WO2007037095A1 - 鋼板の冷却設備および製造方法 - Google Patents

鋼板の冷却設備および製造方法 Download PDF

Info

Publication number
WO2007037095A1
WO2007037095A1 PCT/JP2006/317399 JP2006317399W WO2007037095A1 WO 2007037095 A1 WO2007037095 A1 WO 2007037095A1 JP 2006317399 W JP2006317399 W JP 2006317399W WO 2007037095 A1 WO2007037095 A1 WO 2007037095A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
steel plate
plate
steel sheet
cooling
Prior art date
Application number
PCT/JP2006/317399
Other languages
English (en)
French (fr)
Inventor
Naoki Nakata
Takashi Kuroki
Akio Fujibayashi
Shogo Tomita
Shunichi Nishida
Naoto Hirata
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to EP06783171.9A priority Critical patent/EP1930092B1/en
Priority to CN2006800320200A priority patent/CN101253010B/zh
Publication of WO2007037095A1 publication Critical patent/WO2007037095A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table

Definitions

  • the present invention relates to a copper plate cooling equipment and manufacturing method. Background Technology ''
  • a header 5 1 serving as an apron is installed between table rolls 1 4, and a large number of holes on the upper surface of the header 5 1, so-called porous
  • a nozzle (multi-hole nozzle) 52 is provided, and rod-like water flow 53 is supplied to the lower surface of the steel plate 10 from here. It is said that a high cooling rate can be obtained by supplying a relatively large amount of cooling water to the steel sheet.
  • the header 5 1 of the lower surface cooling equipment 50 has a structure that also serves as an apron between the table rollers 14. Therefore, there is a problem that when the steel plate 10 whose tip is warped downward enters, it hits the header 51 and breaks the header 51. Header 5 1 damaged and nose If the hole 5 2 is crushed or deformed, the cooling uniformity will be severely impaired. Therefore, when this technology is used for a long time, the header (apron) 5 1 must be replaced frequently. There is a problem in terms of equipment maintainability.
  • the cooling water 53 falls after being supplied to the steel plate 10, it accumulates on the header (epron) 51 and forms a water film 54.
  • the apron header 5 1 The hole drilled in the upper surface is the nozzle 5 2 as it is, so the newly supplied cooling water must break this water film 5 4 and be supplied to the lower surface of the steel plate 10 As the amount of cooling water is increased, the water film 54 becomes thicker, so that there is a problem that the cooling efficiency becomes worse.
  • cooling Water is drained only through a narrow gap between the end of the header (apron) 51 and the table roller 14, this drainage impedes cooling by the newly supplied cooling water, and cooling Water cannot be used efficiently.
  • the technique described in Japanese Patent Application Laid-Open No. 10-2 6 3 6 6 9 is also used when cooling the lower surface of the steel sheet in the hot rolling line, the steel sheet with the tip warped downward is introduced. If this happens, it will hit the nozzle and damage the nozzle.
  • a protector plate between the nozzles it may be possible to avoid the tip of the steel plate from colliding with the nozzle. Since the nozzles are offset, the distance between the nozzles is too narrow, making it impossible to install an appropriate protective plate. Therefore, it can only be used in a process where there is no concern that the material to be cooled will collide with the nozzle, and cannot be used for cooling the steel sheet in the hot rolling line.
  • the present invention has been made in view of the circumstances as described above, has good facility maintainability, has excellent drainage when supplying a large amount of cooling water to the bottom surface of the steel sheet, and is efficient and cools in the width direction. It is an object of the present invention to provide a steel sheet cooling facility that achieves a high cooling rate uniformly and a method for producing a high-quality steel sheet. Disclosure of the invention
  • a steel sheet cooling facility installed in a hot rolling line for steel plates, and a plurality of protective plates arranged obliquely in the steel plate transport direction below the transported steel plates, and the bottom surface of the steel plates
  • a nozzle row provided obliquely in the steel plate conveying direction is provided between the protective plate and the protective plate, and the nozzle row has a virtual pitch drawn with a constant pitch in the plate width direction of the steel plate.
  • the same number of tubular nozzles are arranged on each of the virtual lines, and the upper end of the tubular nozzle is located at a position lower than the upper end of the protective plate.
  • the header to which the tubular nozzle is attached has a ⁇ ⁇ / _3 ⁇ 4 t position ft: lower than the axial center of the table roller.
  • the tubular nozzle is a circular nozzle, the inner diameter of the nozzle is 3 to 8 mm, and the jet speed is 1 to 10 m / s.
  • the cooling equipment of the steel plate in any one of.
  • a nozzle row is provided between the protective plate and the protective plate in a slanting direction in the steel plate conveyance direction, and each nozzle row is placed on an imaginary line drawn at a constant pitch in the plate width direction of the steel plate.
  • the same number of tubular nozzles are arranged, and the upper end of the tubular nozzle is positioned at a position lower than the upper end of the protective plate.
  • the tubular nozzle that supplies cooling water to the lower surface of the steel plate is protected by the protective plate, so that even when a steel plate whose tip is warped downward enters, damage to the tubular nozzle is prevented.
  • the equipment maintenance is good and the tubular nozzles are arranged in a predetermined arrangement, even when a large amount of cooling water is supplied to the lower surface of the steel plate, the cooling water is smoothly drained from the gap between the tubular nozzles, Excellent drainage.
  • efficient cooling can be performed uniformly in the width direction to achieve a high cooling rate, and a high-quality steel sheet can be manufactured.
  • the cooling water supplied from the tubular nozzle defined in the present application is rod-shaped cooling water.
  • rod-shaped cooling water also referred to as columnar jet cooling water
  • the rod-shaped cooling water is not a spray-like jet, but is a continuous, straight-running cooling water that keeps the cross-section of the water flow almost circular until it collides with the steel plate from the nozzle outlet.
  • Figure 1 Schematic diagram of a hot rolling line for thin steel sheets.
  • FIG. 2 is an explanatory diagram of a cooling facility according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a nozzle arrangement of a header in an embodiment of the present invention.
  • Fig. 4 is a diagram showing another example of nozzle arrangement.
  • Fig. 5 is a diagram showing another example of nozzle arrangement.
  • Fig. 6 shows another example of nozzle arrangement.
  • Figure 7 An illustration of the prior art.
  • Embodiments of the present invention will be described below. Here, the case where the present invention is used for cooling a steel plate in a runttable in a hot rolling hot rolling line for a thin steel plate will be described as an example. .
  • FIG. 1 is a diagram showing an outline of a hot rolling hot rolling line for a thin steel sheet in which the present invention is used.
  • 1 1 is a heating furnace
  • 1 2 is a hot rolling mill consisting of a roughing mill and a finishing mill
  • 1 3 ' is a runout table
  • a plate is above the runout table 1 3 10
  • a top surface cooling facility for supplying cooling water to the top surface of 20 is installed at predetermined intervals in the transport direction of the steel plate 10 (hereinafter simply referred to as the transport direction), and below the run-out table 1 3, .
  • Lower surface cooling equipment 30 for supplying cooling water to the lower surface of the steel plate 10 through the gap between the table rollers 14 is installed at a predetermined interval in the conveying direction.
