WO2007043478A1 - 基板処理装置及び基板処理方法 - Google Patents

基板処理装置及び基板処理方法 Download PDF

Info

Publication number
WO2007043478A1
WO2007043478A1 PCT/JP2006/320118 JP2006320118W WO2007043478A1 WO 2007043478 A1 WO2007043478 A1 WO 2007043478A1 JP 2006320118 W JP2006320118 W JP 2006320118W WO 2007043478 A1 WO2007043478 A1 WO 2007043478A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
gas
substrate
processed
gas introduction
Prior art date
Application number
PCT/JP2006/320118
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Matsuura
Ken Nakao
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to CN2006800379045A priority Critical patent/CN101288157B/zh
Priority to KR1020087008530A priority patent/KR101243541B1/ko
Priority to EP06811445A priority patent/EP1936671A4/en
Priority to US12/083,342 priority patent/US7807587B2/en
Publication of WO2007043478A1 publication Critical patent/WO2007043478A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67303Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • F27B17/0025Especially adapted for treating semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Definitions

  • the present invention achieves good film forming uniformity between substrates and the efficiency of gas existing between substrates when performing film forming processing on the surface of a large number of substrates to be processed at once!
  • the present invention relates to a substrate processing apparatus and a substrate processing method that enable realization of / purge.
  • a process of forming a film on a substrate to be processed for example, a semiconductor wafer by CVD or the like.
  • a vertical heat processing apparatus which is a batch type processing apparatus capable of heat-treating a large number of wafers at once is used.
  • This processing apparatus includes a boat (holding tool) for mounting and holding wafers in multiple stages, and a predetermined gas such as CVD on the wafer in a processing gas (reaction gas) atmosphere under a predetermined temperature and pressure by accommodating the boat.
  • a reaction tube processing vessel
  • a gas introducing portion for introducing a processing gas into the reaction tube
  • an exhaust portion for evacuating the reaction tube to a predetermined pressure
  • a heater for heating the reaction tube ( Heating section).
  • one end of the reaction tube for example, the lower end force
  • the processing gas is introduced into the reaction tube, and the processing gas ascends through the reaction tube and passes through the substrate mounting region, and the other end of the reaction tube. For example, it becomes exhausted from the top!
  • the ALD (Atomic Layer Deposition) process which is one of the film formation processes, allows multiple types of gas to flow individually and sequentially into the reaction tube in a short time on the substrate. This is a process for forming a film.
  • purging after adsorption of the processing gas must be performed efficiently in a short time.
  • a processing gas is horizontally supplied from a gas nozzle cover provided on one side to each wafer mounted on a boat, and the side facing the gas nozzle.
  • a processing apparatus semiconductor device manufacturing apparatus
  • an annular partition is formed on the inner periphery of the reaction tube so that the processing gas layer ejected from one gas nozzle is not substantially mixed with the processing gas layers from the upper and lower gas nozzles by diffusion before the wafer reaction.
  • a plate is provided, and an outer ring portion corresponding to the annular partition plate is provided on the wafer mounting shelf of the boat.
  • the annular partition plate is provided on the inner periphery of the reaction tube and the outer ring portion is provided on the wafer mounting shelf of the boat, so that the structure is complicated. Moreover, the enlargement of the apparatus including the reaction tube cannot be avoided.
  • the wafer is raised so that a part of the processing gas flowing above the wafer flows downward.
  • a supporting pin is projected.
  • a plurality of openings having a large opening area are formed on the wafer mounting shelf of the boat so as to face the back surface of the wafer. For this reason, the upper processing gas layer and the lower processing gas layer may be substantially mixed through these openings, and it is difficult to obtain good film formation uniformity between the substrates. In addition, it is difficult to efficiently purge the gas staying between the substrates.
  • the present invention has been made in view of the above circumstances, and achieves good film formation uniformity between substrates when performing film formation processing on the surface of a large number of substrates to be processed at once. It is an object of the present invention to provide a processing apparatus and a processing method capable of realizing the efficiency of gas existing between the substrate and the substrate and purging. It is another object of the present invention to provide a processing apparatus and a processing method capable of simplifying the structure and reducing the size of the apparatus including the processing container.
  • the present invention provides a holder for mounting and holding the substrate to be processed in multiple stages, and a processing capacity for storing the holder and performing a predetermined heat treatment on the substrate to be processed in a processing gas atmosphere at a predetermined temperature and pressure. And a gas introduction part for introducing a processing gas into the processing container, an exhaust part for evacuating the processing container to a predetermined pressure, and a heating part for heating the processing container.
  • the holder is provided with a partition plate (separate from the mounting plate) that forms a processing space for each substrate to be processed when accommodated in the processing container.
  • the gas introduction part has a gas introduction hole provided so as to be located on one side of each processing space, and the exhaust part is provided on the other side of each processing space.
  • the processing apparatus is characterized by having an exhaust hole provided to face the introduction hole.
  • the present invention when film formation is performed on the surface of a large number of substrates to be processed at once, good film formation uniformity between the substrates is realized and the efficiency of the gas existing between the substrates is achieved. A good purge can be realized and productivity can be improved.
  • the structure can be simplified and the apparatus including the processing vessel can be downsized.
  • the present invention provides a holder for mounting and holding the substrate to be processed in multiple stages, and housing the holder, and subjecting the substrate to be processed to a predetermined heat treatment in a processing gas atmosphere at a predetermined temperature and pressure.
  • a processing vessel a gas introduction unit for introducing a processing gas into the processing vessel, an exhaust unit for evacuating the inside of the processing vessel to a predetermined pressure, and a heating unit for heating the substrate to be processed in the processing vessel;
  • Each mounting plate on which the substrate to be processed of the holder is mounted has a processing space for each substrate to be processed when the holder is accommodated in the processing container.
  • the gas introduction part has a gas introduction hole provided so as to be located on one side of each processing space, and the exhaust part is Provided on the other side of each processing space so as to face the gas introduction hole.
  • a discharge pores! Is a processing apparatus characterized by / Ru.
  • V when a film formation process is performed on the surface of a large number of substrates to be processed at one time, V achieves good film formation uniformity between the substrates and gas existing between the substrates. This efficiency makes it possible to realize a purge and improve productivity, while simplifying the structure and reducing the size of the apparatus including the processing container.
  • the processing container has a double tube structure including an inner tube portion and an outer tube portion, and the upper end of each of the inner tube portion and the outer tube portion is closed, and the holder is A space formed between the inner tube portion and the outer tube portion communicates with the exhaust portion.
  • the gas introduction part has a gas introduction pipe extending in the vertical direction, and an accommodation groove part for accommodating the gas introduction pipe is formed on the inner surface of the inner pipe part.
  • the gas introduction part has a gas introduction path provided in the space part in the vertical direction.
  • the holder when the holder is accommodated in the inner tube portion, the holder is allowed to rotate between the inner peripheral surface of the inner tube portion and the outer peripheral surface of the holder. It is preferable that a minute gap is formed. In this case, since the holder can be rotated, the in-plane uniformity of the treatment can be improved. In addition, a large number of independent processing spaces can be formed (secured) in the holder.
  • the present invention also includes a holder for mounting and holding the substrate to be processed in multiple stages, and the holder to accommodate the substrate to be subjected to a predetermined heat treatment in a processing gas atmosphere at a predetermined temperature and pressure.
  • a processing vessel a gas introduction unit for introducing a processing gas and an inert gas into the processing vessel, an exhaust unit for evacuating the processing vessel to a predetermined pressure, and a heating unit for heating the processing vessel
  • the holding tool is provided with a partition plate that forms a processing space for each substrate to be processed when accommodated in the processing container.
