WO2007029747A1 - 変異型ホタルルシフェラーゼ、遺伝子、組換えベクター、形質転換体、及び変異型ホタルルシフェラーゼの製造方法 - Google Patents

変異型ホタルルシフェラーゼ、遺伝子、組換えベクター、形質転換体、及び変異型ホタルルシフェラーゼの製造方法 Download PDF

Info

Publication number
WO2007029747A1
WO2007029747A1 PCT/JP2006/317667 JP2006317667W WO2007029747A1 WO 2007029747 A1 WO2007029747 A1 WO 2007029747A1 JP 2006317667 W JP2006317667 W JP 2006317667W WO 2007029747 A1 WO2007029747 A1 WO 2007029747A1
Authority
WO
WIPO (PCT)
Prior art keywords
firefly luciferase
amino acid
mutant
acid sequence
north american
Prior art date
Application number
PCT/JP2006/317667
Other languages
English (en)
French (fr)
Inventor
Hiroya Fujii
Kenichi Noda
Original Assignee
Bioenex Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bioenex Inc. filed Critical Bioenex Inc.
Priority to US11/991,455 priority Critical patent/US8003350B2/en
Publication of WO2007029747A1 publication Critical patent/WO2007029747A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/12Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of one atom of oxygen (internal monooxygenases or internal mixed function oxidases)(1.13.12)
    • C12Y113/12007Photinus-luciferin 4-monooxygenase (ATP-hydrolysing) (1.13.12.7), i.e. firefly-luciferase

