WO2007029694A1 - 有色微小複合粒子、有色微小複合粒子の製造方法、着色材、カラーフィルター、及び、インクジェット用インク - Google Patents

有色微小複合粒子、有色微小複合粒子の製造方法、着色材、カラーフィルター、及び、インクジェット用インク Download PDF

Info

Publication number
WO2007029694A1
WO2007029694A1 PCT/JP2006/317543 JP2006317543W WO2007029694A1 WO 2007029694 A1 WO2007029694 A1 WO 2007029694A1 JP 2006317543 W JP2006317543 W JP 2006317543W WO 2007029694 A1 WO2007029694 A1 WO 2007029694A1
Authority
WO
WIPO (PCT)
Prior art keywords
color filter
colored
particles
value
ink
Prior art date
Application number
PCT/JP2006/317543
Other languages
English (en)
French (fr)
Inventor
Shinji Horie
Hiroko Morii
Hirofumi Nishikawa
Kazuyuki Hayashi
Original Assignee
Toda Kogyo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006172462A external-priority patent/JP5093442B2/ja
Priority claimed from JP2006194645A external-priority patent/JP2008019399A/ja
Application filed by Toda Kogyo Corporation filed Critical Toda Kogyo Corporation
Priority to KR1020087005448A priority Critical patent/KR101274297B1/ko
Priority to CN2006800326298A priority patent/CN101263204B/zh
Priority to EP06797449A priority patent/EP1930380A4/en
Publication of WO2007029694A1 publication Critical patent/WO2007029694A1/ja
Priority to US12/073,465 priority patent/US20080258118A1/en
Priority to US12/926,485 priority patent/US8303861B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/309Combinations of treatments provided for in groups C09C1/3009 - C09C1/3081
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3063Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/64Optical properties, e.g. expressed in CIELAB-values b* (yellow-blue axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/65Chroma (C*)