  • the part has a gas introduction hole provided so as to be located on one side of each processing space, and the exhaust part faces the gas introduction hole on the other side of each processing space.
  • a processing apparatus characterized by having an exhaust hole provided
  • a purge processing step of performing a purge process for each processing space is provided.
  • the present invention when film formation is performed on the surface of a large number of substrates to be processed at once, good film formation uniformity between the substrates is realized and the efficiency of the gas existing between the substrates is achieved. A good purge can be realized and productivity can be improved.
  • the present invention provides a holder for mounting and holding the substrate to be processed in multiple stages, and a predetermined heat treatment for the substrate to be processed in a processing gas atmosphere at a predetermined temperature and pressure.
  • a processing container for applying a gas a gas introduction part for introducing a processing gas and an inert gas into the processing container, an exhaust part for evacuating the processing container to a predetermined pressure, and a substrate to be processed in the processing container.
  • the gas introduction part has a gas introduction hole provided so as to be located on one side of each treatment space.
  • the exhaust section has an exhaust hole provided on the other side of each processing space so as to face the gas introduction hole.
  • each gas treatment hole is treated through a gas introduction hole.
  • V achieves good film formation uniformity between the substrates and the gas existing between the substrates. Therefore, it is possible to realize a purge and improve productivity.
  • control program that is executed by a computer that controls each of the processing devices and realizes each of the processing methods, and a computer-readable storage medium that stores the control program are also based on the present application. It is a protection target.
  • FIG. 1 is a schematic longitudinal sectional view showing a vertical heat treatment apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the vertical heat treatment apparatus of FIG.
  • FIG. 3 is an enlarged cross-sectional view of the main part of the vertical heat treatment apparatus of FIG.
  • FIG. 4 is a schematic longitudinal sectional view showing a vertical heat treatment apparatus according to a second embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of the vertical heat treatment apparatus of FIG.
  • FIG. 6 is an enlarged cross-sectional view of the main part of the vertical heat treatment apparatus of FIG.
  • FIG. 7 is an enlarged cross-sectional view of a main part of a further embodiment (modified example) of the present invention.
  • FIG. 8 is an enlarged cross-sectional view of a main part of a further embodiment (modification) of the present invention.
  • FIG. 1 is a schematic longitudinal sectional view showing a vertical heat treatment apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the vertical heat treatment apparatus of FIG.
  • FIG. 3 is an enlarged cross-sectional view of the main part of the vertical heat treatment apparatus of FIG.
  • a vertical heat treatment apparatus 1 that is a semiconductor manufacturing apparatus (processing apparatus) includes a vertical furnace (vertical heat treatment furnace) 2.
  • This vertical furnace 2 includes, for example, a quartz boat (holding tool) 3 that holds and holds substrates to be processed, such as semiconductor wafers, in a vertical direction in multiple stages at a predetermined pitch, and accommodates the boat 3 at a predetermined temperature.
  • a gas introduction part for introducing a processing gas into the reaction tube 4 and a reaction tube (processing vessel) 4 made of, for example, quartz for performing a predetermined heat treatment such as CVD on the wafer w in a processing gas atmosphere at a pressure
  • a gas indicator (gas introduction pipe) 5 an exhaust port 6 as an exhaust part for evacuating the inside of the reaction pipe 4 to a predetermined pressure
  • a heater (heating part) 7 for heating the reaction pipe 4.
  • each wafer w is partitioned by a partition plate 8 A space 10 is formed.
  • the gas injector 5 which is a gas introduction part has a gas introduction hole 11 for introducing gas also in one side side force in each processing space 10.
  • the exhaust port 6 serving as an exhaust portion communicates with an exhaust hole 12 provided for exhausting each processing space 10 at a position facing each gas introduction hole 11.
  • the boat 3 has a plurality of, for example, three columns 3a, and a top plate 3b and a bottom plate 3c provided at the upper and lower ends to support these columns 3a. Yes.
  • the support 3a is provided with support grooves 3d for supporting the wafer w horizontally at the peripheral edge thereof in multiple stages at a predetermined pitch in the vertical direction.
  • the support groove 3d has a predetermined height that allows the wafer to move up and down when the wafer is transferred.
  • the boat 3 is capable of mounting a large number of, for example, about 50 Ueno and w having a diameter of 300 mm, for example.
  • a circular partition wall plate 8 made of quartz, which forms a processing space 10 for each of the weno and w in the boat 3 between the top plate 3b and the bottom plate 3c, is horizontally set in a predetermined direction. It is provided in multiple stages.
  • the size of the partition plate 8 is preferably the same or substantially the same as the circle circumscribing the column 3a.
  • the lower surface of the wafer w is supported by the fork of the transfer mechanism and is loaded into the support groove 3d of the boat 3 or unloaded from the support groove 3d.
  • the boat 3 is mounted on the upper portion of a lid 13 that closes the furnace rod 4c at the lower end of the reaction tube 4 so as to be openable and closable via a rotary table 14 and a heat shield table 15.
  • a rotation drive mechanism 16 that rotationally drives the rotary table 14 is provided below the lid body 13.
  • the heat shield 15 placed on the turntable 14 includes a lower plate 15a placed on the turntable 14, a plurality of support posts 15b erected on the lower plate 15a, and these support posts 15b.
  • the heat shield plate 15c is provided in multiple stages at a predetermined pitch in the vertical direction.
  • the lid 13 is made of, for example, stainless steel.
  • a sealing member for example, an O-ring 26, is provided on the upper surface portion of the lid body 13 so as to be in contact with the opening end surface of the furnace tube 4 c at the lower end of the reaction tube 4 and hermetically seal.
  • a protective cover (not shown) made of, for example, quartz having corrosion resistance is provided on the exposed surface in the furnace on the upper surface of the lid 13.
  • the lid 13 can be moved up and down by a lifting mechanism (not shown). When the lid 13 is raised, the boat 3 is carried into the reaction tube 4 and the furnace rod 4c is closed, and the lid 13 is lowered. As a result, the furnace 4c is opened and the boat 3 is carried out of the reaction tube 4 to the lower loading area.
  • Each of the reaction tubes 4 has a double tube structure including an inner tube portion 4a and an outer tube portion 4b which are closed at the upper end (having a ceiling portion) and integrated.
  • the boat 3 is accommodated in the inner pipe 4a.
  • the lower ends of the outer tube portion 4b and the inner tube portion 4a are both open, and an outward flange portion 4d is formed at the lower end portion of the outer tube portion 4b.
  • the flange portion 4d is supported by the base plate 17 via a flange presser and a mounting member (not shown).
  • the heater 7 is also installed on the base plate 17 Yes.
  • the heater 7 is composed of a cylindrical heat insulating cylinder surrounding the reaction tube 4 and a heating resistor disposed on the inner periphery of the heat insulating cylinder (detailed illustration is omitted).
  • the lower end portion of the inner tube portion 4a is also formed in an outward flange shape, and is airtightly joined to the inner peripheral surface of the outer tube portion 4b.
  • a space 18 is formed between the inner tube portion 4a and the outer tube portion 4b.
  • the space portion 18 includes an annular space portion 18a and a top space portion 18b.
  • the annular space portion 18a and the top space portion 18b communicate with each other.
  • the lower end of the inner pipe portion 4a does not have to be the same height as a whole. For example, as shown in Fig. 1, the height of one side (right side) is made lower than the height of the other side (left side) so that it is aligned with the exhaust port 6 and is inclined from one side to the other side. .
  • a gas injector 5 that is a standing gas introduction pipe (extending in the vertical direction) is used as the gas introduction section.
  • the gas injector 5 is provided so that the upper end portion is closed and the base end portion 5a is bent in an L shape and penetrates the flange portion 4d of the reaction tube 4 horizontally.
  • a gas supply pipe capable of selectively switching between processing gas and purge gas (inert gas such as nitrogen gas) is connected to the base end portion 5a of the gas injector 5.
  • the gas supply pipe is provided with a control valve (for example, a mass flow controller) for controlling the amount of each introduced gas (not shown).
  • a plurality of gas indicators 5 may be provided according to the gas type.
  • the plurality of gas injectors 5A and 5B are preferably arranged adjacent to each other.
  • a gas introduction hole 11 is provided facing each processing space 10 so as to correspond to each processing space 10 of the boat 3.
  • the processing gas or the purge gas is injected and introduced from each gas introduction hole 11 toward the other side from one side of each processing space 10.