Definitions

  • the present invention relates to a mutant firefly luciferase, a gene, a recombinant vector, a transformant, and a method for producing a mutant firefly luciferase.
  • Firefly luciferase is an enzyme that catalyzes the acid of firefly luciferin in the presence of adenosine triphosphate (ATP), magnesium ions, and oxygen to emit light. For this reason, firefly luciferase is widely used for the detection of ATP for the purpose of detecting bacteria in food and drink.
  • ATP adenosine triphosphate
  • magnesium ions magnesium ions
  • oxygen oxygen to emit light.
  • firefly luciferase is widely used for the detection of ATP for the purpose of detecting bacteria in food and drink.
  • mutant firefly luciferases In order to increase the utility of firefly luciferase in the detection of ATP, various mutant firefly luciferases have been produced so far.
  • mutant firefly luciferase those having improved thermal stability (for example, see Patent Documents 1 to 4 below) and those having improved substrate affinity (for example, see Patent Documents 5 to 7 below)
  • Those having a changed emission wavelength for example, see Patent Documents 8 and 9 below
  • those having improved emission persistence for example, see Patent Document 10 below
  • having a surfactant resistance for example, Patent Documents below
  • Patent Document 1 Japanese Patent No. 3048466
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-197487
  • Patent Document 3 Japanese Patent Publication No. 9 510610
  • Patent Document 4 Japanese Translation of Special Publication 2003-518912
  • Patent Document 5 International Publication No. 99Z02697 Pamphlet
  • Patent Document 6 Japanese Patent Publication No. 10-512750
  • Patent Document 7 Special Table 2001-518799
  • Patent Document 8 Japanese Patent No. 2666561
  • Patent Document 9 Special Table 2003-512071
  • Patent Document 10 Japanese Unexamined Patent Publication No. 2000-197484
  • Patent Document 11 Japanese Patent Laid-Open No. 11-239493
  • an object of the present invention is to provide a mutant firefly luciferase having an increased luminescence intensity as compared to wild-type firefly luciferase.
  • the present inventors have intensively studied to achieve the above object, and as a result, the luminescence intensity is increased by substituting an amino acid at a specific position in the amino acid sequence of wild-type firefly luciferase with a specific different amino acid. As a result, the present invention has been completed.
  • the present invention provides:
  • a mutant firefly luciferase having a light emission intensity greater than that of the wild-type firefly luciferase.
  • North American firefly luciferase means wild-type North American firefly (Photinus pyralis) luciferase unless otherwise specified.
  • Heike firefly luciferase and “Genji firefly luciferase” refer to wild-type Luciola lateralis luciferase and wild-type Luciola cruciata luciferase, respectively, unless otherwise specified. means.
  • the "luminescence intensity" of firefly luciferase is the light emission at the peak when the firefly luciferase is reacted with firefly luciferin in the presence of ATP, divalent metal ions and oxygen. It means strength. It can be determined that the greater the “luminescence intensity”, the stronger the firefly luciferase activity of the firefly luciferase.
  • positions equivalent to amino acid positions 419 to 428 of North American firefly luciferase and “positions 435 to 441 of amino acid sequence of North American firefly luciferase”
  • Positions equivalent to positions 523 to 532 of the amino acid sequence of North American firefly luciferase means that when the wild-type firefly luciferase is a North American firefly luciferase, the wild-type firefly luciferase amino acid respectively.
  • the amino acids of the wild type firefly luciferase and the North American firefly luciferase are aligned so that their overlap is maximized .
  • sequences are aligned so that their overlap is maximized .
  • amino acid sequence of the wild-type firefly luciferase 419-428 of the amino acid sequence of North American firefly luciferase, 435-441 position, and a position corresponding to position 523-532.
  • the amino acid sequence of North American firefly luciferase is as shown in SEQ ID NO: 1.
  • nonpolar amino acid means an amino acid having a nonpolar group in the side chain.
  • “Positively charged amino acid” means an amino acid that is positively charged at physiological pH (pH 7.4).
  • the luminescence intensity can be increased as compared with the case where the wild-type firefly luciferase is used. This is due to the luciferin-luciferase reaction caused by the amino acid substitution described above. This is because the reaction rate increases.
  • the mutant amino acid sequence includes at least the substitutions (a) and (b), the substitutions (a) and (c) in the amino acid sequence of wild-type firefly luciferase, or Those in which the above substitutions (a), (b) and (c) have occurred are preferred.
  • the luminescence intensity can be further increased as compared with the case where each substitution occurs alone.
  • each of the substitutions is independent by combining the substitutions (a) and (b) above, the substitutions (a) and (c) above, or the substitutions (a), (b) and (c) above. This is because the reaction rate of the luciferin luciferase reaction is further increased as compared with the case where the reaction occurs.
  • the mutated amino acid sequence may be one in which at least the substitutions (b) and (c) have occurred in the amino acid sequence of wild-type firefly luciferase.
  • the mutant amino acid sequence preferably has a homology of 60% or more to the amino acid sequence of North American firefly luciferase. If the homology with the amino acid sequence of North American firefly luciferase is less than 60%, the luminescence intensity tends to be small compared to the case of 60% or more.
  • the mutant firefly luciferase is obtained by culturing a transformant having a recombinant vector containing a gene encoding the mutant firefly luciferase, and collecting the mutant firefly luciferase from the obtained culture. Can be obtained.
  • the present invention also provides a gene encoding the above mutant firefly luciferase, a recombinant vector containing the gene, and a transformant having the recombinant vector.
  • the present invention further provides a mutant firefly luciferase comprising a culture step of culturing the transformant to obtain a culture, and a collecting step for collecting the mutant firefly luciferase from the culture product.
  • a manufacturing method is provided.
  • the mutant firefly luciferase can be efficiently produced by the method for producing the gene, the recombinant vector, the transformant, and the mutant firefly luciferase.
  • reporter assembly can be performed with higher sensitivity than when a wild-type firefly luciferase gene is used. .
  • Such a reporter assembly is made possible by the above recombinant vector.
  • a mutant firefly luciferase having an increased luminescence intensity as compared with a wild-type firefly luciferase is provided.
  • Fig. 1 is a diagram schematically showing the three-dimensional structure of firefly luciferase.
  • the mutant firefly luciferase of the present invention is
  • At least one amino acid (amino acid B) of amino acids at positions equivalent to positions 435 to 441 of the amino acid sequence of North American firefly luciferase has a molecular weight smaller than the molecular weight of amino acid B, and glycine, alanine Substitution with an amino acid selected from serine and serine
  • At least one amino acid (amino acid C) of amino acids at positions equivalent to positions 523 to 532 of the amino acid sequence of North American firefly luciferase has a larger V and isoelectric point than the isoelectric point of the amino acid C Substitution with positively charged amino acids
  • positions equivalent to positions 419 to 428 of the amino acid sequence of North American firefly luciferase are amino acid sequence homology analysis software (for example, MicroGenie TM ( And the like can be determined by analyzing the homology of the amino acid sequences of the wild type firefly luciferase and the North American firefly luciferase.
  • the amino acid sequence of North American firefly luciferase is as shown in SEQ ID NO: 1.
  • positions equivalent to positions 419 to 428 of the amino acid sequence of North American firefly luciferase means, for example, when the wild-type firefly luciferase is a firefly luciferase or genji firefly luciferase, respectively, Ranked 430, 437-443, and 525-534.
  • the amino acid sequences of Heike firefly luciferase and Genji firefly luciferase are as shown in SEQ ID NOs: 2 and 3, respectively.
  • Nonpolar amino acids include alanine, proline, norine, leucine, isoleucine, methionine, ferrolanine and tryptophan. In terms of hydrophobicity, leucine, isoleucine, methionine, phenol Leucine and methionine are preferred, with luaranin and tryptophan being preferred.
  • Examples of the positively charged amino acid include arginine, lysine and histidine. Arginine and lysine are preferred from the viewpoint of the strength of positive charge.
  • FIG. 1 is a diagram schematically showing the three-dimensional structure of firefly luciferase. As shown in FIG.
  • the firefly luciferase 10 includes an N-terminal domain 1, a C-terminal domain 3, and a movable connecting part 2 that connects them.
  • the N-terminal domain 1 has an enzyme active site lb opposite to the C-terminal domain 3.
  • the junction la where the N-terminal domain 1 and the junction 2 are joined corresponds to the amino acid sequence portion at positions 419 to 428 of the amino acid sequence of North American firefly luciferase, and the junction 2 is the North America Corresponds to the amino acid sequence portion equivalent to positions 435 to 441 of the amino acid sequence of firefly luciferase, and tip 3a of C-terminal domain 3 is equivalent to amino acid sequence 523 to 532 of North American firefly luciferase amino acid sequence. Corresponds to the amino acid sequence part of the position.
  • a three-dimensional structure analysis software for example, Bio Package (manufactured by Molsoft)).
  • the luminescence intensity can be increased as compared with the case where the wild-type firefly luciferase is used. This is because the reaction rate of the luciferin-luciferase reaction is increased by the amino acid substitution described above.
  • N-terminal domain 1 needs to approach C-terminal domain 3.
  • the amino acid constituting the junction la in the N-terminal domain 1 has a molecular weight greater than or equal to the molecular weight of the substituted amino acid.
  • the hydrophobicity of junction 1a is stronger, and N-terminal domain 1 approaches C-terminal domain 3. It is estimated that it is becoming easier.
  • any of the amino acids constituting the mobile linking part 2 has a molecular weight smaller than the molecular weight of the substituted amino acid, and glycine, Substitution with an amino acid selected from alanine and serine increases the mobility of linking part 2 compared to wild-type firefly luciferase, and N-terminal domain 1 is more accessible to C-terminal domain 3. It is presumed to be hot.
  • firefly luciferase reacts with firefly luciferin. Phosphorus and ATP need to be incorporated into the active site lb of firefly luciferase.
  • any one of the amino acids constituting the tip 3a of the C-terminal domain 3 is larger than the isoelectric point of the substituted amino acid. Presence of substitution with a positively charged amino acid having a point presumably leads to the tip 3a being charged more positively, making it easier for negatively charged firefly luciferin and ATP to be incorporated into the active site lb of the enzyme. .
  • the mutant amino acid sequence of the mutant firefly luciferase includes, in the amino acid sequence of wild-type firefly luciferase, at least the substitutions (a) and (b), the substitutions (a) and (c), or the above Those in which substitution of (a), (b) and (c) has occurred are preferred.
  • the luminescence intensity can be further increased as compared with the case where each substitution occurs alone.
  • each of the substitutions is independent by combining the substitutions (a) and (b) above, the substitutions (a) and (c) above, or the substitutions (a), (b) and (c) above. This is because the reaction rate of the luciferin luciferase reaction is further increased as compared with the case where the reaction occurs.
  • the mutated amino acid sequence may be one in which at least the substitutions (b) and (c) have occurred in the amino acid sequence of wild-type firefly luciferase.
  • the mutant amino acid sequence of the mutant firefly luciferase preferably has a homology with the amino acid sequence of North American firefly luciferase of 60% or more in terms of luminescence intensity.
  • the homology is more preferably 65% or more, still more preferably 70% or more, still more preferably 80% or more, and further preferably 90% or more.
  • the mutant amino acid sequence of the mutant firefly luciferase is a mutation other than the substitutions (a), (b) and (c) (amino acid substitution, deletion, Insertion or addition) may further occur.
  • mutations that increase thermal stability for example, see Patent Documents 1 to 4 above
  • mutations that increase substrate affinity for example, see Patent Documents 5 to 7 above
  • mutations that change the emission wavelength for example, Patent Documents above
  • a mutation that increases the persistence of luminescence for example, see Patent Document 10 above
  • a mutation that imparts surfactant resistance for example, see Patent Document 11 above
  • the mutant firefly luciferase of the present invention is a mutant firefly luciferase consisting of a mutant amino acid sequence in which substitution of at least the above (a), (b) or (c) has occurred in the amino acid sequence of wild-type firefly luciferase.
  • the luminescence intensity is larger than the luminescence intensity of the wild type firefly luciferase.
  • the mutant firefly luciferase having the above-mentioned mutant amino acid sequence ability is the mutant firefly luciferase of the present invention is determined by determining whether the mutant firefly luciferase is firefly in the presence of ATP, divalent metal ion (for example, magnesium ion) and oxygen. This can be confirmed by reacting with luciferin and measuring the luminescence intensity. If the luminescence intensity is increased as compared to the wild type firefly luciferase, it can be determined that it is the mutant firefly luciferase of the present invention.
  • the firefly luciferin is derived from North American fireflies (Photinus pyralis), Heike fireflies (Luciola lateralis), Genn Tanore (Luciola cruciata), Tsutsuyo ⁇ ⁇ Lono firefly (Luciola mm grelica), and the firefly (Lampyris noctiluca) Can be mentioned.
  • mutant firefly luciferases of (1) to (7) below are each a preferred embodiment of the mutant firefly luciferase of the present invention.
  • amino acid has a molecular weight higher than the molecular weight of the amino acid at at least one of positions 419 to 428 in the amino acid sequence of North American firefly luciferase.
  • amino acid has a molecular weight smaller than the molecular weight of the amino acid at at least one of the positions equivalent to the 435 to 441 positions of the amino acid sequence of North American firefly luciferase.
  • a mutant firefly luciferase having an amino acid sequence and having an amino acid sequence substituted with an amino acid selected from glycine, alanine and serine
  • amino acid is larger than the isoelectric point of the amino acid at at least one of the positions equivalent to the 523-532 positions of the amino acid sequence of North American firefly luciferase
  • the amino acid sequence of wild-type firefly luciferase the amino acid sequence of at least one of positions 419 to 428 in the amino acid sequence of North American firefly luciferase;
  • One amino acid is substituted with a nonpolar amino acid having a molecular weight equal to or higher than the molecular weight of the first amino acid, and the second amino acid is located at at least one of the positions equivalent to positions 435 to 441 in the amino acid sequence of North American firefly luciferase.
  • the first amino acid is the molecular weight of the first amino acid at at least one of positions 419 to 428 equivalent to the amino acid sequence of North American firefly luciferase
  • the second amino acid force at the position equivalent to positions 523 to 532 of the amino acid sequence of North American firefly luciferase, substituted with a nonpolar amino acid having the above molecular weight, and the isoelectric point of the second amino acid
  • the first amino acid is the molecular weight of the first amino acid at at least one of the positions equivalent to positions 435 to 441 of the amino acid sequence of North American firefly luciferase
  • a second amino acid having a lower molecular weight, substituted with an amino acid selected from glycine, alanine and serine, and at least one of the positions equivalent to positions 523 to 532 of the amino acid sequence of North American firefly luciferase Is a mutant firefly luciferase having an amino acid sequence ability substituted with a positively charged amino acid having an isoelectric point greater than that of the second amino acid
  • the first amino acid has the molecular weight of the first amino acid at at least one of positions 419 to 428 equivalent to the amino acid sequence of North American firefly luciferase It is substituted with a nonpolar amino acid having the above molecular weight, and the second amino acid force is at least one of the positions equivalent to positions 435 to 441 in the amino acid sequence of North American firefly luciferase, compared to the molecular weight of the second amino acid.
  • the third amino acid is Consisting of an amino acid sequence substituted with a positively charged amino acid having an isoelectric point greater than that of the third amino acid Atypical firefly Elase
  • the mutant firefly luciferase of (1) above is a mutant firefly luciferase comprising the mutant amino acid sequence in which the substitution of (a) above occurs in addition to the amino acid sequence of the wild type firefly luciferase.
  • the mutant firefly luciferase of (2) above is a mutant firefly luciferase consisting of a mutant amino acid sequence in which the substitution of (b) above occurs in addition to the amino acid sequence of the wild type firefly luciferase.
  • the mutant firefly luciferase of (3) above is a mutant firefly luciferase comprising the mutant amino acid sequence in which the substitution of (c) above occurs in addition to the amino acid sequence of the wild type firefly luciferase.
  • the mutant firefly luciferase of (4) above is a mutant firefly luciferase having the amino acid sequence of the wild type firefly luciferase and the mutant amino acid sequence having the substitutions (a) and (b) above.
  • the mutant firefly luciferase of (5) above is a mutant firefly luciferase consisting of a mutant amino acid sequence in which the substitution of (a) and (c) above occurs in the amino acid sequence of wild type firefly luciferase.
  • the mutant firefly luciferase of (6) above is a mutant firefly luciferase consisting of a mutant amino acid sequence in which the substitutions (b) and (c) above occur in the amino acid sequence of the wild type firefly luciferase.
  • the mutant firefly luciferase of (7) above is a mutant firefly luciferase that also has a mutant amino acid sequence ability resulting from the substitution of (a), (b), and (c) above in the amino acid sequence of the wild type firefly luciferase. .
  • the mutant firefly luciferase of (1) to (7) above has a sufficiently large luminescence intensity compared to the original wild-type firefly luciferase.
  • the mutant firefly luciferases of (4), (5) and (7) have a significantly higher luminescence intensity than the original wild-type firefly luciferase.
  • the original wild-type firefly luciferase is preferably North American firefly luciferase in terms of luminescence intensity.
  • the mutant firefly luciferase of the present invention for example, in the amino acid sequence of North American firefly luciferase, the first amino acid is at least one of positions 419 to 428.
  • a mutant consisting of an amino acid sequence in which isoleucine at position 47 is replaced with threonine, asparagine at position 50 is replaced with serine, methionine at position 59 is replaced with threonine, and threonine at position 252 is replaced with serine.
  • Firefly luciferase This mutant firefly luciferase has higher luminescence intensity than the mutant firefly luciferases of (1) to (7) above.
  • the gene of the present invention is a mutant firefly luciferase gene encoding the mutant firefly luciferase of the present invention.
  • gene consists of DNA or RNA.
  • the mutant firefly luciferase gene can be obtained by modifying a wild-type firefly luciferase gene. Genetic modification can be performed by methods well known to those skilled in the art, such as site-directed mutagenesis, random mutagenesis, and organic synthesis.
  • Site-directed mutagenesis or random mutagenesis is performed using a wild-type firefly luciferase gene or a recombinant vector containing the same as a saddle type.
  • a wild type firefly luciferase gene or a recombinant vector containing the same can be obtained by methods well known to those skilled in the art (for example, “Genetic Engineering Experiment Note” (Yodosha), Japanese Patent Laid-Open No. 1 51086, Japanese Patent No. 3048466). It can be prepared by the method described in the public notice. A commercially available product may also be used.
  • Site-directed mutagenesis can be performed by methods well known to those skilled in the art, such as a method of synthesizing with T4 DNA polymerase using a selection primer and a mutagenesis primer.
  • site-specific mutagenesis is performed using a selection primer and a mutagenesis primer as a recombinant vector containing a wild-type firefly luciferase gene, for example, recognition of a restriction enzyme present in the recombinant vector is performed.
  • the above-mentioned restriction enzyme recognition sequence is present as it is in the recombinant vector without mutation, so that it is cut with the corresponding restriction enzyme. By severing, it is possible to selectively remove recombinant vectors that have not been mutated.
  • Random mutagenesis is, for example, a method of performing polymerase chain reaction (PCR) by reducing fidelity by adding manganese and dGTP, and a drug (hydroxylamine, N-methyl-N'-tro N- Toroguanidine etc.), contact with ultraviolet light, etc. Can be carried out by methods well known to those skilled in the art.
  • PCR polymerase chain reaction
  • the target mutant firefly luciferase gene or a recombinant vector containing the gene can be selected by determining the nucleotide sequence of the gene into which the mutagenesis has been performed.
  • the base sequence of a gene into which mutation has been introduced can be determined by methods well known to those skilled in the art, such as the dideoxy method.
  • the base sequences of various wild-type firefly luciferase genes (cDNA) can be searched with a database (for example, EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl/)).
  • the recombinant vector of the present invention is a recombinant vector containing the mutant firefly luciferase gene of the present invention.
  • the above-described thread-replaceable vector is obtained by inserting the above mutant firefly luciferase gene into a single vector that can be replicated in a host cell, such as a plasmid or a nocteriophage. be able to.
  • the above mutant firefly luciferase gene is inserted into a vector by digesting a DNA fragment obtained by adding an appropriate restriction enzyme recognition sequence to the mutant firefly luciferase gene with the corresponding restriction enzyme, and then obtaining the resulting gene fragment. It can be carried out by inserting the vector into the corresponding restriction enzyme recognition sequence of the vector or a cloning site and ligating it to the vector.
  • the thread replacement vector can also be obtained by introducing a mutation into a recombinant vector containing a wild-type firefly luciferase gene, as described above.
  • Plasmids include Escherichia coli-derived plasmids (pET28a (+), pGL2, pBR322, pUC18, pTrcHis, pBlueBacHis, etc.), Bacillus subtilis-derived plasmids (pUB110, pTP5, etc.), and yeast-derived plasmids (YEpl3, YEp24 , YCp50, pYE52, etc.) and examples of the butteriophage include ⁇ phage.
  • mutant firefly luciferase gene In order to express the mutant firefly luciferase gene in the host cell, it is necessary to place an appropriate promoter that functions in the host cell upstream of the mutant firefly luciferase gene. If necessary, an enhancer, terminator, splicing signal, polyaddition signal, ribosome binding sequence (SD sequence), and the like can be arranged. [0052] When the mutant firefly luciferase gene is used as a reporter gene, reporter activity can be performed with sufficiently high sensitivity. Such a reporter assembly is made possible by the recombinant vector containing the mutant firefly luciferase gene.
  • the transformant of the present invention is a transformant having the recombinant vector of the present invention.
  • the transformant can be obtained by introducing the recombinant vector into a host cell according to a method well known to those skilled in the art.
  • the recombinant vector can be introduced into host cells by methods well known to those skilled in the art, such as the calcium chloride method, the electopore position method, the polyethylene glycol method, and the nozzle gun method.
  • Host cells include bacteria (Escherichia coli, Bacillus subtilis, etc.), yeast (Saccharomyces cerevisiae, etc.), animal cells (COS cells, CHO cells, etc.), insect cells (Sfl9, S121, etc.) are preferable, but Escherichia coli that grows quickly and is easy to handle is preferable.
  • examples of the promoter placed in the recombinant vector include trp promoter, lac promoter, T7 promoter, PL promoter, PR promoter motor and the like.
  • the method for producing the mutant firefly luciferase of the present invention comprises a culture step of culturing the transformant of the present invention to obtain a culture, a collecting step of collecting the mutant firefly luciferase of the present invention from the culture force, A method for producing a mutant firefly luciferase comprising: By this production method, the mutant firefly luciferase of the present invention can be obtained.
  • the culture step is a step of culturing the transformant of the present invention to obtain a culture.
  • the “culture” may be any of a culture supernatant, a cultured cell, and a cell lysate.
  • the transformant can be cultured by a method well known to those skilled in the art.
  • the medium used for culturing the transformant is a carbon source (such as glucose, sucrose, or ratatose) that can be assimilated by the microorganism, a nitrogen source ( Peptone, meat extract, yeast extract, etc.), inorganic salts (phosphate, carbonate, sulfate, etc.), etc., and any medium that can cultivate host cells efficiently. Either of them may be a liquid medium or a solid medium. Whether shaking culture, stirring culture, stationary culture, or the like is performed, and other culture conditions (culture temperature, pH of culture medium, culture time, etc.) can be appropriately determined according to the host cell, culture medium, etc.
  • the culture temperature is usually 30 to 42 ° C, preferably 37 ° C.
  • the pH of the medium is usually 6.4 to 8.0, preferably 7.0 to 7.4.
  • the culture time is usually 8 to 20 hours, preferably 12 to 16 hours in the preculture, and 2 to 8 hours, preferably 2 to 4 hours in the main culture before the induction of expression. It is. However, the optimum culture time is determined according to the culture temperature and the pH of the medium.
  • An expression inducer can be added to the medium as necessary.
  • examples of such an expression inducer include isopropyl-thiogalatatoside (IPTG) isokinetic when the above recombinant vector contains a lac promoter, and indoleacrylic acid (IAA) and the like when it contains a trp promoter. Can be mentioned.
  • the antibiotic resistance is added to the medium so that the antibiotic resistance is transformed as described above. It can be used as a body selection marker.
  • the collecting step is a step of collecting the mutant firefly luciferase of the present invention from the culture obtained in the culturing step.
  • the mutant firefly luciferase is obtained by recovering a transformant from a culture by a method well known to those skilled in the art, for example, by centrifugation, followed by freeze-thawing, ultrasonic disruption, or treatment with a lytic enzyme such as lysozyme. Can be collected.
  • the collected mutant firefly luciferase may be present in a solution state.
  • a purification step for purifying the mutant firefly luciferase (crude enzyme) obtained in the collection step is further performed after the collection step.
  • the crude enzyme can be purified, for example, by carrying out ammonium sulfate precipitation, SDS-PAGE, gel filtration chromatography, ion exchange chromatography, affinity chromatography, etc. alone or in combination as appropriate. it can.
  • Whether or not the mutant firefly luciferase of the present invention has been obtained is determined by reacting with firefly luciferin in the presence of ATP, divalent metal ions (for example, magnesium ions) and oxygen, and measuring the luminescence intensity. Can be confirmed. If the luminescence intensity is increased compared to the original wild-type firefly luciferase into which the mutation has been introduced, it can be determined that the mutant firefly luciferase of the present invention has been obtained.
  • the gene, recombinant vector, transformant, and mutant firefly luciferase production method of the present invention enable efficient production of the mutant firefly luciferase of the present invention.
  • a plasmid (pGL2_Basic Vector (Promega)) containing a North American firefly (Photinus pyralis) luciferase gene (cDNA) (base sequence is as shown in SEQ ID NO: 4) is used as a primer and a restriction enzyme as a primer.
  • cDNA North American firefly (Photinus pyralis) luciferase gene
  • Nucleotide sequence containing Ncol recognition sequence DNA consisting of 5'-gactccatggaagacgccaaaac-3 '(SEQ ID NO: 5) and nucleotide sequence containing restriction enzyme Xhol recognition sequence: 5'-gacactcgagcaatttggactttccgcc-3' (SEQ ID NO: 6)
  • PCR was performed using DNA consisting of As PCR reaction solution, TITANIUM Taq DNA polymerase, dNTP Mix and TITANIUM Taq buffer attached to Diversify PCR Random Mutagenesis Kit (manufactured by Clontech), each primer DNA was 0.2 M, and vertical DNA was 50 ng / 50.
  • a solution prepared by adding to / ⁇ L was used.
  • PET-28a (+) contains a T7 promoter and a T7 terminator. It also contains a gene encoding the histidine tag in the vicinity of the cloning site so that the histidine tag is added to the C-terminal side of the target protein to be expressed. PET-28a (+) has kanamycin resistance.
  • site-directed mutagenesis was performed using the obtained recombinant plasmid as a saddle and using a Transformer site-directed mutagenesis kit (Clontech).
  • a selection primer a DNA having a base sequence containing a sequence different from the restriction enzyme Fspl recognition sequence in pET_28a (+) by one base: 5′-cacgatcatgagcacccgtgg-3 ′ (SEQ ID NO: 7) was used.
  • a mutagenesis primer DNA having a base sequence: 5′-ggctacattctggagacttagcttactgggacg-3 (SEQ ID NO: 8) was used.
  • the obtained recombinant plasmid was further digested with Fspl, and a recombinant plasmid that had not been digested with Fspl was selected as a recombinant plasmid into which the mutation was introduced.
  • the nucleotide sequence of the mutant firefly luciferase gene (DNA) in the recombinant plasmid into which the mutation was introduced was determined using the DTCS Quick Start Master Mix kit and the electrophoresis analyzer CEQ8000 (both manufactured by Beckman Coulter). .
  • the base sequence was as shown in SEQ ID NO: 9.
  • the mutant firefly luciferase consisting of an amino acid sequence in which leucine (Leu) at position 423 was replaced with leucine (Leu) was encoded And it was confirmed that.
  • E. coli A recombinant plasmid containing the mutant firefly luciferase gene is introduced into E. coli (HMS174 (DE3) (Novagen)) in which the T7 RNA polymerase gene is integrated in the genomic DNA by the salt-calcium calcium method.
  • E. coli was plated on selective agar medium containing 30 ⁇ g / mL kanamycin to select transformed E. coli.
  • the transformed Escherichia coli was shake-cultured in 200 mL of 2 X YT medium (containing 30 gZmL kanamycin) at 37 ° C for 2.5 hours using a shaking incubator (manufactured by Takasaki Scientific Instruments). Thereafter, 200 ⁇ L of lOOmM IPTG was added so that the IPTG concentration in the medium was 0. ImM, and expression was induced at 25 ° C. for 6 hours.
  • IPTG is an expression inducer that releases the suppression of expression by lac repressor and induces T7 RNA polymerase.
  • E. coli cells were collected, frozen at -20 ° C, and stored. Thaw frozen cells in 5 mL of binding buffer (20 mM NaH PO (pH7.4) containing 500 mM NaCl and 20 mM imidazole)
  • the cell disruption solution was centrifuged at 9000 rpm for 30 minutes to obtain a mutant firefly luciferase (crude enzyme) solution as a supernatant.
  • the crude enzyme was purified using nickel chelate affinity chromatography. First, 0.5 mL of Ni Sepharose 6 Fast Flow (Amersham Bioscience) was packed in a column (Disposable Polystyrene Column manufactured by PIERCE) and equilibrated with a binding buffer. Next, add 5 mL of the crude enzyme solution to the column, wash with binding buffer, and elute the mutant firefly luciferase with 2.5 mL of elution buffer (20 mM NaH PO (pH 7.4) containing 500 mM NaCl and 500 mM imidazole). It was. PD-10
  • elution buffer is reaction buffer (50 mM Tris—HC1 buffer (pH7.4) containing 10 mM MgCl) 3.5
  • a purified mutant firefly luciferase was obtained in the same manner as in Example 1 except that DNA having the following base sequence was used as a mutagenesis primer in site-directed mutagenesis. It was measured. Then, using the luminescence intensity of North American firefly luciferase measured in Example 1, the ratio (luminescence intensity ratio) of the luminescence intensity of the variant firefly luciferase to the luminescence intensity of North America firefly luciferase was determined.
  • Example 2 the nucleotide sequence of the mutant firefly luciferase gene (DNA) in the recombinant plasmid was determined, and it was confirmed that the gene encoded the target mutant firefly luciferase.
  • Example 2 5'-ggctacattctggagacatggcttactgggacg-3 '( ⁇ Self-sequence 3 ⁇ 4> 10)
  • Example 3 5'-ggctacattctggagactttgcttactgggacg-3 (Self-sequence number 11)
  • Comparative Example 1 : 5 '-ggctacattctggagacgtagcttactgggacg-3' (Tatsumi column 3 ⁇ 4> 12)
  • Comparative Example 2 : 5 '-ggctacattctggagacgcagcttactgggacg-3, column number 1
  • Comparative Example 3 : 5 '-ggctacattctggagacggagcttactgggacg-3' (Tatsumi No. 14)
  • Comparative Example 4 : 5 '-ggctacattctggagactcagcttactgggacg-3' (Eye C Column 3 ⁇ 4 ⁇ No.
  • Comparative Example 5 : 5 '-ggctacattctggagaccaagcttactgggacg- Comparative Example 6:: 5 '-ggctacattctggagacagagcttactgggacg-3' (E C column number 1 ⁇ ) Comparative Example 7:: 5 '-ggctacattctggagacaaagcttactgggacg-3 (Eg 3 column 3 ⁇ 4 ⁇ No. 18) Comparative Example 8:: 5 '-ggctacattctggagacgaagcttactgggacg-3 (Meji Line 3 ⁇ 4 ⁇ No. 19)
  • Table 1 shows the results of Examples 1 to 3 and Comparative Examples 1 to 8.
  • the molecular weight, polarity and charge of each amino acid are as shown in Table 1.
  • ⁇ polarity '' and ⁇ nonpolar '' indicate that the amino acid has a polar group and a nonpolar group in the side chain, respectively
  • ⁇ positive charge '' and ⁇ negative charge '' indicate that the amino acid has a physiological pH. (It is the same in Tables 2 and 3 to be described later).
  • Example 1 Leu 1 31 Nonpolar 4.3
  • Example 2 Met 149 Nonpolar 3.5
  • Example 3 Phe 1 65
  • Nonpolar 1.2 Comparative Example 1 Val 1 1 7
  • Nonpolar 1 Comparative Example 2 Ala 89
  • Nonpolar 0.3 Mutant Comparative Example 3 Gly 75 Polarity ⁇ 0.01
  • aspartate (Asp) at position 436 is glycine (Gly) (Example 4), alanine (Ala) (Example 5), serine (Se r) ( Example 6), Asparagine (Asn) (Comparative Example 9), Glutamic acid (Glu) (Comparative Example 10) or Norin (Val) (Comparative Example 11)
  • the firefly luciferase activity was measured.
  • the nucleotide sequence of the mutant firefly luciferase gene (DNA) in the recombinant plasmid was determined, and it was confirmed that the gene encoded the target mutant firefly luciferase.
  • Example 4 5′-cacttcttcatagttggccgcttgaagtc-3 ′ (SEQ ID NO: 20)
  • Example 5 5 '-cacttcttcatagttgcccgcttgaagtc-3' (layout U number 21)
  • Example 6 5′-cacttcttcatagttagccgcttgaagtc-3 ′ (SEQ ID NO: 22)
  • Examples 4-6 and Comparative Example 9- The results of L 1 are shown in Table 2. The molecular weight, polarity, and charge of each amino acid are as shown in Table 2.
  • the mouth icin (Leu) at position 530 is arginine (Arg) (Example 7), lysine (Lys) (Example 8), histidine (His) (Example) 9), Parin (Val) (Comparative Example 12), Isoleucine (lie) (Comparative Example 13), Alanine (Ala) (Comparative Example 14), Proline (Pro) (Comparative Example 15), Furualanin (Phe) ( Comparative Example 16), aspartate (Asp) (Comparative Example 17), serine (Ser) (Comparative Example 18) or tyrosine (Tyr) (Comparative Example 19)
  • the firefly luciferase activity was measured.
  • a purified mutant firefly luciferase was obtained in the same manner as in Example 1 except that DNA having the following base sequence was used as a mutagenesis primer in site-directed mutagenesis. It was measured. Then, using the luminescence intensity of North American firefly luciferase measured in Example 1, the ratio (luminescence intensity ratio) of the luminescence intensity of the variant firefly luciferase to the luminescence intensity of North America firefly luciferase was determined.
  • the nucleotide sequence of the mutant firefly luciferase gene (DNA) in the recombinant plasmid was determined, and it was confirmed that the gene encoded the target mutant firefly luciferase.
  • Example 7 5 -ccggaaaacgcgacgcaag-3
  • Comparative Example 12 5 '-ggtcttaccggaaaagtcgacgcaag-3' ( ⁇ ⁇ ⁇ U number 29)
  • Table 3 shows the results of Examples 7 to 9 and Comparative Examples 12 to 19.
  • Table 3 shows the isoelectric point and polarity or charge of each amino acid.
  • a recombinant plasmid containing a gene encoding a mutant firefly luciferase in which (Asp) is replaced with glycine (Gly) is cleaved with restriction enzymes Ncol and Xhol (both from New England Biolabs) and subjected to agarose gel electrophoresis. After separation, only the DNA fragment containing the mutant firefly luciferase gene in which aspartic acid (Asp) at position 436 was replaced with glycine (Gly) was recovered.
  • the DNA fragment was incorporated into a plasmid (pET-28a (+) plasmid DNA (manufactured by Novagen)) previously cleaved with Ncol and Xhol using a DNA Ligation Kit (manufactured by BioDynamics Laboratory).
  • pET-28a (+) plasmid DNA manufactured by Novagen
  • a DNA Ligation Kit manufactured by BioDynamics Laboratory
  • a purified mutant firefly luciferase was obtained and its luminescence intensity was measured in the same manner as in Example 1 except that the recombinant plasmid thus obtained was converted into a cage type for site-directed mutagenesis.
  • the ratio (luminescence intensity ratio) of the luminescence intensity of the mutant firefly luciferase to the luminescence intensity of North America firefly luciferase was determined.
  • the nucleotide sequence of the mutant firefly luciferase gene in the recombinant plasmid into which the mutation was introduced was determined in the same manner as in Example 1.
  • the nucleotide sequence was as shown in SEQ ID NO: 37.
  • isoleucine (lie) at position 423 is replaced with leucine (Leu)
  • aspartic acid (Asp) at position 436 is replaced with glycine (Gly It was confirmed that it encodes a mutant firefly luciferase having an amino acid sequence substituted with ().
  • Mutant firefly luciferase which combines substitution of leucine (Leu) with isoleucine (lie) at position 423 and substitution of glycine (Gly) with aspartate (A sp) at position 436, emits luminescence intensity. 18-fold compared to North American firefly luciferase, and 1.5-fold increase compared to mutant firefly luciferase (Example 4), in which the substitution of aspartate at position 436 alone occurred did. From this result, in the amino acid sequence of North American firefly luciferase, the amino acid at position 423 is a nonpolar one having a molecular weight equal to or higher than the molecular weight of the amino acid.
  • the luminescence intensity is significantly increased as compared with North American firefly luciferase. It has been found.
  • DNA fragment was incorporated into a plasmid (pET-28a (+) plasmid DNA (Novagen)) previously cut with Ncol and Xhol using a DNA Ligation Kit (BioDynamics Laboratory).
  • a purified mutant firefly luciferase was obtained and its luminescence intensity was measured in the same manner as in Example 1 except that the recombinant plasmid thus obtained was converted into a cage in site-directed mutagenesis.
  • the ratio (luminescence intensity ratio) of the luminescence intensity of the mutant firefly luciferase to the luminescence intensity of North America firefly luciferase was determined.
  • the nucleotide sequence of the mutant firefly luciferase gene in the recombinant plasmid into which the mutation was introduced was determined in the same manner as in Example 1.
  • the base sequence was as shown in SEQ ID NO: 38.
  • isoleucine (lie) at position 423 was replaced with leucine (Leu)
  • leucine (Leu) at position 530 was replaced by arginine (Arg) It was confirmed that it encodes a mutant firefly luciferase consisting of an amino acid sequence substituted with
  • the amino acid at position 423 was replaced with a nonpolar amino acid having a molecular weight equal to or higher than the molecular weight of the amino acid, and the amino acid at position 530 was replaced with the isoelectric point of the amino acid. Substitution with a positively charged amino acid with a larger isoelectric point was found to significantly increase the luminescence intensity compared to North American firefly luciferase.
  • the ratio (luminescence intensity ratio) of the luminescence intensity of the mutant firefly luciferase to the luminescence intensity of North America firefly luciferase was determined.
  • the base sequence of the mutant firefly luciferase gene in the recombinant plasmid into which the mutation was introduced was determined in the same manner as in Example 1. The base sequence was as shown in SEQ ID NO: 39.
  • the mutant firefly luciferase gene in the recombinant plasmid 1S In the amino acid sequence of North American firefly luciferase, the aspartic acid (As p) at position 436 is replaced with glycine (Gly), and the leucine (Leu) at position 530 is replaced with arginine (Arg). It was confirmed to encode firefly luciferase.
  • Mutant firefly luciferase which combines substitution of aspartate (Asp) at position 436 with glycine (Gly) and substitution of leucine (Leu) at position 530 with arginine (Arg), has a luminescence intensity. Increased 8-fold compared to North American firefly luciferase. From this result, in the amino acid sequence of North American firefly luciferase, the amino acid at position 436 was substituted with an amino acid selected from glycine, alanine, and serine having a molecular weight smaller than that of the amino acid, and the amino acid at position 530 was replaced with the amino acid at position 530. It was found that substitution of a positively charged amino acid having an isoelectric point greater than that of the amino acid sufficiently increased the luminescence intensity compared to North American firefly luciferase.
  • the recombinant plasmid containing the gene encoding the mutant firefly luciferase was cleaved with restriction enzymes Ncol and Xhol (both New England Biolabs), separated by agarose gel electrophoresis, and aspartic acid at position 436 ( Only DNA fragments containing the mutant firefly luciferase gene in which Asp) was replaced with glycine (Gly) and leucine (Leu) at position 530 was replaced with arginine (Arg) were collected.
  • the DNA fragment was incorporated into a plasmid (pET-28a (+) plasmid DNA (Novagen)) previously cut with Ncol and Xhol using a DNA Ligation Kit (BioDynamics Laboratory). Except that the recombinant plasmid obtained in this way was used as a cage in site-directed mutagenesis.
  • purified mutant firefly luciferase was obtained, and its luminescence intensity was measured.
  • the ratio (luminescence intensity ratio) of the luminescence intensity of the mutant firefly luciferase to the luminescence intensity of North America firefly luciferase was determined.
  • nucleotide sequence of the mutant firefly luciferase gene in the recombinant plasmid into which the mutation was introduced was determined in the same manner as in Example 1.
  • the nucleotide sequence was as shown in SEQ ID NO: 40.
  • the amino acid at position 423 was replaced with a nonpolar amino acid having a molecular weight equal to or higher than the molecular weight of the amino acid, and the amino acid at position 436 had a molecular weight smaller than that of the amino acid.
  • the recombinant plasmid into which the mutation was introduced in Example 11 ie, isoleucine (lie) at position 423 was replaced with leucine (Leu), and leucine (Leu) at position 530 was replaced with arginine (Arg).
  • the recombinant plasmid containing the gene encoding the mutant firefly luciferase was cleaved with restriction enzymes Ncol and Xhol (both New England Biolabs), separated by agarose gel electrophoresis, and isoleucine (lie) at position 423 was obtained.
  • the obtained recombinant plasmid was cleaved with restriction enzymes Ncol and Xhol (both manufactured by New England Biolabs), separated by agarose gel electrophoresis, and isoleucine (He) at position 423 was converted to leucine ( Only DNA fragments containing the mutant firefly luciferase gene in which Leu was replaced with leucine (Leu) at position 530 by arginine (Arg) and isoportal isine (lie) at position 47 by threonine (Thr) were collected. .
  • Example 1 except that the recombinant plasmid thus obtained was in the form of a saddle and that a DNA comprising the base sequence: 5'-catatcgaggtgagcatcacgtacgcg-3 '(SEQ ID NO: 42) was used as a mutagenesis primer. Similarly, site-directed mutagenesis was performed.
  • DNA fragment was ligated to a plasmid (pET-28a (+)) previously cut with Ncol and Xhol. Incorporated using A Ligation Kit (BioDynamics Laboratory).
  • a plasmid pET-28a (+)
  • Ncol and Xhol Incorporated using A Ligation Kit (BioDynamics Laboratory).
  • a Ligation Kit BioDynamics Laboratory.
  • site-directed mutagenesis was performed.
  • Isophine lie (lie) at position 423 is leucine (Leu)
  • leucine (Leu) at position 530 is arginine (Arg)
  • position 47 is Contains a mutant firefly luciferase gene in which soleucine (He) is replaced by threonine (Thr), asparagine (Asn) at position 50 is replaced by serine (Ser), and methionine (Met) at position 59 is replaced by threonine (Thr) Only DNA fragments were recovered.
  • the DNA fragment was incorporated into a plasmid (pET-28a (+)) previously cut with Ncol and Xhol using a DNA Ligation Kit (manufactured by BioDynamics Laboratory).
  • a DNA Ligation Kit manufactured by BioDynamics Laboratory.
  • purified mutant firefly luciferase was obtained and its luminescence intensity was measured.
  • the ratio (luminescence intensity ratio) of the luminescence intensity of the mutant firefly luciferase to the luminescence intensity of North America firefly luciferase was determined.
  • the nucleotide sequence of the mutant firefly luciferase gene in the recombinant plasmid into which the mutation was introduced was determined in the same manner as in Example 1.
  • the base sequence was as shown in SEQ ID NO: 45.
  • isoleucine (lie) at position 423 is replaced by leucine (Leu)
  • leucine (Leu) at position 530 is replaced by arginine (Arg)
  • isoleucine (lie) at position 47 is threonine (Thr)
  • asparagine (Asn) at position 50 is serine (Ser)
  • methionine (Met) at position 59 is threonine (Thr)
  • threonine at position 252 is It was confirmed that (Thr) encodes a mutant firefly luciferase consisting of an amino acid sequence substituted with serine (Ser).
  • the luminescence intensity is 21 times that of North American firefly luciferase, the substitution of isoleucine (lie) at position 423 with leucine (Leu), and 5 Compared with the mutant firefly luciferase (Example 11) in which only the substitution of leucine (Leu) at position 30 with arginine (Arg) occurred, the increase was 1.2 times.
  • the amino acid at position 423 is a nonpolar amino acid having a molecular weight equal to or higher than the molecular weight of the amino acid, and the amino acid at position 530 is given an isoelectric point greater than the isoelectric point of the amino acid.
  • the 47-position isoleucine is substituted with threonine, the 50-position asparagine with serine, the 59-position methionine with threonine, and the 252nd-position threonine with serine, the North American firefly luciferase It was found that the emission intensity was significantly increased as compared with.
  • the RT-PCR kit SuperScriptlll One-Step RT-PCR System with Platinum Taq DNA Polymerase (manufactured by Invitrogen)
  • the Heike firefly luciferase cDNA base sequence is SEQ ID NO: 48.
  • the obtained cDNA was cleaved with Ndel and Xhol (both made by New England Biolabs), and this was preliminarily cleaved with Ndel and Xhol (pET-30a (+) plasmid DNA (made by Novage n)).
  • the DNA Ligation Kit manufactured by BioDynamics Laboratory
  • PET-30a (+) contains a T7 promoter and a T7 terminator. It also contains a gene encoding a histidine tag in the vicinity of the cloning site so that a histidine tag is added to the C-terminal side of the target protein to be expressed.
  • PET-30a (+) is resistant to kanamycin.
  • a Transformer site-directed mutagenesis Site-directed mutagenesis was performed using a development kit (Clontech).
  • a selection primer DNA consisting of a base sequence: 5′-gttaagccagtttacactccgc-3 ′ (SEQ ID NO: 49) containing a sequence that differs from the restriction enzyme Bstll07I recognition sequence in pET_30a (+) by one base was used.
  • DNA having a base sequence of 5′-ggttggttgcacacaggagatcttgggtattacg-3 ′ (SEQ ID NO: 50) was used. All primers were previously phosphated at 5 and with T4 polynucleotide kinase (manufactured by TOYOBO). Recombinant plasmids were synthesized using T4 DNA polymerase and T4 DNA ligase provided with the Transformer site-directed mutagenesis kit. After digestion with Bstl 1071, a recombinant plasmid that had not been digested with Bstl 1071 was introduced into E.
  • coli mismatch repair-deficient strain BMH71-18mutS and E. coli was cultured.
  • the obtained recombinant plasmid was further cleaved with Bstl 1071, and a recombinant plasmid that was not cleaved with Bstl 1071 was selected as a recombinant plasmid into which the mutation was introduced. Except that the recombinant plasmid thus obtained was introduced into Escherichia coli, transformed Escherichia coli was prepared in the same manner as in Example 1, and mutant firefly luciferase was collected and purified.
  • Example 1 the nucleotide sequence of the mutant firefly luciferase gene (DNA) in the recombinant plasmid was determined, and it was confirmed that the gene encoded the target mutant firefly luciferase. .
  • nucleotide sequence: 5'- C tttat C gtg ggtcgtttgaagtc- 3 ' except for the use of (SEQ ID NO: 51) force becomes DNA was the same as that of Example 15
  • purified mutant firefly luciferase was obtained, and its luminescence intensity was measured.
  • the ratio (luminescence intensity ratio) of the luminescence intensity of the mutant firefly luciferase to the luminescence intensity of Heike firefly luciferase was determined.
  • the nucleotide sequence of the mutant firefly luciferase gene (DNA) in the recombinant plasmid was determined, and it was confirmed that the gene encoded the target mutant firefly luciferase.
  • the nucleotide sequence of the mutant firefly luciferase gene (DNA) in the recombinant plasmid was determined, and it was confirmed that the gene encoded the target mutant firefly luciferase.
  • Example 18 In the same manner as in Example 15, in the amino acid sequence of Heike firefly luciferase, a mutant firefly luciferase having an amino acid sequence ability in which isoleucine (He) at position 425 was replaced with leucine (Leu) was produced, and its firefly luciferase activity (luminescence) Strength) was measured.
  • a purified enzyme was obtained in the same manner as in Example 1, and the luminescence intensity was measured.
  • the ratio of the luminescence intensity of the mutant firefly luciferase to the luminescence intensity of North American firefly luciferase was determined.
  • the base sequence of the mutant firefly luciferase gene (DNA) in the recombinant plasmid was determined, and it was confirmed that the gene encoded the target mutant firefly luciferase. did.
  • the nucleotide sequence of the mutant firefly luciferase gene (DNA) in the recombinant plasmid was determined, and it was confirmed that the gene encoded the target mutant firefly luciferase.
  • the nucleotide sequence of the mutant firefly luciferase gene (DNA) in the recombinant plasmid was determined, and it was confirmed that the gene encoded the target mutant firefly luciferase.
  • Table 4 shows the results of Examples 15 to 19 and Comparative Example 20.
  • Heike firefly Lucifera The homology between the amino acid sequence of RNase and the amino acid sequence of North American firefly luciferase is 68%.
  • mutant firefly luciferase having a modified amino acid sequence having the following substitution (a), (b) or (c) in the amino acid sequence of Heike firefly luciferase is sufficiently compared with Heike firefly luciferase. It was found to have a large emission intensity.
  • nucleotide sequence containing the Xhol recognition sequence 5
  • cDNA base sequence is as shown in SEQ ID NO: 54
  • the obtained cDNA was cleaved with Ncol and Xhol (both made by New England Biolabs), and this was preliminarily cleaved with Ncol and Xhol (pET-28a (+) plasmid DNA (made by Novage n)).
  • PET-28a (+) contains a T7 promoter and a T7 terminator. It also contains a gene encoding a histidine tag in the vicinity of the cloning site so that a histidine tag is added to the C-terminal side of the target protein to be expressed. PET-28a (+) has kanamycin resistance.
  • a Transformer site-directed mutagenesis Site-directed mutagenesis was performed using a development kit (Clontech).
  • a selection primer a DNA comprising a nucleotide sequence: 5′-gttaagccagtttacactccgc-3 ′ (SEQ ID NO: 49) containing a sequence different from the restriction enzyme Bstll07I recognition sequence in pET_28a (+) by one base was used.
  • a mutagenesis primer DNA consisting of the base sequence: 5′-gcacaccggagatcttggatattatg-3 ′ (SEQ ID NO: 5 5) was used.
  • the obtained recombinant plasmid was further cleaved with Bstl 1071, and a recombinant plasmid that was not cleaved with Bstl 1071 was selected as a recombinant plasmid into which the mutation was introduced. Except that the recombinant plasmid thus obtained was introduced into E. coli, transformed E. coli was prepared in the same manner as in Example 1, and the mutant firefly luciferase was collected and purified. In the same manner as in Example 1, the base sequence of the mutant firefly luciferase gene (DNA) in the recombinant plasmid was determined, and it was confirmed that the gene encoded the target mutant firefly luciferase. did.
  • Geni firefly luciferase contains the gene firefly luciferase gene (cDNA) obtained as described above, instead of the recombinant plasmid containing the mutant firefly luciferase gene. Except that the recombinant plasmid (pET_28a (+)) was used, a transformed E. coli was prepared in the same manner as the mutant firefly luciferase. Were collected and purified, and the luminescence intensity of the enzyme was measured. Then, the ratio of the luminescence intensity of the mutant firefly luciferase to the luminescence intensity of Genji firefly luciferase (luminescence intensity ratio) was determined.
  • nucleotide sequence: 5'- C tttattgt C ggtcgtttgaagtc-3 '( SEQ ID NO: 56) except for the use of force becomes DNA, in the same manner as in Example 20
  • Purified mutant firefly luciferase was obtained, and its luminescence intensity was measured. Then, the ratio of the luminescence intensity of the mutant firefly luciferase to the luminescence intensity of the genji firefly luciferase (the luminescence intensity ratio) was determined using the luminescence intensity of the genji firefly luciferase measured in Example 20.
  • the nucleotide sequence of the mutant firefly luciferase gene (DNA) in the recombinant plasmid was determined, and it was confirmed that the gene encoded the target mutant firefly luciferase.
  • the nucleotide sequence of the mutant firefly luciferase gene (DNA) in the recombinant plasmid was determined, and it was confirmed that the gene encoded the target mutant firefly luciferase.
  • Example 23 In the same manner as in Example 20, a mutant firefly luciferase having an amino acid sequence ability in which leucine (Leu) was substituted for isoleucine (lie) at position 425 in the amino acid sequence of genji firefly luciferase was produced, and the firefly luciferase activity ( (Luminescence intensity) was measured.
  • Luminescence intensity For North American firefly luciferase (wild type), a purified enzyme was obtained in the same manner as in Example 1, and the luminescence intensity was measured. The ratio of the luminescence intensity of the mutant firefly luciferase to the luminescence intensity of North American firefly luciferase (luminescence intensity ratio) was determined.
  • Example 21 a mutant firefly luciferase consisting of an amino acid sequence in which aspartic acid (Asp) at position 438 was substituted with glycine (Gly) in the amino acid sequence of Genji firefly luciferase was prepared, and its firefly luciferase activity ( (Luminescence intensity) was measured. Then, using the luminescence intensity of North American firefly luciferase measured in Example 23, the ratio (luminescence intensity ratio) of the luminescence intensity of the mutant firefly luciferase to the luminescence intensity of North America firefly luciferase was determined. As in Example 1, the base sequence of the mutant firefly luciferase gene (DNA) in the recombinant plasmid was determined, and it was confirmed that the gene encoded the target mutant firefly luciferase. .
  • DNA base sequence of the mutant firefly luciferase gene
  • the nucleotide sequence of the mutant firefly luciferase gene (DNA) in the recombinant plasmid was determined, and it was confirmed that the gene encoded the target mutant firefly luciferase.
  • Table 5 shows the results of Examples 20 to 23 and Comparative Examples 21 to 22.
  • Genji firefly The homology between the amino acid sequence of ferase and the amino acid sequence of North American firefly luciferase is 68%.
  • mutant firefly luciferase having a modified amino acid sequence ability in which the amino acid sequence of Genji firefly luciferase has the following (a), (b) or (c) substitution is sufficiently compared with Geni firefly luciferase. It was found to have a large emission intensity.
  • the mutant firefly luciferase of the present invention can be used for detection of trace amounts of bacteria in food and drink.

Abstract

 本発明は、野生型ホタルルシフェラーゼのアミノ酸配列において、少なくとも下記(a)、(b)又は(c)の置換が生じた変異アミノ酸配列からなり、当該野生型ホタルルシフェラーゼの発光強度よりも大きい発光強度を有する変異型ホタルルシフェラーゼを提供する。本発明によれば、野生型ホタルルシフェラーゼと比較して、発光強度が増大した変異型ホタルルシフェラーゼが提供される。  (a)北米ホタルルシフェラーゼのアミノ酸配列の419~428位と同等の位置のアミノ酸のうちの少なくとも一つのアミノ酸の、当該アミノ酸の分子量以上の分子量を有する非極性アミノ酸への置換  (b)北米ホタルルシフェラーゼのアミノ酸配列の435~441位と同等の位置のアミノ酸のうちの少なくとも一つのアミノ酸の、当該アミノ酸の分子量より小さい分子量を有し、グリシン、アラニン及びセリンより選ばれるアミノ酸への置換  (c)北米ホタルルシフェラーゼのアミノ酸配列の523~532位と同等の位置のアミノ酸のうちの少なくとも一つのアミノ酸の、当該アミノ酸の等電点より大きい等電点を有する正電荷アミノ酸への置換

Description

変異型ホタルルシフェラーゼ、遺伝子、組換えベクター、形質転換体、及 び変異型ホタルルシフェラーゼの製造方法
技術分野
[0001] 本発明は、変異型ホタルルシフェラーゼ、遺伝子、組換えベクター、形質転換体、 及び変異型ホタルルシフェラーゼの製造方法に関する。
背景技術
[0002] ホタルルシフェラーゼは、アデノシン三リン酸 (ATP)、マグネシウムイオン及び酸素 の存在下でホタルルシフェリンの酸ィ匕を触媒し、これを発光させる酵素である。その ため、ホタルルシフェラーゼは、飲食料中の細菌等の検出を目的とする ATPの検出 に広く利用されている。
[0003] ATPの検出におけるホタルルシフェラーゼの利用性を高めるために、これまで様々 な変異型ホタルルシフェラーゼが作製されてきた。そのような変異型ホタルルシフェラ ーゼとしては、熱安定性が向上したもの (例えば、下記特許文献 1〜4参照)、基質親 和性が向上したもの (例えば、下記特許文献 5〜7参照)、発光波長が変化したもの( 例えば、下記特許文献 8及び 9参照)、発光の持続性が向上したもの(例えば、下記 特許文献 10参照)、界面活性剤耐性を有するもの (例えば、下記特許文献 11参照) 等が知られている。
特許文献 1:特許第 3048466号公報
特許文献 2:特開 2000 - 197487号公報
特許文献 3:特表平 9 510610号公報
特許文献 4:特表 2003 - 518912号公報
特許文献 5:国際公開 99Z02697号パンフレット
特許文献 6 :特表平 10— 512750号公報
特許文献 7:特表 2001— 518799号公報
特許文献 8 :特許第 2666561号公報
特許文献 9 :特表 2003— 512071号公報 特許文献 10 :特開 2000— 197484号公報
特許文献 11:特開平 11― 239493号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、従来、野生型ホタルルシフェラーゼと比較して、発光強度が増大した 変異型ホタルルシフェラーゼは知られて 、なかった。このような変異型ホタルルシフエ ラーゼが提供されれば、より微量の ATPの検出が可能になり、飲食料中の細菌等の 検出にも有用である。
[0005] そこで、本発明は、野生型ホタルルシフェラーゼと比較して、発光強度が増大した 変異型ホタルルシフェラーゼを提供することを目的とする。
課題を解決するための手段
[0006] 本発明者らは、上記目的を達成するべく鋭意研究したところ、野生型ホタルルシフ エラーゼのアミノ酸配列の特定の位置のアミノ酸を特定の異なるアミノ酸に置換するこ とにより、発光強度が増大することを見出し、本発明を完成させるに至った。
[0007] すなわち、本発明は、
野生型ホタルルシフヱラーゼのアミノ酸配列において、少なくとも下記(a)、(b)又は (c)の置換が生じた変異アミノ酸配列力 なり、
前記野生型ホタルルシフ ラーゼの発光強度よりも大きい発光強度を有する変異 型ホタルルシフェラーゼを提供する。
(a)北米ホタルルシフェラーゼのアミノ酸配列の 419〜428位と同等の位置のァミノ 酸のうちの少なくとも一つのアミノ酸の、当該アミノ酸の分子量以上の分子量を有する 非極性アミノ酸への置換
(b)北米ホタルルシフェラーゼのアミノ酸配列の 435〜441位と同等の位置のァミノ 酸のうちの少なくとも一つのアミノ酸の、当該アミノ酸の分子量より小さい分子量を有 し、グリシン、ァラニン及びセリンより選ばれるアミノ酸への置換
(c)北米ホタルルシフェラーゼのアミノ酸配列の 523〜532位と同等の位置のァミノ 酸のうちの少なくとも一つのアミノ酸の、当該アミノ酸の等電点より大きい等電点を有 する正電荷アミノ酸への置換 [0008] 本明細書において、「北米ホタルルシフ ラーゼ」とは、特に断らない限り、野生型 の北米ホタル(Photinus pyralis)ルシフェラーゼを意味する。また、例えば、「ヘイケホ タルルシフェラーゼ」及び「ゲンジホタルルシフェラーゼ」とは、特に断らない限り、そ れぞれ、野生型のへィケホタル(Luciola lateralis)ルシフェラーゼ、及び野生型のゲ ンジホタル (Luciola cruciata)ルシフェラーゼを意味する。
[0009] また、ホタルルシフェラーゼの「発光強度」とは、特に断らない限り、当該ホタルルシ フェラーゼを、 ATP、 2価金属イオン及び酸素の存在下でホタルルシフェリンと反応さ せた場合におけるピーク時の発光強度を意味する。なお、「発光強度」が大きいほど 、当該ホタルルシフェラーゼのホタルルシフェラーゼ活性が強 、と判断することができ る。
[0010] また、野生型ホタルルシフェラーゼのアミノ酸配列における、「北米ホタルルシフェラ ーゼのアミノ酸配列の 419〜428位と同等の位置」、「北米ホタルルシフェラーゼのァ ミノ酸配列の 435〜441位と同等の位置」、及び「北米ホタルルシフェラーゼのァミノ 酸配列の 523〜532位と同等の位置」とは、野生型ホタルルシフェラーゼが北米ホタ ルルシフェラーゼである場合は、それぞれ、当該野生型ホタルルシフェラーゼのアミ ノ酸酉己歹 Uにおける 419〜428位、 435〜441位、及び 523〜532位であり、野生型ホ タルルシフェラーゼが北米ホタルルシフェラーゼでない場合は、それぞれ、当該野生 型ホタルルシフェラーゼ及び北米ホタルルシフェラーゼのアミノ酸配列をそれらの重 なりの程度が最大となるようにアラインメント(並置)したときに、当該野生型ホタルルシ フェラーゼのアミノ酸配列において、北米ホタルルシフェラーゼのアミノ酸配列の 419 〜428位、 435〜441位、及び 523〜532位に対応する位置である。なお、北米ホタ ルルシフェラーゼのアミノ酸配列は、配列番号 1に示すとおりである。
[0011] また、「非極性アミノ酸」とは、側鎖に非極性基を有するアミノ酸を意味する。「正電 荷アミノ酸」とは、生理的 pH (pH7. 4)において正に荷電しているアミノ酸を意味する
[0012] 上記変異型ホタルルシフェラーゼを用いてルシフェリンールシフェラーゼ反応を行 うと、野生型ホタルルシフェラーゼを用いた場合と比較して、発光強度を増大させるこ とができる。これは、上述したアミノ酸の置換により、ルシフェリン—ルシフェラーゼ反 応の反応速度が大きくなるためである。
[0013] 上記変異型ホタルルシフェラーゼにおいて、変異アミノ酸配列としては、野生型ホタ ルルシフェラーゼのアミノ酸配列において、少なくとも上記(a)及び (b)の置換、上記 (a)及び (c)の置換、又は上記 (a)、(b)及び (c)の置換が生じたものが好ましい。こ のような変異アミノ酸配列からなる変異型ホタルルシフェラーゼを用いてルシフェリン ールシフェラーゼ反応を行うと、各置換が単独で生じた場合と比較して、発光強度を 更に増大させることができる。これは、上記 (a)及び (b)の置換、上記 (a)及び (c)の 置換、又は上記 (a)、(b)及び (c)の置換が組み合わされることにより、各置換が単独 で生じた場合と比較して、ルシフェリンールシフェラーゼ反応の反応速度が更に大き くなるためである。なお、変異アミノ酸配列としては、野生型ホタルルシフェラーゼの アミノ酸配列にぉ 、て、少なくとも前記 (b)及び (c)の置換が生じたものでもよ 、。
[0014] また、上記変異型ホタルルシフェラーゼにお 、て、変異アミノ酸配列としては、北米 ホタルルシフェラーゼのアミノ酸配列に対して 60%以上の相同性を有するものが好 ましい。北米ホタルルシフェラーゼのアミノ酸配列との相同性が 60%未満であると、 6 0%以上の場合と比較して、発光強度が小さくなる傾向がある。
[0015] 上記変異型ホタルルシフェラーゼは、当該変異型ホタルルシフェラーゼをコードす る遺伝子を含有する組換えベクターを保有する形質転換体を培養し、得られる培養 物から当該変異型ホタルルシフェラーゼを採取することにより得ることができる。
[0016] すなわち、本発明はまた、上記変異型ホタルルシフェラーゼをコードする遺伝子、 当該遺伝子を含有する組換えベクター、及び当該組換えベクターを保有する形質転 換体を提供する。また、本発明は更に、上記形質転換体を培養して、培養物を得る 培養ステップと、当該培養物カゝら上記変異型ホタルルシフェラーゼを採取する採取ス テツプと、を備える変異型ホタルルシフェラーゼの製造方法を提供する。
[0017] 上記遺伝子、上記組換えベクター、上記形質転換体、及び上記変異型ホタルルシ フェラーゼの製造方法により、上記変異型ホタルルシフェラーゼを効率的に生産する ことができる。
[0018] また、上記遺伝子をレポーター遺伝子として用いると、野生型ホタルルシフェラーゼ 遺伝子を用いた場合と比較して、レポーターアツセィをより高感度に行うことができる 。そのようなレポーターアツセィは、上記組換えベクターにより可能となる。
発明の効果
[0019] 本発明によれば、野生型ホタルルシフェラーゼと比較して、発光強度が増大した変 異型ホタルルシフェラーゼが提供される。
図面の簡単な説明
[0020] [図 1]ホタルルシフ ラーゼの立体構造を模式的に示す図である。
符号の説明
[0021] 10· ··ホタルルシフェラーゼ、 1· ··Ν末端側ドメイン、 la…接合部、 lb…活性部位、 2 …連結部、 3· "C末端側ドメイン、 3a…先端部。
発明を実施するための最良の形態
[0022] 以下、本発明の好適な実施形態を説明する。
[0023] (変異型ホタルルシフェラーゼ)
本発明の変異型ホタルルシフェラーゼは、
野生型ホタルルシフヱラーゼのアミノ酸配列において、少なくとも下記(a)、(b)又は (c)の置換が生じた変異アミノ酸配列力 なり、
前記野生型ホタルルシフ ラーゼの発光強度よりも大きい発光強度を有する変異 型ホタルルシフェラーゼである。
(a)北米ホタルルシフェラーゼのアミノ酸配列の 419〜428位と同等の位置のァミノ 酸のうちの少なくとも一つのアミノ酸(アミノ酸 A)の、当該アミノ酸 Aの分子量以上の 分子量を有する非極性アミノ酸への置換
(b)北米ホタルルシフェラーゼのアミノ酸配列の 435〜441位と同等の位置のァミノ 酸のうちの少なくとも一つのアミノ酸(アミノ酸 B)の、当該アミノ酸 Bの分子量より小さ い分子量を有し、グリシン、ァラニン及びセリンより選ばれるアミノ酸への置換
(c)北米ホタルルシフェラーゼのアミノ酸配列の 523〜532位と同等の位置のァミノ 酸のうちの少なくとも一つのアミノ酸 (アミノ酸 C)の、当該アミノ酸 Cの等電点より大き V、等電点を有する正電荷アミノ酸への置換
[0024] 野生型ホタルルシフェラーゼとしては、北米ホタル(Photinus pyralis)ルシフェラー ゼ、ヘイケホタノレ (Luciola lateralis)ノレシフェラーゼ、ゲンジホタノレ (Luciola cruciata) ノレシフェラーゼ、東ョ一口ッノ ホタノレ (Luciola mingrelica)ノレシフェラーゼ、ツチホタノレ (Lampyris noctiluca)ルシフェラーゼ等が挙げられる。なお、各種の野生型ホタルル シフェラーゼのアミノ酸配列は、データベース(例えば、 EMBL-EBI Database (http:// www.ebi.ac.uk/queries/) )で検索すること;^でさる。
[0025] 野生型ホタルルシフェラーゼが北米ホタルルシフェラーゼでない場合は、当該野生 型ホタルルシフェラーゼのアミノ酸配列における、「北米ホタルルシフェラーゼのァミノ 酸配列の 419〜428位と同等の位置」、「北米ホタルルシフエラーゼのアミノ酸配列 の 435〜441位と同等の位置」、及び「北米ホタルルシフェラーゼのアミノ酸配列の 5 23〜532位と同等の位置」は、アミノ酸配列の相同性解析ソフト(例えば、 Micro Geni e™ (ベックマン社製) )等を用いて、当該野生型ホタルルシフェラーゼ及び北米ホタ ルルシフェラーゼのアミノ酸配列の相同性を解析することにより決定することができる 。なお、北米ホタルルシフェラーゼのアミノ酸配列は、配列番号 1に示すとおりである
[0026] 野生型ホタルルシフェラーゼのアミノ酸配列における、「北米ホタルルシフェラーゼ のアミノ酸配列の 419〜428位と同等の位置」、「北米ホタルルシフェラーゼのァミノ 酸配列の 435〜441位と同等の位置」、及び「北米ホタルルシフェラーゼのアミノ酸 配列の 523〜532位と同等の位置」は、例えば、野生型ホタルルシフェラーゼがヘイ ケホタルルシフェラーゼ又はゲンジホタルルシフェラーゼの場合、それぞれ、当該野 生型ホタルルシフェラーゼのアミノ酸配列における 421〜430位、 437〜443位、及 び 525〜534位である。なお、ヘイケホタルルシフェラーゼ及びゲンジホタルルシフ エラーゼのアミノ酸配列は、それぞれ、配列番号 2及び 3に示すとおりである。
[0027] 非極性アミノ酸としては、ァラニン、プロリン、ノ リン、ロイシン、イソロイシン、メチォ- ン、フエ-ルァラニン及びトリプトファンが挙げられ、疎水性の高さの点で、ロイシン、 イソロイシン、メチォニン、フエ-ルァラニン及びトリプトファンが好ましぐロイシン及び メチォニンがより好ましい。正電荷アミノ酸としては、アルギニン、リシン及びヒスチジン が挙げられ、正電荷の強さの点で、アルギニン及びリシンが好ましぐアルギニンがよ り好ましい。 [0028] 図 1は、ホタルルシフェラーゼの立体構造を模式的に示す図である。図 1に示すよう に、ホタルルシフェラーゼ 10は、 N末端側ドメイン 1、 C末端側ドメイン 3、及びそれら を連結する可動性の連結部 2からなる。また、 N末端側ドメイン 1には、 C末端側ドメイ ン 3に対向して、酵素の活性部位 lbが存在する。
[0029] N末端側ドメイン 1と連結部 2とが接合する接合部 laは、北米ホタルルシフェラーゼ のアミノ酸配列の 419〜428位と同等の位置のアミノ酸配列部分に相当し、連結部 2 は、北米ホタルルシフェラーゼのアミノ酸配列の 435〜441位と同等の位置のァミノ 酸配列部分に相当し、 C末端側ドメイン 3の先端部 3aは、北米ホタルルシフエラーゼ のアミノ酸配列の 523〜532位と同等の位置のアミノ酸配列部分に相当する。このよ うなホタルルシフェラーゼのアミノ酸配列と立体構造との関係は、立体構造解析ソフト (例えば、 Bio Package (Molsoft社製))を用いて確認することができる。
[0030] 上記変異型ホタルルシフェラーゼを用いてルシフェリンールシフェラーゼ反応を行 うと、野生型ホタルルシフェラーゼを用いた場合と比較して、発光強度を増大させるこ とができる。これは、上述したアミノ酸の置換により、ルシフェリン—ルシフェラーゼ反 応の反応速度が大きくなるためである。
[0031] ホタルルシフェラーゼとホタルルシフェリンとが反応するには、 N末端側ドメイン 1が C末端側ドメイン 3に接近する必要があると考えられる。上記 (a)の置換が生じた変異 型ホタルルシフェラーゼにお ヽては、 N末端側ドメイン 1中の接合部 laを構成するァ ミノ酸の 、ずれかが、当該被置換アミノ酸の分子量以上の分子量を有する非極性ァ ミノ酸に置換されていることにより、野生型ホタルルシフェラーゼと比較して、接合部 1 aの疎水性がより強くなり、 N末端側ドメイン 1が C末端側ドメイン 3に接近しやすくなつ ていると推測される。また、上記 (b)の置換が生じた変異型ホタルルシフェラーゼにお いては、可動性の連結部 2を構成するアミノ酸のいずれかが、当該被置換アミノ酸の 分子量より小さい分子量を有し、グリシン、ァラニン及びセリンより選ばれるアミノ酸に 置換されていることにより、野生型ホタルルシフェラーゼと比較して、連結部 2の可動 性がより大きくなり、 N末端側ドメイン 1が C末端側ドメイン 3に接近しやすくなつている と推測される。
[0032] また、ホタルルシフェラーゼとホタルルシフェリンとが反応するには、ホタルルシフエ リン及び ATPがホタルルシフェラーゼの活性部位 lbに取り込まれる必要がある。上 記 (c)の置換が生じた変異型ホタルルシフェラーゼにお 、ては、 C末端側ドメイン 3の 先端部 3aを構成するアミノ酸のいずれかが、当該被置換アミノ酸の等電点より大きい 等電点を有する正電荷アミノ酸に置換されていることにより、先端部 3aがより正に帯 電し、負電荷のホタルルシフェリン及び ATPが酵素の活性部位 lbに取り込まれやす くなつていると推測される。
[0033] 上記変異型ホタルルシフェラーゼの変異アミノ酸配列としては、野生型ホタルルシ フェラーゼのアミノ酸配列において、少なくとも上記 (a)及び (b)の置換、上記 (a)及 び (c)の置換、又は上記 (a)、(b)及び (c)の置換が生じたものが好ましい。このような 変異アミノ酸配列からなる変異型ホタルルシフェラーゼを用いてルシフェリン ルシフ エラーゼ反応を行うと、各置換が単独で生じた場合と比較して、発光強度を更に増大 させることができる。これは、上記 (a)及び (b)の置換、上記 (a)及び (c)の置換、又は 上記 (a)、(b)及び (c)の置換が組み合わされることにより、各置換が単独で生じた場 合と比較して、ルシフェリンールシフェラーゼ反応の反応速度が更に大きくなるため である。なお、変異アミノ酸配列としては、野生型ホタルルシフェラーゼのアミノ酸配 列にお!、て、少なくとも前記 (b)及び (c)の置換が生じたものでもよ 、。
[0034] また、上記変異型ホタルルシフヱラーゼの変異アミノ酸配列としては、発光強度の 点で、北米ホタルルシフェラーゼのアミノ酸配列との相同性が 60%以上のものが好ま しい。上記相同性は、より好ましくは 65%以上、更に好ましくは 70%以上、更に好ま しくは 80%以上、更に好ましくは 90%以上である。
[0035] 上記変異型ホタルルシフェラーゼの変異アミノ酸配列は、野生型ホタルルシフェラ ーゼのアミノ酸配列において、上記 (a)、 (b)及び (c)の置換以外の変異 (アミノ酸の 置換、欠失、挿入又は付加)が更に生じたものであってもよい。例えば、熱安定性を 高める変異 (例えば、上記特許文献 1〜4参照)、基質親和性を高める変異 (例えば、 上記特許文献 5〜7参照)、発光波長を変化させる変異 (例えば、上記特許文献 8及 び 9参照)、発光の持続性を高める変異 (例えば、上記特許文献 10参照)、又は界面 活性剤耐性を与える変異 (例えば、上記特許文献 11参照)が更に導入されて ヽても よい。 [0036] 本発明の変異型ホタルルシフェラーゼは、野生型ホタルルシフェラーゼのアミノ酸 配列において、少なくとも上記 (a)、(b)又は (c)の置換が生じた変異アミノ酸配列か らなる変異型ホタルルシフェラーゼのうち、当該野生型ホタルルシフェラーゼの発光 強度よりも大き 、発光強度を有するものである。上記変異アミノ酸配列力もなる変異 型ホタルルシフェラーゼが本発明の変異型ホタルルシフェラーゼであるかどうかは、 当該変異型ホタルルシフェラーゼを、 ATP、二価金属イオン(例えば、マグネシウム イオン)及び酸素の存在下でホタルルシフェリンと反応させ、発光強度を測定すること により確認することができる。上記野生型ホタルルシフェラーゼと比較して、発光強度 が増大して 、れば、本発明の変異型ホタルルシフェラーゼであると判断することがで きる。なお、ホタルルシフェリンとしては、北米ホタル(Photinus pyralis)、ヘイケホタル (Luciola lateralis)、ゲンン タノレ (Luciola cruciata)、束ョ ~~ロッノ ホタノレ (Luciola mm grelica)、ツチホタル(Lampyris noctiluca)等に由来するものが挙げられる。
[0037] 下記(1)〜(7)の変異型ホタルルシフェラーゼは、各々、本発明の変異型ホタルル シフェラーゼの好適な一態様である。
(1)野生型ホタルルシフェラーゼのアミノ酸配列において、北米ホタルルシフェラー ゼのアミノ酸配列の 419〜428位と同等の位置のうちの少なくとも一つの位置で、アミ ノ酸が、当該アミノ酸の分子量以上の分子量を有する非極性アミノ酸に置換されたァ ミノ酸配列力 なる変異型ホタルルシフヱラーゼ
(2)野生型ホタルルシフェラーゼのアミノ酸配列において、北米ホタルルシフェラー ゼのアミノ酸配列の 435〜441位と同等の位置のうちの少なくとも一つの位置で、アミ ノ酸が、当該アミノ酸の分子量より小さい分子量を有し、グリシン、ァラニン及びセリン より選ばれるアミノ酸に置換されたアミノ酸配列力 なる変異型ホタルルシフェラーゼ
(3)野生型ホタルルシフェラーゼのアミノ酸配列において、北米ホタルルシフェラー ゼのアミノ酸配列の 523〜532位と同等の位置のうちの少なくとも一つの位置で、アミ ノ酸が、当該アミノ酸の等電点より大きい等電点を有する正電荷アミノ酸に置換され たアミノ酸配列力 なる変異型ホタルルシフェラーゼ
(4)野生型ホタルルシフェラーゼのアミノ酸配列において、北米ホタルルシフェラー ゼのアミノ酸配列の 419〜428位と同等の位置のうちの少なくとも一つの位置で、第 一のアミノ酸が、当該第一のアミノ酸の分子量以上の分子量を有する非極性アミノ酸 に置換され、北米ホタルルシフェラーゼのアミノ酸配列の 435〜441位と同等の位置 のうちの少なくとも一つの位置で、第二のアミノ酸力 当該第二のアミノ酸の分子量よ り小さい分子量を有し、グリシン、ァラニン及びセリンより選ばれるアミノ酸に置換され たアミノ酸配列力 なる変異型ホタルルシフェラーゼ
(5)野生型ホタルルシフェラーゼのアミノ酸配列において、北米ホタルルシフェラー ゼのアミノ酸配列の 419〜428位と同等の位置のうちの少なくとも一つの位置で、第 一のアミノ酸が、当該第一のアミノ酸の分子量以上の分子量を有する非極性アミノ酸 に置換され、北米ホタルルシフェラーゼのアミノ酸配列の 523〜532位と同等の位置 のうちの少なくとも一つの位置で、第二のアミノ酸力 当該第二のアミノ酸の等電点よ り大きい等電点を有する正電荷アミノ酸に置換されたアミノ酸配列力 なる変異型ホ タノレノレシフェラーゼ
(6)野生型ホタルルシフェラーゼのアミノ酸配列において、北米ホタルルシフェラー ゼのアミノ酸配列の 435〜441位と同等の位置のうちの少なくとも一つの位置で、第 一のアミノ酸が、当該第一のアミノ酸の分子量より小さい分子量を有し、グリシン、ァラ ニン及びセリンより選ばれるアミノ酸に置換され、北米ホタルルシフェラーゼのアミノ酸 配列の 523〜532位と同等の位置のうちの少なくとも一つの位置で、第二のアミノ酸 が、当該第二のアミノ酸の等電点より大きい等電点を有する正電荷アミノ酸に置換さ れたアミノ酸配列力 なる変異型ホタルルシフヱラーゼ
(7)野生型ホタルルシフェラーゼのアミノ酸配列において、北米ホタルルシフェラー ゼのアミノ酸配列の 419〜428位と同等の位置のうちの少なくとも一つの位置で、第 一のアミノ酸が、当該第一のアミノ酸の分子量以上の分子量を有する非極性アミノ酸 に置換され、北米ホタルルシフェラーゼのアミノ酸配列の 435〜441位と同等の位置 のうちの少なくとも一つの位置で、第二のアミノ酸力 当該第二のアミノ酸の分子量よ り小さい分子量を有し、グリシン、ァラニン及びセリンより選ばれるアミノ酸に置換され 、北米ホタルルシフェラーゼのアミノ酸配列の 523〜532位と同等の位置のうちの少 なくとも一つの位置で、第三のアミノ酸が、当該第三のアミノ酸の等電点より大きい等 電点を有する正電荷アミノ酸に置換されたアミノ酸配列からなる変異型ホタルルシフ エラーゼ
[0038] 上記(1)の変異型ホタルルシフェラーゼは、野生型ホタルルシフェラーゼのアミノ酸 配列にぉ 、て上記 (a)の置換が生じた変異アミノ酸配列からなる変異型ホタルルシフ エラーゼである。上記(2)の変異型ホタルルシフェラーゼは、野生型ホタルルシフェラ ーゼのアミノ酸配列にぉ 、て上記 (b)の置換が生じた変異アミノ酸配列からなる変異 型ホタルルシフェラーゼである。上記(3)の変異型ホタルルシフェラーゼは、野生型 ホタルルシフェラーゼのアミノ酸配列にぉ 、て上記 (c)の置換が生じた変異アミノ酸 配列からなる変異型ホタルルシフ ラーゼである。上記 (4)の変異型ホタルルシフエ ラーゼは、野生型ホタルルシフェラーゼのアミノ酸配列にお 、て上記(a)及び (b)の 置換が生じた変異アミノ酸配列力もなる変異型ホタルルシフヱラーゼである。上記(5 )の変異型ホタルルシフェラーゼは、野生型ホタルルシフェラーゼのアミノ酸配列にお V、て上記 (a)及び (c)の置換が生じた変異アミノ酸配列からなる変異型ホタルルシフ エラーゼである。上記(6)の変異型ホタルルシフェラーゼは、野生型ホタルルシフェラ ーゼのアミノ酸配列にぉ 、て上記 (b)及び (c)の置換が生じた変異アミノ酸配列から なる変異型ホタルルシフェラーゼである。上記(7)の変異型ホタルルシフェラーゼは、 野生型ホタルルシフェラーゼのアミノ酸配列にお 、て上記(a)、 (b)及び (c)の置換 が生じた変異アミノ酸配列力もなる変異型ホタルルシフェラーゼである。
[0039] 上記(1)〜(7)の変異型ホタルルシフェラーゼは、 、ずれも、元の野生型ホタルル シフェラーゼと比較して、十分に大きい発光強度を有する。特に、上記 (4)、 (5)及び (7)の変異型ホタルルシフェラーゼは、元の野生型ホタルルシフェラーゼと比較して 、顕著に大きい発光強度を有する。上記(1)〜(7)の変異型ホタルルシフェラーゼの いずれにおいても、元の野生型ホタルルシフェラーゼとしては、発光強度の点で北米 ホタルルシフェラーゼが好まし 、。
[0040] 本発明の変異型ホタルルシフヱラーゼの更に好適な一態様としては、例えば、北米 ホタルルシフェラーゼのアミノ酸配列において、 419〜428位のうちの少なくとも一つ の位置で、第一のアミノ酸が、当該第一のアミノ酸の分子量以上の分子量を有する 非極性アミノ酸に置換され、 523〜532位のうちの少なくとも一つの位置で、第二の アミノ酸力 当該第二のアミノ酸の等電点より大き 、等電点を有する正電荷アミノ酸に 置換され、 47位のイソロイシンがスレオニンに置換され、 50位のァスパラギンがセリン に置換され、 59位のメチォニンがスレオニンに置換され、 252位のスレオニンがセリ ンに置換されたアミノ酸配列からなる変異型ホタルルシフェラーゼを挙げることができ る。この変異型ホタルルシフェラーゼは、上記(1)〜(7)の変異型ホタルルシフェラー ゼと比較して、更に大きい発光強度を有する。
[0041] (遺伝子)
本発明の遺伝子は、本発明の変異型ホタルルシフェラーゼをコードする変異型ホタ ルルシフェラーゼ遺伝子である。ここで、「遺伝子」は、 DNA又は RNAからなる。
[0042] 上記変異型ホタルルシフェラーゼ遺伝子は、野生型ホタルルシフェラーゼ遺伝子を 改変すること〖こより得ることができる。遺伝子改変は、部位特異的変異導入、ランダム 変異導入、有機合成等、当業者に周知の方法により行うことができる。
[0043] 部位特異的変異導入又はランダム変異導入は、野生型ホタルルシフェラーゼ遺伝 子又はこれを含有する組換えベクターを铸型として行う。野生型ホタルルシフェラー ゼ遺伝子又はこれを含有する組換えベクターは、当業者に周知の方法 (例えば、「遺 伝子工学実験ノート」(羊土社)、特開平 1 51086号公報、特許第 3048466号公 報等に記載の方法)により調製することができる。また、市販のものを用いてもよい。
[0044] 部位特異的変異導入は、選択プライマー及び変異誘発プライマーを用いて T4 D NAポリメラーゼにより合成する方法等、当業者に周知の方法により行うことができる。 野生型ホタルルシフェラーゼ遺伝子を含有する組換えベクターを铸型とし、選択ブラ イマ一及び変異誘発プライマーを用いて部位特異的変異導入を行う場合は、例えば 、上記組換えベクター内に存在する制限酵素認識配列と一塩基異なる配列を含有 する DNA断片を選択プライマーとして用いると、変異が導入されなカゝつた組換えべク ターには上記制限酵素認識配列がそのまま存在するので、対応する制限酵素で切 断処理することにより、変異が導入されな力つた組換えベクターを選択除去すること ができる。
[0045] ランダム変異導入は、例えば、マンガン及び dGTPの添カ卩により fidelityを低下させ て、ポリメラーゼ連鎖反応 (PCR)を行う方法、薬剤(ヒドロキシルァミン、 N—メチル— N' -トロ N -トロソグァ二ジン等)を接触させる方法、紫外線を照射する方法等 、当業者に周知の方法により行うことができる。ランダム変異導入を行った場合は、変 異導入を行った遺伝子の塩基配列を決定することにより、 目的の変異型ホタルルシ フェラーゼ遺伝子又はこれを含有する組換えベクターを選択することができる。
[0046] 変異導入を行った遺伝子の塩基配列の決定は、ジデォキシ法等、当業者に周知 の方法により行うことができる。なお、各種の野生型ホタルルシフェラーゼ遺伝子 (cD NA)の塩基配列は、データベース(例えば、 EMBL Nucleotide Sequence Database ( http://www.ebi.ac.uk/embl/) )で検索することができる。
[0047] (組換えベクター)
本発明の組換えベクターは、本発明の変異型ホタルルシフェラーゼ遺伝子を含有 する組換えベクターである。
[0048] 上記糸且換えベクターは、当業者に周知の方法に従って、上記変異型ホタルルシフ エラーゼ遺伝子をプラスミド、ノ クテリオファージ等、宿主細胞中で複製可能なベクタ 一〖こ挿入すること〖こより得ることができる。ベクターへの上記変異型ホタルルシフェラ ーゼ遺伝子の挿入は、当該変異型ホタルルシフェラーゼ遺伝子に適当な制限酵素 認識配列を付加した DNA断片を、対応する制限酵素で消化し、得られた遺伝子断 片をベクターの対応する制限酵素認識配列、又はマルチクロー-ングサイトに挿入し てベクターに連結することにより行うことができる。
[0049] 上記糸且換えベクターはまた、前述したように、野生型ホタルルシフェラーゼ遺伝子を 含有する組換えベクターに変異を導入することによつても得ることができる。
[0050] プラスミドとしては、大腸菌由来のプラスミド(pET28a(+)、 pGL2、 pBR322、 pUC18、 p TrcHis、 pBlueBacHis等)、枯草菌由来のプラスミド(pUB110、 pTP5等)、酵母由来の プラスミド(YEpl3、 YEp24、 YCp50、 pYE52等)等が挙げられ、バタテリオファージとし ては、 λファージ等が挙げられる。
[0051] 宿主細胞内で上記変異型ホタルルシフ ラーゼ遺伝子を発現させるには、当該変 異型ホタルルシフェラーゼ遺伝子の上流に、宿主細胞内で機能する適当なプロモー ターを配置する必要がある。また、必要に応じて、ェンハンサー、ターミネータ一、ス プライシングシグナル、ポリ Α付加シグナル、リボソーム結合配列(SD配列)等を配置 することができる。 [0052] 上記変異型ホタルルシフェラーゼ遺伝子をレポーター遺伝子として用いると、レポ 一ターアツセィを十分に高感度に行うことができる。そのようなレポーターアツセィは、 上記変異型ホタルルシフェラーゼ遺伝子を含有する上記組換えベクターにより可能 となる。
[0053] (形質転換体)
本発明の形質転換体は、本発明の組換えベクターを保有する形質転換体である。
[0054] 上記形質転換体は、当業者に周知の方法に従って、上記組換えベクターを、宿主 細胞中に導入することにより得ることができる。上記組換えベクターの宿主細胞への 導入は、塩化カルシウム法、エレクト口ポレーシヨン法、ポリエチレングリコール法、ノ 一ティクルガン法等、当業者に周知の方法により行うことができる。
[0055] 宿主細胞としては、細菌(大腸菌(Escherichia coli)、枯草菌(Bacillus subtilis)等)、 酵母(サッカロマイセス ·セレビシェ(Saccharomyces cerevisiae)等)、動物細胞 (COS 細胞、 CHO細胞等)、昆虫細胞 (Sfl9、 S121等)等が挙げられるが、生育が速ぐまた 、取り扱いが容易である大腸菌が好ましい。
[0056] 大腸菌を宿主細胞とする場合、上記組換えベクター中に配置するプロモーターとし ては、 trpプロモーター、 lacプロモーター、 T7プロモーター、 PLプロモーター、 PRプ 口モーター等が挙げられる。
[0057] (変異型ホタルルシフェラーゼの製造方法)
本発明の変異型ホタルルシフェラーゼの製造方法は、本発明の形質転換体を培養 して、培養物を得る培養ステップと、当該培養物力ゝら本発明の変異型ホタルルシフヱ ラーゼを採取する採取ステップと、を備える変異型ホタルルシフェラーゼの製造方法 である。この製造方法により、本発明の変異型ホタルルシフェラーゼを得ることができ る。
[0058] 培養ステップは、本発明の形質転換体を培養して、培養物を得るステップである。こ こで、「培養物」は、培養上清、培養細胞及び細胞破砕物のいずれであってもよい。 上記形質転換体は、当業者に周知の方法により培養することができる。上記形質転 換体の培養に用いる培地は、例えば、宿主細胞が大腸菌、酵母等の微生物である 場合は、微生物が資化しうる炭素源 (グルコース、スクロース、ラタトース等)、窒素源( ペプトン、肉エキス、酵母エキス等)、無機塩類 (リン酸塩、炭酸塩、硫酸塩等)等を含 有し、宿主細胞を効率的に培養しうる培地であれば、天然培地及び合成培地のいず れであっても、また、液体培地及び固体培地のいずれであってもよい。振盪培養、撹 拌培養、静置培養等のいずれを行うか、及びその他の培養条件 (培養温度、培地の pH、培養時間等)は、用いる宿主細胞、培地等に応じて適宜決定することができる。 例えば、宿主細胞が大腸菌である場合、培養温度は通常、 30〜42°C、好ましくは 3 7°Cである。培地の pHは通常、 6. 4〜8. 0、好ましくは 7. 0〜7. 4である。培養温度 力 S37°Cである場合、培養時間は通常、前培養では 8〜20時間、好ましくは 12〜16 時間であり、発現誘導前の本培養では 2〜8時間、好ましくは 2〜4時間である。但し 、最適な培養時間は、培養温度及び培地の pHに応じて決定される。
[0059] 培地には、必要に応じて、発現誘導物質を添加することができる。そのような発現誘 導物質としては、例えば、上記組換えベクターが lacプロモーターを含有する場合は イソプロピル —チォガラタトシド (IPTG)等力 また、 trpプロモーターを含有する場 合はインドールアクリル酸 (IAA)等が挙げられる。
[0060] 抗生物質 (カナマイシン、アンピシリン等)に耐性を有するベクターを用いて上記組 換えベクターを作製した場合は、当該抗生物質を培地に添加しておくことにより、抗 生物質耐性を上記形質転換体の選択マーカーとして利用することができる。
[0061] 採取ステップは、培養ステップで得られた培養物から本発明の変異型ホタルルシフ エラーゼを採取するステップである。上記変異型ホタルルシフェラーゼは、当業者に 周知の方法、例えば、遠心分離により培養物から形質転換体を回収し、これに対して 凍結融解処理、超音波破砕処理、又はリゾチーム等の溶菌酵素による処理を行うこ とにより、採取することができる。なお、採取された上記変異型ホタルルシフェラーゼ は、溶液の状態で存在してもよい。
[0062] 上記製造方法では、採取ステップの後に、更に、採取ステップで得られた上記変異 型ホタルルシフェラーゼ (粗酵素)を精製する精製ステップを実施するのが好まし 、。 粗酵素は、例えば、硫安沈澱、 SDS— PAGE、ゲルろ過クロマトグラフィー、イオン交 換クロマトグラフィー、ァフィユティークロマトグラフィー等を各々単独で、又は適宜組 み合わせて実施することにより、精製することができる。 [0063] 本発明の変異型ホタルルシフェラーゼが得られたかどうかは、 ATP、二価金属ィォ ン(例えば、マグネシウムイオン)及び酸素の存在下でホタルルシフェリンと反応させ 、発光強度を測定することにより確認することができる。変異を導入した元の野生型ホ タルルシフェラーゼと比較して、発光強度が増大していれば、本発明の変異型ホタル ルシフェラーゼが得られたと判断することができる。
[0064] 本発明の遺伝子、組換えベクター、形質転換体、及び変異型ホタルルシフェラーゼ の製造方法は、本発明の変異型ホタルルシフェラーゼの効率的な生産を可能にする 実施例
[0065] 以下、実施例及び比較例に基づ!/、て、本発明をより具体的に説明する。但し、本発 明は、以下の実施例に限定されるものではない。
[0066] (実施例 1)
以下のようにして、北米ホタルルシフェラーゼのアミノ酸配列において、 423位のィ ソロイシン(He)がロイシン(Leu)に置換されたアミノ酸配列力 なる変異型ホタルルシ フェラーゼを製造し、そのホタルルシフェラーゼ活性 (発光強度)を測定した。
[0067] 変異型ホタルルシフェラーゼ遺伝子を含有する組換えプラスミドの作製:
まず、北米ホタル(Photinus pyralis)ルシフェラーゼ遺伝子(cDNA) (塩基配列は 配列番号 4に示すとおりである。)を含有するプラスミド (pGL2_Basic Vector (プロメガ 社製))を铸型とし、プライマーとして、制限酵素 Ncol認識配列を含有する塩基配列: 5 ' -gactccatggaagacgccaaaaac-3 ' (配列番号 5)からなる DNA、及び制限酵素 Xhol認 識配列を含有する塩基配列: 5 '-gacactcgagcaatttggactttccgcc-3 ' (配列番号 6)から なる DNAを用いて、 PCRを行った。 PCR反応液としては、 Diversify PCR Random M utagenesis Kit (Clontech社製)添付の TITANIUM Taq DNAポリメラーゼ、 dNTP Mi x及び TITANIUM Taqバッファーに、各プライマー DNAを 0. 2 M、铸型 DNAを 50 ng/50 /ζ Lとなるように加えて調製した溶液を用いた。 GeneAmp PCR System 2700 ( Applied Biosystems社製)を用いて、「94°Cで 30秒、 55°Cで 30秒、 72°Cで 120秒」 のサイクルを 25回繰り返して反応を行 ヽ、北米ホタルルシフェラーゼ遺伝子を含有 する DNA断片を得た。塩基配列は、 DTCS Quick Start Master Mixキット及び泳動 解析装置 CEQ8000 (いずれも Beckman Coulter社製)を用いて決定した。上記の二種 の制限酵素認識配列が付加されて 、る上記 DNA断片を Ncol及び Xhol (V、ずれも Ne w England Biolabs社製)で切断し、これを、予め Ncol及び Xholで切断したプラスミド(p ET-28a (+) plasmid DNA (Novagen社製))に、 DNA Ligation Kit (BioDynamics Labora tory社製)を用いて組み込んだ。なお、 pET- 28a(+)は、 T7プロモーター及び T7ター ミネーターを含有する。また、発現する目的タンパク質の C末端側にヒスチジンタグが 付加されるように、クローユング部位の近傍に、ヒスチジンタグをコードする遺伝子を 含有する。また、 pET-28a(+)はカナマイシン耐性を有する。
[0068] 次に、得られた組換えプラスミドを铸型として、 Transformer部位特異的突然変異誘 発キット (Clontech社製)を用いて部位特異的変異導入を行った。選択プライマーとし ては、 pET_28a(+)中の制限酵素 Fspl認識配列と一塩基異なる配列を含有する塩基 配列: 5'-cacgatcatgagcacccgtgg-3' (配列番号 7)力 なる DNAを用いた。変異誘発 プライマーとしては、塩基配列: 5'-ggctacattctggagacttagcttactgggacg-3,(配列番号 8 )力もなる DNAを用いた。いずれのプライマーも、予め T4ポリヌクレオチドキナーゼ( TOYOBO社製)で 5,末端をリン酸ィ匕した。 Transformer部位特異的突然変異誘発キ ット添付の T4 DNAポリメラーゼ及び T4 DNAリガーゼを用いて、組換えプラスミドを 合成した。 Fsplで切断処理した後、 Fsplで切断されなカゝつた組換えプラスミドを大腸 菌のミスマッチ修復欠損株 BMH7ト 18mutSに導入し、大腸菌を培養した。得られた組 換えプラスミドを更に Fsplで切断処理し、 Fsplで切断されな力つた組換えプラスミドを 、変異が導入された組換えプラスミドとして選択した。
[0069] 変異が導入された組換えプラスミド中の変異型ホタルルシフェラーゼ遺伝子(DNA )の塩基配列は、 DTCS Quick Start Master Mixキット及び泳動解析装置 CEQ8000 ( いずれも Beckman Coulter社製)を用いて決定した。塩基配列は、配列番号 9に示す とおりであった。これにより、組換えプラスミド中の変異型ホタルルシフェラーゼ遺伝子 1S 北米ホタルルシフェラーゼのアミノ酸配列において、 423位のイソロイシン(lie)が ロイシン (Leu)に置換されたアミノ酸配列からなる変異型ホタルルシフェラーゼをコ一 ドして 、ることが確認された。
[0070] 形質転換大腸菌の作製: 変異型ホタルルシフェラーゼ遺伝子を含有する組換えプラスミドを、塩ィ匕カルシウム 法により、ゲノム DNA中に T7 RNAポリメラーゼ遺伝子が組み込まれている大腸菌( HMS174(DE3) (Novagen社製) )に導入し、この大腸菌を、 30 μ g/mLカナマイシン を含有する選択寒天培地上で平板培養し、形質転換大腸菌を選択した。
[0071] 変異型ホタルルシフェラーゼの採取及び精製:
形質転換大腸菌を、振盪培養機 (高崎科学器械社製)を用いて、 37°Cの下、 200 mLの 2 X YT培地(30 gZmLカナマイシンを含有する。 )中で 2. 5時間振盪培養 した後、培地中の IPTG濃度が 0. ImMになるように lOOmM IPTGを 200 μ Lカロえ 、 25°Cで 6時間発現誘導を行った。なお、 IPTGは、 lacリブレッサーによる発現抑制 を解除し、 T7 RNAポリメラーゼを誘導する発現誘導物質である。
[0072] 培養液を 8000rpmで 5分間遠心分離することにより大腸菌の菌体を回収し、—20 °Cで凍結し、保存した。凍結菌体を結合バッファー(500mM NaCl及び 20mMイミ ダゾールを含有する 20mM NaH PO (pH7. 4) ) 5mLで融解、懸濁後、超音波で
2 4
破砕した。菌体破砕液を 9000rpmで 30分間遠心分離し、上清として変異型ホタル ルシフェラーゼ (粗酵素)の溶液を得た。
[0073] 発現した変異型ホタルルシフェラーゼの C末端側にヒスチジンタグが付加されて ヽ ることから、ニッケルキレートァフィユティークロマトグラフィーを用いて、粗酵素の精製 を行った。まず、 Ni Sepharose 6 Fast Flow (アマシャムバイオサイエンス社製) 0. 5m Lをカラム(PIERCE社製 Disposable Polystyrene Column)に充填し、結合バッファー で平衡ィ匕した。次に、粗酵素の溶液 5mLをカラムに加え、結合バッファーで洗浄後、 溶出バッファー(500mM NaCl及び 500mMイミダゾールを含有する 20mM NaH PO (pH7. 4) ) 2. 5mLで変異型ホタルルシフェラーゼを溶出させた。更に、 PD- 10
2 4
Desalting column (アマシャムバイオサイエンス社製)を用いて、溶出バッファーを反 応バッファー(10mM MgClを含有する 50mM Tris— HC1緩衝液(pH7. 4) ) 3. 5
2
mLに置換した。こうして、精製した変異型ホタルルシフェラーゼを得た。
[0074] 変異型ホタルルシフ ラーゼの発光強度の測定:
得られた変異型ホタルルシフェラーゼのタンパク質定量は、 Bradford法に基づく Bio -Rad Protein Assay(BIORAD社製)を用いて、 IgGを標準として行った。変異型ホタ ルルシフェラーゼ (20 μ g/mL)を含有する反応バッファー 50 μ Lを 96穴ゥエルプレ ート(Nunc社製ルミヌンクプレート)にカロえた後、マイクロプレートリーダー(Perkin-El mer社製 ARVO MX)付属のインジェクターを用いて、基質バッファー(2 X 10_6M D ーホタルルシフェリン(和光純薬工業社製)、 2 X 10_7M ATP及び 10mM MgClを
2 含有する 50mM Tris— HC1緩衝液 (pH7. 4) ) 50 Lを加えた。そして、上記マイク 口プレートリーダーで発光強度を測定した。北米ホタルルシフェラーゼ (野生型)につ V、ても、変異型ホタルルシフェラーゼ遺伝子を含有する組換えプラスミドの代わりに、 北米ホタルルシフェラーゼ遺伝子 (cDNA)を含有する組換えプラスミド (pET_28a(+) )を用いたこと以外は、変異型ホタルルシフェラーゼと同様にして、形質転換大腸菌 を作製し、酵素の採取及び精製を行い、酵素の発光強度を測定した。そして、北米 ホタルルシフ ラーゼの発光強度に対する変異型ホタルルシフ ラーゼの発光強度 の比 (発光強度比)を求めた。
[0075] (実施例 2、 3及び比較例 1〜8)
以下のようにして、北米ホタルルシフェラーゼのアミノ酸配列において、 423位のィ ソロイシン (He)力 Sメチォニン (Met) (実施例 2)、フ -ルァラニン (Phe) (実施例 3)、 パリン (Val) (比較例 1)、ァラニン (Ala) (比較例 2)、グリシン (Gly) (比較例 3)、セリン (Ser) (比較例 4)、グルタミン (Gin) (比較例 5)、アルギニン (Arg) (比較例 6)、リシン( Lys) (比較例 7)又はグルタミン酸 (Glu) (比較例 8)に置換されたアミノ酸配列力 なる 変異型ホタルルシフェラーゼを製造し、そのホタルルシフェラーゼ活性 (発光強度)を 測定した。
[0076] 部位特異的変異導入における変異誘発プライマーとして、下記塩基配列からなる DNAを用いたこと以外は、実施例 1と同様にして、精製した変異型ホタルルシフェラ ーゼを得、その発光強度を測定した。そして、実施例 1で測定された北米ホタルルシ フェラーゼの発光強度を用いて、北米ホタルルシフェラーゼの発光強度に対する変 異型ホタルルシフェラーゼの発光強度の比 (発光強度比)を求めた。なお、実施例 1 と同様にして、組換えプラスミド中の変異型ホタルルシフェラーゼ遺伝子(DNA)の 塩基配列を決定し、当該遺伝子が目的の変異型ホタルルシフェラーゼをコードして 、ることを確認した。 実施例 2: :5' -ggctacattctggagacatggcttactgggacg-3 ' (酉己列 ¾> 10) 実施例 3: :5' -ggctacattctggagactttgcttactgggacg-3 (酉己列番号 11)
比較例 1: :5' -ggctacattctggagacgtagcttactgggacg-3' (酉己列 ¾> 12) 比較例 2: :5' -ggctacattctggagacgcagcttactgggacg-3、目列番 1
比較例 3: :5' -ggctacattctggagacggagcttactgggacg-3' (酉己歹 号 14) 比較例 4: :5' -ggctacattctggagactcagcttactgggacg-3' (目 C列 ¾·号 15) 比較例 5: :5' -ggctacattctggagaccaagcttactgggacg-3 (目己列 ¾·号 lo) 比較例 6: :5' -ggctacattctggagacagagcttactgggacg-3' (目 C列番 1 ί) 比較例 7: :5' -ggctacattctggagacaaagcttactgggacg-3 (目 3列 ¾·号 18) 比較例 8: :5' -ggctacattctggagacgaagcttactgggacg-3 (目己列 ¾·号 19)
[0077] 実施例 1〜3及び比較例 1〜8の結果を表 1に示す。なお、上記各アミノ酸の分子量 、及び極性若しくは電荷は表 1に示すとおりである。表 1において、「極性」及び「非極 性」は、アミノ酸が側鎖にそれぞれ極性基及び非極性基を有することを示し、「正電 荷」及び「負電荷」は、アミノ酸が生理的 pH(pH7.4)でそれぞれ正及び負に荷電し て 、ることを示す (後述の表 2及び 3にお 、ても同様である)。
[0078] [表 1]
423位アミノ酸 分子量 極性ノ電荷 発光強度比 野生型 北米ホタル lie 1 31 非極性
実施例 1 Leu 1 31 非極性 4.3 実施例 2 Met 149 非極性 3.5 実施例 3 Phe 1 65 非極性 1 .2 比較例 1 Val 1 1 7 非極性 1 比較例 2 Ala 89 非極性 0.3 変異型 比較例 3 Gly 75 極性 < 0.01
比較例 4 Ser 105 極性 0.03 比較例 5 Gin 1 46 極性 0.5 比較例 6 Arg 1 74 正電荷 ぐ 0.01 比較例フ し ys 146 正電荷 ぐ 0.01 比較例 8 Glu 147 負電荷 0.04
[0079] 表 1から明かなように、 423位のイソロイシン(lie)をロイシン(Leu)、メチォニン(Met) 及びフエ-ルァラニン(Phe)に置換することにより、北米ホタルルシフェラーゼと比較 して、発光強度がそれぞれ 4. 3倍、 3. 5倍及び 1. 2倍に増大した。この結果より、北 米ホタルルシフェラーゼのアミノ酸配列において、 423位のアミノ酸を、当該アミノ酸 の分子量以上の分子量を有する非極性アミノ酸に置換すると、北米ホタルルシフェラ ーゼと比較して、発光強度が十分に増大することが判明した。
[0080] (実施例 4〜6及び比較例 9〜: L 1)
以下のようにして、北米ホタルルシフェラーゼのアミノ酸配列において、 436位のァ スパラギン酸 (Asp)がグリシン (Gly) (実施例 4)、ァラニン (Ala) (実施例 5)、セリン (Se r) (実施例 6)、ァスパラギン (Asn) (比較例 9)、グルタミン酸 (Glu) (比較例 10)又は ノ リン (Val) (比較例 11)に置換されたアミノ酸配列力 なる変異型ホタルルシフェラ ーゼを製造し、そのホタルルシフェラーゼ活性 (発光強度)を測定した。
[0081] 部位特異的変異導入における変異誘発プライマーとして、下記塩基配列からなる DNAを用いたこと以外は、実施例 1と同様にして、精製した変異型ホタルルシフェラ ーゼを得、その発光強度を測定した。そして、実施例 1で測定された北米ホタルルシ フェラーゼの発光強度を用いて、北米ホタルルシフェラーゼの発光強度に対する変 異型ホタルルシフェラーゼの発光強度の比 (発光強度比)を求めた。なお、実施例 1 と同様にして、組換えプラスミド中の変異型ホタルルシフェラーゼ遺伝子(DNA)の 塩基配列を決定し、当該遺伝子が目的の変異型ホタルルシフェラーゼをコードして 、ることを確認した。
実施例 4: 5 '-cacttcttcatagttggccgcttgaagtc-3 ' (配列番号 20)
実施例 5: 5 '-cacttcttcatagttgcccgcttgaagtc-3 ' (配歹 U番号 21)
実施例 6: 5 '-cacttcttcatagttagccgcttgaagtc-3 ' (配列番号 22)
it較 f列 9: 5 '-cacttcttcatagttaaccgcttgaagtc-3 ' (酉己歹 U番号 23)
比較例 10: 5 '-cacttcttcatagttgaacgcttgaagtc-3 ' (配列番号 24)
it較 f列 11: 5 '-cacttcttcatagttgtccgcttgaagtc-3 ' (酉己歹 U番号 25)
[0082] 実施例 4〜6及び比較例 9〜: L 1の結果を表 2に示す。なお、上記各アミノ酸の分子 量、及び極性若しくは電荷は表 2に示すとおりである。
[0083] [表 2]
Figure imgf000024_0001
[0084] 表 2から明らかなように、 436位のァスパラギン酸 (Asp)をグリシン(Gly)、ァラニン( Ala)及びセリン (Ser)に置換することにより、北米ホタルルシフェラーゼと比較して、発 光強度がそれぞれ 12. 1倍、 6. 3倍及び 2. 3倍に増大した。この結果より、北米ホタ ルルシフェラーゼのアミノ酸配列において、 436位のアミノ酸を、当該アミノ酸の分子 量より小さい分子量を有し、グリシン、ァラニン及びセリンより選ばれるアミノ酸に置換 すると、北米ホタルルシフ ラーゼと比較して、発光強度が十分に増大することが判 明した。
[0085] (実施例 7〜9及び比較例 12〜19)
以下のようにして、北米ホタルルシフェラーゼのアミノ酸配列において、 530位の口 イシン (Leu)がアルギニン (Arg) (実施例 7)、リシン (Lys) (実施例 8)、ヒスチジン (His ) (実施例 9)、パリン (Val) (比較例 12)、イソロイシン (lie) (比較例 13)、ァラニン (Ala ) (比較例 14)、プロリン (Pro) (比較例 15)、フ 二ルァラニン (Phe) (比較例 16)、ァ スパラギン酸 (Asp) (比較例 17)、セリン (Ser) (比較例 18)又はチロシン (Tyr) (比較 例 19)に置換されたアミノ酸配列力もなる変異型ホタルルシフェラーゼを製造し、そ のホタルルシフェラーゼ活性 (発光強度)を測定した。
[0086] 部位特異的変異導入における変異誘発プライマーとして、下記塩基配列からなる DNAを用いたこと以外は、実施例 1と同様にして、精製した変異型ホタルルシフェラ ーゼを得、その発光強度を測定した。そして、実施例 1で測定された北米ホタルルシ フェラーゼの発光強度を用いて、北米ホタルルシフェラーゼの発光強度に対する変 異型ホタルルシフェラーゼの発光強度の比 (発光強度比)を求めた。なお、実施例 1 と同様にして、組換えプラスミド中の変異型ホタルルシフェラーゼ遺伝子(DNA)の 塩基配列を決定し、当該遺伝子が目的の変異型ホタルルシフェラーゼをコードして 、ることを確認した。
夹施例 7 : 5 -ccggaaaacgcgacgcaag-3 (目 C列 号 26ノ
夹施例 8 : 0 -ggtcttaccggaaaaaaggacgcaag-3 ' (酉己歹 U番号 27)
実施例 9 : 5 -ccggaaaacacgacgcaag-3 (酉己列番号 28)
比較例 12: 5 '-ggtcttaccggaaaagtcgacgcaag-3 ' (酉己歹 U番号 29)
比較例 13: 5 '-ggtcttaccggaaaaatcgacgcaag-3 ' (酉己歹 U番号 30)
比軟例 14 : 5 -ggtcttaccggaaaagccgacgcaag-3 ' (酉己列番号 31)
比軟例 15 : 5 -ggtcttaccggaaaacccgacgcaag-3 ' (酉己列番号 32)
比較例 16: 5 '-ggtcttaccggaaaattcgacgcaag-3 ' (酉己歹 U番号 33)
it較 (列 17: 5 '-ggtcttaccggaaaagacgacgcaag-3 ' (酉己歹 U番号 34) 比較例 18: 5 '-ggtcttaccggaaaaagcgacgcaag-3 ' (酉己列番号 35)
比較例 19: 5 '-ggtcttaccggaaaatacgacgcaag-3 ' (酉己歹 U番号 36)
[0087] 実施例 7〜9及び比較例 12〜 19の結果を表 3に示す。なお、上記各アミノ酸の等 電点、及び極性若しくは電荷は表 3に示すとおりである。
[0088] [表 3]
Figure imgf000026_0001
[0089] 表 3から明らかなように、 530位のロイシン(Leu)をアルギニン (Arg)、リシン(Lys)及 びヒスチジン (His)に置換することにより、北米ホタルルシフェラーゼと比較して、発光 強度がそれぞれ 11. 8倍、 3. 3倍及び 2. 3倍に増大した。この結果より、北米ホタル ルシフェラーゼのアミノ酸配列において、 530位のアミノ酸を、当該アミノ酸の等電点 より大き ヽ等電点を有する正電荷アミノ酸に置換すると、北米ホタルルシフヱラーゼと 比較して、発光強度が十分に増大することが判明した。
[0090] (実施例 10)
以下のようにして、北米ホタルルシフェラーゼのアミノ酸配列において、 423位のィ ソロイシン(He)がロイシン(Leu)に置換され、 436位のァスパラギン酸 (Asp)がグリシ ン (Gly)に置換されたアミノ酸配列力 なる変異型ホタルルシフェラーゼを製造し、そ のホタルルシフェラーゼ活性 (発光強度)を測定した。
[0091] 実施例 4で変異が導入された組換えプラスミド、すなわち、 436位のァスパラギン酸
(Asp)がグリシン (Gly)に置換された変異型ホタルルシフェラーゼをコードする遺伝子 を含有する組換えプラスミドを、制限酵素 Ncol及び Xhol (いずれも New England Biola bs社製)で切断し、ァガロースゲル電気泳動により分離後、 436位のァスパラギン酸( Asp)がグリシン (Gly)に置換された変異型ホタルルシフェラーゼ遺伝子を含有する D NA断片のみを回収した。そして、当該 DNA断片を、予め Ncol及び Xholで切断した プラスミド(pET—28a(+) plasmid DNA (Novagen社製))に、 DNA Ligation Kit (BioDyna mics Laboratory社製)を用いて組み込んだ。こうして得られた組換えプラスミドを部位 特異的変異導入における铸型としたこと以外は、実施例 1と同様にして、精製した変 異型ホタルルシフェラーゼを得、その発光強度を測定した。そして、実施例 1で測定 された北米ホタルルシフェラーゼの発光強度を用いて、北米ホタルルシフェラーゼの 発光強度に対する変異型ホタルルシフェラーゼの発光強度の比 (発光強度比)を求 めた。
[0092] なお、変異が導入された組換えプラスミド中の変異型ホタルルシフェラーゼ遺伝子 の塩基配列は、実施例 1と同様にして決定した。塩基配列は、配列番号 37に示すと おりであった。これにより、組換えプラスミド中の変異型ホタルルシフェラーゼ遺伝子 1S 北米ホタルルシフェラーゼのアミノ酸配列において、 423位のイソロイシン(lie)が ロイシン(Leu)に置換され、 436位のァスパラギン酸 (Asp)がグリシン(Gly)に置換さ れたアミノ酸配列力 なる変異型ホタルルシフェラーゼをコードしていることが確認さ れた。
[0093] 423位のイソロイシン(lie)のロイシン(Leu)への置換と、 436位のァスパラギン酸 (A sp)のグリシン (Gly)への置換とが組み合わされた変異型ホタルルシフェラーゼでは、 発光強度が、北米ホタルルシフェラーゼと比較して 18倍に、また、 436位のァスパラ ギン酸のグリシンへの置換が単独で生じた変異型ホタルルシフェラーゼ(実施例 4)と 比較して 1. 5倍に増大した。この結果より、北米ホタルルシフエラーゼのアミノ酸配列 において、 423位のアミノ酸を、当該アミノ酸の分子量以上の分子量を有する非極性 アミノ酸に置換し、 436位のアミノ酸を、当該アミノ酸の分子量より小さい分子量を有 し、グリシン、ァラニン及びセリンより選ばれるアミノ酸に置換すると、北米ホタルルシ フェラーゼと比較して、発光強度が顕著に増大することが判明した。
[0094] (実施例 11)
以下のようにして、北米ホタルルシフェラーゼのアミノ酸配列において、 423位のィ ソロイシン(He)がロイシン(Leu)に置換され、 530位のロイシン(Leu)がアルギニン (A rg)に置換されたアミノ酸配列力もなる変異型ホタルルシフェラーゼを製造し、そのホ タルルシフェラーゼ活性 (発光強度)を測定した。
[0095] 実施例 7で変異が導入された組換えプラスミド、すなわち、 530位のロイシン (Leu) がアルギニン (Arg)に置換された変異型ホタルルシフェラーゼをコードする遺伝子を 含有する組換えプラスミドを、制限酵素 Ncol及び Xhol (いずれも New England Biolabs 社製)で切断し、ァガロースゲル電気泳動により分離後、 530位のロイシン (Leu)がァ ルギニン (Arg)に置換された変異型ホタルルシフェラーゼ遺伝子を含有する DNA断 片のみを回収した。そして、当該 DNA断片を、予め Ncol及び Xholで切断したプラス ミド(pET— 28a(+) plasmid DNA (Novagen社製))に、 DNA Ligation Kit (BioDynamics L aboratory社製)を用いて組み込んだ。こうして得られた組換えプラスミドを部位特異 的変異導入における铸型としたこと以外は、実施例 1と同様にして、精製した変異型 ホタルルシフヱラーゼを得、その発光強度を測定した。そして、実施例 1で測定された 北米ホタルルシフェラーゼの発光強度を用いて、北米ホタルルシフェラーゼの発光 強度に対する変異型ホタルルシフ ラーゼの発光強度の比 (発光強度比)を求めた。
[0096] なお、変異が導入された組換えプラスミド中の変異型ホタルルシフェラーゼ遺伝子 の塩基配列は、実施例 1と同様にして決定した。塩基配列は、配列番号 38に示すと おりであった。これにより、組換えプラスミド中の変異型ホタルルシフェラーゼ遺伝子 1S 北米ホタルルシフェラーゼのアミノ酸配列において、 423位のイソロイシン(lie)が ロイシン(Leu)に置換され、 530位のロイシン(Leu)がアルギニン (Arg)に置換された アミノ酸配列からなる変異型ホタルルシフェラーゼをコードしていることが確認された
[0097] 423位のイソロイシン(lie)のロイシン(Leu)への置換と、 530位のロイシン(Leu)の アルギニン (Arg)への置換とが組み合わされた変異型ホタルルシフェラーゼでは、発 光強度が、北米ホタルルシフェラーゼと比較して 18倍に、また、 530位のロイシンの アルギニンへの置換が単独で生じた変異型ホタルルシフェラーゼ(実施例 7)と比較 して 1. 5倍に増大した。この結果より、北米ホタルルシフェラーゼのアミノ酸配列にお いて、 423位のアミノ酸を、当該アミノ酸の分子量以上の分子量を有する非極性アミ ノ酸に置換し、 530位のアミノ酸を、当該アミノ酸の等電点より大きい等電点を有する 正電荷アミノ酸に置換すると、北米ホタルルシフェラーゼと比較して、発光強度が顕 著に増大することが判明した。
[0098] (実施例 12)
以下のようにして、北米ホタルルシフェラーゼのアミノ酸配列において、 436位のァ スパラギン酸 (Asp)がグリシン(Gly)に置換され、 530位のロイシン(Leu)がアルギ- ン (Arg)に置換されたアミノ酸配列からなる変異型ホタルルシフェラーゼを製造し、そ のホタルルシフェラーゼ活性 (発光強度)を測定した。
[0099] 実施例 7で変異が導入された組換えプラスミド、すなわち、 530位のロイシン (Leu) がアルギニン (Arg)に置換された変異型ホタルルシフェラーゼをコードする遺伝子を 含有する組換えプラスミドを、制限酵素 Ncol及び Xhol (いずれも New England Biolabs 社製)で切断し、ァガロースゲル電気泳動により分離後、 530位のロイシン (Leu)がァ ルギニン (Arg)に置換された変異型ホタルルシフェラーゼ遺伝子を含有する DNA断 片のみを回収した。そして、当該 DNA断片を、予め Ncol及び Xholで切断したプラス ミド(pET— 28a(+) plasmid DNA (Novagen社製))に、 DNA Ligation Kit (BioDynamics L aboratory社製)を用いて組み込んだ。こうして得られた組換えプラスミドを部位特異 的変異導入における铸型としたこと以外は、実施例 4と同様にして、精製した変異型 ホタルルシフヱラーゼを得、その発光強度を測定した。そして、実施例 1で測定された 北米ホタルルシフェラーゼの発光強度を用いて、北米ホタルルシフェラーゼの発光 強度に対する変異型ホタルルシフ ラーゼの発光強度の比 (発光強度比)を求めた。
[0100] なお、変異が導入された組換えプラスミド中の変異型ホタルルシフェラーゼ遺伝子 の塩基配列は、実施例 1と同様にして決定した。塩基配列は、配列番号 39に示すと おりであった。これにより、組換えプラスミド中の変異型ホタルルシフェラーゼ遺伝子 1S 北米ホタルルシフェラーゼのアミノ酸配列において、 436位のァスパラギン酸 (As p)がグリシン(Gly)に置換され、 530位のロイシン(Leu)がアルギニン (Arg)に置換さ れたアミノ酸配列力 なる変異型ホタルルシフェラーゼをコードしていることが確認さ れた。
[0101] 436位のァスパラギン酸 (Asp)のグリシン(Gly)への置換と、 530位のロイシン(Leu) のアルギニン (Arg)への置換とが組み合わされた変異型ホタルルシフェラーゼでは、 発光強度が、北米ホタルルシフェラーゼと比較して 8倍に増大した。この結果より、北 米ホタルルシフェラーゼのアミノ酸配列において、 436位のアミノ酸を、当該アミノ酸 の分子量より小さい分子量を有し、グリシン、ァラニン及びセリンより選ばれるアミノ酸 に置換し、 530位のアミノ酸を、当該アミノ酸の等電点より大きい等電点を有する正電 荷アミノ酸に置換すると、北米ホタルルシフェラーゼと比較して、発光強度が十分に 増大することが判明した。
[0102] (実施例 13)
以下のようにして、北米ホタルルシフェラーゼのアミノ酸配列において、 423位のィ ソロイシン(He)がロイシン(Leu)に置換され、 436位のァスパラギン酸 (Asp)がグリシ ン(Gly)に置換され、 530位のロイシン(Leu)がアルギニン (Arg)に置換されたァミノ 酸配列からなる変異型ホタルルシフェラーゼを製造し、そのホタルルシフェラーゼ活 性 (発光強度)を測定した。
[0103] 実施例 12で変異が導入された組換えプラスミド、すなわち、 436位のァスパラギン 酸 (Asp)がグリシン(Gly)に置換され、 530位のロイシン(Leu)がアルギニン(Arg)に 置換された変異型ホタルルシフェラーゼをコードする遺伝子を含有する組換えプラス ミドを、制限酵素 Ncol及び Xhol (いずれも New England Biolabs社製)で切断し、ァガロ ースゲル電気泳動により分離後、 436位のァスパラギン酸 (Asp)がグリシン (Gly)に置 換され、 530位のロイシン(Leu)がアルギニン (Arg)に置換された変異型ホタルルシ フェラーゼ遺伝子を含有する DNA断片のみを回収した。そして、当該 DNA断片を、 予め Ncol及び Xholで切断したプラスミド(pET-28a(+) plasmid DNA (Novagen社製)) に、 DNA Ligation Kit (BioDynamics Laboratory社製)を用いて組み込んだ。こうして 得られた組換えプラスミドを部位特異的変異導入における铸型としたこと以外は、実 施例 1と同様にして、精製した変異型ホタルルシフェラーゼを得、その発光強度を測 定した。そして、実施例 1で測定された北米ホタルルシフェラーゼの発光強度を用い て、北米ホタルルシフェラーゼの発光強度に対する変異型ホタルルシフェラーゼの 発光強度の比 (発光強度比)を求めた。
[0104] なお、変異が導入された組換えプラスミド中の変異型ホタルルシフェラーゼ遺伝子 の塩基配列は、実施例 1と同様にして決定した。塩基配列は、配列番号 40に示すと おりであった。これにより、組換えプラスミド中の変異型ホタルルシフェラーゼ遺伝子 1S 北米ホタルルシフェラーゼのアミノ酸配列において、 423位のイソロイシン(lie)が ロイシン(Leu)に置換され、 436位のァスパラギン酸 (Asp)がグリシン(Gly)に置換さ れ、 530位のロイシン(Leu)がアルギニン (Arg)に置換されたアミノ酸配列からなる変 異型ホタルルシフェラーゼをコードしていることが確認された。
[0105] 423位のイソロイシン(lie)のロイシン(Leu)への置換と、 436位のァスパラギン酸 (A sp)のグリシン(Gly)への置換と、 530位のロイシン(Leu)のアルギニン(Arg)への置 換とが組み合わされた変異型ホタルルシフェラーゼでは、発光強度が、北米ホタルル シフェラーゼと比較して 20倍に増大した。この結果より、北米ホタルルシフェラーゼの アミノ酸配列において、 423位のアミノ酸を、当該アミノ酸の分子量以上の分子量を 有する非極性アミノ酸に置換し、 436位のアミノ酸を、当該アミノ酸の分子量より小さ い分子量を有し、グリシン、ァラニン及びセリンより選ばれるアミノ酸に置換し、 530位 のアミノ酸を、当該アミノ酸の等電点より大き 、等電点を有する正電荷アミノ酸に置換 すると、北米ホタルルシフェラーゼと比較して、発光強度が顕著に増大することが判 明した。
[0106] (実施例 14)
以下のようにして、北米ホタルルシフェラーゼのアミノ酸配列において、 423位のィ ソロイシン(He)がロイシン(Leu)に、 530位のロイシン(Leu)がアルギニン (Arg)に置 換され、更に、 47位のイソロイシン(lie)がスレオニン(Thr)に、 50位のァスパラギン( Asn)がセリン(Ser)に、 59位のメチォニン(Met)がスレオニン(Thr)に、 252位のスレ ォニン (Thr)がセリン (Ser)に置換されたアミノ酸配列力 なる変異型ホタルルシフエ ラーゼを製造し、そのホタルルシフェラーゼ活性 (発光強度)を測定した。 [0107] まず、実施例 11で変異が導入された組換えプラスミド、すなわち、 423位のイソロイ シン(lie)がロイシン(Leu)に、 530位のロイシン(Leu)がアルギニン (Arg)に置換され た変異型ホタルルシフェラーゼをコードする遺伝子を含有する組換えプラスミドを制 限酵素 Ncol及び Xhol (いずれも New England Biolabs社製)で切断し、ァガロースゲル 電気泳動により分離後、 423位のイソロイシン(lie)がロイシン(Leu)に、 530位のロイ シン (Leu)がアルギニン (Arg)に置換された変異型ホタルルシフェラーゼ遺伝子を含 有する DNA断片のみを回収した。そして、当該 DNA断片を、予め Ncol及び Xholで 切断したプラスミド(pET-28a(+) plasmid DNA (Novagen社製))に、 DNA Ligation Kit ( BioDynamics Laboratory社製)を用いて組み込んだ。こうして得られた組換えプラスミ ドを铸型としたこと、及び、塩基配列: 5 '-gatgcacataccgaggtgaac- 3' (配列番号 41)か らなる DNAを変異誘発プライマーとしたこと以外は、実施例 1と同様にして、部位特 異的変異導入を行った。
[0108] 次に、得られた組換えプラスミドを制限酵素 Ncol及び Xhol ( 、ずれも New England B iolabs社製)で切断し、ァガロースゲル電気泳動により分離後、 423位のイソロイシン( He)がロイシン(Leu)に、 530位のロイシン(Leu)がアルギニン (Arg)に、 47位のイソ口 イシン(lie)がスレオニン (Thr)に置換された変異型ホタルルシフェラーゼ遺伝子を含 有する DNA断片のみを回収した。そして、当該 DNA断片を、予め Ncol及び Xholで 切断したプラスミド(pET-28a(+))に、 DNA Ligation Kit (BioDynamics Laboratory社製 )を用いて組み込んだ。こうして得られた組換えプラスミドを铸型としたこと、及び、塩 基配列: 5'-catatcgaggtgagcatcacgtacgcg-3' (配列番号 42)からなる DNAを変異誘 発プライマーとしたこと以外は、実施例 1と同様にして、部位特異的変異導入を行つ た。
[0109] 次に、得られた組換えプラスミドを制限酵素 Ncol及び Xhol ( 、ずれも New England B iolabs社製)で切断し、ァガロースゲル電気泳動により分離後、 423位のイソロイシン( He)がロイシン(Leu)に、 530位のロイシン(Leu)がアルギニン (Arg)に、 47位のイソ口 イシン(lie)がスレオニン(Thr)に、 50位のァスパラギン (Asn)がセリン(Ser)に置換さ れた変異型ホタルルシフェラーゼ遺伝子を含有する DNA断片のみを回収した。そし て、当該 DNA断片を、予め Ncol及び Xholで切断したプラスミド(pET-28a(+))に、 DN A Ligation Kit (BioDynamics Laboratory社製)を用いて組み込んだ。こうして得られ た組換えプラスミドを铸型としたこと、及び、塩基配列: 5'-gcggaatacttcgaaacgtccgttcg g-3' (配列番号 43)力 なる DNAを変異誘発プライマーとしたこと以外は、実施例 1と 同様にして、部位特異的変異導入を行った。
[0110] 最後に、得られた組換えプラスミドを制限酵素 Ncol及び Xhol (V、ずれも New England
Biolabs社製)で切断し、ァガロースゲル電気泳動により分離後、 423位のイソ口イシ ン(lie)がロイシン(Leu)に、 530位のロイシン(Leu)がアルギニン (Arg)に、 47位のィ ソロイシン(He)がスレオニン(Thr)に、 50位のァスパラギン (Asn)がセリン(Ser)に、 5 9位のメチォニン (Met)がスレオニン (Thr)に置換された変異型ホタルルシフェラーゼ 遺伝子を含有する DNA断片のみを回収した。そして、当該 DNA断片を、予め Ncol 及び Xholで切断したプラスミド(pET-28a(+))に、 DNA Ligation Kit (BioDynamics Lab oratory社製)を用いて組み込んだ。こうして得られた組換えプラスミドを铸型としたこと 、及び、塩基配列: 5 '-ggaatgtttacttcactcgg- 3' (配列番号 44)力 なる DNAを変異誘 発プライマーとしたこと以外は、実施例 1と同様にして、精製した変異型ホタルルシフ エラーゼを得、その発光強度を測定した。そして、実施例 1で測定された北米ホタル ルシフェラーゼの発光強度を用いて、北米ホタルルシフェラーゼの発光強度に対す る変異型ホタルルシフェラーゼの発光強度の比 (発光強度比)を求めた。
[0111] なお、変異が導入された組換えプラスミド中の変異型ホタルルシフェラーゼ遺伝子 の塩基配列は、実施例 1と同様にして決定した。塩基配列は、配列番号 45に示すと おりであった。これにより、組換えプラスミド中の変異型ホタルルシフェラーゼ遺伝子 1S 北米ホタルルシフェラーゼのアミノ酸配列において、 423位のイソロイシン(lie)が ロイシン(Leu)に、 530位のロイシン(Leu)がアルギニン (Arg)に置換され、更に、 47 位のイソロイシン(lie)がスレオニン(Thr)に、 50位のァスパラギン (Asn)がセリン(Ser) に、 59位のメチォニン(Met)がスレオニン(Thr)に、 252位のスレオニン(Thr)がセリ ン(Ser)に置換されたアミノ酸配列からなる変異型ホタルルシフェラーゼをコードして いることが確認された。