  • the slab extracted from the heating furnace 1 1 is roughly rolled and finish-rolled by the hot rolling mill row 1 2 to a predetermined finishing plate thickness at a predetermined finishing temperature. After that, it is transferred to the runout table 13 and cooled to a predetermined temperature by the cooling water sprayed from the upper surface cooling facility 20 and the lower surface cooling facility 30.
  • FIG. 2 is a view showing the lower surface cooling facility 30 according to the embodiment of the present invention
  • FIG. 3 is a plan view showing the nozzle arrangement of the lower surface cooling device 30.
  • the bottom surface cooling equipment 30 is composed of a header 3 1, a plurality of protection plates 3 4 arranged on the top surface of the header 3 1 obliquely in the transport direction, and adjacent protection plates 3 4 Nozzle rows (2 mm in this case) provided in the header 31 and skewed in the transport direction between them, and the virtual lines drawn at a constant pitch in the width direction of the nozzle row ( (Dashed line in Fig. 3)
  • the same number (here, one each) of circular tube nozzles 3 2 is arranged on 3 6.
  • the upper end (tip) of the circular tube nozzle 3 2 that sprays the rod-shaped cooling water is positioned lower than the upper end of the protective plate 3 4 and higher than the axis 14 of the table roller 14. is doing. Further, the header 3 1 to which the circular pipe nozzle 3 2 is attached is located at a position lower than the axis 14 a of the table roller 14.
  • the inner diameter of the circular tube nozzle 3 2 is 3 to 8 mm, and the injection speed is 1 to 10 mZ s. Further, it is preferable that the interval between the protective plates 34 is equal.
  • the circular tube nozzle 3 2 that supplies the rod-shaped cooling water 3 3 to the bottom surface of the steel plate 10 is protected by the protective plate 3 4, so that the tip is directed downward. Even when a warped steel 3 ⁇ 4 enters, damage to the circular tube nozzle 32 is prevented, and equipment maintenance is good. As a result, cooling can be performed over a long period of time while the circular tube nozzle 3 2 is in good condition, so that it is possible to prevent the occurrence of strip temperature deviation without repairing the equipment. it can.
  • the cooling water is smooth from the gap between the circular tube nozzles 3 2. It is drained by the water and has excellent drainage. Furthermore, since the header 3 1 is located at a position S lower than the axial center 14 a of the table roller 14 4, the flow of cooling water is not hindered between the header 3 1 and the table roller 14. Cooling water is drained more smoothly. As a result, the cooling water does not stay on the upper surface of the header 31 and the jet nozzle at the tip of the circular tube nozzle 3 2 does not submerge, so that the lower surface of the steel plate 10 is always supplied with vigorous cooling water. Efficient cooling can be performed.
  • the tip of the circular tube nozzle 32 is positioned higher than the axis 14a of the table roller 14 because the tip of the circular tube nozzle 3 is from the lower surface of the steel plate 10. This is because if the distance is too far, there is the influence of falling cooling water, and high spray pressure is required to supply vigorous cooling water to the lower surface of the steel plate 10.
  • the inner diameter of the circular nozzle 3 2 is set to 3 to 8 mm. If the inner diameter is smaller than 3 mm, nozzle clogging may occur frequently, and since the jet flow is thin, it is cooled down. The water may not reach the lower surface of the steel plate due to water interference. This is because the cooling performance is reduced. If the inner diameter is larger than 8 mm, it is necessary to increase the nozzle spacing and reduce the injection speed to a certain extent. This is because the ability also decreases.
  • the injection speed from the circular pipe nozzle 3 2 is set to 1 to 1 O mZ s. If the injection speed is less than I mZ s, the momentum of the cooling water hitting the steel sheet 10 is weak and sufficient cooling is performed. This is because, when the injection speed exceeds 1 O mZ s, it becomes an extremely high fountain, and the scattering of cooling water around the equipment becomes a problem. .
  • the upper surface cooling equipment 20 As the upper surface cooling equipment 20, a known cooling equipment provided with a circular pipe nozzle or the like is used. '
  • the circular tube nozzle 3 2 is used as the nozzle of the lower surface cooling facility 30, but other tubular nozzles such as a square tube nozzle may be used.
  • the arrangement of the protective plate 3 4 and the circular tube nozzle 3 2 is not limited to that shown in FIG. 3, but as shown in FIG. 4, the nozzle array between adjacent protective plates 3 4. It is also possible to arrange three rows and one circular tube nozzle 3 2 on each virtual line 36. Further, as shown in FIGS. 5 and 6, the nozzle row may be divided into two in the transport direction, and a protective plate 35 having a plate width ⁇ direction may be inserted therebetween.
  • the steel plate was cooled on the run-out table 13 in the hot rolling line of the thin steel plate schematically shown in FIG.
  • the finishing temperature was 8880 ° C
  • the finishing plate thickness was 4 mm
  • the runout table 13 was cooled to 55 ° C.
  • rod-shaped cooling water was supplied to the lower surface of the steel plate using the lower surface cooling facility 30 shown in the above embodiment.
  • a steel plate having a thickness of 22 mm was used as the protective plate 34, and the inner diameter of the circular tube nozzle 32 was 6 mm.
  • the flow rate density of the cooling water supplied to the lower surface of the steel plate was 2 m 3 / m 2 min, and the distance between the nozzle outlet and the lower surface of the steel plate i 0 was 15.0 mm.
  • the steel plate 1 0 top was together using known techniques, to supply the rod-like cooling water flow density ln ⁇ Zm 2 !!! i n.
  • Table 1 shows the results of a comparison of facility maintenance, cooling water drainage, and cooling capacity for the inventive example and the comparative example.
  • X is indicated when productivity and quality are reduced, and ⁇ is indicated when it is not. .
  • the cooling water after being supplied to the lower surface of the steel plate 10 is drained only from a narrow gap between the header 3 1 and the table roller 3 2, it accumulates on the header (apron) 3 1 to form a water film 5 4.
  • the cooling water 5 3 sprayed from the spray 5 2 reaches the lower surface of the steel plate 10 after the momentum is reduced by the water film 5 4, efficient cooling is not performed, and when combined with the cooling of the upper surface
  • the cooling rate was as low as 20 ° C / s.
  • This water film 54 was not formed when the tip of the steel plate 10 passed, but was formed after a while after the tip passed. Therefore, only the front end of the steel plate 10 cools well, and the temperature difference between the steady part and the cooled part after the water film 54 is formed (temperature difference between edge parts and steady parts) c5 0. The first one .
  • the cooling water is supplied to the circular tube nozzle 3 2. Drained smoothly from the gap between them, and the flow was not obstructed between the header 3 1 and the table roller 14. As a result, the cooling water did not stay on the upper surface of the header 31 and the jet nozzle at the tip of the circular tube nozzle 3 2 did not submerge. Can be efficiently cooled, and the cooling rate when combined with the top surface cooling is Improved to 30 ° CZ s.
  • the temperature unevenness in the longitudinal direction was reduced to 10 ° C.
  • the temperature unevenness in both the longitudinal and width directions of the steel sheet could be minimized so that variations in material strength such as tensile strength could be reduced (difference between maximum strength and minimum strength: 1 kgf / mm 2 or less ) We were able to produce high quality steel sheets.

