WO2007029667A1 - カルボニル基に対する水素化用触媒、及びその製造方法、並びに該触媒を使用する不飽和アルコールの製造方法 - Google Patents

カルボニル基に対する水素化用触媒、及びその製造方法、並びに該触媒を使用する不飽和アルコールの製造方法 Download PDF

Info

Publication number
WO2007029667A1
WO2007029667A1 PCT/JP2006/317493 JP2006317493W WO2007029667A1 WO 2007029667 A1 WO2007029667 A1 WO 2007029667A1 JP 2006317493 W JP2006317493 W JP 2006317493W WO 2007029667 A1 WO2007029667 A1 WO 2007029667A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium
catalyst
producing
hydrogenation catalyst
carrier
Prior art date
Application number
PCT/JP2006/317493
Other languages
English (en)
French (fr)
Inventor
Yasunobu Inoue
Hiroshi Nishiyama
Nobuo Saito
Junichi Takeuchi
Original Assignee
National University Corporation Nagaoka University Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Nagaoka University Of Technology filed Critical National University Corporation Nagaoka University Of Technology
Priority to US12/066,062 priority Critical patent/US20090299105A1/en
Priority to JP2007534412A priority patent/JP4862162B2/ja
Priority to EP06783182A priority patent/EP1930075A1/en
Publication of WO2007029667A1 publication Critical patent/WO2007029667A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1856Phosphorus; Compounds thereof with iron group metals or platinum group metals with platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Definitions