[0112] 上記変異型ホタルルシフェラーゼでは、発光強度が、北米ホタルルシフェラーゼと 比較して 21倍に、また、 423位のイソロイシン(lie)のロイシン(Leu)への置換、及び 5 30位のロイシン(Leu)のアルギニン (Arg)への置換のみが生じた変異型ホタルルシ フェラーゼ(実施例 11)と比較して 1. 2倍に増大した。この結果より、北米ホタルルシ フェラーゼのアミノ酸配列において、 423位のアミノ酸を、当該アミノ酸の分子量以上 の分子量を有する非極性アミノ酸に、 530位のアミノ酸を、当該アミノ酸の等電点より 大きい等電点を有する正電荷アミノ酸に置換し、更に、 47位のイソロイシンをスレオ ニンに、 50位のァスパラギンをセリンに、 59位のメチォニンをスレオニンに、 252位の スレオ-ンをセリンに置換すると、北米ホタルルシフェラーゼと比較して、発光強度が 顕著に増大することが判明した。
[0113] (実施例 15)
以下のようにして、ヘイケホタルルシフェラーゼのアミノ酸配列において、 425位の イソロイシン (lie)がロイシン (Leu)に置換されたアミノ酸配列力 なる変異型ホタルル シフェラーゼを製造し、そのホタルルシフェラーゼ活性 (発光強度)を測定した。
[0114] ヘイケホタル(Luciola lateralis)の幼虫を液体窒素で凍結した後、乳鉢で破砕し、ト 一タル RNA抽出キット(NucleoSpin RNA L (MACHEREY- NAGEL社製) )を用いて、 ヘイケホタルのトータル RNAを抽出した。そして、制限酵素 Ndel認識配列を含有す る塩基配列: 5'-gactcatatggaaaacatggagaacgatg-3,(配列番号 46)からなる DNA、及 び Xhol認識配列を含有する塩基配列: 5し gacactcgagcatcttagcaactgg- 3,(配列番号 4 7)からなる DNAをプライマーとし、 RT— PCR用キット(SuperScriptlll One-Step RT- PCR System with Platinum Taq DNA Polymerase (Invitrogen社製))を用いて、ヘイケ ホタルルシフェラーゼ cDNA (塩基配列は配列番号 48に示すとおりである。 )を作製 した。得られた cDNAを Ndel及び Xhol (いずれも New England Biolabs社製)で切断し 、これを、予め Ndel及び Xholで切断したプラスミド(pET-30a(+) plasmid DNA (Novage n社製))に、 DNA Ligation Kit (BioDynamics Laboratory社製)を用いて組み込んだ。 なお、 pET- 30a(+)は、 T7プロモーター及び T7ターミネータ一を含有する。また、発現 する目的タンパク質の C末端側にヒスチジンタグが付加されるように、クロー-ング部 位の近傍に、ヒスチジンタグをコードする遺伝子を含有する。また、 pET-30a(+)はカナ マイシン耐性を有する。
[0115] 次に、得られた組換えプラスミドを铸型として、 Transformer部位特異的突然変異誘 発キット (Clontech社製)を用いて部位特異的変異導入を行った。選択プライマーとし ては、 pET_30a(+)中の制限酵素 Bstll07I認識配列と一塩基異なる配列を含有する 塩基配列: 5 ' -gttaagccagtttacactccgc-3 ' (配列番号 49)からなる DNAを用いた。変 異誘発プライマーとしては、塩基配列: 5'- ggttggttgcacacaggagatcttgggtattacg- 3' (配 列番号 50)力 なる DNAを用いた。いずれのプライマーも、予め T4ポリヌクレオチド キナーゼ (TOYOBO社製)で 5,末端をリン酸ィ匕した。 Transformer部位特異的突然変 異誘発キット添付の T4 DNAポリメラーゼ及び T4 DNAリガーゼを用いて、組換え プラスミドを合成した。 Bstl 1071で切断処理した後、 Bstl 1071で切断されな力 た組 換えプラスミドを大腸菌のミスマッチ修復欠損株 BMH71-18mutSに導入し、大腸菌を 培養した。得られた組換えプラスミドを更に Bstl 1071で切断処理し、 Bstl 1071で切断 されなかった組換えプラスミドを、変異が導入された組換えプラスミドとして選択した。 こうして得られた組換えプラスミドを大腸菌に導入したこと以外は、実施例 1と同様に して、形質転換大腸菌を作製し、変異型ホタルルシフェラーゼの採取及び精製を行 つた。なお、実施例 1と同様にして、組換えプラスミド中の変異型ホタルルシフェラー ゼ遺伝子 (DNA)の塩基配列を決定し、当該遺伝子が目的の変異型ホタルルシフエ ラーゼをコードして ヽることを確認した。
[0116] 得られた変異型ホタルルシフェラーゼのタンパク質定量は、 Bradford法に基づく Bio -Rad Protein Assay(BIORAD社製)を用いて、 IgGを標準として行った。変異型ホタ ルルシフェラーゼ(0. lmg/mL)を含有する反応バッファー 50 μ Lを 96穴ゥエルプ レート(Nunc社製ルミヌンクプレート)に加えた後、マイクロプレートリーダー(Perkin- Elmer社製 ARVO MX)付属のインジェクターを用いて、基質バッファー(1 X 10"7M D—ホタルルシフェリン(和光純薬工業社製)、 1 X 10"6M ATP及び 10mM MgCl
2 を含有する 50mM Tris— HC1緩衝液 (pH7. 4) ) 50 Lを加えた。そして、上記マイ クロプレートリーダーで発光強度を測定した。
[0117] ヘイケホタルルシフェラーゼ(野生型)についても、変異型ホタルルシフェラーゼ遺 伝子を含有する組換えプラスミドの代わりに、上述のようにして得た、ヘイケホタルル シフェラーゼ遺伝子 (cDNA)を含有する組換えプラスミド (pET_30a(+))を用いたこと 以外は、変異型ホタルルシフェラーゼと同様にして、形質転換大腸菌を作製し、酵素 の採取及び精製を行い、酵素の発光強度を測定した。そして、ヘイケホタルルシフエ ラーゼの発光強度に対する変異型ホタルルシフェラーゼの発光強度の比 (発光強度 比)を求めた。
[0118] (実施例 16)
以下のようにして、ヘイケホタルルシフェラーゼのアミノ酸配列において、 438位の ァスパラギン酸 (Asp)がグリシン (Gly)に置換されたアミノ酸配列力 なる変異型ホタ ルルシフェラーゼを製造し、そのホタルルシフェラーゼ活性 (発光強度)を測定した。
[0119] 部位特異的変異導入における変異誘発プライマーとして、塩基配列: 5'-CtttatCgtg ggtcgtttgaagtc-3' (配列番号 51)力 なる DNAを用いたこと以外は、実施例 15と同 様にして、精製した変異型ホタルルシフェラーゼを得、その発光強度を測定した。そ して、実施例 15で測定されたへィケホタルルシフェラーゼの発光強度を用いて、ヘイ ケホタルルシフェラーゼの発光強度に対する変異型ホタルルシフェラーゼの発光強 度の比 (発光強度比)を求めた。なお、実施例 1と同様にして、組換えプラスミド中の 変異型ホタルルシフェラーゼ遺伝子 (DNA)の塩基配列を決定し、当該遺伝子が目 的の変異型ホタルルシフェラーゼをコードしていることを確認した。
[0120] (実施例 17)
以下のようにして、ヘイケホタルルシフェラーゼのアミノ酸配列において、 532位の イソロイシン (lie)がアルギニン (Arg)に置換されたアミノ酸配列からなる変異型ホタル ルシフェラーゼを製造し、そのホタルルシフェラーゼ活性 (発光強度)を測定した。
[0121] 部位特異的変異導入における変異誘発プライマーとして、塩基配列: 5'-ggtcttactg gtaaaagggacggtaaagc-3' (配列番号 52)力 なる DNAを用いたこと以外は、実施例 1 5と同様にして、精製した変異型ホタルルシフェラーゼを得、その発光強度を測定し た。そして、実施例 15で測定されたへィケホタルルシフェラーゼの発光強度を用いて 、ヘイケホタルルシフェラーゼの発光強度に対する変異型ホタルルシフェラーゼの発 光強度の比 (発光強度比)を求めた。なお、実施例 1と同様にして、組換えプラスミド 中の変異型ホタルルシフェラーゼ遺伝子 (DNA)の塩基配列を決定し、当該遺伝子 が目的の変異型ホタルルシフェラーゼをコードしていることを確認した。
[0122] (実施例 18) 実施例 15と同様にして、ヘイケホタルルシフェラーゼのアミノ酸配列において、 425 位のイソロイシン (He)がロイシン (Leu)に置換されたアミノ酸配列力 なる変異型ホタ ルルシフェラーゼを製造し、そのホタルルシフェラーゼ活性 (発光強度)を測定した。 北米ホタルルシフェラーゼ (野生型)についても、実施例 1と同様にして、精製した酵 素を得、その発光強度を測定した。そして、北米ホタルルシフ ラーゼの発光強度に 対する変異型ホタルルシフェラーゼの発光強度の比 (発光強度比)を求めた。なお、 実施例 1と同様にして、組換えプラスミド中の変異型ホタルルシフェラーゼ遺伝子 (D NA)の塩基配列を決定し、当該遺伝子が目的の変異型ホタルルシフェラーゼをコ一 ドしていることを確認した。
[0123] (実施例 19)
実施例 16と同様にして、ヘイケホタルルシフェラーゼのアミノ酸配列において、 438 位のァスパラギン酸 (Asp)がグリシン (Gly)に置換されたアミノ酸配列力 なる変異型 ホタルルシフェラーゼを製造し、そのホタルルシフェラーゼ活性 (発光強度)を測定し た。そして、実施例 18で測定された北米ホタルルシフヱラーゼの発光強度を用いて、 北米ホタルルシフヱラーゼの発光強度に対する変異型ホタルルシフヱラーゼの発光 強度の比 (発光強度比)を求めた。なお、実施例 1と同様にして、組換えプラスミド中 の変異型ホタルルシフェラーゼ遺伝子 (DNA)の塩基配列を決定し、当該遺伝子が 目的の変異型ホタルルシフェラーゼをコードして ヽることを確認した。
[0124] (比較例 20)
実施例 17と同様にして、ヘイケホタルルシフェラーゼのアミノ酸配列において、 532 位のイソロイシン (lie)がアルギニン (Arg)に置換されたアミノ酸配列力 なる変異型ホ タルルシフェラーゼを製造し、そのホタルルシフェラーゼ活性 (発光強度)を測定した 。そして、実施例 18で測定された北米ホタルルシフェラーゼの発光強度を用いて、 北米ホタルルシフヱラーゼの発光強度に対する変異型ホタルルシフヱラーゼの発光 強度の比 (発光強度比)を求めた。なお、実施例 1と同様にして、組換えプラスミド中 の変異型ホタルルシフェラーゼ遺伝子 (DNA)の塩基配列を決定し、当該遺伝子が 目的の変異型ホタルルシフェラーゼをコードして ヽることを確認した。
[0125] 実施例 15〜19及び比較例 20の結果を表 4に示す。なお、ヘイケホタルルシフェラ ーゼのアミノ酸配列と北米ホタルルシフェラーゼのアミノ酸配列との相同性は 68%で ある。
[0126] [表 4]
Figure imgf000038_0001
[0127] 表 4から明らかなように、ヘイケホタルルシフェラーゼのアミノ酸配列における、 425 位のイソロイシン(lie)のロイシン(Leu)への置換、 438位のァスパラギン酸 (Asp)のグ リシン(Gly)への置換、及び 532位のイソロイシン(lie)のアルギニン (Arg)への置換 により、ヘイケホタルルシフェラーゼと比較して、発光強度がそれぞれ 2. 6倍、 6. 0倍 及び 1. 2倍に増大した。この結果より、ヘイケホタルルシフェラーゼのアミノ酸配列に ぉ 、て下記 (a)、 (b)又は (c)の置換が生じた変異アミノ酸配列力もなる変異型ホタル ルシフェラーゼは、ヘイケホタルルシフェラーゼと比較して、十分に大きい発光強度 を有することが判明した。
(a) 425位のアミノ酸の、当該アミノ酸の分子量以上の分子量を有する非極性アミノ 酸への置換
(b) 438位のアミノ酸の、当該アミノ酸の分子量より小さい分子量を有し、グリシン、 ァラニン及びセリンより選ばれるアミノ酸への置換
(c) 532位のアミノ酸の、当該アミノ酸の等電点より大きい等電点を有する正電荷ァ ミノ酸への置換 [0128] また、表 4から明らかなように、ヘイケホタルルシフェラーゼのアミノ酸配列における 、 425位のイソロイシン(lie)のロイシン(Leu)への置換、及び 438位のァスパラギン酸 (Asp)のグリシン(Gly)への置換により、北米ホタルルシフェラーゼと比較して、発光 強度がそれぞれ 1. 4倍及び 3. 2倍に増大した。この結果より、北米ホタルルシフェラ ーゼのアミノ酸配列において、少なくとも上記 (a)又は (b)の置換が生じ、かつ、北米 ホタルルシフヱラーゼのアミノ酸配列に対して 68%の相同性を有する変異アミノ酸配 列からなる変異型ホタルルシフェラーゼの中に、北米ホタルルシフェラーゼの発光強 度より十分に大きい発光強度を有するものが存在することが判明した。
[0129] (実施例 20)
以下のようにして、ゲンジホタルルシフェラーゼのアミノ酸配列において、 425位の イソロイシン (lie)がロイシン (Leu)に置換されたアミノ酸配列力 なる変異型ホタルル シフェラーゼを製造し、そのホタルルシフェラーゼ活性 (発光強度)を測定した。
[0130] ゲンジホタル(Luciola cruciata)の幼虫を液体窒素で凍結した後、乳鉢で破砕し、ト 一タル RNA抽出キット(NucleoSpin RNA L (MACHEREY- NAGEL社製) )を用いて、 ゲンジホタルのトータル RNAを抽出した。そして、制限酵素 Ncol認識配列を含有す る塩 ¾酉己歹1 J : 5 gactccatggaaaacatggaaaacgatg— 3' (酉己歹 [J番号 03)力らなる DNA、及 び Xhol認識配列を含有する塩基配列: 5し gacactcgagcatcttagcaactgg- 3,(配列番号 4 7)からなる DNAをプライマーとし、 RT— PCR用キット(SuperScriptlll One-Step RT- PCR System with Platinum Taq DNA Polymerase (Invitrogen社製))を用いて、ゲンジ ホタルルシフェラーゼ cDNA (塩基配列は配列番号 54に示すとおりである。 )を作製 した。得られた cDNAを Ncol及び Xhol (いずれも New England Biolabs社製)で切断し 、これを、予め Ncol及び Xholで切断したプラスミド(pET-28a(+) plasmid DNA (Novage n社製))に、 DNA Ligation Kit (BioDynamics Laboratory社製)を用いて組み込んだ。 なお、 pET-28a(+)は、 T7プロモーター及び T7ターミネータ一を含有する。また、発現 する目的タンパク質の C末端側にヒスチジンタグが付加されるように、クロー-ング部 位の近傍に、ヒスチジンタグをコードする遺伝子を含有する。また、 pET-28a(+)はカナ マイシン耐性を有する。
[0131] 次に、得られた組換えプラスミドを铸型として、 Transformer部位特異的突然変異誘 発キット (Clontech社製)を用いて部位特異的変異導入を行った。選択プライマーとし ては、 pET_28a(+)中の制限酵素 Bstll07I認識配列と一塩基異なる配列を含有する 塩基配列: 5 ' -gttaagccagtttacactccgc-3 ' (配列番号 49)からなる DNAを用いた。変 異誘発プライマーとしては、塩基配列: 5'-gcacaccggagatcttggatattatg-3' (配列番号 5 5)からなる DNAを用いた。いずれのプライマーも、予め T4ポリヌクレオチドキナーゼ (TOYOBO社製)で 5,末端をリン酸ィ匕した。 Transformer部位特異的突然変異誘発キ ット添付の T4 DNAポリメラーゼ及び T4 DNAリガーゼを用いて、組換えプラスミドを 合成した。 Bstl 1071で切断処理した後、 Bstl 1071で切断されな力 た組換えプラスミ ドを大腸菌のミスマッチ修復欠損株 BMH71-18mutSに導入し、大腸菌を培養した。得 られた組換えプラスミドを更に Bstl 1071で切断処理し、 Bstl 1071で切断されなかった 組換えプラスミドを、変異が導入された組換えプラスミドとして選択した。こうして得ら れた組換えプラスミドを大腸菌に導入したこと以外は、実施例 1と同様にして、形質転 換大腸菌を作製し、変異型ホタルルシフェラーゼの採取及び精製を行った。なお、 実施例 1と同様にして、組換えプラスミド中の変異型ホタルルシフェラーゼ遺伝子 (D NA)の塩基配列を決定し、当該遺伝子が目的の変異型ホタルルシフェラーゼをコ一 ドしていることを確認した。
[0132] 得られた変異型ホタルルシフェラーゼのタンパク質定量は、 Bradford法に基づく Bio -Rad Protein Assay(BIORAD社製)を用いて、 IgGを標準として行った。変異型ホタ ルルシフェラーゼ(0. lmg/mL)を含有する反応バッファー 50 μ Lを 96穴ゥエルプ レート(Nunc社製ルミヌンクプレート)に加えた後、マイクロプレートリーダー(Perkin- Elmer社製 ARVO MX)付属のインジェクターを用いて、基質バッファー(1 X 10"7M D—ホタルルシフェリン(和光純薬工業社製)、 1 X 10"6M ATP及び 10mM MgCl
2 を含有する 50mM Tris— HC1緩衝液 (pH7. 4) ) 50 Lを加えた。そして、上記マイ クロプレートリーダーで発光強度を測定した。
[0133] ゲンジホタルルシフェラーゼ(野生型)につ 、ても、変異型ホタルルシフェラーゼ遺 伝子を含有する組換えプラスミドの代わりに、上述のようにして得た、ゲンジホタルル シフェラーゼ遺伝子 (cDNA)を含有する組換えプラスミド (pET_28a(+))を用いたこと 以外は、変異型ホタルルシフェラーゼと同様にして、形質転換大腸菌を作製し、酵素 の採取及び精製を行い、酵素の発光強度を測定した。そして、ゲンジホタルルシフエ ラーゼの発光強度に対する変異型ホタルルシフェラーゼの発光強度の比 (発光強度 比)を求めた。
[0134] (実施例 21)
以下のようにして、ゲンジホタルルシフェラーゼのアミノ酸配列において、 438位の ァスパラギン酸 (Asp)がグリシン (Gly)に置換されたアミノ酸配列力 なる変異型ホタ ルルシフェラーゼを製造し、そのホタルルシフェラーゼ活性 (発光強度)を測定した。
[0135] 部位特異的変異導入における変異誘発プライマーとして、塩基配列: 5'-CtttattgtC ggtcgtttgaagtc-3' (配列番号 56)力 なる DNAを用いたこと以外は、実施例 20と同 様にして、精製した変異型ホタルルシフェラーゼを得、その発光強度を測定した。そ して、実施例 20で測定されたゲンジホタルルシフェラーゼの発光強度を用いて、ゲン ジホタルルシフェラーゼの発光強度に対する変異型ホタルルシフェラーゼの発光強 度の比 (発光強度比)を求めた。なお、実施例 1と同様にして、組換えプラスミド中の 変異型ホタルルシフェラーゼ遺伝子 (DNA)の塩基配列を決定し、当該遺伝子が目 的の変異型ホタルルシフェラーゼをコードしていることを確認した。
[0136] (実施例 22)
以下のようにして、ゲンジホタルルシフェラーゼのアミノ酸配列において、 532位の イソロイシン (lie)がアルギニン (Arg)に置換されたアミノ酸配列からなる変異型ホタル ルシフェラーゼを製造し、そのホタルルシフェラーゼ活性 (発光強度)を測定した。
[0137] 部位特異的変異導入における変異誘発プライマーとして、塩基配列: 5'-ggtcttactg gaaaaagggacggcagagc-3' (配列番号 57)力 なる DNAを用いたこと以外は、実施例 2 0と同様にして、精製した変異型ホタルルシフェラーゼを得、その発光強度を測定し た。そして、実施例 20で測定されたゲンジホタルルシフェラーゼの発光強度を用いて 、ゲンジホタルルシフェラーゼの発光強度に対する変異型ホタルルシフェラーゼの発 光強度の比 (発光強度比)を求めた。なお、実施例 1と同様にして、組換えプラスミド 中の変異型ホタルルシフェラーゼ遺伝子 (DNA)の塩基配列を決定し、当該遺伝子 が目的の変異型ホタルルシフェラーゼをコードしていることを確認した。
[0138] (実施例 23) 実施例 20と同様にして、ゲンジホタルルシフェラーゼのアミノ酸配列において、 42 5位のイソロイシン (lie)がロイシン (Leu)に置換されたアミノ酸配列力 なる変異型ホ タルルシフェラーゼを製造し、そのホタルルシフェラーゼ活性 (発光強度)を測定した 。北米ホタルルシフェラーゼ (野生型)についても、実施例 1と同様にして、精製した 酵素を得、その発光強度を測定した。そして、北米ホタルルシフェラーゼの発光強度 に対する変異型ホタルルシフェラーゼの発光強度の比 (発光強度比)を求めた。なお 、実施例 1と同様にして、組換えプラスミド中の変異型ホタルルシフェラーゼ遺伝子( DNA)の塩基配列を決定し、当該遺伝子が目的の変異型ホタルルシフェラーゼをコ ードして 、ることを確認した。
[0139] (比較例 21)
実施例 21と同様にして、ゲンジホタルルシフェラーゼのアミノ酸配列において、 43 8位のァスパラギン酸 (Asp)がグリシン (Gly)に置換されたアミノ酸配列からなる変異 型ホタルルシフェラーゼを製造し、そのホタルルシフェラーゼ活性 (発光強度)を測定 した。そして、実施例 23で測定された北米ホタルルシフェラーゼの発光強度を用い て、北米ホタルルシフェラーゼの発光強度に対する変異型ホタルルシフェラーゼの 発光強度の比 (発光強度比)を求めた。なお、実施例 1と同様にして、組換えプラスミ ド中の変異型ホタルルシフェラーゼ遺伝子 (DNA)の塩基配列を決定し、当該遺伝 子が目的の変異型ホタルルシフェラーゼをコードしていることを確認した。
[0140] (比較例 22)
実施例 22と同様にして、ゲンジホタルルシフェラーゼのアミノ酸配列において、 53 2位のイソロイシン (lie)がアルギニン (Arg)に置換されたアミノ酸配列力 なる変異型 ホタルルシフェラーゼを製造し、そのホタルルシフェラーゼ活性 (発光強度)を測定し た。そして、実施例 23で測定された北米ホタルルシフヱラーゼの発光強度を用いて、 北米ホタルルシフヱラーゼの発光強度に対する変異型ホタルルシフヱラーゼの発光 強度の比 (発光強度比)を求めた。なお、実施例 1と同様にして、組換えプラスミド中 の変異型ホタルルシフェラーゼ遺伝子 (DNA)の塩基配列を決定し、当該遺伝子が 目的の変異型ホタルルシフェラーゼをコードして ヽることを確認した。
[0141] 実施例 20〜23及び比較例 21〜22の結果を表 5に示す。なお、ゲンジホタルルシ フェラーゼのアミノ酸配列と北米ホタルルシフェラーゼのアミノ酸配列との相同性は 6 8%である。
[0142] [表 5]
Figure imgf000043_0001
[0143] 表 5から明らかなように、ゲンジホタルルシフェラーゼのアミノ酸配列における、 425 位のイソロイシン(lie)のロイシン(Leu)への置換、 438位のァスパラギン酸 (Asp)のグ リシン(Gly)への置換、及び 532位のイソロイシン(lie)のアルギニン (Arg)への置換 により、ゲンジホタルルシフェラーゼと比較して、発光強度がそれぞれ 4. 7倍、 3. 5倍 及び 2. 2倍に増大した。この結果より、ゲンジホタルルシフェラーゼのアミノ酸配列に ぉ 、て下記 (a)、 (b)又は (c)の置換が生じた変異アミノ酸配列力もなる変異型ホタル ルシフェラーゼは、ゲンジホタルルシフェラーゼと比較して、十分に大きい発光強度 を有することが判明した。
(a) 425位のアミノ酸の、当該アミノ酸の分子量以上の分子量を有する非極性アミノ 酸への置換
(b) 438位のアミノ酸の、当該アミノ酸の分子量より小さい分子量を有し、グリシン、 ァラニン及びセリンより選ばれるアミノ酸への置換
(c) 532位のアミノ酸の、当該アミノ酸の等電点より大きい等電点を有する正電荷ァ ミノ酸への置換 [0144] また、表 5から明らかなように、ゲンジホタルルシフェラーゼのアミノ酸配列における 、 425位のイソロイシン(lie)のロイシン(Leu)への置換により、北米ホタルルシフェラ ーゼと比較して、発光強度が 1. 1倍に増大した。この結果より、北米ホタルルシフェラ ーゼのアミノ酸配列において、少なくとも上記(a)の置換が生じ、かつ、北米ホタルル シフ ラーゼのアミノ酸配列に対して 68%の相同性を有する変異アミノ酸配列力 な る変異型ホタルルシフェラーゼの中に、北米ホタルルシフェラーゼの発光強度より大 きい発光強度を有するものが存在することが判明した。
産業上の利用可能性
[0145] 本発明の変異型ホタルルシフェラーゼは、飲食料中の極微量の細菌等の検出に利 用することができる。