Abstract

設備保全性がよく、多量の冷却水を鋼板下面に供給する場合の排水性にすぐれ、効率のよい冷却を幅方向に均一に行って高冷却速度を実現する鋼板の冷却設備および品質の高い鋼板を製造する方法を提供する。具体的には、鋼板10の搬送方向に斜行して等間隔に配置された複数の保護板34と、鋼板10の下面に冷却水を供給するために保護板34と保護板34の間に搬送方向に斜行して設けられたノズル列とを備え、ノズル列には板幅方向に一定ピッチで描いた仮想線36上にそれぞれ同数の円管ノズル32が配置されているとともに、円管ノズル32の上端は保護板34の上端より低い位置に位置している。

Description

明細書
鋼板の冷却設備および製造方法
技術分野
本発明は、 銅板の冷却設備(cooling equipment)および製造方法に関するもので ある。 背景技術 '
熱間圧延により.鋼板を製造するプロセスでは、 圧延温度(roll ing temperature) を制御するのに冷却水(cooling water)を供給したり、 空冷(air-cool ing)を行つ たりするのが一般的であるが、 近年、 高い冷却速度を得て組織を微細化し、 鋼板 の強度を上げる技術の開発が盛んである。
例えば、 冷却水を供給して熱鋼板を冷却する技術として、 特開昭 6 2 - 2 5 9 6 1 0号公報に記載の技術がある。 これは、 図 7に示すように、 テーブルローラ (table roll) 1 4間にエプロン(apron)を兼ねたヘッダ(header) 5 1を設置し、 へ ッダ 5 1上面に多数の孔、 いわゆる多孔ノズル (multi-hole nozzle) 5 2を設け、 ここから棒状の冷却水(rod-like water flow) 5 3を鋼板 1 0下面に供給する技術 である。 比較的多量の冷却水を鋼板に供給することで、 高い冷却速度が得られる . とされている。
また、 冷却水を供給して鋼板を冷却する別の技術として、 特開平 1 0— 2 6 3 6 6 9号公報に記載の技術がある。 これは、 ノズルをハニカム状に配置して、 効 率のよい冷却を行うことができるものとされている。
しかしながら、 前記特開昭 6 2 - 2 5 9 6 1 0号公報、 特開平 1 0— 2 6 3 6 6 9号公報に記載の技術は、 設備保全性、 冷却水を鋼板下面に供給した後の排水 性、 さらには冷却の均一性において大きな問題点がある。 .
特開昭 6 2— 2 5 9 6 1 0号公報に記載の技術では、 図 7に示すように、 下面 冷却設備 5 0のヘッダ 5 1がテーブルローラ 1 4間のエプロンを兼ねる構造とな つているので、 先端が下方に反った鋼板 1 0が進入してきた場合にはヘッダ 5 1 に当たり、 ヘッダ 5 1を破損するという問題がある。 ヘッダ 5 1が破損してノズ ル孔 5 2がつぶれたり、 変形したりすれば、 冷却の均一性が著しく損なわれるの で、 この技術を長期にわたって使用する場合には、 ヘッダ (エプロン) 5 1を頻 繁に取り替えるなどしなければならず、 設備保全性の上で問題がある。
また、 冷却水 5 3は鋼板 1 0に供給された後に落下すると、 ヘッダ (ェプロ ン) 5 1上に溜まって水膜 5 4を作る。 エプロンとなるヘッダ 5 1上面にあけた 孔がそのままノズル 5 2になっているので、 新たに供給された冷却水はこの水膜 5 4を破って鋼板 1 0下面に供給されなければならないが、 冷却水量を増やそう とすればするほど水膜 5 4が厚くなるので冷却の効率が悪くなるという問題があ る。
さらに、 冷却水がヘッダ (エプロン) 5 1の端部とテーブルローラ 1 4との間 の狭い隙間を通ってしか排水されないので、 この排水が新たに供給される冷却水 による冷却を阻害し、 冷却水を効率よく使用することができない。
一方、 特開平 1 0— 2 6 3 6 6 9号公報に記載の技術についても、 それを熱間 圧延ラインで鋼板の下面を冷却する際に用いると、 先端が下方に反った鋼板が進 入してきた場合にノズルに当たり、 ノズルを破損するという問題がある。 ノズル 間に保護板 (protector plate) を設置することによって、 鋼板の先端がノズルに 衝突することを避けようとすることも考えられる力 ノズルが鋼板の搬送方向に も幅方向にも 1 2ピッチずつずらして配置されているので、 ノズル同士の間隔 が狭すぎるため、 適切な保護板を設置することができない。 したがって、 被冷却 材がノズルに衝突する心配がないプロセスでしか用いることができず、 熱間圧延 ラインでの鋼板の冷却に用いることはできない。
本発明は、 上記のような事情に鑑みてなされたものであり、 設備保全性がよく、 多量の冷却水を鋼板下面に供給する場合の排水性にすぐれ、 効率のよレ、冷却を幅 方向に均一に行って高冷却速度を実現する鋼板の冷却設備および品質の高い鋼板 を製造する方法を提供することを目的とするものである。 発明の開示