  • the processing gas or purge gas injected from the gas introduction hole 11 is injected above the respective wafers w and flows in parallel along the upper surface of each wafer w.
  • the diameter of the gas introduction hole 11 is preferably 0.5 to 1 mm, for example, 0.7 mm.
  • a minute gap s that allows the boat 3 to rotate is formed between the inner peripheral surface of the inner pipe portion 4 a and the outer peripheral surface of the boat 3.
  • the gap s By making the gap s as small as possible, gas diffusion from each processing space 10 to other adjacent (upper and lower) processing spaces 10 can be prevented, and an independent processing space 10 can be secured. In this case, it is arranged between the boat 3 and the inner pipe 4a.
  • the gas injector 5 is accommodated on the inner surface of the inner pipe portion 4a.
  • a receiving groove 19 is formed as a recess.
  • an accommodation groove 21 for accommodating an upstanding (vertically extending) rod-shaped temperature measuring device 20 is formed on the inner surface of the inner tube 4a.
  • the temperature measuring device 20 is removed in the normal state (during processing) when it is attached in a state of penetrating the lid 13 in order to measure the temperature in the furnace at the initial setting.
  • the gap s is preferably 1 to 5 mm.
  • the heater 7 may be provided with a temperature sensor for measuring the temperature (not shown).
  • the exhaust hole 12 is provided on the side wall of the inner pipe portion 4 a facing the gas introduction hole 11. From the gas introduction hole 11, each gas is diffused and ejected in a fan shape in a plan view (viewed from above). Accordingly, it is preferable that a plurality of exhaust holes 12 are formed in a slit shape with a predetermined width on the side wall of the inner pipe portion 4a.
  • An exhaust port 6 constituting the exhaust part is provided in a state communicating with the annular space part 18a on the lower side of the side wall of the outer pipe part 4b on the side where the exhaust hole 12 is located.
  • the exhaust port 6 includes a pressure sensor, a vacuum pump, and a pressure control valve, and a reduced pressure exhaust system having a pressure control mechanism for evacuating the reaction tube to a predetermined processing pressure, for example, 0.3 to LOTorr. Connected (not shown).
  • the vertical heat treatment apparatus 1 configured as described above is configured based on a predetermined recipe by managing the pressure in the reaction tube 4, the processing temperature, the amount of processing gas or purge gas introduced, and the time.
  • a control device 22 that performs film processing is provided.
  • the control device 22 is a storage medium (not shown) that stores a computer program used for performing a processing method to be described later.
  • the boat 3 on which the wafers w are loaded is carried into the reaction tube 4, and the furnace 4 c is sealed with the lid 13. Then, the inside of the reaction tube 4 is evacuated by the pressure control mechanism and controlled to a predetermined processing pressure, and the temperature in the furnace is controlled to a predetermined processing temperature by the heater 7. Further, the boat 3 is rotated by the rotation drive mechanism 16.
  • one process gas for example hexachlorodisilane (Si C1)
  • Si C1 hexachlorodisilane
  • a purge gas is caused to flow into each processing space 10 from the gas introduction hole 11 of the same gas injector 5A.
  • the other processing gas for example, ammonia (NH 2) power, the other gas injector 5B
  • the gas is introduced from the gas introduction hole 11 into each processing space 10.
  • a purge gas is caused to flow into each processing space 10 from the gas introduction hole 11 of the same gas injector 5B.
  • the gas flow and the purge of each processing gas are repeated a predetermined number of times for a predetermined time, such as introduction of hexachlorodisilane, purge, introduction of ammonia, and purge.
  • the processing gas and purge gas that have flowed into each processing space 10 are sucked and exhausted from the exhaust holes 12 on the opposite side.
  • the processing gas 10 on one side is introduced into each processing space 10 formed by partitioning the wafer w for each wafer w, and exhausted from the other side.
  • the wafer w can be subjected to film formation in a state in which a flow of processing gas parallel to the wafer w is formed, and after this film formation process, Purge gas is introduced into each processing space 10 from one side and exhausted from the other side, whereby each processing space 10 is purged, so that the surface of many wafers is formed at once. It is possible to improve the film formation uniformity between the substrates when performing the film processing, and it is possible to efficiently purge the gas existing between the substrates, so that the processing efficiency and productivity can be improved.
  • the processing space 10 partitioned by the partition plate 8 for each wafer w is formed in the boat 3, and one side of each processing space 10 is sandwiched.
  • a gas introduction hole 11 for introducing gas is arranged on the side, and an exhaust hole 12 for exhausting each processing space 10 is arranged on the other side, thereby forming a film on the surface of a large number of wafers at once.
  • the reaction tube 4 has a double tube structure including an inner tube portion 4a and an outer tube portion 4b that are closed at the top and integrated, and the boat 3 is accommodated in the inner tube portion 4a.
  • Inner pipe 4a A space 18 between the outer pipe 4b and the outer pipe 4b communicates with an exhaust port 6 that is an exhaust, and an inner groove 4 19 is provided on the inner surface of the inner pipe 4a. Therefore, the structure can be simplified and the apparatus including the reaction tube 4 can be downsized.
  • FIG. 4 is a schematic longitudinal sectional view showing a vertical heat treatment apparatus according to the second embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of the vertical heat treatment apparatus of FIG.
  • FIG. 6 is an enlarged cross-sectional view of the main part of the vertical heat treatment apparatus of FIG.
  • the same parts as those of the first embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals and description thereof is omitted.
  • a ring-shaped partition plate 80 that forms a processing space 100 partitioned by each wafer w is employed as a mounting plate of the boat 3 on which the wafer w is mounted.
  • the size of the ring-shaped partition plate 80 is preferably the same as or substantially the same as the circle circumscribing the column 3a, like the partition plate 8.
  • an opening 80a having a size smaller than that of the wafer w is provided.
  • the support column 3a is provided with a plurality of groove portions 3e for horizontally supporting the wafer w at the peripheral edge portion at a predetermined pitch in the vertical direction.
  • the groove 3e also has a predetermined height that allows the wafer to move up and down when the wafer is transferred.
  • the wafer transfer mechanism includes, for example, a push-up member that pushes up the wafer w placed on the ring-shaped partition plate 80 and also the downward force of the opening 80a of the ring-shaped partition plate 80; And a fork inserted into the gap between the ring-shaped partition plate 80 and supporting and transporting the wafer w (not shown).
  • gas injection boxes 50 extending upward and downward as gas introduction portions (FIG. 5).
  • two (50A, 50B) are formed adjacent to each other.
  • an L-shaped gas introduction pipe portion 50a Connected to the lower part of each gas injection box 50 is an L-shaped gas introduction pipe portion 50a whose base end side penetrates the flange portion 4d of the reaction tube 4 horizontally.
  • a gas introduction hole 11 is formed in the wall of the inner pipe portion 4a that partitions the gas injection box 50 so as to correspond to each processing space 100.
  • the gas injection box 50 has a larger cross-sectional area than the gas injector 5, the concentration difference (pressure difference) in the vertical direction (up and down direction) of the processing gas to which the gas introduction hole 11 force is also injected can be made smaller. it can.
  • the direction accommodating groove portion 19 that employs the gas injection box 50 since it is not necessary to provide the direction accommodating groove portion 19 that employs the gas injection box 50, the structure can be simplified as compared with the case where the gas injector 5 is employed.
  • the processing method can be carried out, and the same operational effects as in the above embodiment can be achieved. Further, according to the vertical heat treatment apparatus 1 of the present embodiment, since the wafer w is directly mounted on the upper surface of the ring-shaped partition plate 80, the number of mounted wafers can be increased as compared with the first embodiment. it can.
  • FIG. 7 and FIG. 8 are enlarged cross-sectional views of the main part showing a further embodiment (modification) of the present invention. That is, as shown in FIG. 7, the boat 3 in which the processing space 10 is formed by dividing the wafer w by the partition plate 8 may be combined with a processing container employing a gas indication box 50. As shown in FIG. 8, the boat 3 in which the processing space 100 is formed by partitioning with a ring-shaped partition plate 80 for each wafer w may be combined with a processing container using the gas indicator 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 本発明は、被処理基板を多段に搭載保持する保持具と、前記保持具を収容して、所定の温度及び圧力の処理ガス雰囲気下で被処理基板に所定の熱処理を施す処理容器と、前記処理容器内に処理ガスを導入するガス導入部と、前記処理容器内を所定の圧力に真空排気する排気部と、前記処理容器を加熱する加熱部と、を備えた処理装置であって、前記保持具には、前記処理容器内に収容された際に被処理基板ごとに処理空間を形成するような隔壁板が設けられており、前記ガス導入部は、各処理空間の一側側方に位置するように設けられたガス導入孔を有しており、前記排気部は、各処理空間の他側側方に前記ガス導入孔と対向するように設けられた排気孔を有していることを特徴とする処理装置である。