Definitions

  • Colored microcomposite particles method for producing colored microcomposite particles, colorant, color filter, and ink jet ink
  • the present invention relates to colored microcomposite particles, a dispersion containing the colored microcomposite particles, a method for producing the colored microcomposite particles, a colorant for a color filter, and a color composition for a color filter containing the colorant.
  • the present invention relates to a color filter, a colorant for inkjet ink, and an ink for ink jet.
  • the present invention provides a colored microcomposite particle having a fine primary particle size, high coloring power, excellent dispersibility, and excellent light resistance, and a dispersibility containing the colored composite particle.
  • Manufacturing method of colored dispersion and colored microcomposite particles, and the primary particle size is very small, has high coloring power and excellent dispersibility in the vehicle, and is also light and heat resistant.
  • Color filter colorant having excellent properties, color filter color composition and color filter excellent in light resistance and heat resistance, and excellent in transparency, and particle size
  • the ink-jet ink coloring material and the ink-jet ink coloring material having high coloring power, excellent dispersibility, and excellent light resistance.
  • Organic pigments are widely used as colorants for paints, resin, printing inks, inkjet inks, toners and color filters. Generally, high tinting strength is required for these applications, and it is required to make the pigment finer.
  • an organic pigment is 20 ⁇ from a pigment in a molecular state by a chemical reaction or the like! Fine primary particles of ⁇ lOOnm are formed. However, in the state of fine primary particles, the surface energy of the particles is so high that they tend to agglomerate. For this reason, it is usually present in the form of secondary particles having a very large particle size and strong cohesion. But Therefore, provision of a technique for making the pigment finer is required.
  • organic pigments are refined by using a solvent salt that uses a grinding agent such as salt to mechanically pulverize pigment particles together with highly viscous water-soluble organic solvents such as polyethylene glycol.
  • a grinding agent such as salt
  • Wet pulverization method typified by milling method, dry pulverization method using powder pulverizer such as ball mill, attritor, vibration mill, etc., or powder solubilization to make a solution, which is precipitated under specific conditions And fine particle pigments.
  • the agglomeration force between the pigment particles becomes stronger as the pigment becomes finer.
  • the water-based wet method causes aggregation after drying.
  • the pigment particles are present as secondary aggregates in the form of aggregates with very strong cohesive force, making it more difficult to disperse into the solvent.
  • color filters are widely used for monitors such as TVs, personal computers and mobile phones, and for CCD or CMOS applications used in digital cameras. It has become mainstream.
  • CCD or CMOS applications used in digital cameras. It has become mainstream.
  • the color filter is not faded by the irradiation of the knocklight, and therefore is required to have light resistance. Further, the color filter is subjected to a heat treatment of about 250 ° C. during patterning curing or ITO film deposition. Heat resistance is required. However, when the pigment is finely divided, the light resistance and heat resistance generally decrease. Accordingly, there is a strong demand for a color filter coloring material that has a nano-size size and can be stably dispersed in a vehicle and has excellent light resistance and heat resistance.
  • dyes have been used as coloring materials for ink-jet inks in terms of clogging of the head portion, ink dispersion stability, saturation, and the like, but dyes have toxicity problems.
  • ink pigments due to the recent demand for improving the light resistance of printed materials, attempts have been made to ink pigments as coloring materials against dyes.
  • Patent Document 4 As a technology for making organic pigments into fine particles, a fine organic pigment ⁇ -type copper phthalocyanine pigment and a dioxazine violet pigment having an aspect ratio of 10 to 25 are both subjected to solvent salt milling. Proposal of manufacturing method! Speak (Patent Document 4). Also proposed is a method of producing organic pigment fine particles by circulating a solution of an organic pigment dissolved in an alkaline or acidic aqueous medium as a laminar flow, and changing the ⁇ ⁇ of the solution in the laminar flow process ( Patent Document 5).
  • a coloring composition for color filter containing an organic-inorganic composite pigment having an average particle diameter of 1 to: LOOnm having an organic pigment attached to the surface of white inorganic fine particles, and the coloring material for color filter A color filter containing the same has been proposed (Patent Document 6).
  • Patent Document As an inkjet ink, an aqueous inkjet recording liquid containing a pigment and colloidal silica for the purpose of obtaining a high-quality printed image has been proposed (Patent Document).
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2005-36150
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2003 246941
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2006-091649
  • Patent Document 5 Japanese Laid-Open Patent Publication No. 2005-307154
  • Patent Document 7 Japanese Patent Laid-Open No. 9 227812
  • Patent Document 8 Japanese Unexamined Patent Publication No. 2000-53901
  • Patent Document 9 Japanese Patent Laid-Open No. 2003-55591
  • Patent Document 10 Japanese Patent Laid-Open No. 2003-268278
  • Patent Document 11 Japanese Patent Laid-Open No. 2003-327880
  • Patent Document 12 Japanese Unexamined Patent Publication No. 2006-111875
  • a fine colorant having a small primary particle diameter, a uniform particle size, high coloring power, and excellent light resistance and heat resistance is currently most demanded. It is where However, in order to obtain high coloring power and transparency, it is necessary to make the pigment finer. However, as the particle size of the pigment becomes smaller, the light resistance and heat resistance tend to decrease. A satisfactory colorant has not yet been obtained.
  • Patent Document 1 comprising micronizing comprising adding a small amount of an organic solvent having a crystal growth action to a crude quinophthalone pigment or isoindoline pigment having an average particle size larger than lOOnm and dry grinding.
  • the organic pigment is simply miniaturized, and since the ⁇ potential of the obtained organic pigment is close to zero, it is difficult to obtain an electrostatic repulsion effect in the vehicle. Therefore, it becomes difficult to obtain good dispersibility and dispersion stability in the vehicle.
  • Patent Document 2 The method described in Patent Document 2 in which an organic pigment is attached to the surface of white inorganic particles via a paste such as alkoxysilane is a white particle such as silica particles as a core particle as shown in a comparative example. Since inorganic particles are used, it is difficult to obtain a coloring power equal to or higher than that of the raw material organic pigment to be adhered.
  • the entire amount of the white inorganic particles as the core particles can be dissolved.
  • the acid or alkali is used as described in a comparative example. Since it is used in an amount equal to or more than the theoretical value, it is difficult to obtain a colorant with good light resistance and heat resistance that causes great damage to the organic pigment.
  • silica is completely dissolved and removed, the electrostatic repulsion effect in the vehicle where the zeta potential is close to zero. As a result, it becomes difficult to obtain good dispersibility and dispersion stability in the vehicle.
  • an organic-inorganic composite pigment having an average particle diameter of ⁇ lOOnm composed of primary particles obtained by adhering an organic pigment to the surface of white inorganic particles directly or via a surface modifier is dispersed in a solvent.
  • the description of the transparent coloring composition described in Patent Document 6 is a transparent coloring composition of an organic-inorganic composite pigment using white inorganic particles such as silica particles as core particles, as shown in Comparative Examples below. It is difficult to obtain a coloring composition for a color filter having a coloring power equal to or higher than that of the starting organic pigment.
  • white inorganic particles such as silica particles are used as the core particles, it is difficult to obtain high coloring power equal to or higher than the raw material organic pigment to be adhered. It is.
  • the present invention has been made in view of the above circumstances, and its purpose is that the primary particle size is minute, the coloring power is high, the dispersibility is excellent, and the light resistance is excellent.
  • Another object of the present invention is to provide colored fine composite particles, a method for producing the same, and a dispersion in which the particles are dispersed in a solvent.
  • Another object of the present invention is to provide an ink-jet ink coloring material and ink-jet ink that have a small primary particle size, a uniform particle size, and high coloring power and excellent light resistance.
  • a part of the silica particles and at least a part of the surface modifier in the composite particles in which the organic pigment is coated on the surface of the silica particles via the surface modifier are eluted.
  • the present invention suitable for an organic pigment is composed of the following three aspects 1 to 3, and the first aspect is a colored microcomposite particle composed of silica and an organic pigment, Silica is encapsulated in organic pigment, and the amount of silica is 0 in terms of Si relative to colored fine composite particles.
  • the second gist of the present invention is composed of silica and an organic pigment, wherein the silica is encapsulated in the organic pigment, and the amount of silica is 0.001 to
  • the dispersion is obtained by dispersing 9% by weight of the colored microcomposite particles described in the first aspect in a solvent.
  • a third aspect of the present invention is to add a surface modifier to silica particles, mix and stir to coat the surface modifier on the particle surface of the silica particles, and then add an organic pigment, Mixing and agitation causes organic pigment to adhere to the surface of the surface modifying agent-coated silica particles to obtain composite particles, and a part of the silica particles in the composite particles obtained by the alkaline solution and a small amount of the surface modifying agent.
  • the method for producing colored microcomposite particles described in the first aspect which comprises dissolving a part of them.
  • the present invention suitable for a color filter colorant and a color filter is composed of the following seven points of the fourth to tenth, and the fourth point is composed of silica and an organic pigment. It is contained in an organic pigment, and it exists in a color filter coloring material having a colored microcomposite particle power of 0.001 to 9% by weight in terms of Si with respect to the colored microcomposite particles.
  • the fifth gist of the present invention is composed of silica and an organic pigment, the silica is encapsulated in the organic pigment, and the amount of silica is 0.001 to Colored coloring composite composition (a) in which the color filter coloring material described in the fourth aspect consisting of 9% by weight of colored fine composite particles is dispersed in a solvent.
  • the sixth gist of the present invention is composed of silica and an organic pigment, the silica is encapsulated in the organic pigment, and the amount of silica is 0.001 to
  • the color filter coloring composition according to the fifth aspect in which a color filter colorant composed of colored fine composite particles of 9% by weight is dispersed in a solvent, the transparent composition having an acidic group and Z or a latent acidic group. It exists in the coloring composition (b) for color filters which is dispersed in a rosin solution.
  • the seventh gist of the present invention is composed of silica and an organic pigment, the silica is encapsulated in the organic pigment, and the amount of silica is 0.001 to
  • the colored filter composite composition (a) in which the color filter colorant consisting of 9% by weight of colored fine composite particles is dispersed in a solvent is dispersed in a transparent resin solution having an acidic group and Z or a latent acidic group.
  • the coloring composition for a color filter comprising a coloring composition for a color filter according to the sixth aspect (b), a polyfunctional monomer having two or more ethylenically unsaturated double bonds, and a radical photopolymerization initiator It exists in the object (C).
  • the eighth gist of the present invention consists of silica and an organic pigment, the silica is encapsulated in the organic pigment, and the amount of silica is 0.001 to
  • the colored filter composite composition (a) in which the color filter colorant consisting of 9% by weight of colored fine composite particles is dispersed in a solvent is dispersed in a transparent resin solution having an acidic group and Z or a latent acidic group.
  • the color filter coloring composition (D) comprising the color filter coloring composition (b) according to the sixth aspect and a photoacid generator.
  • the ninth gist of the present invention is composed of silica and an organic pigment, the silica is encapsulated in the organic pigment, and the amount of silica is 0.001 to A color filter coloring composition (a) in which a color filter coloring material composed of colored fine composite particles of 9% by weight is dispersed in a solvent is added to a transparent resin solution having acidic groups and Z or latent acidic groups.
  • the present invention resides in a color filter comprising a coating film-formation product of the colored composition (b) for color filter described in the sixth aspect.
  • a tenth aspect of the present invention is a coating film formed of the colored composition for color filter (C) described in the seventh aspect or the colored composition for color filter (D) described in the eighth aspect.
  • the color filter consists of
  • the present invention suitable for an ink-jet ink coloring material and an ink-jet ink comprises the following two eleventh and twelfth aspects, and the eleventh aspect comprises silica and an organic pigment, Silica is encapsulated in an organic pigment, and the amount of silica is 0.001 to 9% by weight in terms of Si with respect to colored microcomposite particles. .
  • the twelfth aspect of the present invention is composed of silica and an organic pigment, wherein the silica is included in the organic pigment, and the amount of silica is 0.001 in terms of Si with respect to the colored microcomposite particles.
  • the present invention relates to an ink jet ink containing a coloring material for ink jet ink according to the eighth aspect, comprising colored fine composite particles of ⁇ 9 wt%.
  • the colored microcomposite particles according to the first aspect of the present invention have high coloring power and are excellent in dispersibility and light resistance, commonly used paints, printing inks, etc. It is suitable as a coloring material for various uses regardless of whether it is aqueous or solvent-based.
  • the dispersion according to the second aspect of the present invention uses colored microcomposite particles having high coloring power and excellent dispersibility and light fastness properties as a coloring material. It is suitable as a dispersion.
  • the coloring material according to the fourth aspect of the present invention has a small primary particle size, high coloring power, excellent dispersibility in the vehicle, and excellent light resistance and heat resistance. Therefore, it is suitable as a color filter coloring material.
  • the colored composition according to the fifth to eighth aspects of the present invention uses a color filter coloring material having high coloring power and excellent dispersibility, light resistance, and heat resistance. In addition to being excellent in dispersion stability, light resistance and heat resistance, it is also excellent in transparency and is suitable as a coloring composition for a color filter.
  • the color filter according to the ninth to tenth aspects of the present invention is excellent in dispersibility, dispersion stability, light resistance and heat resistance, and is excellent in transparency as well as a color filter coloring composition. Is a color filter that has excellent spectral characteristics, light resistance, and heat resistance.
  • the coloring material according to the eleventh aspect of the present invention has a small primary particle diameter, uniform particle size, high coloring power, excellent dispersibility, and light resistance. Excellent
  • V is suitable as a coloring material for ink-jet ink.
  • the ink-jet ink according to the twelfth aspect of the present invention is fine, has a uniform particle size, has high coloring power, and has excellent dispersibility and light resistance. Because it uses materials, it has excellent dispersibility, dispersion stability and light resistance.
  • V an inkjet ink.
  • the colored microcomposite particles according to the first aspect of the present invention are composite particles composed of silica and an organic pigment, wherein the silica is included in the organic pigment, and the amount of silica is in terms of Si relative to the composite particles. 0.001 to 9% by weight.
  • the amount of silica contained in the colored fine composite particles in terms of Si of usually 0.001 to 9.0 wt 0/0 for colored fine composite particles, preferably 0.005 to 7.0 weight 0/0, more preferably rather is from 01 to 5.0 wt% 0.1.
  • the amount of silica is less than 0.001% by weight with respect to the colored microcomposite particles in terms of Si, the amount of silica contained in the colored microcomposite particles is too small, and the ⁇ potential of the colored microcomposite particles becomes almost zero. The electrostatic repulsion effect cannot be obtained. As a result, dispersibility in the vehicle becomes poor. Further, since there is almost no silica, it is difficult to obtain sufficient light resistance and heat resistance. On the other hand, if it exceeds 9.0% by weight, the amount of silica contained in the colored microcomposite particles is too large, so that sufficient coloring power can be obtained. It becomes difficult to obtain.
  • organic pigments examples include red organic pigments, blue organic pigments, yellow organic pigments used as colorants for paints, resin, printing inks, inkjet inks, toners, power filters, etc.
  • examples include various alkali-resistant organic pigments such as a green organic pigment, an orange organic pigment, a brown organic pigment, a purple organic pigment, and a black organic pigment.
  • Red organic pigments include azo pigments such as brilliant carmine, permanent red and condensed azo red, diaminoanthraquinol red, quinacridone red, thioindigo red, perylene red, perinone red, and diketopyrrolopyrrole red. And polycyclic pigments.
  • blue organic pigments include phthalocyanine pigments such as metal-free phthalocyanine blue, phthalocyanine blue, and fast sky blue, and condensed polycyclic pigments such as indanthrone blue and indigo blue.
  • yellow organic pigments include azo pigments such as Hansa Yellow, Benzidine Yellow, Permanent Yellow, and Condensed Yellow Yellow, and condensed polycyclic pigments such as Isoindolinone Yellow, Anthrapyrimidine Yellow, and Quinophthalone Yellow.
  • green organic pigment include phthalocyanine pigments such as phthalocyanine green.
  • orange organic pigments include azo pigments such as permanent orange, linole fast orange, pyrazolone orange, and norecan fast age range, and condensed polycyclic pigments such as quinacridone, perinone orange, and diketopyrrolopyrrole orange.
  • brown organic pigments include azo pigments such as permanent brown, nora brown, and benzimidazolone brown, and condensed polycyclic pigments such as thioindigo brown.
  • purple organic pigments include azo pigments such as fast violet, and condensed polycyclic pigments such as unsubstituted quinacridone, dioxazine violet, and perylene violet.
  • black organic pigments include condensed polycyclic pigments such as perylene black, and arlin black.
  • the average primary particle diameter of the colored microcomposite particles according to the present invention is usually 1 to 50 nm, preferably 1 to 40 nm, more preferably 1 to 30 nm.
  • the number-average particle diameter of the colored microcomposite particles according to the present invention is usually 200 nm or less, preferably 1 to 150 nm, more preferably 1 to 100 nm, and even more preferably 1 to 50 nm. If the number-average particle size of colored micro composite particles exceeds 200 nm, the particle size Since the size is too large, the optical characteristics may deteriorate, and as a result, it is difficult to achieve the object of the present invention.
  • the average particle diameter in terms of volume of the colored microcomposite particles according to the present invention is usually 200 nm or less, preferably 1 to 150 nm, more preferably 1 to LOOnm.
  • the volume-converted average particle diameter of the colored microcomposite particles exceeds 200 nm, the particle size is too large and the optical properties may be deteriorated. As a result, it is difficult to achieve the object of the present invention.
  • BET specific surface area value of the colored fine composite particles according to the present invention is usually 20 to 500 m 2 Zg, the good Mashiku 25 ⁇ 400m 2 Zg, more preferably 30 ⁇ 300m 2 Zg.
  • the coloring power of the colored microcomposite particles according to the present invention is usually 102 by the evaluation method described later.
  • % Or more preferably 103% or more, more preferably 104% or more.
  • the light resistance of the colored microcomposite particles according to the present invention is usually not more than 5.0, preferably not more than 4.5, more preferably not more than 4.0 in the ⁇ ⁇ * value in the evaluation method described later. is there.
  • the ⁇ potential of the colored microcomposite particles according to the present invention is usually 5 mV or less, preferably ⁇ 8 mV or less, more preferably ⁇ 10 mV or less, when measured in an aqueous system.
  • the zeta potential when measured in an aqueous system exceeds 5 mV and approaches zero, it is difficult to obtain good dispersibility and dispersion stability due to the electrostatic repulsion effect.
  • the ⁇ potential of the colored microcomposite particles is usually 2 mV or less, preferably 3 mV or less, more preferably 5 mV or less.
  • the zeta potential when measured in a solvent system exceeds 2 mV and approaches zero, it is difficult to obtain good dispersibility due to the electrostatic repulsion effect.
  • the surface modifier may remain on the surface of the silica particles encapsulated in the colored microcomposite particles.
  • the dispersion according to the second aspect of the present invention is composed of silica and an organic pigment, the silica is included in the organic pigment, and the amount of silica is 0.001 to
  • the colored microcomposite particles described in the first aspect of 9% by weight are dispersed in a solvent.
  • the amount of the colored microcomposite particles in the dispersion is the same as the amount of 100 parts by weight of the dispersion-constituting substrate. Usually 3 to 300 parts by weight, preferably 4 to 150 parts by weight, more preferably 5 to: LOO parts by weight, still more preferably 5 to 75 parts by weight, most preferably 5 to 50 parts by weight.
  • the dispersion-constituting substrate consists of water and Z or a water-soluble organic solvent, or a solvent of an organic solvent, and if necessary, a resin, an antifoaming agent, an extender pigment, a drying accelerator, a surfactant, a curing Accelerators and auxiliaries are added.
  • the amount of resin, antifoaming agent, extender pigment, drying accelerator, surfactant, curing accelerator, and auxiliary in the dispersion-constituting substrate is appropriately selected depending on the intended use of the dispersion, but is usually 95% by weight It is as follows.
  • Examples of the solvent for the aqueous dispersion include water and aqueous solvents such as ethyl alcohol, propyl alcohol, and butyl alcohol, which are solvents commonly used in water-based paints, Glycolate solvent such as propyl cellosolve and butylcetosolve, diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol and other polymers with oxyethylene or oxypropylene, ethylene Examples thereof include mixed solvents with glycols, propylene glycols, alkylene glycols such as 1,2,6 hexanetriol, and water-soluble organic solvents such as glycerin and 2-pyrrolidone.
  • aqueous solvents such as ethyl alcohol, propyl alcohol, and butyl alcohol, which are solvents commonly used in water-based paints
  • Glycolate solvent such as propyl cellosolve and butylcetosolve
  • Solvents for the solvent-based dispersion include aromatic hydrocarbons such as toluene and xylene; ketones such as methyl ethyl ketone and cyclohexanone; N, N dimethylformamide, N, N-dimethylacetamide, N —Amides such as methylpyrrolidone; ethylene glycol monomethyl etherenole, ethylene glycolenomonochinenoatenore, diethyleneglycolonemonomethinole etherenole, propyleneglycolonemonomethylenotenole, propyleneglycolonemonotenole ether, etc.
  • aromatic hydrocarbons such as toluene and xylene
  • ketones such as methyl ethyl ketone and cyclohexanone
  • N N dimethylformamide
  • N N-dimethylacetamide
  • N —Amides such as methylpyrrolidone
  • Ether alcohols such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl etherate acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, etc. Teracetates; acetates such as ethyl acetate, butyl acetate and isobutyl acetate; lactate esters such as methyl lactate, ethyl acetate lactate and propyl lactate; cyclic esters such as ethylene carbonate, propylene carbonate, and butyrolatatane Is mentioned.
  • highly polar organic solvents such as alcohols, ether alcohols, and ether acetates can obtain electrostatic repulsion effects. The These solvents may be used as a mixture of two or more.
  • the number-average dispersion average particle diameter of the dispersion is usually 1 to 200 nm, preferably 1 to 150 nm, more preferably 1 to 100 nm, and even more preferably 1 to 50 nm.
  • the number-converted dispersed particle diameter exceeds 200 nm, the particle size increases, and it is difficult to achieve the object of the present invention.
  • the dispersion-reduced volume average particle diameter of the dispersion is usually 1 to 200 nm, preferably 1 to 150 nm, more preferably 1 to 100 nm.
  • the volume-converted dispersed particle diameter exceeds 200 nm, the particle size increases, and it is difficult to achieve the object of the present invention.
  • the dispersion stability of the dispersion is usually 3, 4 or 5, preferably 4 or 5, when the degree of sedimentation of the particles is visually evaluated in the evaluation method described later.
  • the rate of change in viscosity is usually 20% or less, preferably 10% or less. In the case of 1 or 2 in the visual evaluation of the degree of sedimentation of the particles, or when the rate of change in viscosity exceeds 20%, it is difficult to store for a long time in a stable dispersion state.
  • the specific extinction coefficient ⁇ w (weight basis) representing the coloring power of the dispersion according to the present invention is usually 1.20 or more, preferably 1.40 to 5.00, more preferably, in the evaluation method described later. 1. 50 to 5.0 0.
  • the production method according to the third aspect of the present invention comprises (1) adding a surface modifier to silica particles, (2) mixing and stirring to coat the particle modifier surfaces of the silica particles, and (3) Organic pigment is added to the resulting coated particles, (4) mixed and stirred to attach organic pigment to the surface of the surface modifier-coated silica particles to obtain composite particles, and (5) using an alkaline solution. And dissolving at least part of the surface modifying agent and part of the silica particles in the composite particles obtained in this way.
  • the average primary particle diameter of the silica particles used is usually 1 to 100 nm, preferably 1 to 50 nm, more preferably 1 to 30 nm.
  • the BET specific surface area value of the silica particles is usually 10 to: L000m 2 Zg, preferably 15 to 500 m 2.
  • the surface modifier to be used is not particularly limited as long as it can attach an organic pigment to the surface of silica particles, and examples thereof include alkoxysilanes, silane coupling agents, and organopolysiloxanes.
  • examples of the organic silicon compounds titanate-based, aluminate-based and zirconate-based coupling agents, and low-molecular or high-molecular surfactants.
  • organic silicon compounds such as alkoxysilanes, silane coupling agents, and organopolysiloxanes are suitable.
  • Examples of the organic silicon compound include methyltriethoxysilane, dimethylmethoxysilane, phenyltriethoxysilane, diphenyloxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenylsilane.
  • Alkoxy silanes such as rudimethoxysilane, etyltriethoxysilane, propyltriethoxysilane, butyltriethoxysilane, isobutyltrimethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, and decyltriethoxysilane; vinyltrimethoxysilane, vinyltriethoxysilane ⁇ -Aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ mercaptopropyltrimethoxysilane, ⁇ -metachloropropipropy Trimethoxy silane, ⁇ - (j8- aminoethyl) ⁇ - ⁇ amino propyl trimethoxy silane, .gamma. glycidol
  • Coupling agents organopolysiloxanes such as polysiloxane, methyl hydrogen polysiloxane, and modified polysiloxane.
  • titanate coupling agents include isopropyl tristearoyl titanate, isopropyl trilith (dioctyl pyrophosphate) titanate, isopropyl tri ( ⁇ aminoethylaminoethyl) titanate, tetraoctyl bis (ditridecyl phosphate titanate). Tetra (2,2diaryloxymethyl-1-butyl) bis (ditridecyl) phosphate titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, etc. It is done.
  • aluminate coupling agent examples include: acetoalkoxyaluminum diisopropylate, aluminum diisopropoxymonoethyl acetate, aluminum triacetyl acetate, aluminum triacetyl acetate. Can be mentioned.
  • Zirconate-based coupling agents include zirconium tetrakisacetylcetonate Zirconium dibutoxybisacetylacetonate, Zirconium tetrakisethylacetoacetate, Zinoleconium tribotoxy monoethinoreacetoacetate, Dinoreconium tributoxyacetyl acetate and the like.
  • Examples of the low molecular surfactant include alkylbenzene sulfonate, dioctyl sulfonate succinate, alkylamine acetate, and alkyl fatty acid salt.
  • Examples of the polymeric surfactant include polybulal alcohol, polyacrylate, carboxymethyl cellulose, acrylic acid maleate copolymer, and olefin maleate copolymer.
  • the coating amount of the surface modifier is usually 0.05 to 1 5.0 wt 0/0 C in terms of the silica particles as core particles, preferably from 0.1 to 12.0 weight 0 / 0, more preferably 0. 15 to: a LO 0 wt 0/0..
  • the organic pigment can usually be attached to 10 to 500 parts by weight with respect to 100 parts by weight of the silica particles.
  • organic pigment used the above-mentioned red organic pigment, blue organic pigment, yellow organic pigment, green organic pigment, orange organic pigment, brown organic pigment, purple organic pigment, black
  • organic pigments with weak alkali resistance such as alkali blue and isoindoline organic pigments dissolve the organic pigment contained in the composite particles when the silica particles are alkali-dissolved by the method described below. It is not preferred to use it for producing colored microcomposite particles according to the present invention.
  • the amount of the organic pigment added is usually 10 to 500 parts by weight, preferably 30 to 400 parts by weight, more preferably 50 to 300 parts by weight with respect to 100 parts by weight of the silica particles as the core particles. is there.
  • the composite particles in the present invention (1) add a surface modifier to the silica particles, (2) mix and stir to coat the surface of the silica particles with the surface modifier, 3) It can be obtained by adding an organic pigment to the obtained surface modifier-coated silica particles, and (4) adhering the organic pigment to the surface of the surface modifier-coated silica particles by mixing and stirring. In addition, almost all of the added surface modifier is coated on the surface of the silica particles.
  • a shear force is applied to the powder.
  • An apparatus capable of handling is preferred. Specific examples include devices capable of simultaneously performing shearing, spatula and compression, such as wheel-type kneaders, ball-type kneaders, blade-type kneaders, and roll-type kneaders. Machine is preferred.
  • Examples of the wheel-type kneader include edge runners (synonymous with “mix muller”, “Simpson mill”, “sand mill”), multi-mal, stot mill, wet pan mill, conner mill, ring muller, and the like. Preferably, an edge runner, multi-mal, stommel, wet pan mill, and ring muller are used, and an edge runner is more preferable.
  • Examples of the ball-type kneader include a vibration mill.
  • Examples of the blade-type kneader include a Henschel mixer, a planetary mixer, and a nauter mixer.
  • Examples of the roll-type kneader include an etastruder.
  • the line load is normally 19.6 to 1960 NZcm (2 to 200 KgZcm), preferably 98 to 1470 NZcm (10 to 150 KgZcm), more preferably 147 to 980 NZcm (15 to LOOKgZcm), and the processing time Is usually in the range of 5 minutes to 24 hours, preferably 10 minutes to 20 hours.
  • the stirring speed is usually 2 to 2000 rpm, preferably 5 to: LOOO rpm, more preferably 10 to 800 rpm.
  • the organic pigment is usually added little by little while taking about 5 minutes to 24 hours, preferably about 5 minutes to 20 hours, or 100 parts by weight of silica particles until the desired addition amount is reached. Add 5 to 25 parts by weight of organic pigment several times.
  • the organic pigment is uniformly adhered.
  • the line load is usually 19.6 to 1960 NZcm (2 to 200 kgZcm), preferably 98 to 1470 NZcm (10 to 150 kgZcm), more preferably 147 to 980 NZcm (15 to 100 kgZcm), and the processing time is usually The range is 5 minutes to 24 hours, preferably 10 minutes to 20 hours.
  • the stirring speed is usually in the range of 2 to 2000 rpm, preferably 5 to: LOOOr pm, more preferably 10 to 800 rpm.
  • Drying or heat treatment may be performed.
  • the heating temperature is usually 40 to 150 ° C, preferably 60 to 120 ° C, and the heating time is usually 10 minutes to 12 hours, preferably 30 minutes to 3 hours. .
  • the average particle diameter of the primary particles of the obtained composite particles is usually 1 to: L00 nm, preferably 1 to 5
  • Onm more preferably 1-30 nm.
  • BET specific surface area value of the composite particles is usually 10 to 500 m 2 Zg, preferably 15 ⁇ 400m 2 Z g, more preferably 20 to 300 m 2 Zg.
  • the degree of detachment of the organic pigment from the composite particles is determined by visual observation in the later evaluation method.
  • the degree of desorption of the organic pigment is 2 or less, the desorbed organic pigment remains coarsened by recrystallization or agglomeration and is mixed in the colored microcomposite particles as the final product.
  • the object of the present invention cannot be achieved.
  • the colored microcomposite particles according to the present invention are: (5) A part of the silica component or part of the silica component and the surface modifier component remains in the composite particle by treating the composite particle with an alkaline solution. Thus, it is obtained by dissolving a part of the silica particles and at least a part of the surface modifier.
  • an aqueous sodium hydroxide solution As the alkaline solution to be used, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, ammonia or the like can be used.
  • the concentration of the composite particles in the solution at the time of dissolution treatment is usually 1.0 with respect to lOOmL of water.
  • the amount of alkali in the solution at the time of the dissolution treatment is usually 0.01 to 0.95 times the amount of alkali necessary to dissolve all the silica particles and the surface modifier. Preferably it is 0.02-0.90 times, More preferably, it is 0.05-0.85 times.
  • the amount of ano-rekaji exceeds 0.95 times, the silica particles and the surface modifier are completely dissolved, so that it is not possible to obtain the colored microcomposite particles intended by the present invention.
  • the alkali amount is less than 0.01 times, the silica particles or the silica particles and the surface modifier have a very long time to dissolve until they are 9% by weight or less with respect to the colored microcomposite particles. Because of industrial It is not preferable.
  • the pH during the dissolution treatment is usually 10.0 to 13.8, preferably 11.0 to 13.6, and more preferably 11.5 to 13.4.
  • the pH exceeds 13.8, damage to the organic pigment due to alkali becomes large, and it is difficult to obtain colored microcomposite particles having good light resistance and heat resistance.
  • the pH is less than 10.0, the silica particles or silica particles and the surface modifier have a very long time to dissolve until they are less than 9% by weight with respect to the colored microcomposite particles. Is not preferable.
  • the dissolution treatment temperature is usually 40 to 100 ° C, preferably 45 to 90 ° C, more preferably 50 to 80 ° C.
  • the temperature is lower than 40 ° C, the dissolution process takes a long time exceeding 50 hours, which is industrially disadvantageous.
  • the temperature exceeds 100 ° C, it is difficult to obtain colored microcomposite particles having good light resistance and heat resistance due to damage to the organic pigment, and since an apparatus such as an autoclave is required, it is industrially necessary. It is not preferable.
  • the dissolution treatment time is usually 5 minutes to 50 hours, preferably 10 minutes to 30 hours, and more preferably 20 minutes to 10 hours. When the treatment time is longer than 50 hours, it is industrially unfavorable because the dissolution process takes a long time.
  • the solid content and the solution are separated by filtration, washed, and subjected to normal drying or freeze drying to obtain colored microcomposite particles. Even if the colored microcomposite particles obtained in the present invention are subjected to normal drying, dispersion of the colored microcomposite particles is caused by the electrostatic repulsion effect caused by silica or silica and the surface modifier. Easy.
  • the aqueous dispersion according to the present invention is obtained by redispersing the obtained fine composite particles in water or water and a water-soluble organic solvent, or by performing a dissolution treatment, and separating the solid content and the solution from the solution. After washing with water, the solid content taken out without drying can be obtained by dispersing it in water or a water-soluble organic solvent. If necessary, a resin, a dispersant, an antifoaming agent, a surfactant, etc. may be added as additives.
  • the solvent-based dispersion according to the present invention may be obtained by redispersing the obtained fine composite particles in an organic solvent or an oil-based vehicle, or by dissolving the solid component and the solution after filtration. , Flush the washed solids with an organic solvent or oil vehicle, It can be obtained by dispersing in an oil vehicle. If necessary, as additives, resins, dispersants, antifoaming agents, extender pigments, drying accelerators, surfactants, curing accelerators, and auxiliary agents may be added.
  • the color filter colorant according to the fourth aspect of the present invention is composed of silica and an organic pigment, and the silica force is included in the organic pigment, and the amount of silica is in terms of Si relative to the colored microcomposite particles. It consists of colored microcomposite particles which are from 001 to 9% by weight.
  • the heat resistance of the color filter coloring material according to the present invention is usually not more than 5.0, preferably not more than 4.5, more preferably not less than 4.0 in terms of ⁇ * value, according to the evaluation method described later. It is as follows.
  • the color filter colorant according to the present invention has almost the same silica content, average primary particle diameter, number-converted average particle diameter, and volume-converted average as those of the colored microcomposite particles of the first gist. It has a particle size, BET specific surface area value, coloring power, light resistance, ⁇ potential when measured in an aqueous system, and ⁇ potential when measured in a solvent system.
  • the colored composition for a color filter (a) according to the fifth aspect of the present invention is composed of silica and an organic pigment, silica is encapsulated in the organic pigment, and the amount of silica is relative to the colored microcomposite particles. It is composed of a color filter for one color filter having a colored fine composite particle force of 0.001 to 9% by weight in terms of Si, and a colored composition constituting base material.
  • the coloring composition-constituting substrate comprises a solvent and additives such as a dispersant, a pigment derivative and an antifoaming agent, and a surfactant that are added as necessary.
  • the amount of the color filter coloring material in the color filter coloring composition is determined according to the color composition.
  • the amount is usually 3 to 300 parts by weight, preferably 4 to 200 parts by weight, more preferably 5 to 150 parts by weight with respect to 100 parts by weight of the material constituting substrate.
  • the amount of the additive in the coloring composition-constituting substrate is usually 60% by weight or less.
  • the solvent used in the present invention includes a color filter colorant, a transparent resin, a polyfunctional monomer having two or more ethylenically unsaturated double bonds, a photopolymerization initiator, and a photoacid generator. Any solvent can be used as long as it is dissolved or dispersed and can be removed by volatilization after coating.
  • water for example, water; aromatic hydrocarbons such as toluene and xylene; ketones such as methyl ethyl ketone and cyclohexanone; N, N dimethylformamide, N, N-dimethylacetamide, N methylpyrrolidone, etc.
  • aromatic hydrocarbons such as toluene and xylene
  • ketones such as methyl ethyl ketone and cyclohexanone
  • N N dimethylformamide
  • N N-dimethylacetamide
  • N methylpyrrolidone etc.
  • Ethylene alcohols such as ethylene glycol monomethyl ether, ethylene glycolenomonoethylenoate, diethyleneglycolenomonomethylenotenol, propylene glycolenomonomethinoatenore, propylene glycolenolemonoethylenotenole Ether ether acetates such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethylenoate etherate acetate, propylene glycol monomethinoate etherate acetate, propylene glycol monoethyl ether acetate
  • Acetic acid esters such as ethyl acetate, butyl acetate and isobutyl acetate
  • Lactic acid esters such as methyl lactate, ethyl lactate and propyl lactate
  • Cyclic esters such as ethylene carbonate, propylene carbonate and ⁇ -butyrolatone .
  • Examples of the dispersant used in the present invention include ionic surfactants such as ammonium lauryl sulfate and polyoxyethylene alkyl ether sulfate, stearylamine acetate, lauryltrimethyl ammonium chloride and the like.
  • Cationic surfactants, amphoteric surfactants such as lauryl dimethylamine oxide, lauryl carboxymethyl hydroxyethyl imidazolium betaine, nonionics such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, sorbitan monostearate Surfactants are listed. Two or more of these dispersants may be used in combination.
  • an ionic surfactant such as a system dispersant is preferred.
  • a nonionic surfactant such as a nonionic surfactant, a cationic surfactant, sodium naphthalene sulfonate formalin condensate, acetylene glycol
  • a dispersant such as a system dispersant is preferred.
  • the number-average dispersion average particle diameter of the coloring composition for color filter (a) is usually 1 to 200 nm, preferably 1 to 150 nm, more preferably 1 to 100 nm, and still more preferably 1 to 50 nm.
  • the number-converted dispersed particle diameter exceeds 200 nm, the particle size is too large, and the optical characteristics are deteriorated, so that the object of the present invention cannot be achieved.
  • the color conversion dispersion average particle diameter of the color filter composition (a) is usually 1 to 200 nm, preferably 1 to 150 nm, more preferably 1 to LOOnm.
  • the volume-converted dispersed particle diameter force exceeds S200 nm, the particle size is too large, and the optical characteristics are deteriorated, so that the object of the present invention cannot be achieved.
  • the dispersion stability of the coloring composition for color filter (a) is usually 20% or less, and preferably 10% or less, with the rate of change in viscosity according to the evaluation method described later. When the rate of change of viscosity exceeds 20%, it becomes difficult to maintain dispersibility for a long time in a stable dispersion state.
  • the transmittance at 530 nm of the color filter coloring composition (a) is usually 65% or more, preferably 70% or more, more preferably 75%. % Or more.
  • the specific extinction coefficient (weight basis) at 650 nm is generally from 1.05 to 5.00, preferably from 1.00 to 1.00, more preferably from 1.10 to 5.00, and more preferably from the evaluation method described later. 20 to 5.00.
  • the transmittance at 460 nm of the color filter coloring composition (a) is usually 65% or more, preferably 70% or more, more preferably 75%. % Or more.
  • the specific extinction coefficient (by weight) at 610 nm is usually from 1.05 to 5.00, preferably from 1.00 to 1.00, more preferably from 1.00 to 5.00, and more preferably from 1.00 to the evaluation method described below. 20 to 5.00.
  • the transmittance at 620 nm of the coloring composition for color filter (a) is usually 65% or more, preferably 70% or more, more preferably 75 % Or more.
  • the specific extinction coefficient (weight basis) at 550 nm is generally from 1.05 to 5.00, preferably from 1.00 to 1.00, more preferably from 1.00 to 5.00, and more preferably from 1.00 to the evaluation method described later. 20 to 5.00.
  • the coloring composition for color filter (a) is yellow
  • the coloring composition for color filter The transmittance at 550 nm of the product (a) is usually 65% or more, preferably 70% or more, more preferably 75% or more.
  • the specific extinction coefficient (weight basis) at 400 nm is usually from 1.05 to 5.00, preferably from 1.00 to 1.00, more preferably from 1.10 to 5.00, more preferably 1. 20 to 5.00.
  • the colored composition for a color filter (b) according to the sixth aspect of the present invention is composed of silica and an organic pigment, the silica is encapsulated in the organic pigment, and the amount of silica is relative to the colored microcomposite particles.
  • Colored composition for color filter consisting of a colorant for one color filter and a colored composition constituting substrate (a) and an acidic group and / or a colored fine composite particle force of 0.001 to 9% by weight in terms of Si It is composed of a transparent resin having a latent acidic group.
  • the transparent resin used in the present invention is not particularly limited as long as it is soluble in an alkaline developer, does not have an absorption band in the visible wavelength region, and satisfies the conditions for film forming ability.
  • a polymer substituted with one or more acidic groups, or a polymer having one or more latent acidic groups that are converted into acidic groups by the deprotection reaction by the action of an acid can be mentioned.
  • acidic groups include phenolic hydroxyl groups and carboxyl groups.
  • the amount of acidic groups and / or latent acidic groups is not particularly limited, and may be adjusted as appropriate according to the solubility in an alkaline water solution.
  • Examples of the transparent resin having a phenolic hydroxyl group include novolac resin and 4-hydroxystyrene homopolymers and copolymers.
  • Examples of the transparent resin having a carboxyl group include vinyl copolymers of an ethylenically unsaturated monomer having a carboxyl group and another copolymerizable unsaturated monomer.
  • Examples of the ethylenically unsaturated monomer having a carboxyl group include acrylic acid, methatalic acid, 2-atallylooxychetyl phthalate, 2-atallylooxypropyl phthalate, maleic acid, maleic anhydride, and itaconic acid. And itaconic anhydride.
  • Examples of the unsaturated monomer copolymerized with the monomer having a carboxyl group include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and (meth) acrylic.
  • Cyclohexyl acid isoborn (meth) acrylate, (meth) acrylic acid 2-hydroxyethyl, (meth) acrylic acid 2-hydroxypropyl, (meth) acrylic acid Benzyl, (meth) acrylic acid phenol, (meth) acrylic acid 2-ethoxyethyl, (meth) acrylic acid 2-phenoxychetyl, (meth) acrylic acid 2- (N, N-dimethylamino) ethyl, (meth) Glycidyl acrylate, (meth) acrylonitrile, (meth) acrylamide, (meth) aryl morpholide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, styrene, 4-butyltoluene, butyl acetate, butyl Examples include methyl ether.
  • the molar ratio occupied by the ethylenically unsaturated monomer having a carboxyl group in the transparent resin is generally 0.005 to 0.5, and preferably 0.05 to 0.4. Copolymers with a mono ktt force of less than 0.05 are less soluble in alkaline aqueous solution and are more likely to cause soiling in the patterning. On the other hand, when the molar ratio is more than 0.5, when an alkali development is performed after the coating film made of the resulting photosensitive composition is exposed, the insolubilized exposed portion swells to cause resolution. It may decrease or the smoothness of the coating film surface may be impaired.
  • Examples of the transparent resin containing a carboxyl group include polyamic acid obtained by polyaddition reaction of tetracarboxylic dianhydride and diamine.
  • Examples of tetracarboxylic dianhydrides include 1, 2, 3, 4-cyclobutanetetracarboxylic dianhydride, 1, 2, 3, 4-cyclopentanetetracarboxylic dianhydride, 1, 2, 3, 5— Cyclopentanetetracarboxylic dianhydride, 1, 2, 4, 5-bicyclehexenetetracarboxylic dianhydride, 3, 3 ', 4, 4, monobenzophenone tetracarboxylic dianhydride, pyromerit And acid dianhydrides, 3,3 ', 4,4,1-diphenylsulfonetetracarboxylic dianhydride, 3,3', 4,4, -biphenyltetracarboxylic dianhydride, and the like.
  • Diamines to be reacted with tetracarboxylic dianhydride include ethylenediamine, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl.
  • the polyamic acid is synthesized by a known method in a polar organic solvent.
  • the degree of polymerization of the polyamic acid is adjusted by the mixing molar ratio of tetracarboxylic dianhydride and diamine. It is adjusted.
  • Transparent resin having a latent acidic group includes a polymer having a substituent that generates a carboxyl group or a phenolic hydroxyl group by the catalytic action of an acid generated from a photoacid generator, alkali development property amplification Base polymer used for type photoresist.
  • the weight average molecular weight of the transparent resin is usually 2000 to 500000, preferably ⁇ 3000 to 30000.
  • the ratio of the transparent resin substituted with acidic groups and Z or latent acidic groups to the color filter colorant is usually 5 to 500 parts by weight, preferably 100 parts by weight of the color filter colorant. 7 to 300 parts by weight.
  • the mixing ratio of the transparent resin is less than 5 parts by weight, the film forming property and the alkali developability are deteriorated.
  • the amount exceeds 500 parts by weight the pigment concentration relatively decreases, so that it is difficult to obtain a uniform film thickness by increasing the film thickness in order to secure the color density as a color filter. Also decreases.
  • the number-average dispersion average particle diameter of the coloring composition for color filter (b) is usually 1 to 200 nm, preferably 1 to 150 nm, more preferably 1 to 100 nm, and still more preferably 1 to 50 nm.
  • the number-converted dispersed particle diameter exceeds 200 nm, the particle size is too large, and the optical characteristics are deteriorated, so that the object of the present invention cannot be achieved.
  • the volume-conversion dispersion average particle size of the coloring composition for color filter (b) is usually 1 to 200 nm, preferably 1 to 150 nm, more preferably 1 to LOOnm.
  • the volume-converted dispersed particle diameter force exceeds S200 nm, the particle size is too large, and the optical characteristics are deteriorated, so that the object of the present invention cannot be achieved.
  • the viscosity of the coloring composition for color filter (b) is usually 0.5 to: LOOOmPa's. If the viscosity exceeds lOOOmPa's, uniform coating becomes difficult. 0.5mPa's not When it is full, the coating film becomes too thin, so that the object of the present invention cannot be achieved.
  • the dispersion stability of the colored composition for color filter (b) is usually 20% or less, and preferably 10% or less, with the rate of change in viscosity, as described below. When the rate of change of viscosity exceeds 20%, it becomes difficult to maintain dispersibility for a long time in a stable dispersion state.
  • the specific absorption coefficient (weight basis) at a wavelength of 650 nm of the color filter coloring composition (b) is usually 1.05 or more according to the evaluation method described later. , Preferably 1.10 to 5.00, more preferably 1.20 to 5.00.
  • the specific absorption coefficient (by weight) of the color filter color composition (b) at a wavelength of 6 lOnm is usually 1.05 or more according to the evaluation method described later. Preferably it is 1.10 to 5.00, more preferably 1.20 to 5.00.
  • the specific absorption coefficient (weight basis) at a wavelength of 550 nm of the color filter coloring composition (b) is usually 1.05 or more, preferably by the evaluation method described later. Is 1.10 to 5.00, more preferably 1.20 to 5.00.
  • the specific absorption coefficient (by weight) of the color filter color composition (b) at a wavelength of 400 nm is usually 1.05 or more, as described below. Preferably it is 1.10 to 5.00, more preferably 1.20 to 5.00.
  • the light resistance of the colored permeable membrane produced using the colored composition for color filter (b) according to the present invention is usually 5.0 or less, preferably 4 in terms of ⁇ * value in the evaluation method described later. .5 or less, more preferably 4.0 or less.
  • ⁇ * value exceeds 5.0, the optical characteristics of the color filter deteriorate due to the irradiation of knock light, etc., and therefore the object of the present invention cannot be achieved.
  • the heat resistance of the colored permeable membrane produced using the colored composition for color filters (b) according to the present invention is usually 5.0 or less, preferably 4 in terms of ⁇ * value in the evaluation method described later. .5 or less, more preferably 4.0 or less.
  • ⁇ * value exceeds 5.0, the optical characteristics are deteriorated by the heat treatment at the time of forming the color filter or the ITO film, so that the object of the present invention cannot be achieved.
  • the transmittance of the colored permeable membrane for a color filter produced using the colored composition for a color filter (b) will be described.
  • Uses green as a color filter colorant the transmittance at a wavelength of 530 nm of the colored transmission film for color filter is usually 80% or more, preferably 85% or more, more preferably 90% or more.
  • the transmittance at a wavelength of 460 nm of the color filter colored transmission film is usually 80% or more, preferably 85% or more, more preferably 90% or more.
  • the transmittance at a wavelength of 620 nm of the color filter color transmission film is usually 80% or more, preferably 85% or more, more preferably 90% or more.
  • the transmittance at a wavelength of 550 nm of the colored transmission film for color filters is usually 80% or more, preferably 85% or more, more preferably 90% or more.
  • the specific extinction coefficient (weight basis) of the colored transparent film for color filter produced using the colored composition for color filter (b) was measured by an evaluation method described later.
  • the specific absorption coefficient (by weight) of the color filter colored transmission membrane at a wavelength of 650 nm is usually 1.05 or more, preferably 1.10 to 5.00 Preferably, it is 1.20 to 5.00.
  • the specific absorption coefficient (weight basis) at a wavelength of 610 nm of the color filter color transmission membrane is usually 1.05 or more, preferably 1.10-5.00, More preferably, it is 1.20-5.00.
  • the specific absorption coefficient (weight basis) at a wavelength of 550 nm of the color filter color transmission membrane is usually 1.05 or more, preferably ⁇ or 1.10-5.00, More preferably ⁇ 1.20-5.00.
  • the specific absorption coefficient (by weight) of the colored permeable membrane for color filters at a wavelength of 400 nm is usually 1.05 or more, preferably 1.10 to 5. 00, more preferably 1.20 to 5.00.
  • the coloring composition for color filter (C) according to the seventh aspect of the present invention comprises silica and an organic pigment, silica is encapsulated in an organic pigment, and the amount of silica is relative to the colored microcomposite particles.
  • the color filter coloring composition (a) in which a color filter coloring material having a colored micro-composite particle power of 0.001 to 9% by weight in terms of Si is dispersed in a solvent has an acidic group and Z or a latent acidic group.
  • a coloring composition for a color filter (b) a polyfunctional monomer having two or more ethylenically unsaturated double bonds, and a radical photopolymerization initiator.
  • a method for producing a pigment-dispersed color filter a light-sensitive film that does not contain a pigment is provided on a paint film that contains a pigment, and exposure is performed.
  • An etching method that removes the pigment coating layer on the non-patterned part and a photosensitive layer in which the pigment is dispersed and exposed to light, and a pattern is formed on the photosensitive layer during the development process. Material methods have been proposed.
  • the colored composition for color filters (b) according to the present invention is suitable for forming a coating film containing a pigment for the former etching method.
  • the coloring composition for power filter (b) as a photosensitive layer in which the pigment of the latter coloring photosensitive material method is dispersed, it is necessary to impart photosensitivity to the coloring composition for color filter (b).
  • the substance imparting photosensitivity to the color filter coloring composition (b) include polyfunctional monomers having two or more ethylenically unsaturated double bonds.
  • polymerization of a polyfunctional monomer having two or more ethylenically unsaturated double bonds is initiated by the radical species generated from the photopolymerization initiator, and a crosslinking reaction is induced. This causes insolubilization.
  • Polyfunctional monomers having two or more ethylenically unsaturated double bonds include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylene ethylene glycol di (meth) acrylate, tetra Methylene glycol di (meth) acrylate, pentamethylene glycol di (meth) acrylate, hexamethylene glycol di (meth) acrylate, neopentyl gallic di (meth) acrylate, pentaerythritol tri (meth) acrylate, Pentaerythritol tetra (meth) acrylate, stearic acid-modified penta erythritol meta (a) phthalate, trimethylolpropane tri (meth) acrylate, tris (atariloyloxetyl) isocyanurate, dipentaerythritol Kisa Atari rate to Lumpur, polyfunctional mono
  • a polyfunctional monomer having two or more ethylenically unsaturated double bonds includes a monofunctional monomer. Nomers may be mixed. Monofunctional monomers include methoxytriethylene glycol (meth) acrylate, 2 hydroxy 1-3 phenoxy propyl (meth) acrylate, 2- attaroyloxychetyl succinate, 2- allyloyloxychetyl Examples thereof include phthalate and 2-ataryloxypropyl phthalate.
  • the amount of the monofunctional monomer is usually 0 to 80 parts by weight, preferably 0 to 40 parts by weight with respect to 100 parts by weight of the polyfunctional monomer. When the amount of the monofunctional monomer exceeds 80 parts by weight, when the exposed film is subjected to an alkali development treatment, the film may partially peel or the resolution may be lowered.
  • the polyfunctional monomer in the present invention is suitable for mixing with the vinyl copolymer having a carboxyl group in the above-mentioned transparent resin.
  • the use ratio of the polyfunctional monomer is usually 5 to 300 parts by weight, preferably 10 to 200 parts by weight, based on 100 parts by weight of the transparent resin.
  • the mixing ratio of the polyfunctional monomer is less than 5 parts by weight, a part of the coating film after alkali development may be peeled off or the resolution may be lowered. If the mixing ratio exceeds 300 parts by weight, the alkali developability may deteriorate, resulting in problems such as background contamination and film residue in unexposed areas.
  • a photopolymerization initiator is a substance that efficiently generates radical species by light irradiation, initiates polymerization of a polyfunctional monomer to form a crosslinked structure, and dissolves alkali in a transparent resin having an acidic group. As a result, a negative image is formed.
  • the photopolymerization initiator use is made of a polymerization initiator that generates radical species upon irradiation with ultraviolet rays in the wavelength range of 200 to 450 nm among ketone compounds, triazine compounds having a trichloromethyl group, electron transfer initiators, and the like. it can.
  • the amount of the photopolymerization initiator used is not particularly limited as long as polymerization of a polyfunctional monomer having two or more ethylenically unsaturated double bonds is initiated, and may be a normal amount used.
  • Examples of the ketone photopolymerization initiator used include 2-hydroxy-2-methyl-1-phenolpropane 1-one, 1-hydroxy-1- 1-benzoylcyclohexane, 2-morpholino-1-methyl 1.
  • 2-hydroxy-2-methyl-1-phenolpropane 1-one 1-hydroxy-1- 1-benzoylcyclohexane
  • 2-morpholino-1-methyl 1.
  • Phenolpropane 1-one 2-morpholino-2-methyl — 1— (4-methoxyphenol) propane 1-one
  • 2-morpholino 1-methyl-1-one (4-methylthiophenol) propane 1
  • 2-benzyl-2-dimethylamino 1 (4-morpholinophenol) butane 1-one
  • 2-phenol 2,2-dimethoxy 1 1 (4-methylthiophene) ethane 1-one
  • diphenylmesitylene phosphine oxide phenacyltetramethylenesulfo hexahexafluorophosphate, etc.
  • the triazine compounds having a trichloromethyl group used include 2- (4-methoxy
  • the electron transfer initiator used is composed of a radical generator and a sensitizer as an electron accepting compound or an electron donating compound.
  • the electron-accepting compound include the above-mentioned trichloromethyl-substituted triazine derivatives, 2,2, -bis (2 chlorophenol) -4, 4, 4, 5, 5, phenol-biimidazole, 2, 2, 1 Bis (2,4 dichlorophenol) 1,4,4,5,5, Ferbiimidazole, 2,2,1Bis (2-cylinder) 1,4,4,5,5, Tetrakis (4 ethoxycarbol) biimidazole compounds such as biimidazole, diphenol-umhexoxanoleole phosphate, bis (4 tert-butinolevenore) iodide-sulfurophosphate, (4 -Methoxyphenyl) (4-octyloxyphenyl) odo-dome salt such as odo-hexhexafluorophosphate.
  • Sensitizers include 9, 10 dimethyl anthracene, 9, 10 diphenylanthracene, 9, 10 bis (feruechu) anthracene, 1,8 dimethyl-9,10 bis (feutureu) a Nthracene, 9, 10-Dimethoxyanthracene, 9, 10-Gethoxyanthracene, 9, 10- Dipropoxyanthracene, 9, 10-Dibutoxyanthracene, Thioxanthone, Isopropylthioxanthone, 4, 4, 1bis (jetylamino) benzophenone, etc. Is mentioned. Further, a photopolymerization initiator having an electron donating compound and a sensitizer power can also be used.
  • Examples of the electron donating compound include p-dimethylaminobenzoate and diethanolamine, and examples of the sensitizer include thixanthone derivatives. Two or more sensitizers used in combination with an electron-accepting compound or an electron-donating compound may be used in combination.
  • the coloring composition for color filter (D) according to the eighth aspect of the present invention is composed of silica and an organic pigment, silica is encapsulated in the organic pigment, and the amount of silica is smaller than that of the colored microcomposite particles.
  • the color filter coloring composition (a) in which a color filter coloring material having a colored micro-composite particle power of 0.001 to 9% by weight in terms of conversion is dispersed in a solvent has an acidic group and Z or a latent acidic group. It is composed of the coloring composition for power filter (b) described in the sixth aspect, which is dispersed in a transparent resin solution, and a photoacid generator.
  • the photoacid generator used in the color filter coloring composition (D) has an absorption wavelength in the range of 200 to 430 nm among chemical amplification type photoresists and compounds used for photopower thione polymerization.
  • Examples thereof include onion cation compounds, halogen-containing compounds that generate hydrohalic acid, and sulfonated compounds that generate sulfonic acid.
  • Examples of such cation compounds include p-phenolthiol-diphenyl senorephonium, phenacinoretetramethylene snorephonium, phenacinoresimethinolesnoreform, (2-naphthylcarboromethyl) tetramethylenesulfone.
  • ferrule (4-methoxy shift), quinudium, ferrule ⁇ 4— (tert-butyl) lev ⁇ quidium, (4—bis ⁇ 4— (tert-butyl) lev ⁇ BF4—, PF6-, AsF6—, SbF6—, CH3S03—, CF3S03—, perfluorobutane sulfonate, benzene sulfonate, ⁇ -toluene sulfonate, etc. (C6F5) 4 ⁇ -salt.
  • Acid generators that generate sulfonic acid include N trifluoromethanesulfo-oxydiphenylmaleimide, Np-toluenesulfo-loxysuccinimide, N-powered sulfo-loxysuccinimide, N- Tolufluoromethane sulfo-loxysuccinimide, N-perfluorobutane sulfo-loxyphthalimide, N-p-toluenesulfo-loxy 1,8 naphthalenecarboximide, N-camphorsulfonyloxy 1,8 naphthalenecarboximide, N 1 trifluoromethanesulfo-loxy 1,8-naphthalenecarboximide, N 2 perfluorobutanesulfo-loxy 1,8 naphthalenecarboximide.
  • the above-mentioned photoacid generator may be used in the presence of a sensitizer shown below.
  • Sensitizers include 9-methylanthracene, 9,10 dimethylanthracene, 9,10 diphenylanthracene, 9,10 dimethoxyanthracene, 9,10 ketoxyanthracene, 9,10 dipropoxyanthracene, 9,10 di Examples include butoxyanthracene, 1-methinolevylene, and thixanthone derivatives.
  • the use ratio of the photoacid generator is usually 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the transparent resin.
  • Colored composition for color filter according to the present invention Colored composition (C) and (D) in terms of number
  • the dispersion average particle diameter is usually 1 to 200 nm, preferably 1 to 150 nm, more preferably 1 to 10 Onm. Even more preferably, it is 1-50 nm.
  • the number-converted dispersed particle diameter exceeds 200 nm, the particle size is too large, and the optical characteristics are deteriorated. Is difficult to achieve.
  • the volume-conversion dispersion average particle diameter of the coloring composition for color filter (C) and (D) according to the present invention is usually 1 to 200 nm, preferably 1 to 150 nm, more preferably 1 to 100 nm.
  • the volume-converted dispersed particle diameter exceeds 200 nm, the particle size is too large, so that the optical characteristics are deteriorated, so that it is difficult to achieve the object of the present invention.
  • the viscosity of the coloring composition for color filter (C) and (D) according to the present invention is usually 0.5 to lOOOOmPa's. If the viscosity exceeds lOOOmPa's, uniform coating becomes difficult. If it is less than 0.5 mPa's, the coating film becomes too thin, and it is difficult to achieve the object of the present invention.
  • the dispersion stability of the coloring composition for color filter (C) and (D) according to the present invention is, as will be described later, the viscosity change rate is usually 20% or less, preferably 10% or less. If the rate of change of viscosity exceeds 20%, it will be difficult to maintain a stable dispersibility over a long period of time.