  • the present invention uses a hydrogenation catalyst for a carbonyl group in which a noble metal such as ruthenium (Ru) or platinum (Pt) is supported on a gallium compound carrier, a production method thereof, and the hydrogenation catalyst.
  • a noble metal such as ruthenium (Ru) or platinum (Pt) is supported on a gallium compound carrier, a production method thereof, and the hydrogenation catalyst.
  • the present invention relates to a process for producing an unsaturated alcohol by selectively hydrogenating an unsaturated carbonyl compound.
  • Unsaturated alcohols such as nerol and gera-ol are important compounds as intermediates for producing organic compounds useful as synthetic resins, pharmaceuticals, perfumes and the like. This unsaturated alcohol is produced by hydrating the corresponding unsaturated carboxylic compound in the presence of a hydrogenation catalyst.
  • Patent Document 1 JP-A-58-27642
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-24555
  • Patent Document 3 Japanese Patent No. 2520461
  • Patent Document 4 Japanese Patent No. 2549158
  • Patent Documents 1 and 2 require the use of three components of a carbon support, ruthenium, and iron, and the production of the catalyst becomes complicated. Furthermore, to improve the selective hydrogenation rate to unsaturated alcohol, methanol and trimethylamine are added to the catalytic reaction system to separate these components from the reaction product. A processing step is required. In the prior arts of Patent Documents 3 and 4, the hydrogenation reaction is performed in a medium containing an organic solvent, which increases the cost. Also, there is When a distillation step is required to remove the solvent, there is a problem.
  • the catalyst support includes at least one metal selected from group VIII power and at least one selected from the group consisting of germanium, tin, lead, rhenium, gallium, indium, gold, silver, and thallium.
  • a catalyst supporting an additional element M is also known (see Patent Document 5).
  • this hydrogenation catalyst requires the use of three components including the catalyst carrier, and the production of the catalyst becomes complicated.
  • gallium used as the additional element M is considered to exist in a metallic state because of its production method capability.
  • a solvent such as n-heptane is used. It is necessary to dilute the unsaturated carboxylic compound as a raw material, and a distillation step is required to remove the organic solvent.
  • Patent Document 5 USP6, 294, 696
  • the present invention can solve the above-mentioned problems of the prior art, and can produce an unsaturated alcohol by hydrogenating an unsaturated carbonyl compound with high selectivity and economically by a simple process.
  • An object of the present invention is to provide a hydrogenation catalyst for a carbonyl group and an efficient production method thereof.
  • Another object of the present invention is to provide a practical method for producing unsaturated alcohol using the hydrogenation catalyst.
  • the present inventors have found that the above problem can be solved by forming a hydrogenation catalyst by supporting a noble metal such as ruthenium or Pt as a catalyst component on a carrier made of a gallium compound. Discovered and completed the present invention.
  • the hydrogenation catalyst according to 1, wherein the gallium compound containing oxygen is selected from gallium oxyhydroxide, gallium oxide, and gallium phosphate. 3. The hydrogenation catalyst according to 1 or 2, wherein 0.1 to 10% by weight of ruthenium is supported on a gallium compound carrier containing oxygen.
  • a method for producing a hydrogenation catalyst for a carbonyl group in which a noble metal is supported on an oxygen-containing gallium compound carrier is provided.
  • step 3) Select the water-soluble reducing agent in step 3) as methanol, ethanol, formaldehyde, sodium phosphinate, dimethylamine borane, sodium borohydride, potassium borohydride, lithium borohydride, lithium aluminum hydride or hydrazine.
  • the catalytically active component in step 2) is a ruthenium salt, nitrate, nitrosyl nitrate, acid salt, hydroxide, acetylylacetonate complex, pyripyridine complex or ammine complex.
  • each of R and R is the same or different and is a hydrogen atom, C1-C10
  • Each group or aromatic group is substituted with one or more identical or different groups of a C1-C4 alkyl group, a hydroxyl group or a C1-C4 alkoxy group!
  • the hydrogenation catalyst of the present invention is basically a two-component force consisting of a carrier composed of a gallium compound containing oxygen and ruthenium, and can be manufactured easily and at low cost.
  • an unsaturated alcohol can be produced by hydrogenating an unsaturated carbonyl compound with high selectivity.
  • Unsaturated alcohols can be produced without using solvents or auxiliaries.
  • the alcohol production process becomes simple and the cost can be significantly reduced.
  • FIG. 1 is an electron micrograph of an oxygallium oxyhydroxide carrier obtained in Example 1.
  • FIG. 2 is an electron micrograph of the gallium oxide carrier obtained in Example 2.
  • FIG. 3 is an electron micrograph of the gallium phosphate carrier obtained in Example 3.
  • a noble metal such as ruthenium is supported as a catalyst component on a gallium compound carrier containing oxygen to constitute a hydrogenation catalyst for a carbonyl group.
  • the supported amount of the catalyst component with respect to the gallium compound is preferably 0.1 to 10% by weight, particularly 1 to 3% by weight.
  • the oxygen-containing gallium compound used as a carrier is not particularly limited, but preferred gallium compounds include oxygallium oxygallium, gallium oxide, gallium phosphate, and the like. These gallium compounds may be prepared by a conventional method when producing a hydrogenation catalyst, but commercially available products can also be used.
  • the surface of another carrier such as porous silica coated with a gallium compound can be used as the carrier. There are no particular restrictions on the shape and size of the carrier, but usually fine particles of about 1 to 30 / ⁇ ⁇ , flakes, or porous materials are used.
  • the melting point of metallic gallium is 29.8 ° C, so that gallium dissolves under the hydrogenation conditions of the carbo-louis compound, and aggregation occurs. It occurs violently and does not function as a catalyst.
  • a gallium compound containing oxygen is used as a carrier.
  • the hydrogenation catalyst of the present invention can be produced, for example, by the following procedure.
  • step 3 the carrier suspension added with the catalytically active component is evaporated to dryness, calcined in air at 200 to 500 ° C. and then in a hydrogen stream at 200 to 600 ° C. It is possible to adopt a reduction process.
  • Examples of the water-soluble reducing agent in the above step 3) include methanol, ethanol, formaldehyde, sodium phosphinate, dimethylamine borane, sodium borohydride, potassium borohydride, lithium borohydride, lithium hydride. Examples thereof include aluminum and hydrazine. These can be used alone or in combination of two or more.
  • step 3 After depositing ruthenium as a catalytically active component on the support in step 3), 3-1) a step of suspending the separated catalyst again in water; 3-2) platinum in the suspension A step of adding a salt solution; and 3-3) a step of adding a water-soluble reducing agent to reduce the platinum salt and further depositing gold on the catalyst, and hydrogen carrying ruthenium and platinum as catalyst components.
  • a catalyst for conversion may be produced. Such a catalyst can exhibit even higher catalytic activity.
  • gallium oxalate can also be used as a carrier.
  • Step 1) Suspend the obtained gallium oxide carrier in distilled water [Step 1)], add the active ingredient ruthenium in the form of a metal salt solution, and stir for 30 minutes to 1 hour [Step 2) ]. Next, the temperature of the suspension is set to room temperature to 70 ° C., and a water-soluble reducing agent is slowly added to simultaneously support and reduce the active ingredient, ruthenium [Step 3)].
  • this suspension solution is filtered with suction to separate the ruthenium Z gallium oxide catalyst from the aqueous phase [Step 4], washed with isopropyl alcohol or ethanol, and dried at room temperature in the atmosphere [ Step 5)].
  • step 2) above the alkali metal salt and the lanthanoid metal salt can be added simultaneously or each.
  • the carrier suspension to which the catalytically active component is added is evaporated to dryness, and the component is calcined in air at a temperature of 200 ° C to 500 ° C. You can also use a method of reducing at 200 ° C to 600 ° C in a hydrogen stream!
  • the obtained gallium carrier is suspended in distilled water [Step 1), and ruthenium, which is an active ingredient, is added in the form of a metal salt solution and stirred for 30 minutes to 1 hour [Step 2)].
  • the temperature of the suspension is set to room temperature to 70 ° C., and a water-soluble reducing agent is slowly added to simultaneously support and reduce ruthenium, which is an active ingredient [Step 3)].
  • the suspension is then filtered with suction to remove the ruthenium Z gallium phosphate catalyst from the aqueous phase. Separate [Step 4), wash with isopropyl alcohol or ethanol, and dry at room temperature in the atmosphere [Step 5)].
  • the alkali metal salt and the lanthanoid metal salt can be added simultaneously or respectively.