Description

明 細 書
基板処理装置及び基板処理方法
技術分野
[0001] 本発明は、多数枚の被処理基板の表面に一度に成膜処理を施す際において、基 板間での良好な成膜均一性の実現と基板間に存在するガスの効率よ!/ヽパージの実 現とを可能とする基板処理装置及び基板処理方法に関するものである。
背景技術
[0002] 半導体装置の製造においては、被処理基板例えば半導体ウェハに CVD等により 成膜処理を施す工程がある。この工程を実行する処理装置の一つとして、多数枚の ウェハを一度に熱処理することが可能なバッチ式の処理装置である例えば縦型熱処 理装置が用いられている。
[0003] この処理装置は、ウェハを多段に搭載保持するボート (保持具)と、当該ボートを収 容して所定の温度及び圧力下の処理ガス (反応ガス)雰囲気でウェハに CVD等の 所定の熱処理を施す反応管 (処理容器)と、当該反応管内に処理ガスを導入するガ ス導入部と、反応管内を所定の圧力に真空排気する排気部と、反応管を加熱するヒ ータ (加熱部)と、を備えて構成されている。このように構成された処理装置において は、反応管の一端例えば下端力 反応管内に処理ガスが導入され、当該処理ガスは 反応管内を上昇しつつ基板搭載領域を通過して、反応管の他端例えば上端から排 気されるようになって!/、る。
[0004] このような処理装置においては、プロセス条件 (温度、ガス流量、圧力、時間)によつ ては、処理ガスの導入側に近い方が処理ガス分子の吸着量が多くなるため、 ッチ 内の基板間での良好な成膜均一性を得ることが困難である。
[0005] 一方、成膜処理の一つである ALD (Atomic Layer Deposition:原子層成膜)プロセ スは、短時間に複数種類のガスを個別に且つシーケンシャルに反応管内に流して基 板上に成膜を行うプロセスである。この ALDプロセスでは、生産性を向上させるため に、処理ガス吸着後のパージを短時間に効率よく行う必要がある。し力しながら、前 記のような処理装置では、基板間に滞留するガスを効率よくパージすることが困難で あり、すなわち、生産性の向上が十分に図れない。
[0006] なお、特開 2000— 208425号公報には、ボートに搭載された各ウェハに対して一 側方に設けられたガスノズルカゝら処理ガスを水平に供給し、当該ガスノズルと対向す る側に設けられた吸気孔力 排気するようにした処理装置 (半導体装置の製造装置) が記載されている。この処理装置においては、一つのガスノズルから噴出する処理ガ ス層が、ウェハの反応前に拡散によって上下のガスノズルからの処理ガス層と実質的 に混合しないように、反応管の内周に環状仕切板が設けられると共に、ボートのゥェ ハ搭載棚部に環状仕切板と対応する外環部が設けられている。
[0007] し力しながら、この処理装置においては、反応管の内周に環状仕切板が設けられる と共にボートのウェハ搭載棚部に外環部が設けられているため、構造が煩雑であり、 また、反応管を含む装置の大型化を回避できない。
[0008] また、ボートのウェハ搭載棚部には、ウェハの下面に形成される被膜をより厚くする ために、ウェハの上側を流れる処理ガスの一部を下側に回り込ませるべくウェハを高 く支持するピンが突設されている。さらにボートのウェハ搭載棚部には、ウェハの裏 面に臨んで開口面積の大きい複数の開口部が形成されている。このため、これらの 開口部を通って上部の処理ガス層と下部の処理ガス層とが実質的に混合する恐れ があり、基板間での良好な成膜均一性を得ることが難しい。また、基板間に滞留する ガスを効率よくパージすることも難し 、。
発明の要旨
[0009] 本発明は、上記事情を考慮してなされたものであり、多数枚の被処理基板の表面 に一度に成膜処理を施す際において、基板間での良好な成膜均一性の実現と基板 間に存在するガスの効率よ!/、パージの実現とを可能とする処理装置及び処理方法を 提供することを目的とする。また、本発明は、構造の簡素化及び処理容器を含む装 置の小型化が図れる処理装置及び処理方法を提供することを目的とする。
[0010] 本発明は、被処理基板を多段に搭載保持する保持具と、前記保持具を収容して、 所定の温度及び圧力の処理ガス雰囲気下で被処理基板に所定の熱処理を施す処 理容器と、前記処理容器内に処理ガスを導入するガス導入部と、前記処理容器内を 所定の圧力に真空排気する排気部と、前記処理容器を加熱する加熱部と、を備えた 処理装置であって、前記保持具には、前記処理容器内に収容された際に被処理基 板ごとに処理空間を形成するような隔壁板が (載置板とは別個に)設けられており、前 記ガス導入部は、各処理空間の一側側方に位置するように設けられたガス導入孔を 有しており、前記排気部は、各処理空間の他側側方に前記ガス導入孔と対向するよ うに設けられた排気孔を有して ヽることを特徴とする処理装置である。
[0011] 本発明によれば、多数枚の被処理基板の表面に一度に成膜処理を施す際におい て、基板間での良好な成膜均一性の実現と基板間に存在するガスの効率よいパー ジの実現とが可能となり、生産性の向上が図れる一方で、構造の簡素化及び処理容 器を含む装置の小型化が図れる。
[0012] あるいは、本発明は、被処理基板を多段に搭載保持する保持具と、前記保持具を 収容して、所定の温度及び圧力の処理ガス雰囲気下で被処理基板に所定の熱処理 を施す処理容器と、前記処理容器内に処理ガスを導入するガス導入部と、前記処理 容器内を所定の圧力に真空排気する排気部と、前記処理容器内の被処理基板を加 熱する加熱部と、を備えた処理装置であって、前記保持具の被処理基板を載置する 各載置板が、前記保持具が前記処理容器内に収容された際に被処理基板ごとの処 理空間を形成するようなリング状隔壁板として形成されており、前記ガス導入部は、 各処理空間の一側側方に位置するように設けられたガス導入孔を有しており、前記 排気部は、各処理空間の他側側方に前記ガス導入孔と対向するように設けられた排 気孔を有して!/ヽることを特徴とする処理装置である。
[0013] 本発明によっても、多数枚の被処理基板の表面に一度に成膜処理を施す際にお V、て、基板間での良好な成膜均一性の実現と基板間に存在するガスの効率よ 、パ ージの実現とが可能となり、生産性の向上が図れる一方で、構造の簡素化及び処理 容器を含む装置の小型化が図れる。
[0014] 例えば、前記処理容器は、内管部及び外管部からなる二重管構造を有しており、 内管部及び外管部は、共に上端が閉塞されており、前記保持具は内管部内に収容 されるようになっており、内管部と外管部との間に形成される空間部が前記排気部と 連通している。この場合、例えば、前記ガス導入部は、鉛直方向に延びるガス導入管 を有しており、内管部の内面に、ガス導入管を収容する収容溝部が形成されている。 あるいは、この場合、前記ガス導入部は、前記空間部に鉛直方向に設けられたガス 導入路を有している。このような構成は、構造の簡素化及び処理容器を含む装置の 小型化を図る上で、有利である。
[0015] また、この場合、前記保持具が前記内管部内に収容された際に、前記内管部の内 周面と前記保持具の外周面との間に、前記保持具の回転を許容する微小な隙間が 形成されるようになっていることが好ましい。この場合、保持具の回転を許容できるた め、処理の面内均一性を高めることができる。また、保持具内に独立した多数の処理 空間を形成 (確保)することができる。
[0016] また、本発明は、被処理基板を多段に搭載保持する保持具と、前記保持具を収容 して、所定の温度及び圧力の処理ガス雰囲気下で被処理基板に所定の熱処理を施 す処理容器と、前記処理容器内に処理ガス及び不活性ガスを導入するガス導入部と 、前記処理容器内を所定の圧力に真空排気する排気部と、前記処理容器を加熱す る加熱部と、を備えた処理装置であって、前記保持具には、前記処理容器内に収容 された際に被処理基板ごとに処理空間を形成するような隔壁板が設けられており、前 記ガス導入部は、各処理空間の一側側方に位置するように設けられたガス導入孔を 有しており、前記排気部は、各処理空間の他側側方に前記ガス導入孔と対向するよ うに設けられた排気孔を有して ヽることを特徴とする処理装置
を用いて被処理基板に所定の熱処理を施す処理方法であって、各処理空間ごとに、 ガス導入孔から処理ガスを導入し、且つ、排気孔から排気することにより、被処理基 板に対して平行な処理ガスの流れを形成しつつ、被処理基板に所定の熱処理を施 す熱処理工程と、前記熱処理工程後に、ガス導入孔から不活性ガスを導入し、且つ 、排気孔から排気することにより、各処理空間ごとにパージ処理を施すパージ処理工 程と、を備えたことを特徴とする処理方法である。
[0017] 本発明によれば、多数枚の被処理基板の表面に一度に成膜処理を施す際におい て、基板間での良好な成膜均一性の実現と基板間に存在するガスの効率よいパー ジの実現とが可能となり、生産性の向上が図れる。
[0018] あるいは、本発明は、被処理基板を多段に搭載保持する保持具と、前記保持具を 収容して、所定の温度及び圧力の処理ガス雰囲気下で被処理基板に所定の熱処理 を施す処理容器と、前記処理容器内に処理ガス及び不活性ガスを導入するガス導 入部と、前記処理容器内を所定の圧力に真空排気する排気部と、前記処理容器内 の被処理基板を加熱する加熱部と、を備えた処理装置であって、前記保持具の被処 理基板を載置する各載置板が、前記保持具が前記処理容器内に収容された際に被 処理基板ごとの処理空間を形成するようなリング状隔壁板として形成されており、前 記ガス導入部は、各処理空間の一側側方に位置するように設けられたガス導入孔を 有しており、前記排気部は、各処理空間の他側側方に前記ガス導入孔と対向するよ うに設けられた排気孔を有して ヽることを特徴とする処理装置を用いて被処理基板に 所定の熱処理を施す処理方法であって、各処理空間ごとに、ガス導入孔から処理ガ スを導入し、且つ、排気孔から排気することにより、被処理基板に対して平行な処理 ガスの流れを形成しつつ、被処理基板に所定の熱処理を施す熱処理工程と、前記 熱処理工程後に、ガス導入孔から不活性ガスを導入し、且つ、排気孔から排気する ことにより、各処理空間ごとにパージ処理を施すパージ処理工程と、を備えたことを 特徴とする処理方法である。