Claims

請求の範囲
[1] 野生型ホタルルシフ ラーゼのアミノ酸配列において、少なくとも下記 (a)、(b)又は
(c)の置換が生じた変異アミノ酸配列力 なり、
前記野生型ホタルルシフ ラーゼの発光強度よりも大きい発光強度を有する変異 型ホタルルシフェラーゼ。
(a)北米ホタルルシフェラーゼのアミノ酸配列の 419〜428位と同等の位置のァミノ 酸のうちの少なくとも一つのアミノ酸の、当該アミノ酸の分子量以上の分子量を有する 非極性アミノ酸への置換
(b)北米ホタルルシフェラーゼのアミノ酸配列の 435〜441位と同等の位置のァミノ 酸のうちの少なくとも一つのアミノ酸の、当該アミノ酸の分子量より小さい分子量を有 し、グリシン、ァラニン及びセリンより選ばれるアミノ酸への置換
(c)北米ホタルルシフェラーゼのアミノ酸配列の 523〜532位と同等の位置のァミノ 酸のうちの少なくとも一つのアミノ酸の、当該アミノ酸の等電点より大きい等電点を有 する正電荷アミノ酸への置換
[2] 前記変異アミノ酸配列力 前記野生型ホタルルシフ ラーゼのアミノ酸配列におい て、少なくとも前記 (a)及び (b)の置換が生じたものである、請求項 1に記載の変異型 ホタルルシフェラーゼ。
[3] 前記変異アミノ酸配列力 前記野生型ホタルルシフ ラーゼのアミノ酸配列におい て、少なくとも前記 (a)及び (c)の置換が生じたものである、請求項 1に記載の変異型 ホタルルシフェラーゼ。
[4] 前記変異アミノ酸配列力 前記野生型ホタルルシフ ラーゼのアミノ酸配列におい て、少なくとも前記 (b)及び (c)の置換が生じたものである、請求項 1に記載の変異型 ホタルルシフェラーゼ。
[5] 前記変異アミノ酸配列力 前記野生型ホタルルシフ ラーゼのアミノ酸配列におい て、少なくとも前記 (a)、(b)及び (c)の置換が生じたものである、請求項 1に記載の変 異型ホタルルシフェラーゼ。
[6] 前記変異アミノ酸配列力 北米ホタルルシフ ラーゼのアミノ酸配列に対して 60% 以上の相同性を有する、請求項 1〜5のいずれか一項に記載の変異型ホタルルシフ エラーゼ。
[7] 請求項 1〜6のいずれか一項に記載の変異型ホタルルシフェラーゼをコードする遺 伝子。
[8] 請求項 7に記載の遺伝子を含有する組換えベクター。
[9] 請求項 8に記載の組換えベクターを保有する形質転換体。
[10] 請求項 9に記載の形質転換体を培養して、培養物を得る培養ステップと、当該培養 物から前記変異型ホタルルシフェラーゼを採取する採取ステップと、を備える変異型 ホタルルシフェラーゼの製造方法。
PCT/JP2006/317667 2005-09-06 2006-09-06 変異型ホタルルシフェラーゼ、遺伝子、組換えベクター、形質転換体、及び変異型ホタルルシフェラーゼの製造方法 WO2007029747A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/991,455 US8003350B2 (en) 2005-09-06 2006-09-06 Mutant firefly luciferase, gene, recombinant vector, transformant, and method for production of mutant firefly luciferase

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-258337 2005-09-06
JP2005258337 2005-09-06
JP2006-083506 2006-03-24
JP2006083506A JP4999341B2 (ja) 2005-09-06 2006-03-24 変異型ホタルルシフェラーゼ、遺伝子、組換えベクター、形質転換体、及び変異型ホタルルシフェラーゼの製造方法

Publications (1)

Publication Number Publication Date
WO2007029747A1 true WO2007029747A1 (ja) 2007-03-15

Family

ID=37835864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317667 WO2007029747A1 (ja) 2005-09-06 2006-09-06 変異型ホタルルシフェラーゼ、遺伝子、組換えベクター、形質転換体、及び変異型ホタルルシフェラーゼの製造方法

Country Status (3)

Country Link
US (1) US8003350B2 (ja)
JP (1) JP4999341B2 (ja)
WO (1) WO2007029747A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134850A1 (ru) * 2009-05-20 2010-11-25 Ugarova Natalya Nikolaevna Реагент для определения aдehoзиh-5'-tpифocфata

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008133141A1 (ja) * 2007-04-24 2010-07-22 東洋紡績株式会社 オスモチン組換えタンパク質およびその製造方法、並びにその利用
WO2009063840A1 (ja) 2007-11-12 2009-05-22 Hiroshima University エンドトキシンの濃度測定方法および濃度測定用キット
US7989190B2 (en) 2007-11-20 2011-08-02 Kikkoman Corporation Composition for analyzing nucleic acid
CA2726481C (en) * 2008-06-04 2016-11-08 Kci Licensing, Inc. Detecting infection in reduced pressure wound treatment
JP2010081908A (ja) * 2008-10-02 2010-04-15 Hitachi Ltd 変異型のホタルルシフェラーゼ
JP5686308B2 (ja) * 2009-02-20 2015-03-18 国立大学法人広島大学 βグルカンの濃度測定方法および濃度測定用キット
JP6038649B2 (ja) 2009-05-01 2016-12-07 プロメガ コーポレイションPromega Corporation 増大した光出力を有する合成オプロフォルスルシフェラーゼ
SG10202103336SA (en) * 2010-11-02 2021-04-29 Promega Corp Novel coelenterazine substrates and methods of use
WO2012061477A1 (en) 2010-11-02 2012-05-10 Promega Corporation Coelenterazine derivatives and methods of using same
JP5896679B2 (ja) * 2011-03-15 2016-03-30 オリンパス株式会社 オオオバボタル由来ルシフェラーゼ
JP5896624B2 (ja) * 2011-05-13 2016-03-30 オリンパス株式会社 ホタル由来ルシフェラーゼ
JP5860651B2 (ja) * 2011-09-30 2016-02-16 オリンパス株式会社 ホタル由来ルシフェラーゼ
JP6411740B2 (ja) * 2013-01-15 2018-10-24 国立大学法人広島大学 ノイラミニダーゼ活性阻害剤の有効性を判定するための組成物、キットおよびその利用
JP6150642B2 (ja) * 2013-07-17 2017-06-21 オリンパス株式会社 オレンジ色の発光を示すルシフェラーゼ
WO2016051517A1 (ja) 2014-09-30 2016-04-07 オリンパス株式会社 オレンジ色の発光を示すルシフェラーゼ
JP6493316B2 (ja) * 2016-06-21 2019-04-03 東亜ディーケーケー株式会社 変異型甲虫ルシフェラーゼ、遺伝子、組換えベクター、形質転換体、及び変異型甲虫ルシフェラーゼの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2666561B2 (ja) * 1990-03-27 1997-10-22 キッコーマン株式会社 変異型ホタルルシフェラーゼ、変異型ホタルルシフェラーゼ遺伝子、新規な組み換え体dna及び変異型ホタルルシフェラーゼの製造法
JPH11239493A (ja) * 1997-12-26 1999-09-07 Kikkoman Corp ルシフェラーゼおよびそれを用いる細胞内atpの測定法
JP2003518912A (ja) * 1998-10-28 2003-06-17 イギリス国 新規酵素

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3285683B2 (ja) 1993-11-30 2002-05-27 松下電器産業株式会社 ディスク基板の洗浄装置
EP1015601B1 (en) * 1997-09-19 2015-01-07 Promega Corporation Thermostable luciferases and methods of production
AU772485C (en) * 1999-10-26 2004-11-18 Promega Corporation Novel enzyme

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2666561B2 (ja) * 1990-03-27 1997-10-22 キッコーマン株式会社 変異型ホタルルシフェラーゼ、変異型ホタルルシフェラーゼ遺伝子、新規な組み換え体dna及び変異型ホタルルシフェラーゼの製造法
JPH11239493A (ja) * 1997-12-26 1999-09-07 Kikkoman Corp ルシフェラーゼおよびそれを用いる細胞内atpの測定法
JP2003518912A (ja) * 1998-10-28 2003-06-17 イギリス国 新規酵素

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AYABE K. ET AL.: "The role of firefly luciferase C-terminal domain in efficient coupling of adenylation and oxidative steps", FEBS LETT., vol. 579, 2005, pages 4389 - 4394, XP005010815 *
BRANCHINI B.R. ET AL.: "Mutagenesis Evidence that the Partial Reactions of Firefly Bioluminescence Are Catalyzed by Different Conformations of the Luciferase C-Terminal Domain", BIOCHEMISTRY, vol. 44, 2005, pages 1385 - 1393, XP003010110 *
BRANCHINI B.R. ET AL.: "Site-Directed Mutagenesis of Firefly Luciferase Active Site Amino Acids: A Proposed Model for Bioluminescence Color", BIOCHEMISTRY, vol. 38, 1999, pages 13223 - 13230, XP003010109 *
BRANCHINI B.R. ET AL.: "The role of Lysine 529, a Conserved Residue of the Acyl-Adenylate-Forming Enzyme Superfamily, in Firefly Luciferase", BIOCHEMISTRY, vol. 39, no. 18, 2000, pages 5433 - 5440, XP003002919 *
WAUD J.P. ET AL.: "Engineering the C-terminus of firefly luciferase as an indicator of covalent modification of proteins", BIOCHEM. BIOPHYS. ACTA, vol. 1292, no. 1, 1996, pages 89 - 98, XP002325291 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134850A1 (ru) * 2009-05-20 2010-11-25 Ugarova Natalya Nikolaevna Реагент для определения aдehoзиh-5'-tpифocфata

Also Published As

Publication number Publication date
JP4999341B2 (ja) 2012-08-15
US8003350B2 (en) 2011-08-23
JP2007097577A (ja) 2007-04-19
US20090305353A1 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
WO2007029747A1 (ja) 変異型ホタルルシフェラーゼ、遺伝子、組換えベクター、形質転換体、及び変異型ホタルルシフェラーゼの製造方法
JP5781789B2 (ja) ルシフェラーゼバイオセンサー
US9879306B2 (en) Luciferase biosensors for cAMP
EP0804587B1 (en) Mutant luciferases
KR100392020B1 (ko) 루시퍼라제
JP6493316B2 (ja) 変異型甲虫ルシフェラーゼ、遺伝子、組換えベクター、形質転換体、及び変異型甲虫ルシフェラーゼの製造方法
JP2024036589A (ja) アニオン性界面活性剤耐性が向上したアマドリアーゼ
US7888087B2 (en) Fusion protein of Fc-binding domain and calcium-binding photoprotein, gene encoding the same and use thereof
JP7385134B2 (ja) 変異型甲虫ルシフェラーゼ、遺伝子、組換えベクター、形質転換体、及び変異型甲虫ルシフェラーゼの製造方法
CN113774039B (zh) 重组型dna聚合酶及其应用
JPWO2007046556A1 (ja) 新規dnaポリメラーゼ
Park et al. Bacterial ${\beta} $-Lactamase Fragment Complementation Strategy Can Be Used as a Method for Identifying Interacting Protein Pairs
CN113336854B (zh) 一种精氨酸荧光探针及其制备方法和应用
Anderson et al. DNA-PK assay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11991455

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06783196

Country of ref document: EP

Kind code of ref document: A1