  • the carrier suspension to which the catalytically active component is added is evaporated to dryness, and the component is calcined in air at a temperature of 200 ° C to 500 ° C. You can also use a method of reducing at 200 ° C to 600 ° C in a hydrogen stream!
  • gallium nitrate is pulverized in a mortar and baked in the air at a temperature range of 200 to 400 ° C for 5 to 20 hours to obtain ⁇ gallium gallate, and this ⁇ gallium monoxide is mixed with distilled water. Then, hydrothermal synthesis is carried out in an autoclave at a temperature range of 150 to 300 ° C. for 24 to 48 hours to obtain an gallium oxyhydroxide carrier.
  • oxygallium oxyhydroxide can also be used as a carrier.
  • the obtained oxygallium oxyhydroxide carrier is suspended in distilled water [Step 1], ruthenium as an active ingredient is added in the form of a metal salt solution, and the mixture is stirred for 30 minutes to 1 hour [Step 2]. )].
  • the temperature of the suspension is set to room temperature to 70 ° C., and a water-soluble reducing agent is slowly added to simultaneously carry and reduce ruthenium as an active ingredient [step 3)].
  • this suspension solution is filtered with suction, and the ruthenium Zoxy gallium hydroxide catalyst is separated by water phase [Step 4], and washed with isopropyl alcohol or ethanol at room temperature in the atmosphere. Perform drying [Step 5).
  • the alkali metal salt and the lanthanoid metal salt can be added simultaneously or respectively.
  • a carrier added with a catalytically active component may be evaporated to dryness, and the components may be calcined in air at a temperature of 200 ° C to 500 ° C and then reduced to 200 ° C to 600 ° C in a hydrogen stream! ,.
  • the hydrogenation catalyst of the present invention is basically a two-component power of a carrier composed of a gallium compound containing oxygen and ruthenium, and can be manufactured easily and at low cost.
  • the unsaturated carbonyl compound represented by the following formula (1) is selectively hydrogenated and represented by the formula (2). Can be produced efficiently.
  • each of R and R is the same or different and is a C1-C10 hydrogen atom.
  • Each of the cyclic group or aromatic group may be substituted with one or two or more identical or different groups of a C1-C4 alkyl group, a hydroxyl group, or a C1-C4 alkoxy group.
  • R and R include, for example, hydrogen; methyl, ethyl, propyl, isopropyl
  • Preferred unsaturated carbo-louie compound represented by the formula (1) includes, for example, citronellal, H-geralacetone, H-nerolidol, methyl vinyl ketone, mesityl oxide, pseudoionone, Examples include dihydrofalcenelacetone, rismeral, methylhexenone and the like.
  • Particularly preferred unsaturated carbo-louis compounds include citronellal or 0; ⁇ -unsaturated carbole compounds such as acrolein, methacrolein, crotonaldehyde, prenal, farnesal or citral. Of these, citral is more preferred.
  • Citral includes citral ⁇ (trans isomer) represented by the following formula (3) and citral B (cis isomer) represented by formula (4).
  • citral ⁇ trans isomer
  • citral B cis isomer
  • an aldehyde can be obtained with high selectivity without using a solvent for diluting the raw materials required for conventional hydrogenation catalysts and additives such as trimethylamine. Only groups can be hydrogenated. In addition, by-product formation can be suppressed, and geraniol and nerol can be obtained with high yield. Therefore, it is possible to easily separate and purify the target product, greatly increasing the production cost of the product. It can be reduced.
  • the catalyst suspension carrying ruthenium was suction filtered, washed with distilled water and ethanol, and dried in the atmosphere at room temperature to obtain a ruthenium Zoxy gallium hydroxide catalyst.
  • Example 3 Production of ruthenium Z gallium phosphate catalyst
  • Distilled water 200 mL was added to a 500 mL beaker to dissolve 15.5 g of gallium nitrate.
  • 4.8 g of phosphoric acid was stirred.
  • An aqueous ammonia solution was added dropwise to this solution to raise the pH of the solution to 5.0. Stirring was performed for 1 hour to obtain a white precipitate.
  • the precipitate was filtered by suction, heated in the atmosphere at 160 ° C for 2 hours, and calcined in the atmosphere at 1000 ° C to obtain a gallium phosphate carrier.
  • An electron micrograph of the obtained gallium phosphate carrier is shown in FIG.
  • Example 2 2 g of the catalyst powder obtained in Example 1 was introduced into an autoclave having a volume of 200 mL, and 130 mL of citral was added thereto. After sealing the autoclave, nitrogen gas was introduced and evacuated three times at IMPa pressure while stirring, and then the nitrogen gas was replaced with 1.3 MPa hydrogen gas and heated to 120 ° C. During hydrogenation, samples were taken from the reaction vessel at regular time intervals and analyzed by gas chromatography.
  • Table 1 shows the conversion rate of citral, the selection rate of nerol Z geraniol produced at the conversion rate, and by-products.
  • Example 2 1.5 g of the catalyst powder obtained in Example 2 was introduced into an autoclave having a volume of lOOmL, and 65 mL of citral was added thereto. After sealing the autoclave, After introducing and evacuating nitrogen gas three times at a pressure of 1, the nitrogen gas was replaced with 1.3 MPa hydrogen gas and heated to 120 ° C. During hydrogenation, samples were taken from the reaction vessel at regular time intervals and analyzed by gas chromatography.
  • Table 2 shows the conversion rate of citral, the selection rate of nerol Z geraniol produced at the conversion rate, and by-products.
  • Example 3 1.5 g of the catalyst powder obtained in Example 3 was introduced into an autoclave having a volume of lOOmL, and 65 mL of citral was added thereto. After sealing the autoclave, nitrogen gas was introduced and evacuated three times at IMPa pressure while stirring, and then the nitrogen gas was replaced with 1.3 MPa hydrogen gas and heated to 120 ° C. During hydrogenation, samples were taken from the reaction vessel at regular time intervals and analyzed by gas chromatography.
  • Table 3 shows the conversion rate of citral, the selection rate of nerol Z-geraol produced at the conversion rate, and by-products.
  • Example 7 The gallium oxyhydrate 2. Og produced in the procedure of Example 1 was suspended in 200 mL of distilled water, and 0.134 g of ruthenium chloride was added and stirred. A solution obtained by dissolving 2 g of sodium borohydride in 50 mL of distilled water was slowly dropped, and stirring was continued for 2 hours to perform liquid phase reduction to support 2.5% by weight of ruthenium. The catalyst suspension solution carrying ruthenium was filtered off with suction, and the catalyst was washed with distilled water and ethanol. This catalyst was again suspended in 200 mL of distilled water, and 0.133 g of salt ⁇ platinum (IV) acid hexahydrate was dissolved in this suspension solution.
  • Example 7 2 g of the catalyst powder obtained in Example 7 was introduced into an autoclave having a volume of 200 mL, and 130 mL of citral was added thereto. After sealing the autoclave, nitrogen gas was introduced and evacuated three times at IMPa pressure while stirring, and then the nitrogen gas was replaced with 1.3 MPa hydrogen gas and heated to 120 ° C. During hydrogenation, samples were taken from the reaction vessel at regular time intervals and analyzed by gas chromatography.
  • Table 4 shows the conversion rate of citral, the selection rate of nerol Z-geraol produced at the conversion rate, and by-products.
  • a noble metal such as Pt, Rh, Ir, or Co can be used as a catalyst active component.
  • the conversion rate of citral is reduced compared to ruthenium when compared with the same reaction time S, and the selectivity of nerol Z gera-ol is 100%. Therefore, other noble metals can be selected as the catalytic active component depending on the application.
  • Oxygallium oxyhydroxide 2 Og was suspended in 200 mL of distilled water, and 0.133 g of chloroplatinic acid was added and stirred. A solution obtained by dissolving 2 g of sodium borohydride in 50 mL of distilled water was slowly added dropwise, followed by liquid phase reduction by continuing stirring for 2 hours, and loading 2.5 wt% Pt. Next, loading Pt The catalyst suspension was filtered with suction, washed with distilled water and ethanol, and dried in the atmosphere at room temperature to obtain a PtZ oxygallium gallium catalyst.
  • salt / platinic acid instead of salt / platinic acid, salt / first platinum ammonia, salt / second platinum ammonia, or the like can be used.
  • Example 9 2 g of the catalyst powder obtained in Example 9 was introduced into an autoclave having a volume of 200 mL, and 130 mL of citral was added thereto. After sealing the autoclave, nitrogen gas was introduced and evacuated three times at IMPa pressure while stirring, and then the nitrogen gas was replaced with 1.3 MPa hydrogen gas and heated to 120 ° C. During hydrogenation, samples were taken from the reaction vessel at regular time intervals and analyzed by gas chromatography.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本発明は、簡単な工程で経済的に、高い選択率で不飽和カルボニル化合物を水素化して不飽和アルコールを製造することができるカルボニル基に対する水素化用触媒、及びその効率的な製造方法、並びに該水素化用触媒を使用する不飽和アルコールの実用的な製造方法を提供する。  本発明では、酸素を含有するガリウム化合物からなる担体上に触媒成分としてルテニウム等の貴金属を担持して水素化用触媒を構成する。ガリウム化合物としては、オキシ水酸化ガリウム、酸化ガリウム、リン酸ガリウム等を用することができ、これらのガリウム化合物担体上に0.1~10重量%のルテニウムが担持された水素化用触媒が好適に用いられる。