[0019] 本発明によっても、多数枚の被処理基板の表面に一度に成膜処理を施す際にお V、て、基板間での良好な成膜均一性の実現と基板間に存在するガスの効率よ 、パ ージの実現とが可能となり、生産性の向上が図れる。
[0020] その他、前記各処理装置を制御するコンピュータによって実行され、前記各処理方 法を実現する制御プログラム、及び、当該制御プログラムを記憶するコンピュータ読 み取り可能な記憶媒体をも、本願に基づく保護対象である。
図面の簡単な説明
[0021] [図 1]図 1は、本発明の第 1の実施の形態に係る縦型熱処理装置を示す概略縦断面 図である。
[図 2]図 2は、図 1の縦型熱処理装置の概略横断面図である。
[図 3]図 3は、図 1の縦型熱処理装置の要部拡大断面図である。
[図 4]図 4は、本発明の第 2の実施の形態に係る縦型熱処理装置を示す概略縦断面 図である。
[図 5]図 5は、図 4の縦型熱処理装置の概略横断面図である。 [図 6]図 6は、図 4の縦型熱処理装置の要部拡大断面図である。
[図 7]図 7は、本発明の更なる実施の形態 (変形例)の要部拡大断面図である。
[図 8]図 8は、本発明の更なる実施の形態 (変形例)の要部拡大断面図である。
発明を実施するための最良の形態
[0022] 以下に、本発明を実施するための最良の形態について、添付図面を基に詳述する
[0023] 図 1は、本発明の第 1の実施の形態に係る縦型熱処理装置を示す概略縦断面図で ある。図 2は、図 1の縦型熱処理装置の概略横断面図である。図 3は、図 1の縦型熱 処理装置の要部拡大断面図である。
[0024] 図 1に示すように、半導体製造装置 (処理装置)である縦型熱処理装置 1は、縦型 炉 (縦型の熱処理炉) 2を備えている。この縦型炉 2は、被処理基板例えば半導体ゥ エノ、 wを上下方向に所定ピッチで多段に搭載保持する例えば石英製のボート (保持 具) 3と、当該ボート 3を収容して所定の温度及び圧力の処理ガス雰囲気下でウェハ wに所定の熱処理例えば CVDによる成膜処理を施す例えば石英製の反応管(処理 容器) 4と、当該反応管 4内に処理ガスを導入するガス導入部としてのガスインジエタ タ (ガス導入管) 5と、反応管 4内を所定の圧力に真空排気する排気部としての排気ポ ート 6と、反応管 4を加熱するヒータ (加熱部) 7と、を備えて構成されている。
[0025] ボート 3には、各ウェハ wを独立して (他のウェハから分離された状態で)設置する ための空間(基板設置空間)として、ウェハ wごとに隔壁板 8で仕切られた処理空間 1 0が形成されている。ガス導入部であるガスインジェクタ 5は、各処理空間 10において 、その一側側方力もガスを導入するガス導入孔 11を有している。一方、排気部である 排気ポート 6は、各ガス導入孔 11と対向する位置に各処理空間 10ごとの排気のため に設けられた排気孔 12と連通している。ボート 3は、図 2及び図 3に示すように、複数 例えば 3本の支柱 3aと、これらの支柱 3aを支えるべく上端と下端とに設けられた天板 3bと底板 3cと、を有している。また、支柱 3aには、ウェハ wをその周縁部にて水平に 支持するための支持溝 3dが上下方向に所定ピッチで多段に設けられている。なお、 支持溝 3dは、ウェハの移載時のウェハの昇降を許容するような所定の高さを有して いる。 [0026] ボート 3は、例えば直径が 300mmのウエノ、 wを多数例えば 50枚程度搭載可能とさ れている。また、支柱 3aには、天板 3bと底板 3cとの間のボート 3内にウエノ、 wごとに 処理空間 10を形成すベぐ石英製の円形の隔壁板 8が水平に上下方向に所定ピッ チで多段に設けられている。隔壁板 8の大きさとしては、支柱 3aに外接する円と同一 又は略同一であることが好ま 、。ウェハ wは図示されな 、移載機構のフォークによ つて下面を支持されてボート 3の支持溝 3dに搬入され、或いは、支持溝 3dから搬出 される。
[0027] 前記ボート 3は、反応管 4の下端の炉ロ 4cを開閉可能に閉塞する蓋体 13の上部に 、回転テーブル 14と遮熱台 15とを介して載置されている。蓋体 13の下部には、回転 テーブル 14を回転駆動する回転駆動機構 16が設けられている。回転テーブル 14上 に載置された遮熱台 15は、回転テーブル 14上に載置される下板 15aと、当該下板 1 5aに立設された複数本の支柱 15bと、これらの支柱 15bに上下方向に所定ピッチで 多段に設けられた遮熱板 15cと、から主に構成されている。
[0028] 蓋体 13は、例えばステンレス製である。蓋体 13の上面部には、反応管 4の下端の 炉ロ 4cの開口端面に当接されて気密に封止するための封止部材、例えば Oリング 2 6、が設けられている。また、蓋体 13の上面における炉内露出面には、耐食性を有す る例えば石英製の保護カバー(図示省略)が設けられることが好ましい。蓋体 13は、 図示しない昇降機構によって昇降可能に設けられており、蓋体 13の上昇によってボ ート 3が反応管 4内に搬入されると共に炉ロ 4cが閉塞され、蓋体 13の下降によって 炉ロ 4cが開放されてボート 3が反応管 4内から下方のローデイングエリアに搬出され るようになっている。
[0029] 反応管 4は、それぞれ上端が閉塞される (天井部を有する)と共に一体化された内 管部 4a及び外管部 4bからなる二重管構造である。内管部 4a内にボート 3が収容され るようになっている。外管部 4b及び内管部 4aの下端部は共に開口しており、外管部 4bの下端部には外向きのフランジ部 4dが形成されている。フランジ部 4dは、図示さ れないフランジ押さえや取付部材を介して、ベースプレート 17に支持されている。こ れにより、反応管 4がベースプレート 17の開口部 17aを貫通する状態でベースプレー ト 17に対して取り付けられている。また、ヒータ 7もベースプレート 17上に設置されて いる。このヒータ 7は、反応管 4を囲繞する円筒状の断熱筒体と、当該断熱筒体の内 周に配設された発熱抵抗体と、によって構成されて ヽる (詳細な図示は省略)。
[0030] また、内管部 4aの下端部も外向きフランジ状に形成されていて、外管部 4bの内周 面に気密に接合されている。これにより、内管部 4aと外管部 4bとの間には空間部 18 が形成されている。この空間部 18は、詳細には、環状空間部 18aと天上空間部 18b とからなる。環状空間部 18aと天上空間部 18bとは連通している。なお、内管部 4aの 下端は、全体が同じ高さでなくてもよい。例えば、図 1に示すように、排気ポート 6に合 わせるために、一側 (右側)の高さを他側 (左側)の高さよりも低くして、一側から他側 まで傾斜されて 、てもよ 、。
[0031] 本実施の形態では、ガス導入部として、起立した (鉛直方向に延びる)ガス導入管 であるガスインジェクタ 5が用いられている。このガスインジェクタ 5は、上端部が閉塞 される一方、基端部 5aが L字状に折り曲げられて、反応管 4のフランジ部 4dを水平に 貫通するように設けられている。ガスインジェクタ 5の基端部 5aには、処理ガスとパー ジガス (不活性ガス例えば窒素ガス)とを選択的に切換えて供給可能なガス供給管が 接続されている。当該ガス供給管には、各導入ガスのガス量を制御する制御弁 (例え ばマスフローコントローラ)が設けられて 、る(図示省略)。
[0032] ガスインジヱクタ 5は、ガス種に応じて、複数(図 2の例では 2本(5A, 5B) )設けられ ていてもよい。複数のガスインジェクタ 5A, 5Bは、隣接して配置されていることが好ま しい。ガスインジェクタ 5の側面には、ガス導入孔 11が、ボート 3の各処理空間 10に 対応するように、各処理空間 10に臨んで設けられている。これにより、各ガス導入孔 11から、処理ガス又はパージガスが各処理空間 10の一側から他側に向って噴射導 入される。この場合、ガス導入孔 11から噴射される処理ガス又はパージガスは、各ゥ エノ、 wよりも上側に噴射され、各ウェハ wの上面に沿って平行に流れる。ここで、ガス 導入孔 11の口径は、 0. 5〜lmmが好ましぐ例えば 0. 7mmとされている。
[0033] また、内管部 4aの内周面とボート 3の外周面との間には、ボート 3の回転を許容する 微小な隙間 sが形成されている。この隙間 sをできるだけ小さくすることによって、各処 理空間 10から隣接する他の(上下の)処理空間 10へのガスの拡散が防止されて、独 立した処理空間 10の確保が図られ得る。この場合、ボート 3と内管部 4aとの間に配 置されるガスインジェクタ 5によってボート 3の外周面と内管部 4aの内周面との間の隙 間 sが大きくなることを防止するために、内管部 4aの内面にガスインジェクタ 5を収容 する凹部である収容溝部 19が形成されて 、る。
[0034] 同様の理由により、内管 4aの内面には、起立した (鉛直方向に延びる)棒状の温度 測定器 20を収容する収容溝部 21が形成されている。温度測定器 20は、初期設定 時に炉内温度を測定するために蓋体 13に対して貫通起立した状態で取付けられる 力 通常時 (処理時)には取り外される。