上記の課題を解決するために、 本発明は以下の特徴を有する。 [1] 鋼板の熱間圧延ラインに設置される鋼板の冷却設備であって、 搬送され る鋼板の下方において、 鋼板の搬送方向に斜行して配置された複数の保護板と、 鋼板の下面に冷却水を供給するために保護板と保護板の間に鋼板の搬送方向に斜 行して設けられたノズル列とを備え、 該ノズル列には鋼板の板幅方向に一定ピッ チで描いた仮想線(virtual lines)上にそれぞれ同数の管状ノズルが配置されてい るとともに、 該管状ノズルの上端は前記保護板の上端より低い'位置に位置してい ることを特徴とする鋼板の冷却設備。
[2] 前記管状ノズルを取り付けたヘッダは、 前記テーブルローラの軸心 center of circular cross section of table roll) より低レ λΐΑ/_¾ tこ位 ft:し— いることを特徴とする前記 [1] に記載の鋼板の冷却設備。'
[3] 前記管状ノズルの上端は、 鋼板を搬送するテーブルローラの軸心より高 い位置に位置していることを特徴とする前記 [1] または [2] に記載の鋼板の 冷却設備。
[4] 前記管状ノズルは円管ノズルであり、 ノズルの内径は 3〜8mmで、 噴 射速度 (jet speed) は 1〜 10 m/ sであることを特徴とする前記 [ 1 ] 〜 [3] のいずれかに記載の鋼板の冷却設備。
[5] 鋼板の熱間圧延ラインで鋼板を冷却する鋼板の製造方法であって、 搬送 される鋼板の下方において、 鋼板の搬送方向に斜行して複数の保護板を配置する とともに、 鋼板の下面に冷却水を供給するために保護板と保護板の間に鋼板の搬 送方向に斜行してノズル列を設け、 該ノズル列には鋼板の板幅方向に一定ピッチ で描いた仮想線上にそれぞれ同数の管状ノズルを配置するとともに、 該管状ノズ ルの上端を前記保護板の上端より低い位置に位置させることを特徴とする鋼板の 製造方法。
[6] 前記管状ノズルを取り付けたヘッダを、 前記テーブルローラの軸心より 低い位置に位置させることを特徴 する前記 [5] に記載の鋼板の製造方法。
[7] 前記管状ノズルの上端を、 鋼板を搬送するテーブルローラの軸心より高 い位置に位置させることを特徴とする前記 [5] または [6] に記载の鋼板の製 造方法。 [ 8 ] 前記管状ノズルは円管ノズルであり、 ノズルの内径は 3〜8 mmで、 噴 · 射速度は 1〜1 O mZ sであることを特徴とする前記 [ 5 ] 〜 [ 7 ] のいずれか に記載の鋼板の製造方法。
本発明においては、 鋼板下面に冷却水を供給する管状ノズルが保護板によって 保護されるようにしているので、 先端が下方に反った鋼板が進入してきた場合で も、 管状ノズルの損傷が防止 れて、 設備保全性がよいとともに、 所定の配列で 管状ノズルが配置されているので、 多量の冷却水を鋼板下面に供給した場合でも、 管状ノズル同士の隙間から冷却水がスムースに排水されて、 排水性に優れている。 その結果、 効率のよい冷却を幅方向に均一に行って高い冷却速度を実現し、 品質 の高い鋼板を製造することができる。
なお、 本願で規定した管状ノズルから供給される冷却水は、 棒状冷却水である。 ここで、 棒状冷却水 (柱状噴流冷却水とも言う。 ) とは、 円形状 (楕円や多角の 形状も含む) のノズル噴出.口から噴射される冷却水のことを指している。 また、 棒状冷却水は、 スプレー状の噴流でなく、 ノズル噴出口から鋼板に衝突するまで、 その水流の断面がほぼ円形に保たれ、 連続性のある直進性のある水流の冷却水を 言う。 図面の簡単な説明
図 1 :薄鋼板の熱間圧延ラインの概略図である。
図 2 :本発明の一実施形態に係る冷却設備の説明図である。
図 3 :本発明の一実施形態におけるヘッダのノズル配置例を示した図である。 図 4 :他のノズル配置例を示した図である。
図 5 :他のノズル配置例を示した図である。
図 6 :他のノズル配置例を示した図である。
図 7 :従来技術の説明図である。
(符号の説明) 1 0 :鋼板、 1 1 :加熱炉、 1 2 :熱間圧延機、 1 3 : ランナウトテー ブ、ノレ (run out table) 、 1 4 : テープ レローラ、 1 4 a :テープ' レローラの 軸心、 2 0 :上面冷却設備、 3 0 :下面冷却設備、 3 1 :ヘッダ、 3 2 : ノズル、 3 3 :-冷却水、 3 4 :保護板、 3 5 :保護板、 3 6 :仮 想線、 5 0 :下面冷却設備、 5 1 :ヘッダ、 5 2 :嘖射口、 5 3 :冷却 水、 5 4 :水膜 発明を実施するための最良の形態.
本発明の実施形態を以下に説明する。 なお、 ここでは、 本発明を薄鋼板の熱間 圧延熱延ラインにおいて、 ランァゥトテ一ブルでの鋼板の冷却に用いた場合を例 にして述べる。 .
図 1は、 本発明が用いられる薄鋼板の熱間圧延熱延ラインの概略を示した図で ある。 1 1は加熱炉、 1 2は粗圧延機と仕上圧延機からなる熱間圧延機列、 1 3 'はランァゥトテーブルであり、 ランァゥトテーブル (run out table) 1 3の上方 には、 鋼板 1 0の上面に冷却水を供給するための上面冷却設備 2 0が鋼板 1 0の 搬送方向 (以下、 単に搬送方向という) に所定の間隔で設置され、 ランアウトテ —ブル 1 3の下方には、 .テーブルロ ラ 1 4の隙間から鋼板 1 0の下面に冷却水 を供給するための下面冷却設備 3 0が搬送方向に所定の間隔で設置されている。 この熱間圧延熱延ラインにおいては、 加熱炉 1 1から抽出されたスラブが熱間 圧延機列 1 2によって粗圧延と仕上圧延されて、 所定の仕上温度にて所定の仕上 板厚となった後、 ランアウトテーブル 1 3に搬送され、 上面冷却設備 2 0と下面 冷却設備 3 0から噴射される冷却水によって所定の温度まで冷却される。