Description

明 細 書
カルボニル基に対する水素化用触媒、及びその製造方法、並びに該触 媒を使用する不飽和アルコールの製造方法
技術分野
[0001] 本発明は、ガリウム化合物担体上にルテニウム (Ru)、白金 (Pt)等の貴金属が担持 されたカルボニル基に対する水素化用触媒、及びその製造方法、並びに該水素化 用触媒を使用して不飽和カルボニル化合物を選択的に水素化し、不飽和アルコー ルを製造する方法に関する。
背景技術
[0002] ネロール、ゲラ-オール等の不飽和アルコールは、合成樹脂、医薬品、香料等とし て有用な有機化合物を製造するための中間体として重要な化合物である。この不飽 和アルコールは、水素化触媒の存在下に、対応する不飽和カルボ-ル化合物を水 素化することによって製造される。
[0003] 従来、不飽和アルコールの製造に使用される水素化触媒としては種々のものが知 られており、例えば炭素に担持されたルテニウム Z鉄触媒が挙げられる (特許文献 1
、 2参照)。また、水溶性配位子と会合したルテニウム誘導体又はルテニウムと水溶性 配位子との錯塩カゝらなる触媒も提案されている (特許文献 3、 4参照)。
特許文献 1:特開昭 58 - 27642号公報
特許文献 2:特開 2003 - 24555号公報
特許文献 3:特許第 2520461号公報
特許文献 4:特許 2549158号公報
[0004] し力しながら、特許文献 1、 2の先行技術は、炭素担体、ルテニウム及び鉄の 3成分 を使用することを必須の構成とするものであり、触媒の製造が煩雑になる。さらに、不 飽和カルボ二ルイ匕合物力 不飽和アルコールへの選択的水素化率を改善するため に、メタノール及びトリメチルァミンが触媒反応系に添加され、反応生成物からこれら の成分を分離する後処理工程が必要となる。そして、特許文献 3、 4の先行技術では 、有機溶媒を含む媒質中で水素化反応を行うものであり、コストが高くなる。また、有 機溶媒を除去するために、蒸留工程が必要となるといつた問題点がある。
[0005] さらに、触媒担体に、 VIII族力も選択された少なくとも 1種の金属と、ゲルマニウム、 錫、鉛、レニウム、ガリウム、インジウム、金、銀及びタリウムからなる群から選択された 少なくとも 1種の追加元素 Mを担持させた触媒も知られている(特許文献 5参照)。し かしながら、この水素化触媒は触媒担体を含めて 3成分を使用することを必須の構成 とするものであり、触媒の製造が煩雑になる。また、この触媒では、その製造方法力 みて追加元素 Mとして使用されるガリウムは、金属の状態で存在するものと考えられ る。そして、この触媒を使用して不飽和カルボ-ル化合物から不飽和アルコールへの 選択的水素化を行う際に、不飽和アルコールの選択率を上げるには、 n—ヘプタン のような溶媒を用いて原料となる不飽和カルボ二ルイ匕合物を希釈する必要があり、有 機溶媒を除去するために蒸留工程が必要となる。
特許文献 5 :USP6, 294, 696
発明の開示
発明が解決しょうとする課題
[0006] したがって、本発明は上記従来技術の問題点を解消して、簡単な工程で経済的に 、高 、選択率で不飽和カルボニル化合物を水素化して不飽和アルコールを製造す ることができるカルボニル基に対する水素化用触媒、及びその効率的な製造方法を 提供することを目的とする。本発明は、また、該水素化用触媒を使用する不飽和アル コールの実用的な製造方法を提供することを目的とする。
課題を解決するための手段
[0007] 本発明者等は鋭意検討した結果、ガリウム化合物からなる担体上に触媒成分として ルテニウム、 Pt等の貴金属を担持して水素化用触媒を構成することにより上記課題 が解決されることを発見し、本発明を完成したものである。
すなわち、本発明では次の 1〜13の構成を採用する。
1.酸素を含有するガリウム化合物担体上に貴金属が担持されたカルボニル基に対 する水素化用触媒。
2.酸素を含有するガリウム化合物がォキシ水酸化ガリウム、酸化ガリウム、リン酸ガリ ゥム力 選ばれたものであることを特徴とする 1に記載の水素化用触媒。 3.酸素を含有するガリウム化合物担体上に 0. 1〜10重量%のルテニウムが担持さ れていることを特徴とする 1又は 2に記載の水素化用触媒。
4.さらに 0. 1〜: LO重量%の白金が担持されていることを特徴とする 3に記載の水素 化用触媒。
5. 1)酸素を含有するガリウム化合物担体を水中に懸濁させる工程、
2)該懸濁液中に触媒活性成分である貴金属塩の溶液を加える工程、
3)つ ヽで水溶性還元剤を加えて触媒活性成分を還元し、担体上に触媒活性成分を 析出させる工程、
を含むことを特徴とする、酸素を含有するガリウム化合物担体上に貴金属が担持され たカルボニル基に対する水素化用触媒の製造方法。
6.さらに、
4)担体上に触媒活性成分を析出させた触媒を担体懸濁液の水相から分離する工程 、及び 5)分離した触媒を乾燥する工程、
を含むことを特徴とする 5に記載の水素化用触媒の製造方法。
7.工程 3)の水溶性還元剤が、メタノール、エタノール、ホルムアルデヒド、ホスフィン 酸ナトリウム、ジメチルァミンボラン、水素化ホウ素ナトリウム、水素化ホウ素カリウム、 水素化ホウ素リチウム、水素化リチウムアルミニウム又はヒドラジン力も選択されたもの であることを特徴とする 5又は 6に記載の水素化用触媒の製造方法。
8.工程 2)の触媒活性成分がルテニウムの塩ィ匕物、硝酸塩、ニトロシル硝酸塩、酸ィ匕 物、水酸化物、ァセチルァセトネート錯体、ピピリジン錯体又はアンミン錯体であるこ とを特徴とする 5〜7のいずれかに記載の水素化用触媒の製造方法。
9.工程 3)で担体上に触媒活性成分としてルテニウムを析出させた後に、 3— 1)分 離した触媒を再び水中に懸濁させる工程、 3- 2)該懸濁液中に白金塩の溶液をカロ える工程、及び、 3— 3)水溶性還元剤を加えて白金塩を還元し、触媒上に更に白金 を析出させる工程を含むことを特徴とする 8に記載の水素化用触媒の製造方法。 10. 1〜4のいずれかに記載された水素化用触媒の存在下に、次の式(1)で表され る不飽和カルボ二ルイ匕合物を水素化することを特徴とする、式(2)で表される不飽和 アルコールの製造方法: [化 1]
C H一 O H
Figure imgf000006_0001
[式中、 Rおよび Rの各々は、同一であるかあるいは異なり、水素原子、 C1〜C10
1 2
の飽和又は不飽和の脂肪族基、飽和又は不飽和の脂環族基、又は芳香族基を表わ し、 Rおよび Rの少なくとも一方はエチレン系二重結合を含有する力 あるいは Rお
1 2 1 よび Rは一緒になつてエチレン系不飽和脂環族基を形成し、前記脂肪族基、脂環
2
族基又は芳香族基の各々は C1〜C4のアルキル基、ヒドロキシル基又は C1〜C4の アルコキシ基の 1又は 2以上の同一又は異なる基で置換されて!、てもよ!/、]
11.式(1)で表されるカルボニル化合物が、 a、 j8—不飽和カルボニル化合物であ ることを特徴とする 10に記載の不飽和アルコールの製造方法。
12.式(1)で表されるカルボ二ルイ匕合物力 シトラールであることを特徴とする 10又 は 11に記載の不飽和アルコールの製造方法。
13.不飽和カルボ二ルイ匕合物を溶媒で希釈せずに水素化することを特徴とする 10 〜 12のいずれかに記載の不飽和アルコールの製造方法。
発明の効果
カルボニル基に対する水素化用触媒として、酸素を含有するガリウム化合物を担体 として使用することは新規であり、本発明はつぎのような顕著な効果を奏する。
1)本発明の水素化触媒は、基本的に酸素を含有するガリウム化合物からなる担体と ルテニウムの 2成分力 なるものであり、製造が簡単で低コストで製造することができ る。
2)本発明の新規触媒を使用することによって、不飽和カルボニル化合物を高い選択 率で水素化して不飽和アルコールを製造することができる。
3)溶媒や助剤を使用せずに不飽和アルコールを製造することができるので、不飽和 アルコールの製造工程が簡単なものとなり、コストを大幅に低下させることが可能とな る。
図面の簡単な説明
[0009] [図 1]実施例 1で得られたォキシ水酸ィ匕ガリウム担体の電子顕微鏡写真である。
[図 2]実施例 2で得られた酸ィ匕ガリウム担体の電子顕微鏡写真である。
[図 3]実施例 3で得られたガリウムリン酸塩担体の電子顕微鏡写真である。
発明を実施するための最良の形態
[0010] 本発明では、酸素を含有するガリウム化合物担体上に触媒成分としてルテニウム等 の貴金属を担持させて、カルボニル基に対する水素化用触媒を構成する。ガリウム 化合物に対する触媒成分の担持量は、 0. 1〜10重量%、特に 1〜3重量%とするこ とが好ましい。
[0011] 担体として使用する酸素を含有するガリウム化合物に特に制限はないが、好ましい ガリウム化合物としては、ォキシ水酸ィ匕ガリウム、酸化ガリウム、リン酸ガリウム等が挙 げられる。これらのガリウム化合物は、水素化触媒を製造する際に定法により調製し てもよいが、市販品を使用することもできる。また、多孔質シリカのような他の担体の 表面に、ガリウム化合物をコーティングしたものを担体として使用することもできる。担 体の形状やサイズには特に制限はないが、通常は 1〜30 /ζ πι程度の微粒子状、又 はフレーク状、或いは多孔質体が使用される。
金属ガリウムを担体としてルテニウム等を担持した場合には、金属ガリウムの融点が 29. 8°Cであることから、カルボ-ルイ匕合物の水素化条件下ではガリウムが溶けてし まい、凝集が激しく生じて触媒として機能しなくなる。本発明では、酸素を含むガリゥ ム化合物を担体として使用することによって、このような問題点を解消したものである
[0012] 以下、触媒活性成分としてルテニウムを使用する場合を例にとり、本発明のカルボ ニル基に対する水素化用触媒につ!、て説明する。
本発明の水素化触媒は、例えば次の手順により製造することができる。
1)酸素を含有するガリウム化合物担体を水中に懸濁させる工程、
2)該懸濁液中に触媒活性成分であるルテニウムの金属塩溶液を加える工程、 3)つ ヽで水溶性還元剤を加えて触媒活性成分を還元し、担体上に触媒活性成分を 析出させる工程。