[0035] なお、前記隙間 sは、 l〜5mmが好ましい。また、ヒータ 7には温度を測定するため の温度センサが設けられ得る(図示省略)。
[0036] 排気孔 12は、ガス導入孔 11と対向する内管部 4aの側壁に設けられている。ガス導 入孔 11から、各ガスは、平面視 (上方から見て)で扇状に拡散して噴射される。従つ て、排気孔 12は、内管部 4aの側壁において所定の幅をもって複数個又はスリット状 に形成されていることが好ましい。排気孔 12が位置する側の外管部 4bの側壁の下 側部に、排気部を構成する排気ポート 6が、環状空間部 18aと連通する状態で、設け られている。この排気ポート 6には、圧力センサ、真空ポンプ及び圧力制御弁を備え て反応管内を所定の処理圧力、例えば 0. 3〜: LOTorr、に減圧排気するための圧力 制御機構を有する減圧排気系が接続されて ヽる(図示省略)。
[0037] このように構成された縦型熱処理装置 1は、反応管 4内の圧力、処理温度、処理ガ ス又はパージガスの導入量、及び、時間を管理して、所定のレシピに基づいた成膜 処理を行う制御装置 22を備えている。この制御装置 22には、後述する処理方法を実 施するために用いられるコンピュータプログラムを格納した記憶媒体が用いられて ヽ る(図示省略)。
[0038] 次に、処理方法の一例、例えば ALDプロセスについて説明する。先ず、ウェハ wが 搭載されたボート 3が反応管 4内に搬入されて、炉ロ 4cが蓋体 13で密閉される。そし て、反応管 4内が圧力制御機構により真空引きされて所定の処理圧力に制御される と共に、ヒータ 7により炉内の温度が所定の処理温度に制御される。また、ボート 3が、 回転駆動機構 16により回転される。
[0039] 力かる状態で、一方の処理ガス、例えばへキサクロロジシラン(Si C1 )が、一方の ガスインジヱクタ 5Aのガス導入孔 11から各処理空間 10内に流される。次に、同じガ スインジェクタ 5Aのガス導入孔 11から各処理空間 10内に、パージガスが流される。 次に、他方の処理ガス、例えばアンモニア(NH )力 他方のガスインジェクタ 5Bの
3
ガス導入孔 11から各処理空間 10内に流される。次に、同じガスインジェクタ 5Bのガ ス導入孔 11から各処理空間 10内に、パージガスが流される。以後同様にして、へキ サクロロジシラン導入、パージ、アンモニア導入、パージ、という具合に、各処理ガス のガスフローとパージとが所定時間ずつ所定回数繰り返される。なお、各処理空間 1 0に流された処理ガスやパージガスは、反対側の排気孔 12から吸引排気される。
[0040] このようにして所定のプロセスが終了したら、蓋体 13が下方へ降下され、処理済み のウェハ wが搭載されたボート 3が搬出される。
[0041] 前記処理方法においては、ボート 3内にウェハ wごとに仕切られて形成された各処 理空間 10に、その一側側方力 処理ガスが導入され、且つ、その他側側方から排気 されることにより、ウェハ wに対して平行な処理ガスの流れが形成された状態でゥェ ハ wに成膜処理を施すことができ、また、この成膜処理工程の後に、ボート 3内の各 処理空間 10に、その一側側方からパージガスが導入され、且つ、その他側側方から 排気されることにより、各処理空間 10がパージされるため、多数枚のウェハの表面に 一度に成膜処理を施す際に基板間での成膜均一性を良好にすることができ、また、 基板間に存在するガスを効率よくパージすることができ、処理の効率化及び生産性 の向上が図れる。
[0042] また、前記の縦型熱処理装置 (処理装置)においては、ボート 3内にウェハ wごとに 隔壁板 8で仕切られた処理空間 10が形成され、各処理空間 10を挟んで一側側方に ガスを導入するガス導入孔 11を配し、他側側方に各処理空間 10ごとの排気のため の排気孔 12を配したことにより、多数枚のウェハの表面に一度に成膜処理を施す際 に基板間での成膜均一性を良好にすることができ、また、基板間に存在するガスを 効率よくパージすることが可能となり、処理の効率化及び生産性の向上が図れると共 に、構造の簡素化及び反応管 4を含む装置の小型化が図れる。
[0043] 特に、反応管 4は、それぞれ上端が閉塞されると共に一体化された内管部 4a及び 外管部 4bからなる二重管構造であり、内管部 4a内にボート 3が収容され、内管部 4a と外管部 4bとの間の空間部 18が排気部である排気ポート 6と連通しており、内管部 4 aの内面にはガス導入部として起立するガスインジヱクタ 5を収容する収容溝部 19が 形成されているため、構造の簡素化及び反応管 4を含む装置の小型化が図れる。
[0044] 更に、内管部 4aの内周面とボート 3の外周面との間にボート 3の回転を許容する微 小な隙間 sが形成されているため、ボート 3の回転を許容できると共に、ボート 3に独 立した多数の処理空間(基板設置空間) 10を確保することができ、処理空間 10ごと のほぼ完全なクロスフロー(上下方向である基板多段搭載方向に直交する水平方向 の流れ)を実現することができる一方、隙間 sを通って上部の処理ガス層と下部の処 理ガス層とが実質的に混合する恐れがほとんどない。これにより、基板間での良好な 成膜均一性を得ることができると共に、基板間に滞留するガスを効率よく迅速にパー ジすることができ、生産性の向上が図れると共に、構造の簡素化及び反応管を含む 装置の小型化が図れる。
[0045] 次に、図 4は、本発明の第 2の実施の形態に係る縦型熱処理装置を示す概略縦断 面図である。図 5は、図 4の縦型熱処理装置の概略横断面図である。図 6は、図 4の 縦型熱処理装置の要部拡大断面図である。本発明の第 2の実施の形態において、 図 1乃至図 3に示す第 1の実施の形態と同一部分については、同一符号を付して説 明を省略する。
[0046] 本実施の形態においては、ウェハ wを載置するボート 3の載置板として、ウェハ wご とに仕切られた処理空間 100を形成するリング状隔壁板 80が採用されている。リング 状隔壁板 80の大きさとしては、前記隔壁板 8と同様に、支柱 3aに外接する円と同一 又は略同一であることが好ましい。なお、リング状隔壁板 80の中央には、ウェハ wより 小さいサイズの開口部 80aが設けられている。また、支柱 3aには、支持溝 3dと同様に 、ウェハ wをその周縁部にて水平に支持するための溝部 3eが上下方向に所定ピッチ で多段に設けられている。溝部 3eも、ウェハの移載時のウェハの昇降を許容するよう な所定の高さを有している。
[0047] リング状隔壁板 80の上面にウエノ、 wが載置されることにより、リング状隔壁板 80の 中央の開口部 80aが塞がれる。これにより、上下方向に独立した処理空間 100が形 成確保される。この場合、ウェハ wの上面に成膜されることは勿論のこと、リング状隔 壁板 80の開口部 80aから露出するウェハ wの下面にも成膜が施される。これにより、 ウェハの反りを防止することができる。
[0048] ウェハの移載機構は、例えば、リング状隔壁板 80上に載置されたウェハ wをリング 状隔壁板 80の開口部 80aの下方力も突き上げる突き上げ部材と、突き上げられたゥ エノ、 wとリング状隔壁板 80との隙間に挿入されてウェハ wを支持して搬送するフォー クと、を備える(図示省略)。
[0049] 反応管 4の内管部 4aと外管部 4bとの間の空間部 18には、ガス導入部として上下方 向に延びるガスインジェクションボックス (ガス導入箱) 50が、複数(図 5の例では 2つ( 50A, 50B) )隣接して形成されている。各ガスインジェクションボックス 50の下部には 、基端側が反応管 4のフランジ部 4dを水平に貫通する L字状のガス導入管部 50aが 接続されている。一方、ガスインジェクションボックス 50を区画する内管部 4aの壁に、 各処理空間 100に対応して、ガス導入孔 11が形成されている。ガスインジェクション ボックス 50は、ガスインジェクタ 5よりも横断面積を大きく取れるので、ガス導入孔 11 力も噴射される処理ガスの縦方向(上下方向)の濃度差 (圧力差)を、より小さくするこ とができる。また、ガスインジェクションボックス 50を採用する方力 収容溝部 19を設 ける必要がないため、ガスインジェクタ 5を採用するよりも構造の簡素化が図れる。
[0050] 本実施の形態の縦型熱処理装置 1にお!/、ても、前記処理方法を実施することがで きると共に、前記実施の形態と同様の作用効果を奏することができる。また、本実施 の形態の縦型熱処理装置 1によれば、リング状隔壁板 80の上面にウェハ wを直接載 置するため、第 1の実施の形態よりもウェハの搭載枚数を多くすることができる。
[0051] 図 7及び図 8は、本発明の更なる実施の形態 (変形例)を示す要部拡大断面図であ る。すなわち、図 7に示すように、ウェハ wごとに隔壁板 8で仕切ることによって処理空 間 10が形成されたボート 3を、ガスインジヱクシヨンボックス 50を採用した処理容器と 組み合わせてもよいし、図 8に示すように、ウェハ wごとにリング状隔壁板 80で仕切る ことによって処理空間 100が形成されたボート 3を、ガスインジヱクタ 5を採用した処理 容器と組み合わせてもよ 、。
[0052] 以上、本発明の実施の形態を図面により詳述してきたが、本発明は前記実施の形 態に限定されるものではなぐ本発明の要旨を逸脱しない範囲での種々の設計変更 等が可能である。

Claims

請求の範囲
[1] 被処理基板を多段に搭載保持する保持具と、
前記保持具を収容して、所定の温度及び圧力の処理ガス雰囲気下で被処理基板 に所定の熱処理を施す処理容器と、
前記処理容器内に処理ガスを導入するガス導入部と、
前記処理容器内を所定の圧力に真空排気する排気部と、
前記処理容器を加熱する加熱部と、
を備えた処理装置であって、
前記保持具には、前記処理容器内に収容された際に被処理基板ごとに処理空間 を形成するような隔壁板が設けられており、
前記ガス導入部は、各処理空間の一側側方に位置するように設けられたガス導入 孔を有しており、
前記排気部は、各処理空間の他側側方に前記ガス導入孔と対向するように設けら れた排気孔を有している
ことを特徴とする処理装置。
[2] 被処理基板を多段に搭載保持する保持具と、
前記保持具を収容して、所定の温度及び圧力の処理ガス雰囲気下で被処理基板 に所定の熱処理を施す処理容器と、
前記処理容器内に処理ガスを導入するガス導入部と、
前記処理容器内を所定の圧力に真空排気する排気部と、
前記処理容器内の被処理基板を加熱する加熱部と、
を備えた処理装置であって、
前記保持具の被処理基板を載置する各載置板が、前記保持具が前記処理容器内 に収容された際に被処理基板ごとの処理空間を形成するようなリング状隔壁板として 形成されており、
前記ガス導入部は、各処理空間の一側側方に位置するように設けられたガス導入 孔を有しており、
前記排気部は、各処理空間の他側側方に前記ガス導入孔と対向するように設けら れた排気孔を有している
ことを特徴とする処理装置。
[3] 前記処理容器は、内管部及び外管部からなる二重管構造を有しており、
内管部及び外管部は、共に上端が閉塞されており、
前記保持具は内管部内に収容されるようになっており、
内管部と外管部との間に形成される空間部が前記排気部と連通している ことを特徴とする請求項 1または 2に記載の処理装置。
[4] 前記ガス導入部は、鉛直方向に延びるガス導入管を有しており、
内管部の内面に、ガス導入管を収容する収容溝部が形成されている
ことを特徴とする請求項 3に記載の処理装置。
[5] 前記ガス導入部は、前記空間部に鉛直方向に設けられたガス導入路を有している ことを特徴とする請求項 3に記載の処理装置。
[6] 前記保持具が前記内管部内に収容された際に、前記内管部の内周面と前記保持 具の外周面との間に、前記保持具の回転を許容する微小な隙間が形成されるように なっている
ことを特徴とする請求項 3乃至 5のいずれかに記載の処理装置。
[7] 被処理基板を多段に搭載保持する保持具と、
前記保持具を収容して、所定の温度及び圧力の処理ガス雰囲気下で被処理基板 に所定の熱処理を施す処理容器と、
前記処理容器内に処理ガス及び不活性ガスを導入するガス導入部と、 前記処理容器内を所定の圧力に真空排気する排気部と、
前記処理容器を加熱する加熱部と、
を備えた処理装置であって、
前記保持具には、前記処理容器内に収容された際に被処理基板ごとに処理空間 を形成するような隔壁板が設けられており、
前記ガス導入部は、各処理空間の一側側方に位置するように設けられたガス導入 孔を有しており、
前記排気部は、各処理空間の他側側方に前記ガス導入孔と対向するように設けら れた排気孔を有している
ことを特徴とする処理装置
を用いて被処理基板に所定の熱処理を施す処理方法であって、
各処理空間ごとに、ガス導入孔から処理ガスを導入し、且つ、排気孔から排気する ことにより、被処理基板に対して平行な処理ガスの流れを形成しつつ、被処理基板に 所定の熱処理を施す熱処理工程と、
前記熱処理工程後に、ガス導入孔から不活性ガスを導入し、且つ、排気孔から排 気することにより、各処理空間ごとにパージ処理を施すパージ処理工程と、 を備えたことを特徴とする処理方法。
被処理基板を多段に搭載保持する保持具と、
前記保持具を収容して、所定の温度及び圧力の処理ガス雰囲気下で被処理基板 に所定の熱処理を施す処理容器と、
前記処理容器内に処理ガス及び不活性ガスを導入するガス導入部と、
前記処理容器内を所定の圧力に真空排気する排気部と、
前記処理容器内の被処理基板を加熱する加熱部と、
を備えた処理装置であって、
前記保持具の被処理基板を載置する各載置板が、前記保持具が前記処理容器内 に収容された際に被処理基板ごとの処理空間を形成するようなリング状隔壁板として 形成されており、
前記ガス導入部は、各処理空間の一側側方に位置するように設けられたガス導入 孔を有しており、
前記排気部は、各処理空間の他側側方に前記ガス導入孔と対向するように設けら れた排気孔を有している
ことを特徴とする処理装置
を用いて被処理基板に所定の熱処理を施す処理方法であって、
各処理空間ごとに、ガス導入孔から処理ガスを導入し、且つ、排気孔から排気する ことにより、被処理基板に対して平行な処理ガスの流れを形成しつつ、被処理基板に 所定の熱処理を施す熱処理工程と、 前記熱処理工程後に、ガス導入孔から不活性ガスを導入し、且つ、排気孔から排 気することにより、各処理空間ごとにパージ処理を施すパージ処理工程と、 を備えたことを特徴とする処理方法。
[9] 被処理基板を多段に搭載保持する保持具と、
前記保持具を収容して、所定の温度及び圧力の処理ガス雰囲気下で被処理基板 に所定の熱処理を施す処理容器と、
前記処理容器内に処理ガス及び不活性ガスを導入するガス導入部と、 前記処理容器内を所定の圧力に真空排気する排気部と、
前記処理容器を加熱する加熱部と、
を備えた処理装置であって、
前記保持具には、前記処理容器内に収容された際に被処理基板ごとに処理空間 を形成するような隔壁板が設けられており、
前記ガス導入部は、各処理空間の一側側方に位置するように設けられたガス導入 孔を有しており、
前記排気部は、各処理空間の他側側方に前記ガス導入孔と対向するように設けら れた排気孔を有している
ことを特徴とする処理装置
を制御するコンピュータによって実行され、
各処理空間ごとに、ガス導入孔から処理ガスを導入し、且つ、排気孔から排気する ことにより、被処理基板に対して平行な処理ガスの流れを形成しつつ、被処理基板に 所定の熱処理を施す熱処理工程と、
前記熱処理工程後に、ガス導入孔から不活性ガスを導入し、且つ、排気孔から排 気することにより、各処理空間ごとにパージ処理を施すパージ処理工程と、 を実現する制御プログラム
を記憶するコンピュータ読み取り可能な記憶媒体。
[10] 被処理基板を多段に搭載保持する保持具と、
前記保持具を収容して、所定の温度及び圧力の処理ガス雰囲気下で被処理基板 に所定の熱処理を施す処理容器と、 前記処理容器内に処理ガス及び不活性ガスを導入するガス導入部と、
前記処理容器内を所定の圧力に真空排気する排気部と、
前記処理容器内の被処理基板を加熱する加熱部と、
を備えた処理装置であって、
前記保持具の被処理基板を載置する各載置板が、前記保持具が前記処理容器内 に収容された際に被処理基板ごとの処理空間を形成するようなリング状隔壁板として 形成されており、
前記ガス導入部は、各処理空間の一側側方に位置するように設けられたガス導入 孔を有しており、
前記排気部は、各処理空間の他側側方に前記ガス導入孔と対向するように設けら れた排気孔を有している
ことを特徴とする処理装置
を制御するコンピュータによって実行され、
各処理空間ごとに、ガス導入孔から処理ガスを導入し、且つ、排気孔から排気する ことにより、被処理基板に対して平行な処理ガスの流れを形成しつつ、被処理基板に 所定の熱処理を施す熱処理工程と、
前記熱処理工程後に、ガス導入孔から不活性ガスを導入し、且つ、排気孔から排 気することにより、各処理空間ごとにパージ処理を施すパージ処理工程と、 を実現する制御プログラム
を記憶するコンピュータ読み取り可能な記憶媒体。
PCT/JP2006/320118 2005-10-11 2006-10-06 基板処理装置及び基板処理方法 WO2007043478A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800379045A CN101288157B (zh) 2005-10-11 2006-10-06 基板处理装置和基板处理方法
KR1020087008530A KR101243541B1 (ko) 2005-10-11 2006-10-06 기판 처리 장치, 기판 처리 방법 및 컴퓨터 판독 가능한 기억 매체
EP06811445A EP1936671A4 (en) 2005-10-11 2006-10-06 SUBSTRATE PROCESSING DEVICE AND SUBSTRATE PROCESSING METHOD
US12/083,342 US7807587B2 (en) 2005-10-11 2006-10-06 Substrate processing apparatus and substrate processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-296389 2005-10-11
JP2005296389A JP4426518B2 (ja) 2005-10-11 2005-10-11 処理装置

Publications (1)

Publication Number Publication Date
WO2007043478A1 true WO2007043478A1 (ja) 2007-04-19

Family

ID=37942721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320118 WO2007043478A1 (ja) 2005-10-11 2006-10-06 基板処理装置及び基板処理方法

Country Status (7)

Country Link
US (1) US7807587B2 (ja)
EP (1) EP1936671A4 (ja)
JP (1) JP4426518B2 (ja)
KR (1) KR101243541B1 (ja)
CN (1) CN101288157B (ja)
TW (1) TWI412084B (ja)
WO (1) WO2007043478A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10290494B2 (en) 2008-08-06 2019-05-14 Kokusai Electric Corporation Method of manufacturing semiconductor device and method of processing substrate