そして、 図 2は、 本発明の一実施形態における下面冷却設備 3 0を示した図で あり、 図 3は、 その下面冷却装置 3 0のノズル配置を示した平面図である。
図 2、 図 3に示すように、 下面冷却設備 3 0は、 ヘッダ.3 1と、 搬送方向に斜 行してヘッダ 3 1上面に配置された複数の保護板 3 4と、 隣接する保護板 3 4同 士の間に搬送方向に斜行してヘッダ 3 1に設けられたノズル列 (ここでは 2歹リ) とを備え、 ノズル列には板幅方向に一定ピッチで描いた仮想線 (図 3中の破線) 3 6上にそれぞれ同数 (ここでは各 1個) の円管ノズル 3 2が配置されている。 そして、 棒状の冷却水を嘖射する円管ノズル 3 2の上端 (先端) は、 保護板 3 4 の上端より低い位置で、 かつテーブルローラ 1 4の軸心 1 4 aより高い位置に位 置してい-る。 さらに、 円管ノズル 3 2を取り付けたヘッダ 3 1は、 テーブルロー ラ 1 4の軸心 1 4 aより低い位置に位置している。 なお、 円管ノズル 3 2の内径 は 3〜 8 mmで、 噴射速度は 1〜 1 0 mZ sとしている。 また、 保護板 3 4の間 隔は等間隔であるのが好ましい。
上記のように構成された下面冷却設備 0においては、 鋼板 1 0下面に棒状冷 却水 3 3を供給する円管ノズル 3 2が保護板 3 4によ て保護されるので、 先端 が下方に反った鋼 ¾が進入してきた場合でも、 円管ノズル 3 2の損傷が防止され、 設備保全性がよい。 そのため、 円管ノズル 3 2が良好な状態のままで長期間にわ たって冷却を行うことができるので、 設備補修等を行うことなく鋼板の温度むら (strip temperature deviation) の発生を防止すること力できる。
まだ、 -所定の配列で円管ノズル 3 2が配置されているので、 多量の冷却水 3 3 を鋼板 1 0下面に供給した場合でも、 円管ノズル 3 2同士の隙間から冷却水がス ムースに排水され、 排水性に優れている。 さらに、 ヘッダ 3 1がテーブルローラ 1 4の軸心 1 4 aより低い位 Sに位置しているので、 ヘッダ 3 1とテーブルロー ラ 1 4の間で冷却水の流れが阻害されることがなく、 冷却水が一層スムースに排 水される。 これにより、 ヘッダ 3 1上面に冷却水が滞留することがなく、 円管ノ ズル 3 2先端の噴出口が水没することがないので、 鋼板 1 0下面には常に勢いの ある冷却水が供給され、 効率のよい冷却を行うことができる。
なお、 上記において、 円管ノズル 3 2の先端がテーブルローラ 1 4の軸心 1 4 aより高い位置に位置するようにしているのは、 円管ノズル 3 2の先端が鋼板 1 0の下面からあまり離れると、 落下冷却水の影響もあり、 鋼板 1 0下面に勢いの ある冷却水を供給するために高い嘖射圧が必要になるからである。
また、 円管ノズル 3 2の内径を 3〜8 mmとしているのは、 内径が 3 mmより 小さいと、 ノズル詰まりが頻繁に発生するおそれがあるほか、 嘖流 (jet flow) が細いので落下冷却水の千渉により鋼板 1 0下面に到達できない場合が生じて冷 却能力 (cool ing performance) が低下するからであり、 内径が 8 mmより大きい と、 ノズルの間隔を広げ、 噴射速度をある程度低く抑える必要があるので、 板幅 方向の温度むらが大きくなるうえ冷却能力も低下するからである。
また、 円管ノズル 3 2からの噴射速度を 1 ~ 1 O mZ sとしているのは、 噴射 速度が I mZ s未満だと、 冷却水が鋼板 1 0に当たる勢いが弱く、 十分な冷却が 行われないからであり、 噴射速度が 1 O mZ sを越えると、 異常に高い嘖水吹き 上げ高さ (extremely high fountain) となって、 設備周辺への冷却水の飛散が問 題となるからである。
なお、 上面冷却設備 2 0は、 円管ノズル等を備えた公知の冷却設備が用いられ ている。 '
このようにして、 上記のような下面冷却設備 3 0を用いて、 ランアウトテープ ル 1 3上で鋼板 1 0の冷却を行うことにより、 設備保全性と排水性に優れ、 効率 のよい冷却を幅方向に均一に行って高冷却速度を実現し、 品質の高レ、鋼板を製造 することができる。
なお、 この実施形態においては、 下面冷却設備 3 0のノズルに円管ノズル 3 2 を用いているが、 角管ノズル等の他の管状ノズルを用いてもよい。
また、 保護板 3 4と円管ノズル 3 2の配置は、 図 3に示したものに限定される ものではなく、 図 4に示したもののように、 隣接する保護板 3 4の間にノズル列 を 3列配置し、 仮想線 3 6上にそれぞれ 1個の円管ノズル 3 2が配置されるよう にしてもよレ、。 また、 図 5、 図 6に示したもののように、 ノズル列を搬送方向に 2分割し、 その間に板幅 ^向の保護板 3 5を通した配置にしてもよい。
さらに、 薄鋼板(steel sheet)の熱間圧延ラインに用いるだけでなく、 厚鋼板 (steel plate)の熱間圧延ラインに用いることもできる。 .
1 実施例
本発明の実施例として、 図 1に概略を示した薄鋼板の熱間圧延ラインにおいて ランアウトテーブル 1 3での鋼板の冷却を行った。 その際、 仕上温度(finishing temperature)は 8 8 0 °C、 仕上板厚は 4 mmとし、 ランァゥトテ一ブル 1 3で 5 5 0 °Cまでの冷却を行った。
本発明例として、 前記の実施形態に示した下面冷却設備 3 0を用いて鋼板の下 面に棒状の冷却水を供給した。 ここで、 保護板 3 4には厚さ 2 2 mmの鋼板を用 い、 円管ノズル 3 2の内径は 6 mmとした。
一方、 比較例として、 図.7に示すように、 テーブルローラ 1 4間にエプロンを 兼ねたヘッダ 5 1を設置した前記特開昭 6 2 - 2 5 9 6 1 0号公報に記載された 冷却設備 5 0を用いて鋼板 1 0の下面に棒状の冷却水を供給した。
なお、 本発明例、 比較例ともに、 鋼板下面に供給する冷却水の流量密度は 2 m 3 /m 2 m i n , ノズル噴出口と鋼板 i 0下面との距離は 1 5 ,0 mmとした。 また、 鋼板 1 0上面についても、 ともに公知の技術を用いて、 流量密度 l n^ Zm 2 !!! i nの棒状冷却水を供給した。
本発明例と比較例について、 設備保全性と冷却水の排水性、 冷却能力の比較を 行った結果を表 1に示す。 表 1で、 生産性や品質の低下となった場合を X、 なら なかった場合を〇とした。 . '
I 1
Figure imgf000010_0001
表 1に示すように、 比較例では、 先端が下方に反った鋼板が進入してきた場合 に、 エプロンを兼ねるヘッダ上面に衝突して、 設備を破損することがあった。 そ れによって、 ヘッダ 5 1上面がへこんだり、 噴出口(spout of nozzle) 5 2が変形 したりして、 冷却水 5 3の噴射方向が均等でなくなり、 板幅方向の温度むらが 3 o °cにもなることがあった。 そして、 設備破損箇所を修理するためのコストがか かるうえ、 操業.を停止させて生産性が低下することも多かった。
また、 鋼板 1 0下面に供給された後の冷却水がヘッダ 3 1とテーブルローラ 3 2間の狭い隙間からしか排水されないため、 ヘッダ (エプロン) 3 1上に溜まつ て水膜 5 4を形成し、 嘖射ロ 5 2から噴射する冷却水 5 3は水膜 5 4によって勢 いが衰えてから鋼板 1 0下面に到達するので、 効率のよい冷却は行われず、 上面 の冷却と合わせた時の冷却速度は、 2 0 °C/ sと低かった。
この水膜 5 4は、 鋼板 1 0の先端部が通過する時点では形成されておらず、 先 端部が通過した後、 しばらくたつてから形成された。 したがって、 鋼板 1 0の先 端部のみがよく冷え、 水膜 5 4が形成された後に冷却される定常部との温度差 (.temperature difference between edge parts and steady parts) c5 0。し1 め つた。
このように、 温度むらが大きくなつたので、 引張強度等の材質強度のばらつき (deviation of mechanical properties)が大きレヽ鋼板 (最大強度と最小強度の差: 3 kgf/raiD2以上) になってしまった。 一
これに対して、 本発明例では、 先端が下方に反った鋼板が進入してきた場合で も、 保護板 3 4に当たるだけで、 鋼板 1 0がさらに下方に進入しなかったので、 円管ノズル 3 2等の設備が破損することはなかった。 それにより、 円管ノズル 3 2が良好な状態のままで冷却を行うことができたので、 設備補修等を行うことな く板幅方向の温度むらの発生を 1 o °c以内に抑えることができだ。 また、 操業を 停止させることもなかつたので、 高い生産性を維持することができた。
また、 所定の配列で円管ノズル 3 2が配置されているとともに、 ヘッダ 3 1が テーブルローラ 1 4の軸心 1 4 aより低い位置に位置しているので、 冷却水が円 管ノズル 3 2同士の隙間からスムースに排水されるとともに、 ヘッダ 3 1とテー ブルローラ 1 4の間で流れが阻害されることもなかった。 これにより、 ヘッダ 3 1上面に冷却水が滞留することがなく、 円管ノズル 3 2先端の噴出口が水没する ことがなかったので、 鋼板 1 0下面には常に勢いのある棒状冷却水 3 3が供給さ れ、 効率のよい冷却を行うことができ、 上面の冷却と合わせたときの冷却速度は 3 0 °CZ sにまで向上した。 また、 鋼板の先端通過から尾端通過まで常に同じ状 態で冷却水が供給されたので、 長手方向の温度むらは 1 0 °Cと小さくなつた。 このように、 鋼板の長手方向および幅方向とも温度むらを極めて小さく抑える ことができたので、 引張強度等の材質強度のばらつきを小さくでき (最大強度と 最小強度の差: 1 kgf/mm2以下) 、 高品質な鋼板を製造することができた。

Claims

請求の範囲
1 . 鋼板の熱間圧延ラインに設置される鋼板の冷却設備であって、 搬送される 鋼板の下方において、 鋼板の搬送方向に斜行して配置された複数の保護板と、 鋼 板の下面に冷却水を供給するために保護板と保護板の間に鋼板の搬送方向に斜行 して設けられたノズル列とを備え、 該ノズル列には鋼板の板幅方向に一定ピッチ で描いた仮想線上にそれぞれ同数の管状ノズルが配置されているとともに、 該管' 状ノズルの上端は前記保護板の上端より低い位置に位置している鋼板の冷却設備。
2 . 前記管状ノズルを取り付けたヘッダは、 前記テーブルローラの軸心より低 い位置に位置している請求項 1に記載の鋼板の冷却設備。
3 . 前記管状ノズルの上端は、 鋼板を搬送するテーブルローラの軸心より高い 位置に位置している請求項 1または 2に記載の鋼板の冷却設備。
4 . 前記管状ノズルは円管ノズルであり、 ノズルの内径は 3〜8 mmで、 噴射 速度は 1〜 1 0 mZ sである請求項 1〜 3のいずれかに記載の鋼板の冷却設備。
5 . 鋼板の熱間圧延ラインで鋼板を製造する鋼板の製造方法であって、 搬送さ れる鋼板の下方において、 鋼板の搬送方向に斜行して複数の保護板を配置すると ともに、 鋼板の下面に冷却水を供給するために保護板と保護板の間に鋼板の搬送 方向に斜行してノズル列を設け、 該ノズル列には鋼板の板幅方向に一定ピッチで 描いた仮想線上にそれぞれ同数の管状ノズルを配置するとともに、 該管状ノズル の上端を前記保護板の上端より低'レ、位置に位置させる鋼板の製造方法。
6 . 前記管状ノズルを取り付けたヘッダを、 前記テーブルローラの軸心より低 い位置に位置させる請求項 5に記載の鋼板の製造方法。
7 . 前記管状ノズルの上端を、 鋼板を搬送するテーブルローラの軸心より高い 位置に位置させる請求項 5または 6に記載の鋼板の製造方法。
8 . 前記管状ノズルは円管ノズルであり、 ノズルの内径は 3〜 8 mmで、 噴射速 度は 1〜 1 0 sである請求項 5〜 7のいずれかに記載の鋼板の製造方法。
PCT/JP2006/317399 2005-09-27 2006-08-29 鋼板の冷却設備および製造方法 WO2007037095A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06783171.9A EP1930092B1 (en) 2005-09-27 2006-08-29 Line for and method of hot rolling a steel plate or sheet with particular arrangement of cooling equipment
CN2006800320200A CN101253010B (zh) 2005-09-27 2006-08-29 钢板的冷却设备和制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-278997 2005-09-27
JP2005278997A JP4774887B2 (ja) 2005-09-27 2005-09-27 鋼板の冷却設備および製造方法

Publications (1)

Publication Number Publication Date
WO2007037095A1 true WO2007037095A1 (ja) 2007-04-05

Family

ID=37899526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317399 WO2007037095A1 (ja) 2005-09-27 2006-08-29 鋼板の冷却設備および製造方法

Country Status (5)

Country Link
EP (1) EP1930092B1 (ja)
JP (1) JP4774887B2 (ja)
KR (1) KR100935357B1 (ja)
CN (1) CN101253010B (ja)
WO (1) WO2007037095A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105855305A (zh) * 2016-05-26 2016-08-17 钢铁研究总院华东分院 机架间冷却装备和热心轧制工艺