上記の工程 3)に代えて、 3' )触媒活性成分を加えた担体懸濁液を蒸発乾固させ、 200〜500°Cで空気中で焼成後、水素気流中で 200〜600°Cで還元する工程、を 採用することちできる。
[0013] また、通常は上記の工程の後に、
4)担体上に触媒活性成分を析出させた触媒を担体懸濁液の水相から分離する工程 、及び
5)分離した触媒を乾燥する工程、
が採用される。
[0014] 上記工程 2)の触媒活性成分としては、ルテニウムの塩ィ匕物、硝酸塩、ニトロシル硝 酸塩、酸化物、水酸化物、ァセチルァセトネート錯体、ピピリジン錯体又はアンミン錯 体等が用いられる。これらの触媒成分は、通常水溶液として担体懸濁液中に加えら れる。また、触媒活性成分とともに、リチウム、ナトリウム、カリウム、ルビジウム及びセ シゥムの塩ィ匕物、硝酸塩、炭酸塩等の、アルカリ金属塩をカ卩えてもよい。
[0015] 上記工程 3)の水溶性還元剤としては、例えばメタノール、エタノール、ホルムアル デヒド、ホスフィン酸ナトリウム、ジメチルァミンボラン、水素化ホウ素ナトリウム、水素化 ホウ素カリウム、水素化ホウ素リチウム、水素化リチウムアルミニウム又はヒドラジン等 が挙げられる。これらは単独で、又は 2種以上を組合わせて使用することができる。
[0016] また、工程 3)で担体上に触媒活性成分としてルテニウムを析出させた後に、 3- 1) 分離した触媒を再び水中に懸濁させる工程、 3-2)該懸濁液中に白金塩の溶液を 加える工程、及び、 3— 3)水溶性還元剤を加えて白金塩を還元し、触媒上に更に白 金を析出させる工程を採用し、触媒成分としてルテニウム及び白金を担持した水素 化用触媒を製造してもよい。このような触媒は、一段と高い触媒活性を発揮すること ができる。
[0017] つぎに、担体として酸化ガリウム、ォキシ水酸ィ匕ガリウム及びガリウムリン酸塩を使用 して、本発明の水素化触媒を製造する例についてさらに詳細に説明するが、以下の 具体例は本発明を限定するものではない。 [0018] (ルテニウム Z酸化ガリウム触媒の製造)
硝酸ガリウムをエタノールに加え溶解し、攪拌しながら、アンモニア水溶液を滴下し pHを上昇させて、 pH5〜6の範囲を保ち 1〜3時間攪拌を続け、水酸ィ匕ガリウムのゲ ル状の沈殿を得る。得られた水酸ィ匕ガリウムの沈殿を吸引濾過し、大気中で 500°C 〜800°Cの温度で焼成することにより、酸ィ匕ガリウム担体を得る。
また、市販されて 、る酸ィ匕ガリウムを担体として用いることもできる。
[0019] 得られた酸化ガリウム担体を蒸留水中に懸濁させ [工程 1) ]、活性成分であるルテ 二ゥムを金属塩溶液の形態で加え、 30分〜 1時間攪拌する [工程 2) ]。次に、懸濁液 の温度を室温〜 70°Cとして、水溶性還元剤をゆっくり加え、活性成分であるルテユウ ムの担持および還元を同時に行う [工程 3) ]。
次に、この懸濁溶液を吸引濾過し、ルテニウム Z酸ィ匕ガリウム触媒を水相から分離 し [工程 4) ]、イソプロピルアルコールまたはエタノールを用いて洗浄を行い、大気中 室温で乾燥を行う [工程 5) ]。
上記の工程 2)において、アルカリ金属塩及びランタノイド金属塩を同時に、又はそ れぞれ加えることができる。
また、液相還元を用いる前述の方法の代替法として、触媒活性成分を加えた担体 懸濁液を蒸発乾固させ、その成分を 200°C〜500°Cの温度で空気中で焼成した後、 水素気流中 200°C〜600°Cで還元する方法を採用してもよ!、。
[0020] (ルテニウム Zガリウムリン酸塩触媒の製造)
蒸留水中に硝酸ガリウムを溶解させ、この溶液にリン酸を加え攪拌し、アンモニア水 溶液を滴下することにより pHを上昇させ、 pH4〜6の範囲で 1〜3時間攪拌し、白色 沈殿を得る。沈殿を吸引濾過し、 100〜200°Cの温度で乾燥し、大気中 800°C〜12 00°Cの温度で焼成することによりガリウムリン酸塩担体を得る。
[0021] 得られたガリウム担体を蒸留水中に懸濁させ [工程 1) ]、活性成分であるルテニウム を金属塩溶液の形態で加え、 30分〜 1時間攪拌する [工程 2) ]。次に、懸濁液の温 度を室温〜 70°Cとして、水溶性還元剤をゆっくり加え、活性成分であるルテニウムの 担持および還元を同時に行う [工程 3) ]。
次に、この懸濁溶液を吸引濾過し、ルテニウム Zガリウムリン酸塩触媒を水相から 分離し [工程 4) ]、イソプロピルアルコールまたはエタノールを用いて洗浄を行い、大 気中室温で乾燥を行う [工程 5) ]。
[0022] 上記の工程 2)において、アルカリ金属塩及びランタノイド金属塩を同時に、又はそ れぞれ加えることができる。
また、液相還元を用いる前述の方法の代替法として、触媒活性成分を加えた担体 懸濁液を蒸発乾固させ、その成分を 200°C〜500°Cの温度で空気中で焼成した後、 水素気流中 200°C〜600°Cで還元する方法を採用してもよ!、。
[0023] (ルテニウム Zォキシ水酸ィ匕ガリゥム触媒の製造)
硝酸ガリウム水溶液にアンモニア力、尿素か、あるいは、へキサメチレンテトラミンを 加え、液温 20°C〜50°Cで一晩の間攪拌する。さらに、 70°C〜90°Cの液温で 2時間 攪拌することにより、白色沈殿を得る。沈殿を冷却濾過し、イソプロピルアルコールま たはエタノールを用いて洗浄した後、室温〜 350°Cで乾燥することによりォキシ水酸 化ガリウム担体が得られる。
また、硝酸ガリウムを乳鉢で粉砕し、大気中で 200〜400°Cの温度範囲で 5〜20時 間焼成することにより δ 酸ィ匕ガリウムを得、この δ一酸化ガリウムを蒸留水と混合し 、オートクレーブ中で 150〜300°Cの温度範囲で 24〜48時間水熱合成を行うことに より、ォキシ水酸化ガリウム担体が得られる。
さらに、市販されているォキシ水酸ィ匕ガリウムを担体として用いることもできる。
[0024] 得られたォキシ水酸ィ匕ガリウム担体を蒸留水中に懸濁させ [工程 1) ]、活性成分で あるルテニウムを金属塩溶液の形態で加え、 30分〜 1時間攪拌する [工程 2) ]。次に 、懸濁液の温度を室温〜 70°Cとして、水溶性還元剤をゆっくり加え、活性成分である ルテニウムの担持および還元を同時に行う [工程 3) ]。
次に、この懸濁溶液を吸引濾過し、ルテニウム Zォキシ水酸ィ匕ガリウム触媒を水相 力 分離し [工程 4) ]、イソプロピルアルコールまたはエタノールを用いて洗浄を行!ヽ 、大気中室温で乾燥を行う [工程 5) ]。
[0025] 上記の工程 2)において、アルカリ金属塩及びランタノイド金属塩を同時に、又はそ れぞれ加えることができる。
また、液相還元を用いる前述の方法の代替法として、触媒活性成分を加えた担体 懸濁液を蒸発乾固させ、その成分を 200°C〜500°Cの温度で空気中で焼成した後、 水素気流中 200°C〜600°Cで還元する方法を採用してもよ!、。
本発明の水素化触媒は、基本的に酸素を含有するガリウム化合物からなる担体と ルテニウムの 2成分力 なるものであり、製造が簡単で低コストで製造することができ る。
[0026] 本発明のカルボニル基に対する水素化触媒を使用することによって、次の式(1)で 表される不飽和カルボ二ルイ匕合物を選択的に水素化し、式(2)で表される不飽和ァ ルコールを効率良く製造することができる。
[0027] [化 2]
Ri Ri
, C = O > C H一 O H
R2 , R2 ^
( 1 ) ( 2 )
[0028] [式中、 Rおよび Rの各々は、同一であるかあるいは異なり、 C1〜C10の水素原
1 2
子、飽和又は不飽和の脂肪族基、飽和又は不飽和の脂環族基、又は芳香族基を表 わし、 Rおよび Rの少なくとも一方はエチレン系二重結合を含有する力、あるいは R
1 2 1 および Rは一緒になつてエチレン系不飽和脂環族基を形成し、前記脂肪族基、脂
2
環族基又は芳香族基の各々は C1〜C4のアルキル基、ヒドロキシル基又は C1〜C4 のアルコキシ基の 1又は 2以上の同一又は異なる基で置換されていてもよい]
[0029] Rおよび Rの具体例としては、例えば水素;メチル、ェチル、プロピル、イソプロピ
1 2
ル、 n—ブチル、 iーブチル、 tーブチル、ペンチル、へキシル、ヘプテニル、ォクチル ゝノニノレ、デシノレ; 1—プロぺニノレ、 2—プロぺニノレ、 2—メチノレ一 2—プロぺニノレ、 1— ペンテニル、 1ーメチノレー 2—ペンテニル、イソプロぺニル、 1ーブテニル、へキセニ ル、オタテュル、ノネ-ルまたはデセ -ル;ベンジル、フエ-ルまたはナフチル;等が 挙げられる。これらの各々は、 C1〜C4のアルキル基、ヒドロキシル基又は C1〜C4 のアルコキシ基の 1又は 2以上の同一又は異なる基で置換されていてもよい。 [0030] 式(1)で表される、好まし 、不飽和カルボ-ルイ匕合物としては、例えばシトロネラー ル、 H ゲラ-ルアセトン、 H—ネロリドール、メチルビ-ルケトン、メシチルオキサイド 、プソイドィオノン、ジヒドロフアルネシルアセトン、リスメラール、メチルへキセノン等が 挙げられる。特に好ましい不飽和カルボ-ルイ匕合物としては、シトロネラールまたは、 ァクロレイン、メタァクロレイン、クロトンアルデヒド、プレナール、フアルネサールもしく はシトラール等の 0;、 β 不飽和カルボ-ル化合物が挙げられる。これらの中でも、 シトラールが一段と好まし 、。
[0031] シトラールには、次の式(3)で表されるシトラール Α (トランス体)及び式 (4)で表され るシトラール B (シス体)があり、そのカルボ-ル基を選択的に水素化すると、 目的とす る式(5)で表されるゲラ-オール、式(6)で表されるネロールのほかに、副生物として 式(7)のシトロネラール、式(8)のシトロネロール、さらには式(9)のテトラヒドロゲラ- オール等が生成する。
[0032] [化 3]
Figure imgf000013_0001
Figure imgf000013_0002
( 7) (8)
Figure imgf000013_0003
本発明の水素化触媒を使用した場合には、従来の水素化触媒で必要とされる原料 を希釈するための溶媒や、トリメチルァミン等の添加剤を使用せずに、高い選択率で アルデヒド基のみを水素化することができる。また、副生物の生成を抑制して、高収 率で目的とする、ゲラニオールやネロールを得ることができる。したがって、 目的とす る生成物の分離や精製を簡単に行うことができるので、生成物の製造コストを大幅に 低下させることが可能となる。