  • the specific absorption coefficient (weight basis) at a wavelength of 650 nm of the color filter color composition (C) and (D) according to the present invention is evaluated later.
  • the method is usually 1.05 or more, preferably 1.10 to 5.00, more preferably 1.20 to 5.00.
  • the specific extinction coefficient (weight basis) at a wavelength of 6 lOnm is usually 1.05 or more, preferably 1.10 to 5.00, more preferably 1.20- 5. 00.
  • the specific extinction coefficient (weight basis) at a wavelength of 550 nm is usually 1.05 or more, preferably 1.10 to 5.00, more preferably 1.20 to 5 .00.
  • the specific extinction coefficient (weight basis) at a wavelength of 400 nm is usually 1.05 or more, preferably 1.10-5.00, more preferably 1.20. -5.00.
  • the light transmission resistance of the colored permeable membrane for a color filter produced using the colored composition for color filter (C) and (D) according to the present invention is expressed by a ⁇ * value in the evaluation method described later. Usually, it is 5.0 or less, preferably 4.5 or less, more preferably 4.0 or less. If the light resistance ( ⁇ ⁇ * value) exceeds 5.0, the optical properties of the color filter may be affected by knock light irradiation. It is difficult to achieve the object of the present invention.
  • the color filter colored permeable membrane prepared using the color filter coloring composition (C) and (D) according to the present invention has a heat resistance of ⁇ * in the evaluation method described later. Usually, it is 5.0 or less, preferably 4.5 or less, more preferably 4.0 or less. When the heat resistance ( ⁇ * value) exceeds 5.0, the optical characteristics are deteriorated due to the heat treatment at the time of forming the color filter or the ITO film, so that it is difficult to achieve the object of the present invention. .
  • Specific absorption coefficient at a wavelength of 650 nm of a colored transmission film produced using the colored composition (C) and (D) for a color filter according to the present invention when green is used as a color filter colorant is an evaluation method described later, and is usually 1.20 or more, preferably 1.40-5.00, more preferably 1.50-5.00.
  • the specific extinction coefficient (weight basis) at a wavelength of 610 nm is usually 1.20 or more, preferably 1.40 to 5.00, more preferably 1.50 to 5. 00.
  • the specific extinction coefficient (weight basis) at a wavelength of 550 nm is usually 1.20 or more, preferably 1.40 to 5.00, more preferably 1.50 to 5.
  • the specific extinction coefficient (by weight) at a wavelength of 400 nm is usually 1.20 or more, preferably 1.40-5.00, more preferably 1.50- 5. 00.
  • the color filter according to the ninth aspect of the present invention is composed of silica and an organic pigment, the silica is included in the organic pigment, and the amount of silica is 0.001 to 9% by weight of colored fine composite particle force
  • Color composition for color filter in which color filter colorant is dispersed in a solvent Disperse (a) in transparent resin solution having acidic groups and Z or latent acidic groups
  • the coating composition of the coloring composition for color filters (b) described in the sixth aspect is composed of silica and an organic pigment, the silica is included in the organic pigment, and the amount of silica is 0.001 to 9% by weight of colored fine composite particle force
  • Color composition for color filter in which color filter colorant is dispersed in a solvent Disperse (a) in transparent resin solution having acidic groups and Z or latent acidic groups
  • the coating composition of the coloring composition for color filters (b) described in the sixth aspect The coating composition of the coloring composition for color filters (b) described in the sixth aspect.
  • the color filter according to the tenth aspect of the present invention includes (I) silica and an organic pigment, the silica is included in the organic pigment, and the amount of silica is smaller than that of the colored microcomposite particles.
  • the colored composition for color filter in which the coloring material for color filter consisting of colored fine composite particles is 0.001 to 9% by weight in Si conversion is dispersed in the solvent (a) is acidic group and Z or latent
  • a color filter composition for use in the color filter according to the sixth aspect which is dispersed in a transparent resin solution having an acidic group (b) and a multifunctional monomer having two or more ethylenically unsaturated double bonds
  • Color composition for color filter comprising photo radical polymerization initiator (C), or (ii) Silica and organic pigment, silica is encapsulated in organic pigment, and the amount of silica
  • the light transmittance of the color filter is usually 75% or more, preferably 80% or more, more preferably 85% or more in the transmission region of each color.
  • the contrast is usually 800 or more, preferably 1000 or more, more preferably 1200 or more.
  • the color filter coloring composition (a) according to the present invention is obtained by redispersing the color filter colorant of the present invention in an organic solvent or an oil-based vehicle, or by dissolving and then dissolving the solid content.
  • the liquid can be separated by filtration, washed with water, and then the wet cake is flushed with an organic solvent or an oil vehicle and then dispersed in the organic solvent or oil vehicle.
  • a ball mill, a bead mill, a sand mill, an edge runner, a two or three roll mill, an etastruder, and a high-speed impact mill can be used for the dispersion treatment. Depending on the material of the mill, steel beads, glass beads, ceramic beads, etc.
  • the size of the ground product is usually 0.01 to: L0 mm, preferably 0.03 to 3 mm.
  • the grinding temperature is not particularly limited, and may be any temperature, for example, from room temperature to the boiling point of the solvent. If necessary, add dispersants, pigment derivatives, antifoaming agents, surfactants, etc. as additives.
  • the color filter coloring composition (b) dissolves a transparent resin having an acidic group or a transparent resin having a latent acidic group in the colored composition (a) for a color filter.
  • transparent resin having an acidic group in advance or transparent having a latent acidic group It can be obtained by mixing and dispersing a color filter colorant in a solvent in which alum oil is dissolved.
  • the color filter coloring composition (C) imparted with photosensitivity of the present invention is obtained by adding a photopolymerization initiator and an ethylenically unsaturated compound to a colored composition (b) containing a transparent resin having an acidic group. It can be obtained by adding and mixing a polyfunctional monomer having two or more double bonds. In this case, if necessary, a solvent may be added to adjust the pigment concentration, viscosity, and the like. Furthermore, a polymerization inhibitor and a hardening accelerator such as 2-mercaptobienimidazole may be added as necessary.
  • the color filter coloring composition (D) to which photosensitivity is imparted according to the present invention is applied to the color filter coloring composition (b) containing a transparent resin having a latent acidic group. It can be obtained by adding and mixing herbicides.
  • the coloring composition for a color filter of the present invention is applied on a transparent substrate on which a black matrix pattern is formed, and then the solvent is sufficiently removed by pre-beta treatment to form a colored coating film.
  • a positive-type photoresist layer capable of alkali development is provided on the colored coating film to form a two-layer coating film.
  • the alkali developable positive photoresist a quinonediazide-based photoresist is preferably used.
  • the colored coating film is irradiated with light through a photomask, and then developed with an alkaline aqueous solution. Since the exposed portion of the coating film coated with the positive photoresist layer becomes alkali-soluble, the exposed colored layer is also etched with the alkaline solution to form a colored positive image. Next, the photoresist layer is selectively removed with a solvent to form a colored pattern.
  • the film is used as a colored photosensitive layer as it is. If exposure is performed through a photomask and force alkali development is performed, the exposed portion is insoluble and a negative colored pattern can be obtained.
  • the development treatment include a dipping method, a spray method, a paddle method, and a shower method. After alkali development treatment, it is washed with water and dried.
  • the transparent substrate polycarbonate, polyester, polyamide, polyimide, polyamideimide and the like can be used in addition to silica glass.
  • a silicon substrate can be used for manufacturing a solid-state imaging device.
  • the method for applying the color filter coloring composition onto the transparent substrate include spin coating, cast coating, roll coating, screen printing, and inkjet method.
  • the thickness of the coating film is a force that also depends on the concentration of the color filter colorant, and is usually from 0.1 to 10 111, preferably from 0.2 to 5.0 m.
  • alkali developer examples include aqueous solutions of sodium carbonate, potassium carbonate, sodium hydroxide, lithium hydroxide, tetramethyl ammonium hydroxide, and the like. Methanol, ethanol, isopropyl alcohol, surfactants, etc. may be added to the alkaline aqueous solution.
  • the colorant for ink-jet ink according to the eleventh aspect of the present invention comprises silica and an organic pigment, the silica is encapsulated in the organic pigment, and the amount of silica is in terms of Si with respect to the colored microcomposite particles.
  • the colored microcomposite particle force of the first aspect which is from 001 to 9% by weight, is also formed.
  • the particle size distribution of the primary particle size of the coloring material of the ink-jet ink is usually 2.0 or less, preferably 1.8 or less, more preferably 1 as the geometric standard deviation of the particle size of the primary particles. 5 or less.
  • the particle size distribution exceeds 2.0, it is difficult to achieve the object of the present invention because the dispersibility and dispersion stability in the ink jet ink in which the composite pigment has a wide particle size distribution are lowered.
  • the average particle diameter in terms of number of the coloring material of the inkjet ink is usually 150 nm or less, preferably 1 to 100 nm, more preferably 1 to 50 nm, and still more preferably 1 to 40 nm. If the number average particle diameter of the ink jet ink colorant exceeds 150 nm, the particle size is too large, and the resulting inkjet ink may clog the head portion of the inkjet recording apparatus. is there.
  • the volume-converted average particle diameter of the coloring material of the ink-jet ink is usually 1 to 150 nm, preferably 1 to 125 nm, more preferably 1 to 100 nm.
  • the volume-converted average particle size of the coloring material of the inkjet ink exceeds 150 nm, the particle size is too large, and the resulting inkjet ink may clog the head portion of the inkjet recording apparatus. There is.
  • the light resistance of the coloring material of the inkjet ink is usually 5.0 or less, preferably 4.5 or less, more preferably 4.0 or less in terms of ⁇ ⁇ * value in the evaluation method described later.
  • ⁇ * value the light resistance of the coloring material of the inkjet ink is usually 5.0 or less, preferably 4.5 or less, more preferably 4.0 or less in terms of ⁇ ⁇ * value in the evaluation method described later.
  • the light resistance ( ⁇ * value) exceeds 5.0, the printed matter printed with the obtained inkjet ink may not have sufficient light resistance.
  • the colorant of the inkjet ink according to the present invention has a silica amount substantially the same as that of the colored microcomposite particles of the first aspect, and the average primary particle diameter of the colorant of the inkjet ink. , BET specific surface area value, tinting strength, and ⁇ potential when measured in aqueous system.
  • the ink-jet ink according to the twelfth aspect of the present invention comprises silica and an organic pigment, the silica is included in the organic pigment, and the amount of silica is 0.001 in terms of Si with respect to the colored fine composite particles. It comprises a colorant for an ink jet ink described in the eighth aspect and an ink constituent solution comprising colored fine composite particles of ⁇ 9% by weight.
  • the number-average dispersed average particle size of the inkjet ink is usually 1 to 150 nm, preferably 1 to: LOOnm, more preferably 1 to 50 nm, and even more preferably 1 to 40 nm.
  • LOOnm LOOnm
  • the number converted dispersed particle diameter exceeds 150 nm, clogging of the head portion is likely to occur, and the dispersion stability of the coloring material in the ink jet ink decreases.
  • the volume-average dispersed average particle size of the inkjet ink is usually 1 to 150 nm, preferably 1 to 125 nm, more preferably 1 to 100 nm.
  • the volume-converted dispersed particle diameter exceeds 150 nm, the head portion is likely to be clogged, and the dispersion stability of the coloring material in the ink jet ink is lowered.
  • the dispersion stability of the ink-jet ink is usually 5 or 4 and preferably 5 in visual observation in a later evaluation method.
  • the rate of change of the number-converted dispersed particle size is usually 10% or less, preferably 8% or less.
  • the specific extinction coefficient ⁇ w (weight basis) representing the coloring power of the ink-jet ink is usually 1.20 or more, preferably 1.40 to 5.00, more preferably 1.50 in the evaluation method described later. ⁇ 5.0 0.
  • the light resistance of a printed image obtained using an ink jet ink is generally 3.0 or less, preferably 2.5 or less, and more preferably 2.0 or less in terms of ⁇ * value.
  • the clogging resistance of the head portion of the ink jet ink is usually 5 or 4 and preferably 5 in visual observation in the later evaluation method.
  • the ratio of the colorant in the ink-jet ink is usually relative to the ink constituent solution.
  • the ink constituent solution which is a constituent of the ink-jet ink according to the present invention, comprises a solvent, a dispersant, and, if necessary, a water-soluble resin, a penetrating agent, a moisturizing agent, a water-soluble solvent, a pH adjuster and And Z or preservatives.
  • the amount of water-soluble resin, penetrant, humectant, water-soluble solvent, pH adjuster and Z or preservative in the ink composition solution is usually 50% by weight or less.
  • the ratio of the dispersant in the inkjet ink is usually 5 to 200% by weight, preferably 7.5 to 150% by weight, more preferably 10 to 100% by weight, based on the colorant of the inkjet ink. It is.
  • the dispersant a surfactant and Z or a polymer dispersant can be used.
  • the surfactant is preferably a ionic surfactant or a nonionic surfactant.
  • Water-soluble resin such as styrene-acrylic acid copolymer is preferred.
  • examples of the char-on surfactant include fatty acid salts, sulfate salts, sulfonate salts, and phosphate ester salts. Of these, sulfate esters and sulfonates are preferred.
  • Non-ionic surfactants include polyethylene glycol type nonionic surfactants such as polyoxyethylene alkyl ether and polyoxyethylene aryl ether, and polyhydric alcohol type nonionic surfactants such as sorbitan fatty acid ester. Is mentioned. Of these, polyethylene glycol type nonionic surfactants are preferred.
  • Examples of the cationic surfactant include amine salt type cationic surfactants and quaternary ammonium salt type cationic surfactants. Above all, the fourth grade ammonia salt Type cationic surfactants are preferred.
  • polymer dispersant examples include alkali-soluble resins such as styrene-acrylic acid copolymers, styrene-maleic acid copolymers, and polyacrylic acid derivatives.
  • the solvent for the ink-jet ink is composed of water and, if necessary, a water-soluble organic solvent.
  • the ratio of the water-soluble organic solvent is usually 50% by weight or less, preferably 1 to 50% by weight, more preferably 1 to 40% by weight, and still more preferably 1 to 30% by weight with respect to the ink constituent solution. is there.
  • water-soluble organic solvents include monohydric alcohols such as methanol, ethanol, n-propanol, iso-propanol, and butanol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylenedaricol, propylene glycol, dipropylene glycol, etc.
  • Dihydric alcohols such as glycerin, polyanolene glycols such as polyethylene glycol and polypropylene glycolol, diethylene glycol nore noobino enotenole, ethylene glycol nomonobutino reeenore, triethylene glycol noremo
  • dihydric alcohols such as glycerin, polyanolene glycols such as polyethylene glycol and polypropylene glycolol, diethylene glycol nore noobino enotenole, ethylene glycol nomonobutino reeenore, triethylene glycol noremo
  • lower alkyl ethers of polyhydric alcohols such as nobutyl ether and ethylene glycol monoethyl ether. Use a combination of two or more of the above water-soluble organic solvents.
  • the ink-jet ink according to the present invention comprises a predetermined amount of an ink-jet ink coloring material, a dispersant and water, and if necessary, additives such as a penetrating agent, a humectant, a water-soluble solvent, a pH adjuster and a preservative. Obtained by mixing and dispersing water, a water-soluble solvent and other additives, and then filtering using a membrane filter. It is done.
  • Examples of the dispersing machine include a ball mill, a sand mill, an attritor, a roll mill, and a bead mill.
  • Colloid mills 2- or 3-roll mills, ultrasonic homogenizers, high-pressure homogenizers, and the like can be used.
  • the important points in the first to third aspects of the present invention are that the primary particles of the colored microcomposite particles according to the present invention are minute, and the colored microcomposite particles have high coloring power and excellent dispersibility. Moreover, it is the fact that it is excellent in light resistance. [0204]
  • the reason why the colored microcomposite particles according to the present invention have high coloring power and excellent dispersibility is estimated as follows. In general, organic pigments that are simply refined have a very high surface energy of the particles, so that they are agglomerated and it is difficult to immediately maintain a fine particle state in the vehicle.
  • the colored microcomposite particles according to the present invention have an absolute value of ⁇ potential for encapsulating silica in the organic pigment, and an electrostatic repulsion effect is obtained in the vehicle. It can be dispersed in a fine state, and high coloring power can be obtained.
  • the important points in the fourth to eighth aspects of the present invention are that the primary particles of the color filter coloring material according to the present invention are fine, and the color filter coloring material has a high coloring power and vehicle. It is the fact that it has excellent dispersibility and excellent light resistance and heat resistance.
  • the reason why the color filter coloring material according to the present invention has high coloring power and excellent dispersibility, and is excellent in light resistance and heat resistance is as follows. It is based on the micro composite particle force. In addition, since silica having high heat resistance and light resistance is included in the organic pigment, the heat resistance and light resistance can be maintained and improved even when the organic pigment is miniaturized. The inventor speculates.
  • the present inventor is fine and dispersed. It is assumed that the color filter colorant according to the present invention is excellent in lightness and light resistance and heat resistance.
  • the tenth aspect of the present invention The important point in the gist of L 1 is that the colorant of the inkjet ink according to the present invention has a small primary particle size, a uniform particle size, and a high This is the fact that it has high coloring power and excellent dispersibility, and also has excellent light resistance.
  • the reason why the ink coloring material according to the present invention has high coloring power, excellent dispersibility, and light resistance is based on the fact that the ink coloring material has the above-mentioned colored micro composite particle force. , Te, ru
  • the colored microcomposite particles according to the first aspect of the present invention have high coloring power and are excellent in dispersibility and light resistance, and thus are suitable as coloring materials for various applications. Since the dispersion according to the second aspect of the present invention uses the colored microcomposite particles having the above characteristics as a coloring material, it is suitable as a dispersion for various uses. In addition, the colored fine composite particles and the dispersion according to the present invention can be used as coloring materials for various uses regardless of whether they are water-based or solvent-based, such as commonly used paints and printing inks.
  • the colorant for color filter according to the fourth aspect of the present invention has a fine primary particle diameter, high coloring power, excellent dispersibility in the vehicle, light resistance, and Since it is excellent in heat resistance, it is suitable as a color filter colorant.
  • the color filter coloring composition according to the gist of the present invention Nos. 5 to 8 uses the color filter colorant having the above characteristics, it is excellent in dispersibility, dispersion stability, light resistance, and heat resistance. Therefore, it is suitable as a coloring composition for a color filter having excellent transparency.
  • the ninth aspect of the present invention uses a color filter coloring composition having the above-mentioned characteristics, and therefore has excellent spectral characteristics, light resistance and heat resistance. Since it is excellent, it is suitable as a color filter.
  • the coloring material of the ink-jet ink according to the eleventh aspect of the present invention has a primary particle diameter that is minute, a uniform particle size, high coloring power, and excellent dispersibility. Since it is excellent in light resistance, it is suitable as a coloring material for inkjet ink. Ninth Summary of the Invention Since it is used as a coloring material for jet ink, it is suitable as an inkjet ink excellent in dispersibility, dispersion stability and light resistance.
  • the particle size distribution of the primary particle size of each particle was represented by a geometric standard deviation value obtained by the following method. That is, the measured particle size of the particle shown in the above enlarged photograph is calculated on the logarithmic normal probability paper according to the actual particle size and number force statistical method obtained by calculating the measured force. The particle diameter is plotted on the horizontal axis, and the cumulative number of particles belonging to each of the predetermined particle diameter sections (under the integrated fluid) is plotted on the vertical axis as a percentage. From this graph, the particle size values corresponding to 50% and 84.13% of the number of particles are read, and the geometric standard deviation value is 84.13% under the particle size Z. The value was calculated according to the particle diameter (geometric mean diameter). A geometric standard deviation value closer to 1 means that the particle size distribution of the primary particle size is better.
  • the number-average particle size and the volume-average particle size of each particle are determined by dispersing an aqueous solution in which the particles to be measured and water are mixed for 1 minute using an ultrasonic disperser, Scattering method Measured using “Dense particle size analyzer FPAR-1000” (Otsuka Electronics Co., Ltd.)
  • each particle is 0.5 g of the sample and 0.5 mL of castor oil, kneaded with a Hoover-type Mahler to form a paste, and 4.5 g of clear lacquer is added to this paste and kneaded.
  • the product was measured using a color index according to the conditions specified in JIS Z 8929.
  • coloring power (%) 100+ ⁇ ( ⁇
  • 80g is mixed and dispersed with a paint shaker for 15 minutes to produce color-enamel. It was.
  • [0233] 1 30 or more per 100 composite particles.
  • ⁇ & * value Indicates the difference in a * value before and after the heat treatment test of the sample to be compared.
  • a b * value Indicates the difference in b * value before and after the heat treatment test of the sample to be compared. ) Is calculated according to ⁇ ⁇ * value.
  • the number-average dispersion average particle diameter and volume-conversion dispersion average particle diameter of the dispersion containing colored microcomposite particles, the coloring composition for color filters, and the ink for inkjet are determined by the dynamic light scattering method “concentrated system”. Measurement was performed using a particle size analyzer FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.).
  • the non-colored portion is 10 cm or more.
  • Non-colored part is 5cm or more and less than 10cm.
  • Non-colored part is 1cm or more and less than 5cm.
  • Non-colored part is less than lcm.
  • the coloring power of the dispersion containing the colored microcomposite particles and the coloring composition for the color filter is 0.08 wt.% In the case of the aqueous dispersion.
  • a PGMEA solution in which the concentration of colored microcomposite particles and color filter colorant is adjusted to 0.08% by weight is placed in a quartz cell and has the highest light absorption.
  • the extinction coefficient at the wavelength was measured using a “self-recording photoelectric spectrophotometer UV-2100” (manufactured by Shimadzu Corporation), and the formula: ⁇ w
  • w is the specific extinction coefficient and ⁇
  • h represents the extinction coefficient per unit weight of each colored micro-composite particle and color filter coloring material
  • each colored micro-composite.
  • the extinction coefficient per unit weight of the organic pigment used as a raw material for the composite particles and the color filter colorant is shown.
  • the specific extinction coefficient ⁇ calculated according to). The larger the specific extinction coefficient value, the higher the coloring power of the dispersion containing the colored fine composite particles and the coloring composition for one color filter.
  • the light transmittance of the color filter coloring composition is determined by placing the color filter coloring composition diluted so that the organic pigment concentration is 0.008% by weight into a quartz cell, and then adding a green-based color filter.
  • the transmittance at a wavelength of 530 nm is used.
  • the transmittance for the blue color filter is used.
  • the transmittance for the red color filter is 620 nm.
  • the transmittance at a wavelength of 550 nm was measured using “Self-recorded photoelectric spectrophotometer UV-2100” (manufactured by Shimadzu Corporation).
  • the chromaticity of the colored transparent film for color filter obtained using the colored composition for color filter is 150 / zm for the tarr film obtained by applying the colored composition for color filter prepared according to the formulation described later.
  • the coating piece for measurement obtained by coating and drying with thickness is measured using “Spectrocolorimeter CM-3610d” (Minolta Co., Ltd.), and the XY color defined by CIE (International Lighting Commission) Shown according to the degree diagram.
  • ⁇ & * value Indicates the difference in a * value before and after the heat treatment test of the sample to be compared.
  • a b * value Before and after the heat treatment test of the sample to be compared. The difference in b * value is shown.) Therefore, it is shown by the calculated ⁇ * value.
  • the light transmittance of the colored transparent film for color filter obtained by using the colored composition for color filter was measured in order to measure the chromaticity of the colored transparent film for color filter.
  • the transmittance of a wavelength of 530 nm is used for a colored permeable film for a green color filter
  • the transmittance of a wavelength of 460 nm is used for a colored transmissive film for a blue color filter.
  • the transmittance of a wavelength of 620 nm is used.
  • the transmittance of a wavelength of 550 nm is used. ).
  • the transmittance of the color filter was determined by using the color filter manufactured by the method described later, the transmittance at each wavelength of 530 nm, 460 nm, and 620 nm, as described in “Self-recorded photoelectric spectrophotometer UV-2100” ( (Manufactured by Shimadzu Corporation).
  • the contrast of the color filter is the brightness when the color filter produced by the method described below is sandwiched between two polarizing plates on the backlight and the polarizing plates are oriented in parallel (A) The brightness (B) when crossed was measured and indicated by (A) / (B).
  • the coloring power of the inkjet ink is determined by adding an aqueous solution in which the concentration of the coloring material of the inkjet ink is adjusted to 0.08% by weight in a quartz cell, and calculating the extinction coefficient at the wavelength with the largest light absorption.
  • ⁇ / ⁇ (where ⁇ is the specific extinction coefficient, ⁇ is wh 0 wh is the extinction coefficient per unit weight of the colorant of each inkjet ink, and ⁇ is Each
  • 0 Indicates the extinction coefficient per unit weight of the organic pigment used as a raw material for the ink jet ink colorant.
  • the specific extinction coefficient ⁇ calculated according to). The larger the specific extinction coefficient value, the higher the coloring power of the dispersion containing the coloring material for the inkjet ink.
  • the maximum particle size Dd is determined by the dynamic light scattering method “Dense particle size analyzer FPAR-1000” (
  • the rate of change of the dispersed particle size in terms of the number of inkjet inks was determined by the dynamic light scattering method “Dense Particle Size Analyzer FPAR-100 0” after the ink was left at 60 ° C. for 1 month. (Otsuka Electronics Co., Ltd.) was measured, and the value obtained by dividing the amount of change in the number-converted dispersed particle diameter before and after standing by the value before standing was expressed as a percentage as the rate of change.
  • ⁇ ⁇ * Value ((AL * value) 2 + (Aa * value) 2 + (Ab * value) 2 ) 1/2
  • AL * value indicates the difference in L * value of the sample to be compared with or without UV irradiation.
  • the ⁇ & * value indicates the difference in the a * value with or without UV irradiation of the sample to be compared
  • the Ab * value indicates the difference in the b * value with or without UV irradiation of the sample to be compared. Light resistance was shown by the value.
  • the resistance to clogging of ink jet ink is determined by placing the ink in the cartridge of the inkjet printer “Deskjet 970Cxi” (manufactured by HEWLETT PACKARD) on plain paper “KBJ” (manufactured by Kokuyo Co., Ltd.) at room temperature. Printing was performed, and the degree of printing disturbance, chipping, or non-ejection was visually evaluated, and the following five levels were evaluated.
  • [0254] 1 Print disorder, chipping, or non-ejection from the first sheet.
  • Silica 1 (average primary particle size: 16 nm, BET specific surface area value: 204.3 m 2 Zg, light resistance ⁇ *: 5.36) 7. Okg, methylhydropolysiloxane (trade name: TSF484: manufactured by GE Toshiba Silicone Co., Ltd.) 140 g was added while running the edge runner, and mixed and stirred for 30 minutes with a linear load of 588 N / cm (60 kgZcm). The stirring speed at this time was 22 rpm.
  • organic pigment G (type: phthalocyanine pigment, average particle size: 100 nm, BET ratio table area value: 67.3m 2 Zg, L straight: 29.77, value: — 15.30, value: — 1.12, value: 15.34, Light resistance ⁇ *: 8.06, Water-based ⁇ potential: — 3.6 mV, Solvent-based ⁇ potential: — 1.5 mV) 7.
  • the mixture was stirred for 100 minutes with a linear load of 392 NZcm (40 Kg / cm), and organic pigment G was adhered to the methylhydrogenpolysiloxane coating.
  • drying was performed at 80 ° C. for 60 minutes using a dryer, and composite particles 1 were obtained. The stirring speed at this time was 22 rpm.
  • the obtained composite particles 1 had an average primary particle diameter of 20 nm and a BET specific surface area value of 78.
  • the coloring power was 93%, the light resistance ⁇ ⁇ * was 2.12, the ⁇ potential in the aqueous system was 22.7 mV, and the ⁇ potential in the solvent system was 6.6 mV.
  • the coating amount of methylnodrodiene polysiloxane was 0.53% by weight in terms of C.
  • the adhering organic pigment G was 18.15% by weight in terms of C (corresponding to 100 parts by weight with respect to 100 parts by weight of silica particles).
  • the obtained colored microcomposite particles had an average primary particle diameter of 15 nm, a number-converted average particle diameter force S22 nm, a volume-converted average particle diameter of 78 nm, and a BET specific surface area value of 83.6 m 2 Zg.
  • the amount of silica contained in the colored microcomposite particles is 1.06% by weight in terms of Si, the hue value is 31.33, the a * value is 14.14, the value is 1.10, the value is 14.33,
  • the coloring power was 105%, the light resistance ⁇ ⁇ * was 3.56, the ⁇ potential in the aqueous system was 13.8 mV, and the ⁇ potential in the solvent system was 6.4 mV.
  • Example 1-1 In a 140 mL glass bottle, add 15 parts by weight of the colored microcomposite particles obtained in Example 1-1 and 100 parts by weight of water together with 100 g of 0.35 mm ⁇ glass beads, and disperse in a paint shaker for 2 hours. Got the body.
  • the obtained aqueous dispersion containing colored microcomposite particles has a number-converted dispersed particle diameter of 19 nm, a volume-converted dispersed particle diameter of 42 nm, a dispersion stability of 5, and a viscosity change rate of 4.8%.
  • the specific extinction coefficient ⁇ w was 2.46.
  • the solvent-based dispersion containing the colored microcomposite particles obtained has a number-based dispersed particle diameter of 19 nm, a volume-converted dispersed particle diameter of 48 nm, a dispersion stability of 5, and a viscosity change rate of 4.7%.
  • the specific extinction coefficient ⁇ w was 2.44.
  • Composite particles, colored microcomposite particles, aqueous dispersions, and solvent dispersions were produced according to composite particles 1 and Examples 1 1 to 3-1. Various production conditions and the characteristics of the obtained composite particles, colored micro composite particles, aqueous dispersion and solvent dispersion are shown below.
  • Silica particles 1 to 4 having the characteristics shown in Table 1 were prepared as core particles.
  • Organic pigments having the characteristics shown in Table 2 were prepared as organic pigments.
  • Type of core particles, type and addition amount of surface modifier, line load and time of edge runner treatment in the coating process of surface modifier, type of organic pigment, addition amount, edge in the adhesion process of organic pigment Composite particles were obtained in the same manner as composite particles 1 except that the runner treatment line load and time were variously changed. The production conditions at this time are shown in Table 3, and the characteristics of the resulting composite particles are shown in Table 4.
  • Colored microcomposite particles were obtained in the same manner as in Example 11 except that the types of composite particles, the pH of the solution at the time of alkali dissolution, the theoretical amount of alkali to be added, the treatment temperature and the treatment time were variously changed. It was.
  • the concentration of composite particles (g / 100 mL) is the weight (g) of composite particles with respect to 1 OOmL of solution.
  • freeze-drying was performed as the drying step.
  • the production conditions at this time are shown in Table 5, and the characteristics of the obtained colored microcomposite particles are shown in Table 6.
  • Organic pigment Y (kind: quinophthalone pigment, average primary particle size: 252 nm, BET specific surface area value: 27.9 m 2 Zg, Naoki Tsuji: 84.21, a * value: 3.00, value: 91.31, value : 91.36, light resistance ⁇ ⁇ *: 7.22, ⁇ potential of water system: — 3. lmV, ⁇ potential of solvent system: ⁇ 1.4 mV) 80 g, xylene 6 g, 8 mm diameter steel beads 2 kg dry type
  • the quinophthalone pigment was obtained by charging in an attritor and operating at 80 ° C for 2 hours at a rotation speed of 3 OOrpm. Table 6 shows the properties of the resulting quinophthalone pigment.
  • Example 1-1 Composite particle 1 10.0 Sodium hydroxide 13.1 0.2 60 30
  • Example 2-2 to 2-8 Comparative Example 2-1 to 2-10:
  • Example 7 An aqueous dispersion was obtained in the same manner as in Example 2-1, except that the type and blending amount of the colored fine composite particles were variously changed. Table 7 shows the manufacturing conditions and the characteristics of the obtained aqueous dispersion.
  • An aqueous dispersion was obtained by mixing 100 parts by weight of colored fine composite particles and 100 parts by weight of water and kneading and dispersing them using a three-roll mill under heating conditions of 50 ° C.
  • Table 7 shows the manufacturing conditions and the characteristics of the obtained aqueous dispersion.
  • a solvent-based dispersion was obtained in the same manner as in Example 3-1, except that the type and blending amount of the colored fine composite particles were variously changed.
  • Table 8 shows the production conditions and the characteristics of the solvent dispersion obtained.
  • Silica 1 (Average primary particle size: 16 nm, BET specific surface area value: 204.3 m 2 Zg, light resistance ⁇ ⁇ * value: 5. 36, metathermic ⁇ ⁇ * value: 3. 46) 3.
  • methyl hydro 70 g of dienepolysiloxane (trade name: TSF484: manufactured by GE Toshiba Silicone Co., Ltd.) was added while running the edge runner, and mixed and stirred for 30 minutes with a linear load of 588 N / cm (60 Kg / cm). . The stirring speed at this time was 22 rpm.
  • organic pigment G (type: phthalocyanine pigment, average primary particle size: 100 nm, BET specific surface area value: 67.3 m 2 Zg, L * value: 29. 77, a * value: — 15. 30 , B * value: — 1.12, C * value: 15.34, light resistance E * value: 8.06, metathermal ⁇ ⁇ * value: 7.46, aqueous ⁇ potential: —3.6 mV, solvent ⁇ potential of the system: 1 1.5 mV) 7. Add Okg for 30 minutes while running the edge runner, and mix and stir for 150 minutes with a line load of 392 NZcm (40 KgZcm). Organic pigment G was adhered to the empolysiloxane coating to obtain composite particles 6. The stirring speed at this time was 22 rpm.
  • the obtained composite particles 6 had an average primary particle diameter of 23 nm and a BET specific surface area value of 76.
  • the tinting strength was 96%
  • the light resistance ⁇ * value was 2.28
  • the heat resistance ⁇ * value was 2.49
  • the ⁇ potential in the aqueous system was 23.0 mV
  • the ⁇ potential in the solvent system was ⁇ 6.6 mg.
  • the coating amount of methyl hydrodiene polysiloxane was 0.53% by weight in terms of C.
  • the adhering organic pigment G was 24.06% by weight in terms of C (corresponding to 200 parts by weight with respect to 100 parts by weight of silica particles).
  • Organic pigment B (type: phthalocyanine pigment, average primary particle size: 80 ⁇ m, BET specific surface area value: 87. ⁇ straight: 23.04, a * value: 5.99, ⁇ direct: — 13 . 16 , C * value: 14. 46, Light resistance ⁇ ⁇ * value: 8. 83, Heat resistance ⁇ ⁇ * value: 9. 04, Water system ⁇ potential:
  • Composite particle 7 was obtained in the same manner as composite particle 6, except that 9 mV and the ⁇ potential of the solvent system: 1.13 mV) were used.
  • the obtained composite particles 7 had an average primary particle diameter of 25 nm and a BET specific surface area value of 90.
  • Ku composite particles 8 Manufacture of composite particles (R)>
  • organic pigment R type: diketopyrrolopyrrole pigment, average primary particle size: 130 nm, BET specific surface area value: 82.4 m 2 Zg, : 38. 42, a * value: 43. 20, straight: 2
  • Composite particles 8 were obtained in the same manner as composite particles 6 except that: —1.2 mV) was used.
  • the obtained composite particles 8 had an average primary particle diameter of 24 nm and a BET specific surface area value of 85.
  • the obtained colorant for color filter (G) has an average primary particle diameter of 16 nm, a number-converted average particle diameter of 23 nm, a volume-converted average particle diameter of 74 nm, and a BET specific surface area value of 84.7 m 2 Zg. there were.
  • the amount of silica contained in the color filter coloring material is 1.09% by weight in terms of Si.
  • Nagisa is 31.38
  • a * is —14.29
  • b is—1.11
  • coloring power is 106%
  • light resistance ⁇ ⁇ * value is 3.50
  • heat resistance ⁇ * value is 3.69
  • ⁇ potential in aqueous system is 13.9mV
  • ⁇ potential in solvent system is 6. It was 5mV.
  • a color filter colorant (B) was obtained in the same manner as the color filter colorant (G) except that the composite particle 7 was used as the composite particle.
  • the resulting color filter coloring material (B) has an average primary particle size of 16 nm, a number-converted average particle size of 27 nm, a volume-converted average particle size of 78 nm, and a BET specific surface area value of 95.2 mg. there were.
  • the amount of silica contained in the color filter colorant is 0.96% by weight in terms of Si.
  • the hue is 26.49, the a * value is 5.83, the value is 12.88, the value is 14. 14.
  • Coloring power is 106%, light resistance ⁇ ⁇ * value is 3.62, heat resistance ⁇ * value is 3.94, ⁇ potential in water system is 12.9mV, ⁇ potential in solvent system is 6. It was lmV.
  • a color filter colorant (R) was obtained in the same manner as the color filter colorant (G) except that the composite particle 8 was used as the composite particle.
  • the obtained color filter coloring material (R) has an average primary particle diameter of 17 nm, a number-converted average particle diameter of 31 nm, a volume-converted average particle diameter of 84 nm, and a BET specific surface area value of 88.6 mg. there were.
  • the amount of silica contained in the color filter colorant is 1.14% by weight in terms of Si, out of color! Value ⁇ 40. 19, a * value ⁇ 43. 26, value ⁇ 23. 51, value ⁇ 49. 24, wearing
  • the color strength was 105%
  • the light resistance ⁇ ⁇ * was 3.24
  • the heat resistance ⁇ * was 3.42
  • the ⁇ potential in the aqueous system was 14. OmV
  • the ⁇ potential in the solvent system was 6.6 mV.
  • Color Filter Colorant (G) Example 4-1) 10.0 parts by weight, dispersant (modified allyl block copolymer) (trade name: DYSPERBYK—2001: manufactured by BYK Chemie) 30.0 parts by weight, PGMEA270 0 part by weight was mixed and dispersed for 4 hours using a bead mill to obtain a coloring composition (IG) for a color filter.
  • the obtained color filter coloring composition (IG) has a number-converted dispersed particle size of 18 nm, a volume-converted dispersed particle size of 42 nm, a viscosity change rate of 4.0%, and a transmittance of a wavelength of 530 nm.
  • a transmittance of a wavelength of 530 nm. was 84.6%, and the specific extinction coefficient ⁇ (weight basis) at a wavelength of 650 nm was 2.45.
  • a color filter coloring composition (I-—) was obtained in the same manner as in Example 5-1, except that the color filter coloring material ( ⁇ ) was used as the color filter coloring material.
  • the obtained colored composition for color filter (I ⁇ ) has a number-converted dispersed particle diameter of 22 nm, a volume-converted dispersed particle diameter of 37 nm, a viscosity change rate of 4.7%, and a transmittance of a wavelength of 460 nm.
  • weight basis
  • a color composition for color filter (IR) was obtained in the same manner as in Example 5-1, except that the color filter colorant (R) was used as the color filter colorant.
  • the colored composition for color filter (IR) obtained has a number-converted dispersed particle size of 28 nm, a volume-converted dispersed particle size of 45 nm, a viscosity change rate of 4.9%, and a transmittance at a wavelength of 620 nm. 89.
  • the specific extinction coefficient ⁇ (weight basis) at 6%, wavelength 550 nm was 1.94.
  • Color composition for color filter (IG) (Example 5-1) 40.0 parts by weight, methyl methacrylate-methacrylic acid copolymer 100.0 parts by weight was obtained by mixing and dispersing for 2 hours using a bead mill. The kneaded product was filtered through a 5 m glass filter to obtain a coloring composition for color filter (II G).
  • the number-average dispersed particle size of the obtained colored composition for color filter (II G) is 19 nm.
  • the volume-dispersed dispersed particle size was 44 nm, the viscosity was 16.6 mPa's, the viscosity change rate was 3.9%, and the ⁇ (weight basis) at 650 nm was 2.56.
  • the obtained coloring composition for color filter ( ⁇ -G) was applied to a clear base film at 150 ⁇ m.
  • a colored permeable membrane ( ⁇ -G) for color filter was obtained by coating and drying at a thickness of (6 mil).
  • the resulting chromaticity of the colored permeable membrane for color filter ( ⁇ -G) has an X value of 0.2754, a y value of .38 78, a Y value of 70.21, and a light resistance of ⁇ * value of 3 32, heat resistance ⁇ * value was 3.51.
  • the transmittance at a wavelength of 530 nm is 92.6%, and the specific extinction coefficient ⁇ (by weight) at 650 nm is 2.47.
  • a color filter coloring composition ( ⁇ - ⁇ ) was obtained in the same manner as in Example 6-1, except that the color filter coloring composition (I ⁇ ) was used as the color filter coloring composition.
  • the colored composition for color filter ( ⁇ - ⁇ ) obtained has a number-converted dispersed particle size of 23 nm, a volume-converted dispersed particle size of 38 nm, a viscosity of 17.9 mPa's, and a viscosity change rate of 4
  • the 6%, 610nm ⁇ (by weight) was 2.47.
  • the resultant was coated with a thickness of (6 mil) and dried to obtain a colored permeable membrane ( ⁇ -B) for a color filter.
  • the resulting chromaticity of the colored permeable membrane for color filter ( ⁇ -B) has an X value of 0.1475 and a y value of ⁇ ). 21 82, a Y value of 29. 33, and light resistance of ⁇ * value was 3.42, and the heat resistance ⁇ * value was 3.74.
  • the transmittance at 460 nm is 91.8%, and the specific extinction coefficient ⁇ (by weight) at 610 nm is 2.36.
  • a color filter coloring composition ( ⁇ -R) was obtained in the same manner as in Example 6-1 except that the color filter coloring composition (IR) was used as the color filter coloring composition.
  • the colored composition for color filter (II R) obtained has a number-converted dispersed particle diameter of 30 nm, a volume-converted dispersed particle diameter of 55 nm, a viscosity of 19.4 mPa's, and a rate of change in viscosity of 4.
  • the ⁇ (by weight) at 7%, 550 nm was 2.01.
  • the obtained colored composition for color filter ( ⁇ -R) was applied to a clear base film with a thickness of 150 ⁇ m (6 mil) and dried to obtain a colored permeable membrane for color filter ( ⁇ -R). .
  • the resulting chromaticity of the colored permeable membrane for color filter has an X value of 0.5846, a y value of .33 98, a Y value of 23, and a 24 light resistance of ⁇ * value of 3. 18.
  • Heat resistance ⁇ * value was 3.36.
  • the transmittance at 620 nm is 96.6%, and the specific extinction coefficient ⁇ (by weight) at 550 nm is 1.95.
  • Coloring composition for color filter ( ⁇ -G) (Example 6-1) 50.0 parts by weight, dipentaerythritol pentatalylate 100.0 parts by weight, 2- (4-methoxy-13 styryl) -bis (4, 6 Trichloromethyl) —s triazine 5.0 parts by weight were mixed and dispersed using a bead mill for 2 hours, and the resulting kneaded product was filtered through a 1 ⁇ m glass filter to obtain a colored composition for color filter (III- G) was obtained.
  • the obtained colored composition for color filter (III-G) has a number-converted dispersed particle diameter of 17 nm, a volume-converted dispersed particle diameter of 40 nm, a viscosity of 16.8 mPa's, and a viscosity change rate of 3
  • the specific extinction coefficient ⁇ (by weight) at 9%, 650 nm was 2.55.
  • the obtained colored composition for color filter ( ⁇ -G) was applied to a clear base film with a thickness of 150 ⁇ m (6 mil) and dried to obtain a colored permeable membrane for color filter (III-G). .
  • the resulting chromaticity of the colored permeable membrane for color filter (III-G) is as follows: X value is 0.2755, y value is 0.3877, Y value is 70.36, light resistance '
  • the force was S3.30, and the heat resistance was 49 ⁇ ⁇ ⁇ ⁇ direct force 3.49.
  • the transmittance at a wavelength of 530 nm is 93.1, the specific extinction coefficient at 650 nm ⁇ (by weight) is 2. 49 w
  • a color filter coloring composition (III-—) was obtained in the same manner as in Example 7-1 except that the color filter coloring composition ( ⁇ - ⁇ ) was used as the color filter coloring composition.
  • the colored composition for color filter (III) obtained has a number-converted dispersed particle diameter of 21 nm, a volume-converted dispersed particle diameter of 35 nm, a viscosity of 17.8 mPa's, and a viscosity change rate of 4.
  • the specific extinction coefficient ⁇ (by weight) at 6%, 610 nm was 2.45.
  • the color filter coloring composition (III B) was applied to a clear base film at a thickness of 150 m (6 mil) and dried to obtain a color filter colored permeable membrane (III B).
  • the resulting chromaticity of the colored permeable membrane for color filter has an X value of 0.1476, a y value of .181, a Y value of 29.42, and a light resistance of ⁇ * value of 3 41, heat resistance ⁇ * value was 3.71.
  • the transmittance at a wavelength of 460 nm is 92.4, and the specific extinction coefficient ⁇ (by weight) at 610 nm is 2.38.
  • a color filter coloring composition (III-R) was obtained in the same manner as in Example 7-1 except that the color filter coloring composition ( ⁇ -R) was used as the color filter coloring composition.
  • the obtained color filter coloring composition (III-R) has a number-converted dispersed particle size of 26 nm, a volume-converted dispersed particle size of 51 nm, a viscosity of 19.6 mPa's, and a viscosity change rate of 4
  • the specific extinction coefficient ⁇ (by weight) at 8% and 550 nm was 2.00.
  • the color filter coloring composition (III-R) was applied to a clear base film at a thickness of 150 m (6 mil) and dried to obtain a color filter colored permeable membrane (III-R).
  • the resulting chromaticity of the colored permeable membrane (III-R) for color filters is as follows: X value 0.5848, y value power 3 399, Y value 23.29, light resistance ⁇ ⁇ * value 3 14. Heat resistance ⁇ * value was 3.35.
  • the transmittance at a wavelength of 620 nm is 97.1, and the specific absorption coefficient ⁇ (by weight) at 550 nm is 1.97.
  • Color filter coloring composition ( ⁇ -G) (Example 6-1) 50.0 parts by weight, ⁇ -felt thio-fe-disulfol-mu-trifluoracetate 5.0 parts by weight using a sand grinder The resulting kneaded product was filtered through a 1 ⁇ m glass filter to obtain a color filter coloring composition (IV-G).
  • the colored composition for color filter (IV-G) obtained has a number-converted dispersed particle diameter of 18 nm, a volume-converted dispersed particle diameter of 41 nm, a viscosity of 17.2 mPa's, and a viscosity change rate of 4
  • the specific extinction coefficient ⁇ (by weight) at 0% and 650 nm was 2.53.
  • the obtained coloring composition for color filter (IV-G) was applied to the clear base film by 150 ⁇ m. It was coated with a thickness of m (6 mil) and dried to obtain a colored permeable membrane (IV-G) for a color filter.
  • the resulting chromaticity of the colored permeable membrane for color filter (IV-G) is as follows: X value is 0.2752, y value is 0.3877, Y value is 70.41, light resistance '
  • the transmittance at a wavelength of 530 nm is 93.2, and the specific extinction coefficient ⁇ (by weight) at 650 nm is 2.48 w.
  • a color filter coloring composition (IV-—) was obtained in the same manner as in Example 8-1, except that the color filter coloring composition ( ⁇ - ⁇ ) was used as the color filter coloring composition.
  • the colored composition for color filter (IV— ⁇ ) obtained has a number-converted dispersed particle size of 21 nm, a volume-converted dispersed particle size of 36 nm, a viscosity of 18. ImPa's, and a rate of change in viscosity of 4
  • the specific extinction coefficient ⁇ (by weight) at 6%, 610 nm was 2.44.
  • the obtained colored composition for color filter (IV— ⁇ ) was applied to a clear base film with a thickness of 150 ⁇ m (6 mil) and dried to obtain a colored permeable membrane for color filter (IV—B). .
  • the chromaticity of the resulting colored permeable membrane for color filters (IV-B) is 0.1475 for X value, 0.2179 for y value, 44 for Y value, light resistance is ⁇ ⁇ 3.38, heat resistance
  • the sex was ⁇ ⁇ 3.66.
  • the transmittance at a wavelength of 460 nm is 92.5, and the specific extinction coefficient ⁇ (by weight) at 610 nm is 2.38.
  • a colored composition for color filter (IV-R) was obtained in the same manner as in Example 8-1, except that the colored composition for color filter (R-R) was used as the colored composition for color filter.
  • the colored composition for color filter (IV-R) obtained has a number-converted dispersed particle size of 27 nm, a volume-converted dispersed particle size of 52 nm, a viscosity of 20. ImPa's, and a rate of change in viscosity of 4
  • the specific extinction coefficient ⁇ (by weight) at 9%, 550 nm was 2.01.
  • the obtained colored composition for color filter (IV-R) was applied to a clear base film at a thickness of 150 ⁇ m (6 mil) and dried to obtain a colored permeable membrane for color filter (IV-R). .
  • the resulting chromaticity of the colored permeable membrane (IV-R) for color filters is such that the X value is 0.5846 and the y value is 0. 3402, Y value 3.29, light resistance ⁇ * value 3.15, heat resistance ⁇ * value 3.34.
  • the transmittance at a wavelength of 620 nm is 97.3, and the specific absorption coefficient ⁇ (by weight) at 550 nm is 1.96.
  • a coloring composition for color filter (II-G) (Example 6-1) was spun on a non-alkali glass substrate (thickness 0.7 mm) on which a 1.0 m thick black resin black matrix pattern was formed. After coating with a hot plate at 90 ° C. for 4 minutes, a positive photoresist was applied onto the film, followed by heating and drying at 80 ° C. for 20 minutes to obtain a resist film. Using ultra-high pressure mercury lamps 2. 50 kW, was exposed at a light quantity of 400mjZcm 2. Next, after developing with an aqueous sodium carbonate solution, the unnecessary photoresist layer was peeled off with methyl cellosolvate. Further, the obtained colored film was heat-treated at 250 ° C. for 30 minutes in a nitrogen atmosphere to obtain a green colored film pattern.
  • a coloring composition for color filter (III-G) (Example 7-1) was spun on a non-alkali glass substrate (thickness 0.7 mm) on which a 1.0 m thick black resin black matrix pattern was formed. After pre-beta using a hot plate at 90 ° C for 4 minutes, pattern exposure was performed with a light pressure of 400 mjZcm 2 using an ultra-high pressure mercury lamp 2.50 kW. Next, development with an aqueous solution of sodium carbonate is performed to remove the unexposed portion of the photoresist layer. Further, the resulting colored film is heat-treated at 250 ° C. for 30 minutes in a nitrogen atmosphere to thereby remove the pattern of the green colored film. Obtained.
  • a color filter ( ⁇ ) was obtained in the same manner as the color filter (II).
  • composite particles 6 and Examples 4 1 to 91 composite particles, a color filter coloring material, a color filter coloring composition, and a color filter were produced.
  • the characteristics of each production condition and the obtained composite particles, color filter colorant, color filter color composition and color filter are shown below.
  • Silica particles 1 to 4 having the characteristics shown in Table 1 were prepared as core particles.
  • Organic pigments having the characteristics shown in Table 2 were prepared as organic pigments.
  • Type of core particles, type and addition amount of surface modifier, line load and time of edge runner treatment in the coating process of surface modifier, type of organic pigment, addition amount, edge in the adhesion process of organic pigment Composite particles were obtained in the same manner as composite particles 6 except that the line load and time of the runner treatment were variously changed. The production conditions at this time are shown in Table 9, and the various properties of the obtained composite particles are shown in Table 10.
  • the color filter colorant was prepared in the same manner as in Example 41 except that the type of composite particles, the pH of the solution at the time of alkali dissolution, the theoretical amount of alkali to be added, the treatment temperature and the treatment time were variously changed. Obtained.
  • the concentration of composite particles (gZlOOmL) is the weight (g) of composite particles with respect to the solution lOOmL.
  • freeze-drying was performed as the drying process. The production conditions at this time are shown in Table 11, and the characteristics of the color filter colorant obtained are shown in Table 12.
  • Organic pigment G (Type: phthalocyanine pigment, average primary particle size: 100 nm, BET specific surface area value: 67.3 m 2 Zg, L straight: 29. 77, value: — 15. 30, b * value: — 1. 12, Value: 15. 3 4, Light resistance E * value: 8. 06, Heat resistance ⁇ ⁇ * value: 7. 46, ⁇ potential of water system: —3.6 mV, ⁇ potential of solvent system: — 1.5 mV ) 36 parts, 400 parts of crushed sodium chloride, 80 parts of diethylene glycol are charged in a double-armed type, kneaded at 100-110 ° C for 8 hours, and then added to 100 parts of 80% 1% hydrochloric acid aqueous solution. The mixture was taken out, stirred for 1 hour, filtered, washed with hot water, dried and pulverized to obtain a phthalocyanine green pigment.
  • Organic pigment R (Type: diketopyrrolopyrrole pigment, average primary particle size: 130 nm, BET specific surface area value: 82.4 m 2 Zg, Naoki Tsuji: 38. 42, a * value: 43. 20, value: 23. 36, Value: 4 9.11, Light resistance ⁇ ⁇ * value: 7. 92, Heat resistance ⁇ ⁇ * value: 7, 28, ⁇ potential of water system: — 2. 9 mV, ⁇ potential of solvent system: — 1.
  • Table 12 shows the properties of the obtained phthalocyanine blue pigment, phthalocyanine green pigment, and diketopyrrole-pillar pigment.
  • a colored composition for color filter (I) was obtained in the same manner as in Example 5-1, except that the type of colorant for color filter, the type and amount of dispersant, and the amount of solvent were varied.
  • the production conditions at this time are shown in Tables 13 and 14, and the properties of the obtained colored composition for color filter (I) are shown in Tables 15 and 16.
  • a colored composition for color filter (I) was obtained by kneading and dispersing using a three-roll mill under the heating conditions described above. The production conditions at this time are shown in Table 13, and the characteristics of the obtained color filter coloring composition (I) are shown in Table 15.
  • a color filter coloring composition ( ⁇ ) was obtained in the same manner as in Example 6-1 except that the type of the color filter coloring composition (I) and the blending amount of the resin were variously changed.
  • the production conditions at this time are shown in Table 17, the properties of the obtained color filter coloring composition (II) are shown in Table 18 and Table 19, and the color filter coloring composition ( ⁇ ) was applied.
  • Tables 20 and 21 show the characteristics of the colored permeable membrane ( ⁇ ) for color filters.
  • Example 5-9 Colored composition obtained in 9-9 (I) 20.0 parts by weight and methyl metatalylate Z-methacrylic acid copolymer 10.0 parts by weight were mixed, and the mixture was heated under a heating condition of 50 ° C. By kneading and dispersing using this roll mill, a color filter coloring composition ( ⁇ ) was obtained.
  • the production conditions at this time are shown in Table 17, the properties of the obtained color filter coloring composition are shown in Table 18, and the color filter colored permeable membrane obtained by applying the color filter coloring composition (II) is shown in Table 18.
  • Table 20 shows the characteristics of (II).
  • a color composition for color filter (III) was obtained in the same manner as in Example 7-1, except that the type of color composition for color filter (II) and the blending amount of the polymerization initiator were variously changed.
  • the production conditions at this time are shown in Table 22, the characteristics of the obtained color filter coloring composition ( ⁇ ) are shown in Table 23 and Table 24, and the color filter color composition (III) obtained by applying the color filter coloring composition (III) is applied.
  • Tables 25 and 26 show the characteristics of the colored permeable membrane (III) for one filter.
  • Colored composition obtained in Example 6-9 (ii) 30.0 parts by weight, dipentaerythritol pentaacrylate 100.0 parts by weight and 2- (4-methoxy j8 styryl) bis (4, 6-trimethyl) (Methylromethyl) s-triazine 2.5 parts by weight were mixed and kneaded and dispersed using a three-roll mill under heating at 50 ° C. to obtain a colored composition ( ⁇ ) for a color filter.
  • the production conditions at this time are shown in Table 22, the characteristics of the obtained color filter coloring composition are shown in Table 23, and the color filter colored permeable membrane obtained by applying the color filter coloring composition (III) ( Table 25 shows the characteristics of (ii).
  • Color composition for color filter (IV) In the same manner as in Example 8-1, except that the type and amount of color composition for color filter (II) and the kind and amount of photoacid generator were varied. Got. The production conditions at this time are shown in Table 27, and the characteristics of the obtained color filter monochromatic composition (IV) are shown in Tables 28 and 29. The color filter color composition (IV) was applied. Tables 30 and 31 show the characteristics of the colored permeable membrane (IV) for color filters.
  • G Chromaticity Light resistance Heat resistance Transmittance
  • B Transmittance
  • R Transmittance
  • Y Specific extinction coefficient (weight basis) ⁇ value Y value ⁇ ⁇ * value ⁇ E * value (530nrn) (460nm ) (620nm) (550 strokes) (650nm) (610 thighs) (550nm) (400nm)
  • Example 8-9 Colored composition obtained in 9-9 (ii) 30.0 parts by weight and p-phenolthiol diphenylsulfo-mu-trifluoroacetate 2.5 parts by weight were mixed and mixed at 50 ° C.
  • a colored composition (IV) for color filters was obtained by kneading and dispersing using a three-roll mill under heating conditions. The production conditions at this time are shown in Table 27, the characteristics of the obtained color filter coloring composition are shown in Table 28, and the color filter colored permeable membrane obtained by applying the color filter coloring composition (IV) ( Table 30 shows the characteristics of IV).
  • a color filter (I) was obtained in the same manner as in Example 9-1 except that the type of the color composition for color filter was variously changed.
  • Tables 32 and 33 show the manufacturing conditions and the characteristics of the obtained color filter.
  • a color filter ( ⁇ ) was obtained in the same manner as in Example 9-7, except that the type of the color composition for color filter was variously changed.
  • Tables 32 and 33 show the manufacturing conditions and the characteristics of the obtained color filter.
  • a color filter ( ⁇ ) was obtained in the same manner as in Example 91 except that the type of the color composition for color filter was variously changed.
  • Tables 32 and 33 show the manufacturing conditions and the characteristics of the obtained color filter.
  • Silica 1 (Average primary particle size: 16 nm, BET specific surface area value: 204. Light resistance ⁇ ⁇ *
  • organic pigment B (type: phthalocyanine pigment, average particle size: 80 nm, BET specific surface area value: 87.9 mg, geometric standard deviation value: 2. 15, L * value: 23. 04, a * value: 5.99, b * value:-13.16, value: 14.46, metamorphosis ⁇ *: 8.83, zeta potential: 2.9mV) 7. Okg, edge runner The mixture was stirred for 30 minutes while operating, and further mixed and stirred at a line load of 392 N / cm for 120 minutes to attach the organic pigment B to the methylhydropolysiloxane coating to obtain composite particles 13 . The stirring speed at this time was 22 rpm.
  • the obtained composite particles 13 had an average primary particle size of 20 nm, a BET specific surface area value of 89.lm 2 , g, a number-converted average particle size of 26 nm, a volume-converted average particle size of 94 nm, The quasi-deviation value was 1.26.
  • the L * value was 26.95
  • the a * value was 5.74
  • the b * value was -12.66
  • the C * value was 13.90
  • the degree of desorption of the organic pigment was 4.
  • the coloring power was 93%
  • the light resistance ⁇ ⁇ * was 2.15
  • the ⁇ potential was 22.8 mV.
  • Methyl hydrogenpo The coating amount of resiloxane was 0.53% by weight in terms of C.
  • the adhering organic pigment B was 33.19% by weight in terms of C (corresponding to about 100 parts by weight per 100 parts by weight of silica particles).
  • the amount of silica contained in the ink-jet ink colorant is 1.04% by weight in terms of Si
  • the average primary particle size is 15 nm
  • the BET specific surface area value is 82.
  • the average particle diameter in terms of number was 4 nm 2 Zg
  • the average particle diameter in terms of number was 21 nm
  • the average particle diameter in terms of volume was 75 nm
  • the geometric standard deviation value was 1.31.
  • the L * value is 25.39
  • the a * value is 5.90
  • the b * value is 12.95
  • the C * value is 14.23
  • the coloring power is 105%
  • the light resistance ⁇ ⁇ * is 3. 54
  • ⁇ potential was 13.6mV.
  • the obtained ink-jet ink has a number-converted dispersion average particle diameter of 18 nm, a volume-converted dispersion average particle diameter of 51 nm, a visual evaluation of dispersion stability of 5 and a change in number-converted dispersed particle diameter. Rate is 6.8%, hue is L * value is 27.68, a * value is 5.42, b * value is 13.04, C * value is 14.12, specific extinction coefficient ⁇ is 2.28 Light resistance is ⁇ ⁇ * value 1.73, clogging resistance The 'genderness' was 5.
  • composite particles 13 and Example 10-1 composite particles, a coloring material for inkjet ink, and an inkjet ink were produced.
  • the various production conditions and the characteristics of the obtained composite particles, ink jet ink colorant and inkjet ink are shown below.
  • silica particles 1 and 2 having the characteristics shown in Table 1 were prepared.
  • Organic pigments having the characteristics shown in Table 2 were prepared as organic pigments.
  • Type of core particles, type and addition amount of surface modifier, line load and time of edge runner treatment in the coating process of surface modifier, type of organic pigment, addition amount, edge in the adhesion process of organic pigment Composite particles were obtained in the same manner as composite particles 13 except that the line load and time of the runner treatment were variously changed. The production conditions at this time are shown in Table 34, and the properties of the obtained composite particles are shown in Table 35.
  • the inkjet ink was prepared in the same manner as in Example 10-1, except that the type of composite particles, the pH of the solution at the time of alkali dissolution, the theoretical amount of alkali to be added, the treatment temperature and the treatment time were variously changed. A colorant was obtained.
  • the concentration of composite particles (g / 100 mL) is the weight (g) of composite particles relative to lOOmL of the solution.
  • freeze-drying was performed as a drying step.
  • Table 36 shows the manufacturing conditions at this time
  • Table 37 shows the characteristics of the coloring material of the obtained ink-jet ink.
  • Example 11-2 L 1-7, Comparative Example 11-1: L 1-11:
  • Example 111 An ink jet ink was obtained in the same manner as in Example 111 except that the type of the colorant of the ink jet ink was variously changed.
  • the production conditions at this time are shown in Table 38, and the characteristics of the ink jet ink thus obtained are shown in Table 39 and Table 40.
  • Example 11-1 (Parts by weight) Example 10-1 5.0

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Optical Filters (AREA)

Abstract

 一次粒子径が微小であると共に、高い着色力と優れた分散性を有し、且つ、耐光性に優れた有色微小複合粒子、その製造方法およびその分散体を提供する。  有色微小複合粒子は、シリカと有機顔料とから成る複合粒子であって、シリカが有機顔料に内包されており、シリカの量が複合粒子に対して、Si換算で、0.001~9重量%である。カラーフィルター用着色組成物は、有色微小複合粒子から成るカラーフィルター用着色材が着色組成物構成基材に分散して成り、また、インクジェット用インクは、有色微小複合粒子から成るインクジェット用インクの着色材がインク構成溶液に分散して成る。そして、有色微小複合粒子は、着色力が高く、且つ分散性および耐光性に優れていることから、一般的に使用されている塗料、印刷インキ等、水系または溶剤系を問わず様々な用途の着色材として好適である。

Description

明 細 書
有色微小複合粒子、有色微小複合粒子の製造方法、着色材、カラーフィ ルター、及び、インクジェット用インク
技術分野
[0001] 本発明は、有色微小複合粒子、該有色微小複合粒子を含有する分散体、有色微 小複合粒子の製造方法、カラーフィルター用着色材、該着色材を含有するカラーフ ィルター用着色組成物、カラーフィルター、インクジェット用インクの着色材、及び、ィ ンクジェット用インクに関する。詳しくは、本発明は、一次粒子径が微小であるとともに 、高い着色力と優れた分散性を有し、且つ、耐光性に優れている有色微小複合粒子 、該有色複合粒子を含有する分散性に優れた分散体および有色微小複合粒子の製 造方法、並びに、一次粒子径が微小であるとともに、高い着色力とビヒクル中におけ る優れた分散性とを有し、且つ、耐光性並びに耐熱性に優れているカラーフィルター 用着色材、耐光性と耐熱性に優れており、且つ、透明性にも優れたカラーフィルター 用着色組成物およびカラーフィルター、並びに、一次粒子径が微小であり粒子サイ ズが均一化されていると共に、高い着色力と優れた分散性を有し、且つ、耐光性に 優れているインクジェット用インクの着色材および該インクジェット用インクの着色材を 含有する分散性、分散安定性および耐光性に優れたインクジェット用インクに関する 背景技術
[0002] 有機顔料は、塗料、榭脂、印刷インキ、インクジェット用インキ、トナー及びカラーフ ィルター等の着色材として幅広く使用されている。これらの用途に対しては、一般に、 高い着色力が要求されており、このため、顔料をより微細化することが求められている
[0003] 有機顔料は、一般に、化学反応などで分子状態の顔料から 20ηπ!〜 lOOnm程度 の微細な一次粒子が形成される。し力しながら、微細な一次粒子の状態では、粒子 の表面エネルギーが非常に高いために凝集を起こしやすい。そのため、通常、非常 に粒子サイズの大きぐ且つ、凝集力の強い二次粒子の状態で存在している。したが つて、顔料を微細化する技術の提供が要求されている。
[0004] 現在、有機顔料を微細化する方法としては、食塩などの磨砕剤を使用してポリェチ レンダリコール等の粘性の高い水溶性有機溶剤とともに顔料粒子を機械的に微粉ィ匕 するソルベントソルトミリング法に代表される湿式粉砕法やボールミル、アトライター、 振動ミル等の粉碎機を使用して乾式で粉碎する乾式粉碎法、顔料を可溶化させて 溶液とし、これを特定の条件で沈殿させて微粒子顔料とする方法などがある。
[0005] し力しながら、これら 、ずれの方法にお!、ても、顔料の微粒子化が進むほど顔料粒 子同士の凝集力も強くなり、殊に、水系の湿式法では乾燥後の凝集が著しくなるため 、一次粒子の形状を維持することは極めて困難となる。その結果、顔料粒子が非常 に凝集力の強いァグリゲートの状態で二次凝集体として存在するため、溶媒への分 散処理が一層困難となる。
[0006] また、有機顔料を用いた塗料や印刷物は、屋外などでも使用され、直接日光や風 雨に曝される場合があるため、耐光性に優れていることが要求されている。しかしな がら、微細化が進むことにより耐光性も劣る傾向が強くなることから、顔料の微細化と 優れた耐光性を両立する特性を得ることは困難であった。
[0007] 他方、カラーフィルタ一は、テレビ、パソコン、携帯電話などのモニター用途やデジ タルカメラに使用される CCDまたは CMOS用途など幅広く使用されており、耐光性 および耐熱性の問題力 顔料分散型が主流となっている。現在、カラーフィルターに 対して、より一層の高画素化および高コントラストイ匕が求められている。このためには 、使用される有機顔料として、ナノレベルで安定に分散される微粒子有機顔料の提 供が要求されている。
[0008] カラーフィルタ一は、ノ ックライトの照射で退色しな 、ために耐光性が必要とされて おり、更に、パターユングの硬化や ITO膜の蒸着時に 250°C程度の加熱処理をする ために耐熱性が必要とされる。し力しながら、顔料が微粒子化されると、一般的に耐 光性および耐熱性は低下する。そこで、サイズがナノレベルであると共に、且つ、ビヒ クル中に安定に分散できると共に優れた耐光性および耐熱性を有するカラーフィル ター用着色材の提供が強く要求されている。
[0009] 別に、パソコンを始めとする各種 OA機器は、業務用、家庭用を問わず急速に普及 しつつあり、その記録装置の一つであるインクジェットプリンタもまた、最近の価格低 下と品質の向上から、広く普及しつつある。
[0010] 近年、インクジェットプリンタによって、高精細、高光沢の銀塩写真並みの画質レべ ルが実現されつつあり、それに伴って、印刷物が多様な用途に利用されると共に、印 刷物の長期における保存性 (耐光性)が重視されるようになってきた。
[0011] 従来、インクジェット用インクの着色材としては、ヘッド部分の目詰まり、インクの分散 安定性、彩度などの点から染料が用いられているが、染料には毒性問題がある。また 、近年の印刷物の耐光性向上の要求から、染料に対抗する着色材として、顔料をィ ンキ化することが試みられて 、る。
[0012] し力しながら、インクジェット用インクの着色材として顔料を使用した場合は、着色材 として染料を使用した場合と比較して、印刷画像の濃度が高ぐ耐光性の点において も優れている。し力しながら、インクジェット用インクは、一般にその構成成分の 8割が 水であるため、殊に有機物である有機顔料の分散が困難である。また、顔料は、染料 と違って水などの溶媒には不溶であるため、インクジェット用インクを長期間安定に保 つことは困難であると共に、ヘッド部分の目詰まりを起こしやすいという問題を有して いる。また、化学反応などにより得られた分子状態の有機顔料および 20ηπ!〜 100η m程度の微細な一次粒子力も成る有機顔料は、粒子の表面エネルギーが非常に高 いために凝集を起こしやすぐ粒子サイズの均一化が困難となり、その結果、くすみ のないクリア一な画像を得ることが困難となる。
[0013] 他方、着色材の粒子サイズを微細化することにより、ヘッド部分の目詰まりを減少さ せることができるが、反面、インク組成中における着色材の分散が困難になると共に、 耐光性が低下するという問題が生じる。
[0014] 粒子サイズの微細化の方法としては、平均粒子径が lOOnmより大きい粗製キノフタ ロン顔料またはイソインドリン顔料に結晶成長作用を有する有機溶剤を少量添加して 乾式粉砕することから成る微粒子化する方法が提案されて ヽる (特許文献 1)。
[0015] また、微細で且つ耐光性に優れた着色材として、白色無機粒子の粒子表面にアル コキシシラン等の糊剤を介して有機顔料を付着させた有機無機複合顔料が提案され ている(特許文献 2)。 [0016] 微細で且つ透明性に優れた着色材として、芯粒子としての白色無機粒子表面にァ ルコキシシラン等の糊材を介して有機顔料を付着させて成る複合粒子から、芯粒子 である白色無機粒子を全量溶解できる理論値等量以上の酸またはアルカリを使用し て、芯粒子を完全に溶解除去した有色微細粒子が提案されている (特許文献 3)。
[0017] 有機顔料を微粒子化する技術として、微細な有機顔料 ε型銅フタロシアニン顔料と アスペクト比 10〜25のジォキサジンバイオレット顔料とを共にソルベントソルトミリング 処理するカラーフィルター青色画素部用顔料組成物の製造方法が提案されて!ヽる( 特許文献 4)。また、アルカリ性または酸性の水性媒体に溶解した有機顔料の溶液を 層流として流通させ、その層流過程で溶液の ρΗを変化させることにより有機顔料の 微粒子を製造する方法が提案されて ヽる (特許文献 5)。
[0018] カラーフィルタ一として、白色無機微粒子表面に有機顔料を付着させた平均粒子 径 1〜: LOOnmの有機無機複合顔料を含有するカラーフィルター用着色組成物およ び該カラーフィルター用着色材を含有するカラーフィルターが提案されて ヽる(特許 文献 6)。
[0019] インクジェット用インクとして、高品位の印刷画像を得ることを目的とする顔料および コロイダルシリカを含有する水性インクジェット用記録液が提案されて ヽる(特許文献
7〜8)。
[0020] また、微細で且つ耐光性に優れた着色材として、体質顔料の粒子表面に糊剤を介 して有機顔料が均一な付着して成る平均粒子径 0. 001-0. 15 mの複合粒子か ら成るインクジェット用インクの着色材が提案されて 、る(特許文献 9〜 12)。
特許文献 1 特開 2005 —36150号公報
特許文献 2特開 2002 — 356625号公報
特許文献 3特開 2003 246941号公報
特許文献 4特開 2006 — 091649号公報
特許文献 5特開 2005 — 307154号公報
特許文献 6特開 2004 — 307853号公報
特許文献 7特開平 9 227812号公報
特許文献 8特開 2000 — 53901号公報 特許文献 9:特開 2003 - 55591号公報
特許文献 10:特開 2003 - 268278号公報
特許文献 11:特開 2003 - 327880号公報
特許文献 12:特開 2006— 111875号公報
発明の開示
発明が解決しょうとする課題
[0021] 一次粒子径が微小であり、粒子サイズが均一化されていると共に、高い着色力を有 し、且つ、耐光性および耐熱性に優れた微細な着色材は、現在のところ最も要求さ れるところである。しかしながら、高い着色力および透明性を得るためには、顔料を微 細化する必要があるが、顔料の粒子径が小さくなると耐光性および耐熱性は低下す る傾向にあり、これら相反する特性を満足する着色材は、未だ得られていない。
[0022] 即ち、平均粒子径が lOOnmより大きな粗製キノフタロン顔料またはイソインドリン顔 料に結晶成長作用を有する有機溶剤を少量添加して乾式粉砕することから成る微粒 子化する特許文献 1に記載の方法は、後出比較例に示す通り、有機顔料を単に微 細化しているだけであり、得られた有機顔料の ζ電位がゼロに近いことから、ビヒクル 中における静電反発効果が得られ難ぐそのため、ビヒクル中における良好な分散性 および分散安定性を得ることは困難となる。
[0023] 白色無機粒子の粒子表面にアルコキシシラン等の糊剤を介して有機顔料を付着さ せる特許文献 2に記載の方法は、後出比較例に示す通り、芯粒子としてシリカ粒子な どの白色無機粒子を使用しているため、付着させる原料有機顔料と同等もしくはそれ 以上の高い着色力を得ることが困難である。
[0024] また、芯粒子としての白色無機粒子表面にアルコキシシラン等の糊材を介して有機 顔料を付着させて成る複合粒子から、芯粒子である白色無機粒子を全量溶解できる 理論値等量以上の酸またはアルカリを用いて、芯粒子を完全に溶解除去して有機顔 料を残存させる特許文献 3に記載の有色微細粒子の製造方法は、後出比較例に示 す通り、酸またはアルカリを理論値等量以上用いるため有機顔料へのダメージが大 きぐ耐光性および耐熱性の良い着色材を得ることは困難である。また、シリカが完全 に溶解除去されているため、 ζ電位がゼロに近ぐビヒクル中における静電反発効果 が得られ難ぐその結果、ビヒクル中における良好な分散性および分散安定性を得る ことが困難となる。
[0025] 微細な有機顔料 ε型銅フタロシアニン顔料とアスペクト比 10〜25のジォキサジン バイオレット顔料とを共にソルベントソルトミリング処理する特許文献 4に記載のカラー フィルター青色画素部用顔料組成物の製造方法、および、アルカリ性または酸性の 水性媒体に溶解した有機顔料の溶液を層流として流通させ、その層流過程で溶液 の ρΗを変化させる特許文献 5に記載の有機顔料微粒子の製造方法は、水系での湿 式処理であり、最終的に乾燥処理は必要であるため、結果として乾燥凝集が引き起 こされ、ビヒクル中における良好な分散性および分散安定性を有する着色材を得るこ とは困難となる。また、後出比較例に示す通り、顔料の微粒子化を行っただけである ため、耐光性および耐熱性に優れたカラーフィルター用着色材を得ることが困難であ る。
[0026] また、白色無機粒子表面に直接または表面改質剤を介して有機顔料を付着させた 一次粒子カゝら成る平均粒子径力^〜 lOOnmである有機無機複合顔料を溶剤に分散 して成る特許文献 6に記載の透明着色組成物の記載は、後出比較例に示す通り、芯 粒子としてシリカ粒子などの白色無機粒子を使用した有機無機複合顔料の透明着色 組成物であるため、付着させる原料有機顔料と同等もしくはそれ以上の高い着色力 のカラーフィルター用着色組成物を得ることは困難である。
[0027] 特許文献 7〜8に記載の顔料およびコロイダルシリカを含有する水性インクジェット 用記録液は、有機顔料自体の ζ電位はゼロに近いことから、ビヒクル中における静電 反発効果が得られ難ぐそのため、ビヒクル中における良好な分散性および分散安 定性を得ることは困難となる。また、着色に関与しないコロイダルシリカを多量に添カロ して 、るので顔料濃度を上げることができず、印刷画像の高濃度化を達成することが 困難である。
[0028] また、特許文献 9〜 12に記載の体質顔料の粒子表面に糊剤を介して有機顔料の 均一な付着層が形成されている平均粒子径 0. 001-0. 15 mの複合粒子は、後 出比較例に示す通り、芯粒子としてシリカ粒子等の白色無機粒子を使用しているた め、付着させる原料有機顔料と同等もしくはそれ以上の高い着色力を得ることが困難 である。
[0029] 本発明は、上記の実情に鑑みてなされたものであり、その目的は、一次粒子径が 微小であると共に、高い着色力と優れた分散性を有し、且つ、耐光性に優れた有色 微小複合粒子、その製造方法およびそれを溶媒に分散させた分散体を提供すること である。また、一次粒子径が微小であると共に、高い着色力を有し、且つ、耐光性、 耐熱性およびビヒクル中における分散性に優れたカラーフィルター用着色材、カラー フィルター用着色組成物およびカラーフィルターを提供することである。また、一次粒 子径が微小であり、粒子サイズが均一化されていると共に、高い着色力と優れた耐光 性を有するインクジェット用インクの着色材およびインクジェット用インクを提供するこ とである。
課題を解決するための手段
[0030] 本発明においては、有機顔料が表面改質剤を介してシリカ粒子の表面に被覆さ れて成る複合粒子中のシリカ粒子の一部および表面改質剤の少なくとも一部を溶出 することにより、上記の各課題を解決した。
[0031] すなわち、有機顔料に好適な本発明は、以下の第 1〜3の 3つの要旨から成り、そ の第 1の要旨は、シリカと有機顔料とから成る有色微小複合粒子であって、シリカが 有機顔料に内包されており、シリカの量が有色微小複合粒子に対して、 Si換算で、 0
. 001〜 9重量%である有色微小複合粒子に存する。
[0032] 本発明の第 2の要旨は、シリカと有機顔料とから成り、シリカが有機顔料に内包され ており、シリカの量が有色微小複合粒子に対して、 Si換算で、 0. 001〜9重量%で ある第 1の要旨に記載の有色微小複合粒子を溶媒に分散させて成る分散体に存す る。
[0033] 本発明の第 3の要旨は、シリカ粒子に表面改質剤を添加し、混合攪拌してシリカ粒 子の粒子表面に表面改質剤を被覆させ、次いで、有機顔料を添加し、混合攪拌して 表面改質剤被覆シリカ粒子の粒子表面に有機顔料を付着させて複合粒子を得、ァ ルカリ溶液によって得られた複合粒子中のシリカ粒子の一部および表面改質剤の少 なくとも一部を溶解させることから成る第 1の要旨に記載の有色微小複合粒子の製造 方法に存する。 [0034] また、カラーフィルター用着色材およびカラーフィルターに好適な本発明は、以下 の第 4〜10の 7つの要旨から成り、その第 4の要旨は、シリカと有機顔料とから成り、 シリカが有機顔料に内包されており、シリカの量が有色微小複合粒子に対して、 Si換 算で、 0. 001〜9重量%である有色微小複合粒子力 成るカラーフィルター用着色 材に存する。
[0035] 本発明の第 5の要旨は、シリカと有機顔料とから成り、シリカが有機顔料に内包され ており、シリカの量が有色微小複合粒子に対して、 Si換算で、 0. 001〜9重量%で ある有色微小複合粒子力 成る第 4の要旨に記載のカラーフィルター用着色材が溶 剤に分散して成るカラーフィルター用着色組成物(a)に存する。
[0036] 本発明の第 6の要旨は、シリカと有機顔料とから成り、シリカが有機顔料に内包され ており、シリカの量が有色微小複合粒子に対して、 Si換算で、 0. 001〜9重量%で ある有色微小複合粒子から成るカラーフィルター用着色材が溶剤に分散した第 5の 要旨に記載のカラーフィルター用着色組成物 (a)が酸性基及び Z又は潜在性酸性 基を有する透明榭脂溶液中に分散して成るカラーフィルター用着色組成物 (b)に存 する。
[0037] 本発明の第 7の要旨は、シリカと有機顔料とから成り、シリカが有機顔料に内包され ており、シリカの量が有色微小複合粒子に対して、 Si換算で、 0. 001〜9重量%で ある有色微小複合粒子力 成るカラーフィルター用着色材が溶剤に分散したカラー フィルター用着色組成物 (a)が酸性基及び Z又は潜在性酸性基を有する透明榭脂 溶液中に分散して成る第 6の要旨に記載のカラーフィルター用着色組成物 (b)とェ チレン性不飽和二重結合を 2つ以上有する多官能性モノマーと光ラジカル重合開始 剤とから成るカラーフィルター用着色組成物(C)に存する。
[0038] 本発明の第 8の要旨は、シリカと有機顔料とから成り、シリカが有機顔料に内包され ており、シリカの量が有色微小複合粒子に対して、 Si換算で、 0. 001〜9重量%で ある有色微小複合粒子力 成るカラーフィルター用着色材が溶剤に分散したカラー フィルター用着色組成物 (a)が酸性基及び Z又は潜在性酸性基を有する透明榭脂 溶液中に分散して成る第 6の要旨に記載のカラーフィルター用着色組成物 (b)と光 酸発生剤とから成るカラーフィルター用着色組成物(D)に存する。 [0039] 本発明の第 9の要旨は、シリカと有機顔料とから成り、シリカが有機顔料に内包され ており、シリカの量が有色微小複合粒子に対して、 Si換算で、 0. 001〜9重量%で ある有色微小複合粒子から成るカラーフィルター用着色材を溶剤に分散させたカラ 一フィルター用着色組成物 (a)を酸性基及び Z又は潜在性酸性基を有する透明榭 脂溶液中に分散して成る第 6の要旨に記載のカラーフィルター用着色組成物 (b)の 塗膜形成物から成るカラーフィルターに存する。
[0040] 本発明の第 10の要旨は、第 7の要旨に記載のカラーフィルター用着色組成物 (C) または第 8の要旨に記載のカラーフィルター用着色組成物 (D)の塗膜形成物から成 るカラーフィルターに存する。
[0041] また、インクジェット用インクの着色材およびインクジェット用インクに好適な本発明 は、以下の第 11〜12の 2つの要旨から成り、その第 11の要旨は、シリカと有機顔料 とから成り、シリカが有機顔料に内包されており、シリカの量が有色微小複合粒子に 対して、 Si換算で、 0. 001〜9重量%である有色微小複合粒子力も成るインクジエツ ト用インクの着色材に存する。
[0042] 本発明の第 12の要旨は、シリカと有機顔料とから成り、シリカが有機顔料に内包さ れており、シリカの量が有色微小複合粒子に対して、 Si換算で、 0. 001〜9重量% である有色微小複合粒子から成る第 8の要旨に記載のインクジェット用インクの着色 材を含有するインクジヱット用インクに存する。
発明の効果
[0043] 本発明の第 1の要旨に係る有色微小複合粒子は、着色力が高ぐ且つ分散性およ び耐光性に優れていることから、一般的に使用されている塗料、印刷インキ等、水系 または溶剤系を問わず様々な用途の着色材として好適である。
[0044] 特に、本発明の第 2の要旨に係る分散体は、高い着色力と優れた分散性および耐 光性の特性を有する有色微小複合粒子を着色材として使用することから、各種用途 への分散体として好適である。
[0045] 本発明の第 4の要旨に係る着色材は、一次粒子径が微小であるとともに、高い着色 力と優れたビヒクル中における分散性を有し、且つ、耐光性および耐熱性に優れて V、るので、カラーフィルター用着色材として好適である。 [0046] 本発明の第 5〜8の要旨に係る着色組成物は、高い着色力および優れた分散性と 耐光性と耐熱性の特性を有するカラーフィルター用着色材を使用することから、分散 性、分散安定性、耐光性および耐熱性に優れていると共に、透明性にも優れており カラーフィルター用着色組成物として好適である。
[0047] 本発明の第 9〜10の要旨に係るカラーフィルタ一は、分散性、分散安定性、耐光 性および耐熱性に優れていると共に、透明性にも優れているカラーフィルター用着色 組成物を使用することから、分光特性、耐光および耐熱性に優れているカラーフィル ターである。
[0048] 本発明の第 11の要旨に係る着色材は、一次粒子径が微小であり、粒子サイズが均 一化されていると共に、高い着色力と優れた分散性を有し、且つ、耐光性に優れて
V、ることから、インクジェット用インクの着色材として好適である。
[0049] 本発明の第 12の要旨に係るインクジェット用インクは、微小であり、粒子サイズが均 一化されていると共に、着色力が高ぐ分散性および耐光性に優れたインクジェット 用インクの着色材を使用することから、分散性、分散安定性および耐光性に優れて
V、るインクジェット用インクである。
発明を実施するための最良の形態
[0050] 先ず、本発明の第 1の要旨に係る有色微小複合粒子について説明する。本発明の 第 1の要旨の有色微小複合粒子は、シリカと有機顔料とから成る複合粒子であって、 シリカが有機顔料に内包されており、シリカの量が複合粒子に対して、 Si換算で、 0. 001〜9重量%である。
[0051] 有色微小複合粒子に含まれるシリカ量は、 Si換算で、有色微小複合粒子に対して 通常 0. 001〜9. 0重量0 /0であり、好ましくは 0. 005〜7. 0重量0 /0であり、より好まし くは 0. 01〜5. 0重量%である。シリカ量が Si換算で有色微小複合粒子に対して 0. 001重量%未満の場合は、有色微小複合粒子に内包されるシリカ量が少なすぎるた め、有色微小複合粒子の ζ電位がほぼゼロとなり、静電反発効果が得られない。そ の結果、ビヒクル中における分散性が悪くなる。また、シリカがほとんど存在しないた めに、十分な耐光性および耐熱性を得ることが困難である。他方、 9. 0重量%を超え る場合は、有色微小複合粒子に内包されるシリカ量が多すぎるため、十分な着色力 を得ることが困難となる。
[0052] 有機顔料としては、塗料、榭脂、印刷インキ、インクジェット用インキ、トナー及び力 ラーフィルタ一等の着色材として用いられている赤色系有機顔料、青色系有機顔料 、黄色系有機顔料、緑色系有機顔料、橙色系有機顔料、褐色系有機顔料、紫色系 有機顔料および黒色系有機顔料などの各種耐アルカリ性有機顔料が挙げられる。 赤色系有機顔料としては、ブリリアントカーミン、パーマネントレッド、縮合ァゾレッド等 のァゾ系顔料、ジァミノアントラキノ-ルレッド、キナクリドンレッド、チォインジゴレッド、 ペリレンレッド、ペリノンレッド、ジケトピロロピロールレッド等の縮合多環系顔料などが 挙げられる。青色系有機顔料としては、無金属フタロシアニンブルー、フタロシアニン ブルー、ファストスカイブルー等のフタロシア-ン系顔料、インダンスロンブルー、イン ジゴブルー等の縮合多環系顔料などが挙げられる。黄色系有機顔料としては、ハン ザエロー、ベンジジンエロー、パーマネントエロー、縮合ァゾイェロー等のァゾ系顔料 、イソインドリノンイェロー、アントラピリミジンイェロー、キノフタロンイェロー等の縮合 多環系顔料などが挙げられる。緑色系有機顔料としては、フタロシアニングリーン等 のフタロシアニン系顔料などが挙げられる。橙色系有機顔料としては、パーマネント オレンジ、リノールファストオレンジ、ピラゾロンオレンジ、ノ レカンファスト才レンジ等 のァゾ系顔料、キナクリドン、ペリノンオレンジ、ジケトピロロピロールオレンジ等の縮 合多環系顔料などが挙げられる。褐色系有機顔料としては、パーマネントブラウン、 ノ ラブラウン、ベンズイミダゾロンブラウン等のァゾ系顔料、チォインジゴブラウン等の 縮合多環系顔料などが挙げられる。紫色系有機顔料としては、ファストバイオレット等 のァゾ系顔料、無置換キナクリドン、ジォキサジンバイオレット、ペリレンバイオレット等 の縮合多環系顔料などが挙げられる。黒色系有機顔料としては、ペリレンブラック等 の縮合多環系顔料、ァ-リンブラック等が挙げられる。
[0053] 本発明に係る有色微小複合粒子の平均一次粒子径は、通常 l〜50nm、好ましく は l〜40nm、より好ましくは l〜30nmである。
[0054] 本発明に係る有色微小複合粒子の個数換算平均粒子径は、通常 200nm以下、 好ましくは l〜150nm、より好ましくは l〜100nm、更により好ましくは l〜50nmであ る。有色微小複合粒子の個数換算平均粒子径が 200nmを超える場合は、粒子サイ ズが大きすぎるため、光学特性が低下することがあり、その結果、本発明の目的を達 成するのが困難である。
[0055] 本発明に係る有色微小複合粒子の体積換算平均粒子径は、通常 200nm以下、 好ましくは l〜150nmであり、より好ましくは 1〜: LOOnmである。有色微小複合粒子 の体積換算平均粒子径が 200nmを超える場合は、粒子サイズが大きすぎるため、 光学特性が低下することがあり、その結果、本発明の目的を達成するのが困難であ る。
[0056] 本発明に係る有色微小複合粒子の BET比表面積値は、通常 20〜500m2Zg、好 ましくは 25〜400m2Zg、より好ましくは 30〜300m2Zgである。
[0057] 本発明に係る有色微小複合粒子の着色力は、後述する評価方法により、通常 102
%以上、好ましくは 103%以上であり、より好ましくは 104%以上である。
[0058] 本発明に係る有色微小複合粒子の耐光性は、後述する評価方法において、 Δ Ε* 値で通常 5. 0以下、好ましくは 4. 5以下であり、より好ましくは 4. 0以下である。
[0059] 本発明に係る有色微小複合粒子の ζ電位は、水系で測定した場合、通常 5mV 以下、好ましくは— 8mV以下、より好ましくは— 10mV以下である。水系で測定した 場合の ζ電位が 5mVを超えてゼロに近くなると、静電反発効果による良好な分散 性および分散安定性を得ることは困難である。
[0060] 溶剤系で ζ電位を測定した場合、有色微小複合粒子の ζ電位は、通常 2mV以 下、好ましくは 3mV以下、より好ましくは 5mV以下である。溶剤系で測定した場 合の ζ電位が 2mVを超えてゼロに近くなると、静電反発効果による良好な分散性 を得ることは困難である。
[0061] なお、有色微小複合粒子の内包されているシリカ粒子の表面には表面改質剤が残 存していてもよい。
[0062] 次に、本発明の第 2要旨に係わる分散体ついて説明する。本発明の第 2の要旨の 分散体は、シリカと有機顔料とから成り、シリカが有機顔料に内包されており、シリカ の量が有色微小複合粒子に対して、 Si換算で、 0. 001〜9重量%である第 1の要旨 に記載の有色微小複合粒子を溶媒に分散させて成る。
[0063] 分散体中の有色微小複合粒子の量は、分散体構成基材 100重量部に対して、通 常 3〜300重量部、好ましくは 4〜 150重量部、より好ましくは 5〜: LOO重量部、更に より好ましくは 5〜75重量部、最も好ましくは 5〜50重量部である。分散体構成基材 としては、水及び Z又は水溶性有機溶剤、または、有機溶剤の溶媒から成り、必要に 応じて、榭脂、消泡剤、体質顔料、乾燥促進剤、界面活性剤、硬化促進剤、助剤な どが配合される。分散体構成基材中の樹脂、消泡剤、体質顔料、乾燥促進剤、界面 活性剤、硬化促進剤、助剤の量は、分散体の使用用途によって適宜選択されるが、 通常 95重量%以下である。
[0064] 水系分散体用の溶媒としては、水と水系塗料などに通常使用されている溶媒であ るエチルアルコール、プロピルアルコール、ブチルアルコール等のアルコール系溶 剤、メチルセ口ソルブ、ェチルセ口ソルブ、プロピルセロソルブ、ブチルセ口ソルブ等 のグリコーノレエーテノレ系溶剤、ジエチレングリコール、トリエチレングリコール、ポリエ チレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレング リコール等のォキシエチレン又はォキシプロピレン付カ卩重合体、エチレングリコール、 プロピレングリコール、 1, 2, 6 へキサントリオール等のアルキレングリコール、グリセ リン、 2—ピロリドン等の水溶性有機溶剤との混合溶媒が挙げられる。
[0065] 溶剤系分散体用の溶媒としては、トルエン、キシレン等の芳香族炭化水素;メチル ェチルケトン、シクロへキサノン等のケトン類; N, N ジメチルホルムアミド、 N, N- ジメチルァセトアミド、 N—メチルピロリドン等のアミド類;エチレングリコールモノメチル エーテノレ、エチレングノレコーノレモノェチノレエーテノレ、ジエチレングリコーノレモノメチノレ エーテノレ、プロピレングリコーノレモノメチノレエーテノレ、プロピレングリコーノレモノェチノレ エーテル等のエーテルアルコール類;エチレングリコールモノメチルエーテルァセテ ート、エチレングリコーノレモノェチノレエーテノレアセテート、プロピレングリコーノレモノメ チルエーテルアセテート、プロピレングリコールモノェチルエーテルアセテート等のェ 一テルアセテート類;酢酸ェチル、酢酸ブチル、酢酸イソブチル等の酢酸エステル類 ;乳酸メチルエステル、乳酸ェチルエステル、乳酸プロピルエステル等の乳酸エステ ル類;エチレンカーボネート、プロピレンカーボネート、 y ブチロラタトン等の環状ェ ステル類などが挙げられる。殊に、アルコール類、エーテルアルコール類、エーテル アセテート類に代表される極性の高い有機溶剤は、静電反発効果を得ることが出来 る。これらの溶剤は、 2種以上を混合して使用してもよい。
[0066] 分散体の個数換算分散平均粒子径は、通常 l〜200nm、好ましくは l〜150nm、 より好ましくは l〜100nm、更により好ましくは l〜50nmである。個数換算分散粒子 径が 200nmを超える場合は、粒子サイズが大きくなるため、本発明の目的を達成す ることが困難である。
[0067] 分散体の体積換算分散平均粒子径は、通常 l〜200nm、好ましくは l〜150nm、 より好ましくは l〜100nmである。体積換算分散粒子径が 200nmを超える場合は、 粒子サイズが大きくなるため、本発明の目的を達成することが困難である。
[0068] 分散体の分散安定性は、後述する評価方法のうち、粒子の沈降程度を目視で評価 した場合、通常 3、 4又は 5であり、好ましくは 4又は 5である。また、粘度の変化率は、 通常 20%以下、好ましくは 10%以下である。粒子の沈降程度の目視評価において 1又は 2の場合、または、粘度の変化率が 20%を超える場合は、安定した分散状態 で長期貯蔵することが困難となる。
[0069] 本発明に係る分散体の着色力を表わす比吸光係数 ε w (重量基準)は、後述する 評価方法で、通常 1. 20以上、好ましくは 1. 40〜5. 00、より好ましくは 1. 50〜5. 0 0である。
[0070] 次に、本発明の第 3要旨に係わる有色微小複合粒子の製造方法について説明す る。本発明の第 3要旨の製造方法は、(1)シリカ粒子に表面改質剤を添加し、(2)混 合攪拌してシリカ粒子の粒子表面に表面改質剤を被覆させ、(3)得られた被覆粒子 に有機顔料を添加し、(4)混合攪拌して表面改質剤被覆シリカ粒子の粒子表面に有 機顔料を付着させて複合粒子を得、 (5)アルカリ溶液を使用して得られた複合粒子 中のシリカ粒子の一部および表面改質剤の少なくとも一部を溶解することから成る。
[0071] 先ず、本発明で使用するシリカ粒子、表面改質剤および有機顔料について説明す る。
[0072] 使用されるシリカ粒子の平均一次粒子径は、通常 l〜100nm、好ましくは l〜50n m、より好ましくは l〜30nmである。
[0073] シリカ粒子の BET比表面積値は、通常 10〜: L000m2Zg、好ましくは 15〜500m2
Zgである。 [0074] 使用される表面改質剤としては、シリカ粒子の粒子表面へ有機顔料を付着できるも のであれば特に制限されず、例えば、アルコキシシラン、シラン系カップリング剤およ びオルガノポリシロキサン等の有機ケィ素化合物、チタネート系、アルミネート系およ びジルコネート系などのカップリング剤、低分子あるいは高分子界面活性剤などが挙 げられる。中でも、アルコキシシラン、シラン系カップリング剤およびオルガノポリシ口 キサン等の有機ケィ素化合物が好適である。
[0075] 有機ケィ素化合物としては、メチルトリエトキシシラン、ジメチルジェトキシシラン、フ ェニルトリエトキシシラン、ジフエ二ルジェトキシシラン、メチルトリメトキシシラン、ジメチ ルジメトキシシラン、フエニルトリメトキシシラン、ジフエ二ルジメトキシシラン、ェチルトリ エトキシシラン、プロピルトリエトキシシラン、ブチルトリエトキシシラン、イソブチルトリメ トキシシラン、へキシルトリエトキシシラン、ォクチルトリエトキシシラン及びデシルトリエ トキシシラン等のアルコキシシラン;ビニルトリメトキシシラン、ビニルトリエトキシシラン 、 γ—ァミノプロピルトリエトキシシラン、 γ—グリシドキシプロピルトリメトキシシラン、 γ メルカプトプロピルトリメトキシシラン、 γ メタクロィルォキシプロピルトリメトキシ シラン、 Ν— ( j8—アミノエチル) Ί—ァミノプロピルトリメトキシシラン、 γ—グリシド
系カップリング剤;ポリシロキサン、メチルハイドロジェンポリシロキサン、変性ポリシ口 キサン等のオルガノポリシロキサン等が挙げられる。
[0076] チタネート系カップリング剤としては、イソプロピルトリステアロイルチタネート、イソプ 口ピルトリス(ジォクチルパイロホスフェート)チタネート、イソプロピルトリ(Ν アミノエ チル ·アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスフェートチタネー ト、テトラ(2, 2ジァリルォキシメチルー 1—ブチル)ビス(ジトリデシル)ホスフェートチ タネート、ビス(ジォクチルパイロホスフェート)ォキシアセテートチタネート、ビス(ジォ クチルパイロホスフェート)エチレンチタネート等が挙げられる。
[0077] アルミネート系カップリング剤としては、ァセトアルコキシアルミニウムジイソプロピレ ート、アルミニウムジイソプロポキシモノェチルァセトアセテート、アルミニウムトリスェ チルァセトアセテート、アルミニウムトリスァセチルァセトネート等が挙げられる。
[0078] ジルコネート系カップリング剤としては、ジルコニウムテトラキスァセチルァセトネート 、ジルコニウムジブトキシビスァセチルァセトネート、ジルコニウムテトラキスェチルァ セトアセテート、ジノレコニゥムトリボトキシモノエチノレアセトアセテート、ジノレコニゥムトリ ブトキシァセチルァセトネート等が挙げられる。
[0079] 低分子系界面活性剤としては、アルキルベンゼンスルホン酸塩、ジォクチルスルホ ンコハク酸塩、アルキルアミン酢酸塩、アルキル脂肪酸塩などが挙げられる。高分子 系界面活性剤としては、ポリビュルアルコール、ポリアクリル酸塩、カルボキシメチル セルロース、アクリル酸 マレイン酸塩コポリマー、ォレフィン マレイン酸塩コポリマ 一等が挙げられる。
[0080] 表面改質剤の被覆量は、芯粒子であるシリカ粒子に対して C換算で通常 0. 05〜1 5. 0重量0 /0、好ましくは 0. 1〜12. 0重量0 /0、より好ましくは 0. 15〜: LO. 0重量0 /0で ある。表面改質剤の被覆量を 0. 05〜15重量%とすることで、有機顔料を、シリカ粒 子 100重量部に対して、通常 10〜500重量部付着することが出来る。
[0081] 使用する有機顔料としては、前述の赤色系有機顔料、青色系有機顔料、黄色系有 機顔料、緑色系有機顔料、橙色系有機顔料、褐色系有機顔料、紫色系有機顔料、 黒色系有機顔料などの各種有機顔料を使用することが出来る。但し、アルカリブルー 、イソインドリン系有機顔料などの耐アルカリ性の弱い有機顔料は、後述する処法に よりシリカ粒子をアルカリ溶解する際に、複合粒子に含まれる有機顔料が溶解してし まうため、本発明に係る有色微小複合粒子を製造するのに使用するのは好ましくな い。
[0082] 有機顔料の添カ卩量は、芯粒子であるシリカ粒子 100重量部に対して、通常 10〜50 0重量部、好ましくは 30〜400重量部、より好ましくは 50〜300重量部である。
[0083] 本発明における複合粒子は、上述の様に(1)シリカ粒子に表面改質剤を添加し、 ( 2)混合攪拌してシリカ粒子の粒子表面に表面改質剤を被覆させ、(3)得られた表面 改質剤被覆シリカ粒子に有機顔料を添加し、(4)混合攪拌して表面改質剤被覆シリ 力粒子の粒子表面に有機顔料を付着させることによって得ることが出来る。なお、添 カロした表面改質剤は、ほぼ全量がシリカ粒子表面に被覆される。
[0084] シリカ粒子と表面改質剤の混合攪拌、有機顔料と粒子表面に表面改質剤が被覆さ れているシリカ粒子とを混合攪拌するための機器としては、粉体にせん断力を加える ことのできる装置が好適である。具体的には、せん断、へらなで及び圧縮が同時に行 える装置、例えば、ホイール型混鍊機、ボール型混鍊機、ブレード型混鍊機、ロール 型混鍊が挙げられ、ホイール型混鍊機が好適である。
[0085] 前記ホイール型混練機としては、エッジランナー(「ミックスマラー」、「シンプソンミル 」、 「サンドミル」と同義語である)、マルチマル、ストッッミル、ウエットパンミル、コナー ミル、リングマラー等が挙げられ、好ましくはエッジランナー、マルチマル、ストッッミル 、ウエットパンミル、リングマラーが挙げられ、より好ましくはエッジランナーが挙げられ る。前記ボール型混練機としては、振動ミル等が挙げられる。前記ブレード型混練機 としては、ヘンシェルミキサー、プラネタリーミキサー、ナウターミキサー等が挙げられ る。前記ロール型混練機としては、エタストルーダー等が挙げられる。
[0086] シリカ粒子と表面改質剤との混合攪拌条件としては、例えば、せん断、へらなで及 び圧縮が同時に行える装置としてエッジランナーを使用した場合、表面改質剤が均 一に付着する様に、線荷重は、通常 19. 6〜1960NZcm (2〜200KgZcm)、好 ましくは98〜1470NZcm (10〜150KgZcm)、ょり好ましくは147〜980NZcm ( 15〜: LOOKgZcm)であり、処理時間は、通常 5分〜 24時間、好ましくは 10分〜 20 時間の範囲である。攪拌速度は、通常 2〜2000rpm、好ましくは 5〜: LOOOrpm、より 好ましくは 10〜800rpmの範囲である。
[0087] 有機顔料は、通常 5分〜 24時間、好ましくは 5分〜 20時間程度の時間をかけなが ら少量ずつ添加するか、若しくは、所望の添加量となるまで、シリカ粒子 100重量部 に対して 5〜25重量部の有機顔料を何回か添加する。
[0088] 表面改質剤被覆シリカ粒子と有機顔料との混合攪拌条件としては、例えば、せん断 、へらなで及び圧縮が同時に行える装置としてエッジランナーを使用した場合、有機 顔料が均一に付着する様に、線荷重は、通常 19. 6〜1960NZcm (2〜200KgZ cm)、好ましくは 98〜1470NZcm (10〜150KgZcm)、より好ましくは 147〜980 NZcm (15〜100KgZcm)であり、処理時間は、通常 5分〜 24時間、好ましくは 10 分〜 20時間の範囲である。攪拌速度は、通常 2〜2000rpm、好ましくは 5〜: LOOOr pm、より好ましくは 10〜800rpmの範囲である。
[0089] 表面改質剤被覆シリカ粒子の粒子表面に有機顔料を付着させた後、必要により、 乾燥乃至加熱処理を行ってもよい。乾燥乃至加熱処理を行う場合の加熱温度は、通 常 40〜150°C、好ましくは 60〜120°Cであり、加熱時間は、通常 10分〜 12時間、 好ましくは 30分〜 3時間である。
[0090] 得られた複合粒子の一次粒子の平均粒子径は、通常 1〜: L00nm、好ましくは 1〜5
Onm、より好ましくは l〜30nmである。
[0091] 複合粒子の BET比表面積値は、通常 10〜500m2Zg、好ましくは 15〜400m2Z g、より好ましくは 20〜300m2Zgである。
[0092] 複合粒子の有機顔料の脱離の程度は、後出評価方法における目視観察において
、通常 4又は 3、好ましくは 4である。有機顔料の脱離の程度が 2以下の場合は、脱離 した有機顔料が再結晶化または凝集などを起こすことにより粗大化したまま、最終生 成物である有色微小複合粒子に混在するため、本発明の目的を達成することが出来 ない。
[0093] 本発明に係る有色微小複合粒子は、 (5)上述の複合粒子をアルカリ溶液で処理し て複合粒子中にシリカ成分の一部またはシリカ成分と表面改質剤成分の一部が残存 する様に、シリカ粒子の一部および表面改質剤の少なくとも一部を溶解させるによつ て得られる。
[0094] 使用するアルカリ溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液、 アンモニア等を使用することが出来る。
[0095] 溶解処理を行う際の溶解液中の複合粒子濃度は、水 lOOmLに対して、通常 1. 0
〜30. 0重量部、好ましくは 2. 5〜25. 0重量部、より好ましくは 5. 0〜20. 0重量部 である。
[0096] 溶解処理を行う際の溶解液中のアルカリ量は、シリカ粒子および表面改質剤を全 量を溶解させるために必要なアルカリ量に対して、通常 0. 01-0. 95倍、好ましくは 0. 02〜0. 90倍、より好ましくは 0. 05〜0. 85倍である。ァノレカジ量力 0. 95倍を超 える場合は、シリカ粒子および表面改質剤が完全に溶解してしまうために、本発明の 目的とする有色微小複合粒子を得ることが出来ない。他方、アルカリ量が 0. 01倍未 満の場合、シリカ粒子またはシリカ粒子および表面改質剤が、有色微小複合粒子に 対して 9重量%以下となるまで溶解させるのに非常に長時間を有するために工業的 に好ましくない。
[0097] 溶解処理を行う際の pHは、通常 10. 0〜13. 8、好ましくは 11. 0〜13. 6、より好 ましくは 11. 5〜13. 4である。 pHが 13. 8を超える場合は、アルカリによる有機顔料 へのダメージが大きくなり、良好な耐光性および耐熱性を有する有色微小複合粒子 を得ることが困難である。 pHが 10. 0未満の場合は、シリカ粒子またはシリカ粒子お よび表面改質剤が、有色微小複合粒子に対して 9重量%以下となるまで溶解させる のに非常に長時間を有するために工業的に好ましくない。
[0098] 溶解処理温度は、通常 40〜100°C、好ましくは 45〜90°C、より好ましくは 50〜80 °Cである。 40°C未満の場合は、溶解処理に 50時間を超えるような長時間を要するた め、工業的に不利となる。 100°Cを超える場合は、有機顔料へのダメージにより良好 な耐光性および耐熱性を有する有色微小複合粒子を得ることが困難であるとともに、 オートクレープ等の装置を必要とするため工業的にも好ましくない。
[0099] 溶解処理時間は、通常 5分〜 50時間、好ましくは 10分〜 30時間、より好ましくは 2 0分〜 10時間である。処理時間が 50時間より長い場合は、長時間の溶解処理となる ため工業的に好ましくない。
[0100] 溶解処理した後、固形分と溶解液を濾別し、洗浄し、通常の乾燥または凍結乾燥を して有色微小複合粒子を得る。本発明で得られた有色微小複合粒子は、通常の乾 燥を行った場合にぉ ヽても、シリカまたはシリカ及び表面改質剤に起因する静電反 発効果により有色微小複合粒子の分散が容易である。
[0101] 次に、本発明の第 2の要旨に係る分散体の製造方法について述べる。
[0102] 本発明に係る水系分散体は、得られた微小複合粒子を水または水および水溶性 有機溶剤中に再分散させるか、あるいは、溶解処理し、固形分と溶解液を濾別し、水 洗した後、乾燥させずに取り出した固形分を水または水溶性有機溶剤中に分散させ ること〖こより得ることが出来る。必要により、添加剤として、榭脂、分散剤、消泡剤、界 面活性剤などを添加してもよ ヽ。
[0103] 本発明に係る溶剤系分散体は、得られた微小複合粒子を有機溶剤または油性ビヒ クル中に再分散させるか、あるいは、溶解処理した後、固形分と溶解液を濾別し、水 洗した固形分を有機溶剤または油性ビヒクルでフラッシングした後、有機溶剤または 油性ビヒクル中に分散させることにより得ることが出来る。必要により、添加剤として、 樹脂、分散剤、消泡剤、体質顔料、乾燥促進剤、界面活性剤、硬化促進剤、助剤な どを添カ卩してもよい。
[0104] 前記有色微小複合粒子と前記溶媒との混合 '分散は、ボールミル、ビーズミル、サ ンドミル、エッジランナー、超音波分散機、 2本または 3本ロールミル、エタストルーダ 一及び高速衝撃ミル等を使用して行う。ボールミルやビーズミル等の磨砕型ミルに用 いられる磨砕媒体としては、ミルの材質に応じて、スチールビーズ、ガラスビーズ、セ ラミックビーズ等が使用できる。磨砕媒体のサイズは、通常 0. 01〜: LOmmの範囲、 好ましくは 0. 03〜3mmの範囲である。磨砕温度は特に限定されないが、例えば、 室温力も使用する溶媒の沸点以下の範囲の温度であればよい。
[0105] 次に、本発明の第 4の要旨に係るカラーフィルター用着色材について説明する。本 発明の第 4の要旨のカラーフィルター用着色材は、シリカと有機顔料とから成り、シリ 力が有機顔料に内包されており、シリカの量が有色微小複合粒子に対して、 Si換算 で、 0. 001〜9重量%である有色微小複合粒子から成る。
[0106] 本発明に係るカラーフィルター用着色材の耐熱性は、後述する評価方法にぉ 、て 、 Δ Ε*値で通常 5. 0以下、好ましくは 4. 5以下、より好ましくは 4. 0以下である。
[0107] なお、本発明に係るカラーフィルター用着色材は、第 1の要旨の有色微小複合粒 子の場合とほぼ同程度のシリカ含量、平均一次粒子径、個数換算平均粒子径、体積 換算平均粒子径、 BET比表面積値、着色力、耐光性、水系で測定した場合の ζ電 位および溶剤系で測定した場合の ζ電位を有している。
[0108] 次に、本発明の第 5の要旨に係るカラーフィルター用着色組成物 (a)ついて説明す る。本発明の第 5の要旨のカラーフィルター用着色組成物 (a)は、シリカと有機顔料と 力 成り、シリカが有機顔料に内包されており、シリカの量が有色微小複合粒子に対 して、 Si換算で、 0. 001〜9重量%である有色微小複合粒子力も成るカラーフィルタ 一用着色材と着色組成物構成基材とから構成される。
[0109] 上記着色組成物構成基材は、溶剤および必要に応じて添加される分散剤、顔料誘 導体および消泡剤、界面活性剤などの添加剤とから成る。
[0110] カラーフィルター用着色組成物中のカラーフィルター用着色材の量は、着色組成 物構成基材 100重量部に対して通常 3〜300重量部、好ましくは 4〜200重量部、よ り好ましくは 5〜150重量部である。着色組成物構成基材中の添加剤の量は、通常 6 0重量%以下である。
[0111] 本発明において使用する溶剤としては、カラーフィルター用着色材、透明榭脂、ェ チレン性不飽和二重結合を 2つ以上有する多官能性モノマー、光重合開始剤および 光酸発生剤を溶解または分散させ、且つ、塗布後に揮発除去できる溶剤であれば、 適宜使用することが出来る。
[0112] 例えば、水;トルエン、キシレン等の芳香族炭化水素;メチルェチルケトン、シクロへ キサノン等のケトン類; N, N ジメチルホルムアミド、 N, N—ジメチルァセトアミド、 N メチルピロリドン等のアミド類;エチレングリコールモノメチルエーテル、エチレング ノレコーノレモノエチノレエーテノレ、ジエチレングリコーノレモノメチノレエーテノレ、プロピレン グリコーノレモノメチノレエーテノレ、プロピレングリコーノレモノェチノレエーテノレ等のエーテ ルアルコール類;エチレングリコールモノメチルエーテルアセテート、エチレングリコー ノレモノェチノレエーテノレアセテート、プロピレングリコーノレモノメチノレエーテノレアセテー ト、プロピレングリコールモノェチルエーテルアセテート等のエーテルアセテート類; 酢酸ェチル、酢酸ブチル、酢酸イソブチル等の酢酸エステル類;乳酸メチルエステル 、乳酸ェチルエステル、乳酸プロピルエステル等の乳酸エステル類;エチレンカーボ ネート、プロピレンカーボネート、 γ ブチロラタトン等の環状エステル類などが挙げ られる。これらの溶剤は、 2種以上を混合して使用してもよい。
[0113] 本発明で使用する分散剤としては、ラウリル硫酸アンモ-ゥム、ポリオキシエチレン アルキルエーテル硫酸エステル塩などのァ-オン性界面活性剤、ステアリルアミンァ セテート、ラウリルトリメチルアンモ -ゥムクロライド等のカチオン性界面活性剤、ラウリ ルジメチルァミンオキサイド、ラウリルカルボキシメチルヒドロキシェチルイミダゾリゥム ベタイン等の両性界面活性剤、ポリオキシエチレンラウリルエーテル、ポリオキシェチ レンステアリルエーテル、ソルビタンモノステアレート等の非イオン性界面活性剤が挙 げられる。これら分散剤は、 2種以上を併用してもよい。
[0114] 殊に、溶剤が水の場合は、ァ-オン界面活性剤、ノ-オン界面活性剤、カチオン界 面活性剤、ナフタレンスルホン酸ナトリウムホルマリン縮合物、アセチレングリコール 系分散剤などの分散剤が好適である。
[0115] カラーフィルター用着色組成物 (a)の個数換算分散平均粒子径は、通常 l〜200n m、好ましくは l〜150nm、より好ましくは l〜100nm、更により好ましくは l〜50nm である。個数換算分散粒子径が 200nmを超える場合には、粒子サイズが大きすぎる ことから、光学特性が低下するため、本発明の目的を達成することが出来ない。
[0116] カラーフィルター用着色組成物 (a)の体積換算分散平均粒子径は、通常 l〜200n m、好ましくは l〜150nmり、より好ましくは 1〜: LOOnmである。体積換算分散粒子径 力 S200nmを超える場合は、粒子サイズが大きすぎることから、光学特性が低下する ため、本発明の目的を達成することが出来ない。
[0117] カラーフィルター用着色組成物 (a)の分散安定性は、後述する評価方法で、粘度 の変化率が通常 20%以下、好ましくは 10%以下である。粘度の変化率が 20%を超 える場合は、安定した分散状態で長期に亘つて分散性を維持することが困難となる。
[0118] カラーフィルター用着色組成物(a)が緑色系の場合、カラーフィルター用着色組成 物(a)の 530nmの透過率は、通常 65%以上、好ましくは 70%以上、より好ましくは 7 5%以上である。また、 650nmにおける比吸光係数 (重量基準)は、後述する評価方 法 ίこお ヽて、通常 1. 05〜5. 00、好ましく ίま 1. 10〜5. 00、より好ましく ίま 1. 20〜5 . 00である。
[0119] カラーフィルター用着色組成物(a)が青色系の場合、カラーフィルター用着色組成 物(a)の 460nmの透過率は、通常 65%以上、好ましくは 70%以上、より好ましくは 7 5%以上である。また、 610nmにおける比吸光係数 (重量基準)は、後述する評価方 法 ίこお ヽて、通常 1. 05〜5. 00、好ましく ίま 1. 10〜5. 00、より好ましく ίま 1. 20〜5 . 00である。
[0120] カラーフィルター用着色組成物(a)が赤色系の場合、カラーフィルター用着色組成 物(a)の 620nmの透過率は、通常 65%以上、好ましくは 70%以上、より好ましくは 7 5%以上である。また、 550nmにおける比吸光係数 (重量基準)は、後述する評価方 法 ίこお ヽて、通常 1. 05〜5. 00、好ましく ίま 1. 10〜5. 00、より好ましく ίま 1. 20〜5 . 00である。
[0121] カラーフィルター用着色組成物(a)が黄色系の場合、カラーフィルター用着色組成 物(a)の 550nmの透過率は、通常 65%以上、好ましくは 70%以上、より好ましくは 7 5%以上である。また、 400nmにおける比吸光係数 (重量基準)は、後述する評価方 法 ίこお ヽて、通常 1. 05〜5. 00、好ましく ίま 1. 10〜5. 00、より好ましく ίま 1. 20〜5 . 00である。
[0122] 次に、本発明の第 6の要旨に係るカラーフィルター用着色組成物 (b)ついて説明す る。本発明の第 6の要旨のカラーフィルター用着色組成物 (b)は、シリカと有機顔料と 力 成り、シリカが有機顔料に内包されており、シリカの量が有色微小複合粒子に対 して、 Si換算で、 0. 001〜9重量%である有色微小複合粒子力も成るカラーフィルタ 一用着色材と着色組成物構成基材とから成るカラーフィルター用着色組成物 (a)と 酸性基及び,又は潜在性酸性基を有する透明榭脂とから構成される。
[0123] 本発明で使用する透明榭脂としては、アルカリ現像液に可溶であり、可視波長領域 に吸収帯を有さず、且つ、フィルム形成能を有する条件を満たすものであれば、特に 制限されることはない。例えば、 1つ以上の酸性基で置換されたポリマー、又は、酸の 作用による脱保護反応によって酸性基に変換される潜在性酸性基を 1つ以上有する ポリマーが挙げられる。酸性基としては、フエノール性水酸基、カルボキシル基などが 挙げられる。酸性基及び,又は潜在性酸性基の量は、特に制限されず、アルカリ水 溶液への溶解性に応じて適宜調節すればょ 、。
[0124] フエノール性水酸基を有する透明榭脂としては、ノボラック榭脂、 4ーヒドロキシスチ レンのホモポリマー及び共重合体が挙げられる。
[0125] カルボキシル基を有する透明榭脂としては、カルボキシル基を有するエチレン性不 飽和モノマーと他の共重合可能な不飽和モノマーとのビニル系共重合体が挙げられ る。カルボキシル基を有するエチレン性不飽和モノマーとしては、アクリル酸、メタタリ ル酸、 2—アタリロイルォキシェチルフタレート、 2—アタリロイルォキシプロピルフタレ ート、マレイン酸、無水マレイン酸、ィタコン酸、無水ィタコン酸などが挙げられる。前 記のカルボキシル基を有するモノマーと共重合する不飽和モノマーとしては、(メタ) アクリル酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル酸プロピル、(メタ)アクリル 酸ブチル、(メタ)アクリル酸シクロへキシル、(メタ)アクリル酸イソボル-ル、(メタ)ァク リル酸 2 -ヒドロキシェチル、(メタ)アクリル酸 2 -ヒドロキシプロピル、(メタ)アクリル酸 ベンジル、(メタ)アクリル酸フエ-ル、(メタ)アクリル酸 2—エトキシェチル、(メタ)ァク リル酸 2—フエノキシェチル、 (メタ)アクリル酸 2— (N, N—ジメチルァミノ)ェチル、 ( メタ)アクリル酸グリシジル、 (メタ)アクリロニトリル、 (メタ)アクリルアミド、 (メタ)アタリ口 ィルモルホリド、 N—メチルマレイミド、 N—フエ-ルマレイミド、 N—シクロへキシルマ レイミド、スチレン、 4—ビュルトルエン、酢酸ビュル、ビュルメチルエーテル等が挙げ られる。
[0126] 透明榭脂中のカルボキシル基を有するエチレン性不飽和モノマーが占めるモル比 ίま、通常 0. 005〜0. 5、好ましく ίま 0. 05〜0. 4である。モノ ktt力 ^0. 05未満の共重 合体は、アルカリ水溶液に対する溶解性が低下して、パターユングにおける地汚れ が発生しやすくなる。他方、モル比が 0. 5を超える場合は、得られる感光性組成物か ら成る塗膜を露光した後にアルカリ現像を施すと、不溶ィ匕した露光部の膨潤が起こる ために解像性が低下したり、塗膜表面の平滑性が損なわれることがある。
[0127] カルボキシル基を含有する透明榭脂としては、テトラカルボン酸二無水物とジァミン との重付加反応により得られるポリアミック酸が挙げられる。テトラカルボン酸二無水 物としては、 1, 2, 3, 4ーシクロブタンテトラカルボン酸二無水物、 1, 2, 3, 4ーシク 口ペンタンテトラカルボン酸二無水物、 1, 2, 3, 5—シクロペンタンテトラカルボン酸 二無水物、 1, 2, 4, 5—ビシクルへキセンテトラカルボン酸二無水物、 3, 3' , 4, 4, 一べンゾフエノンテトラカルボン酸二無水物、ピロメリット酸二無水物、 3, 3' , 4, 4, 一 ジフエ-ルスルホンテトラカルボン酸二無水物、 3, 3' , 4, 4,ービフエ-ルテトラカル ボン酸二無水物などが挙げられる。また、これらテトラカルボン酸二無水物は、 2種以 上を使用してもよい。テトラカルボン酸二無水物と反応させるジァミンとしては、ェチレ ンジァミン、 1, 3—ジアミノシクロへキサン、 1, 4ージアミノシクロへキサン、 4, 4'ージ アミノジフエニルエーテル、 3, 4'ージアミノジフエニルエーテル、 4, 4'ージアミノジフ ェニルメタン、 3, 3,一ジアミノジフエニルメタン、 4, 4'—ジアミノジフエニルスルホン、 3, 3,ージアミノジフエニルスルホン、 m—フエ二レンジァミン、 p—フエ二レンジァミン 、 2, 4ージァミノトルエン、 2, 5—ジァミノトルエン等が挙げられる。
[0128] 前記ポリアミック酸の合成は、極性有機溶媒中で公知の方法により行われる。ポリア ミック酸の重合度は、テトラカルボン酸二無水物とジァミンとの混合モル比によって調 整される。
[0129] 潜在性酸性基を有する透明榭脂としては、光酸発生剤から発生する酸の触媒作用 によってカルボキシル基あるいはフエノール性水酸基を生成する置換基を有するポリ マー、アルカリ現像性ィ匕学増幅型フォトレジストに使用されるベースポリマーが挙げら れる。具体的には、シクロへキシル (メタ)アタリレート、 tert—ブチル (メタ)アタリレート 、 tert—ァミル (メタ)アタリレート、 1, 1—ジメチルベンジル (メタ)アタリレート、 1—エト キシェチル (メタ)アタリレート等と (メタ)アクリル酸を含む他のアタリレートモノマーとの 共重合体、 4一(tert ブトキシカルボ-ルォキシ)スチレン、 4一(1ーメトキシェトキ シ)スチレン、 4一(1 エトキシエトキシ)スチレン等のホモポリマーあるいは 4ーヒドロ キシスチレンとの共重合体が挙げられる。
[0130] 透明榭脂の重量平均分子量は、通常 2000〜500000、好まし <は 3000〜30000 0である。
[0131] 前記カラーフィルター用着色材に対する酸性基及び Z又は潜在性酸性基で置換 された透明樹脂の割合は、カラーフィルター用着色材 100重量部に対して、通常 5〜 500重量部、好ましくは 7〜300重量部である。透明樹脂の混合割合が 5重量部未 満の場合は、製膜性およびアルカリ現像性が低下する。 500重量部を超える場合は 、相対的に顔料濃度が低下するので、カラーフィルターとしての色濃度を確保するた めに膜厚が増大して均一膜厚を得るのが困難になると共に、光学特性も低下する。
[0132] カラーフィルター用着色組成物 (b)の個数換算分散平均粒子径は、通常 l〜200n m、好ましくは l〜150nm、より好ましくは l〜100nm、更により好ましくは l〜50nm である。個数換算分散粒子径が 200nmを超える場合には、粒子サイズが大きすぎる ことから、光学特性が低下するため、本発明の目的を達成することが出来ない。
[0133] カラーフィルター用着色組成物 (b)の体積換算分散平均粒子径は、通常 l〜200n m、好ましくは l〜150nm、より好ましくは 1〜: LOOnmである。体積換算分散粒子径 力 S200nmを超える場合は、粒子サイズが大きすぎることから、光学特性が低下する ため、本発明の目的を達成することが出来ない。
[0134] カラーフィルター用着色組成物(b)の粘度は、通常 0. 5〜: LOOOmPa' sである。粘 度が lOOOmPa' sを超える場合は、均一なコーティングが困難となる。 0. 5mPa' s未 満の場合は、塗膜が薄くなりすぎるため、本発明の目的を達成することが出来ない。
[0135] カラーフィルター用着色組成物 (b)の分散安定性は、後述する評価方法で、粘度 の変化率が通常 20%以下、好ましくは 10%以下である。粘度の変化率が 20%を超 える場合は、安定した分散状態で長期に亘つて分散性を維持することが困難となる。
[0136] カラーフィルター用着色材として緑色系を使用した場合、カラーフィルター用着色 組成物 (b)の 650nmの波長における比吸光係数 (重量基準)は、後述する評価方法 で、通常 1. 05以上、好ましくは 1. 10〜5. 00、より好ましくは 1. 20〜5. 00である。 カラーフィルター用着色材として青色系を使用した場合、カラーフィルター用着色組 成物 (b)の 6 lOnmの波長における比吸光係数 (重量基準)は、後述する評価方法で 、通常 1. 05以上、好ましくは 1. 10〜5. 00、より好ましくは 1. 20〜5. 00である。力 ラーフィルター用着色材として赤色系を使用した場合、カラーフィルター用着色組成 物 (b)の 550nmの波長における比吸光係数 (重量基準)は、後述する評価方法で、 通常 1. 05以上、好ましくは 1. 10〜5. 00、より好ましくは 1. 20〜5. 00である。カラ 一フィルター用着色材として黄色系を使用した場合、カラーフィルター用着色組成物 (b)の 400nmの波長における比吸光係数 (重量基準)は、後述する評価方法で、通 常 1. 05以上、好ましくは 1. 10〜5. 00、より好ましくは 1. 20〜5. 00である。
[0137] 本発明に係るカラーフィルター用着色組成物 (b)を使用して作製した着色透過膜 の耐光性は、後述する評価方法において、 Δ Ε*値で通常 5. 0以下、好ましくは 4. 5 以下、より好ましくは 4. 0以下である。耐光性(Δ Ε*値)が 5. 0を超える場合、ノ ック ライトの照射などによってカラーフィルターの光学特性が低下するため、本発明の目 的を達成することが出来ない。
[0138] 本発明に係るカラーフィルター用着色組成物 (b)を使用して作製した着色透過膜 の耐熱性は、後述する評価方法において、 Δ Ε*値で通常 5. 0以下、好ましくは 4. 5 以下、より好ましくは 4. 0以下である。耐熱性(Δ Ε*値)が 5. 0を超える場合、カラー フィルター形成時または ITO膜蒸着時の加熱処理によって光学特性が低下するため 、本発明の目的を達成することが出来ない。
[0139] 次に、カラーフィルター用着色組成物 (b)を使用して作製したカラーフィルター用着 色透過膜の透過率にっ 、て述べる。カラーフィルター用着色材として緑色系を使用 した場合、カラーフィルター用着色透過膜の 530nmの波長における透過率は、通常 80%以上、好ましくは 85%以上、より好ましくは 90%以上である。カラーフィルター 用着色材として青色系を使用した場合、カラーフィルター用着色透過膜の 460nmの 波長における透過率は、通常 80%以上、好ましくは 85%以上、より好ましくは 90% 以上である。カラーフィルター用着色材として赤色系を使用した場合、カラーフィルタ 一用着色透過膜の 620nmの波長における透過率は、通常 80%以上、好ましくは 85 %以上、より好ましくは 90%以上である。カラーフィルター用着色材として黄色系を 使用した場合、カラーフィルター用着色透過膜の 550nmの波長における透過率は、 通常 80%以上、好ましくは 85%以上、より好ましくは 90%以上である。
[0140] カラーフィルター用着色組成物 (b)を使用して作製したカラーフィルター用着色透 過膜の比吸光係数 (重量基準)は、後述する評価方法で測定した。カラーフィルター 用着色材として緑色系を使用した場合、カラーフィルター用着色透過膜の 650nmの 波長における比吸光係数 (重量基準)は、通常 1. 05以上、好ましくは 1. 10〜5. 00 、より好ましくは 1. 20〜5. 00である。カラーフィルター用着色材として青色系を使用 した場合、カラーフィルター用着色透過膜の 610nmの波長における比吸光係数 (重 量基準)は、通常 1. 05以上、好ましくは 1. 10-5. 00、より好ましくは 1. 20-5. 00 である。カラーフィルター用着色材として赤色系を使用した場合、カラーフィルター用 着色透過膜の 550nmの波長における比吸光係数 (重量基準)は、通常 1. 05以上、 好ましく ίま 1. 10-5. 00、より好ましく ίま 1. 20-5. 00である。カラーフイノレター用着 色材として黄色系を使用した場合、カラーフィルター用着色透過膜の 400nmの波長 における比吸光係数 (重量基準)は、通常 1. 05以上、好ましくは 1. 10〜5. 00、より 好ましくは 1. 20〜5. 00である。
[0141] 次に、本発明の第 7の要旨に係るカラーフィルター用着色組成物 (C)ついて説明 する。本発明の第 7の要旨のカラーフィルター用着色組成物 (C)は、シリカと有機顔 料とから成り、シリカが有機顔料に内包されており、シリカの量が有色微小複合粒子 に対して、 Si換算で、 0. 001〜9重量%である有色微小複合粒子力も成るカラーフィ ルター用着色材が溶剤に分散したカラーフィルター用着色組成物 (a)が酸性基及び Z又は潜在性酸性基を有する透明榭脂溶液中に分散して成る第 6の要旨に記載の カラーフィルター用着色組成物 (b)とエチレン性不飽和二重結合を 2つ以上有する 多官能性モノマーと光ラジカル重合開始剤とから構成される。
[0142] ところで、顔料分散型カラーフィルターを製造する方法として、顔料を含有する塗膜 上に顔料を含有しな ヽ感光性皮膜を設けて露光し、現像過程で感光層にパターンを 形成すると同時にパターンの非形成部分の顔料塗膜層を除去するエッチング法と、 顔料が分散した感光層を設けて露光し、現像過程で感光層にパターンを形成すると 同時にパターンの非形成部分を除去する着色感材法が提案されている。本発明に 係るカラーフィルター用着色組成物 (b)は、前者のエッチング法の顔料を含有する塗 膜形成に好適である。他方、後者の着色感材法の顔料が分散した感光層として、力 ラーフィルター用着色組成物 (b)を適用するためには、カラーフィルター用着色組成 物 (b)に感光性を付与する必要がある。カラーフィルター用着色組成物 (b)に感光性 を付与する物質として、エチレン性不飽和二重結合を 2つ以上有する多官能性モノ マーが挙げられる。着色感材法における露光部においては、光重合開始剤から生成 されるラジカル種によってエチレン性不飽和二重結合を 2つ以上有する多官能性モ ノマーの重合が開始され、且つ、架橋反応が誘起されることによって不溶化が引き起 こされる。
[0143] エチレン性不飽和二重結合を 2つ以上有する多官能性モノマーとしては、エチレン グリコールジ (メタ)アタリレート、ジエチレングリコールジ (メタ)アタリレート、トリメチレン エチレングリコールジ (メタ)アタリレート、テトラメチレングリコールジ (メタ)アタリレート 、ペンタメチレングリコールジ (メタ)アタリレート、へキサメチレングリコールジ (メタ)ァ タリレート、ネオペンチルダリコールジ (メタ)アタリレート、ペンタエリスリトールトリ(メタ) アタリレート、ペンタエリスリトールテトラ (メタ)アタリレート、ステアリン酸変性ペンタエリ スリトールメタ(ァ)タリレート、トリメチロールプロパントリ(メタ)アタリレート、トリス(アタリ ロイルォキシェチル)イソシァヌレート、ジペンタエリスリトールへキサアタリレート、ジ ペンタエリスリトールペンタアタリレート等の多官能性モノマー等が挙げられる。更に は、ポリエステル榭脂、エポキシ榭脂、ウレタン榭脂、シリコン榭脂など力も得られるァ タリレートオリゴマー等が挙げられる。
[0144] エチレン性不飽和二重結合を 2つ以上有する多官能性モノマーには、単官能性モ ノマーを混合してもよい。単官能性モノマーとしては、メトキシトリエチレングリコール( メタ)アタリレート、 2 ヒドロキシ一 3 フエノキシプロピル (メタ)アタリレート、 2—アタリ ロイルォキシェチルサクシネート、 2—アタリロイルォキシェチルフタレート、 2—アタリ ロイルォキシプロピルフタレート等を挙げられる。単官能性モノマーの量は、多官能 性モノマー 100重量部に対して、通常 0〜80重量部、好ましくは 0〜40重量部である 。単官能性モノマーの量が 80重量部を超える場合は、露光後の皮膜をアルカリ現像 処理する際に、膜が一部剥離したり、解像性が低下することがある。
[0145] 本発明における多官能性モノマーは、前述の透明榭脂中のカルボキシル基を有す るビニル系共重合体との混合に好適である。多官能性モノマーの使用割合は、透明 榭脂 100重量部に対して通常 5〜300重量部、好ましくは 10〜200重量部である。 多官能性モノマーの混合割合が 5重量部未満の場合は、アルカリ現像後の塗膜が一 部剥離したり、解像性が低下することがある。混合割合が 300重量部を超える場合は 、アルカリ現像性が劣化して、未露光部での地汚れや膜残りといった不具合が生じる ことがある。
[0146] 光重合開始剤は、光照射によってラジカル種を効率よく発生する物質であって、多 官能性モノマーの重合を開始して架橋構造を形成し、酸性基を有する透明樹脂のァ ルカリ溶解性が低下し、その結果、ネガ型画像を形成する。光重合開始剤としては、 ケトン系化合物、トリクロロメチル基を有するトリアジン系化合物、電子移動型開始剤 など中で、波長 200〜450nmの範囲の紫外線照射によりラジカル種を発生する重 合開始剤を使用できる。光重合開始剤の使用量は、エチレン性不飽和二重結合を 2 つ以上有する多官能性モノマーの重合が開始される量であれば特に制限されず、通 常の使用量でよい。
[0147] また、使用されるケトン系光重合開始剤としては、 2 ヒドロキシ 2—メチルー 1 フエ-ルプロパン一 1—オン、 1—ヒドロキシ一 1—ベンゾィルシクロへキサン、 2—モ ルホリノ一 2—メチル 1—フエ-ルプロパン一 1―オン、 2 -モルホリノ一 2—メチル — 1— (4—メトキシフエ-ル)プロパン一 1 オン、 2 モルホリノ一 2—メチルー 1一( 4 -メチルチオフエ-ル)プロパン一 1 オン、 2 -ベンジル - 2-ジメチルァミノ 1 — (4—モルホリノフエ-ル)ブタン一 1—オン、 2—フエ-ル一 2, 2—ジメトキシ一 1— (4ーメチルチオフエ-ル)エタンー 1 オン、ジフエ-ルメシチレンホスフィンォキサイ ド、フエナシルテトラメチレンスルホ -ゥムへキサフルォロホスフェート等が挙げられる
[0148] 使用されるトリクロロメチル基を有するトリアジン系化合物としては、 2— (4—メトキシ
- β—スチリル)一ビス(4, 6 トリクロロメチル) s トリァジン、 1—フエ-ル一 3, 5 —ビス(トリクロロメチル) s トリァジン、 1— (4—クロ口フエ-ル)一 3, 5—ビス(トリク 口ロメチル) s トリァジン、 1— (4—メトキシフエ-ル)一 3, 5 ビス(トリクロロメチル )— s トリァジン、 1— (4—ブトキシフエ-ル)一 3, 5—ビス(トリクロロメチル) s ト リアジン、 1— (3, 4—メチレンジォキシフエ-ル)一 3, 5 ビス(トリクロロメチル) s —トリァジン、 1— (3, 4 ジメトキシフエ-ル)一 3, 5 ビス(トリクロロメチル) s トリ ァジン、 1— (4—メトキシナフチル一 1)— 3, 5 ビス(トリクロロメチル) s トリアジ ン、 1— { 2— (4—メトキシフエ-ル)エテュル} 3, 5 ビス(トリクロロメチル) s ト リアジン、 1— { 2— (2—メトキシフエ-ル)エテュル} 3, 5 ビス(トリクロロメチル) s トリァジン、 1— { 2— (3, 4 ジメトキシフエ-ル)エテュル} 3, 5 ビス(トリクロ口 メチル) s トリァジン、 1— { 2— (3 クロ口一 4 メトキシフエ-ル)エテュル} - 3, 5 ビス(トリクロロメチル) s トリァジン、 1— (ビフエ-ル一 1)— 3, 5 ビス(トリクロ ロメチル) s トリァジン等が挙げられる。
[0149] 使用される電子移動型開始剤は、電子受容性ィ匕合物または電子供与性ィ匕合物と してのラジカル発生剤と増感剤から成る。電子受容性ィ匕合物としては、前記のトリクロ ロメチル置換トリァジン誘導体、 2, 2,—ビス(2 クロロフヱ-ル)— 4, 4,, 5, 5,フエ -ルビイミダゾール、 2, 2,一ビス(2, 4 ジクロロフエ-ル)一 4, 4,, 5, 5,フエ-ル ビイミダゾール、 2, 2,一ビス(2 クロ口フエ-ル)一 4, 4,, 5, 5,テトラキス(4 エト キシカルボ-ルフエ-ル)ビイミダゾール等のビイミダゾール化合物、ジフエ-ルョード -ゥムへキサフノレオ口ホスフェート、ビス(4 tert—ブチノレフエ-ノレ)ョード-ゥムへキ サフルォロホスフェート、(4ーメトキシフエ-ル)(4ーォクチルォキシフエ-ル)ョード -ゥムへキサフルォロホスフェート等のョードニゥム塩がを挙げられる。増感剤として は、 9, 10 ジメチルアントラセン、 9, 10 ジフエ二ルアントラセン、 9, 10 ビス(フ ェ -ルェチュル)アントラセン、 1, 8 ジメチルー 9, 10 ビス(フエ-ルェチュル)ァ ントラセン、 9, 10—ジメトキシアントラセン、 9, 10—ジェトキシアントラセン、 9, 10— ジプロポキシアントラセン、 9, 10—ジブトキシアントラセン、チォキサントン、イソプロ ピルチオキサントン、 4, 4,一ビス(ジェチルァミノ)ベンゾフエノン等が挙げられる。更 には、電子供与性ィ匕合物と増感剤力 成る光重合開始剤も使用できる。電子供与性 化合物としては、 p—ジメチルァミノ安息香酸エステル、ジエタノールァミン等が挙げ られ、増感剤としては、チォキサントン誘導体が挙げられる。電子受容性化合物また は電子供与性化合物と組み合わせて使用する増感剤は、 2種以上を併用してもよい
[0150] 次に、本発明の第 8の要旨のカラーフィルター用着色組成物(D)について説明す る。本発明の第 8の要旨のカラーフィルター用着色組成物 (D)は、シリカと有機顔料 とから成り、シリカが有機顔料に内包されており、シリカの量が有色微小複合粒子に 対して、 Si換算で、 0. 001〜9重量%である有色微小複合粒子力も成るカラーフィル ター用着色材が溶剤に分散したカラーフィルター用着色組成物 (a)が酸性基及び Z 又は潜在性酸性基を有する透明榭脂溶液中に分散して成る第 6の要旨に記載の力 ラーフィルター用着色組成物 (b)と光酸発生剤とから構成される。
[0151] カラーフィルター用着色組成物(D)で使用する光酸発生剤としては、化学増幅型 フォトレジストや光力チオン重合に利用される化合物の中で、 200〜430nmの範囲 に吸収波長を持つ化合物が挙げられ、例えば、ォニゥムカチオンィ匕合物、ハロゲン 化水素酸を発生する含ハロゲン化合物、スルホン酸を発生するスルホン化化合物が 例示される。ォ-ゥムカチオン化合物としては、 p—フエ-ルチオフエ-ルジフエ-ル スノレホニゥム、フエナシノレテトラメチレンスノレホニゥム、フエナシノレジメチノレスノレホ -ゥ ム、 (2—ナフチルカルボ-ルメチル)テトラメチレンスルホ-ゥム、フエ-ル(4ーメトキ シフエ-ル)ョードニゥム、フエ-ル {4— (tert—ブチル)フエ-ル}ョ一ドニゥム、 (4— ビス {4— (tert—ブチル)フエ-ル}ョ一ドニゥム、ビス(4 -ドデシルフ工 -ル)ョードニ ゥム等の BF4— , PF6- , AsF6— , SbF6— , CH3S03— , CF3S03— ,パーフ ルォロブタンスルホネート、ベンゼンスルホネート、 ρ—トルエンスルホネート、 (C6F5 ) 4Β—塩が挙げられる。
[0152] ハロゲン化水素酸を発生する化合物としては、 1一(3, 4—ジメトキシフヱ-ル)一 3 , 5 ビス(トリクロロメチル) s トリァジン、 1— (4—メトキシナフチル一 1)— 3, 5- ビス(トリクロロメチル) s トリァジン、 1— {2— (4—メトキシフエ-ル)エテュル} 3 , 5 ビス(トリクロロメチル) s トリァジン、 1— {2— (2—メトキシフエ-ル)ェテュル }— 3, 5 ビス(トリクロロメチル) s トリァジン、 1— {2— (3, 4 ジメトキシフエ-ル )ェテュル)一 3, 5—ビス(トリクロロメチル) s トリァジン、 1— {2— (3—クロ口一 4 —メトキシフエ-ル)エテュル} 3, 5 ビス(トリクロロメチル) s トリァジン、 1— ( ビフエ-ル一 1)— 3, 5 ビス(トリクロロメチル) s トリァジン、 1— (4—ヒドロキシビ フエ-ル一 1)— 3, 5 ビス(トリクロロメチル) s トリァジン、 1— (4—メトキシビフエ -ル一 1)—3, 5 ビス(トリクロロメチル) s トリァジンが挙げられる。
[0153] スルホン酸を発生する酸発生剤としては、 N トリフルォロメタンスルホ-ルォキシ ジフエ-ルマレイミド、 N—p—トルエンスルホ-ルォキシサクシンイミド、 N—力ンファ ースルホ-ルォキシサクシンイミド、 N—トルフルォロメタンスルホ-ルォキシサクシン イミド、 N—パーフルォロブタンスルホ-ルォキシフタルイミド、 N—p—トルエンスルホ -ルォキシ 1, 8 ナフタレンカルボキシイミド、 N—カンファースルホニルォキシー 1, 8 ナフタレンカルボキシイミド、 N トリフルォロメタンスルホ -ルォキシ一 1, 8— ナフタレンカルボキシイミド、 N パーフルォロブタンスルホ -ルォキシー 1, 8 ナフ タレンカルボキシイミドが挙げられる。
[0154] 上述の光酸発生剤は、以下に示す増感剤の共存下で使用してもよい。増感剤とし ては、 9—メチルアントラセン、 9, 10 ジメチルアントラセン、 9, 10 ジフエ-ルアン トラセン、 9, 10 ジメトキシアントラセン、 9, 10 ジェトキシアントラセン、 9, 10 ジ プロポキシアントラセン、 9, 10 ジブトキシアントラセン、 1ーメチノレビレン、チォキサ ントン誘導体が挙げられる。
[0155] 光酸発生剤の使用割合は、透明榭脂 100重量部に対して通常 0. 1〜20重量部、 好ましくは 0. 5〜10重量部である。
[0156] 本発明に係るカラーフィルター用着色組成物着色組成物 (C)及び (D)の個数換算 分散平均粒子径は、通常 l〜200nm、好ましくは l〜150nm、より好ましくは 1〜10 Onm、更により好ましくは l〜50nmである。個数換算分散粒子径が 200nmを超える 場合は、粒子サイズが大きすぎることから、光学特性が低下するため、本発明の目的 を達成するのが困難である。
[0157] 本発明に係るカラーフィルター用着色組成物 (C)及び (D)の体積換算分散平均粒 子径は、通常 l〜200nm、好ましくは l〜150nm、より好ましくは l〜100nmである 。体積換算分散粒子径が 200nmを超える場合は、粒子サイズが大きすぎることから 、光学特性低下するため、本発明の目的を達成するのが困難である。
[0158] 本発明に係るカラーフィルター用着色組成物(C)及び (D)の粘度は、通常 0. 5〜 lOOOmPa' sである。粘度が lOOOmPa' sを超える場合は、均一なコーティングが困 難となる。 0. 5mPa' s未満の場合は、塗膜が薄くなり過ぎるため、本発明の目的を達 成するのが困難である。
[0159] 本発明に係るカラーフィルター用着色組成物 (C)及び (D)の分散安定性は、後述 する評価方法で、粘度の変化率が通常 20%以下、好ましくは 10%以下である。粘度 の変化率が 20%を超える場合は、長期に亘つて安定した分散性を維持することが困 難となる。
[0160] カラーフィルター用着色材として緑色系を使用した場合、本発明に係るカラーフィ ルター用着色組成物(C)及び (D)の 650nmの波長における比吸光係数 (重量基準 )は、後述する評価方法で、通常 1. 05以上、好ましくは 1. 10〜5. 00、より好ましく は 1. 20〜5. 00である。カラーフィルター用着色材として青色系を使用した場合、 6 lOnmの波長における比吸光係数 (重量基準)は、通常 1. 05以上、好ましくは 1. 10 〜5. 00、より好ましくは 1. 20-5. 00である。カラーフィルター用着色材として赤色 系を使用した場合、 550nmの波長における比吸光係数 (重量基準)は、通常 1. 05 以上、好ましくは 1. 10〜5. 00、より好ましくは 1. 20〜5. 00である。カラーフィルタ 一用着色材として黄色系を使用した場合、 400nmの波長における比吸光係数 (重 量基準)は、通常 1. 05以上、好ましくは 1. 10-5. 00、より好ましくは 1. 20-5. 00 である。
[0161] 本発明に係るカラーフィルター用着色組成物 (C)及び (D)を使用して作製したカラ 一フィルター用着色透過膜の耐光性は、後述する評価方法において、 Δ Ε*値で通 常 5. 0以下、好ましくは 4. 5以下、より好ましくは 4. 0以下である。耐光性(Δ Ε*値) が 5. 0を超える場合、ノ ックライトの照射などによってカラーフィルターの光学特性が 低下するため、本発明の目的を達成するのが困難である。
[0162] 本発明に係るカラーフィルター用着色組成物 (C)及び (D)を使用して作製したカラ 一フィルター用着色透過膜の耐熱性は、後述する評価方法において、 Δ Ε*値で通 常 5. 0以下、好ましくは 4. 5以下、より好ましくは 4. 0以下である。耐熱性(Δ Ε*値) が 5. 0を超える場合、カラーフィルター形成時または ITO膜蒸着時の加熱処理によ つて光学特性が低下するため、本発明の目的を達成するのが困難である。
[0163] カラーフィルター用着色材として緑色系を使用した場合、本発明に係るカラーフィ ルター用着色組成物(C)及び (D)を使用して作製した着色透過膜の 650nmの波長 における比吸光係数 (重量基準)は、後述する評価方法で、通常 1. 20以上、好まし くは 1. 40-5. 00、より好ましくは 1. 50-5. 00でる。カラーフィルター用着色材とし て青色系を使用した場合、 610nmの波長における比吸光係数 (重量基準)は、通常 1. 20以上、好ましくは 1. 40〜5. 00、より好ましくは 1. 50〜5. 00である。カラーフ ィルター用着色材として赤色系を使用した場合、 550nmの波長における比吸光係 数 (重量基準)は、通常 1. 20以上、好ましくは 1. 40〜5. 00、より好ましくは 1. 50〜 5. 00である。カラーフィルター用着色材として黄色系を使用した場合、 400nmの波 長における比吸光係数 (重量基準)は、通常 1. 20以上、好ましくは 1. 40-5. 00、 より好ましくは 1. 50〜5. 00である。
[0164] 次に、本発明のカラーフィルタ一ついて説明する。本発明の第 9の要旨のカラーフ ィルターは、シリカと有機顔料とから成り、シリカが有機顔料に内包されており、シリカ の量が有色微小複合粒子に対して、 Si換算で、 0. 001〜9重量%である有色微小 複合粒子力 成るカラーフィルター用着色材を溶剤に分散させたカラーフィルター用 着色組成物 (a)を酸性基及び Z又は潜在性酸性基を有する透明榭脂溶液中に分散 して成る第 6の要旨に記載のカラーフィルター用着色組成物 (b)の塗膜形成物から 成る。
[0165] また、本発明の第 10の要旨のカラーフィルタ一は、(I)シリカと有機顔料とから成り、 シリカが有機顔料に内包されており、シリカの量が有色微小複合粒子に対して、 Si換 算で、 0. 001〜9重量%である有色微小複合粒子力 成るカラーフィルター用着色 材が溶剤に分散したカラーフィルター用着色組成物 (a)が酸性基及び Z又は潜在性 酸性基を有する透明榭脂溶液中に分散して成る第 6の要旨に記載のカラーフィルタ 一用着色組成物 (b)とエチレン性不飽和二重結合を 2つ以上有する多官能性モノマ 一と光ラジカル重合開始剤とから成るカラーフィルター用着色組成物 (C)の塗膜形 成物、または、(Π)シリカと有機顔料とから成り、シリカが有機顔料に内包されており、 シリカの量が有色微小複合粒子に対して、 Si換算で、 0. 001〜9重量%である有色 微小複合粒子力 成るカラーフィルター用着色材が溶剤に分散したカラーフィルター 用着色組成物 (a)が酸性基及び Z又は潜在性酸性基を有する透明榭脂溶液中に 分散して成る第 6の要旨に記載のカラーフィルター用着色組成物 (b)と光酸発生剤と 力 成るカラーフィルター用着色組成物 (D)の塗膜形成物力も成る。
[0166] カラーフィルターの光透過率は、各色の透過領域にぉ 、て、通常 75%以上、好ま しくは 80%以上、より好ましくは 85%以上である。また、コントラストは、通常 800以上 、好ましくは 1000以上、より好ましくは 1200以上である。
[0167] 次に、本発明に係るカラーフィルター用着色組成物の製造方法について述べる。
[0168] 本発明に係わるカラーフィルター用着色組成物(a)は、本発明のカラーフィルター 用着色材を有機溶剤または油性ビヒクル中に再分散させるか、又は、溶解処理した 後、固形分と溶解液を濾別、水洗し、次いで、ウエットケーキを有機溶剤または油性 ビヒクルでフラッシングした後、有機溶剤または油性ビヒクル中に分散させることにより 得ることが出来る。分散処理には、ボールミル、ビーズミル、サンドミル、エッジランナ 一、 2本または 3本ロールミル、エタストルーダー及び高速衝撃ミル等を使用すること が出来る。ボールミルやビーズミル等の磨砕型ミルに用いられる磨砕体としては、ミル の材質に応じて、スチールビーズ、ガラスビーズ、セラミックビーズ等が使用できる。 磨砕体のサイズは、通常 0. 01〜: L0mm、好ましくは 0. 03〜3mmである。磨砕温度 は、特に限定されず、例えば、室温から溶媒の沸点以下の温度であればよい。必要 に応じて、添加剤として、分散剤、顔料誘導体、消泡剤、界面活性剤などを添加して ちょい。
[0169] 本発明に係わるカラーフィルター用着色組成物 (b)は、カラーフィルター用着色組 成物 (a)に酸性基を有する透明榭脂または潜在性酸性基を有する透明榭脂を溶解 させる、又は、あらかじめ酸性基を有する透明榭脂または潜在性酸性基を有する透 明榭脂を溶解した溶剤にカラーフィルター用着色材を混合分散させることにより得る ことが出来る。
[0170] 本発明の感光性が付与されたカラーフィルター用着色組成物 (C)は、酸性基を有 する透明榭脂を含有する着色組成物 (b)に光重合開始剤およびエチレン性不飽和 二重結合を 2つ以上有する多官能性モノマーを添加し、混合することにより得ることが 出来る。この場合、必要に応じて溶剤を添加して、顔料濃度、粘度などを調整しても よい。さらに必要に応じて、重合禁止剤、 2—メルカプトビエンゾイミダゾール等の硬 化促進剤などを添加してもよ ヽ。
[0171] また、本発明の感光性が付与されたカラーフィルター用着色組成物 (D)は、潜在 性酸性基を有する透明榭脂を含有するカラーフィルター用着色組成物 (b)に光酸発 生剤を添加し、混合することにより得ることが出来る。
[0172] 次に、本発明のカラーフィルターの製造方法を説明する。先ず、ブラックマトリックス のパターンを形成した透明基板上に本発明のカラーフィルター用着色組成物を塗布 し、次いで、プリベータ処理によって溶剤を十分に蒸発除去して着色塗膜を形成する
[0173] 感光性が付与されて!ヽな ヽ着色塗膜の場合は、着色塗膜上にアルカリ現像可能な ポジ型フォトレジスト層を設けて、二層構造の塗膜を形成する。アルカリ現像性ポジ 型フォトレジストとしては、キノンジアジド系フォトレジストが好適に用いられる。この着 色塗膜にフォトマスクを介して光照射した後、アルカリ水溶液による現像処理を行う。 ポジ型フォトレジスト層で被覆した塗膜の露光部はアルカリ可溶となるので、露出した 着色層もアルカリ液によってエッチングされて着色ポジ画像を形成する。ついで、フ オトレジスト層を溶剤で選択的に除去して着色パターンを形成する。
[0174] 他方、光重合開始剤および多官能性モノマーが添加された感光性カラーフィルタ 一用着色組成物(C)の場合は、感光性カラーフィルター用着色組成物(C)から形成 される塗膜をそのまま着色感光層として使用する。そして、フォトマスクを介して露光 して力 アルカリ現像処理を行えば、露光部が不溶ィ匕してネガ型の着色パターンを 得ることが出来る。現像処理としては、浸漬法、スプレー法、パドル法、シャワー法な どが挙げられる。アルカリ現像処理した後、水洗し、乾燥する。 [0175] 透明基板として、シリカガラスの他、ポリカーボネート、ポリエステル、ポリアミド、ポリ イミド、ポリアミドイミド等を使用することが出来る。また、固体撮像素子作製のために、 シリコン基板を使用することが出来る。カラーフィルター用着色組成物を透明基板上 に塗布する方法としては、回転塗布、流延塗布、ロール塗布、スクリーン印刷法、イン クジェット法などが挙げられる。塗布膜の厚さは、カラーフィルター用着色材の濃度に も依存する力 通常 0. 1〜10 111、好ましくは0. 2〜5. 0 mである。
[0176] アルカリ現像液としては、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化力 リウム、テトラメチルアンモ -ゥムハイド口オキサイド等の水溶液が挙げられる。アル力 リ水溶液にメタノール、エタノール、イソプロピルアルコール、界面活性剤などを添カロ してちよい。
[0177] 次に、本発明の第 11の要旨に係るインクジェット用インクの着色材について述べる 。本発明の第 11の要旨のインクジェット用インクの着色材は、シリカと有機顔料とから 成り、シリカが有機顔料に内包されており、シリカの量が有色微小複合粒子に対して 、 Si換算で、 0. 001〜9重量%である第 1の要旨の有色微小複合粒子力も成る。
[0178] インクジェット用インクの着色材の一次粒子の粒子径の粒度分布は、一次粒子の粒 子径の幾何標準偏差値として、通常 2. 0以下、好ましくは 1. 8以下、より好ましくは 1 . 5以下である。粒度分布が 2. 0を超える場合は、複合顔料の粒度分布が広ぐイン クジェット用インク中における分散性および分散安定性が低下するため、本発明の目 的を達成することが困難である。
[0179] インクジェット用インクの着色材の個数換算平均粒子径は、通常 150nm以下、好ま しくは l〜100nm、より好ましくは l〜50nm、更により好ましくは l〜40nmである。ィ ンクジェット用インクの着色材の個数換算平均粒子径が 150nmを超える場合は、粒 子サイズが大きすぎ、得られるインクジェット用インクがインクジェット記録装置のへッ ド部分への目詰まりを起こすことがある。
[0180] インクジェット用インクの着色材の体積換算平均粒子径は、通常 l〜150nm、好ま しくは l〜125nm、より好ましくは l〜100nmである。インクジェット用インクの着色材 の体積換算平均粒子径が 150nmを超える場合は、粒子サイズが大きすぎ、得られる インクジェット用インクがインクジェット記録装置のヘッド部分への目詰まりを起こすこ とがある。
[0181] インクジェット用インクの着色材の耐光性は、後述する評価方法において、 Δ Ε*値 で通常 5. 0以下、好ましくは 4. 5以下、より好ましくは 4. 0以下である。耐光性(Δ Ε* 値)が 5. 0を超える場合は、得られたインクジェット用インクによって印刷された印刷 物が十分な耐光性を有さな 、ことがある。
[0182] なお、本発明に係るインクジェット用インクの着色材は、第 1の要旨の有色微小複合 粒子の場合とほぼ同程度のシリカ量、及び、インクジェット用インクの着色材の平均一 次粒子径、 BET比表面積値、着色力および水系で測定した場合の ζ電位を有して いる。
[0183] 次に、本発明の第 12の要旨に係るインクジェット用インクの着色材を含有するインク ジェット用インクについて述べる。本発明の第 12の要旨のインクジェット用インクは、 シリカと有機顔料とから成り、シリカが有機顔料に内包されており、シリカの量が有色 微小複合粒子に対して、 Si換算で、 0. 001〜9重量%である有色微小複合粒子か ら成る第 8の要旨に記載のインクジェット用インクの着色材とインク構成溶液とから成 る。
[0184] インクジェット用インクの個数換算分散平均粒子径は、通常 l〜150nm、好ましくは 1〜: LOOnm、より好ましくは l〜50nm、更により好ましくは l〜40nmである。個数換 算分散粒子径が 150nmを超える場合は、ヘッド部分の目詰まりを起こしやすくなると 共に、インクジェット用インク中の着色材の分散安定性が低下する。
[0185] インクジェット用インクの体積換算分散平均粒子径は、通常 l〜150nm、好ましくは l〜125nm、より好ましくは l〜100nmである。体積換算分散粒子径が 150nmを超 える場合は、ヘッド部分の目詰まりを起こしやすくなると共に、インクジェット用インク 中の着色材の分散安定性が低下する。
[0186] インクジェット用インクの分散安定性は、後出評価方法における目視観察において 、通常 5又は 4で、好ましくは 5である。また、個数換算分散粒子径の変化率は、通常 10%以下、好ましくは 8%以下である。
[0187] インクジェット用インクの着色力を表わす比吸光係数 ε w (重量基準)は、後述する 評価方法で、通常 1. 20以上、好ましくは 1. 40〜5. 00、より好ましくは 1. 50〜5. 0 0である。
[0188] インクジェット用インクを用いて得られた印刷画像の耐光性は、 Δ Ε*値で通常 3. 0 以下、好ましくは 2. 5以下、より好ましくは 2. 0以下である。
[0189] インクジェット用インクのヘッド部分の耐目詰まり性は、後出評価方法における目視 観察において、通常 5又は 4で、好ましくは 5である。
[0190] インクジェット用インク中における着色材の割合は、インク構成溶液に対して、通常
1〜20重量%である。
[0191] 本発明に係わるインクジェット用インクの構成成分であるインク構成溶液は、溶媒と 分散剤と、必要に応じて、水溶性榭脂、浸透剤、保湿剤、水溶性溶剤、 pH調整剤お よび Zまたは防腐剤とから成る。インク構成溶液中の水溶性榭脂、浸透剤、保湿剤、 水溶性溶剤、 pH調整剤および Zまたは防腐剤の量は、通常 50重量%以下である。
[0192] インクジェット用インク中における分散剤の割合は、インクジェット用インクの着色材 に対して、通常 5〜200重量%、好ましくは 7. 5〜150重量%、より好ましくは 10〜1 00重量%である。
[0193] 分散剤としては、界面活性剤および Zまたは高分子分散剤を使用することが出来 る。インクジェット用インク中における着色材の分散性および分散安定性を考慮すれ ば、界面活性剤としては、ァ-オン系界面活性剤、ノ-オン系界面活性剤が好適で あり、高分子分散剤としては、スチレン アクリル酸共重合体などの水溶性榭脂が好 適である。
[0194] 具体的には、ァ-オン系界面活性剤としては、脂肪酸塩、硫酸エステル塩、スルホ ン酸塩、リン酸エステル塩が挙げられる。中でも、硫酸エステル塩およびスルホン酸 塩が好適である。
[0195] ノ-オン系界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシ エチレンァリールエーテル等のポリエチレングリコール型非イオン界面活性剤、ソル ビタン脂肪酸エステル等の多価アルコール型非イオン界面活性剤が挙げられる。中 でも、ポリエチレングリコール型非イオン界面活性剤が好適である。
[0196] カチオン系界面活性剤としては、アミン塩型カチオン系界面活性剤、第 4級アンモ -ゥム塩型カチオン系界面活性剤などが挙げられる。中でも、第 4級アンモ-ゥム塩 型カチオン系界面活性剤が好適である。
[0197] 高分子分散剤としては、スチレン アクリル酸共重合体、スチレン マレイン酸共重 合体、ポリアクリル酸誘導体などのアルカリ可溶性榭脂が挙げられる。
[0198] インクジェット用インクの溶媒としては、水と、必要に応じて、水溶性有機溶剤とから 成る。水溶性有機溶剤の割合は、インク構成溶液に対して、通常 50重量%以下、好 ましくは 1〜50重量%、より好ましくは 1〜40重量%、更により好ましくは 1〜30重量 %である。
[0199] 水溶性有機溶剤としては、メタノール、エタノール、 n プロパノール、 iso プロパノ ール、ブタノール等の 1価アルコール、エチレングリコール、ジエチレングリコール、ト リエチレングリコール、テトラエチレンダリコール、プロピレングリコール、ジプロピレン グリコール等の 2価アルコール、グリセリン等の 3価アルコール、ポリエチレングリコー ル、ポリプロピレングリコーノレ等のポリアノレキレングリコール、ジエチレングリコーノレモ ノブチノレエーテノレ、エチレングリコーノレモノブチノレエーテノレ、トリエチレングリコーノレモ ノブチルエーテル、エチレングリコールモノェチルエーテル等の多価アルコールの低 級アルキルエーテルが挙げられる。上述の水溶性有機溶剤は、 2種以上を併用して ちょい。
[0200] 次に、本発明に係るインクジェット用インクの製造方法にっ 、て述べる。
[0201] 本発明に係るインクジェット用インクは、所定量のインクジェット用インクの着色材、 分散剤および水、必要により、浸透剤、保湿剤、水溶性溶剤、 pH調整剤、防腐剤な どの添加剤とを分散機により混合分散して、一次分散液を作製した後、更に、水、水 溶性溶剤およびその他添加剤を添加して混合分散し、次いで、メンブランフィルター を用 、て濾過することによって得られる。
[0202] 前記分散機としては、ボールミル、サンドミル、アトライター、ロールミル、ビーズミル
、コロイドミル、 2本または 3本ロールミル、超音波ホモジナイザ、高圧ホモジナイザ等 を使用することができる。
[0203] 本発明の第 1〜3の要旨における重要な点は、本発明に係る有色微小複合粒子の 一次粒子が微小であると共に、有色微小複合粒子が高い着色力と優れた分散性を 有し、且つ、耐光性にも優れているという事実である。 [0204] 本発明に係る有色微小複合粒子が高い着色力と優れた分散性を有する理由につ いて、本発明者は次のように推定している。一般に、単に微細化しただけの有機顔料 は、粒子の表面エネルギーが非常に高いため凝集を起こしやすぐビヒクル中におい て微細な粒子状態を維持することが困難である。しかしながら、本発明に係る有色微 小複合粒子は、有機顔料にシリカを内包するために ζ電位の絶対値が大きくなり、ビ ヒクル中で静電反発効果が得られ、ビヒクル中にお 、ても微細な状態で分散すること ができ、高い着色力を得ることが出来る。
[0205] 本発明の第 4〜8の要旨における重要な点は、本発明に係るカラーフィルター用着 色材の一次粒子が微小であるとともに、カラーフィルター用着色材が高い着色力とビ ヒクル中において優れた分散性を有し、且つ、耐光性および耐熱性にも優れていると いう事実である。
[0206] 本発明に係るカラーフィルター用着色材が高い着色力と優れた分散性を有し、且 つ、耐光性および耐熱性が優れている理由については、カラーフィルター用着色材 が上述の有色微小複合粒子力 成ることに基づいている。また、耐熱性および耐光 性の高いシリカが、有機顔料に内包されていることにより、有機顔料を微細化した場 合でも耐熱性および耐光性が維持され、且つ、向上することができるものと本発明者 は推測している。
[0207] 本発明に係るカラーフィルター用着色組成物カゝらなる塗膜形成物を用いたカラーフ ィルターの光学特性、耐光性および耐熱性が優れている理由について、本発明者は 、微細で分散性に優れ、且つ耐光性および耐熱性に優れている本発明に係るカラー フィルター用着色材を用いたことに起因して 、ると推測して 、る。
[0208] 本発明の第 10〜: L 1の要旨における重要な点は、本発明に係るインクジェット用ィ ンクの着色材が一次粒子径が微小であり粒子サイズが均一化されているとともに、高 い着色力と優れた分散性を有し、且つ、耐光性にも優れているという事実である。
[0209] 本発明に係るインクジェット用インクの着色材が高い着色力と優れた分散性と耐光 性を有する理由について、インクジェット用インクの着色材が上述の有色微小複合粒 子力 成ることに基づ 、て 、る。
[0210] 本発明に係るインクジェット用インクが分散性および分散安定性に優れている理由 として、本発明者は、本発明に係るインクジェット用インクの着色材を用いたことに起 因して、有機顔料にシリカを内包するために ζ電位の絶対値が大きくなり、ビヒクル中 で静電反発効果が得られ、ビヒクル中にお!ヽても微細な状態で分散および該分散性 を維持することができたためと考えている。
[0211] 本発明の第 1の要旨に係る有色微小複合粒子は、着色力が高ぐ且つ分散性およ び耐光性に優れていることから、様々な用途の着色材として好適である。本発明の第 2の要旨に係る分散体は、前記特性を有する有色微小複合粒子を着色材として用い ることから、各種用途への分散体として好適である。また、本発明に係る有色微小複 合粒子および分散体は、一般的に使用されている塗料、印刷インキ等、水系または 溶剤系を問わず様々な用途の着色材として使用することが出来る。
[0212] 本発明の第 4の要旨に係るカラーフィルター用着色材は、一次粒子径が微小であ るとともに、高い着色力と優れたビヒクル中における分散性を有し、且つ、耐光性並 びに耐熱性に優れて 、るので、カラーフィルター用着色材として好適である。
[0213] 本発明第 5〜8の要旨に係るカラーフィルター用着色組成物は、前記特性を有する カラーフィルター用着色材を用いることから、分散性、分散安定性並びに耐光性、耐 熱性に優れて ヽるため、透明性にも優れたカラーフィルター用着色組成物として好 適である。
[0214] 本発明の第 9〜: LOの要旨に係るカラーフィルタ一は、前記特性を有するカラーフィ ルター用着色材カ なるカラーフィルター用着色組成物を用いることから、分光特性 、耐光および耐熱性に優れているため、カラーフィルタ一として好適である。
[0215] 本発明の第 11の要旨に係るインクジェット用インクの着色材は、一次粒子径が微小 であり粒子サイズが均一化されているとともに、高い着色力と優れた分散性を有し、 且つ、耐光性に優れていることから、インクジェット用インクの着色材として好適である 。本発明の第 9の要旨ジェット用インクの着色材として用いることから、分散性、分散 安定性および耐光性に優れたインクジェット用インクとして好適である。
実施例
[0216] 以下、本発明における実施例を示し、本発明を具体的に説明する。但し、本発明は 、これらの実施例のみに限定されるものではない。なお、本発明の種々の特性は、以 下の方法によって測定した。
[0217] (1)各粒子の一次粒子の平均粒子径は、いずれも電子顕微鏡写真に示される粒 子 350個の粒子径をそれぞれ測定し、その平均値で示した。
[0218] (2)各粒子の一次粒子の粒子径の粒度分布は、下記の方法により求めた幾何標準 偏差値で示した。即ち、上記拡大写真に示される粒子の粒子径を測定した値を、そ の測定値力 計算して求めた粒子の実際の粒子径と個数力 統計学的手法に従つ て対数正規確率紙上に横軸に粒子径を、縦軸に所定の粒子径区間のそれぞれ〖こ 属する粒子の累積個数 (積算フルィ下)を百分率でプロットする。そして、このグラフ から粒子の個数が 50%及び 84. 13%のそれぞれに相当する粒子径の値を読みとり 、幾何標準偏差値 =積算フルィ下 84. 13%における粒子径 Z積算フルィ下 50%に おける粒子径 (幾何平均径)に従って算出した値で示した。幾何標準偏差値が 1に近 V、ほど、一次粒子の粒子径の粒度分布が優れて 、ることを意味する。
[0219] (3)各粒子の個数換算平均粒子径および体積換算平均粒子径は、被測定粒子と 水を混合した水溶液を、超音波分散機を用いて 1分間分散させた後、動的光散乱法 「濃厚系粒径アナライザー FPAR—1000」(大塚電子株式会社)を用いて測定した
[0220] (4)比表面積値は、 BET法により測定した値で示した。
[0221] (5)シリカ粒子の粒子表面に被覆されている表面改質剤の被覆量および複合粒子 に付着して!/ヽる有機顔料の被覆量は、「堀場金属炭素 ·硫黄分析装置 EMIA— 220 0型」(株式会社堀場製作所製)を用いて炭素量を測定することにより求めた。
[0222] (6)有色微小複合粒子、カラーフィルター用着色材およびインクジェット用インクの 着色材に内包されるシリカ量は、「蛍光 X線分析装置 3063M型」(理学電機工業株 式会社製)を使用し、 JIS K 0119の「けい光 X線分析通則」に従って測定した。
[0223] (7)有機顔料、複合粒子、有色微小複合粒子、カラーフィルター用着色材およびィ ンクジェット用インクの着色材の ζ電位は、水系の場合イオン交換水を、溶剤系の場 合 PGMEA (プロピレングリコールモノメチルエーテルアセテート)を用いて有機顔料 、複合粒子、有色微小複合粒子、カラーフィルター用着色材およびインクジェット用ィ ンクの着色材が 0. 5gZLの濃度になるように調製し、超音波分散機を用いて 3分間 分散させた後、「Model501」(PEN KEN社製)を用い、電気泳動法により測定した
[0224] (8)各粒子の色相は、試料 0. 5gとヒマシ油 0. 5mLとをフーバー式マーラーで練つ てペースト状とし、このペーストにクリアラッカー 4. 5gをカ卩え、混練、塗料ィ匕してキャス トコート紙上に 150 m(6mil)のアプリケーターを用いて塗布した塗布片(塗膜厚み :約 30 /z m)を作製し、「分光測色計 CM— 3610d」(ミノルタ株式会社製)を用いて 測定を行い、 JIS Z 8929に定めるところに従って表色指数で示した。なお、 C*値 は彩度を表し、式: C*値 = ( (a*値) 2+ (b*値) 2) 1/2に従って求めた。
[0225] (9)各粒子の着色力は、まず下記に示す方法に従って作製した原色エナメルと展 色エナメルのそれぞれを、キャストコート紙上に 150 m (6mil)のアプリケーターを 用いて塗布して塗布片を作製し、「分光測色計 CM— 3610d」(ミノルタ株式会社製) を用いて L*値を測色し、その差を A L*値とした。
[0226] 次 、で、有色微小複合粒子、カラーフィルター用着色材およびインクジェット用イン クの着色材の標準試料として、有色微小複合粒子、カラーフィルター用着色材およ びインクジェット用インクの着色材を作製する際に用いた有機顔料を用いて、上記と 同様にして原色エナメルと展色エナメルの塗布片を作製し、各塗布片の L*値を測色 し、その差を A Ls*値とした。
[0227] 得られた有色微小複合粒子、カラーフィルター用着色材およびインクジェット用イン クの着色材の A L*値と標準試料の A Ls*値を用いて式:着色力(%) = 100+ { ( Δ
Ls*値一 A L*値) X 10}に従って算出した値を着色力(%)として示した。
[0228] 原色エナメルの作製:
上記試料 10gとァミノアルキッド榭脂 16g及びシンナー 6gとを配合して、 3mm φガ ラスビーズ 90gと共に 140mLのガラスビンに添カ卩し、次いで、ペイントシェーカーで 4
5分間混合分散した後、アミノアルキッド榭脂 50gを追加し、更に 5分間ペイントシエ 一力一で分散させて、原色エナメルを作製した。
[0229] 展色エナメルの作製:
上記原色エナメル 12gとアミラックホワイト(二酸ィ匕チタン分散アミノアルキッド榭脂)
80gとを配合し、ペイントシェーカーで 15分間混合分散して、展色エナメルを作製し た。
[0230] (10)各粒子の耐光性は、前述の着色力を測定するために作製した原色エナメル を、冷間圧延鋼板(0.8mm X 70mm X 150mm)に 150 μ mの厚みで塗布、乾燥し て塗膜を形成し、得られた測定用塗布片の半分を金属製フオイルで覆い、「アイ ス 一パー UVテスター SUV—W13」(岩崎電気株式会社製)を用いて、紫外線を照 射強度 100mWZcm2で 6時間連続照射した後、金属製フオイルで覆うことによって 紫外線が照射されな力つた部分と紫外線照射した部分との色相 (L*値、 a*値、 b*値 )をそれぞれ測定し、式: ΔΕ*値 =((AL*値) 2+(Δ&*値) 2+(Ab*値)2)1 /2(ただ し、 AL*値は、比較する試料の紫外線照射有無の L*値の差を示し、 Δ&*値は、比 較する試料の紫外線照射有無の a*値の差を示し、 Ab*値は、比較する試料の紫外 線照射有無の b*値の差を示す。 )に従って算出した ΔΕ*値によって示した。
[0231] (11)複合粒子に付着している有機顔料の脱離の程度は、下記の方法により 4段階 で評価した。 4が複合粒子の粒子表面力 の有機顔料の脱離量が少な 、ことを示す
[0232] 被測定粒子 2gとエタノール 20mLを 50mLの三角フラスコに入れ、 60分間超音波 分散を行った後、回転数 10, OOOrpmで 15分間遠心分離を行い、被測定粒子と溶 剤部分とを分離した。得られた被測定粒子を 80°Cで 1時間乾燥させ、電子顕微鏡写 真に示される視野の中に存在する、脱離して再凝集した有機顔料の個数を目視で観 察し、下記 4段階で評価した。
[0233] 1:複合粒子 100個当たりに 30個以上。
2:複合粒子 100個当たりに 10個以上 30個未満。
3:複合粒子 100個当たりに 5個以上 10個未満。
4:複合粒子 100個当たりに 5個未満。
[0234] (12)各粒子の耐熱性は、前述の着色力を測定するために作製した原色エナメル を、ガラス板(0.8mm X 70mm X 150mm)〖こ 150 mの厚みで塗布、乾燥して塗 膜を形成し、ギアオーブンを用いて、 240°Cで 1時間保持した後、熱処理試験前後の 色相 (L*値、 a*値、 b*値)をそれぞれ測定し、式: ΔΕ*値 = ((AL*値) 2+ 値 )2+ (Ab*値)2)1 /2(ただし、 AL*値は、比較する試料の熱処理試験前後の L*値の 差を示し、 Δ &*値: 比較する試料の熱処理試験前後の a*値の差を示し、 A b*値: 比較する試料の熱処理試験前後の b*値の差を示す。 )に従って算出した Δ Ε *値に よつ飞示した。
[0235] (13)有色微小複合粒子を含む分散体、カラーフィルター用着色組成物およびイン クジェット用インクの個数換算分散平均粒子径および体積換算分散平均粒子径は、 動的光散乱法「濃厚系粒子径アナライザー FPAR— 1000」(大塚電子株式会社製 )を用いて測定した。
[0236] (14)分散体およびインクジェット用インクの分散安定性は、分散体 25mLを 50mL の比色管に入れ、 60°Cで 1週間静置した後、粒子の沈降程度を目視で評価し、下記 の 5段階で評価を行った。
[0237] 1 :非着色部分が 10cm以上。
2 :非着色部分が 5cm以上、 10cm未満。
3 :非着色部分が lcm以上、 5cm未満。
4 :非着色部分が lcm未満。
5 :非着色部分が認められず。
[0238] (15)有色微小複合粒子を含む分散体およびカラーフィルター用着色組成物の粘 度変化率は、得られた分散体を 60°Cで 1週間静置した後、「E型粘度計 EMD— R」 ( 株式会社東京計器製)を用いて、 25°Cでずり速度 D = 383sec _1における粘度値を 測定し、静置前後の粘度の変化量を静置前の値で除した値を変化率として百分率で 示した。
[0239] (16)有色微小複合粒子を含む分散体およびカラーフィルター用着色組成物の着 色力は、水系分散体の場合、有色微小複合粒子およびカラーフィルター用着色材の 濃度を 0. 08重量%に調整した水溶液を、溶剤系分散体の場合、有色微小複合粒 子およびカラーフィルター用着色材の濃度を 0. 08重量%に調整した PGMEA溶液 を、石英セルに入れ、最も光吸収の大きな波長における吸光係数を、「自記光電分 光光度計 UV— 2100」(株式会社島津製作所製)を用いてそれぞれ測定し、式: ε w
= ε / ε
h 0 (ただし、 ε
wは、比吸光係数を示し、 ε
hは、各有色微小複合粒子および カラーフィルター用着色材の単位重量当たりの吸光係数を示し、 ε :各有色微小複 合粒子およびカラーフィルター用着色材の原料として用いて 、る有機顔料の単位重 量当たりの吸光係数を示す。 )に従って算出した比吸光係数 ε によって示した。比 吸光係数の値が大き 、ほど、有色微小複合粒子を含む分散体およびカラーフィルタ 一用着色組成物の着色力が高いことを示す。
[0240] (17)カラーフィルター用着色組成物の粘度は、得られた組成物の 25°Cにおける粘 度を、「E型粘度計 EMD— R」(株式会社東京計器製)を用いて測定し、ずり速度 D = 383sec_1における値で示した。
[0241] (18)カラーフィルター用着色組成物の光透過率は、有機顔料濃度が 0. 008重量 %となるように希釈したカラーフィルター用着色組成物を石英セルに入れ、緑色系力 ラーフィルター用着色組成物の場合は 530nmの波長の透過率を、青色系カラーフィ ルター用着色組成物の場合は 460nmの波長の透過率を、赤色系カラーフィルター 用着色組成物の場合は 620nmの波長の透過率を、黄色系カラーフィルター用着色 組成物の場合は 550nmの波長の透過率を、「自記光電分光光度計 UV— 2100」 ( 株式会社島津製作所製)を用いてそれぞれ測定した。
[0242] (19)カラーフィルター用着色組成物を用いて得られたカラーフィルター用着色透 過膜の色度は、後述する処方によって調製したカラーフィルター用着色組成物をタリ ァフィルムに 150 /z mの厚みで塗布、乾燥させて得られた測定用塗布片について、「 分光測色計 CM— 3610d」(ミノルタ株式会社製)を用いて測定を行い、 CIE (国際照 明委員会)に定める XY色度図に従って示した。
[0243] (20)カラーフィルター用着色組成物を用いて得られたカラーフィルター用着色透 過膜の耐光性は、前記カラーフィルター用着色組成物をガラス板 (0. 8mm X 70m m X 150mm)に 150 mの厚みで塗布、乾燥して得られた測定用塗布片の一部を 金属製フオイルで覆い、「アイ スーパー UVテスター」(SUV— W13 (岩崎電気株式 会社製))を用いて、紫外線を照射強度 100mWZcm2で 6時間連続照射した後、金 属製フオイルで覆うことによって紫外線が照射されな力つた部分と紫外線照射した部 分との色相(L*値、 a*値、 b*値)を、「分光測色計 CM— 3610d」(ミノルタ株式会社 製)を用いて測定し、紫外線が照射されな力つた部分の測定値を基準に、式: Δ Ε* 値 = ( ( A L*値) 2+ ( A a*値) 2+ ( A b*値) 2) 1 /2(ただし、 A L*値は、比較する試料 の紫外線照射有無の L*値の差を示し、 Δ &*値は、比較する試料の紫外線照射有無 の a*値の差を示し、 A b*値は、比較する試料の紫外線照射有無の b*値の差を示す 。)に従って算出した Δ Ε*値によって示した。
[0244] (21)カラーフィルター用着色組成物を用いて得られたカラーフィルター用着色透 過膜の耐熱性は、前記カラーフィルター用着色組成物をガラス板 (0. 8mm X 70m m X 150mm)に 150 mの厚みで塗布、乾燥して測定用塗布片を、ギアオーブンを 用いて、 240°Cで 1時間保持した後、熱処理試験前後の色相 (L*値、 a*値、 b*値)を それぞれ測定し、式: Δ Ε*値 = ( ( A L*値) 2+ ( Δ &*値) 2+ ( A b*値) 2) 1 /2(ただし、 A L*値は、比較する試料の熱処理試験前後の L*値の差を示し、 Δ &*値: 比較す る試料の熱処理試験前後の a*値の差を示し、 A b*値: 比較する試料の熱処理試 験前後の b*値の差を示す。)従って算出した Δ Ε*値によって示した。
[0245] (22)カラーフィルター用着色組成物を用いて得られたカラーフィルター用着色透 過膜の光透過率は、前記カラーフィルター用着色透過膜の色度を測定するために作 製した測定用塗布片を用いて、緑色系カラーフィルター用着色透過膜の場合は 530 nmの波長の透過率を、青色系カラーフィルター用着色透過膜の場合は 460nmの 波長の透過率を、赤色系カラーフィルター用着色透過膜の場合は 620nmの波長の 透過率を、黄色系カラーフィルター用着色透過膜の場合は 550nmの波長の透過率 を、「自記光電分光光度計 UV— 2100」(株式会社島津製作所製)を用いて測定し た。
[0246] (23)カラーフィルターの透過率は、後述する方法によって作製したカラーフィルタ 一を用いて、 530nm、 460nm及び 620nmの各波長の透過率を、「自記光電分光 光度計 UV— 2100」(株式会社島津製作所製)を用いて測定した。
[0247] (24)カラーフィルターのコントラストは、後述する方法によって作製したカラーフィル ターをバックライト上で、 2枚の偏光板の間に挟み、該偏光板の向きをパラレルにした ときの輝度 (A)とクロスにしたときの輝度 (B)を測定し、(A) / (B)で示した。
[0248] (25)インクジェット用インクの着色力は、インクジェット用インクの着色材の濃度を 0 . 08重量%に調整した水溶液を石英セルに入れ、最も光吸収の大きな波長における 吸光係数を、「自記光電分光光度計 UV— 2100」(株式会社島津製作所製)を用い てそれぞれ測定し、式: ε = ε / ε (ただし、 ε は、比吸光係数を示し、 ε は、 w h 0 w h 各インクジェット用インクの着色材の単位重量当たりの吸光係数を示し、 ε は、各ィ
0 ンクジェット用インクの着色材の原料として用いている有機顔料の単位重量当たりの 吸光係数を示す。 )に従って算出した比吸光係数 ε によって示した。比吸光係数の 値が大きいほど、インクジェット用インクの着色材を含む分散体の着色力が高いことを 示す。
[0249] (26)インクジェット用インク中の分散平均粒子径 Dd 、分散粒子径 Dd 及び分散
50 84 最大粒子径 Dd は、動的光散乱法「濃厚系粒子径アナライザー FPAR— 1000」(
99
大塚電子株式会社製)を用いて測定した。なお、幾何標準偏差値 (Dd 4/Dd )は
8 50
、積算フルィ下 84. 13%における粒子径 (Dd ) Z積算フルィ下 50%における粒子
84
径 (Dd )に従って算出した値で示した。幾何標準偏差値 (Dd /Dd )が 1に近い
50 84 50
ほど、インクジェット用インク中における挙動粒子径の粒度分布が優れていることを意 味する。
[0250] (27)インクジェット用インクの個数換算分散粒子径の変化率は、インクを 60°Cで 1 ヶ月間静置した後、前記動的光散乱法「濃厚系粒子径アナライザー FPAR— 100 0」(大塚電子株式会社製)を用いて測定し、静置前後の個数換算分散粒子径の変 化量を静置前の値で除した値を変化率として百分率で示した。
[0251] (28)インクジェット用インクの色相および彩度は、普通紙「KB」(コクョ株式会社製) に記録した印刷画像の色相を「多光源分光測色計 MSC— IS— 2D」(スガ試験機株 式会社製)を用いて JIS Z 8729に定めるところに従って表色指数 L*値、 a*値、 b* 値および C*値で示した。
[0252] (29)インクジェット用インクの耐光性は、普通紙「KB」(コクョ株式会社製)に記録し た記録紙の半分を金属製フオイルで覆い、「アイ スーパー UVテスター SUV— W 13」(岩崎電気株式会社製)を用いて、紫外線を照射強度 lOOmWZcm2で 6時間 連続照射した後、紫外線が照射された部分と、金属製フオイルで覆うことによって紫 外線が照射されな力つた部分との色相 (L*値、 a*値、 b*値)を「多光源分光測色計 MSC— IS— 2D」(スガ試験機株式会社製)を用いてそれぞれ測定し、金属製フォイ ルで覆うことによって紫外線が照射されな力つた部分の測定値を基準に、式: Δ Ε* 値 =((AL*値) 2+(Aa*値) 2+(Ab*値)2)1 /2(ただし、 AL*値は、比較する試料 の紫外線照射有無の L*値の差を示し、 Δ&*値は、比較する試料の紫外線照射有無 の a*値の差を示し、 Ab*値は、比較する試料の紫外線照射有無の b*値の差を示す 。;)に従って算出した ΔΕ*値によって耐光性を示した。
[0253] (30)インクジェット用インクの耐目詰まり性は、インクをインクジェットプリンター「Des kjet 970Cxi」(HEWLETT PACKARD社製)のカートリッジに入れて、普通紙「 KBJ (コクョ株式会社製)に室温で印字を行い、印字の乱れ、欠け又は不吐出の程 度を目視で評価し、下記の 5段階で評価を行った。
[0254] 1: 1枚目から印字の乱れ、欠け又は不吐出が有り。
2 :5枚目から印字の乱れ、欠け又は不吐出が有り。
3: 10枚目から印字の乱れ、欠け又は不吐出が有り。
4: 20枚目から印字の乱れ、欠け又は不吐出が有り。
5: 25枚目から印字の乱れ、欠け又は不吐出が有り。
[0255] 先ず、本発明の第 1〜3の要旨に係る有色微小複合粒子およびその分散体の実施 例(実施例 1〜3)及びこれに対する比較例 (比較例 1〜3)を説明する。
[0256] <複合粒子 1:複合粒子の製造 >
シリカ 1(平均一次粒子径: 16nm、 BET比表面積値: 204.3m2Zg、耐光性 ΔΕ* :5.36)7. Okgに、メチルハイドロジエンポリシロキサン(商品名: TSF484:GE東芝 シリコーン株式会社製) 140gを、エッジランナーを稼動させながら添加し、 588N/c m(60KgZcm)の線荷重で 30分間混合攪拌を行った。なお、このときの攪拌速度 は 22rpmであった。
[0257] 次に、有機顔料 G (種類:フタロシアニン系顔料、平均粒子径: 100nm、 BET比表 面積値: 67.3m2Zg、L 直: 29.77、 値:— 15.30、 値:— 1.12、 値: 15 .34、耐光性 ΔΕ*: 8.06、水系の ζ電位:— 3.6mV、溶剤系の ζ電位:— 1.5m V)7. Okgを、エッジランナーを稼動させながら 30分間かけて添カ卩し、更に 392NZc m (40Kg/cm)の線荷重で 100分間混合攪拌を行!、、メチルハイドロジェンポリシ口 キサン被覆に有機顔料 Gを付着させた。次いで、乾燥機を用いて 80°Cで 60分間乾 燥を行い、複合粒子 1を得た。なお、このときの攪拌速度は 22rpmであった。 [0258] 得られた複合粒子 1は、平均一次粒子径が 20nmであり、 BET比表面積値は 78.
6m2Zg、L 直は 30. 22、 a*値は— 14. 92、b*値は— 1. 10、 値は 14. 96、有 機顔料の脱離の程度は 4であった。また、着色力は 93%、耐光性 Δ Ε*は 2. 12、水 系における ζ電位は 22. 7mV、溶剤系における ζ電位は 6. 6mVであった。メ チルノヽィドロジエンポリシロキサンの被覆量は C換算で 0. 53重量%であった。付着し ている有機顔料 Gは C換算で 18. 15重量% (シリカ粒子 100重量部に対して 100重 量部に相当する)であった。
[0259] 得られた複合粒子 1の電子顕微鏡写真の観察結果より、添加した有機顔料 Gの粒 子がほとんど認められないことから、有機顔料 Gのほぼ全量力メチルハイドロジェンポ リシロキサン被覆に付着していることが認められた。
[0260] <実施例 1 1 :有色微小複合粒子の製造 >
3Lのビーカーに、上記で得られた複合粒子(複合粒子 l) 200gと 0. 65molZLの 水酸ィ匕ナトリウム水溶液 2L (芯粒子であるシリカ粒子および表面改質剤を溶解できる 理論量の 0. 2倍)を入れ、 pHを 13. 1とし、 60°Cで 30分間攪拌した。これを濾過、水 洗後、乾燥させて有色微小複合粒子を得た。
[0261] 得られた有色微小複合粒子は、平均一次粒子径が 15nm、個数換算平均粒子径 力 S22nm、体積換算平均粒子径が 78nm、 BET比表面積値が 83. 6m2Zgであった 。有色微小複合粒子が内包するシリカ量は、 Si換算で 1. 06重量%、色相のうち 値は 31. 33、 a*値は— 14. 29 値は—1. 10、 値は 14. 33、着色力は 105% であり、耐光性 Δ Ε*は 3. 56、水系における ζ電位は 13. 8mV、溶剤系における ζ電位は 6. 4mVであった。
[0262] <実施例 2— 1 :水系分散体の製造 >
140mLガラス瓶に、実施例 1—1で得られた有色微小複合粒子 15重量部、水 100 重量部を 0. 35mm φガラスビーズ 100gとともに添カ卩し、ペイントシェーカーで 2時間 分散させて、水系分散体を得た。
[0263] 得られた、有色微小複合粒子を含む水系分散体の個数換算分散粒子径は 19nm であり、体積換算分散粒子径は 42nm、分散安定性は 5、粘度の変化率は 4. 8%、 比吸光係数 ε wは 2. 46であった。 [0264] <実施例 3— 1 :溶剤系分散体の製造 >
140mLガラス瓶に、実施例 1—1で得られた有色微小複合粒子 15重量部、 PGM
EA100重量部を 0. 35mm φガラスビーズ lOOgとともに添カ卩し、ペイントシェーカー で 2時間混合分散させて溶剤系分散体を得た。
[0265] 得られた有色微小複合粒子を含む溶剤系分散体の個数換算分散粒子径は 19nm であり、体積換算分散粒子径は 48nm、分散安定性は 5、粘度の変化率は 4. 7%、 比吸光係数 ε wは 2. 44であった。
[0266] 複合粒子 1及び実施例 1 1〜3— 1に従って、複合粒子、有色微小複合粒子、水 系分散体、溶剤系分散体を作製した。各製造条件および得られた複合粒子、有色 微小複合粒子、水系分散体および溶剤系分散体の諸特性を以下に示す。
[0267] シリカ 1〜4:
芯粒子として、表 1に示す特性を有するシリカ粒子 1〜4を用意した。
[0268] 有機顔料 G、 B、 R— 1、 Y、 Bk:
有機顔料として、表 2に示す特性を有する有機顔料を用意した。
[0269] [表 1]
Figure imgf000053_0001
[0270] [表 2]
Figure imgf000054_0001
[0271] <複合粒子の製造 >
複合粒子 2〜5:
芯粒子の種類、表面改質剤の種類および添加量、表面改質剤の被覆工程におけ るエッジランナー処理の線荷重および時間、有機顔料の付着工程における有機顔 料の種類、添加量、エッジランナー処理の線荷重および時間を種々変化させた以外 は、複合粒子 1と同様にして複合粒子を得た。このときの製造条件を表 3に、得られた 複合粒子の諸特性を表 4に示す。
[0272] [表 3]
Figure imgf000056_0001
Figure imgf000057_0001
^02734 [0274] <有色微小複合粒子の製造 >
実施例 1 2〜1 8、比較例 1 1〜1 3 :
複合粒子の種類、アルカリ溶解時における溶解液の pH及び添加するアルカリの理 論量対比量、処理温度および処理時間を種々変化させた以外は実施例 1 1と同様 にして有色微小複合粒子を得た。なお、複合粒子の濃度 (g/100mL)は、溶解液 1 OOmLに対する複合粒子の重量 (g)である。なお、実施例 1—2では、乾燥工程とし て、凍結乾燥を行った。このときの製造条件を表 5に、得られた有色微小複合粒子の 諸特性を表 6に示す。
[0275] 比較例 1 4 (特開 2005— 36150号公報実施例 1の追試実験)
有機顔料 Y (種類:キノフタロン系顔料、平均一次粒子径: 252nm、 BET比表面積 値: 27. 9m2Zg、 ΐ 直: 84. 21、 a*値: 3. 00、 値: 91. 31、 値: 91. 36、耐 光性 Δ Ε* : 7. 22、水系の ζ電位:— 3. lmV、溶剤系の ζ電位:ー1. 4mV) 80g、 キシレン 6g、径 8mmのスチールビーズ 2kgを乾式アトライター中に仕込み、回転数 3 OOrpmで 80°C、 2時間運転して、キノフタロン顔料を得た。得られたキノフタロン顔料 の諸特性を表 6に示す。
[0276] [表 5]
実施例 有色微小複合粒子粉末の製造
及び 複合粒子粉末 溶解液 処理 処理 凍結乾 燥の有 比較例 種類 濃度 種類 pH 理 i
温度 時間 is 対比
(g/lOOml) ト) (倍) ΓΟ (mm.) 実施例 1 - 1 複合粒子 1 10.0 水酸化ナトリウム 13.1 0.2 60 30
" 1-2 " 1 10.0 水酸化ナトリウム 13.1 0.2 60 30 有 a 1-3 " I 10.0 水酸化ナトリウム 13.1 0.2 95 30 - i
" 1-4 " 1 10.0 水酸化ナトリウム 13.7 0.9 50 30 挺
II 1-5 " 2 iO.O 水酸化カリウム 13.2 0.3 60 30
a 1-6 " 3 10.0 水酸化カリウム 13.0 0.1 70 30
「.
II 1-7 II 4 10.0 ιι 水酸化ナトリウム 13.4 0.7 50 30
" 1-8 " 5 10.0 水酸化ナトリウム 13.1 0.2 60 30 比較例 1 1 " 1 10.0 水酸化ナトリウム 13.9 1.5 60 30
II 1-2 " 1 10.0 水酸化ナトリウム 13.1 0.2 25 30
" 1-3 " 1 10.0 水酸化ナトリウム 8.6 0.0 60 600 無
Figure imgf000060_0001
Figure imgf000060_0002
実施例 2— 2〜2— 8、比較例 2— 1〜2—10:
有色微小複合粒子の種類および配合量を種々変化させた以外は、実施例 2— 1と 同様にして水系分散体を得た。このときの製造条件および得られた水系分散体の諸 特性を、表 7に示す。
[0279] 実施例 2— 9 :
有色微小複合粒子 100重量部と水 100重量部を混合し、 50°Cの加熱条件下で 3 本ロールミルを用いて混練分散させることにより、水系分散体を得た。このときの製造 条件および得られた水系分散体の諸特性を、表 7に示す。
[0280] [表 7]
¾室ϋ室 it 323831310:~ ~||11
Figure imgf000062_0001
Figure imgf000062_0002
有色微小複合粒子の種類および配合量を種々変化させた以外は、実施例 3— 1と 同様にして溶剤系分散体を得た。このときの製造条件および得られた溶剤系分散体 の諸特性を表 8に示す。
[0282] 実施例 3— 9 :
有色微小複合粒子 100重量部と PGMEAIOO重量部を混合し、 50°Cの加熱条件 下で 3本ロールミルを用いて混練分散させることにより、溶剤系分散体を得た。このと きの製造条件および得られた溶剤系分散体の諸特性を表 8に示す。
[0283] [表 8]
_铖¾ φ¾铖¾卹3 ¾S:731810Όπr8702848ί:.~ ~〜
Figure imgf000064_0001
ター用着色材、カラーフィルター用着色組成物およびカラーフィルターの実施例(実 施例 4〜9)及びこれに対する比較例(比較例 4〜9)を説明する。
[0285] <複合粒子 6 :複合粒子 (G)の製造 >
シリカ 1 (平均一次粒子径: 16nm、 BET比表面積値: 204. 3m2Zg、耐光性 Δ Ε* 値: 5. 36、而熱性 Δ Ε*値: 3. 46) 3. 5kgに、メチルハイドロジエンポリシロキサン( 商品名: TSF484 : GE東芝シリコーン株式会社製) 70gを、エッジランナーを稼動さ せながら添カ卩し、 588N/cm (60Kg/cm)の線荷重で 30分間混合攪拌を行った。 なお、このときの攪拌速度は 22rpmであった。
[0286] 次に、有機顔料 G (種類:フタロシアニン系顔料、平均一次粒子径: 100nm、 BET 比表面積値: 67. 3m2Zg、 L*値: 29. 77、 a*値:— 15. 30、 b*値:— 1. 12、 C*値 : 15. 34、耐光性 E*値: 8. 06、而熱性 Δ Ε*値: 7. 46、水系の ζ電位:—3. 6mV、 溶剤系の ζ電位: 一 1. 5mV) 7. Okgを、エッジランナーを稼動させながら 30分間か けて添カ卩し、更に 392NZcm(40KgZcm)の線荷重で 150分間混合攪拌を行い、 メチルハイドロジエンポリシロキサン被覆に有機顔料 Gを付着させ、複合粒子 6を得た 。なお、このときの攪拌速度は 22rpmであった。
[0287] 得られた複合粒子 6は、平均一次粒子径が 23nmであり、 BET比表面積値は 76.
9m2Zg、 L 直は 30. 36、 a*値は— 14. 79 値は—1. 12、 値は 14. 83、有 機顔料の脱離の程度は 4であった。着色力は 96%、耐光性 Δ Ε*値は 2. 28、耐熱 性 Δ Ε*値は 2. 49、水系における ζ電位は 23. 0mV、溶剤系における ζ電位は -6. 6mVであった。また、メチルハイドロジエンポリシロキサンの被覆量は C換算で 0 . 53重量%であった。付着している有機顔料 Gは C換算で 24. 06重量%(シリカ粒 子 100重量部に対して 200重量部に相当する)であった。
[0288] 得られた複合粒子 6の電子顕微鏡写真の観察結果より、添加した有機顔料 Gの粒 子がほとんど認められないことから、有機顔料 Gのほぼ全量力メチルハイドロジェンポ リシロキサン被覆に付着していることが認められた。
[0289] <複合粒子 7 :複合粒子 (B)の製造 >
有機顔料として、有機顔料 B (種類:フタロシアニン系顔料、平均一次粒子径: 80η m、 BET比表面積値: 87. ^ュ 直: 23. 04、 a*値: 5. 99、 ΐ 直:— 13. 16 、 C*値: 14. 46、耐光性 Δ Ε*値: 8. 83、耐熱性 Δ Ε*値: 9. 04、水系の ζ電位:
2. 9mV、溶剤系の ζ電位:一 1. 3mV)を用いたこと以外は、複合粒子 6と同様にし て複合粒子 7を得た。
[0290] 得られた複合粒子 7は、平均一次粒子径が 25nmであり、 BET比表面積値は 90.
3m2Zg、 ΐ 直は 26. 38、 a*値は 5. 92、 値は— 12. 95、 値は 14. 24、有機 顔料の脱離の程度は 4であった。着色力は 96%、耐光性 Δ Ε*値は 2. 64、耐熱性 Δ Ε*値は 2. 75、水系における ζ電位は 22. 2mV、溶剤系における ζ電位は一 6. OmVであった。また、メチルハイドロジエンポリシロキサンの被覆量は C換算で 0. 54重量%であった。付着している有機顔料 Bは C換算で 44. 68重量%(シリカ粒子 1 00重量部に対して 200重量部に相当する)であった。
[0291] 得られた複合粒子 7の電子顕微鏡写真の観察結果より、添加した有機顔料 Bの粒 子がほとんど認められないことから、有機顔料 Bのほぼ全量カ^チルノヽイドロジェンポ リシロキサン被覆に付着していることが認められた。
[0292] く複合粒子 8 :複合粒子 (R)の製造 >
有機顔料として、有機顔料 R (種類:ジケトピロロピロール系顔料、平均一次粒子径 : 130nm、 BET比表面積値: 82. 4m2Zg、
Figure imgf000066_0001
: 38. 42、 a*値: 43. 20、 直: 2
3. 36、 C*値: 49. 11、耐光性 Δ Ε*値: 7. 92、耐熱性 Δ Ε*値: 7, 28、水系の ζ電 位:— 2. 9mV、溶剤系の ζ電位:— 1. 2mV)を用いたこと以外は、複合粒子 6と同 様にして複合粒子 8を得た。
[0293] 得られた複合粒子 8は、平均一次粒子径が 24nmであり、 BET比表面積値は 85.
6m2Zg、 ΐ 直は 48. 46、 a*値は 48. 10、 値は 22. 39、 値は 53. 06、有機 顔料の脱離の程度は 4であった。着色力は 96%、耐光性 Δ Ε*値は 2. 48、耐熱性 Δ Ε*値は 2. 26、水系における ζ電位は 20. 5mV、溶剤系における ζ電位は 6. 3mVであった。また、メチルハイドロジエンポリシロキサンの被覆量は C換算で 0. 53重量%であった。付着している有機顔料 Rは C換算で 40. 38重量%(シリカ粒子 100重量部に対して 200重量部に相当する)であった。
[0294] 得られた複合粒子 8の電子顕微鏡写真の観察結果より、添加した有機顔料 Rの粒 子がほとんど認められな 、ことから、有機顔料 Rのほぼ全量カ チルノ、イドロジェンポ リシロキサン被覆に付着していることが認められた。
[0295] <実施例 4 - 1:カラーフィルター用着色材 (G)の製造 >
3Lのビーカーに、得られた複合粒子(複合粒子 6) 200gと 0. 44molZLの水酸化 ナトリウム水溶液 2L (芯粒子であるシリカ粒子および表面改質剤を溶解できる理論量 の 0. 2倍)を入れ、 pHを 13. 2とし、 60°Cで 30分間攪拌した。これを濾過、水洗後、 乾燥させてカラーフィルター用着色材 (G)を得た。
[0296] 得られたカラーフィルター用着色材 (G)は、平均一次粒子径が 16nm、個数換算 平均粒子径が 23nm、体積換算平均粒子径が 74nm、 BET比表面積値が 84. 7m2 Zgであった。カラーフィルター用着色材が内包するシリカ量は、 Si換算で 1. 09重量 %、色相のうち ΐ 直は 31. 38、 a*値は— 14. 29、b 直は— 1. 11、 値は 14. 33 、着色力は 106%であり、耐光性 Δ Ε*値は 3. 50、耐熱性 Δ Ε*値は 3. 69、水系に おける ζ電位は 13. 9mV、溶剤系における ζ電位は 6. 5mVであった。
[0297] <実施例 4 2:カラーフィルター用着色材 (B)の製造 >
複合粒子として、複合粒子 7を用いた以外は、カラーフィルター用着色材 (G)と同 様にして、カラーフィルター用着色材 (B)を得た。
[0298] 得られたカラーフィルター用着色材 (B)は、平均一次粒子径が 16nm、個数換算平 均粒子径が 27nm、体積換算平均粒子径が 78nm、 BET比表面積値が 95. 2m gであった。カラーフィルター用着色材が内包するシリカ量は、 Si換算で 0. 96重量% 、色相のうち ΐ 直は 26. 49、 a*値は 5. 83、 値は— 12. 88、 値は 14. 14、着 色力は 106%であり、耐光性 Δ Ε*値は 3. 62、耐熱性 Δ Ε*値は 3. 94、水系におけ る ζ電位は 12. 9mV、溶剤系における ζ電位は 6. lmVであった。
[0299] <実施例 4 3:カラーフィルター用着色材 (R)の製造〉
複合粒子として、複合粒子 8を用いた以外は、カラーフィルター用着色材 (G)と同 様にして、カラーフィルター用着色材 (R)を得た。
[0300] 得られたカラーフィルター用着色材 (R)は、平均一次粒子径が 17nm、個数換算平 均粒子径が 31nm、体積換算平均粒子径が 84nm、 BET比表面積値が 88. 6m gであった。カラーフィルター用着色材が内包するシリカ量は、 Si換算で 1. 14重量% 、色ネ目のうち! 値 ίま 40. 19、 a*値 ίま 43. 26、 値 ίま 23. 51、 値 ίま 49. 24、着 色力は 105%であり、耐光性 Δ Ε*は 3. 24、耐熱性 Δ Ε*は 3. 42、水系における ζ 電位は 14. OmV、溶剤系における ζ電位は 6. 6mVであった。
[0301] <実施例 5— 1:カラーフィルター用着色組成物 (I G)の製造 >
カラーフィルター用着色材 (G) (実施例 4— 1) 100. 0重量部、分散剤 (変性アタリ ルブロック共重合体)(商品名: DYSPERBYK— 2001 :ビックケミー製) 30. 0重量 部、 PGMEA270. 0重量部を、ビーズミルを用いて 4時間混合分散させて、カラーフ ィルター用着色組成物 (I— G)を得た。
[0302] 得られたカラーフィルター用着色組成物 (I G)の個数換算分散粒子径は 18nm であり、体積換算分散粒子径は 42nm、粘度の変化率は 4. 0%、波長 530nmの透 過率は 84. 6%、波長 650nmの比吸光係数 ε (重量基準)は 2. 45であった。
w
[0303] <実施例 5— 2:カラーフィルター用着色組成物 (I Β)の製造 >
カラーフィルター用着色材として、カラーフィルター用着色材 (Β)を用いた以外は、 実施例 5— 1と同様にして、カラーフィルター用着色組成物 (I— Β)を得た。
[0304] 得られたカラーフィルター用着色組成物 (I Β)の個数換算分散粒子径は 22nmで あり、体積換算分散粒子径は 37nm、粘度の変化率は 4. 7%、波長 460nmの透過 率は 82. 8%、波長 610nmの比吸光係数 ε (重量基準)は 2. 35であった。
w
[0305] <実施例 5— 3:カラーフィルター用着色組成物 (I R)の製造 >
カラーフィルター用着色材として、前記カラーフィルター用着色材 (R)を用いた以 外は、実施例 5—1と同様にして、カラーフィルター用着色組成物 (I—R)を得た。
[0306] 得られたカラーフィルター用着色組成物 (I R)の個数換算分散粒子径は 28nmで あり、体積換算分散粒子径は 45nm、粘度の変化率は 4. 9%、波長 620nmの透過 率は 89. 6%、波長 550nmの比吸光係数 ε (重量基準)は 1. 94であった。
w
[0307] <実施例 6 - 1:カラーフィルター用着色組成物 (Π - G)の製造 >
カラーフィルター用着色組成物 (I G) (実施例 5— 1) 400. 0重量部、メチルメタク リレート Ζメタクリル酸共重合体 100. 0重量部を、ビーズミルを用いて 2時間混合分 散し、得られた混練物を 5 mのグラスフィルターで濾過して、カラーフィルター用着 色組成物 (II G)を得た。
[0308] 得られたカラーフィルター用着色組成物 (II G)の個数換算分散粒子径は 19nm であり、体積換算分散粒子径は 44nm、粘度は 16. 6mPa ' s、粘度の変化率は 3. 9 %、 650nmの ε (重量基準)は 2. 56であった。
w
[0309] 得られたカラーフィルター用着色組成物(Π— G)をクリアベースフィルムに 150 μ m
(6mil)の厚みで塗布、乾燥してカラーフィルター用着色透過膜 (Π— G)を得た。得ら れたカラーフィルター用着色透過膜 (Π— G)の色度は、 X値が 0. 2754、 y値力 . 38 78、 Y値が 70. 21、耐光性は Δ Ε*値が 3. 32、耐熱性 Δ Ε*値が 3. 51であった。波 長 530nmの透過率は 92. 6%、 650nmの比吸光係数 ε (重量基準)は 2. 47であ w
つた ο
[0310] <実施例 6— 2:カラーフィルター用着色組成物 (Π— Β)の製造 >
カラーフィルター用着色組成物として、カラーフィルター用着色組成物 (I Β)を用 いた以外は、実施例 6—1と同様にして、カラーフィルター用着色組成物 (Π— Β)を得 た。
[0311] 得られたカラーフィルター用着色組成物 (ΙΙ—Β)の個数換算分散粒子径は 23nm であり、体積換算分散粒子径は 38nm、粘度は 17. 9mPa ' s、粘度の変化率は 4. 6 %、 610nmの ε (重量基準)は 2. 47であった。
w
[0312] 得られたカラーフィルター用着色組成物(Π— Β)をクリアベースフィルムに 150 μ m
(6mil)の厚みで塗布、乾燥してカラーフィルター用着色透過膜 (Π— B)を得た。得ら れたカラーフィルター用着色透過膜 (Π— B)の色度は、 X値が 0. 1475、 y値力^). 21 82、 Y値が 29. 33、耐光性は Δ Ε*値が 3. 42、耐熱性 Δ Ε*値が 3. 74であった。波 長 460nmの透過率は 91. 8%、 610nmの比吸光係数 ε (重量基準)は 2. 36であ w
つた ο
[0313] <実施例 6— 3:カラーフィルター用着色組成物 (Π— R)の製造 >
カラーフィルター用着色組成物として、カラーフィルター用着色組成物 (I R)を用 いた以外は、実施例 6—1と同様にして、カラーフィルター用着色組成物 (Π—R)を得 た。
[0314] 得られたカラーフィルター用着色組成物 (II R)の個数換算分散粒子径は 30nm であり、体積換算分散粒子径は 55nm、粘度は 19. 4mPa ' s、粘度の変化率は 4. 7 %、 550nmの ε (重量基準)は 2. 01であった。 [0315] 得られたカラーフィルター用着色組成物(Π— R)をクリアベースフィルムに 150 μ m (6mil)の厚みで塗布、乾燥してカラーフィルター用着色透過膜 (Π—R)を得た。得ら れたカラーフィルター用着色透過膜 (Π—R)の色度は、 X値が 0. 5846、 y値力 . 33 98、 Y値が 23、 24耐光性は Δ Ε*値が 3. 18、耐熱性 Δ Ε*値が 3. 36であった。波 長 620nmの透過率は 96. 6%、 550nmの比吸光係数 ε (重量基準)は 1. 95であ w
つた ο
[0316] <実施例 7— 1:カラーフィルター用着色組成物 (III— G)の製造 >
カラーフィルター用着色組成物(Π— G) (実施例 6— 1) 500. 0重量部、ジペンタエ リスリトールペンタアタリレート 100. 0重量部、 2 - (4ーメトキシー 13ースチリル)ービ ス(4, 6 トリクロロメチル)—s トリァジン 5. 0重量部をビーズミルを用いて 2時間混 合分散し、得られた混練物を 1 μ mのグラスフィルターで濾過して、カラーフィルター 用着色組成物 (III - G)を得た。
[0317] 得られたカラーフィルター用着色組成物 (III— G)の個数換算分散粒子径は 17nm であり、体積換算分散粒子径は 40nm、粘度は 16. 8mPa ' s、粘度の変化率は 3. 9 %、 650nmの比吸光係数 ε (重量基準)は 2. 55であった。
w
[0318] 得られたカラーフィルター用着色組成物(ΠΙ— G)をクリアベースフィルムに 150 μ m (6mil)の厚みで塗布、乾燥してカラーフィルター用着色透過膜 (III— G)を得た。 得られたカラーフィルター用着色透過膜 (III— G)の色度は、 X値が 0. 2755、 y値が 0. 3877、Y値力 70. 36、耐光' |4ίま Δ Ε:^直力 S3. 30、耐熱' Ι^ Δ Ε^直力 3. 49であつ た。波長 530nmの透過率は 93. 1、 650nmの比吸光係数 ε (重量基準)は 2. 49 w
であった。
[0319] <実施例 7— 2:カラーフィルター用着色組成物 (ΠΙ— Β)の製造 >
カラーフィルター用着色組成物として、カラーフィルター用着色組成物 (Π— Β)を用 いた以外は、実施例 7—1と同様にして、カラーフィルター用着色組成物 (III— Β)を 得た。
[0320] 得られたカラーフィルター用着色組成物 (III Β)の個数換算分散粒子径は 21nm であり、体積換算分散粒子径は 35nm、粘度は 17. 8mPa ' s、粘度の変化率は 4. 6 %、 610nmの比吸光係数 ε (重量基準)は 2. 45であった。 [0321] 前記カラーフィルター用着色組成物(III B)をクリアベースフィルムに 150 m (6 mil)の厚みで塗布、乾燥してカラーフィルター用着色透過膜 (III B)を得た。得ら れたカラーフィルター用着色透過膜 (ΠΙ— B)の色度は、 X値が 0. 1476、 y値力 . 2 181、 Y値が 29. 42、耐光性は Δ Ε*値が 3. 41、耐熱性 Δ Ε*値が 3. 71であった。 波長 460nmの透過率は 92. 4、 610nmの比吸光係数 ε (重量基準)は 2. 38であ w
つた ο
[0322] <実施例 7— 3:カラーフィルター用着色組成物 (III—R)の製造〉
カラーフィルター用着色組成物として、カラーフィルター用着色組成物 (Π— R)を用 いた以外は、実施例 7—1と同様にして、カラーフィルター用着色組成物 (III— R)を 得た。
[0323] 得られたカラーフィルター用着色組成物 (III—R)の個数換算分散粒子径は 26nm であり、体積換算分散粒子径は 51nm、粘度は 19. 6mPa ' s、粘度の変化率は 4. 8 %、 550nmの比吸光係数 ε (重量基準)は 2. 00であった。
w
[0324] 前記カラーフィルター用着色組成物(III—R)をクリアベースフィルムに 150 m (6 mil)の厚みで塗布、乾燥してカラーフィルター用着色透過膜 (III— R)を得た。得ら れたカラーフィルター用着色透過膜 (III—R)の色度は、 X値が 0. 5848、 y値力 . 3 399、 Y値が 23. 29、耐光性は Δ Ε*値が 3. 14、耐熱性 Δ Ε*値が 3. 35であった。 波長 620nmの透過率は 97. 1、 550nmの比吸光係数 ε (重量基準)は 1. 97であ w
つた ο
[0325] <実施例 8— 1:カラーフィルター用着色組成物 (IV— G)の製造 >
カラーフィルター用着色組成物(Π—G) (実施例 6— 1) 500. 0重量部、 ρ フエ-ル チォフエ-ルジフエ-ルスルホ -ゥムトリフルォアセテート 5. 0重量部を、サンドグライ ンダーを用いて分散し、得られた混練物を 1 μ mのグラスフィルターで濾過して、カラ 一フィルター用着色組成物 (IV— G)を得た。
[0326] 得られたカラーフィルター用着色組成物 (IV— G)の個数換算分散粒子径は 18nm であり、体積換算分散粒子径は 41nm、粘度は 17. 2mPa ' s、粘度の変化率は 4. 0 %、 650nmの比吸光係数 ε (重量基準)は 2. 53であった。
w
[0327] 得られたカラーフィルター用着色組成物(IV— G)をクリアベースフィルムに 150 μ m (6mil)の厚みで塗布、乾燥してカラーフィルター用着色透過膜 (IV— G)を得た。 得られたカラーフィルター用着色透過膜 (IV— G)の色度は、 X値が 0. 2752、 y値が 0. 3877、 Y値力 70. 41、耐光' |4ίま Δ Ε^直力 3. 28、耐熱' Ι^ Δ Ε^直力 3. 45であつ た。波長 530nmの透過率は 93. 2、 650nmの比吸光係数 ε (重量基準)は 2. 48 w
であった。
[0328] <実施例 8— 2:カラーフィルター用着色組成物 (IV— Β)の製造 >
カラーフィルター用着色組成物として、カラーフィルター用着色組成物 (Π— Β)を用 いた以外は、実施例 8—1と同様にして、カラーフィルター用着色組成物 (IV— Β)を 得た。
[0329] 得られたカラーフィルター用着色組成物 (IV— Β)の個数換算分散粒子径は 21nm であり、体積換算分散粒子径は 36nm、粘度は 18. ImPa ' s、粘度の変化率は 4. 6 %、 610nmの比吸光係数 ε (重量基準)は 2. 44であった。
w
[0330] 得られたカラーフィルター用着色組成物(IV— Β)をクリアベースフィルムに 150 μ m (6mil)の厚みで塗布、乾燥してカラーフィルター用着色透過膜 (IV— B)を得た。 得られたカラーフィルター用着色透過膜 (IV— B)の色度は、 X値が 0. 1475、 y値が 0. 2179、Y値力 44、耐光性は、 Δ Ε ま 3. 38、耐熱性 Δ Ε ま 3. 66であった 。波長 460nmの透過率は 92. 5、 610nmの比吸光係数 ε (重量基準)は 2. 38で w
めつに。
[0331] <実施例 8— 3:カラーフィルター用着色組成物 (IV— R)の製造 >
カラーフィルター用着色組成物として、カラーフィルター用着色組成物 (Π— R)を用 いた以外は、実施例 8—1と同様にして、カラーフィルター用着色組成物 (IV— R)を 得た。
[0332] 得られたカラーフィルター用着色組成物 (IV— R)の個数換算分散粒子径は 27nm であり、体積換算分散粒子径は 52nm、粘度は 20. ImPa ' s、粘度の変化率は 4. 9 %、 550nmの比吸光係数 ε (重量基準)は 2. 01であった。
w
[0333] 得られたカラーフィルター用着色組成物(IV— R)をクリアベースフィルムに 150 μ m (6mil)の厚みで塗布、乾燥してカラーフィルター用着色透過膜 (IV— R)を得た。 得られたカラーフィルター用着色透過膜 (IV— R)の色度は、 X値が 0. 5846、 y値が 0. 3402、 Y値力 3. 29、耐光性は Δ Ε*値が 3. 15、耐熱性 Δ Ε*値が 3. 34であつ た。波長 620nmの透過率は 97. 3、 550nmの比吸光係数 ε (重量基準)は 1. 96
w
であった。
[0334] <実施例 9— 1:カラーフィルター (I)の作製 >
膜厚 1. 0 mの榭脂ブラックマトリックスのパターンを形成したノンアルカリガラス基 板 (厚さ 0. 7mm)上にカラーフィルター用着色組成物 (II— G) (実施例 6— 1)をスピ ンコートし、 90°Cで 4分間、ホットプレートを用いてプリベータを行った後、この膜上に ポジ型フォトレジストを塗布し、 80°Cで 20分間加熱乾燥してレジスト膜を得た。超高 圧水銀灯 2. 50kWを用い、 400mjZcm2の光量で露光を行った。次いで、炭酸ナト リゥム水溶液で現像を行った後、不要となったフォトレジスト層をメチルセルソルブァ セテートで剥離した。更に、得られた着色膜を窒素雰囲気中で 250°Cで 30分間加熱 処理することによって緑色着色膜のパターンを得た。
[0335] その後、同様にして、カラーフィルター用着色組成物 (Π— Β)、カラーフィルター用 着色組成物 (Π— R)を用いて、それぞれの着色膜のパターンを形成した。
[0336] 得られたカラーフィルター(I)の透過率は、波長 530nmが 92. 0%、波長 460nm 力 91. 4%,波長 620mn力 96. 20/0であり、 ントラスト ίま 1700であった。
[0337] <カラーフィルター(Π)の作製 >
膜厚 1. 0 mの榭脂ブラックマトリックスのパターンを形成したノンアルカリガラス基 板 (厚さ 0. 7mm)上にカラーフィルター用着色組成物 (III— G) (実施例 7— 1)をスピ ンコートし、 90°Cで 4分間、ホットプレートを用いてプリベータを行った後、超高圧水 銀灯 2. 50kWを用い、 400mjZcm2の光量でパターン露光を行った。次いで、炭酸 ナトリウム水溶液で現像し、未露光部分のフォトレジスト層を除去し、更に、得られた 着色膜を窒素雰囲気中で 250°Cで 30分間加熱処理することによって緑色着色膜の ノ ターンを得た。
[0338] その後、同様にして、カラーフィルター用着色組成物 (ΠΙ— B)、カラーフィルター用 着色組成物 (ΠΙ— R)を用いて、それぞれの着色膜のパターンを形成した。
[0339] 得られたカラーフィルター(Π)の透過率は、波長 530nmが 92. 4%、波長 460nm 力 91. 6%,波長 620mn力 96. 40/0であり、 ントラスト ίま 1720であった。 [0340] <カラーフィルター(ΠΙ)の作製 >
カラーフィルター用着色組成物として、カラーフィルター用着色組成物 (IV—G)、 カラーフィルター用着色組成物(IV— B)、カラーフィルター用着色組成物(IV— R) を用いた以外は、前記カラーフィルター (II)と同様にしてカラーフィルター (ΠΙ)を得 た。
[0341] 得られたカラーフィルター(ΠΙ)の透過率は、波長 530nmが 92. 6%、波長 460nm 力 91. 70/0、波長 620mn力 96. 60/0であり、 ン卜ラス卜 ίま 1730であった。
[0342] 複合粒子 6および実施例 4 1〜9 1に従って、複合粒子、カラーフィルター用着 色材、カラーフィルター用着色組成物およびカラーフィルターを作製した。各製造条 件並びに得られた複合粒子、カラーフィルター用着色材、カラーフィルター用着色組 成物およびカラーフィルターの諸特性を以下に示す。
[0343] シリカ 1〜4:
芯粒子として、表 1に示す特性を有するシリカ粒子 1〜4を用意した。
[0344] 有機顔料0、8、1^、¥:
有機顔料として、表 2に示す特性を有する有機顔料を用意した。
[0345] <複合粒子の製造 >
複合粒子 7〜12:
芯粒子の種類、表面改質剤の種類および添加量、表面改質剤の被覆工程におけ るエッジランナー処理の線荷重および時間、有機顔料の付着工程における有機顔 料の種類、添加量、エッジランナー処理の線荷重および時間を種々変化させた以外 は、複合粒子 6と同様にして複合粒子を得た。このときの製造条件を表 9に、得られた 複合粒子の諸特性を表 10に示す。
[0346] [表 9]
Figure imgf000075_0001
Figure imgf000076_0001
^sl0347 [0348] <カラーフィルター用着色材の製造 >
実施例 4 2〜4 8、比較例 4 1〜4 4 :
複合粒子の種類、アルカリ溶解時における溶解液の pH及び添加するアルカリの理 論量対比量、処理温度および処理時間を種々変化させた以外は実施例 4 1と同様 にしてカラーフィルター用着色材を得た。なお、複合粒子の濃度 (gZlOOmL)は、 溶解液 lOOmLに対する複合粒子の重量 (g)である。なお、実施例 4— 5は、乾燥ェ 程として、凍結乾燥を行ったものである。このときの製造条件を表 11に、得られたカラ 一フィルター用着色材の諸特性を表 12に示す。
[0349] [表 11]
Figure imgf000078_0001
Figure imgf000079_0001
[0351] 比較例 4— 5 (特開 2006— 91649号公報 実施例 1 追試実験): アシッドスラリー処理によって作製した針状結晶のジォキサジンバイオレット顔料 4 部、有機顔料 B (種類:フタロシアニン系顔料、平均一次粒子径: 80nm, BET比表 面積値: 87. 9m2Zg、L 直: 23. 04、 a*値: 5. 99、 値:— 13. 16、 値: 14. 4 6、耐光性 Δ Ε*値: 8. 83、耐熱性 Δ Ε*値: 9. 04、水系の ζ電位:— 2. 9mV、溶剤 系の ζ電位:一 1. 3mV) 36部、粉砕した塩ィ匕ナトリウム 400部、ジエチレングリコー ル 80部を双腕型-一ダ一に仕込み、 100〜: L 10°Cで 8時間混練し、その後、 80°C の 1%塩酸水溶液 100部に前記混合物を取り出し、 1時間攪拌後、濾過、湯洗、乾燥 、粉砕し、フタロシアニンブルー顔料を得た。
[0352] 比較例 4 6 :
有機顔料 G (種類:フタロシアニン系顔料、平均一次粒子径: 100nm、 BET比表面 積値: 67. 3m2Zg、L 直: 29. 77、 値:— 15. 30、b*値:— 1. 12、 値: 15. 3 4、耐光性 E*値: 8. 06、耐熱性 Δ Ε*値: 7. 46、水系の ζ電位:— 3. 6mV、溶剤系 の ζ電位:— 1. 5mV) 36部、粉砕した塩化ナトリウム 400部、ジエチレングリコール 8 0部を双腕型-一ダ一に仕込み、 100〜110°Cで 8時間混練し、その後、 80°Cの 1 %塩酸水溶液 100部に前記混合物を取り出し、 1時間攪拌後、濾過、湯洗、乾燥、 粉砕し、フタロシアニングリーン顔料を得た。
[0353] 比較例 4 7 :
有機顔料 R (種類:ジケトピロロピロール系顔料、平均一次粒子径: 130nm、 BET 比表面積値: 82. 4m2Zg、 ΐ 直: 38. 42、 a*値: 43. 20、 値: 23. 36、 値: 4 9. 11、耐光性 Δ Ε*値: 7. 92、耐熱性 Δ Ε*値: 7, 28、水系の ζ電位:— 2. 9mV、 溶剤系の ζ電位:— 1. 2mV) 36部、粉砕した塩ィ匕ナトリウム 400部、ジエチレンダリ コール 80部を双腕型-一ダ一に仕込み、 100〜110°Cで 8時間混練し、その後、 80 °Cの 1%塩酸水溶液 100部に前記混合物を取り出し、 1時間攪拌後、濾過、湯洗、乾 燥、粉砕し、ジケトピロロピロール顔料を得た。
[0354] 得られたフタロシアニンブルー顔料、フタロシアニングリーン顔料、ジケトピロ口ピロ ール顔料の諸特性を表 12に示す。
[0355] <カラーフィルター用着色組成物(I) > 実施例 5— 2〜5— 8、比較例 5— 1〜5— 14:
カラーフィルター用着色材の種類、分散剤の種類および配合量並びに溶剤の配合 量を種々変化させた以外は、実施例 5—1と同様にしてカラーフィルター用着色組成 物 (I)を得た。このときの製造条件を表 13及び表 14に、得られたカラーフィルター用 着色組成物 (I)の諸特性を、表 15及び表 16に示す。
[表 13]
Figure imgf000082_0001
Figure imgf000083_0001
〔s § 14
Figure imgf000084_0001
Figure imgf000085_0001
s¾ffi035^ [0360] 実施例 5— 9 :
カラーフィルター用着色材 100. 0重量部、分散剤(変性アクリルブロック共重合体) (商品名: DYSPERBYK— 2001 :ビックケミー製) 30. 0重量部、 PGMEA100. 0 重量部を混合し、 50°Cの加熱条件下で 3本ロールミルを用いて混練分散させること により、カラーフィルター用着色組成物 (I)を得た。このときの製造条件を表 13に、得 られたカラーフィルター用着色組成物 (I)の諸特性を、表 15に示す。
[0361] <カラーフィルター用着色組成物(Π) >
実施例 6— 2〜6— 8、比較例 6— 1〜6— 14:
カラーフィルター用着色組成物 (I)の種類および樹脂の配合量を種々変化させた 以外は、実施例 6—1と同様にしてカラーフィルター用着色組成物 (Π)を得た。このと きの製造条件を表 17に、得られたカラーフィルター用着色組成物 (II)の諸特性を表 18及び表 19に、カラーフィルター用着色組成物 (Π)を塗布して得られたカラーフィ ルター用着色透過膜 (Π)の諸特性を表 20及び表 21に示す。
[0362] [表 17]
Figure imgf000087_0001
8]
Figure imgf000088_0001
S〕〔〕200365
Figure imgf000089_0001
〔 §s
Figure imgf000090_0001
§3
Figure imgf000091_0001
Figure imgf000091_0002
S¾03621 実施例 5— 9で得られた着色組成物 (I) 220. 0重量部とメチルメタタリレート Zメタク リル酸共重合体 100. 0重量部を混合し、 50°Cの加熱条件下で 3本ロールミルを用い て混練分散させることにより、カラーフィルター用着色組成物 (Π)を得た。このときの 製造条件を表 17に、得られたカラーフィルター用着色組成物の諸特性を表 18に、力 ラーフィルター用着色組成物 (II)を塗布して得られたカラーフィルター用着色透過膜 (II)の諸特性を表 20に示す。
[0368] <カラーフィルター用着色組成物(ΠΙ) >
実施例 7— 2〜7— 8、比較例 7— 1〜7—14:
カラーフィルター用着色組成物 (II)の種類および重合開始剤の配合量を種々変化 させた以外は、実施例 7— 1と同様にしてカラーフィルター用着色組成物 (III)を得た 。このときの製造条件を表 22に、得られたカラーフィルター用着色組成物 (ΠΙ)の諸 特性を表 23、表 24に、カラーフィルター用着色組成物 (III)を塗布して得られたカラ 一フィルター用着色透過膜 (III)の諸特性を表 25、表 26に示す。
[0369] [表 22]
実施例 カラーフィルター用着色組成物(m)の作製
及ぴ 着色組成物(Π) 多官能性モノマー 重合開始剤 比ト>較 1 - 例 種類 配合量 種類 配合量 種類 配合量
(重量部) ジペンタエリスリ 2 (4-メトキシ- スチリル) - 実施例 7— 1 実施例 6— 1 500.0 トールペンタァクリ 100.0 ヒ、'ス (4,6 トリクロロメチル) s— 5.0 レート トリァシ"ン
I' 6™2 500.0 〃 100.0 5.0
" 7-3 '/ 6-3 500.0 100.0 )) 5.0
" 7— 4 n 6-4 500.0 〃 100.0 5.0 7-5 " 6-5 500.0 〃 100.0 〃 5.0 ' 7-6 " 6-6 490.0 〃 100.0 〃 4.5 ! 7-7 " 6— 7 480.0 100.0 1) 3.5 ' 7-8 " 6~8 470.0 100.0 1! 3,0 ! 7-9 " 6-9 320.0 100.0 1! 2.5 比較例 7— 1 比較例 6— 1 500.0 〃 100.0 1) 5.0
// 6-2 500.0 100.0 )) 5.0
II 7-3 , 6-3 500.0 100.0 }) 5.0 ! 7-4 /' 6-4 500.0 100.0 U 5.0
" 7— 5 , 6— 5 500.0 〃 100.0 〃 5.0 7-6 // 6-6 500.0 100.0 // 5.0
1! 7-7 a 6— 7 500.0 100.0 5.0
" 7-8 // 6-8 500.0 〃 100.0 Π 5.0
7— 9 ! 6-9 500.0 〃 100.0 〃 5.0
/ 7— 10 /, 6-10 500.0 100.0 ;/ 5.0
" 7-11 6— 11 500.0 100.0 ;/ 5.0
" 6-12 500.0 〃 100.0 〃 5.0
!i 7 13 " 6-13 500.0 100.0 〃 5.0
>, 7-14 " 6— 14 500.0 100.0 〃 5.0 23] 実施例 カラーフィルター用着色組成物 (m)の物性
寸 個数換算 体積換算 粘度 粘度の 比吸光係数 (重量基準) 分散平均 分散平均 変化率 (650nm) (610nm) (550應) (400nm) 粒子径 粒子径 ε
(醒ノ (應) UiiPa'sリ (%) (-) (-) (-) (-) 実施例 7— 1 17 40 16.8 3.9 2.55
// 7-2 21 35 17.8 4.6 2.45
" 7-3 26 51 19.6 4.8 — 2.00
30 72 19.2 4.8 — 2.05
// 7-5 17 33 15.2 3.2 2.62 —
!' 7-6 18 55 18.6 4.5 2.43 —
// 7— 7 18 61 22.4 5.7 2.48 — —
// 7-8 19 98 24.9 8.4 2.46 —
" 7-9 20 55 — — 2.40 — —
Figure imgf000095_0001
Figure imgf000095_0002
Figure imgf000096_0001
Figure imgf000097_0001
SS03732 [0374] 実施例 7— 9 :
実施例 6— 9で得られた着色組成物 (Π) 320. 0重量部、ジペンタエリスリトールべ ンタアタリレート 100. 0重量部および 2—(4ーメトキシ j8スチリル) ビス(4, 6—ト リク口ロメチル) s—トリァジン 2. 5重量部を混合し、 50°Cの加熱条件下で 3本ロー ルミルを用いて混練分散させることにより、カラーフィルター用着色組成物 (ΠΙ)を得 た。このときの製造条件を表 22に、得られたカラーフィルター用着色組成物の諸特性 を表 23に、カラーフィルター用着色組成物 (III)を塗布して得られたカラーフィルター 用着色透過膜 (ΠΙ)の諸特性を表 25に示す。
[0375] <カラーフィルター用着色組成物(IV) >
実施例 8— 2〜8— 8、比較例 8— 1〜8— 14:
カラーフィルター用着色組成物 (II)の種類および配合量並びに光酸発生剤の種類 および配合量を種々変化させた以外は、実施例 8— 1と同様にしてカラーフィルター 用着色組成物 (IV)を得た。このときの製造条件を表 27に、得られたカラーフィルタ 一用着色組成物 (IV)の諸特性を表 28及び表 29に、カラーフィルター用着色組成物 (IV)を塗布して得られたカラーフィルター用着色透過膜 (IV)の諸特性を表 30及び 表 31に示す。
[0376] [表 27]
Figure imgf000099_0001
8]
Figure imgf000100_0001
比較例 カラーフィルター用着色組成物 (IV)の物性
SS 〔¾3037
Figure imgf000101_0001
〕〔^ 〔20378 実施例 カラーフィルター用着色透過膜 (IV)の物性
Figure imgf000102_0001
Figure imgf000102_0002
比較例 カラーフィノレタ -用着色透過膜 (IV)の物性
色度 耐光性 耐熱性 透過率 (G) 透過率 (B) 透過率 (R) 透過率 (Y) 比吸光係数 (重量基準) 爐 値 Y値 Δ Ε*値 厶 E*値 (530nrn) (460nm) (620nm) (550画) (650nm) (610腿) (550nm) (400nm)
(-) (-) (-) ( ) (-) (%) (%) (%) (%) (-) (-) (-) (-) 比較例 8—1 0.2722 0.3765 62.38 7.83 7.21 63.3 一— 一一 一一 1.00 —— ―— —— 8— 2 0.1595 0.2226 26.35 8.62 8.76 —― 62.5 —一 一一 一— 1.00 —― ——
" 8 - 3 0.5386 0.3127 21.16 7.69 6.90 ―— —― 71.0 —一 一一 —一 1.00 —— 8 -4 0.3421 0.4936 69.09 7.05 8.62 ―— —― ― 70.2 —一 —— ― LOO
" 8 - 5 0.2754 0.3865 70.33 2.91 2.75 93.1 ― 一— 一— 0.95 —— ——― ―
" 8 - 6 0.1475 0.2192 39.04 2.98 3.01 —一一 91.9 一一 —― —一 0.94 —― ——
" 8— 7 0.5862 0.3412 23.29 2.84 2.89 一 —― 94.1 —― 一— —― 0.95 ——
" 8 - 8 0.2758 0.3879 67.58 6.02 6.43 74.8 —一 一— 1.40 —— ——
" 8 - 9 0.1469 0.2181 28.29 2.76 2.81 —- 69.8 一 —一 —― - 0.98 一 ——
" 8 - 10 0.5857 0.3389 21.49 2.43 2.67 ― 一— 76.5 —一— —― —— 0.99 ——
" 8—11 0.3449 0.4938 70.33 2.49 2.63 — _ ― 一— 76.1 -— ―— 一 0.98 8 - 12 0.1464 0.2185 26.98 9.72 9.61 —― 56.5 —一 —― —― 1.02 ―— ——
" 8— 13 0.2760 0.3858 66.35 8.06 8.33 56.9 ― —― 一— 1.01 一 —― ——
'/ 8 - 14 0.5879 0.3383 21.99 8.20 8.08 一— —― 61.0 —一 —― —― 1.01 ——
実施例 8— 9で得られた着色組成物 (Π) 320. 0重量部と p フエ-ルチオフエ-ル ジフエ-ルスルホ -ゥムトリフルォロアセテート 2. 5重量部を混合し、 50°Cの加熱条 件下で 3本ロールミルを用いて混練分散させることにより、カラーフィルター用着色組 成物 (IV)を得た。このときの製造条件を表 27に、得られたカラーフィルター用着色 組成物の諸特性を表 28に、カラーフィルター用着色組成物 (IV)を塗布して得られた カラーフィルター用着色透過膜 (IV)の諸特性を表 30に示す。
[0382] くカラーフイノレター〉
実施例 9 2〜9 6、比較例 9 1〜9 3 :
カラーフィルター用着色組成物の種類を種々変化させた以外は、実施例 9—1と同 様にしてカラーフィルター (I)を得た。このときの製造条件および得られたカラーフィ ルターの諸特性を表 32及び表 33に示す。
[0383] [表 32]
^〔〕〔¾03843
Figure imgf000105_0001
Figure imgf000106_0001
[0385] 実施例9 8〜9 12、比較例 9 4〜9 6:
カラーフィルター用着色組成物の種類を種々変化させた以外は、実施例 9— 7と同 様にしてカラーフィルター (Π)を得た。このときの製造条件および得られたカラーフィ ルターの諸特性を表 32及び表 33に示す。
[0386] 実施例 9 14〜9 18、比較例 9 7〜9 9 :
カラーフィルター用着色組成物の種類を種々変化させた以外は、実施例 9 13と 同様にしてカラーフィルター (ΠΙ)を得た。このときの製造条件および得られたカラー フィルターの諸特性を表 32及び表 33に示す。
[0387] 次に、本発明の第 11〜12の要旨に係るインクジェット用インクの着色材およびイン クジェット用インクの実施例(実施例 10〜 11)及びこれに対する比較例(比較例 10〜
11)を説明する。
[0388] <複合粒子 13 :複合粒子の製造 >
シリカ 1 (平均一次粒子径: 16nm、 BET比表面積値: 204.
Figure imgf000107_0001
耐光性 Δ Ε*
: 5. 36) 7. Okgに、メチルハイドロジエンポリシロキサン(商品名: TSF484 : GE東芝 シリコーン株式会社製) 140gを、エッジランナーを稼動させながら添加し、 588N/c mの線荷重で 30分間混合攪拌を行った。なお、このときの攪拌速度は 22rpmであつ た。
[0389] 次に、有機顔料 B (種類:フタロシアニン系顔料、平均粒子径: 80nm、 BET比表面 積値: 87. 9m g,幾何標準偏差値: 2. 15、 L*値: 23. 04、 a*値: 5. 99、 b*値: - 13. 16、 値: 14. 46、而恍性 Δ Ε* : 8. 83、 ζ電位:— 2. 9mV) 7. Okgを、ェ ッジランナーを稼動させながら 30分間かけて添カ卩し、更に 392N/cmの線荷重で 1 20分間混合攪拌を行 ヽ、メチルハイドロジエンポリシロキサン被覆に有機顔料 Bを付 着させ、複合粒子 13を得た。なお、このときの攪拌速度は 22rpmであった。
[0390] 得られた複合粒子 13は、平均一次粒子径が 20nmであり、 BET比表面積値は 89 . lm2,g、個数換算平均粒子径は 26nm、体積換算平均粒子径は 94nm、幾何標 準偏差値は 1. 26であった。色相のうち L*値は 26. 95、 a*値は 5. 74、 b*値は— 12 . 66、 C*値は 13. 90であり、有機顔料の脱離の程度は 4であった。着色力は 93%、 耐光性 Δ Ε*は 2. 15、 ζ電位は 22. 8mVであった。また、メチルハイドロジェンポ リシロキサンの被覆量は C換算で 0. 53重量%であった。付着している有機顔料 Bは C換算で 33. 19重量% (シリカ粒子 100重量部に対して約 100重量部に相当する) であった。
[0391] 得られた複合粒子 13の電子顕微鏡写真の観察結果より、添加した有機顔料 Bの粒 子がほとんど認められないことから、有機顔料 Bのほぼ全量カ^チルノヽイドロジェンポ リシロキサン被覆に付着していることが認められた。
[0392] <実施例 10— 1:インクジェット用インクの着色材の製造 >
3Lのビーカーに、上記で得られた複合粒子(複合粒子 13) 200gと 0. 65mol/L の水酸ィ匕ナトリウム水溶液 2L (芯粒子であるシリカ粒子および表面改質剤を溶解でき る理論量の 0. 2倍)を入れ、 pHを 13. 1とし、 60°Cで 30分間攪拌した。これを濾過、 水洗後、乾燥させてインクジェット用インクの着色材を得た。
[0393] 得られたインクジェット用インクの着色材は、インクジェット用インクの着色材が内包 するシリカ量は、 Si換算で 1. 04重量%、平均一次粒子径が 15nm、 BET比表面積 値が 82. 4m2Zg、個数換算平均粒子径が 21nm、体積換算平均粒子径が 75nm、 幾何標準偏差値が 1. 31であった。色相のうち L*値は 25. 39、 a*値は— 5. 90、 b* 値は 12. 95、 C*値は 14. 23、着色力は 105%であり、耐光性 Δ Ε*は 3. 54、 ζ 電位は 13. 6mVであった。
[0394] <実施例 11— 1:インクジェット用インクの製造〉
サンドミルに、イオン交換水 67. 7重量部、ポリオキシエチレンラウリルエーテル 1. 3 重量部を入れて混合した後、該混合溶液に、着色材 5. 0重量部、ジエチレングリコ ール 10重量部、グリセリン 10重量部、トリエチレングリコールモノブチルエーテル 5重 量部、トリエタノールァミン 0. 8重量部および消泡剤(シリコン系消泡剤) 0. 2重量部 を添カ卩して 3時間混合分散させた後、 0. 5 /z mのメンブランフィルターを用いて濾過 することにより、インクジェット用インクを得た。
[0395] 得られたインクジェット用インクは、インク中の個数換算分散平均粒子径カ 18nm 、体積換算分散平均粒子径が 51nm、分散安定性のうち目視評価が 5、個数換算分 散粒子径の変化率が 6. 8%、色相は L*値が 27. 68、 a*値が 5. 42、 b*値が— 13. 04、 C*値が 14. 12、比吸光係数 ε が 2. 28、耐光性は Δ Ε*値が 1. 73、耐目詰ま り'性が 5であった。
[0396] 複合粒子 13及び実施例 10— 1に従って、複合粒子、インクジェット用インクの着色 材およびインクジェット用インクを作製した。各製造条件および得られた複合粒子、ィ ンクジェット用インクの着色材およびインクジェット用インクの諸特性を以下に示す。
[0397] シリカ 1及び 2 :
芯粒子として、表 1に示す特性を有するシリカ粒子 1及び 2を用意した。
[0398] 有機顔料 B、R— 1、 Y、G :
有機顔料として、表 2に示す特性を有する有機顔料を用意した。
[0399] <複合粒子の製造 >
複合粒子 14〜16:
芯粒子の種類、表面改質剤の種類および添加量、表面改質剤の被覆工程におけ るエッジランナー処理の線荷重および時間、有機顔料の付着工程における有機顔 料の種類、添加量、エッジランナー処理の線荷重および時間を種々変化させた以外 は、複合粒子 13と同様にして複合粒子を得た。このときの製造条件を表 34に、得ら れた複合粒子の諸特性を表 35に示す。
[0400] [表 34]
Figure imgf000110_0001
Figure imgf000110_0002
Figure imgf000111_0001
[0402] <インクジェット用インクの着色材の製造 >
実施例10— 2 10— 7、比較例10—1 10— 3:
複合粒子の種類、アルカリ溶解時における溶解液の pH及び添加するアルカリの理 論量対比量、処理温度および処理時間を種々変化させた以外は、実施例 10— 1と 同様にしてインクジェット用インクの着色材を得た。なお、複合粒子の濃度 (g/100 mL)は、溶解液 lOOmLに対する複合粒子の重量 (g)である。なお、実施例 10— 2 は、乾燥工程として、凍結乾燥を行ったものである。このときの製造条件を表 36に、 得られたインクジェット用インクの着色材の諸特性を表 37に示す。
[0403] [表 36]
Figure imgf000112_0001
[0404] [表 37]
Figure imgf000113_0001
[0405] <インクジェット用インク >
実施例 11— 2〜: L 1— 7、比較例 11— 1〜: L 1— 11 :
インクジェット用インクの着色材の種類を種々変化させた以外は、実施例 11 1と 同様にしてインクジェット用インクを得た。このときの製造条件を表 38に、得られたィ ンクジェット用インクの諸特性を、表 39及び表 40に示す。
[0406] [表 38]
実施例 インクジェット用インクの製造 及び 着色材
比較例 種類 配合量
(重量部) 実施例 11-1 実施例 10 - 1 5.0
!! 11-2 " 10-2 5.0
" 11-3 " 10-3 5.0
" 11-4 // 10-4 5.0
" 11-5 " 10-5 5.0
" 11-6 // 10 - 6 5.0
// 11-7 '! 10-7 5.0 比較例 11-1 有機顔料 B 5.0
" 11-2 " R-1 5.0
// 11-3 // Y 5.0
" 11-4 // G 5.0
" 11-5 複合粒子 13 5.0
" 11-6 // 14 5.0
" 11-7 // 15 5.0
" 11 - 8 // 16 5.0
// 11-9 比較例 10- 1 5.0
// 11-10 " 10 - 2 5.0
!' 11-11 // 10-3 5.0
Figure imgf000116_0001
0407
Figure imgf000117_0001
S 〔〕〕040840

Claims

請求の範囲
[I] シリカと有機顔料とから成る有色微小複合粒子であって、シリカが有機顔料に内包 されており、シリカの量が有色微小複合粒子に対して、 Si換算で、 0. 001〜9重量% である有色微小複合粒子。
[2] 個数換算平均粒子径が 200nm以下で、体積換算平均粒子径が 200nm以下であ る請求項 1に記載の有色微小複合粒子。
[3] 請求項 1に記載の有色微小複合粒子を溶媒に分散させて成る分散体。
[4] 溶媒が水、水溶性有機溶剤または水と水溶性有機溶剤との混合媒体である請求項
3に記載の分散体。
[5] 溶媒が有機溶剤である請求項 3に記載の分散体。
[6] シリカ粒子に表面改質剤を添加し、混合攪拌してシリカ粒子の粒子表面に表面改 質剤を被覆させ、次いで、有機顔料を添加し、混合攪拌して表面改質剤被覆シリカ 粒子の粒子表面に有機顔料を付着させて複合粒子を得、アルカリ溶液によって得ら れた複合粒子中のシリカ粒子の一部および表面改質剤の少なくとも一部を溶解させ ることから成る請求項 1に記載の有色微小複合粒子の製造方法。
[7] 請求項 1に記載の有色微小複合粒子力 成るカラーフィルター用着色材。
[8] 請求項 7に記載のカラーフィルター用着色材が着色組成物構成基材に分散して成 るカラーフィルター用着色組成物。
[9] カラーフィルター用着色材の量が着色組成物構成基材 100重量部に対して 3〜30 0重量部である請求項 8に記載のカラーフィルター用着色組成物。
[10] 更に、請求項 8に記載のカラーフィルター用着色組成物が酸性基、潜在性酸性基 または酸性基および潜在性酸性基を有する透明榭脂溶液中に分散して成るカラー フィルター用着色組成物。
[II] 個数換算分散平均粒子径が l〜200nmおよび体積換算分散平均粒子径が 1〜2 OOnmである請求項 10に記載のカラーフィルター用着色組成物。
[12] 更に、光ラジカル重合開始剤およびエチレン性不飽和二重結合を 2つ以上有する 多官能性モノマーを含有した請求項 10に記載のカラーフィルター用着色組成物。
[13] 更に、光酸発生剤を含有した請求項 10に記載のカラーフィルター用着色組成物。
[14] 請求項 10、 12及び 13の何れかに記載のカラーフィルター用着色組成物の塗膜形 成物から成るカラーフィルター。
[15] 光透過率が、各色の透過領域において、 75%以上で、コントラストが 800以上であ る請求項 14に記載のカラーフィルター。
[16] 請求項 1に記載の有色微小複合粒子力 成るインクジェット用インクの着色材。
[17] 請求項 16に記載のインクジェット用インクの着色材カインク構成溶液に分散して成 るインクジェット用インク。
[18] インクジェット用インクの着色材の量がインク構成溶液に対して 1〜20重量%である 請求項 17に記載のインクジェット用インク。
PCT/JP2006/317543 2005-09-09 2006-09-05 有色微小複合粒子、有色微小複合粒子の製造方法、着色材、カラーフィルター、及び、インクジェット用インク WO2007029694A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020087005448A KR101274297B1 (ko) 2005-09-09 2006-09-05 유색 미소 복합 입자, 유색 미소 복합 입자의 제조 방법,착색재, 컬러 필터 및 잉크젯용 잉크
CN2006800326298A CN101263204B (zh) 2005-09-09 2006-09-05 有色微小复合颗粒、有色微小复合颗粒的制造方法、着色材料、滤色器、和喷墨用墨水
EP06797449A EP1930380A4 (en) 2005-09-09 2006-09-05 COLORED COMPOSITE MICROPARTICLES, METHOD FOR THE PRODUCTION THEREOF, COLORING MATERIAL, COLOR FILTER AND INK JET INK
US12/073,465 US20080258118A1 (en) 2005-09-09 2008-03-05 Colored composite microparticles, process for producing the colored composite microparticles, colorant, color filter and ink for ink-jet printing
US12/926,485 US8303861B2 (en) 2005-09-09 2010-11-22 Colored composite microparticles, process for producing the colored composite microparticles, colorant, color filter and ink for ink-jet printing

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-262254 2005-09-09
JP2005262254 2005-09-09
JP2006-172462 2006-06-22
JP2006172462A JP5093442B2 (ja) 2006-06-22 2006-06-22 カラーフィルター用着色材及び該カラーフィルター用着色材を含有するカラーフィルター用着色組成物並びにカラーフィルター
JP2006194645A JP2008019399A (ja) 2006-07-14 2006-07-14 インクジェット用インクの着色材及びインクジェット用インク
JP2006-194645 2006-07-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/073,465 Continuation-In-Part US20080258118A1 (en) 2005-09-09 2008-03-05 Colored composite microparticles, process for producing the colored composite microparticles, colorant, color filter and ink for ink-jet printing

Publications (1)

Publication Number Publication Date
WO2007029694A1 true WO2007029694A1 (ja) 2007-03-15

Family

ID=37835813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317543 WO2007029694A1 (ja) 2005-09-09 2006-09-05 有色微小複合粒子、有色微小複合粒子の製造方法、着色材、カラーフィルター、及び、インクジェット用インク

Country Status (5)

Country Link
US (2) US20080258118A1 (ja)
EP (1) EP1930380A4 (ja)
KR (1) KR101274297B1 (ja)
CN (1) CN101263204B (ja)
WO (1) WO2007029694A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100082A (ja) * 2005-09-09 2007-04-19 Toda Kogyo Corp 有色微小複合粒子粉末及び該有色微小複合粒子粉末を含有する分散体、並びに有色微小複合粒子粉末の製造法
JP2008089763A (ja) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd カラーフィルターの製造方法、並びに液晶表示装置の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090099302A1 (en) * 2005-08-02 2009-04-16 Eric Jonson Aqueous Dispersion of Hybrid Particles Consisting of Organic or Inorganic Pigment Particles and Organic Nano-Particles and Process for Preparing the Same
KR101362065B1 (ko) * 2012-07-25 2014-02-21 주식회사 엘지화학 상변화 잉크를 이용한 플렉서블 컬러 필터 기판 및 그 제조방법
WO2018066717A1 (ja) * 2016-10-07 2018-04-12 エム・テクニック株式会社 有機顔料組成物の製造方法、塗膜の製造方法及び塗膜の輝度の評価方法
KR20190040465A (ko) * 2017-10-10 2019-04-18 도다 고교 가부시끼가이샤 아닐린 블랙 그리고 해당 아닐린 블랙을 사용한 수지 조성물 및 분산체
EP3686249A1 (en) 2018-12-03 2020-07-29 Viavi Solutions Inc. A composition including a color shifting pigment and a color filter
CN109762374B (zh) * 2019-01-03 2021-05-25 深圳市绚图新材科技有限公司 一种可直接用于注塑的彩色铝颜料及其制备方法
CN114231146B (zh) * 2021-12-22 2022-10-18 广东溢达纺织有限公司 浸胶浆料、浸胶绳头及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055591A (ja) * 2001-06-05 2003-02-26 Toda Kogyo Corp インクジェット用インクの着色材及びインクジェット用インク並びに水性顔料分散体、有機無機複合粒子粉末
JP2004091599A (ja) * 2002-08-30 2004-03-25 Toda Kogyo Corp 路面標示材料用着色材及び該路面標示材料用着色材を用いた路面標示材料
JP2004123800A (ja) * 2002-09-30 2004-04-22 Toda Kogyo Corp タイヤ組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277183B1 (en) * 1998-10-08 2001-08-21 Cabot Corporation Ink compositions containing metal oxides
JP4296378B2 (ja) * 2001-09-27 2009-07-15 戸田工業株式会社 カラーフィルター用着色材及び該カラーフィルター用着色材を含むカラーフィルター用着色組成物並びにカラーフィルター
US7094814B2 (en) 2000-09-01 2006-08-22 Toda Kogyo Corporation Coloring composition for color filter containing colorant and color filter using the same
JP4766223B2 (ja) * 2003-03-27 2011-09-07 戸田工業株式会社 透明着色組成物及びカラーフィルター
EP1462486A3 (en) * 2003-03-27 2005-01-05 Toda Kogyo Corporation Transparent coloring composition and color filter
DE602005013684D1 (de) * 2004-09-16 2009-05-14 Ricoh Kk Aufzeichnungstinte, tintenpatrone, tintenstrahlaufzeichnungsvorrichtung, tintenstrahlaufzeichnungsverfahren und tintenaufzeichnung
US20060121392A1 (en) * 2004-11-24 2006-06-08 Dai Nippon Printing Co., Ltd. Optical filter and display using the same
JP2006265474A (ja) * 2005-03-25 2006-10-05 Fuji Photo Film Co Ltd インク組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055591A (ja) * 2001-06-05 2003-02-26 Toda Kogyo Corp インクジェット用インクの着色材及びインクジェット用インク並びに水性顔料分散体、有機無機複合粒子粉末
JP2004091599A (ja) * 2002-08-30 2004-03-25 Toda Kogyo Corp 路面標示材料用着色材及び該路面標示材料用着色材を用いた路面標示材料
JP2004123800A (ja) * 2002-09-30 2004-04-22 Toda Kogyo Corp タイヤ組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1930380A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100082A (ja) * 2005-09-09 2007-04-19 Toda Kogyo Corp 有色微小複合粒子粉末及び該有色微小複合粒子粉末を含有する分散体、並びに有色微小複合粒子粉末の製造法
JP2008089763A (ja) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd カラーフィルターの製造方法、並びに液晶表示装置の製造方法

Also Published As

Publication number Publication date
KR20080042115A (ko) 2008-05-14
KR101274297B1 (ko) 2013-06-13
CN101263204A (zh) 2008-09-10
US8303861B2 (en) 2012-11-06
US20110068307A1 (en) 2011-03-24
EP1930380A1 (en) 2008-06-11
EP1930380A4 (en) 2010-11-03
US20080258118A1 (en) 2008-10-23
CN101263204B (zh) 2012-09-05

Similar Documents

Publication Publication Date Title
KR101056605B1 (ko) 투명 착색 조성물 및 컬러 필터
WO2007029694A1 (ja) 有色微小複合粒子、有色微小複合粒子の製造方法、着色材、カラーフィルター、及び、インクジェット用インク
JP4818712B2 (ja) 表示素子用黒色樹脂組成物、及び表示素子用部材
JP4668912B2 (ja) 顔料
CN102459084B (zh) 黑色复合微粒、黑色树脂组合物、滤色片基板和液晶显示装置
TWI447177B (zh) Color filters are used as pigment dispersing photoresist compositions
WO2006070794A1 (ja) 表示素子用黒色樹脂組成物、及び表示素子用部材
JP5297527B2 (ja) 緑色顔料、その製造方法、それを含んでなる着色剤およびそれを用いた着色方法
CN102385246A (zh) 着色感光性组合物、滤色器的制造方法、滤色器及液晶显示装置
JP2011162722A (ja) カラーフィルター用赤色顔料分散物、その製造方法及びそれを含有するカラーフィルター用顔料分散レジスト組成物
JP2003161821A (ja) カラーフィルター用組成物及びカラーフィルター
TW200906643A (en) Light to heat conversion layer incorporating modified pigment
WO2006011338A1 (ja) 顔料分散組成物、その用途及び顔料処理用化合物
JP4766223B2 (ja) 透明着色組成物及びカラーフィルター
CN1900172A (zh) 适用于滤色片的有机颜料
JP2008150428A (ja) ブラックマトリックス用着色材及び該ブラックマトリックス用着色材を含有するブラックマトリックス用着色組成物並びにカラーフィルター
JP4706820B2 (ja) ブラックマトリックス用黒色着色材料、ブラックマトリックス用黒色組成物、ブラックマトリックス並びにカラーフィルター
JP2003253148A (ja) 表面改質顔料
JP5093442B2 (ja) カラーフィルター用着色材及び該カラーフィルター用着色材を含有するカラーフィルター用着色組成物並びにカラーフィルター
JP2007321110A (ja) 顔料ナノ粒子分散物の製造方法、顔料ナノ粒子を含む着色感光性樹脂組成物及び感光性転写材料、それらを用いたカラーフィルタ、液晶表示装置、及びccdデバイス、並びにカラーフィルタ用インクジェットインクの製造方法
JP2008081601A (ja) 顔料ナノ粒子分散物の製造方法、顔料ナノ粒子を含む着色感光性樹脂組成物及び感光性転写材料、それらを用いたカラーフィルタ、液晶表示装置、及びccdデバイス、並びにカラーフィルタ用インクジェットインクの製造方法
JP2008050589A (ja) 画素形成用着色組成物、カラーフィルターの製造方法およびカラーフィルター
JP4355911B2 (ja) ブラックマトリックス用着色材料及び該ブラックマトリックス用着色材料を含むブラックマトリックス用着色組成物並びにカラーフィルター
JP2008304521A (ja) カラーフィルター用着色組成物、カラーフィルターの製造方法およびカラーフィルター
JP2009242722A (ja) 有色微細着色材及び該有色微細着色材を含有するカラーフィルター用透明着色組成物並びにカラーフィルター

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680032629.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087005448

Country of ref document: KR

Ref document number: 2006797449

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE