequence was obtained.
  • E. coli containing the E. coli expression vector pQE30 N (l-846) and cultured in LB medium containing 100 ⁇ g / mL ampicillin. After reaching the logarithmic growth phase after the start of the culture, the final concentration of ImM IPTG was added to the E. coli culture and cultured for 3.5 hours. After incubation, colon bacteria are collected, suspended in 30 mL of 20 mM sodium phosphate buffer (0.5 M NaCl, ImM DTT, Img / mL Pefabloc k (protease inhibitor), 20 mM imidazole, pH 7.4), and sonicated on ice. The soluble fraction obtained after centrifugation was collected (2 minutes ⁇ 7 times), and the SARS-NP N-terminal protein was purified using His-Trap HP ram (QIAGEN).
  • mM sodium phosphate buffer 0.5 M NaCl, ImM DTT, Img / mL Pefabloc k (protease inhibitor), 20 m
  • SARS-NP C-terminal protein was purified using the pCR C (427-1269) in the same manner as the preparation of the His-tag-added recombinant SARS-NP N-terminal protein.
  • Each of the obtained proteins (SARS-NP N-terminal protein, SARS-NP C-terminal protein) is immobilized on an ELISA plate. After adding and reacting the supernatant of the above culture medium of Nobridoma (No. 1-30) to each plate, add peroxidase-labeled goat anti-mouse antibody, and color the peroxidase substrate solution. The absorbance was measured.
  • the hybridoma that is reactive only to the SARS-NP N-terminal protein produces a monoclonal antibody with an epitope present in region A in Figure 3, and the hyperidoma that is reactive only to the SARS-NP C-terminal protein is It can be seen that a hybridoma producing a monoclonal antibody having an epitope in region C of FIG. 3 and reactive to both proteins produces a monoclonal antibody having an epitope in region B of FIG.
  • each monoclonal antibody produced by the hyperidomas 2 ⁇ .1, 2, 3, 12, 13, 14, 15, 16, and 17 was purified.
  • For purification first, transplant hyperlipidoma into the abdominal cavity of BALB / c mice, and collect ascites collected 10 days later. Monoclonal antibodies were purified from the collected ascites using a HyperD (Perseptive Biosystems) protein A column.
  • Monoclonal antibodies were purified from the collected ascites using a HyperD (Perseptive Biosystems) protein A column.
  • Nine types of monoclonal antibodies were obtained by the above operation.
  • Example 1 immunochromatography was carried out using the nine types of monoclonal antibodies (monoclonal antibodies No. 1, 2, 3, 12, 13, 14, 15, 16, and 17) obtained in Example 1.
  • a test device having a configuration as shown in FIG. 2 was used.
  • a backing sheet having an adhesive surface was used as the base material 1 of the test device of this example, Whatman WF1.5 was used as the absorbing member 5, and a nitrocellulose membrane was used as the chromatographic support 4.
  • the chromatographic carrier 4 has a determination unit 6 on which any one of the nine types of monoclonal antibodies is immobilized.
  • any one of the above 9 types of monoclonal antibodies is immobilized on blue polystyrene latex particles (average particle size 0.3 ⁇ m), and the blue polystyrene latex particles are fixed in 10 mM phosphate buffer so that the concentration is 0.2% (w / v). This was suspended in a solution (pH 8.0) and used as an antibody-sensitized latex solution.
  • a sample for measurement was prepared by mixing specimen 20 ⁇ 1, POCTEM (Sysmetas Co., Ltd.) extract 25 ⁇ 1, and antibody-sensitized latex 301. Place the test tool in the tube containing the measurement sample so that the sample addition member 2 is immersed in the measurement sample, leave it at room temperature for 20 minutes, and then appear the blue color that appears in the judgment part 6 of the carrier for quarto mat 4 The band was observed.
  • POCTEM Sysmetas Co., Ltd.
  • the combination of the antibodies judged as “1+” More preferred is a combination of antibodies having a determination of “2+”, and most preferable is a combination of antibodies having a determination of “3+”.
  • the hybridomas that produce the three antibodies monooclonal antibodies No. 2, No. 12, and No. 14) that showed high sensitivity and the measurement results (No, hybridoma No. 2, No. 12, and No. 14).
  • a monoclonal antibody having an epitope in region A is an antibody of group A
  • a monoclonal antibody having an epitope in region B is an antibody in group B
  • a monoclonal antibody having an epitope in region C is group C.
  • Antibody From Table 2, it was proved that a highly sensitive measurement result can be obtained by using an antibody of C group as an antibody immobilized on a chromatographic carrier or an antibody labeled with colored latex.
  • a highly sensitive measurement result can be obtained by using an antibody of group A or an antibody of group C as the antibody immobilized on the chromatographic carrier. Furthermore, in the case of the antibody group immobilized on the chromatographic carrier, it was proved that a highly sensitive measurement result can be obtained by combining the antibody of group C as an antibody labeled with colored latex. On the other hand, in the case of the SC antibody group immobilized on a chromatographic carrier, a highly sensitive measurement result can be obtained by combining an antibody of group A or an antibody of group B as an antibody labeled with a colored latex. I helped. In addition, when monoclonal antibody No. 12 belonging to group B is used as an antibody immobilized on a chromatographic carrier, measurement results with relatively high sensitivity can be obtained by combining group C antibodies as antibodies labeled with colored latex. I was able to get it.
  • Example 1 the ELISA method was performed using the monoclonal antibodies No. 1 and No. 14 obtained above.
  • monoclonal antibody No. 14 was immobilized on an ELISA plate, and monoclonal antibody No. 1 was labeled with alkaline phosphatase.
  • 10 mM phosphate buffer (pH 7.0) His-tagged force-receptor type recombinant SARS-NP obtained in [I] (5) was added to 0, 0.195, 0.39, 0.78, 1.5 6, 3.12. It prepared so that it might become ng / ml, and these were used as a sample.
  • sample 100 / zL was added to an ELISA plate on which monoclonal antibody No. 12 had been immobilized, and stirred at room temperature for 30 minutes. After washing the plate with 10 mM phosphate buffer (pH 7.0), add His-tag-added recombinant SARS-NP antigen solution (20 ng / m 1) 100 1 obtained in Example 1 at room temperature. For 30 minutes. After the plate was washed with a phosphate buffer, 100 L of 10 mM phosphate buffer (PH7.0) containing 5 U / mL alkaline phosphatase-labeled monoclonal antibody No. 1 was added and stirred at room temperature for 30 minutes.
  • 10 mM phosphate buffer pH 7.0
  • ELISA was carried out in the same manner using the two types of antibodies used in the commercially available product: SARS-Nucleocapsid ActiveELIZA (IMGENEX).
  • the vertical axis represents absorbance (OD405 / OD655)
  • the horizontal axis represents the concentration (ng / mL) of His-tag-added recombinant SARS-NP contained in the specimen.
  • the solid line shows the results when using monoclonal antibodies No. 1 and No. 14, and the dotted line shows the results when using commercially available antibodies.
  • Example 3 The antibody (monoclonal antibodies No. 1 and No. 14) and the sample (His-tag-powered recombinant SARS-NP concentration: 0 0.195 0.39 0.78 1.56 3.12 ng / ml) used in Example 3 were used.
  • the immunochromatography method was used. The results are shown in Table 4.
  • the immunochromatography was performed in the same manner as in Example 2.
  • monoclonal antibody No. 14 was immobilized on a chromatographic carrier, and monoclonal antibody No. 1 was labeled with colored latex.
  • Example 2 Using the monoclonal antibodies No.l 3 8 12 14 15 16 and 23 obtained in Example 1 An ELISA method was performed. Each of these was immobilized on an ELISA plate, and each of these was labeled with piotin to investigate whether the combination of V and deviation could be detected with high sensitivity by ELISA.
  • Each of the above monoclonal antibodies was diluted with 0.1 M phosphate buffer (pH 7.5, 0.1% sodium azide) to 1 ⁇ g / ml. 100 ⁇ l of this antibody solution was added to the ELISA plate well and allowed to stand at 4 ° C. The plate was washed with Nofer II (10 mM sodium phosphate, 150 mM NaCl, 0.05% Tween20) using a plate washer. Buffer I (10 mM sodium phosphate pH 7.0, 2.5 mM EDTA, 1% BSA, 150 mM NaCl) (300 ⁇ l) was added to the well and allowed to stand at 4 ° C.
  • the His-tag-added recombinant SARS-NP antigen solution (20 ng / ml) 10 O obtained in Example 1 diluted with Nofer I was immobilized on the plate on which the antibody thus obtained was immobilized. / zl was added and stirred at room temperature for 30 minutes.
  • the wells were washed with a buffer solution, 0.5 g / ml of each piotin-labeled monoclonal antibody diluted with Notfer I was added, and the mixture was stirred at room temperature for 30 minutes.
  • the well was washed with buffer II, and peroxidase-labeled streptavidin (20 mU / ml) 100 1 diluted with buffer I was added and stirred at room temperature for 30 minutes.
  • the well was washed with buffer II, peroxidase substrate solution 1001 was added, stirred at room temperature for 2.5 minutes, and then 2N sulfuric acid 1001 was added.
  • the absorbance (OD492 / OD690) of the plate was measured. Measurements were taken at two wells per sample and these values were averaged. Furthermore, the value obtained by measurement using the above-mentioned antigen solution containing no antigen (that is, the above-mentioned antigen solution of SARS-NP Ong / ml) was blanked, and a value subtracted from the above average value was obtained as a result.
  • the vertical axis represents the absorbance (OD492 / OD690), and the horizontal axis represents the antibody immobilized on the plate.
  • the combination of the antibody immobilized on the ELISA plate and the antibody labeled with piotin in the ELISA is preferably a combination of antibodies whose absorbance (OD492 / OD690) is not less than 1.000. More preferred is a combination of antibodies having a value of 1.200 or more, and most preferred is a combination of antibodies having a value of 1.450 or more.
  • the hybridomas that produce monoclonal antibodies No. 1 and No. 15 Ibli Dorma No. l and No. 15) are registered with the National Institute of Advanced Industrial Science and Technology. Deposited on September 26, 2006 at Tsukuba, Ibaraki Pref. The receipt number for each hybridoma is as follows.
  • a monoclonal antibody having an epitope in region A is an antibody of group A
  • a monoclonal antibody having an epitope in region B is an antibody in group B
  • a monoclonal antibody having an epitope in region C is group C.
  • Antibody From Fig. 5, it was proved that comparatively high sensitivity measurement results can be obtained by using C-double antibody as the antibody immobilized on the ELISA plate or labeled with piotin.
  • the combination of the antibody immobilized on the ELISA plate and the antibody labeled with piotin is a combination of Group A and Group C antibodies, or Group B and Group C antibodies. It was found that high-sensitivity measurement results can be obtained o
  • Example 5 Measurement of various concentrations of antigen by ELISA
  • ELISA was performed in the same manner as in Example 4 using monoclonal antibodies in the combinations shown in Table 5 below.
  • the His-tag-added recombinant SARS-NP antigen was diluted with buffer I so as to be 0 to 3.125 / zg / ml.
  • the concentration of the monoclonal antibody that was labeled with piotin was 1 ⁇ g / ml, and the reaction time with the peroxidase substrate solution was 10 minutes. Measurements were taken at 4 wells per sample, and these values were averaged to obtain the results. The result is shown in FIG.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明は、SARSウイルスヌクレオカプシドタンパク質(SARS-NP)に特異的に結合する第一抗体及びSARS-NPに特異的に結合する第二抗体を用いてSARS-NPを測定する方法であって、前記第一抗体又は前記第二抗体がSARS-NPのアミノ酸配列のN末端側から283番目~422番目の領域(領域C)に存在するエピトープを認識する抗体であるSARS-NPの測定方法を提供する。

Description

明 細 書
SARSウィルスヌクレオ力プシドタンパク質を測定するための測定方法、測 定用試薬キット、試験具、 SARSウィルスヌクレオカプシドタンパク質に対するモノ クローナル抗体及び前記モノクローナル抗体を産生するハイブリドーマ
技術分野
[0001] 本発明は、 SARSウィルスヌクレオ力プシドタンパク質(SARS-NP)を測定するための 測定方法、測定用試薬キット及び試験具に関する。また、 SARS-NPに対するモノクロ ーナル抗体、並びに前記モノクローナル抗体を産生するハイブリドーマに関する。 背景技術
[0002] 重症急性呼吸器症候群(Severe Acute Respiratory Syndrome: SARS)は、近年発見 された感染症であり、 SARSはコロナウィルス科に分類される新型のウィルス(SARSゥ ィルス)が起因病原体であることが確認されている。 SARS感染の診断法としては、免 疫学的測定方法を利用して検体中の SARSウィルスを検出する方法が知られている。 このようなものとしては、例えば、非特許文献 1や非特許文献 2に記載の方法がある。
[0003] 非特許文献 1には、 SARS-NPに対するポリクローナル抗体を用いた酵素免疫測定 法 (ELISA)による測定方法が記載されている。具体的には、ポリクローナル抗体を EL ISA用のプレートに固定ィ匕し、ここに、検体、標識ィ匕ポリクローナル抗体を順次添加し て複合体を形成させ、これを検出する。
[0004] 非特許文献 2には、 SARS-NPに対するモノクローナル抗体と SARS-NPに対するポリ クローナル体を用いた ELISAによる測定方法が記載されている。具体的には、 3種類 のモノクローナル抗体を ELISA用のプレートに固定ィ匕し、ここに、検体、標識化ポリク ローナル抗体を順次添加して複合体を形成させ、これを検出する。
[0005] 非特許文献 1や非特許文献 2に記載の方法は ELISAである。一般的に、 ELISAは、 免疫学的測定方法の中でも比較的感度の高 、測定方法であると 、われて!/、る。一 方、ウィルス感染の診断では、迅速性'簡便性の高い免疫クロマト法もよく利用される 。しかし、免疫クロマト法は ELISAに比べて感度が低い測定方法であり、仮に非特許 文献 1や非特許文献 2に記載のポリクローナル抗体やモノクローナル抗体を免疫クロ マト法に使用したとしても、十分な感度を得ることができない可能性がある。
[0006] 非特許文献 1: Susanna K. P. Lau, Patrick C. Y. Woo, Beatrice H. L. Wong, Hoi- W ah Tsoi, Gibson K. S. Woo, Rosana W. S. Poon, Kwok-Hung Chan, William I. Wei, J . S. Malik Peiris, and Kwok-Yung Yuen,「酵素結合免疫アツセィによる重症急性呼 吸器症候群(SARS)患者における SARSコロナウィルスヌクレオカプシドタンパク質の 恢出 (Detection of Severe Acute Respiratory syndrome (SARS) Coronavirus Nucieoc apsid Protein in SARS Patients by Enzyme-Linked Immunosorbent Assay)」 , Journal of Clinical Microbiology, Vol.42, No.7, P.2884- 2889.
[0007] 非特許文献 2 : Xiao- yan Che, Li-wen Qiu, Yu- xian Pan, Kun Wen, Wei Hao, Li-ya Zhang, Ya-di Wang, Zhi-yong Liao, Xu Hua, Vincent C. C.し heng, and Kwok— yung Yuen, 「重症急性呼吸器症候群患者力 のヌクレオ力プシド抗原検出用の高感度特 異的モノクローナル抗体ベースの捕捉酵素免疫アツセィ(Sensitive and Specific Mon oclonal Antibody-Based Capture Enzyme Immunoassay for Detection or Nucleocapsi d Antigen in Sera from Patients with Severe Acute Respiratory Syndrome)」 , Journal of Clinical Microbiology, Vol.42, No.6, P. 2629—2635.
発明の開示
発明が解決しょうとする課題
[0008] 本発明の目的は、 SARS-NPの測定において、免疫学的測定方法の中でも比較的 感度の高 ヽ ELISAのような測定方法だけでなぐ免疫学的測定方法の中でも比較的 感度の低い免疫クロマト法のような測定方法にも適用することができるような、従来よ りも感度の高い測定方法、及び測定に用いる試薬キット、試験具、モノクローナル抗 体、モノクローナル抗体を産生するハイプリドーマを提供することである。
課題を解決するための手段
[0009] 上記の課題に鑑み、本発明は、 SARSウィルスヌクレオ力プシドタンパク質(SARS-N P)に特異的に結合する第一抗体及び SARS-NPに特異的に結合する第二抗体を用 V、て SARS-NPを測定する方法であって、前記第一抗体又は前記第二抗体が SARS- NPのアミノ酸配列の N末端側から 283番目〜422番目までの領域 (領域 C)に存在する ェピトープを認識する抗体である、 SARS-NPの測定方法を提供する。 [0010] また、本発明は、 SARSウィルスヌクレオ力プシドタンパク質(SARS-NP)に特異的に 結合する第一抗体及び SARS-NPに特異的に結合する第二抗体を用いて SARS-NP を測定するための試薬キットであって、前記第一抗体を固定化した固相と、標識物質 により標識された前記第二抗体を含有する試薬との組み合わせ力 なる SARS-NPの 測定用試薬キットを提供する。前記第一抗体及び前記第二抗体は SARS-NPに対し て特異的に結合する抗体である。また、前記第一抗体又は前記第二抗体は、 SARS- NPのアミノ酸配列の N末端側から 283番目〜422番目までの領域 (領域 C)に存在する ェピトープを認識する抗体である。
[0011] また、本発明は、 SARSウィルスヌクレオ力プシドタンパク質(SARS-NP)に特異的に 結合する第一抗体及び SARS-NPに特異的に結合する第二抗体を用いて SARSウイ ルスを測定するための免疫クロマト法用の試験具であって、
前記第一抗体が固相に固定化されており、前記第二抗体が標識物質により標識さ れており、
前記免疫クロマト法用の試験具が、測定用試料が添加される試料添加部及び前記 試料添加部に添加された測定用試料が展開される試料展開部を備え、前記試料展 開部が第一抗体を固定化した判定部を有し、前記試料添加部に添加された測定用 試料が少なくとも前記判定部に向力つて展開され、
前記第一抗体又は前記第二抗体が SARS-NPのアミノ酸配列の N末端側から 283番 目〜422番目までの領域 (領域 C)に存在するェピトープを認識する抗体である免疫 クロマト法用の試験具を提供する。
[0012] また、本発明は、 SARSウィルスヌクレオ力プシドタンパク質(SARS-NP)に対して特 異的に結合し、受領番号が FERM ABP-10678のハイブリドーマにより産生されるモノ クローナル抗体を提供する。
[0013] また、本発明は、 SARSウィルスヌクレオ力プシドタンパク質(SARS-NP)に対して特 異的に結合し、受領番号が FERM ABP-10679のハイブリドーマにより産生されるモノ クローナル抗体を提供する。
[0014] また、本発明は、 SARSウィルスヌクレオ力プシドタンパク質(SARS-NP)に対して特 異的に結合し、受領番号が FERM ABP-10680のハイブリドーマにより産生されるモノ クローナル抗体を提供する。
[0015] また、本発明は、 SARSウィルスヌクレオ力プシドタンパク質(SARS-NP)に対して特 異的に結合し、受領番号が FERM ABP-10686のハイブリドーマにより産生されるモノ クローナル抗体を提供する。
[0016] また、本発明は、 SARSウィルスヌクレオ力プシドタンパク質(SARS-NP)に対して特 異的に結合し、受領番号が FERM ABP-10687のハイブリドーマにより産生されるモノ クローナル抗体を提供する。
[0017] また、本発明は、受領番号 FERM ABP-10678により寄託されたハイブリドーマを提 供する。
[0018] また、本発明は、受領番号 FERM ABP-10679により寄託されたハイブリドーマを提 供する。
[0019] また、本発明は、受領番号 FERM ABP-10680により寄託されたハイブリドーマを提 供する。
[0020] また、本発明は、受領番号 FERM ABP-10686により寄託されたハイブリドーマを提 供する。
[0021] また、本発明は、受領番号 FERM ABP-10687により寄託されたハイブリドーマを提 供する。
発明の効果
[0022] 本発明の測定方法は、従来よりも高い感度で SARS-NPを測定することができる。こ れより、簡便且つ高感度に SARSウィルスを検出することが可能になる。
図面の簡単な説明
[0023] [図 1]本発明のモノクローナル抗体を用いた免疫クロマト法において用いる試験具の 一実施形態を模式的に示したものである。
[図 2]本発明のモノクローナル抗体を用いた免疫クロマト法において用いる試験具の 一実施形態を模式的に示したものである。
[図 3]SARS-NPのアミノ酸配列及び該配列を 3つに分けた場合の各領域 (領域 A、領 域 B、領域 C)を模式的に示した図である。
[図 4]実施例 3の結果を示した図である。 [図 5]実施例 4の結果を示した図である。
[図 6]実施例 5の結果を示した図である。
発明を実施するための最良の形態
[0024] 本発明は、免疫学的手法により SARS-NPを測定する。具体的には、 SARS-NP, SA RS-NPに特異的に結合する第一抗体及び SARS-NPに特異的に結合する第二抗体 力もなる複合体を形成させて SARS-NPを測定する。本発明者らは、このような測定に 使用する抗体の特異性及びその組み合わせに着目して鋭意研究を重ねた結果、本 発明を完成させるに至った。
[0025] 核タンパク質である SARS-NPは、比較的突然変異が起こりにくいと 、われて 、る。
ゆえに、本発明の測定方法では、 SARS-NPに対して特異的に結合する抗体を第一 抗体及び第二抗体に用いて SARS-NPを測定する。
[0026] Gen Bank (accession Number;AY274119、 protein id;AAP41047.1)において、 SARS TOR2株のヌクレオ力プシドタンパク質のアミノ酸配列(全長 422残基)が示されて!/、る 。本発明では、この SARS-NPのアミノ酸配列を図 3で示すように 3の領域に分け、各領 域内に存在するェピトープを認識する抗体を複数得た。そして、それら抗体を様々に 組み合わせて SARS-NPを測定した。これより、第一抗体又は第二抗体に SARS-NPの アミノ酸配列の N末端側から 283番目〜422番目までの領域 (領域 C)に存在するェピ トープを認識する抗体を用いることで感度の高い測定結果が得られることがわ力つた
[0027] さらに、第一抗体及び第二抗体の好ま 、組み合わせとしては、 SARS-NPのァミノ 酸配列の N末端側から 1番目〜141番目の領域 (領域 A)に存在するェピトープを認識 する抗体と領域 Cに存在するェピトープを認識する抗体の組み合わせ、又は、 SARS- NPのアミノ酸配列の N末端側から 142番目〜282番目の領域 (領域 B)に存在するェピ トープを認識する抗体と領域 Cに存在するェピトープを認識する抗体の組み合わせ が挙げられる。
[0028] また、第一抗体を固相に固定ィ匕する場合、第一抗体として用いるのに好ましい抗体 としては、領域 Aに存在するェピトープを認識する抗体又は領域 Cに存在するェピト ープを認識する抗体が挙げられる。さらに、第一抗体を固相に固定ィ匕する場合、第 一抗体及び第二抗体の好ま 、組み合わせとしては、第一抗体が領域 Aに存在する ェピトープを認識する抗体、又は領域 Bに存在するェピトープを認識する抗体であり 、第二抗体が領域 Cに存在するェピトープを認識する抗体である組み合わせが挙げ られる。また、別の組み合わせとしては、第一抗体が領域 Cに存在するェピトープを 認識する抗体であり、第二抗体が領域 Aに存在するェピトープを認識する抗体又は 領域 Bに存在するェピトープを認識する抗体である組み合わせが挙げられる。
[0029] なお、 SARS- NPのアミノ酸配列は、 Gen Bank (accession Number;AY274119、 protei n id;AAP41047.1)に開示されている SARS-NPのアミノ酸配列に完全に一致する必要 はない。前記 Gen Bank (accession Number; AY274119、 protein id;AAP41047.1)に開 示されている SARS-NPのアミノ酸配列に対して、一部のアミノ酸が欠失、置換又は付 カロされた SARS- NPのアミノ酸配列であってもよい。
[0030] 第一抗体及び第二抗体は、ポリクローナル抗体でもモノクローナル抗体でも力まわ ない。なお、特異性の観点から、第一抗体及び第二抗体のうちどちらか一方がモノク ローナル抗体であることが好ましぐ第一抗体及び第二抗体がモノクローナル抗体で あることが最も好ましい。
[0031] 免疫学的測定方法としては、例えば、免疫比濁法(Turbitometric Immunoassay: TI A)、免疫比ろう法(Nephelometric Immunoassay: NIA)、ラテックス免疫凝集法(Latex Agglutination Immunoassay: LI ノ、放射'性免役 U疋法 (Radio Immunoassay: RIA 、酵 免役測疋法 (Enzyme Immunoassay: EIAまたは Enzyme Linked Immunosorben t Assay: ELISA)、蛍光免疫測定法(Fluorescent Immunoassay: FIA)、化学発光免 疫測定法(Chemilumiscent Immunoassay: CLIA)などが挙げられる。さらに、抗体を 固定ィ匕した膜状の担体を備えた試験具を用いる免疫クロマト法が挙げられる。なお、 ウィルス感染の診断において、迅速性'簡便性の観点から免疫学的測定方法として は免疫クロマト法が好ましい。また、ウィルスを含む検体との接触による感染を防ぐた めには、測定を自動化することが好ましい。そして、測定の自動化、感度や汎用性の 観点から免疫学的測定方法としては ELISAが好ましい。
[0032] また、測定方法に応じて、抗体を標識物質で標識したり、担体に固定ィ匕してもよい。
[0033] 抗体を標識する標識物質は、測定方法に応じて適宜選択される。例えば、測定方 法が RIAであれば、標識物質には125I、 "C、 32Pなどの放射性同位元素が挙げられる。
EIAや ELISAであれば、 13 ガラクトシターゼ、ペルォキシダーゼ、アルカリホスファタ ーゼなどの酵素が挙げられる。 FIAであれば、フルォレセイン誘導体、ローダミン誘導 体などの蛍光色素が挙げられる。 CLIAであれば、ルミノール、イソルミノール、アタリ ジニゥム誘導体などの化学発光性物質が挙げられる。免疫クロマト法であれば、金コ ロイド、着色ラテックス粒子、蛍光ラテックス粒子などが挙げられる。
[0034] 抗体を固定化する担体としては、抗体と結合性の高いものであれば特に限定され ず、ポリ塩化ビュル、ポリフッ化ビ-リデン(PVDF)、ポリスチレン、スチレン一ジビュル ベンゼン共重合体、スチレン 無水マレイン酸共重合体、ナイロン、ポリビュルアルコ ール、ポリアクリルアミド、ポリアクリル-トリル、ポリプロピレンなどの合成有機高分子 化合物、デキストラン誘導体、ァガロースゲル、セルロースなどの多糖類、ガラス、シリ 力ゲル、シリコーンなどの無機高分子化合物が挙げられる。さらに、これらはァミノ基、 アミノアシル基、カルボキシル基、ァシル基、水酸基、ニトロ基などの官能基を導入し たものであってもよい。また、担体の形状としては、マイクロタイタープレート(ELISAプ レート)、ディスクなどの平板状、ビーズなどの粒子状、試験管、チューブなどの管状 、繊維状、膜状などが挙げられ、測定方法に応じて適宜選択される。 SARS-NP抗体 を担体に固定ィヒする方法は、物理的吸着法、イオン結合法、共有結合法、包括法な ど公知の方法を用いることができる。
[0035] 測定方法に用いる抗体が含有される試薬は、測定方法に応じて溶液であってもよ い。この場合、該試薬は抗体の他に公知の成分を組み合わせることができる。即ち、 抗原抗体反応に必要な pHを与える緩衝剤、抗原抗体反応を促進する反応増強剤、 非特異反応を抑制する反応安定剤やブロッカー、試薬の保存性を高める防腐剤等 を組み合わせても良い。
[0036] 測定方法に用いる測定用試料は、 SARSウィルスを含有する可能性がある検体その もの又は該検体を緩衝液などを用いて処理して得られるものであり、測定反応を阻害 しないものであれば特に限定されない。該検体としては、例えば、血液、血清、鼻汁、 痰、咽頭拭い液などの体液が挙げられる。
[0037] 以下、本発明の測定方法を適用した免疫クロマト法について説明する。 [0038] 免疫クロマト法の典型的な例としては、被測定物質、担体に固定化された第一抗体 、および標識物質で標識された第二抗体とを反応させ、被測定物質と第一抗体と第 二抗体とからなる複合体を膜状の担体上に形成させ、前記第二抗体の標識物質を 検出することによりこの複合体の存在を検出または定量する方法である。このような免 疫クロマト法には、フロースルー式免疫クロマト法とラテラルフロー式免疫クロマト法が ある。フロースルー式免疫クロマト法は、被測定物質を含む溶液を、第一抗体を固定 化した膜状の担体に対して垂直方向に通過させるものである。一方、ラテラルフロー 式免疫クロマト法は、被測定物質を含む溶液を、第一抗体を固定化した膜状の担体 に対して水平方向に展開させるものである。
[0039] 図 1はラテラルフロー式用試験具の模式図である。図 1の(a)は試験具の平面図で あり、(b)は試験具の側面図である。図 1に示すように、ラテラルフロー式用試験具は 、表面に粘着層を有する基材 1の上に、試料添加用部材 2と標識保持部材 3とクロマ ト用膜担体 4と吸収部材 5とを備える。標識保持部材 3は、試料添加用部材 2に接触 して配置され、標識物質で標識された第二抗体を保持する。クロマト用膜担体 4は、 標識保持部材 3に接触して配置され、第一抗体を固定化した判定部 6を有する。吸 収部材 5は、クロマト用膜担体 4と接触するように配置される。
[0040] 本発明のある実施形態において、図 1の試料添加用部材 2に測定用試料を滴下す ると、毛管現象により測定用試料が試料添加用部材 2、標識保持部材 3、クロマト用 膜担体 4、吸収部材 5を順次移動する。測定用試料中に被測定物質が混入している 場合には、この被測定物質と標識保持部材 3中の第二抗体が反応し、複合体を形成 する。さら〖こ、これらの複合体が、クロマト用膜担体 4の判定部 6に固定化された第一 抗体により捕捉される。これにより、図 1に示したように、判定部 6において第二抗体 の標識物質のバンドが現れ、被測定物質が目視により検出される。
[0041] また、クロマト用膜担体 4は、さらに、滴下された測定用試料が判定部 6を通過した ことを確認するための対照部を判定部 6の下流側に備えてもよい。例えば、この対照 部にピオチンを固定ィ匕し、ピオチンと結合するアビジンを標識物質で標識して標識保 持部材 3に保持させた場合、標識保持部材 3中のアビジンはクロマト用膜担体 4上を 測定用試料と共に移動する。アビジンは判定部 6の第二抗体には捕捉されず、対照 部のピオチンにより捕捉される。これにより、対照部においてアビジンの標識物質の バンドが現れる。対照部は、判定部 6よりも下流に設けられているので、このバンドを 確認することにより、試料が判定部 6を通過したことが確認できる。なお、この対照部 にアビジンを固定ィ匕し、ピオチンを標識物質で標識して標識保持部材 3に保持させ てもよい。さらに、対照部に固定化される物質、および標識保持部材 3に保持させる 物質は、アビジンとピオチンの組み合わせ以外であってもよい。なお、標識保持部材 3に保持させる物質には、被測定物質および判定部に固定化される二次抗体と反応 しない物質を用いる。
[0042] また、試験具は、図 2で示すように、標識保持部材を有しな!/ヽものであってもよ!/ヽ。こ の場合、第二抗体を検体と予め混合して測定用試料を調製し、この測定用試料を試 験具の試料添加用部材 2に滴下することができる。
[0043] 本発明は、上記試験具を含む SARSウィルス検出のための免疫クロマト法用検出キ ットに適用することができる。このようなキットは、例えば、検体を処理して測定用試料 を調製するための前処理液、試験具、各種抗体等を含む試薬等を含み得る。
[0044] 次に、本発明の測定方法を適用した ELISAについて説明する。
[0045] ELISAでは、被測定物質に対する抗体または抗原を固定ィ匕した ELISAプレート等の マイクロプレートを用いる。例えば、被測定物質が抗原の場合、被測定物質に対する 第一抗体を固定ィ匕したマイクロプレートを用いる。まず、マイクロプレートに測定用試 料を添加し、測定用試料中の被測定物質と前記固定化された第一抗体との複合体 を形成させる。続いて、酵素などの標識物質で標識された第二抗体を添加し、マイク 口プレート上で、固定化された第一抗体、被測定物質および標識された第二抗体と 力 なる複合体を形成させる。その後、前記複合体の第二抗体の標識物質を利用し て被測定物質の検出や定量を行う。
[0046] 前記第二抗体を標識する標識物質としては、ペルォキシダーゼ、ガラクトシダーゼ 、アルカリホスファターゼ等の酵素が挙げられる。
[0047] よって、本発明は、上記マイクロプレートを含む SARSウィルス検出のための ELISA 用検出キットに適用することができる。このようなキットは、例えば、第一抗体を固定化 したマイクロプレート、マイクロプレートのゥエル内を洗浄するための洗浄液、第二抗 体を標識した酵素に対する基質、各種抗体等を含む試薬を含み得る。上記の洗浄 液としては、所定の塩濃度の緩衝液が挙げられる。
[0048] 以下、モノクローナル抗体の作製方法について説明する。モノクローナル抗体は、 ケーラーとミルシュタインの方法(Koehlar & Milstein, Nature 256, 495-497, 1975年) によって産生することができる。すなわち、抗原で免疫した動物の脾臓細胞と骨髄腫 細胞とを融合させて、得られた融合細胞 (以降、ハイプリドーマと呼ぶ)から抗原に対 して特異的な抗体を生産する細胞を選択し、このハイプリドーマを大量培養ある ヽは 動物の腹腔内で増殖させ、この培養液ある ヽは腹水力ゝら該モノクローナル抗体を分 離することにより製造することができる。以下 [I]〜[V]において、 SARS-NPに対する モノクローナル抗体を得るための方法について説明する。
[0049] [I]抗原; SARS-NPに対するモノクローナル抗体の作成に用いられる抗原は、 SARSゥ ィルスを含有する試料カゝら精製して得ることができる。 SARSウィルスを含有する試料 としては、例えば、 SARS患者力 採取した血液や SARSウィルスを人工的に培養して 得られる培養液などが挙げられる。また、抗原は、遺伝子工学的手法によっても得る ことができる。
[0050] [Π]免疫工程;精製 SARS-NP、または遺伝子工学的手法により得た組換え SARS-NP やその部分ペプチドを、リン酸緩衝液などの適当な緩衝液中に溶解または懸濁した ものを抗原液として使用する。抗原液は、通常、抗原の濃度が 50〜500 /z g/ml程度 になるように調製すればよい。また、ペプチド抗原など、それだけでは抗原性が低い 場合には、アルブミンやキーホールリンペットへモシァニン(KLH)など適当なキャリア 一タンパク質に架橋して用いることができる。
[0051] 抗原により免疫される動物(以降、被免疫動物と呼ぶ)としては、マウス、ラット、ハム スター、ゥマ、ャギ、ゥサギなどの哺乳類が挙げられる。好ましくはげつ歯類であり、そ の中でも好ましくはマウスである。
[0052] 免疫は、抗原液を被免疫動物の皮下、皮内、腹腔あるいは静脈などに注射など〖こ より投与することにより行うことができる。このとき、被免疫動物の抗原への応答性を高 めるために、抗原液をアジュバントと混合して投与してもよい。アジュバンドとは、それ 自身は抗原としての働きを有しないが、抗原と共に投与されることにより被免疫動物 における免疫反応を増強することができる物質である。使用可能なアジュバントとして は、フロイト完全アジュバント(FCA)、フロイト不完全アジュバント(FIA)、 Ribi (MPL)、 Ribi (TDM)、 Ribi (MPL+TDM)、百日咳ワクチン(Boredetella pertussis vaccine)、ムラ ミルジペプチド(MDP)、アルミニウムアジュバント(ALUM)、およびこれらの組合せが 挙げられる。
なお、被免疫動物に対する抗原液の初回投与においては FCAを、追加投与におい ては FIAや Ribiアジュバントを使用する組合せが好ましい。
[0053] 免疫方法について、具体例を示す。例えば、被免疫動物としてマウスを用いる場合 、アジュバントを混合した抗原液 0.05〜lml (抗原量 10〜200 /z g)をマウスの腹腔内、 皮下、筋肉内または尾の静脈内に注射し、この初回投与力も約 4〜21日毎に 1〜4回 追加投与を行い、さらに、約 1〜4週間後に最終投与を行う。なお、最終投与に関して はアジュバントを含有しない抗原液を用いることが望ましい。最終投与より約 3〜5日 後に、被免疫動物から脾細胞を得る。ここで得た脾細胞は抗体生産細胞である。
[0054] [III]細胞融合工程;この工程では、被免疫動物力 得た脾細胞と骨髄腫細胞とを融 合させてハイプリドーマを作製する。骨髄腫細胞としては、マウス、ラット、ヒトなどの由 来のものが使用され、例えばマウスミエローマ P3X63- Ag8、 P3X63- Ag8- Ul、 P3NS1- Ag4、 SP2/o-Agl4、 P3X63-Ag8'653などの株化骨髄腫細胞が挙げられる。なお、骨 髄腫細胞には免疫グロブリン軽鎖を産生しているものがあり、これを細胞融合に用い ると、脾細胞が産生する免疫グロブリン重鎖とこの軽鎖とがランダムに結合することが ある。ゆえに、特に免疫グロブリン軽鎖を産生しない骨髄腫細胞、例えば P3X63-Ag8 •653や SP2/o-Agl4などを用いることが好ましい。脾細胞と骨髄腫細胞とは、同種動 物、特に同系統の動物由来であることが好ましい。骨髄腫細胞の保存方法は自体公 知の手法に従って行えばよぐ例えばゥマ、ゥサギもしくはゥシ胎児血清を添加した 一般的な培地で継代培養したものにっ 、て凍結により保存される。また細胞融合に は対数増殖期の細胞を用いるのが好まし 、。
[0055] 脾細胞と骨髄腫細胞とを融合させてノ、イブリドーマを作製する方法は、ポリエチレン グリコール (PEG)を用いる方法、センダイウィルスを用いる方法、電気融合装置を用 いる方法などが例示される。例えば PEG法の場合、約 30〜60%の PEG (平均分子量 1 ,000〜6,000)を含む適当な培地または緩衝液中に脾細胞と骨髄腫細胞を 1〜10: 1、 好ましくは 5〜10 : 1の混合比で懸濁し、温度約 25〜37°C、 pH6〜8の条件下で、約 30 秒〜 3分間程度反応させればよい。反応終了後、細胞を洗浄し PEG溶液を除いて培 地に再懸濁し、マイクロタイタープレート中に播種して培養を続ける。
[0056] [IV]ハイプリドーマの選択;融合操作後の細胞は選択培地で培養して、ハイプリドー マの選択を行う。選択培地は、親細胞株を死滅させ、ノヽイブリドーマのみが増殖しえ る培地であり、通常、ヒポキサンチン アミノプテリン チミジン (HAT)培地が使用さ れる。ノ、イブリドーマの選択は、通常、融合操作の 1〜7日後に、培地の一部、好まし くは約半量を選択培地と交換し、さらに 2、 3日毎に同様の培地交換を繰り返しながら 培養することにより行う。顕微鏡観察によりハイプリドーマのコロニーが生育しているゥ エルを確認する。
[0057] 生育しているハイプリドーマが所望の抗体を産生しているかどうかを知るには、培養 上清を採取して抗体価アツセィを自体公知の方法により行えばょ 、。例えば担体に 固定化した抗原タンパク質に段階希釈した該上清を加えて反応させ、さらに蛍光物 質、酵素、もしくは放射性同位体 (RI)などで標識した二次抗体 (抗グロブリン抗体、 抗 IgG抗体、抗 IgM抗体など)を反応させれば、該上清中に産生されている抗体を検 出することができ、また抗体価を測定することができる。抗原が酵素などの場合は、そ の酵素と該上清とを反応させた後、適当な基質を反応させて酵素阻害活性の有無に より、抗体の検出および抗体価の測定を行うことができる。このように各ゥエルの培養 上清をスクリーニングし、適切な抗体を産生して!/、るハイプリドーマを得る。
[0058] さらに限界希釈法、軟寒天法、蛍光励起セルソーターを用いた方法などにより単一 クローンを分離する。例えば限界希釈法の場合、ハイプリドーマのコロニーを 1細胞
Zゥヱル前後となるように培地で段階希釈して培養することにより目的とする抗体を産 生するハイプリドーマクローンを単離することができる。得られた抗体産生ハイブリド 一マクローンは、約 10% (v/v)ジメチルスルホキシド(DMSO)あるいはグリセリンなど の凍結保護剤の共存下に凍結させて、 -70〜- 196°Cで保存すると、約半年〜半永久 的に保存可能である。細胞は用時 37°C前後の恒温槽中で急速に融解して使用する 。凍結保護剤の細胞毒性が残存しないようによく洗浄して力 使用するのが望ましい [0059] ノ、イブリドーマが産生する抗体の免疫グロブリンサブクラスを調べるためには、該ハ イブリドーマを一般的な条件で培養し、その培養上清中に分泌された抗体を市販の 抗体クラス ·サブクラス判定用キットなどを用いて分析することにより知ることができる。
[0060] [V]モノクローナル抗体の調製;ハイプリドーマ力 モノクローナル抗体を取得する方 法は、モノクローナル抗体の必要量ゃノヽイブリドーマの性状などによって適宜選択す ることができる。例えば、該ハイブリドーマを移植したマウス腹腔内の腹水から取得す る方法、細胞培養により培養上清力 取得する方法などが挙げられる。マウス腹腔内 で増殖可能なノ、イブリドーマであれば、腹水力 数 mg/mlの高濃度のモノクローナル 抗体を得ることができる。 in vivoで増殖できないハイプリドーマは、細胞培養の培養 上清力もモノクローナル抗体を得る。細胞培養によるモノクローナル抗体の取得は、 抗体産生量は in vivoより低いが、マウス腹腔内に含まれる免疫グロブリンや他の夾雑 物質の混入が少なぐ精製が容易であるという利点がある。
[0061] ノ、イブリドーマを移植したマウス腹腔内の腹水力もモノクローナル抗体を取得する 場合、例えば、予めプリスタン (2,6,10,14-テトラメチルペンタデカン)などの免疫抑制 作用を有する物質を投与した BALB/cマウスの腹腔内へノ、イブリドーマ (約 106個以上 )を移植し、約 1〜3週間後に貯留した腹水を採取する。異種ハイプリドーマ (例えば マウスとラット)の場合には、ヌードマウス、放射線処理マウスを使用することが好まし い。
[0062] 一方、細胞培養上清力 モノクローナル抗体を取得する場合、例えば、細胞維持 に用いられる静置培養法の他に、高密度培養方法ある 、はスピンナーフラスコ培養 方法などの培養法を用いて当該ハイプリドーマを培養し、モノクローナル抗体を含有 する培養上清を得る。培地に添加し得る血清は、他の抗体やアルブミンなどの夾雑 物を含み、培養液からのモノクローナル抗体精製が煩雑になることが多いので、培地 への添カ卩は少なくすることが望ましい。さらに好ましくは、ハイプリドーマを常法により 無血清培地に馴化させ、無血清培地を用いて培養することである。無血清培地で培 養することにより、モノクローナル抗体精製が容易になる。
[0063] 腹水や培養上清力 のモノクローナル抗体の精製は、自体公知の方法により行うこ とができる。例えば、免疫グロブリンの精製法として従来既知の硫酸アンモ-ゥムゃ 硫酸ナトリウムを用いた塩析による分画法、ポリエチレングリコール分画法、エタノー ル分画法、 DEAEイオン交換クロマトグラフィー法、ゲル濾過法などを応用することで 、容易にモノクローナル抗体を精製することができる。さらに、モノクローナル抗体力 マウス IgGである場合には、プロテイン A結合担体あるいは抗マウスィムノグロブリン結 合担体を用いたァフィユティークロマトグラフィー法により精製することが可能であり、 簡便である。
実施例
[0064] 以下、本発明における実施例について説明する。
[0065] 実施例 1: SARS-NPに対するモノクローナル抗体の産生
本例のモノクローナル抗体は、次の [I]〜[V]の工程を経て産生される。具体的に は、 [I]遺伝子工学的手法により組換え SARS-NPを含有する抗原液を調製し、 [Π]こ の抗原液でマウスを免疫し、 [III]免疫したマウス力 得た脾臓細胞と骨髄腫細胞とを 融合させ、 [IV]得られたハイプリドーマ力 SARS-NPに対して特異的な抗体を生産 する細胞を選択し、 [V]このハイプリドーマをマウスの腹腔内で増殖させ、その腹水か らモノクローナル抗体を分離した。詳細を以下に示した。
[0066] [I]抗原液の調製
まず、遺伝子解析用ソフトウェア BioEdit version 7.0.0 (BioEdit社)を用いて、 SAR S TOR2株のヌクレオ力プシドタンパク質の cDNA塩基配列(Gen Bank (accession Num ber;AY274119、 protein id;AAP41047.1)において公開)における大腸菌内で使用頻 度の低いコドンを、使用頻度の高いコドンに変換した。(以降、この配列を SARS-NP c DNA (E.coli)と呼ぶ。)この SARS- NP cDNA (E.coli) (全長 1269bp)のうち、 5,末端から の 1番目から 660番目までに相当する cDNA断片と 600番目から 1269番目に相当する c DNA断片を合成し、それらを制限酵素で連結して全長 1269bpの SARS-NP cDNAを 合成した。そして、この合成 SARS-NP cDNA配列を利用して、 2種類の組換え SARS- NP (GST融合型、 His- tag付加型)を調製した。以下に、詳細を示す。
[0067] (1)塩基配列 1〜660の cDNA断片を含むベクターの調製
PCR法及び TAクローニング法を利用して、 SARS-NP cDNA配列の 1番目力 660番 目の cDNA断片を含むベクターを調製した。まず、 8種類のプライマー(配列番号 3〜 10)を合成し、このプライマーを用いて PCRを行った (第一 PCR)。第一 PCRの反応条 件は 95°C30秒、 56.1°C30秒、 72°C30秒の 16サイクルである。第一 PCRの反応液の組 成は以下の通りである。
[0068] (第一 PCR反応液)
10 μ Μのプライマー(配列番号 3)を含むプライマー溶液 0.5 μ L 10 μ Μのプライマー(配列番号 4)を含むプライマー溶液 0.5 μ L 10 μ Μのプライマー(配列番号 5)を含むプライマー溶液 0.5 μ L 10 μ Μのプライマー(配列番号 6)を含むプライマー溶液 0.5 μ L 10 μ Μのプライマー(配列番号 7)を含むプライマー溶液 0.5 μ L 10 μ Μのプライマー(配列番号 8)を含むプライマー溶液 0.5 μ L 10 μ Μのプライマー(配列番号 9)を含むプライマー溶液 0.5 μ L 10 μ Μのプライマー(配列番号 10)を含むプライマー溶液 0.5 μ L 2.5mM dNTP溶液(タカラバイオ株式会社) 1.6 L
1.5υ/ μ L Ex-Taq (タカラバイオ株式会社) 0.1 L
10 X Ex- Taq緩衝液 (タカラバイオ株式会社) 2 μ L
滅菌蒸留水 12.3 /z L
[0069] 第一 PCRが終了すると、次に、その反応液を用いて第二 PCRを行った。第二 PCRの 反応条件は 95°C30秒、 58.5°C30秒、 72°C30秒の 30サイクルである。第二 PCRの反応 液の組成は以下の通りである。
[0070] (第二 PCR反応液)
第一 PCR終了後の反応液 1 L
10 μ Μのプライマー(配列番号 11)を含むプライマー溶液 0.5 μ L 10 μ Μのプライマー(配列番号 12)を含むプライマー溶液 0.5 μ L 2.5mM dNTP溶液(タカラバイオ株式会社) 1.6 L
1.5υ/ μ L Ex-Taq (タカラバイオ株式会社) 0.1 L
10 X Ex- Taq緩衝液 (タカラバイオ株式会社) 2 μ L
滅菌蒸留水 14.3 /z L [0071] そして、第二 PCR終了後の反応液 4 /z Lを用いて TAクローユングを行い、塩基配列 1〜660の cDNA断片を含むベクターを調製した。 TAクローユングには、 TOPO TA C1 oning kit (invitrogen)を用いた。これにより、塩基配列 1〜660の cDNA断片を含むベタ ター pCR ΤΟΡΟ(1- 660)を得た。
[0072] (2)塩基配列 600〜1269の cDNA断片を含むベクターの調製
前記(1)と同様の方法で、 SARS-NP cDNA配列の 600番目から 1269番目の cDNA 断片を含むベクターを調製した。 8種類のプライマー (配列番号 13〜20)を合成し、 このプライマーを用いて PCRを行った (第一 PCR)。第一 PCRの反応条件は 95°C30秒 、 55.1°C30秒、 72°C30秒の 16サイクルである。第一 PCRの反応液の組成は、配列番 号 13〜20のプライマーを含む各プライマー溶液を用いており、それ以外の組成は前 記(1)と同様である。第一 PCRに引き続いて、第二 PCR及び TAクロー-ングも前記(1 )と同様の方法で行い、最終的に、塩基配列 600〜1269の cDNA断片を含むベクター pCR TOPO(600- 1269)を得た。
[0073] (3)全長 SARS- NP cDNAを含むベクターの調製
pCR ΤΟΡΟ(1- 660)及び pCR TOPO(600- 1269)を用いて、全長 1269bpの SARS- NP cDNAを含むベクターを調製した。まず、 pCR TOPO(1-660)を制限酵素 Smalと Hindlll で処理して、 pCR TOPO(1-660)からベクター部位と塩基配列 1〜660を含む cDNA断 片を調製した。同様に pCR TOPO(600-1269)を制限酵素 Smalと Hindlllで処理して、 p CR TOPO(600-1269)から塩基配列 600〜1269を含む cDNA断片を調製した。そして、 ベクター部位と塩基配列 1〜660を含む cDNA断片、塩基配列 600〜 1269を含む cDN A断片及び DNA Ligetion Kit Ver2.1 (タカラバイオ株式会社)を用いて全長 1269bpの SARS-NP cDNAを含むベクター pCR ΤΟΡΟ(1- 1269)を得た。 pCR ΤΟΡΟ(1- 1269)に 含まれる SARS-NP cDNAの塩基配列を配列番号 1に示す。なお、この塩基配列と SA RS-NP cDNA (E.coli)の塩基配列を比較したところ、 675番目の塩基配列が Gから Aへ 、 1107番目の塩基配列が Cから Aへと置換していた力 それら塩基配列がコードする アミノ酸は TOR2 SARS-NP cDNA (E.coli)と同じであった。配列番号 1に記載の SARS -NP cDNAの塩基配列より予想されるアミノ酸配列を配列番号 2に示した。
[0074] (4) GST融合型組換え SARS- NPの調製 GST融合型大腸菌組み換えタンパク質発現ベクター pGEX-2TK (Amersham Biosci ence)を制限酵素 EcoRIと BamHIで処理し、アルカリホスファターゼ処理して 4.9kbpの ベクター断片を調製した。同様に、全長 1269bpの SARS-NP cDNAを含む pCR TOPO (1-1269)を制限酵素 EcoRIと BamHIで処理し、全長 1269bpの SARS-NP cDNAを含む DNA断片を調製した。そして、 4.9kbpのベクター断片、 SARS-NP cDNAを含む DNA 断片及び DNA Ligation Kit Ver2.1 (タカラバイオ株式会社)を用いて、全長 1269bpの SARS-NP cDNAを含む大腸菌発現ベクター pGEX-2TK(SARS-NP)を作製した。
[0075] 次に、大腸菌発現ベクター pGEX- 2TK(SARS_NP)を含む大腸菌を、 LB培地で培養 した。培養開始後、対数増殖期に達した大腸菌培養液に最終濃度 ImM IPTGを添加 し、室温で 18時間培養した。培養後、大腸菌体を回収し、 PBS (l%TritonX)に懸濁し た。超音波破砕機で懸濁液中の大腸菌を破砕した後、沈殿画分を lOOmM Tris緩衝 液(150mMNaCl、 pH8.0)で洗浄し、 lOOmM Tris緩衝液(8M尿素、 150mM KC1、 pH8 .0)に溶解した。これを、 GST融合型組換え SARS-NP抗原液とした。
[0076] (5) His- tag付加型組換え SARS- NPの調製
ベクター pCDNA3.1(Invitrogen)を制限酵素 EcoRIと BamHIで処理し、さらにアルカリ ホスファターゼ処理して 5.0kbpのベクター断片を調製した。同様に、前記 (4)で得ら れた大腸菌発現ベクター pGEX-2TK(SARS-NP)を制限酵素 EcoRIと BamHIで処理し、 全長 1269bpの SARS-NP cDNAを含む DNA断片を調製した。そして、 5.0kbpのべクタ 一断片、 SARS- NP cDNAを含む DNA断片及び DNA Ligetion Kit Ver2.1 (タカラバイ ォ株式会社)を用いて、全長 1269bpの SARS- NP cDNAを含む pCDNA3.1(SARS- NP) を作製した。
[0077] 続いて、 pCDNA3.1(SARS- NP)を制限酵素 BamHIと Xholで処理し、全長 1269bpの S ARS-NP cDNAを含む DNA断片を調製した。同様に、大腸菌発現ベクター pQE30 (Qi agen)を制限酵素 BamHIと Xholで処理し、 3.4kbpのベクター断片を調製した。そして、 3.4kbpのベクター断片、 SARS-NP cDNAを含む DNA断片及び DNA Ligation Kit Ver 2.1 (タカラバイオ株式会社)を用いて、全長 1269bpの SARS- NP cDNAを含む大腸菌 発現ベクター pQE30(SARS-NP)を作製した。
[0078] 次に、大腸菌発現ベクター pQE30(SARS-NP)を含む大腸菌を、 100 μ g/mLアンピシ リンを含有する LB培地で培養した。培養開始後、対数増殖期に達したところで大腸 菌培養液に最終濃度 ImM IPTGを添加し、 3.5時間培養した。培養後、大腸菌を回収 し、 20mMリン酸ナトリウム緩衝液(0.5M NaCl、 ImM DTT、 lmg/mL Pefablock (プロテ ァーゼインヒビター)、 20mMイミダゾ—ル、 pH7.4) 30mLに懸濁し、氷上で超音波処 理 (2分間 X 7回)し、遠心後に得られた可溶性画分を回収し、 His-Trap HPカラム(QI AGEN)を用いて His- tag付加型組換え SARS-NPを精製した。この His- tag付加型組換 え SARS- NPを含有する 20mMリン酸ナトリウム緩衝液 (pH7.4)を His- tag付加型組換え SARS-NP抗原液とした。
[0079] [II]免疫工程
被免疫動物として Balb/cマウス (8週齢メス)を用いた。前記 [I] (4)にて得られた GS T融合型組換え SARS-NP抗原液、及び、前記 [I] (5)にて得られた His-tag付加型組 換え SARS-NP抗原液を用いて、以下のスケジュールで Balb/cマウスを免疫化した。
[0080] (l)FCAと混合した GST融合型組換え SARS-NP抗原液(GST融合型組換え SARS-NP の最終濃度 50 μ g)をマウスの腹腔に投与した。
(2)その 2週間後、 RIBIと混合した GST融合型組換え SARS-NP抗原液 (GST融合型組 換え SARS-NPの最終濃度 50 μ g)をマウスの腹腔に投与した。
(3)その 3週間後、 RIBIと混合した GST融合型組換え SARS-NP抗原液 (GST融合型組 換え SARS-NPの最終濃度 50 μ g)をマウスの腹腔に投与した。
(4)その 3週間後、 RIBIと混合した His- tag付加型組換え SARS-NP抗原液(His- tag付 加型組換え SARS-NPの最終濃度 50 μ g)をマウスの腹腔に投与した。
(5)その 3週間後、 RIBIと混合した His- tag付加型組換え SARS-NP抗原液(His- tag付 加型組換え SARS-NPの最終濃度 50 μ g)をマウスの腹腔に投与した。
(6)その 3週間後、 His- tag付加型組換え SARS- NP抗原液(His- tag付加型組換え SAR S-NPの最終濃度 50 μ g)を尾静脈に注射した。
[0081] [III]細胞融合工程
ここでは、被免疫動物力 得た脾細胞と骨髄腫細胞とを融合させてハイプリドーマ を作製する。脾細胞は、 [II] (6)の免疫化処理から 3日後の Balb/cマウス力も摘出し た。骨髄腫細胞は、 Balb/cマウス骨髄腫由来培養細胞株 (X63細胞株)から得られる X63細胞を用いた。細胞融合は、約 50%のポリエチレングリコール 4000 (SIGMA)を含 む RPMI-1640培養液中に、前記脾細胞と前記 X63細胞の混合比が 7.5:1となるように 懸濁し、反応させる。この後、 HT培地(10%非動化 fetal calf serumを加えた RPMI-16 40培養液に O.lmM hypoxantinと 0.016mM thymidine含有)とクロー-ングメディウム( 三光純薬)の比が 1:1の培養液に、 1mlあたり 250万個となるように脾細胞数を懸濁し、 96穴マイクロプレート(Corning Inc.)の各ゥエルに播種して培養した。
[0082] [IV]ハイプリドーマの選択
融合操作後の細胞は選択培地で培養して、ハイプリドーマの選択を行う。融合操作 の翌日、細胞を播いた 96穴マイクロプレートの各ゥエルに HAT培地をカ卩えて培養した 。さらに、細胞融合の 4日後、 6日後および 8日後に HT培地を加えて培養し、ハイプリ ドーマのコロニーが生育して 、るゥエルを確認した。
[0083] (l) SARS-NPに対する反応性の調査
次に、糸且換え SARS-NPを固定化したプレートを用いた ELISAにより、ハイプリドーマ が産生するモノクローナル抗体の SARS-NPに対する反応性を調べた。ここでは、まず 、 His- tag付カ卩型糸且換え SARS- NPを ELISAプレート上に固定化する。このプレートに ノ、イブリドーマの培養液の上清を添加して反応させた後、ペルォキシターゼ標識した ャギ抗マウス抗体を添加し、ペルォキシダーゼ基質溶液をカ卩えて発色させ、その吸 光度を測定した。これより、 His-tag付加型組換え SARS-NPに強い反応性を示すモノ クローナル抗体を産生するハイブリドーマ 30個(ハイブリドーマ No.l〜30)を得た。
[0084] (2)モノクローナル抗体のェピトープの検討
さらに、図 3に示したように SARS-NPのアミノ酸配列を領域 A(l-141)、領域 B (142-2 82)、領域 C (283-422)の 3つの領域に分け、各モノクローナル抗体のェピトープがど の領域に含まれるのかを調べた。
[0085] ここでは、 2種類の組換えタンパク質を用いた。各組換えタンパク質の調製は、まず 、前記 [I] (4)で得られた大腸菌発現ベクター pGEX-2TK(SARS-NP)を铸型として、 S ARS-NPアミノ酸配列(1〜422番目のアミノ酸配列)のうち N末端側から 1番目〜282番 目までのアミノ酸配列領域をコードする cDNA断片、及び、 142番目〜422番目までの アミノ酸配列領域をコードする cDNA断片をそれぞれ合成する。合成した cDNA断片 を利用して、 SARS-NPアミノ酸配列のうち 1番目〜282番目までのアミノ酸配列領域に 相当する組換えタンパク質 (SARS-NP N末端タンパク質)、及び、 142番目〜422番目 のアミノ酸配列領域に相当する組換えタンパク質 (SARS-NP C末端タンパク質)を得 る。以下に組換えタンパク質を得る方法を詳細に示す。
[0086] (1番目〜282番目までのアミノ酸配列領域をコードする cDNA断片を含むベクターの 調製)
大腸菌発現ベクター pGEX-2TK(SARS-NP)と配列番号 11および配列番号 21のプ ライマーを用いて PCRを行った。 PCRの反応条件は 95°C30秒、 58.5°C30秒、 72°C30 秒の 30サイクルである。 PCRの反応液の組成は以下の通りである。
[0087] 10 μ g/mLの大腸菌発現ベクター pGEX- 2TK(SARS- ΝΡ) 1 μ L
10 μ Mのプライマー(配列番号 11)を含むプライマー溶液 0.5 μ L 10 μ Μのプライマー(配列番号 21)を含むプライマー溶液 0.5 μ L 2.5mM dNTP溶液(タカラバイオ株式会社) 1.6 L
1.5υ/ μ L Ex-Taq (タカラバイオ株式会社) 0.1 L
10 X Ex- Taq緩衝液 (タカラバイオ株式会社) 2 μ L
滅菌蒸留水 14.3 /z L
[0088] そして、 PCR終了後の反応液 4 μ Lを用いて ΤΑクロー-ングを行 、、全長 1269bpの S ARS-NP cDNA配列の 1番目から 846番目に相当する cDNA断片を含むベクターを調 製した。 TAクローユングには、 TOPO TA Cloning kit (invitrogen)を用いた。これによ り、塩基配列 1〜846に相当する cDNA断片を含むベクター pCR N(l〜846)を得た。
[0089] (142番目〜422番目までのアミノ酸配列領域をコードする cDNA断片を含むベクター の調製)
大腸菌発現ベクター pGEX-2TK(SARS-NP)と配列番号 22および配列番号 23のプ ライマーを用いて PCRを行った。 PCRの条件等は、 1番目力 282番目までのアミノ酸 配列領域をコードする cDNA断片を含むベクターの調製した場合と同様である。これ により、 SARS-NP cDNA配列の 427番目から 1269番目に相当する cDNA断片を含む ベクター pCR C(427〜1269)を得た。
[0090] (SARS-NP N末端タンパク質の調製) 前記 pCR N(l〜846)を制限酵素 BamHIで処理し、 5.0kbpの cDNA断片を調製した。 同様に、大腸菌発現ベクター pQE30 (Qiagen)を制限酵素 BamHIと Xholで処理し、 3.4 kbpのベクター断片を調製した。次に、 3.4kbpのベクター断片、前記 5.0kbpの cDNA断 片及び DNA Ligetion Kit Ver2.1 (タカラバイオ株式会社)を用いて、塩基配列 1〜846 に相当する cDNA断片を含む大腸菌発現ベクター pQE30 N(l〜846)を作製した。
[0091] 次に、大腸菌発現ベクター pQE30 N(l〜846)を含む大腸菌に導入し、 100 μ g/mL アンピシリンを含有する LB培地で培養した。培養開始後、対数増殖期に達したところ で大腸菌培養液に最終濃度 ImM IPTGを添加し、 3.5時間培養した。培養後、大腸 菌を回収し、 20mMリン酸ナトリウム緩衝液(0.5M NaCl、 ImM DTT、 Img/mL Pefabloc k (プロテアーゼインヒビター)、 20mMイミダゾール、 pH7.4) 30mLに懸濁し、氷上で超 音波処理 (2分間 X 7回)し、遠心後に得られた可溶性画分を回収し、 His-Trap HP力 ラム(QIAGEN)を用いて、 SARS-NP N末端タンパク質を精製した。
[0092] (SARS-NP C末端タンパク質の調製)
前記 pCR C(427〜1269)を用いて、前記 His- tag付加型組換え SARS- NP N末端タン パク質の調製と同様の方法で、 SARS-NP C末端タンパク質を精製した。
[0093] 得られた各タンパク質(SARS- NP N末端タンパク質、 SARS- NP C末端タンパク質)を それぞれ ELISAプレート上に固定ィ匕する。それぞれのプレートに前記ノ、イブリドーマ( No.l〜30)の培養液の上清を添加して反応させた後、ペルォキシターゼ標識したャ ギ抗マウス抗体を添加し、ペルォキシターゼ基質溶液をカ卩えて発色させ、その吸光 度を測定した。これより、 SARS-NP N末端タンパク質にのみ反応性を示すハイブリド 一マは図 3の領域 Aにェピトープが存在するモノクローナル抗体を産生し、 SARS-NP C末端タンパク質にのみ反応性を示すハイプリドーマは図 3の領域 Cにェピトープが 存在するモノクローナル抗体を産生し、両タンパク質に反応性を示すノヽイブリドーマ は図 3の領域 Bにェピトープが存在するモノクローナル抗体を産生することがわかる。
[0094] 以上(1)及び(2)の結果(吸光度)をまとめて表 1に示す。
[0095] [表 1]
Figure imgf000024_0001
[V]モノクローナル抗体の調製
上記表 1のハイブリドーマのうち、ハイプリドーマ Νο.1、 2、 3、 12、 13、 14、 15、 16及び 17が産生する各モノクローナル抗体を精製した。精製は、まず、 BALB/cマウスの腹 腔内へハイプリドーマを移植し、 10日後に貯留した腹水を採取する。採取した腹水か ら、プロテイン Aカラムである HyperD (Perseptive Biosystems)を用いて、モノクローナ ル抗体を精製した。以上の操作により、 9種類のモノクローナル抗体 (モノクローナル 抗体 No.l、 2、 3、 12、 13、 14、 15、 16及び 17)を得た。 [0097] 実施例 2 :免疫クロマト法への適用
実施例 1にお 、て得られた 9種類のモノクローナル抗体(モノクローナル抗体 No.1、 2、 3、 12、 13、 14、 15、 16及び 17)を用いて免疫クロマト法を実施した。
[0098] (免疫クロマト法用試験具の作製)
本例では、図 2で示したような形態の試験具を用いた。本例の試験具の基材 1には 接着面を有するバッキングシートを、吸収部材 5にはワットマン WF1.5を、クロマト用担 体 4にはニトロセルロース膜を用いた。なお、クロマト用担体 4は、前記 9種類のうちい ずれかのモノクローナル抗体を固定ィ匕した判定部 6を有する。なお、本例では、検体 から調製された測定用試料に試験具の試料添加部材を浸すことにより、毛細管現象 にて試料液を判定部に向かって展開するようになって!/、る。
(抗体感作ラテックス液)
前記 9種類のうちいずれかのモノクローナル抗体を青色ポリスチレンラテックス粒子 (平均粒径 0.3 μ m)に固定ィ匕し、この青色ポリスチレンラテックス粒子を 0.2% (w/v)に なるように 10mMリン酸緩衝液 (pH8.0)に懸濁し、これを抗体感作ラテックス液として用 いた。
(検体の調製)
POCTEM (シスメッタス株式会社)の検体用緩衝液を用いて、 [I] (5)で得た His- ta g付加型組換え SARS-NPを 18.2ng/mlとなるように調製し、これをポジティブ検体として 用いた。また、 His- tag付加型組換え SARS-NPを含まない検体用緩衝液をネガティブ 検体として用いた。
(測定方法)
検体 20 μ 1、 POCTEM (シスメッタス株式会社)の抽出液 25 μ 1、抗体感作ラテックス 液 30 1を混合して測定用試料を調製した。この測定用試料が入ったチューブに試 験具を、試料添加部材 2を測定用試料に浸すように入れ、室温で 20分間静置後、ク 口マト用担体 4の判定部 6に出現する青色のバンドを観察した。
[0099] 測定結果を表 2に示した。各バンドは、青色の呈色度合いに応じて、「一」、 「W」、「 1 +」、「2 +」及び「3 +」の 5段階に区別して判定した。表中の「No.」は使用したモノ クローナル抗体の番号を示し、 A、 B、 Cは各抗体のェピトープが存在する領域を示す 。また、非特異反応については、 His- tag付加型組換え SARS-NPを含まない検体用 緩衝液をネガティブ検体として測定し、 Vヽずれの場合も非特異反応の有無を確認し た。表中の▲は、非特異反応が見られたものを示す。
[表 2]
Figure imgf000026_0001
[0101] なお、「―」、「W」、 「1 +」、 「2 +」及び「3 +」は、出現したバンドを TRS3000 Membr ane Strip Reader(BioDod社)で測定した場合に得られる測定値に基づいて、表 3に記 載の基準で設定した。表中の ROD値とは、バンドの測定値力も-トロセルロース膜の 濃淡を測定した値をバックグラウンドとして差し引いた値である。ちなみに、青色のバ ンドを肉眼で確認することができるのは「W」、 「1 +」、 「2 +」及び「3 +」でぁる。
[0102] [表 3]
Figure imgf000027_0001
[0103] 表 2より、免疫クロマト法におけるクロマト担体に固定ィ匕される抗体と着色ラテックス で標識する抗体の組み合わせにつ 、て、好ましくは判定が「1 +」となった抗体の組 み合わせであり、より好ましくは判定が「2 +」となった抗体の組み合わせであり、最も 好ましくは判定が「3 +」となった抗体の組み合わせである。本例で感度の高!、測定 結果を示した 3つの抗体(モノクローナル抗体 No.2、 No.12及び No.14)を産生するハ イブリドーマ(ノ、イブリドーマ No.2、 No.12及び No.14)を、独立行政法人産業技術総 合研究所 特許微生物寄託センター (茨城県つくば巿東 1 - 1 - 1 中央第 6)に、 20 05年 2月 15日に寄託した。各ハイプリドーマの受領番号は次の通りである。
[0104] ハイプリドーマ No.2の受領番号: FERM ABP-10678
ハイプリドーマ No.12の受領番号: FERM ABP- 10679
ハイプリドーマ No.14の受領番号: FERM ABP- 10680
[0105] ここで、領域 Aにェピトープが存在するモノクローナル抗体をグループ Aの抗体とし 、領域 Bにェピトープが存在するモノクローナル抗体をグループ Bの抗体とし、領域 C にェピトープが存在するモノクローナル抗体をグループ Cの抗体とする。そして、表 2 より、クロマト担体に固定ィ匕される抗体又は着色ラテックスで標識する抗体として、 Cグ ループの抗体を用いることによって感度の高い測定結果を得られることがわ力つた。
[0106] クロマト担体に固定ィ匕される抗体と着色ラテックスで標識する抗体の組み合わせと しては、 Aグループの抗体と Cグループの抗体の組み合わせ、又は、 Bグループの抗 体と Cグループの抗体の組み合わせが比較的感度の高い測定結果を得られることが わかった。
[0107] また、クロマト担体に固定ィ匕される抗体としては、 Aグループの抗体又は Cグループ の抗体を用いることによって感度の高い測定結果を得られることがわ力つた。さらに、 クロマト担体に固定ィ匕される抗体力 グループの場合は、着色ラテックスで標識する 抗体として Cグループの抗体を組み合わせることによって感度の高い測定結果を得ら れることがわ力つた。一方、クロマト担体に固定ィ匕される抗体力 SCグループの場合は、 着色ラテックスで標識する抗体として Aグループの抗体又は Bグループの抗体を組み 合わせることによって感度の高い測定結果を得られることがわ力つた。また、 Bグルー プに属するモノクローナル抗体 No.12をクロマト担体に固定ィ匕される抗体として使用し た場合、着色ラテックスで標識する抗体として Cグループの抗体を組み合わせること によって比較的感度の高い測定結果を得られることがわ力つた。
[0108] なお、上記の抗体の好ましい組み合わせは、免疫クロマト法に限ったものではなぐ その他の免疫学的測定方法においても適応することができる。
[0109] 実施例 3 : ELISAへの適用
実施例 1にお 、て得られたモノクローナル抗体 No.1及び No.14を用いて ELISA法を 実施した。ここで、モノクローナル抗体 No.14は ELISAプレートに固定化し、モノクロ一 ナル抗体 No.1はアルカリホスファターゼで標識した。また、 10mMリン酸緩衝液 (pH7.0 )を用いて、 [I] (5)で得た His- tag付力卩型組換え SARS- NPを 0、 0.195、 0.39、 0.78、 1.5 6、 3.12ng/mlとなるように調製し、これらを試料として用いた。
[0110] 測定方法としては、まず、モノクローナル抗体 No.12を固定ィ匕した ELISAプレートに 試料 100 /z Lを添カ卩し、室温で 30分間攪拌した。 10mMリン酸緩衝液 (pH7.0)でプレー トを洗浄した後、実施例 1で得られた His- tag付加型組換え SARS- NP抗原液 (20 ng/m 1) 100 1を加え、室温で 30分間攪拌した。リン酸緩衝液でプレートを洗浄した後、 5U/ mLアルカリホスファターゼ標識モノクローナル抗体 No.lを含有する 10mMリン酸緩衝 液 (PH7.0) 100 Lを添加し、室温で 30分間攪拌した。そして、プレートを洗浄後、ぺ ルォキシターゼ基質溶液 100 Lを加えて発色させ、その吸光度を測定した。 [Oil 1] 比較例として、市販品: SARS- Nucleocapsid ActiveELIZA (IMGENEX社)で用いら れて 、る 2種の抗体を用いて、同様の方法で ELISA法を実施した。
[0112] 結果を図 4に示した。図中の縦軸は吸光度(OD405/OD655)、横軸は検体に含ま れる His-tag付加型組換え SARS-NPの濃度 (ng/mL)である。また、実線はモノクロ ナル抗体 No.1及び No.14を用いた場合の結果であり、点線は市販品の抗体を用いた 場合の結果である。
[0113] 図 4において、モノクローナル抗体 No.l及び No.14を用いた場合、非常に高いシグ ナル強度を示した。これより、 ELISA法において、モノクローナル抗体 No.l及び No.14 を用いると非常に高い感度で測定を行うことができることが判った。
[0114] 実施例 3で用いた抗体(モノクローナル抗体 No.l及び No.14)並びに試料(His-tag 付力卩型組換え SARS- NPの濃度: 0 0.195 0.39 0.78 1.56 3.12ng/ml)を用いて免 疫クロマト法を行った。その結果を表 4に示した。なお、免疫クロマト法は、実施例 2と 同様の方法で実施した。なお、ここでは、モノクローナル抗体 No.14をクロマト担体に 固定ィ匕し、モノクローナル抗体 No.lを着色ラテックスで標識した。
[0115] [表 4]
Figure imgf000029_0001
[0116] 表 4では、検体中の SARS-NPの濃度が 0.195 (ng/mL)の場合、「W」という判定結果 であった。これより、免疫クロマト法において、モノクローナル抗体 No.l及び No.14を 用いた場合、検体中の SARS-NPの濃度が少なくとも 0.195 (ng/mL)以上であれば SA RS-NPを検出することが可能であることが判った。
[0117] 実施例 4: ELISAにおける抗体の組み合わせの検討
実施例 1で得られたモノクローナル抗体 No.l 3 8 12 14 15 16及び 23を用いて ELISA法を実施した。これらのそれぞれを ELISAプレートに固定化し、これらのそれぞ れをピオチンで標識して、 V、ずれの組み合わせの場合に高感度で ELISA法により検 出ができるかを検討した。
[0118] 上記のモノクローナル抗体をそれぞれ 0.1Mリン酸緩衝液 (pH 7.5、 0.1%アジ化ナトリ ゥム)で 1 μ g/mlになるように希釈した。この抗体液 100 μ 1を ELISAプレートのゥエルに 加え、 4°Cでー晚静置した。プレート洗浄機を用いて、ノ ッファー II (10mMリン酸ナトリ ゥム、 150mM NaCl、 0.05% Tween20)でプレートを洗浄した。バッファー I (10mMリン酸 ナトリウム pH 7.0、 2.5 mM EDTA、 1% BSA、 150mM NaCl) 300 μ 1をゥエルに加え、 4°C でー晚静置した。このようにして得られた抗体が固定ィ匕されたプレートに、ノ ッファー I で希釈した実施例 1で得られた His- tag付加型組換え SARS-NP抗原液 (20 ng/ml) 10 O /z lを加え、室温で 30分間攪拌した。ゥエルをバッファー Πで洗浄し、ノ ッファー Iで希 釈した 0.5 g/mlの各ピオチン標識モノクローナル抗体を加え、室温で 30分間攪拌し た。ゥエルをバッファー IIで洗浄し、バッファー Iで希釈したペルォキシダーゼ標識スト レプトアビジン(20mU/ml) 100 1をカ卩え、室温で 30分間攪拌した。ゥエルをバッファー IIで洗浄し、ペルォキシターゼ基質溶液 100 1をカ卩え、室温で 2.5分間攪拌した後、 2 N硫酸 100 1をカ卩えた。プレートの吸光度(OD492/OD690)を測定した。測定は、 1試 料につき 2つのゥエルで行い、これらの値を平均した。さらに、抗原を含まない上記抗 原液(すなわち SARS-NP Ong/mlの上記抗原液)を用いた測定により得られた値をブ ランクとして、上記平均値から引いた値を結果として得た。
結果を図 5に示す。図中の縦軸は吸光度(OD492/OD690)であり、横軸はプレート に固定化した抗体を示す。
[0119] 図 5より、 ELISAにおける ELISAプレートに固定化される抗体とピオチンで標識する 抗体の組み合わせについて、好ましくは判定が吸光度(OD492/OD690)が 1.000以 上となった抗体の組み合わせであり、より好ましくは 1.200以上となった抗体の組み合 わせであり、最も好ましくは 1.450以上となった抗体の組み合わせである。本例で感度 の高い測定結果を示した 4つの抗体(モノクローナル抗体 No.1、 No.12、 No.14及び N 0.15)のうち、モノクローナル抗体 No.1及び No.15を産生するハイブリドーマ(ノヽイブリ ドーマ No. l及び No.15)を、独立行政法人産業技術総合研究所 特許微生物寄託セ ンター (茨城県つくば巿東 1 - 1 - 1 中央第 6)に、 2006年 9月 26日に寄託した。各ハ イブリドーマの受領番号は次の通りである。
[0120] ハイプリドーマ No.lの受領番号: FERM ABP- 10687
ハイプリドーマ No.15の受領番号: FERM ABP- 10686
[0121] ここで、領域 Aにェピトープが存在するモノクローナル抗体をグループ Aの抗体とし 、領域 Bにェピトープが存在するモノクローナル抗体をグループ Bの抗体とし、領域 C にェピトープが存在するモノクローナル抗体をグループ Cの抗体とする。そして、図 5 より、 ELISAプレートに固定ィ匕される抗体又はピオチンで標識する抗体として、 Cダル ープの抗体を用いることによって比較的高感度の測定結果を得られることがわ力つた
[0122] ELISAプレートに固定ィ匕される抗体とピオチンで標識する抗体の組み合わせとして は、 Aグループの抗体と Cグループの抗体の組み合わせ、又は、 Bグループの抗体と Cグループの抗体の組み合わせが比較的感度の高い測定結果を得られることがわか つた o
[0123] また、 ELISAプレートに固定ィ匕される抗体が Aグループの場合は、ピオチンで標識 する抗体として Cグループの抗体を組み合わせることによって感度の高い測定結果を 得られることがわかった。さらに、 ELISAプレートに固定化される抗体が Bグループの 場合は、ピオチンで標識する抗体として Cグループの抗体を組み合わせることによつ て感度の高い測定結果を得られることがわ力つた。また、 Cグループに属するモノクロ ーナル抗体 No.14を ELISAプレートに固定ィ匕される抗体として使用した場合、ビォチ ンで標識する抗体として Aグループの抗体を組み合わせることによって比較的感度の 高 、測定結果を得られることがわ力つた。
[0124] 実施例 5:様々な濃度の抗原の ELISAによる測定
上記の結果から、次の表 5に示す組み合わせでモノクローナル抗体を用いて、実施 例 4と同様にして ELISAを行った。なお、 His-tag付加型組換え SARS-NP抗原は、バッ ファー Iで 0〜3.125 /z g/mlとなるように希釈して用いた。また、ピオチン標識モノクロ一 ナル抗体の濃度は 1 μ g/mlとし、ペルォキシターゼ基質溶液との反応時間を 10分間 とした。 測定は、 1試料につき 4つのゥエルで行い、これらの値を平均して結果を得た。 結果を図 6に示す。
[0125] [表 5]
Figure imgf000032_0001
[0126] 図 6より、検体中の SARS-NPの濃度に比例して吸光度が増加していることがわかつ た。ゆえに、本例の抗体を組み合わせた ELISA法により、 SARSの濃度を測定すること が可能であることがわ力つた。
[0127] この出願は、 2005年 10月 11日に出願された日本国特許出願特願 2005— 2965
42号に関し、この特許請求の範囲、明細書、図面及び要約書の全ては本明細書中 に参照として組み込まれる。

Claims

請求の範囲
[1] SARSウィルスヌクレオ力プシドタンパク質 (SARS-NP)に特異的に結合する第一抗体 及び SARS-NPに特異的に結合する第二抗体を用いて SARS-NPを測定する方法であ つて、
前記第一抗体又は前記第二抗体力 ARS-NPのアミノ酸配列の N末端側から 283番目 〜422番目の領域 (領域 C)に存在するェピトープを認識する抗体である SARS-NPの 測定方法。
[2] 前記第二抗体が前記領域 Cに存在するェピトープを認識する抗体であり、前記第一 抗体が SARS-NPのアミノ酸配列の N末端側から 1番目〜141番目の領域 (領域 A)に 存在するェピトープを認識する抗体、又は SARS-NPのアミノ酸配列の N末端側から 14 2番目〜282番目の領域 (領域 B)に存在するェピトープを認識する抗体であり、該第 一抗体が固相に固定ィ匕されて用いられる請求項 1に記載の SARS-NPの測定方法。
[3] 前記第一抗体が領域 Cに存在するェピトープを認識する抗体であり、前記第二抗体 が SARS-NPのアミノ酸配列の N末端側から 1番目〜141番目の領域 (領域 A)に存在 するェピトープを認識する抗体又は SARS-NPのアミノ酸配列の N末端側から 142番目 〜282番目の領域 (領域 B)に存在するェピトープを認識する抗体であり、該第一抗体 が固相に固定ィ匕されて用いられる請求項 1に記載の SARS-NPの測定方法。
[4] 前記第一抗体及び前記第二抗体のうち少なくとも一方がモノクローナル抗体であるこ とを特徴とする請求項 1〜3のいずれか一項に記載の SARS-NPの測定方法。
[5] 前記第二抗体が標識物質により標識されていることを特徴とする請求項 1〜4のいず れか一項に記載の SARS-NPの測定方法。
[6] 前記測定方法が、免疫比ろう法、ラテックス免疫凝集法、放射性免疫測定法、酵素 免疫測定法、蛍光免疫測定法、化学発光免疫測定法または免疫クロマト法である請 求項 1〜5のいずれか一項に記載の測定方法。
[7] SARSウィルスヌクレオ力プシドタンパク質 (SARS-NP)に特異的に結合する第一抗体 及び SARS-NPに特異的に結合する第二抗体を用いて SARSウィルスヌクレオ力プシド タンパク質 (SARS-NP)を測定するための試薬キットであって、
前記第一抗体を固定化した固相と、標識物質により標識された前記第二抗体を含有 する試薬との組み合わせ力 なり、
前記第一抗体又は前記第二抗体力 ARS-NPのアミノ酸配列の N末端側から 283番目 〜422番目までの領域 (領域 C)に存在するェピトープを認識する抗体である SARS-N Pの測定用試薬キット。
[8] 前記第二抗体が領域 Cに存在するェピトープを認識する抗体であり、前記第一抗体 が SARS-NPのアミノ酸配列の N末端側から 1番目〜141番目の領域 (領域 A)に存在 するェピトープを認識する抗体、又は SARS-NPのアミノ酸配列の N末端側から 142番 目〜282番目の領域 (領域 B)に存在するェピトープを認識する抗体である請求項 7 に記載の測定用試薬キット。
[9] 前記第一抗体が領域 Cに存在するェピトープを認識する抗体であり、前記第二抗体 が SARS-NPのアミノ酸配列の N末端側から 1番目〜141番目の領域 (領域 A)に存在 するェピトープを認識する抗体又は SARS-NPのアミノ酸配列の N末端側から 142番目 〜282番目の領域 (領域 B)に存在するェピトープを認識する抗体である請求項 7に 記載の測定用試薬キット。
[10] 前記第一抗体及び前記第二抗体のうち少なくとも一方がモノクローナル抗体であるこ とを特徴とする請求項 7〜9のいずれか一項に記載の測定用試薬キット。
[11] SARSウィルスヌクレオ力プシドタンパク質 (SARS-NP)に特異的に結合する第一抗体 及び SARS-NPに特異的に結合する第二抗体を用いて SARSウィルスを測定するため の免疫クロマト法用の試験具であって、
前記第一抗体が固相に固定化されており、前記第二抗体が標識物質により標識され ており、
前記免疫クロマト法用の試験具が、測定用試料が添加される試料添加部及び前記 試料添加部に添加された測定用試料が展開される試料展開部を備え、前記試料展 開部が第一抗体を固定化した判定部を有し、前記試料添加部に添加された測定用 試料が少なくとも前記判定部に向力つて展開され、
前記第一抗体又は前記第二抗体力 ARS-NPのアミノ酸配列の N末端側から 283番目 〜422番目までの領域 (領域 C)に存在するェピトープを認識する抗体である免疫クロ マト法用の試験具。
[12] 前記第二抗体が領域 Cに存在するェピトープを認識する抗体であり、前記第一抗体 が SARS-NPのアミノ酸配列の N末端側から 1番目〜141番目の領域 (領域 A)に存在 するェピトープを認識する抗体、又は SARS-NPのアミノ酸配列の N末端側から 142番 目〜282番目の領域 (領域 B)に存在するェピトープを認識する抗体であることを特徴 とする請求項 11に記載の免疫クロマト法用の試験具。
[13] 前記第一抗体が領域 Cに存在するェピトープを認識する抗体であり、前記第二抗体 が SARS-NPのアミノ酸配列の N末端側から 1番目〜141番目の領域 (領域 A)に存在 するェピトープを認識する抗体又は SARS-NPのアミノ酸配列の N末端側から 142番目 〜282番目の領域 (領域 B)に存在するェピトープを認識する抗体であることを特徴と する請求項 11に記載の免疫クロマト法用の試験具。
[14] 前記第一抗体及び前記第二抗体のうち少なくとも一方がモノクローナル抗体であるこ とを特徴とする請求項 11〜13のいずれか一項に記載の免疫クロマト法用の試験具。
[15] 前記測定用試料が標識物質により標識されている第二抗体を含むことを特徴とする 請求項 11〜 14の 、ずれか一項に記載の免疫クロマト法用の試験具。
[16] 前記試料展開部が、標識物質により標識されている第二抗体を保持する標識保持 部を有し、前記標識保持部が、測定用試料が判定部に向力つて展開する展開方向 に対して判定部よりも上流側に配置される請求項 11〜14のいずれか一項に記載の 免疫クロマト法用の試験具。
[17] SARSウィルスヌクレオ力プシドタンパク質 (SARS-NP)に対して特異的に結合し、受領 番号力 FERM ABP-10678のハイブリドーマにより産生されるモノクローナル抗体。
[18] SARSウィルスヌクレオ力プシドタンパク質 (SARS-NP)に対して特異的に結合し、受領 番号が FERM ABP-10679のハイブリドーマにより産生されるモノクローナル抗体。
[19] SARSウィルスヌクレオ力プシドタンパク質 (SARS-NP)に対して特異的に結合し、受領 番号力 FERM ABP-10680のハイブリドーマにより産生されるモノクローナル抗体。
[20] SARSウィルスヌクレオ力プシドタンパク質(SARS-NP)に対して特異的に結合し、受領 番号力 FERM ABP-10686のハイブリドーマにより産生されるモノクローナル抗体。
[21] SARSウィルスヌクレオ力プシドタンパク質 (SARS-NP)に対して特異的に結合し、受領 番号力 FERM ABP-10687のハイブリドーマにより産生されるモノクローナル抗体。 受領番号 FERM ABP-10678により寄託されたハイブリド 受領番号 FERM ABP-10679により寄託されたハイブリド 受領番号 FERM ABP-10680により寄託されたハイブリド 受領番号 FERM ABP-10686により寄託されたハイブリド 受領番号 FERM ABP-10687により寄託されたハイブリド
PCT/JP2006/320330 2005-10-11 2006-10-11 Sarsウイルスヌクレオカプシドタンパク質を測定するための測定方法、測定用試薬キット、試験具、sarsウイルスヌクレオカプシドタンパク質に対するモノクローナル抗体及び前記モノクローナル抗体を産生するハイブリドーマ WO2007043582A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/090,055 US20090280507A1 (en) 2005-10-11 2006-10-11 Method for measurement of sars virus nucleocapsid protein, reagent kit for the measurement, test device, monoclonal antibody directed against sars virus nucleocapsid protein, and hybridoma capable of producing the monoclonal antibody
JP2007539969A JPWO2007043582A1 (ja) 2005-10-11 2006-10-11 Sarsウイルスヌクレオカプシドタンパク質を測定するための測定方法、測定用試薬キット、試験具、sarsウイルスヌクレオカプシドタンパク質に対するモノクローナル抗体及び前記モノクローナル抗体を産生するハイブリドーマ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-296542 2005-10-11
JP2005296542 2005-10-11

Publications (1)

Publication Number Publication Date
WO2007043582A1 true WO2007043582A1 (ja) 2007-04-19

Family

ID=37942812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320330 WO2007043582A1 (ja) 2005-10-11 2006-10-11 Sarsウイルスヌクレオカプシドタンパク質を測定するための測定方法、測定用試薬キット、試験具、sarsウイルスヌクレオカプシドタンパク質に対するモノクローナル抗体及び前記モノクローナル抗体を産生するハイブリドーマ

Country Status (4)

Country Link
US (1) US20090280507A1 (ja)
JP (1) JPWO2007043582A1 (ja)
CN (1) CN101283093A (ja)
WO (1) WO2007043582A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650641A (zh) * 2012-04-28 2012-08-29 上海北加生化试剂有限公司 增强纳米胶乳免疫比浊法检测补体Clq浓度的试剂盒及方法
CN102650641B9 (zh) * 2012-04-28 2016-05-18 上海北加生化试剂有限公司 增强纳米胶乳免疫比浊法检测补体Clq浓度的试剂盒及方法
DE102020110335B3 (de) * 2020-04-15 2021-07-08 Protzek Gesellschaft für Biomedizinische Technik GmbH Vorrichtung und Verfahren zur gezielten Prüfung auf eine erfolgte Infektion mit dem Coronavirus-SARS-CoV-2
JP2022025577A (ja) * 2020-07-29 2022-02-10 シスメックス株式会社 試料中のウイルス抗原を測定する方法、抗体セット及び試薬キット
JP7105970B1 (ja) 2021-06-16 2022-07-25 積水メディカル株式会社 SARS-CoV-2の免疫測定方法及び免疫測定キット
JP2023026761A (ja) * 2021-06-16 2023-03-01 積水メディカル株式会社 SARS-CoV-2の免疫測定方法及び免疫測定キット、並びにモノクローナル抗体又はその抗体断片

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109426A (ja) * 2007-10-31 2009-05-21 Sysmex Corp 検体前処理液、ウイルス測定用キット及びウイルス検出方法
CN106680488A (zh) * 2015-11-06 2017-05-17 北京中生金域诊断技术股份有限公司 定量检测前白蛋白的免疫层析方法、试纸条的制备和应用
CN111398588A (zh) * 2020-02-13 2020-07-10 北京华科泰生物技术股份有限公司 一种用于快速检测新型冠状病毒n蛋白的免疫层析试剂盒的使用方法
WO2021159703A1 (zh) * 2020-02-13 2021-08-19 北京华科泰生物技术股份有限公司 一种快速检测新型冠状病毒n蛋白的免疫层析试剂盒及其制备方法和应用
CN111458499A (zh) * 2020-02-17 2020-07-28 江苏美克医学技术有限公司 新型冠状病毒和流感病毒检测试剂盒及检测方法
CN111153991A (zh) * 2020-02-26 2020-05-15 北京博奥森生物技术有限公司 一种人SARS-CoV-2单克隆抗体及其制备方法和应用
CN111435136A (zh) * 2020-03-03 2020-07-21 李翀 用于检测新型冠状病毒的时间分辨荧光免疫层析试剂盒及其制备方法
CN111398603B (zh) * 2020-03-28 2021-01-15 江苏省疾病预防控制中心(江苏省公共卫生研究院) 一种用于检测新型冠状病毒抗体的试纸条、制备方法及其应用
WO2021226123A1 (en) * 2020-05-06 2021-11-11 Academia Sinica Recombinant antibodies, kits comprising the same, and uses thereof
DE102020209412B4 (de) 2020-07-02 2024-02-08 Friedrich-Schiller-Universität Jena Mittel und Verfahren zur An- oder Abreicherung und zum Nachweis von Coronaviren
DE102020117636A1 (de) 2020-07-03 2022-01-05 Johannes Gutenberg-Universität Mainz Kits und Verfahren zur Anreicherung und zum Nachweis von RNA-Viren, insbesondere Viren der Familie Coronaviridae
WO2022031804A1 (en) * 2020-08-04 2022-02-10 Abbott Laboratories Improved methods and kits for detecting sars-cov-2 protein in a sample
US20220056112A1 (en) * 2020-08-11 2022-02-24 Yurogen Biosystems Llc MONOCLONAL ANTIBODIES AGAINST SARS-CoV-2 NUCLEOCAPSID PROTEIN AND USES THEREOF
WO2022049493A1 (en) * 2020-09-04 2022-03-10 Reagene Innovations Pvt. Ltd. Diagnostic methods for cov2 antigen detection in normal healthy asymptomatic and symptomatic patients at home or at point of care
IT202100020042A1 (it) 2021-07-27 2023-01-27 Univ Degli Studi Magna Graecia Di Catanzaro Dispositivo di test rapido per il rilevamento di virus SARS-CoV-2 e della produzione anticorpale relativa
CN114280311A (zh) * 2021-11-10 2022-04-05 宏葵生物(中国)股份有限公司 一种氨基末端b型利钠肽前体的纳米磁微粒化学发光检测试剂盒制备方法及检测应用
CN114805586A (zh) * 2022-04-14 2022-07-29 天津华科泰生物技术有限公司 抗MxA单克隆抗体组合物及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042579A1 (ja) * 2003-10-31 2005-05-12 Fujirebio Inc. 抗sarsウイルス抗体、該抗体を産生するハイブリドーマ及び該抗体を用いる免疫測定試薬

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042579A1 (ja) * 2003-10-31 2005-05-12 Fujirebio Inc. 抗sarsウイルス抗体、該抗体を産生するハイブリドーマ及び該抗体を用いる免疫測定試薬

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BERRY J.D. ET AL.: "Development and characterisation of neutralising monoclonal antibody to the SARS-coronavirus", J. VIROL. METHODS, vol. 120, 2004, pages 87 - 96, XP002332533 *
CHE X.Y. ET AL.: "Sensitive and specific monoclonal antibody-based capture enzyme immunoassay for detection of nucleocapsid antigen in sera from patients with severe acute respiratory syndrome", J. CLIN. MICROBIOL., vol. 42, 2004, pages 2629 - 2635, XP002997483 *
KIRIKAE T.: "Tokushu SARS Saishin Joho Kensaho no Genjo to Kongo no Tenbo", ANTIBIOTICS & CHEMOTHERAPY, vol. 20, 25 December 2003 (2003-12-25), pages 63 - 69, XP002984952 *
LIANG Y. ET AL.: "Comprehensive antibody epitope mapping of the nucleocapsid protein of severe acute respiratory syndrome (SARS) coronavirus: insight into the humoral immunity of SARS", CLIN. CHEM., vol. 51, August 2005 (2005-08-01), pages 1382 - 1396, XP003010434 *
OHNISHI K. ET AL.: "Immunological detection of servere acute respiratory syndrome coronavirus by monoclonal antibodies", JAP. J. INFECT. DIS., vol. 58, April 2005 (2005-04-01), pages 88 - 94, XP003010435 *
SHANG B. ET AL.: "Characterization and application of monoclonal antibodies against N protein of SARS-coronavirus", BIOCHEM. BIOPHYS. RES., vol. 336, 14 October 2005 (2005-10-14), pages 110 - 117, XP005015293 *
TAGUCHI F.: "Rinsho Kenkyu to Tenbo SARS SARS Coronavirus", JAPANESE JOURNAL OF CLINICAL MEDICINE, vol. 63, 1 December 2005 (2005-12-01), pages 2113 - 2120, XP003010436 *
VAN DEN BRINK E.N. ET AL.: "Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus", J. VIROL., vol. 79, February 2005 (2005-02-01), pages 1635 - 1644, XP009049268 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650641A (zh) * 2012-04-28 2012-08-29 上海北加生化试剂有限公司 增强纳米胶乳免疫比浊法检测补体Clq浓度的试剂盒及方法
CN102650641B (zh) * 2012-04-28 2014-06-18 上海北加生化试剂有限公司 增强纳米胶乳免疫比浊法检测补体Clq浓度的试剂盒及方法
CN102650641B9 (zh) * 2012-04-28 2016-05-18 上海北加生化试剂有限公司 增强纳米胶乳免疫比浊法检测补体Clq浓度的试剂盒及方法
DE102020110335B3 (de) * 2020-04-15 2021-07-08 Protzek Gesellschaft für Biomedizinische Technik GmbH Vorrichtung und Verfahren zur gezielten Prüfung auf eine erfolgte Infektion mit dem Coronavirus-SARS-CoV-2
JP2022025577A (ja) * 2020-07-29 2022-02-10 シスメックス株式会社 試料中のウイルス抗原を測定する方法、抗体セット及び試薬キット
JP7105970B1 (ja) 2021-06-16 2022-07-25 積水メディカル株式会社 SARS-CoV-2の免疫測定方法及び免疫測定キット
JP2022191725A (ja) * 2021-06-16 2022-12-28 積水メディカル株式会社 SARS-CoV-2の免疫測定方法及び免疫測定キット
JP2023026761A (ja) * 2021-06-16 2023-03-01 積水メディカル株式会社 SARS-CoV-2の免疫測定方法及び免疫測定キット、並びにモノクローナル抗体又はその抗体断片

Also Published As

Publication number Publication date
CN101283093A (zh) 2008-10-08
US20090280507A1 (en) 2009-11-12
JPWO2007043582A1 (ja) 2009-04-16

Similar Documents

Publication Publication Date Title
WO2007043582A1 (ja) Sarsウイルスヌクレオカプシドタンパク質を測定するための測定方法、測定用試薬キット、試験具、sarsウイルスヌクレオカプシドタンパク質に対するモノクローナル抗体及び前記モノクローナル抗体を産生するハイブリドーマ
JP7022969B2 (ja) SARS-CoV-2感染症を診断するための方法および試薬
KR102549704B1 (ko) Pivka-ii의 측정 방법, 및 pivka-ii 면역측정 시약 또는 키트의 제조 방법
RU2769568C2 (ru) REP белок в качестве белкового антигена для диагностических анализов
WO2022193980A1 (zh) 针对新型冠状病毒核衣壳蛋白的抗体或其抗原结合片段及其应用
WO2023036152A1 (zh) 一种SARS-Cov-2检测方法和试剂盒
JP2024012473A (ja) Rsウイルスを検出するための検出用試薬又はキット及びrsウイルスを検出する方法
WO2005042579A1 (ja) 抗sarsウイルス抗体、該抗体を産生するハイブリドーマ及び該抗体を用いる免疫測定試薬
JP5984670B2 (ja) Fdp測定用試薬及び試薬キット、並びに測定方法
WO2011137389A2 (en) Compositions and methods for reliably detecting and/or measuring the amount of a modified target protein in a sample
WO2021237534A1 (zh) 抗新型冠状病毒的抗体、抗体组合、制备方法、包含其的检测试剂盒
US10634676B2 (en) Method and kit for simultaneously detecting human parvovirus B19 antigen and antibody
CA3068424A1 (en) Method for measuring serum amyloid a of various animals and reagent for measurement thereof
JP2021524483A (ja) E型肝炎ウイルスのORF2iタンパク質に対する特異性を有する抗体及び診断目的のためのその使用
US11174310B2 (en) Disulfide-type HMGB1-specific antibody, method for measuring disulfide-type HMGB1 and kit for said measurement, and measurement method capable of quantitating all of HMGB1 molecules including reduced HMGB1, disulfide-type HMGB1 and thrombin-cleavable HMGB1 and kit for said measurement
JP5280916B2 (ja) 抗ラットオステオカルシンモノクローナル抗体
EP3177312B1 (en) Method and kit for detecting bacterial infection
KR20150114558A (ko) 인독실 황산의 측정 방법
JP5448424B2 (ja) ヒトIgGのFcを含有するタンパク質の測定試薬
WO2017033846A1 (ja) 免疫試験方法および免疫試験キット
JP2008058194A (ja) ウエストナイルウイルス感染の鑑別方法
JP2024003083A (ja) Rsウイルスを検出するための検出用試薬又はキット及びrsウイルスを検出する方法
WO2022244860A1 (ja) 抗ノロウイルス抗体
JP5585587B2 (ja) 5.9kDaペプチドの免疫学的測定方法
JP2000069963A (ja) アポリポプロテインe4特異モノクローナル抗体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680037843.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007539969

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12090055

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811637

Country of ref document: EP

Kind code of ref document: A1