実施例
[0034] 以下、実施例により本発明をさらに説明するが、これらの具体例は本発明を限定す るものではない。
(実施例 1:ルテニウム Zォキシ水酸ィ匕ガリゥム触媒の製造)
1Lのセパラブルフラスコに蒸留水 500mLをカ卩え、硝酸ガリウム 13. 64gを溶解した 。この溶液にへキサメチレンテトラミン 70. 13gを加え、室温で 12時間攪拌した後、 9 0°Cで 2時間攪拌した。溶液を冷却後、得られた沈殿を吸引濾過し、イソプロピルアル コールで沈殿の洗浄を行った後、大気中で 300°Cで乾燥し、ォキシ水酸化ガリウム 担体を得た。得られたォキシ水酸化ガリウム担体の電子顕微鏡写真を図 1に示す。 このォキシ水酸化ガリウム 2. Ogを 200mLの蒸留水中に懸濁させ、塩化ルテニウム 0. 1314gを加え攪拌した。水素化ホウ素ナトリウム 2gを蒸留水 50mLに溶解した溶 液をゆっくり滴下し、 2時間攪拌を続け液相還元を行い、 2. 5重量%のルテニウムの 担持を行った。
つぎに、ルテニウムを担持した触媒懸濁液を吸引濾過し、蒸留水およびエタノール を用いて触媒の洗浄を行い、大気中で室温で乾燥させ、ルテニウム Zォキシ水酸ィ匕 ガリウム触媒を得た。
[0035] (実施例 2 :ルテニウム Z酸化ガリウム触媒の製造)
500mLのビーカーにエタノール 200mLをカ卩え、硝酸ガリウム 13. 7gを溶解した。 この溶液にアンモニア水溶液を滴下し、溶液の pHを 5. 2に上昇させた。室温で 2時 間攪拌し、ゲル状の水酸ィ匕ガリウムの沈殿を得た。得られた沈殿を吸引濾過し、大気 中で 800°Cで焼成し、酸化ガリウム担体を得た。得られた酸化ガリウム担体の電子顕 微鏡写真を図 2に示す。
この酸化ガリウム 1. 5gを 30mLのエタノールに懸濁させ、ルテニウムァセチルァセ トネート錯体 0. 148gを加え、 60°Cで 3時間攪拌した。懸濁液を蒸発乾固させ空気 中 150°Cで加熱した後、水素気流中で 400°Cで還元処理することにより、 2. 5重量 %のルテニウムを担持したルテニウム Z酸ィ匕ガリウム触媒を得た。
[0036] (実施例 3:ルテニウム Zガリウムリン酸塩触媒の製造) 500mLのビーカーに蒸留水 200mLを加え、硝酸ガリウム 15. 5gを溶解した。この 溶液にリン酸を 4. 8gカ卩ぇ攪拌した。この溶液にアンモエア水溶液を滴下し、溶液の P Hを 5. 0に上昇させた。攪拌を 1時間行い、白色沈殿を得た。沈殿を吸引濾過し、大 気中で 160°Cで 2時間加熱し、大気中で 1000°Cで焼成を行い、ガリウムリン酸塩担 体を得た。得られたガリウムリン酸塩担体の電子顕微鏡写真を図 3に示す。
このガリウムリン酸塩 1. 5gを 30mLのエタノールに懸濁させ、塩化ルテェゥム 0. 09 86gおよび硝酸ルビジウム 0. 026gをカ卩え、 60°Cで 3時間攪拌した。懸濁液を蒸発 乾固させ空気中 150°Cで 1時間加熱した後、水蒸気流中で 400°Cで還元処理するこ とにより、 2. 5重量0 /。のルテニウムを担持したルテニウム Zガリウムリン酸塩触媒を得
[0037] (実施例 4:シトラールの選択的水素化)
実施例 1で得られた触媒粉末 2gを容積 200mLのオートクレープに導入し、これに 130mLのシトラールを添カ卩した。オートクレーブを密封した後、攪拌しながら IMPa の圧力で窒素ガスを導入および排気を 3回繰り返した後、窒素ガスを 1. 3MPaの水 素ガスで置換し、 120°Cまで加熱した。水素化中、一定の時間間隔で反応容器から サンプルを採取してガスクロマトグラフィーにより分析した。
シトラールの転換率及び該転換率において生成するネロール Zゲラニオールの選 択率、並びに副生物を表 1に示す。
[0038] [表 1] シトラール 生 成 物 の 選 択 率 (%)
転換率 {%) ネ卩一ル Z シト [不ラー シトロネロール テトラヒ ドロ 未知物質
ゲラニオール ゲラニォー
1 1 . 3 5 1 0 0 0 0 0 0 0 0 . 0 0 0 . 0 0 0 . 0 0
3 5 . 4 4 9 7 . 5 2 0 0 0 0 . 0 0 0 . 0 0 2 - 4 8
5 5 . 3 2 9 6 . 8 0 0 0 0 0 . 8 6 0 . 0 0 2 . 3 4
6 0 . 8 7 9 6 . 9 0 0 0 0 0 . 8 7 0 . 0 0 2 . 2 3
8 4 . 7 2 9 6 . 4 4 0 0 0 1 . 4 0 0 . 0 0 2 . 1 6
(実施例 5)
実施例 2で得られた触媒粉末 1. 5gを容積 lOOmLのオートクレープに導入し、これ に 65mLのシトラールを添カ卩した。オートクレーブを密封した後、攪拌しながら IMPa の圧力で窒素ガスを導入および排気を 3回繰り返した後、窒素ガスを 1. 3MPaの水 素ガスで置換し、 120°Cまで加熱した。水素化中、一定の時間間隔で反応容器から サンプルを採取してガスクロマトグラフィーにより分析した。
シトラールの転換率及び該転換率において生成するネロール Zゲラニオールの選 択率、並びに副生物を表 2に示す。
[¾2]
Figure imgf000016_0001
[0041] (実施例 6)
実施例 3で得られた触媒粉末 1. 5gを容積 lOOmLのオートクレープに導入し、これ に 65mLのシトラールを添加した。オートクレープを密封した後、攪拌しながら IMPa の圧力で窒素ガスを導入および排気を 3回繰り返した後、窒素ガスを 1. 3MPaの水 素ガスで置換し、 120°Cまで加熱した。水素化中、一定の時間間隔で反応容器から サンプルを採取してガスクロマトグラフィーにより分析した。
シトラールの転換率及び該転換率において生成するネロール Zゲラ-オールの選 択率、並びに副生物を表 3に示す。
[0042] [表 3]
Figure imgf000016_0002
[0043] (実施例 7) 実施例 1の手順で作製したォキシ水酸ィ匕ガリウム 2. Ogを 200mLの蒸留水中に懸 濁させ、塩化ルテニウム 0. 134gを加え攪拌した。水素化ホウ素ナトリウム 2gを蒸留 水 50mL中に溶解した溶液をゆっくり適下し、 2時間攪拌を続け液相還元を行い、 2. 5重量%のルテニウム担持を行った。ルテニウムを担持した触媒懸濁溶液を吸引濾 過し、蒸留水およびエタノールを用いて触媒の洗浄を行った。この触媒を再び 200m Lの蒸留水中に懸濁させ、この懸濁溶液に塩ィ匕白金 (IV)酸六水和物を 0. 133g溶 解した。ついで、水素化ホウ素ナトリウム 2gを蒸留水 50mL中に溶解した溶液をゆつ くり滴下し、 2時間攪拌を続け液相還元を行い、 2. 5重量0 /0のルテニウムを担持した ォキシ水酸ィ匕ガリウム触媒に、さらに 2. 5重量%のプラチナを担持した。この触媒懸 濁溶液を吸引濾過し、蒸留水およびエタノールを用いて触媒の洗浄を行ったあと空 気中で乾燥させることにより触媒成分としてルテニウム及び白金を含有する触媒とし た。
[0044] (実施例 8)
実施例 7で得られた触媒粉末 2gを容積 200mLのオートクレープに導入し、これに 130mLのシトラールを添カ卩した。オートクレーブを密封した後、攪拌しながら IMPa の圧力で窒素ガスを導入および排気を 3回繰り返した後、窒素ガスを 1. 3MPaの水 素ガスで置換し、 120°Cまで加熱した。水素化中、一定の時間間隔で反応容器から サンプルを採取してガスクロマトグラフィーにより分析した。
シトラールの転換率及び該転換率において生成するネロール Zゲラ-オールの選 択率、並びに副生物を表 4に示す。
[0045] [表 4] 反応時間 シトラール 生 成 物 の 選 択 率 (%)
(時間) 転換率(%) ネロ一ル Z シ 卜ロネラ —ル シ卜 ネロール 未知物質
ゲラニオール
1 2 1 . 2 9 8 . 5 1 N D N D 1 . 4 9
3 6 2 . 6 9 7 . 7 0 N D 0 . 8 0 1 . 9 0
3, 5 8 1 . 5 9 7 . 2 3 N D 0 . 8 8 1 . 8 9
4 9 1 . 9 9 6 . 9 7 N D 1 . 0 5 1 . 9 7
[0046] 以上、本発明として、ガリウム化合物担体上にルテニウムが担持されたカルボニル 基に対する水素化用触媒について説明したが、本発明では触媒活性成分として Pt、 Rh、 Ir等の貴金属、或いは Co等を使用することができる。
例えば、触媒活性成分として Ptを使用した場合には、同じ反応時間で比較すると ルテニウムに比べてシトラールの転換率は減少する力 S、ネロール Zゲラ-オールの 選択率は 100%となる。したがって、用途に応じて、触媒活性成分として他の貴金属 を選択することができる。
[0047] (実施例 9: PtZォキシ水酸化ガリウム触媒の製造)
ォキシ水酸ィ匕ガリウム 2. Ogを 200mLの蒸留水に懸濁させ、塩化白金酸 0. 133g を加えて攪拌した。水素化ホウ素ナトリウム 2gを蒸留水 50mLに溶解した溶液をゆつ くり滴下し、 2時間攪拌を続けて液相還元を行ない、 2. 5重量%の Ptの担持を行った つぎに、 Ptを担持した触媒懸濁液を吸引濾過し、蒸留水及びエタノールを用いて 触媒の洗浄を行い、大気中で室温で乾燥させて、 PtZォキシ水酸ィ匕ガリウム触媒を 得た。
触媒活性成分としては、塩ィ匕白金酸に代えて、塩ィ匕第一白金アンモ-ゥム、塩ィ匕 第二白金アンモ-ゥム等を用いることができる。
[0048] (実施例 10)
実施例 9で得られた触媒粉末 2gを容積 200mLのオートクレープに導入し、これに 130mLのシトラールを添カ卩した。オートクレーブを密封した後、攪拌しながら IMPa の圧力で窒素ガスを導入および排気を 3回繰り返した後、窒素ガスを 1. 3MPaの水 素ガスで置換し、 120°Cまで加熱した。水素化中、一定の時間間隔で反応容器から サンプルを採取してガスクロマトグラフィーにより分析した。
反応時間 6時間において、シトラールの転換率は 9. 8%であり、ネロール Zゲラ- オールの選択率は 100%であった。

Claims

請求の範囲
[1] 酸素を含有するガリウム化合物担体上に貴金属が担持されたカルボニル基に対す る水素化用触媒。
[2] 酸素を含有するガリウム化合物がォキシ水酸化ガリウム、酸化ガリウム、リン酸ガリウ ム力 選ばれたものであることを特徴とする請求項 1に記載の水素化用触媒。
[3] 酸素を含有するガリウム化合物担体上に 0. 1〜: LO重量%のルテニウムが担持され ていることを特徴とする請求項 1又は 2に記載の水素化用触媒。
[4] さらに 0. 1〜: LO重量%の白金が担持されていることを特徴とする請求項 3に記載の 水素化用触媒。
[5] 1)酸素を含有するガリウム化合物担体を水中に懸濁させる工程、
2)該懸濁液中に触媒活性成分である貴金属塩の溶液を加える工程、
3)つ ヽで水溶性還元剤を加えて触媒活性成分を還元し、担体上に触媒活性成分を 析出させる工程、
を含むことを特徴とする、酸素を含有するガリウム化合物担体上に貴金属が担持され たカルボニル基に対する水素化用触媒の製造方法。
[6] さらに、
4)担体上に触媒活性成分を析出させた触媒を担体懸濁液の水相から分離する工程 、及び 5)分離した触媒を乾燥する工程、
を含むことを特徴とする請求項 5に記載の水素化用触媒の製造方法。
[7] 工程 3)の水溶性還元剤が、メタノール、エタノール、ホルムアルデヒド、ホスフィン酸 ナトリウム、ジメチルァミンボラン、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水 素化ホウ素リチウム、水素化リチウムアルミニウム又はヒドラジン力も選択されたもので あることを特徴とする請求項 5又は 6に記載の水素化用触媒の製造方法。
[8] 工程 2)の触媒活性成分がルテニウムの塩ィ匕物、硝酸塩、ニトロシル硝酸塩、酸ィ匕 物、水酸化物、ァセチルァセトネート錯体、ピピリジン錯体又はアンミン錯体であるこ とを特徴とする請求項 5〜7のいずれかに記載の水素化用触媒の製造方法。
[9] 工程 3)で担体上に触媒活性成分としてルテニウムを析出させた後に、 3— 1)分離 した触媒を再び水中に懸濁させる工程、 3- 2)該懸濁液中に白金塩の溶液を加える 工程、及び、 3— 3)水溶性還元剤を加えて白金塩を還元し、触媒上に更に白金を析 出させる工程を含むことを特徴とする請求項 8に記載の水素化用触媒の製造方法。 請求項 1〜4のいずれかに記載された水素化用触媒の存在下に、次の式(1)で表 される不飽和カルボ二ルイ匕合物を水素化することを特徴とする、式(2)で表される不 飽和アルコールの製造方法:
[化 1]
Ri R i
, C = O > C H一 O H
R2 z R2
( 1 ) ( 2 ) [式中、 Rおよび Rの各々は、同一であるかあるいは異なり、水素原子、 C1〜C10
1 2
の飽和又は不飽和の脂肪族基、飽和又は不飽和の脂環族基、又は芳香族基を表わ し、 Rおよび Rの少なくとも一方はエチレン系二重結合を含有する力 あるいは Rお
1 2 1 よび Rは一緒になつてエチレン系不飽和脂環族基を形成し、前記脂肪族基、脂環
2
族基又は芳香族基の各々は C1〜C4のアルキル基、ヒドロキシル基又は C1〜C4の アルコキシ基の 1又は 2以上の同一又は異なる基で置換されて!、てもよ!/、]
[11] 式(1)で表されるカルボ-ル化合物が、 α、 j8—不飽和カルボニル化合物であるこ とを特徴とする請求項 10に記載の不飽和アルコールの製造方法。
[12] 式(1)で表されるカルボ-ルイ匕合物力 シトラールであることを特徴とする請求項 10 又は 11に記載の不飽和アルコールの製造方法。
[13] 不飽和カルボニル化合物を溶媒で希釈せずに水素化することを特徴とする請求項 10〜 12のいずれかに記載の不飽和アルコールの製造方法。
PCT/JP2006/317493 2005-09-07 2006-09-05 カルボニル基に対する水素化用触媒、及びその製造方法、並びに該触媒を使用する不飽和アルコールの製造方法 WO2007029667A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/066,062 US20090299105A1 (en) 2005-09-07 2006-09-05 Hydrogenation catalyst for carbonyl group, method for producing same, and method for producing unsaturated alcohol by using such catalyst
JP2007534412A JP4862162B2 (ja) 2005-09-07 2006-09-05 カルボニル基に対する水素化用触媒、及びその製造方法、並びに該触媒を使用する不飽和アルコールの製造方法
EP06783182A EP1930075A1 (en) 2005-09-07 2006-09-05 Hydrogenation catalyst for carbonyl group, method for producing same, and method for producing unsaturated alcohol by using such catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005259630 2005-09-07
JP2005-259630 2005-09-07

Publications (1)

Publication Number Publication Date
WO2007029667A1 true WO2007029667A1 (ja) 2007-03-15

Family

ID=37835787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317493 WO2007029667A1 (ja) 2005-09-07 2006-09-05 カルボニル基に対する水素化用触媒、及びその製造方法、並びに該触媒を使用する不飽和アルコールの製造方法

Country Status (4)

Country Link
US (1) US20090299105A1 (ja)
EP (1) EP1930075A1 (ja)
JP (1) JP4862162B2 (ja)
WO (1) WO2007029667A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150136521A (ko) * 2013-04-02 2015-12-07 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 Emm-25 분자체 물질, 이의 합성 및 용도
JP2019517543A (ja) * 2016-06-07 2019-06-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 2,3−不飽和アルコールを製造する方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113713810B (zh) * 2020-05-26 2023-09-01 台州学院 一种三氧化铝-钌镓铟液态合金复合催化剂及其制备方法和应用
CN115425248A (zh) * 2022-10-14 2022-12-02 吉林大学 贵金属负载的多层空心微球液态金属基催化剂及制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827642A (ja) 1981-08-04 1983-02-18 バスフ・アクチェンゲゼルシャフト 新規なルテニウム/炭素−水素化用触媒
JPS58146446A (ja) * 1982-02-25 1983-09-01 Asahi Chem Ind Co Ltd 固定層触媒
JPH01159059A (ja) * 1987-12-16 1989-06-22 Asahi Chem Ind Co Ltd 芳香族化合物の部分核水素化方法
JPH03127750A (ja) * 1989-10-13 1991-05-30 Inst Fr Petrole シトラールの水素化方法
JPH0857325A (ja) * 1994-08-22 1996-03-05 Mitsubishi Chem Corp カルボン酸類の水素化触媒及び水素化方法
JP2520461B2 (ja) 1987-12-01 1996-07-31 ローン‐プーラン・サント 不飽和アルコ―ルを製造する方法
JPH08198786A (ja) * 1995-01-25 1996-08-06 Mitsubishi Chem Corp カルボン酸エステルの水素化方法
JP2549158B2 (ja) 1987-12-01 1996-10-30 ローン‐プーラン・サント 不飽和アルコールを製造する方法
US6294696B1 (en) 1997-10-31 2001-09-25 Institut Francais Du Petrole Process for hydrogenating organic functions
JP2003024555A (ja) 2001-07-18 2003-01-28 Nippon Pachinko Buhin Kk 遊技機用入賞装置及びそれを用いた遊技機
JP2003284954A (ja) * 2002-03-28 2003-10-07 Nippon Shokubai Co Ltd 金超微粒子担持体、その製造方法、及び該担持体からなる触媒
JP2003306480A (ja) * 2002-02-15 2003-10-28 Kawaken Fine Chem Co Ltd 4,6−ジメチルインドールの製造方法および担持触媒
JP2006198503A (ja) * 2005-01-19 2006-08-03 Hiroshima Univ 無機触媒成分および有機化合物を担持する触媒組成物ならびにその利用

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827642A (ja) 1981-08-04 1983-02-18 バスフ・アクチェンゲゼルシャフト 新規なルテニウム/炭素−水素化用触媒
JPS58146446A (ja) * 1982-02-25 1983-09-01 Asahi Chem Ind Co Ltd 固定層触媒
JP2549158B2 (ja) 1987-12-01 1996-10-30 ローン‐プーラン・サント 不飽和アルコールを製造する方法
JP2520461B2 (ja) 1987-12-01 1996-07-31 ローン‐プーラン・サント 不飽和アルコ―ルを製造する方法
JPH01159059A (ja) * 1987-12-16 1989-06-22 Asahi Chem Ind Co Ltd 芳香族化合物の部分核水素化方法
JPH03127750A (ja) * 1989-10-13 1991-05-30 Inst Fr Petrole シトラールの水素化方法
JPH0857325A (ja) * 1994-08-22 1996-03-05 Mitsubishi Chem Corp カルボン酸類の水素化触媒及び水素化方法
JPH08198786A (ja) * 1995-01-25 1996-08-06 Mitsubishi Chem Corp カルボン酸エステルの水素化方法
US6294696B1 (en) 1997-10-31 2001-09-25 Institut Francais Du Petrole Process for hydrogenating organic functions
JP2003024555A (ja) 2001-07-18 2003-01-28 Nippon Pachinko Buhin Kk 遊技機用入賞装置及びそれを用いた遊技機
JP2003306480A (ja) * 2002-02-15 2003-10-28 Kawaken Fine Chem Co Ltd 4,6−ジメチルインドールの製造方法および担持触媒
JP2003284954A (ja) * 2002-03-28 2003-10-07 Nippon Shokubai Co Ltd 金超微粒子担持体、その製造方法、及び該担持体からなる触媒
JP2006198503A (ja) * 2005-01-19 2006-08-03 Hiroshima Univ 無機触媒成分および有機化合物を担持する触媒組成物ならびにその利用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ARAMENDIA M.A. ET AL.: "Catalytic transfer hydrogenation of citral on calcined layered double hydroxides", APPLIE CATALYSIS A: GENERAL, vol. 206, 2001, pages 95 - 101, XP004272581 *
DOMINGUEZ F. ET AL.: "Gallia as support of Pt in benzene hydrogenation reaction", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 228, no. 1/2, 16 March 2005 (2005-03-16), pages 319 - 324, XP004724414 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150136521A (ko) * 2013-04-02 2015-12-07 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 Emm-25 분자체 물질, 이의 합성 및 용도
JP2016519043A (ja) * 2013-04-02 2016-06-30 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Emm−25モレキュラーシーブ材料、その合成および使用
KR102172784B1 (ko) 2013-04-02 2020-11-02 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 Emm-25 분자체 물질, 이의 합성 및 용도
JP2019517543A (ja) * 2016-06-07 2019-06-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 2,3−不飽和アルコールを製造する方法
US11407700B2 (en) 2016-06-07 2022-08-09 Basf Se Process for preparing 2,3-unsaturated alcohols
JP7146646B2 (ja) 2016-06-07 2022-10-04 ビーエーエスエフ ソシエタス・ヨーロピア 2,3-不飽和アルコールを製造する方法

Also Published As

Publication number Publication date
JP4862162B2 (ja) 2012-01-25
US20090299105A1 (en) 2009-12-03
EP1930075A1 (en) 2008-06-11
JPWO2007029667A1 (ja) 2009-03-19

Similar Documents

Publication Publication Date Title
Stolle et al. Hydrogenation of citral: a wide-spread model reaction for selective reduction of α, β-unsaturated aldehydes
Purushothaman et al. An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support
JP4664902B2 (ja) 触媒およびカルボニル化合物を水素化する方法
Corma et al. Supported gold nanoparticles as catalysts for organic reactions
JP2008505156A (ja) 触媒およびカルボニル化合物の水素化法
JPS5827642A (ja) 新規なルテニウム/炭素−水素化用触媒
JP2009533468A (ja) アルデヒドに水素添加するための方法
WO2007029667A1 (ja) カルボニル基に対する水素化用触媒、及びその製造方法、並びに該触媒を使用する不飽和アルコールの製造方法
TWI809157B (zh) 1-醯氧基-2-甲基-2-丙烯之製造方法
JPH07204509A (ja) 不飽和アルコールの製造方法
SA111330025B1 (ar) محفز نحاس/ زنك معزز لهدرجة الألدهيدات إلى كحولات
CN114522738A (zh) 一种由3-乙酰氧基丙醛一步加氢制备1,3-丙二醇的方法
JP4041952B2 (ja) 金超微粒子担持体、及び該担持体からなる触媒
Zhang et al. Hydroformylation of 1-hexene for oxygenate fuels on supported cobalt catalysts
JP5659860B2 (ja) ニトリル化合物水素化用パラジウム含有触媒および該触媒を用いたニトリル化合物の水素化方法
WO2004037411A1 (ja) α,β−不飽和カルボン酸製造用触媒及びその製造方法、並びに、α,β−不飽和カルボン酸の製造方法
JP2020518433A (ja) 水素化プロセスのための金属粉末状触媒
JP4041953B2 (ja) 水素化用触媒及びアルコールの製造方法
JP5049118B2 (ja) パラジウム含有触媒の製造方法
TWI781198B (zh) 雙醯氧基化外亞甲基化合物之製造方法
JP7349099B2 (ja) カルボニル化合物の製造方法
Li et al. Chemoselective oxidation of bio-glycerol with nano-sized metal catalysts
Leus et al. Encapsulated Metallic Nanoparticles in Metal–Organic Frameworks: Toward Their Use in Catalysis
JP2009011896A (ja) 酸化触媒、その製造方法、およびα,β−不飽和カルボン酸の製造方法
JP2003183201A (ja) 不飽和アルコールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2007534412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006783182

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12066062

Country of ref document: US