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100369393B1 (ko) 2001-03-27 2003-02-05 앰코 테크놀로지 코리아 주식회사 리드프레임 및 이를 이용한 반도체패키지와 그 제조 방법
JP5474278B2 (ja) * 2007-02-22 2014-04-16 ピーエスフォー ルクスコ エスエイアールエル 超臨界プロセス用バッチ式成膜装置及び半導体装置の製造方法
JP5090097B2 (ja) * 2007-07-26 2012-12-05 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及び基板処理方法
KR101043211B1 (ko) * 2008-02-12 2011-06-22 신웅철 배치형 원자층 증착 장치
JP5658463B2 (ja) * 2009-02-27 2015-01-28 株式会社日立国際電気 基板処理装置及び半導体装置の製造方法
JP5545061B2 (ja) * 2010-06-18 2014-07-09 東京エレクトロン株式会社 処理装置及び成膜方法
KR101223489B1 (ko) * 2010-06-30 2013-01-17 삼성디스플레이 주식회사 기판 가공 장치
JP2012195565A (ja) * 2011-02-28 2012-10-11 Hitachi Kokusai Electric Inc 基板処理装置、基板処理方法及び半導体装置の製造方法
JP5640894B2 (ja) * 2011-05-26 2014-12-17 東京エレクトロン株式会社 温度測定装置、温度測定方法、記憶媒体及び熱処理装置
JP5878813B2 (ja) * 2011-06-21 2016-03-08 東京エレクトロン株式会社 バッチ式処理装置
JP5753450B2 (ja) * 2011-06-30 2015-07-22 東京エレクトロン株式会社 成膜装置
KR20140070590A (ko) * 2011-10-11 2014-06-10 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치, 기판 처리 방법, 반도체 장치의 제조 방법 및 기록 매체
CN103160813B (zh) * 2011-12-14 2015-10-21 北京北方微电子基地设备工艺研究中心有限责任公司 一种反应腔室以及应用该反应腔室的等离子体加工设备
KR101215511B1 (ko) * 2012-06-27 2012-12-26 (주)이노시티 프로세스 챔버 및 기판 처리 장치
US9512519B2 (en) * 2012-12-03 2016-12-06 Taiwan Semiconductor Manufacturing Company, Ltd. Atomic layer deposition apparatus and method
CN103871927A (zh) * 2012-12-10 2014-06-18 上海华虹宏力半导体制造有限公司 垂直扩散氧化炉石英工艺管的结构
KR101396601B1 (ko) * 2013-02-26 2014-05-20 주식회사 테라세미콘 배치식 기판처리 장치
JP5977274B2 (ja) 2013-03-21 2016-08-24 東京エレクトロン株式会社 バッチ式縦型基板処理装置および基板保持具
KR101507557B1 (ko) * 2013-04-25 2015-04-07 주식회사 엔씨디 대면적 기판용 수평형 원자층 증착장치
JP6128969B2 (ja) * 2013-06-03 2017-05-17 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびプログラム
DE102013105818B4 (de) * 2013-06-06 2017-01-26 Von Ardenne Gmbh Gehäuse zum Aufnehmen einer Mehrzahl von plattenförmigen Substraten
KR102162366B1 (ko) * 2014-01-21 2020-10-06 우범제 퓸 제거 장치
JP2015137415A (ja) * 2014-01-24 2015-07-30 エヌシーディ・カンパニー・リミテッドNcd Co.,Ltd. 大面積原子層蒸着装置
KR102268374B1 (ko) 2014-09-30 2021-06-23 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법 및 반응관
JP6468901B2 (ja) * 2015-03-19 2019-02-13 東京エレクトロン株式会社 基板処理装置
KR101715193B1 (ko) 2015-07-20 2017-03-10 주식회사 유진테크 기판 처리장치
TWI611043B (zh) * 2015-08-04 2018-01-11 Hitachi Int Electric Inc 基板處理裝置、半導體裝置之製造方法及記錄媒體
CN106467980B (zh) * 2015-08-21 2019-01-29 东莞市中镓半导体科技有限公司 一种大型垂直式hvpe反应室的装配辅助装置
KR101760316B1 (ko) * 2015-09-11 2017-07-21 주식회사 유진테크 기판처리장치
JP6464990B2 (ja) 2015-10-21 2019-02-06 東京エレクトロン株式会社 縦型熱処理装置
JP6462161B2 (ja) * 2016-02-09 2019-01-30 株式会社Kokusai Electric 基板処理装置および半導体装置の製造方法
JP6817757B2 (ja) * 2016-09-16 2021-01-20 東京エレクトロン株式会社 基板処理装置及び基板移送方法
JP6700165B2 (ja) * 2016-12-22 2020-05-27 東京エレクトロン株式会社 成膜装置および成膜方法
CN110121763B (zh) * 2017-02-23 2023-12-26 株式会社国际电气 基板处理装置、半导体装置的制造方法及存储介质
JP6846993B2 (ja) 2017-06-19 2021-03-24 東京エレクトロン株式会社 基板保持具及びこれを用いた基板処理装置
JP6820816B2 (ja) * 2017-09-26 2021-01-27 株式会社Kokusai Electric 基板処理装置、反応管、半導体装置の製造方法、及びプログラム
WO2019124099A1 (ja) * 2017-12-22 2019-06-27 株式会社村田製作所 成膜装置
JP6651591B1 (ja) * 2018-09-27 2020-02-19 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法
CN111948907B (zh) * 2019-05-16 2022-01-28 上海微电子装备(集团)股份有限公司 掩模板温度控制装置和掩模曝光装置
JP6770617B1 (ja) * 2019-08-09 2020-10-14 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及び基板保持具
CN111725108B (zh) * 2020-06-23 2024-05-17 北京北方华创微电子装备有限公司 半导体加工设备
JP7048690B2 (ja) * 2020-09-25 2022-04-05 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及び基板保持具
US20220122856A1 (en) * 2020-10-15 2022-04-21 Changxin Memory Technologies, Inc. Diffusion furnace
CN112466794B (zh) * 2020-11-24 2021-12-03 长江存储科技有限责任公司 薄膜沉积装置及晶舟组件
US11688621B2 (en) * 2020-12-10 2023-06-27 Yield Engineering Systems, Inc. Batch processing oven and operating methods
CN115537777B (zh) * 2022-08-16 2024-05-14 湖南顶立科技有限公司 一种气相沉积设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156523A (ja) * 1988-12-08 1990-06-15 Nec Corp 縦型ウェハーボート
JPH0324718A (ja) * 1989-06-22 1991-02-01 Fujitsu Ltd 半導体製造装置
JPH0350324U (ja) * 1989-09-21 1991-05-16
JP2000208425A (ja) 1998-01-16 2000-07-28 Ftl:Kk 半導体装置の製造方法、半導体装置の製造装置ならびにウェ―ハ支持治具及び出入れ治具
JP2002222806A (ja) * 2001-01-26 2002-08-09 Ebara Corp 基板処理装置
JP2003045864A (ja) * 2001-08-02 2003-02-14 Hitachi Kokusai Electric Inc 基板処理装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2730198B2 (ja) 1989-07-17 1998-03-25 いすゞ自動車株式会社 4サイクル断熱エンジン
US20030049372A1 (en) * 1997-08-11 2003-03-13 Cook Robert C. High rate deposition at low pressures in a small batch reactor
JP2000294511A (ja) 1999-04-09 2000-10-20 Ftl:Kk 半導体装置の製造装置
JP3479020B2 (ja) * 2000-01-28 2003-12-15 東京エレクトロン株式会社 熱処理装置
US6884295B2 (en) * 2000-05-29 2005-04-26 Tokyo Electron Limited Method of forming oxynitride film or the like and system for carrying out the same
KR100864117B1 (ko) * 2001-03-05 2008-10-16 도쿄엘렉트론가부시키가이샤 열처리방법 및 열처리장치
JP3421660B2 (ja) * 2001-05-09 2003-06-30 東京エレクトロン株式会社 熱処理装置及びその方法
JP3957549B2 (ja) 2002-04-05 2007-08-15 株式会社日立国際電気 基板処埋装置
US20070243317A1 (en) * 2002-07-15 2007-10-18 Du Bois Dale R Thermal Processing System and Configurable Vertical Chamber
JP4329403B2 (ja) * 2003-05-19 2009-09-09 東京エレクトロン株式会社 プラズマ処理装置
US20050121145A1 (en) * 2003-09-25 2005-06-09 Du Bois Dale R. Thermal processing system with cross flow injection system with rotatable injectors
JP2005259841A (ja) 2004-03-10 2005-09-22 Hitachi Kokusai Electric Inc 基板処理装置
US20050211264A1 (en) * 2004-03-25 2005-09-29 Tokyo Electron Limited Of Tbs Broadcast Center Method and processing system for plasma-enhanced cleaning of system components
US7604841B2 (en) * 2004-03-31 2009-10-20 Tokyo Electron Limited Method for extending time between chamber cleaning processes
US7509962B2 (en) * 2005-01-21 2009-03-31 Tokyo Electron Limited Method and control system for treating a hafnium-based dielectric processing system
US7798096B2 (en) * 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
US7632354B2 (en) * 2006-08-08 2009-12-15 Tokyo Electron Limited Thermal processing system with improved process gas flow and method for injecting a process gas into a thermal processing system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156523A (ja) * 1988-12-08 1990-06-15 Nec Corp 縦型ウェハーボート
JPH0324718A (ja) * 1989-06-22 1991-02-01 Fujitsu Ltd 半導体製造装置
JPH0350324U (ja) * 1989-09-21 1991-05-16
JP2000208425A (ja) 1998-01-16 2000-07-28 Ftl:Kk 半導体装置の製造方法、半導体装置の製造装置ならびにウェ―ハ支持治具及び出入れ治具
JP2002222806A (ja) * 2001-01-26 2002-08-09 Ebara Corp 基板処理装置
JP2003045864A (ja) * 2001-08-02 2003-02-14 Hitachi Kokusai Electric Inc 基板処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1936671A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10290494B2 (en) 2008-08-06 2019-05-14 Kokusai Electric Corporation Method of manufacturing semiconductor device and method of processing substrate

Also Published As

Publication number Publication date
TW200719412A (en) 2007-05-16
EP1936671A1 (en) 2008-06-25
KR101243541B1 (ko) 2013-03-20
EP1936671A4 (en) 2010-06-09
JP2007109711A (ja) 2007-04-26
CN101288157A (zh) 2008-10-15
JP4426518B2 (ja) 2010-03-03
US7807587B2 (en) 2010-10-05
US20090305512A1 (en) 2009-12-10
TWI412084B (zh) 2013-10-11
CN101288157B (zh) 2010-11-24
KR20080045739A (ko) 2008-05-23

Similar Documents

Publication Publication Date Title
WO2007043478A1 (ja) 基板処理装置及び基板処理方法
JP5295399B2 (ja) 半導体装置の製造方法、基板処理方法及び基板処理装置
JP4634495B2 (ja) 基板処理装置及び半導体装置の製造方法
JP2008258595A (ja) 基板処理装置
US20120152172A1 (en) Gas-discharging device and substrate-processing apparatus using same
US20110303152A1 (en) Support structure, processing container structure and processing apparatus
TWI601232B (zh) 支持體構造及處理設備
JP2006188729A (ja) 基板処理装置
JP2010157736A (ja) 原子層蒸着装置
JP2010073823A (ja) 成膜装置、成膜方法、及びコンピュータ可読記憶媒体
JP2006286716A (ja) 半導体デバイスの製造方法
JP2008205151A (ja) 基板処理装置
JP2011238832A (ja) 基板処理装置
JP2019165210A (ja) 基板処理装置及び半導体装置の製造方法
JP5303984B2 (ja) 成膜装置及び成膜方法
WO2012153591A1 (ja) 成膜装置
JP2016207719A (ja) 縦型熱処理装置
JP2017147263A (ja) 成膜装置、成膜方法、プログラム及びコンピュータ可読記憶媒体
JP5708843B2 (ja) 支持体構造及び処理装置
TWI769629B (zh) 基板處理裝置、半導體裝置之製造方法及程式
KR20220037350A (ko) 가스 도입 구조 및 처리 장치
KR20060098742A (ko) 보트 어셈블리
JP2005191582A (ja) 縦型ウェーハホルダ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680037904.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020087008530

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006811445

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12083342

Country of ref document: US