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462105B (zh) * 2008-09-27 2013-09-11 苏州扬子江新型材料股份有限公司 彩色涂层钢板涂膜烘烤后的冷却系统
EP2450116B1 (en) * 2009-06-30 2016-08-10 Nippon Steel & Sumitomo Metal Corporation Cooling device for steel sheet, and manufacturing device and manufacturing method for hot-rolled steel sheet
CN102759935A (zh) * 2011-04-25 2012-10-31 蔺桃 一种新型冷却控制方法
CN103447315B (zh) * 2012-05-31 2015-10-28 宝山钢铁股份有限公司 一种基于板形的acc流量控制方法及装置
EP2783766A1 (de) * 2013-03-25 2014-10-01 Siemens VAI Metals Technologies GmbH Kühlstrecke mit unterem Spritzbalken
KR101326031B1 (ko) 2013-06-18 2013-11-07 한국기계연구원 스월을 형성하는 노즐 모듈
CN103935679B (zh) * 2014-04-30 2016-08-17 嘉兴鸿利机械有限公司 输送装置
CN107447089B (zh) * 2016-05-31 2019-06-25 宝山钢铁股份有限公司 一种喷嘴可连续均匀高密度布置的冷却喷箱
CN114472548A (zh) * 2020-10-23 2022-05-13 宝山钢铁股份有限公司 一种减小超长板轧制过程中头尾温差的系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166413U (ja) * 1984-04-04 1985-11-05 株式会社神戸製鋼所 鋼板下面冷却装置
JPS62259610A (ja) 1986-04-30 1987-11-12 Kobe Steel Ltd 鋼板下面の冷却装置
JPH0480604U (ja) * 1990-11-17 1992-07-14
JPH04200816A (ja) * 1990-11-30 1992-07-21 Kawasaki Steel Corp 熱間圧延鋼板用下部冷却装置
JPH06304626A (ja) * 1993-04-20 1994-11-01 Kawasaki Steel Corp 冷却ノズルの配列決定方法
JPH07214136A (ja) * 1994-01-31 1995-08-15 Kawasaki Steel Corp 高温金属板の下面冷却装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175805U (ja) * 1982-05-13 1983-11-24 三菱重工業株式会社 高温鋼板の冷却装置
JPS60166413A (ja) * 1984-02-10 1985-08-29 Matsushita Electric Works Ltd 基材への樹脂の含浸方法
JPH0480604A (ja) * 1990-07-23 1992-03-13 Hitachi Constr Mach Co Ltd 走査型トンネル顕微鏡及びこれを含むスルーホールメッキ検査装置
CN2261898Y (zh) * 1996-07-05 1997-09-10 鞍山钢铁公司 中厚板控制冷却装置
JP4080604B2 (ja) * 1998-07-27 2008-04-23 三菱樹脂株式会社 把手付きプラスチックボトル
DE60229562D1 (de) * 2002-08-08 2008-12-04 Jfe Steel Corp Kühlvorrichtung, herstellungsverfahren und herstellungsstrasse für warmgewalztes stahlband
CN1304133C (zh) * 2002-08-08 2007-03-14 杰富意钢铁株式会社 热轧钢带的冷却装置、热轧钢带的制造方法以及热轧钢带的生产线
JP4200816B2 (ja) * 2003-05-19 2008-12-24 ソニー株式会社 車載情報再生装置及びその記憶情報再生方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166413U (ja) * 1984-04-04 1985-11-05 株式会社神戸製鋼所 鋼板下面冷却装置
JPS62259610A (ja) 1986-04-30 1987-11-12 Kobe Steel Ltd 鋼板下面の冷却装置
JPH0480604U (ja) * 1990-11-17 1992-07-14
JPH04200816A (ja) * 1990-11-30 1992-07-21 Kawasaki Steel Corp 熱間圧延鋼板用下部冷却装置
JPH06304626A (ja) * 1993-04-20 1994-11-01 Kawasaki Steel Corp 冷却ノズルの配列決定方法
JPH07214136A (ja) * 1994-01-31 1995-08-15 Kawasaki Steel Corp 高温金属板の下面冷却装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1930092A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105855305A (zh) * 2016-05-26 2016-08-17 钢铁研究总院华东分院 机架间冷却装备和热心轧制工艺

Also Published As

Publication number Publication date
KR20080034967A (ko) 2008-04-22
JP4774887B2 (ja) 2011-09-14
JP2007090355A (ja) 2007-04-12
CN101253010A (zh) 2008-08-27
KR100935357B1 (ko) 2010-01-06
CN101253010B (zh) 2010-06-16
EP1930092A4 (en) 2011-12-07
EP1930092A1 (en) 2008-06-11
EP1930092B1 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2007037095A1 (ja) 鋼板の冷却設備および製造方法
JP4449991B2 (ja) 熱延鋼帯の冷却装置及び方法
JP4586682B2 (ja) 鋼板の熱間圧延設備および熱間圧延方法
KR100973691B1 (ko) 강판의 냉각 설비 및 냉각 방법과, 이를 이용하는 강판의 열간 압연 설비 및 열간 압연 방법
JP4678069B1 (ja) 熱延鋼板の冷却装置
JP4779749B2 (ja) 鋼板の冷却方法および冷却設備
JP4876782B2 (ja) 鋼板の熱間圧延設備および熱間圧延方法
JP5515483B2 (ja) 厚鋼板の冷却設備および冷却方法
JP4853224B2 (ja) 鋼板の冷却設備および冷却方法
TWI569898B (zh) Manufacture method and manufacturing equipment of thick steel plate
JP4876781B2 (ja) 鋼板の冷却設備および冷却方法
JP4546897B2 (ja) 鋼板の熱間圧延設備及び鋼板の熱間圧延方法
JP4876783B2 (ja) 鋼板の冷却設備および冷却方法
JP5613997B2 (ja) 熱延鋼板の冷却装置、熱延鋼板の製造装置及び製造方法
JP6108041B2 (ja) 厚鋼板の製造方法
JP2009202184A (ja) 熱延鋼帯の下面冷却方法および下面冷却装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680032020.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087004610

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006783171

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE