WO2007029410A1 - ポリアリールアミンを用いた有機エレクトロルミネッセンス素子 - Google Patents

ポリアリールアミンを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2007029410A1
WO2007029410A1 PCT/JP2006/313427 JP2006313427W WO2007029410A1 WO 2007029410 A1 WO2007029410 A1 WO 2007029410A1 JP 2006313427 W JP2006313427 W JP 2006313427W WO 2007029410 A1 WO2007029410 A1 WO 2007029410A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer
carbon atoms
organic
compound
Prior art date
Application number
PCT/JP2006/313427
Other languages
English (en)
French (fr)
Inventor
Tetsuya Inoue
Hirofumi Kondo
Tadanori Junke
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to EP06780803A priority Critical patent/EP1933396A1/en
Priority to US12/066,333 priority patent/US20090230848A1/en
Publication of WO2007029410A1 publication Critical patent/WO2007029410A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1433Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Definitions

  • the present invention relates to the field of organic electoluminescence, and more specifically, an organic material produced by using a specific polymer for a hole injection layer or a transport layer and using a specific low molecular weight material for a light emitting layer.
  • the present invention relates to an electo-luminescence element.
  • the organic electoluminescence device of the present invention can be used for a flat light emitter such as a flat panel display, a copying machine, a printer, a light source such as a backlight of a liquid crystal display or instruments, a display board, a marker lamp, and the like.
  • Organic-electric luminescence elements may be abbreviated as polymers such as polyfluorene and soluble PPV (poly (p-phenylenevinylene)), which can be used for spin coating, ink jet, etc.
  • Polymers such as polyfluorene and soluble PPV (poly (p-phenylenevinylene)), which can be used for spin coating, ink jet, etc.
  • Manufactured by wet methods and dry methods such as vacuum deposition using low molecular weight materials.
  • an organic EL device having a plurality of organic thin film layers has been manufactured by a wet method.
  • both the hole injection layer and the light emitting layer are made of a polymer material (for example, patents). Reference 1).
  • polymer materials have a molecular weight distribution, and are difficult to purify and difficult to achieve high purity.
  • the color purity of the luminescent color, luminous efficiency, luminance and luminance There was a problem with half-life.
  • low-molecular materials can be easily purified by known purification methods, and when used in the light emitting layer of an organic EL device, the color purity, light emission efficiency, and luminance of the emitted color are superior to polymers, and the luminance is reduced by half. Long time is an advantage. However, depending on the material constituting the hole injection layer or the hole transport layer adjacent to the light emitting layer, good light emitting performance may not be exhibited.
  • Patent Document 1 International Publication WO2004 / 84260 Disclosure of the invention
  • the present invention has been made to solve the above-described problems, and has an object to provide an organic electoluminescence device using polyarylamine.
  • the manufacturing process is simplified and the screen size is increased. And to improve device performance.
  • the present inventors have sandwiched at least one organic compound layer including at least a light emitting layer between a pair of electrodes composed of an anode and a cathode.
  • the organic compound layer has a hole transport layer and / or a hole injection layer, and the polyarylamine represented by the following general formula (1) is the hole transport layer and / or the hole injection layer.
  • the present invention has been completed by finding that the organic-electric-luminescence element contained in can achieve the above object.
  • Ar is each independently a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms.
  • Ar is each independently a substituted or unsubstituted divalent arylene group having 6 to 40 carbon atoms.
  • a, b, c and d are each independently an integer of 1 to 2, and e is an integer of 0 to 2.
  • n is an integer of 3 or more.
  • the present invention provides the organic electoluminescence device wherein the hole transport layer and / or the hole injection layer mainly contains the polyarylamine, and the light emitting layer mainly comprises an anthracene derivative, pyrene derivative and / or fluorene.
  • the organic electroluminescent device selected from derivatives, the organic electroluminescent device containing a dopant in the light emitting layer, the hole transport layer and / or the hole injection layer are formed into a wet film, and the light emitting layer is formed into a wet film.
  • the organic electroluminescence device, wherein the organic electroluminescence device, and the hole transport layer and the Z or hole injection layer are formed into a wet film and the light emitting layer is formed by vapor deposition, are provided.
  • an organic electoluminescence device having a light emitting layer made of a low molecular weight material
  • the device performance could be improved by using a polyarylamine having a specific structure for the hole transport and injection layer.
  • FIG. 1 is a cross-sectional view showing one embodiment of an organic EL device of the present invention.
  • the organic electoluminescence device of the present invention is an organic EL layer in an organic EL device in which at least one organic compound layer including a light emitting layer is sandwiched between a pair of electrodes composed of an anode and a cathode.
  • Ar is a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms, Ar
  • a, b, c and d are each independently an integer of 1 to 2
  • e is an integer of 0 to 2.
  • n is an integer of 3 or more.
  • examples of the aryl group having 6 to 40 nuclear carbon atoms of Ar include a phenyl group, a 2-pi'uelinole group, a 3-pi'huyelinole group, a 4-pi'hueurenore group, a tenolehue group.
  • examples of Ar heteroaryl groups having 3 to 40 nuclear carbon atoms include 1 pyrrolyl group, 2 pyrrolyl group, 3 pyrrolyl group, birazinyl group, pyrimidyl group, pyridazyl group, 2 pyridininore Group, 3-pyridinyl group, 4 pyridinino group, 1indrino group, 2dryl group, 3-indolyl group, 4-indolyl group, 5-indolyl group, 6-indolyl group, 7-indolyl group, 1 isoindolyl group, 2 isoindolyl group Group, 3 isoindolyl group, 4 isoindolyl group, 5 isoindolyl group, 6 isoindolyl group, 7 isoindolyl group, 2 furyl group, 3 frinore group, 2 benzofuranyl group, 3 benzofuranyl group, 4 benzofuranyl group,
  • examples of Ar to Ar which is a substituted or unsubstituted divalent arylene group having 6 to 40 carbon atoms, include:
  • the structure with the hydrogen atom removed is included.
  • Ar and Ar to Ar are aryl groups, arylene groups, heteroaryl groups.
  • Examples of the substituent of the alkyl group include an alkyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms such as methyl, ethyl, And isopropyl groups (preferably having 2 to 20 carbon atoms, more preferably, isopropylene, t-butyl, n_octyl, n-decyl, n_hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.).
  • an alkyl group preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms such as methyl, ethyl, And isopropyl groups (preferably having 2 to 20 carbon atoms, more preferably, isopropylene, t-butyl, n_octyl, n-decyl, n
  • An amino group (preferably having a carbon number) The number of carbon atoms is 0 to 20, more preferably 0 to 12, and particularly preferably 0 to 6. Examples thereof include amino, methinoreamino, dimethylamino, jetylamino, diphenylamino, dibenzylamino and the like.
  • Alkoxy groups preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, such as methoxy, ethoxy, butoxy, etc.
  • aryloxy groups Preferably it has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, and particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyloxy, 2_naphthyloxy, etc.), an asinole group (preferably carbon number) 1 to 20, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include acetyl, benzoyl, formyl, bivaloyl and the like, and an alkoxycarbonyl group (preferably having a carbon number).
  • An oxycarbonyl group preferably having 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 10 carbon atoms, such as phenylcarbonyl
  • an acyloxy group Preferably it has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetoxy, benzoyloxy, etc.), an amino group (preferably 2 to 2 carbon atoms).
  • alkoxycarbonylamino groups preferably 2 to 20 carbon atoms, more preferably Has 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, and examples thereof include methoxycarbonylamino and the like.
  • An mino group (preferably having a carbon number of 7 to 20, more preferably a carbon number of 7 to 16, particularly preferably a carbon number of 7 to 12, such as phenylcarbonylamino), a sulfonylamino group ( Preferably, it has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include methanesulfonylamino-containing benzenesulfonylamino, etc.), sulfamoyl group (preferably carbon The number is 0 to 20, more preferably 0 to 16, and particularly preferably 0 to 12, and examples thereof include sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, phenylsulfamoyl and the like.
  • a carbamoyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably carbon number:! To 12), for example, rubamoyl, methylcarbamoyl, jetylcarbamoyl, Examples include phenylcarbamoyl.
  • An alkylthio group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio, ethylthio, etc.), an arylthio group (preferably).
  • substituents include imidazolyl, pyridyl, quinolinole, frinoleole. , Phenyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzothiazolyl, carbazolyl, etc.), silyl group (preferably 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably , Having 3 to 24 carbon atoms, such as trimethylsilyl, triphenylsilyl, etc.). These substituents may be further substituted. When there are two or more substituents, they may be the same or different. If possible, they may be linked to each other to form a ring.
  • the polyarylamine of the present invention is preferably an organic EL device material, and is particularly suitable for a hole transport material for an organic EL device and a hole injection material for an organic EL device.
  • the polyarylamine of the present invention can be used as a hole injection material or a hole transport material, but a compound having a phenylenediamine skeleton is a hole injection material, and a compound having a diphenylenediamine skeleton is a hole injection material. It is preferable to use it as a transport material.
  • the hole transport material and the hole injection material of the EL device of the present invention are formed by a wet process.
  • the light emitting layer of the organic electoluminescence device of the present invention is mainly selected from an anthracene derivative, a pyrene derivative and / or a fluorene derivative. Suitable anthracene derivatives, pyrene derivatives and / or fluorene derivatives are shown below. [Chemical 4]
  • a 1 and A 2 are aryl groups having 6 to 50 nuclear carbon atoms which may have a substituent, or heteroaryls having 5 to 50 nuclear atoms which may have a substituent. It is a group. A 1 and A 2 are not the same. n is an integer of 1 or 2.
  • a 3 to A 5 are aryl groups having 6 to 50 nuclear carbon atoms which may have a substituent, or 5 to 50 nuclear atoms optionally having a substituent. This is a heteroaryl group.
  • a 3 to A 5 may be the same or different.
  • a 6 and A 7 are anthracenylene or pyrenylene.
  • a 6 and A 7 may be the same or different.
  • m is an integer between :!
  • R 1 and R 2 may be the same or different and are hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • R 3 and R 4 may be the same or different hydrogen, a phenyl group or a biphenyl group substituted with an alkyl group having 1 to 6 carbon atoms. It is.
  • a 6 and A 7 are the same, R 1 and R 2 are the same, and are an alkyl group having 4 to 10 carbon atoms, and R 3 and R 4 are the same.
  • L and L ' are each a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalenylene group, a substituted or unsubstituted fluorenylene group, a substituted or unsubstituted dibenzosilolylene. It is a group.
  • a 8 and A 9 are each a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • p and q are integers from 0 to 2
  • r is an integer from:! to 4
  • s is an integer from 0 to 4.
  • the above-described anthracene derivative, pyrene derivative and / or fluorene derivative can be used as a host material. Furthermore, it is preferable to contain a styrylamine compound and / or an arylamine compound as a dopant contained in the light emitting layer.
  • Ar 1 is a group selected from a phenyl group, a biphenyl group, a terphenyl group, a stilbene group, and a distyryl group.
  • Ar 2 and Ar 3 are each a hydrogen atom or a carbon number of 6 to 20). Is an aromatic group, and eight to eight! " 3 may be substituted.
  • P is an integer of 1 to 4. More preferably, at least one of Ar 2 or Ar 3 is substituted with a styryl group.
  • examples of the aromatic group having 6 to 20 carbon atoms include a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, and a terphenyl group.
  • arylamine compound a compound represented by the following formula (2) is preferable.
  • Ar 4 to Ar 6 are substituted or unsubstituted aryl groups having 5 to 40 nuclear atoms.
  • examples of the aryl group having 5 to 40 nucleus atoms include, for example, phenyl group, naphthyl group, chrysenyl group, naphthacenyl group, anthranyl group, phenanthryl group, pyrenyl group, cololinole group, biphenyl group.
  • Preferred substituents for the aryl group include alkyl groups having 1 to 6 carbon atoms (ethyl group, methyl group, isopropyl group, n propyl group, s butyl group, t butyl group, pentyl group, hexyl group, cyclopentyl group).
  • the light emitting layer of the EL device of the present invention can be formed by wet as well as vapor deposition of the light emitting material.
  • a coating method such as a dubbing method, a spin coating method, a casting method, a bar coating method, or a mouth coating method can be applied. .
  • solvent used in this wet film formation examples include halogenated hydrocarbon solvents such as dichloromethane, dichloroethane, chlorophenol, carbon tetrachloride, tetrachloroethane, trichloroethane, black benzene, dichlorobenzene, chlorotolenene, Ethereal solvents such as butyl ether, tetrahydrofuran, dioxane, and anisole, alcohols such as methanol, ethanol, propanol, butanol, pentanole, hexanol, cyclohexanol, methinorescerosolev, ethinorescerosolev, ethylene glycol Solvents, benzene, toluene, xylene, ethylbenzene, tetralin, dodecylbenzene, hexane, octane, decane and other hydrocarbon solvents, ethoxy
  • the element configuration of the organic EL element can be exemplified by the following configuration. However, it is not limited to these.
  • the hole injection / transport layer is a layer that assists hole injection into the light-emitting layer and transports it to the light-emitting region, and has a high ion mobility and a small ionization energy of 5.5 eV or less. .
  • a material that transports holes to the light-emitting layer with a lower electric field strength is preferred as such a hole injection / transport layer.
  • the mobility force of holes is, for example, 10 4 ⁇ : When applying an electric field of OV / cm, At least 10 4 cm 2 ZV.
  • the material for forming the hole injection / transport layer preferably contains the polyarylamine of the present invention.
  • the polyarylamine of the present invention has been used as a charge transport material for holes in photoconductive materials, and used as a hole injection layer for organic EL devices.
  • Any known medium force can be selected and used.
  • Polysulfonic acid (PEDOT'PSS) and the like specific examples include triazole derivatives (see US Pat. No.
  • polysilane JP-A-2-204996
  • aniline-based copolymer examples thereof include conductive polymer oligomers (particularly thiophene oligomers) disclosed in JP-A-2-282263 and JP-A1-211399.
  • Porphyrin compound, aromatic tertiary amine compound and styrylamine compound (US Pat. No. 4,127, 412) Specification, JP-A-53-27033, 54-58445, 54-149634, 54-64299, 55-79450, 55-144250, 5 6-119132, 61-295558, 61-98353, 63-295, 695, etc.), in particular, aromatic tertiary amine compounds are preferably used.
  • NPD Bifurinole
  • MTDATA tris (N, which is composed of three triphenylamine units described in JP-A-4-308688 connected in a starburst type) — (3-Methylphenyl) -N-phenylamino) triphenylamine
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the material for the hole injection layer.
  • the hole injection / transport layer may be composed of one or two or more layers of the above-mentioned materials, or a layer in which a hole injection / transport layer composed of another compound is laminated. You can do it.
  • the organic semiconductor layer is a layer for helping the injection of holes or electrons into the emitting layer, and an 10- 1Q S ZCM more conductivity is preferred.
  • Examples of the material of such an organic semiconductor layer include thiophene oligomers, conductive oligomers such as arylamine amines disclosed in JP-A-8-193191, and conductive materials such as arylamine dendrimers. Dendrimers and the like can be used.
  • the electron injection layer is a layer that assists the injection of electrons into the light emitting layer, and has a high electron mobility
  • the adhesion improving layer is made of a material that has particularly good adhesion to the cathode among the electron injection layers. It is a layer.
  • As a material used for the electron injecting layer 8-hydroxyquinoline, a metal complex of the derivative thereof, a oxadiazole derivative is preferable.
  • metal complex of 8-hydroxyquinoline or a derivative thereof include metal chelate oxinoid compounds containing a chelate of oxine (generally 8_quinolinol or 8-hydroxyquinoline).
  • metal chelate oxinoid compounds containing a chelate of oxine generally 8_quinolinol or 8-hydroxyquinoline.
  • tris (8-quinolinol) aluminum (Alq) can be used for the electron injection layer.
  • examples of the oxadiazole derivative include an electron transfer compound represented by the following formula.
  • Ar 1 ′, Ar 2 ′, A, Ar 5 ′, Ar 6 ′, and Ar 9 each represent a substituted or unsubstituted aryl group, which may be the same or different from each other.
  • Ar 4 ′, Ar 7 ′ and Ar 8 ′ represent a substituted or unsubstituted arylene group, which may be the same or different from each other.
  • the aryl group is a phenyl group, Biphenyl group, anthranyl group, perylenyl group, pyrenyl group and the like can be mentioned.
  • Examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group.
  • examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyan group. This electron transfer compound is preferably a thin film-forming compound.
  • electron transfer compound include the following.
  • an organic EL device it is possible to effectively prevent leakage of electric current and improve electron injection properties by further providing an electron injection layer composed of an insulator or a semiconductor between the cathode and the organic layer. That power S.
  • At least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides may be used. preferable. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferred alkali metal chalcogenides include, for example, LiO, K0, NaS, NaSe, and NaO.
  • Preferred alkaline earth metal chalcogenides include, for example, CaO, BaO, SrO, Be. ⁇ BaS and CaSe are listed.
  • Preferred alkali metal halides include, for example, LiF, NaF, KF, LiCl, KC1, and NaCl.
  • Examples of preferable alkaline earth metal halides include fluorides such as CaF, BaF, SrF, MgF and BeF, and halides other than fluorides.
  • the semiconductor Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta,
  • the inorganic compound constituting the electron transport layer is preferably a microcrystalline or amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed. Pixel defects such as spots can be reduced. Examples of such inorganic compounds include the aforementioned alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides.
  • an organic EL element applies an electric field to an ultra-thin film, pixel defects are likely to occur due to leakage or short circuit. In order to prevent this, it is preferable to insert an insulating thin film layer between the pair of electrodes.
  • Examples of the material used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, oxidizing power, ruthenium, calcium fluoride, aluminum nitride, titanium oxide, Examples thereof include silicon oxide, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide. Moreover, you may use these mixtures and laminates.
  • each organic layer forming the organic thin film layer of the organic EL device of the present invention is not particularly limited. Generally, if the film thickness is too thin, defects such as pinholes are generated, or if the film is too thick. Usually, the range of a few nm to lxm is preferred because a high applied voltage is required and the efficiency becomes poor.
  • the anode of the organic EL element plays a role of injecting holes into the hole injection / transport layer or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
  • the anode material tin-doped indium oxide alloy (ITO), tin oxide (NESA), gold, silver, platinum, copper and the like can be applied.
  • the anode can be produced by forming a thin film from these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance of the anode for light emission is preferably greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / mouth or less.
  • the film thickness of the anode is a force depending on the material, and is usually selected in the range of 10 nm to l x m, preferably 10 to 200 nm.
  • the cathode of the organic EL element plays a role of injecting electrons into the electron injection / transport layer or the light emitting layer, and has a low work function (4 eV or less) metal, alloy, electrically conductive compound, and a mixture thereof.
  • Specific examples of such electrode materials and Examples thereof include sodium, sodium-potassium alloy, magnesium, lithium, magnesium silver alloy, aluminum / aluminum oxide, aluminum lithium alloy, indium, and rare earth metals.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • a method such as vapor deposition or sputtering.
  • the transmittance of the cathode for light emission is greater than 10%.
  • the sheet resistance as a cathode is preferably several hundred ⁇ / mouth or less, and the film thickness is usually 10 nm to l zm, preferably 50 to 2 OOnm.
  • an organic EL element is produced on a light-transmitting substrate.
  • the translucent substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include soda lime glass, barium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyethersulfide, and polysulfone.
  • a glass substrate having a thickness of 25 mm ⁇ 75 mm ⁇ 1.1 mm and having an ITO transparent electrode (Zomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
  • Polyethylene dioxythiophene ⁇ polystyrene sulfonic acid (PEDOT ⁇ PSS) used for the hole injection layer was formed on the substrate by spin coating to a thickness of 1 OOnm.
  • a hole transport layer having a thickness of 20 nm was formed by spin coating with a toluene solution (0.6 wt%) of the following polymer 1 (molecular weight: 145000) and dried at 170 ° C. for 30 minutes.
  • Alq film 8-quinolinol aluminum film
  • Alq Li film
  • metal A1 was vapor-deposited to form a metal cathode to form an organic EL light emitting device. This device emits blue light.
  • Table 1 shows the voltage and luminous efficiency (cdZ A) at 100 cd / m 2 , and the luminance half time at the initial luminance lOOOcdZm 2 .
  • a device was prepared in the same manner as in Example 1 except that polymer 2 (molecular weight: 14000) was used instead of polymer 1. The results are shown in Table 1.
  • a device was produced in the same manner as in Example 1 except that polymer 4 (molecular weight: 270000) was used instead of polymer 1. The results are shown in Table 1.
  • a device was prepared in the same manner as in Example 1 except that polymer 5 (molecular weight: 16000) was used instead of polymer 1. The results are shown in Table 1.
  • a device was fabricated in the same manner as in Example 1 except that polymer 6 (molecular weight: 43000) was used instead of polymer 1. The results are shown in Table 1.
  • a device was prepared in the same manner as in Example 1 except that Compound C was used instead of Compound A. The results are shown in Table 2.
  • a device was prepared in the same manner as in Example 1 except that Compound D was used instead of Compound A. The results are shown in Table 2.
  • a device was prepared in the same manner as in Example 1 except that Compound E was used instead of Compound A. The results are shown in Table 2.
  • a device was prepared in the same manner as in Example 1 except that Compound F was used instead of Compound A. The results are shown in Table 2.
  • a device was prepared in the same manner as in Example 1 except that Compound F was used instead of Compound A. The results are shown in Table 2.
  • a glass substrate having a thickness of 25 mm ⁇ 75 mm ⁇ 1.1 mm and having an ITO transparent electrode (Zomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
  • Polyethylene dioxythiophene ⁇ polystyrene sulfonic acid (PEDOT ⁇ PSS) used for the hole injection layer was formed on the substrate by spin coating to a thickness of 1 OOnm.
  • a hole transport layer having a thickness of 20 nm was formed by spin coating with a toluene solution (0.6 wt%) of polymer 1 (molecular weight: 145000), and dried at 170 ° C. for 30 minutes.
  • the film thickness at this time was 50 nm.
  • a 10 nm thick tris (8-quinolinol) aluminum film (hereinafter abbreviated as “Alq film”) was formed on this film.
  • This Alq film functions as an electron transport layer.
  • Li Li source: manufactured by SAES Getter Co., Ltd.
  • Alq were binary evaporated to form an Alq: Li film as an electron injection layer (cathode).
  • Alq Li film
  • metal A1 was deposited to form a metal cathode, and an organic EL light emitting device was formed. This device emits blue light.
  • Table 3 shows the voltage and luminous efficiency (cd / A) at lOOcdZm 2 and the luminance half time at an initial luminance of 1000 cd / m 2 .
  • a device was fabricated in the same manner as in Example 9 except that polymer 3 (molecular weight: 50000) was used instead of polymer 1. The results are shown in Table 3.
  • a device was prepared in the same manner as in Example 9 except that compound C was used instead of compound A. At this time, the device emitted blue light, the voltage at lOOcdZm 2 was 5.5 V, and the light emission efficiency was 5.8 cd / A.
  • a device was prepared in the same manner as in Example 9 except that Compound E was used instead of Compound A. At this time, the device emitted blue light, the voltage at lOOcdZm 2 was 5.5 V, and the light emission efficiency was 5.2 cd / A.
  • the aromatic amine compound of the present invention can be formed by wet process film having high solubility, and the organic EL device using the film exhibits various emission hues.
  • the aromatic amine compound of the present invention which has high heat resistance, is used as a hole injecting / transporting material, the hole injecting / transporting property is high, the light emitting luminance and the light emitting efficiency are high, and the life is long.
  • the organic EL device of the present invention is useful as a light source such as a flat light emitter of a wall-mounted television and a backlight of a display, which are highly practical.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 一層以上の有機化合物層を陽極と陰極で構成された一対の電極で挟持してなる有機EL素子において、有機化合物層が正孔輸送層及び/又は正孔注入層を有し、特定構造を有するポリアリールアミンが該正孔輸送層及び/又は正孔注入層に含有されることによって、ポリアリールアミンを用いた有機エレクトロルミネッセンス素子を提供し、特に、製造プロセスの簡素化、大画面化、及び素子性能の向上を実現する。

Description

明 細 書
ポリアリールアミンを用いた有機エレクト口ルミネッセンス素子
技術分野
[0001] 本発明は有機エレクト口ルミネッセンス分野に関し、詳しくは正孔注入層又は輸送 層に特定のポリマーが使用され、発光層には特定の低分子材料を用いることによつ て作製された有機エレクト口ルミネッセンス素子に関するものである。
本発明の有機エレクト口ルミネッセンス素子は、フラットパネルディスプレイ等の平面 発光体、複写機、プリンター、液晶ディスプレイのバックライト又は計器類等の光源、 表示板、標識灯等に利用できる。
背景技術
[0002] 有機エレクト口ルミネッセンス素子(以下エレクト口ルミネッセンスを ELと略記すること がある)はポリフルオレンや可溶性 PPV (ポリ(p-フエ二レンビニレン) )などのポリマー を用い、スピンコーティングやインクジェット等の湿式法と、低分子材料を用いた真空 蒸着等の乾式法により作製される。特に、上記の作製法においては湿式法のほうが 表示画面の大面積化が比較的に容易であり、ポリマー材料を用いた有機 EL素子作 製の研究が精力的に進められている。最近では、複数の有機薄膜層を有する有機 E L素子を湿式法で作製したことが開示されており、この特許では正孔注入層および発 光層がともにポリマー材料で構成されている(例えば、特許文献 1参照)。
しかし、ポリマー材料は分子量分布を有し、また、精製が困難で高純度化しづらい 等の欠点があり、有機 EL素子の発光層に用いた場合、発光色の色純度や発光効率 、輝度や輝度半減時間に問題があった。
一方、低分子材料は公知の精製方法で高純度化が容易であり、有機 EL素子の発 光層に用いた場合ではポリマーに比べて発光色の色純度や発光効率、輝度に優れ 、輝度半減時間も長いことが長所としてあげられる。し力 ながら、発光層に隣接する 正孔注入層又は正孔輸送層を構成する材料によっては、良好な発光性能を示さな い場合もあった。
特許文献 1:国際公開 WO2004/84260号公報 発明の開示
発明が解決しょうとする課題
[0003] 本発明は、前記の課題を解決するためになされたもので、ポリアリールアミンを用い た有機エレクト口ルミネッセンス素子を提供することを目的とし、特に、製造プロセスの 簡素化、大画面化、及び素子性能の向上を提供することを目的とする。
課題を解決するための手段
[0004] 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、少なくとも発光 層を含む一層以上の有機化合物層を陽極と陰極で構成された一対の電極で挟持し てなる有機 EL素子において、有機化合物層が正孔輸送層及び/又は正孔注入層 を有し、下記一般式(1)で示されるポリアリールァミンが該正孔輸送層及び/又は正 孔注入層に含有される有機エレクト口ルミネッセンス素子が前記の目的を達成するこ とを見出し、本発明を完成させたものである。
[化 1]
Figure imgf000003_0001
一般式(1)中、 Arは、それぞれ独立に置換もしくは無置換の炭素数 6〜40のァリ ール基、又は置換もしくは無置換の炭素数 3〜40のへテロアリール基である。 Ar〜
1
Arは、それぞれ独立に置換もしくは無置換の炭素数 6〜40の 2価のァリーレン基で
4
ある。 a、 b、 c及び dは、それぞれ独立に 1〜2の整数であり、 eは 0〜2の整数である。 nは 3以上の整数である。
[0005] また、本発明は、前記正孔輸送層及び/又は正孔注入層が主として前記ポリアリ ールァミンを含有する前記有機エレクト口ルミネッセンス素子、発光層が主としてアン トラセン誘導体、ピレン誘導体及び/又はフルオレン誘導体から選ばれる前記有機ェ レクト口ルミネッセンス素子、発光層にドーパントを含む前記有機エレクト口ルミネッセ ンス素子、正孔輸送層及び/又は正孔注入層を湿式成膜し、発光層を湿式成膜す る前記有機エレクト口ルミネッセンス素子、及び正孔輸送層及び Z又は正孔注入層 を湿式成膜し、発光層を蒸着により成膜する前記有機エレクト口ルミネッセンス素子を 提供するものである。
発明の効果
[0006] 低分子材料からなる発光層を有する有機エレクト口ルミネッセンス素子において、特 定の構造を有するポリアリールアミンを正孔輸送、注入層に使用することで素子性能 を向上させることができた。
図面の簡単な説明
[0007] [図 1]本発明の有機 EL素子の一実施形態を示す断面図である。
符号の説明
[0008] 10 陽極
20 有機化合物層
21 正孔注入層
22 正孔輸送層
23 発光層
24 電子輸送層
25 電子注入層
30 陰極
発明を実施するための最良の形態
[0009] 本発明の有機エレクト口ルミネッセンス素子は、少なくとも発光層を含む一層以上の 有機化合物層を陽極と陰極で構成された一対の電極で挟持してなる有機 EL素子に おいて、有機化合物層が正孔輸送層及び/又は正孔注入層を有し、下記一般式(1 )で示されるポリアリールアミンを該正孔輸送層及び/又は正孔注入層に含有するも のである。
[化 2]
Figure imgf000005_0001
一般式(1)中、 Arは置換もしくは無置換の炭素数 6〜40のァリール基、又は置換も しくは無置換の炭素数 3〜40のへテロアリール基であり、 Ar
1〜Arは、それぞれ独立 4
に置換もしくは無置換の炭素数 6〜40の 2価のァリーレン基である。 a、 b、 c及び dは 、それぞれ独立に 1〜2の整数であり、 eは 0〜2の整数である。 nは 3以上の整数であ る。
[0010] 一般式(1)において、 Arの核炭素数 6〜40のァリール基の例としては、フヱニル基 、 2 ピ'フエユリノレ基、 3 ピ'フエユリノレ基、 4ーピ'フエユリノレ基、テノレフエ二ノレ基、 3, 5 —ジフエユルフェニル基、 3, 5—ジ(1—ナフチル)フエニル基、 3, 5—ジ(2 ナフチ ノレ)フエニル基、 3, 4—ジフエユルフェニル基、ペンタフェユルフェニル基、 4_ (2, 2 —ジフエ二ルビニル)フエニル基、 4_ (1, 2, 2 _トリフエ二ルビニル)フエニル基、フ ノレオレニル基、 1 _ナフチル基、 2 _ナフチル基、 4_ (1—ナフチノレ)フエニル基、 4 _ (2 ナフチル)フエニル基、 3 _ (1 _ナフチル)フエニル基、 3 _ (2 ナフチル)フ ェニル基、 9 _アントリル基、 2 _アントリル基、 9—フエナントリル基、 1—ピレニル基、 クリセ二ル基、ナフタセニル基、コロニル基等が挙げられる。
[0011] 一般式(1)において、 Arの核炭素数 3〜40のへテロアリール基の例としては、 1 ピロリル基、 2 ピロリル基、 3 ピロリル基、ビラジニル基、ピリミジル基、ピリダジル基 、 2 ピリジニノレ基、 3 ピリジニノレ基、 4 ピリジニノレ基、 1 ンドリノレ基、 2 ンド リル基、 3—インドリル基、 4 インドリル基、 5—インドリル基、 6—インドリル基、 7—ィ ンドリル基、 1 イソインドリル基、 2 イソインドリル基、 3 イソインドリル基、 4 イソ インドリル基、 5 イソインドリル基、 6 イソインドリル基、 7 イソインドリル基、 2 フリ ル基、 3 フリノレ基、 2 べンゾフラニル基、 3 べンゾフラニル基、 4 ベンゾフラ二 ル基、 5—べンゾフラニル基、 6—べンゾフラニル基、 7—べンゾフラニル基、 1 イソ ベンゾフラニル基、 3—イソべンゾフラニル基、 4 イソべンゾフラニル基、 5—イソベン ゾフラニル基、 6—イソべンゾフラニル基、 7—イソべンゾフラニル基、キノリノレ基、 3— キノリノレ基、 4ーキノリノレ基、 5—キノリノレ基、 6—キノリノレ基、 7—キノリノレ基、 8—キノリ ル基、 1 _イソキノリノレ基、 3_イソキノリル基、 4_イソキノリノレ基、 5_イソキノリノレ基、 6 _イソキノリル基、 7_イソキノリノレ基、 8 _イソキノリル基、 2_キノキサリニル基、 5_ キノキサリニル基、 6 _キノキサリニル基、 1 _フエナントリジニル基、 2—フエナントリジ ニル基、 3—フエナントリジニル基、 4—フエナントリジニル基、 6—フエナントリジニル 基、 7—フエナントリジニル基、 8—フエナントリジニル基、 9—フエナントリジニル基、 1 0_フエナントリジニル基、 1—アタリジニノレ基、 2—アタリジニノレ基、 3—アタリジニル 基、 4—アタリジニノレ基、 9—アタリジニノレ基、 1 , 7—フエナント口リンー2—ィノレ基、 1,
7—フエナント口リン 3—ィノレ基、 1 , 7—フエナント口リン 4ーィノレ基、 1 , 7—フエナ ントロリン一 5—ィル基、 1 , 7—フエナント口リン一 6—ィル基、 1 , 7—フエナント口リン 8—ィノレ基、 1, 7—フエナント口リンー9ーィノレ基、 1, 7—フエナント口リン 10—ィ ル基、 1, 8 フエナント口リン一 2—ィル基、 1, 8 フエナント口リン一 3—ィル基、 1 ,
8—フエナント口リンー4ーィノレ基、 1 , 8—フエナント口リンー5—ィノレ基、 1 , 8—フエナ ントロリン一 6—ィル基、 1 , 8—フエナント口リン一 7—ィル基、 1 , 8—フエナント口リン —9—ィル基、 1, 8—フエナント口リン一 10—ィル基、 1, 9—フエナント口リン一 2—ィ ル基、 1, 9—フエナント口リン一 3—ィル基、 1, 9—フエナント口リン一 4—ィル基、 1 ,
9 フエナント口リンー5—ィノレ基、 1 , 9 フエナント口リンー6—ィノレ基、 1 , 9 フエナ ントロリン一 7—ィル基、 1 , 9—フエナント口リン一 8—ィル基、 1 , 9—フエナント口リン —10—ィノレ基、 1, 10—フエナント口リン一 2—ィノレ基、 1, 10—フエナント口リン一 3 —ィノレ基、 1, 10—フエナント口リン _4—ィノレ基、 1, 10—フエナント口リン _ 5—ィノレ 基、 2, 9_フエナント口リン一 1—ィノレ基、 2, 9 _フエナント口リン一 3—ィノレ基、 2, 9 —フエナント口リン一 4—ィノレ基、 2, 9_フエナント口リン一 5—ィノレ基、 2, 9_フエナ ントロリン一 6—ィル基、 2, 9—フエナント口リン一 7—ィル基、 2, 9—フエナント口リン _8—ィル基、 2, 9 _フエナント口リン一10—ィル基、 2, 8 _フエナント口リン _ 1—ィ ノレ基、 2, 8—フエナント口リン一 3—ィル基、 2, 8—フエナント口リン一 4—ィル基、 2, 8 _フエナント口リン _ 5—ィノレ基、 2, 8_フエナント口リン _6—ィノレ基、 2, 8_フエナ ントロリン一 7—ィル基、 2, 8—フエナント口リン一 9—ィル基、 2, 8—フエナント口リン — 10 ィル基、 2, 7 フエナント口リン一 1—ィル基、 2, 7 フエナント口リン一 3 ィ ノレ基、 2, 7 フエナント口リン一 4 ィル基、 2, 7 フエナント口リン一 5 ィル基、 2, 7_フエナント口リン _ 6—ィノレ基、 2, 7_フエナント口リン _8—ィノレ基、 2, 7_フエナ ントロリン _ 9—ィル基、 2, 7_フエナント口リン—10—ィル基、 1—フエナジニル基、 2 _フエナジニル基、 1—フエノチアジニル基、 2—フエノチアジニル基、 3 _フエノチ アジニル基、 4_フヱノチアジニル基、 10 フヱノチアジニル基、 1—フエノキサジニ ル基、 2—フヱノキサジニル基、 3—フヱノキサジニル基、 4—フヱノキサジニル基、 10 —フエノキサジニル基、 2—ォキサゾリル基、 4—ォキサゾリル基、 5—ォキサゾリル基 、 2 ォキサジァゾリル基、 5 ォキサジァゾリル基、 3 フラザニル基、 2 チェニル 基、 3 チェニル基、 2 メチルピロ一ルー 1ーィル基、 2 メチルピロ一ルー 3—ィル 基、 2 メチルピロ一ルー 4ーィル基、 2 メチルピロ一ルー 5—ィル基、 3—メチルビ ロール 1ーィル基、 3 メチルピロ一ルー 2—ィル基、 3 メチルピロ一ルー 4ーィル 基、 3 メチルピロ一ルー 5—ィル基、 2— t ブチルピロ一ルー 4ーィル基、 3—(2— フエニルプロピノレ)ピロ一ルー 1ーィル基、 2—メチルー 1 インドリノレ基、 4ーメチルー 1 インドリル基、 2—メチルー 3 インドリル基、 4ーメチルー 3 インドリル基、 2— t ーブチルー 1 インドリル基、 4 tーブチルー 1 インドリル基、 2— tーブチノレー 3— インドリル基、 4 tーブチルー 3—インドリル基等が挙げられる。
[0012] —般式(1)において、置換もしくは無置換の炭素数 6〜40の 2価のァリーレン基で ある Ar〜Arの例としては、前記 Arの核炭素数 6
4 〜40のァリール基の例からいずれ
1
力の水素原子を取り去った構造のものが挙げられる。
[0013] 一般式(1)において、 Ar及び Ar〜Arであるァリール基、ァリーレン基、ヘテロァリ
1 4
ール基の置換基としては、例えば、アルキル基 (好ましくは炭素数 1〜20、より好まし くは炭素数 1〜: 12、特に好ましくは炭素数 1〜8であり、例えばメチル、ェチル、イソプ ロピノレ、 t—ブチル、 n_オタチル、 n—デシル、 n_へキサデシル、シクロプロピル、シ クロペンチル、シクロへキシル等が挙げられる。)、アルケニル基(好ましくは炭素数 2 〜20、より好ましくは炭素数 2〜12、特に好ましくは炭素数 2〜8であり、例えばビニ ノレ、ァリル、 2—ブテュル、 3_ペンテュル等が挙げられる。)、アルキニル基(好ましく は炭素数 2〜20、より好ましくは炭素数 2〜12、特に好ましくは炭素数 2〜8であり、 例えばプロパルギル、 3—ペンチュル等が挙げられる。)、アミノ基(好ましくは炭素数 0〜20、より好ましくは炭素数 0〜12、特に好ましくは炭素数 0〜6であり、例えばアミ ノ、メチノレァミノ、ジメチルァミノ、ジェチルァミノ、ジフエニルァミノ、ジベンジルァミノ 等が挙げられる。)、アルコキシ基 (好ましくは炭素数 1〜20、より好ましくは炭素数 1 〜12、特に好ましくは炭素数 1〜8であり、例えばメトキシ、エトキシ、ブトキシ等が挙 げられる。)、ァリールォキシ基 (好ましくは炭素数 6〜 20、より好ましくは炭素数 6〜1 6、特に好ましくは炭素数 6〜: 12であり、例えばフエニルォキシ、 2_ナフチルォキシ 等が挙げられる。)、アシノレ基 (好ましくは炭素数 1〜20、より好ましくは炭素数 1〜: 16 、特に好ましくは炭素数 1〜: 12であり、例えばァセチル、ベンゾィル、ホルミル、ビバ ロイル等が挙げられる。)、アルコキシカルボニル基(好ましくは炭素数 2〜20、より好 ましくは炭素数 2〜16、特に好ましくは炭素数 2〜: 12であり、例えばメトキシカルボ二 ル、エトキシカルボニル等が挙げられる。)、ァリールォキシカルボニル基(好ましくは 炭素数 7〜20、より好ましくは炭素数 7〜16、特に好ましくは炭素数 7〜: 10であり、例 えばフエニルォキシカルボニルなどが挙げられる。)、ァシルォキシ基(好ましくは炭 素数 2〜20、より好ましくは炭素数 2〜16、特に好ましくは炭素数 2〜: 10であり、例え ばァセトキシ、ベンゾィルォキシ等が挙げられる。)、アシノレアミノ基(好ましくは炭素 数 2〜20、より好ましくは炭素数 2〜16、特に好ましくは炭素数 2〜: 10であり、例えば ァセチルァミノ、ベンゾィルァミノ等が挙げられる。)、アルコキシカルボニルァミノ基( 好ましくは炭素数 2〜20、より好ましくは炭素数 2〜16、特に好ましくは炭素数 2〜: 12 であり、例えばメトキシカルボニルァミノ等が挙げられる。)、ァリールォキシカルボ二 ルァミノ基 (好ましくは炭素数 7〜20、より好ましくは炭素数 7〜16、特に好ましくは炭 素数 7〜12であり、例えばフエニルォキシカルボニルァミノ等が挙げられる。)、スル ホニルァミノ基 (好ましくは炭素数 1〜20、より好ましくは炭素数 1〜16、特に好ましく は炭素数 1〜 12であり、例えばメタンスルホニルアミ入ベンゼンスルホニルァミノ等 が挙げられる。)、スルファモイル基 (好ましくは炭素数 0〜20、より好ましくは炭素数 0 〜16、特に好ましくは炭素数 0〜12であり、例えばスルファモイル、メチルスルファモ ィル、ジメチルスルファモイル、フエニルスルファモイル等が挙げられる。)、カルバモ ィル基 (好ましくは炭素数 1〜20、より好ましくは炭素数 1〜16、特に好ましくは炭素 数:!〜 12であり、例えば力ルバモイル、メチルカルバモイル、ジェチルカルバモイル、 フエ二ルカルバモイル等が挙げられる。)、アルキルチオ基(好ましくは炭素数 1〜20 、より好ましくは炭素数 1〜16、特に好ましくは炭素数 1〜: 12であり、例えばメチルチ ォ、ェチルチオ等が挙げられる。)、ァリールチオ基 (好ましくは炭素数 6〜20、より好 ましくは炭素数 6〜 16、特に好ましくは炭素数 6〜: 12であり、例えばフエ二ルチオ等 が挙げられる。)、スルホニル基 (好ましくは炭素数 1〜20、より好ましくは炭素数 1〜 16、特に好ましくは炭素数 1〜: 12であり、例えばメシル、トシノレ等が挙げられる。)、ス ルフィニル基 (好ましくは炭素数 1〜20、より好ましくは炭素数 1〜16、特に好ましくは 炭素数:!〜 12であり、例えばメタンスルフィエル、ベンゼンスルフィエル等が挙げられ る。)、ウレイド基 (好ましくは炭素数 1〜20、より好ましくは炭素数 1〜16、特に好まし くは炭素数 1〜 12であり、例えばウレイド、メチルウレイド、フエニルウレイド等が挙げ られる。)、リン酸アミド基 (好ましくは炭素数 1〜20、より好ましくは炭素数 1〜16、特 に好ましくは炭素数 1〜: 12であり、例えばジェチルリン酸アミド、フエニルリン酸アミド 等が挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩 素原子、臭素原子、ヨウ素原子)、シァノ基、スルホ基、カルボキシル基、ニトロ基、ヒ ドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基 (好ましくは炭素数 1 〜30、より好ましくは炭素数 1〜: 12であり、ヘテロ原子としては、例えば窒素原子、酸 素原子、硫黄原子を含むものであり具体的には例えばイミダゾリル、ピリジル、キノリ ノレ、フリノレ、チェニル、ピペリジル、モルホリノ、ベンゾォキサゾリル、ベンゾイミダゾリ ル、ベンゾチアゾリル、カルバゾリル等が挙げられる。)、シリル基(好ましくは炭素数 3 〜40、より好ましくは炭素数 3〜30、特に好ましくは炭素数 3〜24であり、例えばトリ メチルシリル、トリフエニルシリル等が挙げられる。)等が挙げられる。これらの置換基 は更に置換されても良レ、。また置換基が二つ以上ある場合は、同一でも異なってい ても良い。また、可能な場合には互いに連結して環を形成していても良い。
[0014] 本発明の一般式(1)で表されるポリアリールァミンの好ましい具体例を以下に示す 力 これら例示化合物に限定されるものではない。
[0015] [化 3]
Figure imgf000010_0001
[0016] 本発明のポリアリールアミンは、有機 EL素子用材料であると好ましぐ特に、有機 E L素子用正孔輸送材料及び有機 EL素子用正孔注入材料に適している。
また、本発明のポリアリールアミンは、正孔注入材料としても正孔輸送材料としても 使用できるが、フエ二レンジァミン骨格を持つ化合物は正孔注入材料として、ジフエ 二レンジァミン骨格を持つ化合物は正孔輸送材料として用いると好ましい。
本発明の EL素子の正孔輸送材料及び正孔注入材料は湿式で成膜することが好ま しい。
[0017] 本発明の有機エレクト口ルミネッセンス素子の発光層は主としてアントラセン誘導体 、ピレン誘導体及び/又はフルオレン誘導体から選ばれる。好適なアントラセン誘導 体、ピレン誘導体及び/又はフルオレン誘導体を以下に示す。 [化 4]
Figure imgf000011_0001
式 (I)中、 A1, A2は置換基を有していてもよい核炭素数 6〜50のァリール基、又は 置換基を有していてもよい核原子数 5〜50のへテロアリール基である。 A1及び A2は 同一ではない。 nは 1又は 2の整数である。
[0018] 式(II)中、 A3〜A5は置換基を有していてもよい核炭素数 6〜50のァリール基、又は 置換基を有していてもよい核原子数 5〜50のへテロアリール基である。 A3〜A5はそ れぞれ同一でも異なってレ、てもよレ、。
[0019] 式(III)中、 A6, A7はアントラセニレン又はピレニレンである。 A6及び A7は同一でも 異なっていてもよい。 mは:!〜 3の整数である。 R1, R2は、同一でも異なっていてもよく 、水素又は炭素数が 1〜: 10のアルキル基である。 R3, R4は、同一でも異なっていても よぐ水素、炭素数が 1〜6のアルキル基で置換されたフエニル基又はビフヱニル基 である。
好ましくは、 A6及び A7は同一であり、 R1及び R2は、同一であって、炭素数が 4〜: 10 のアルキル基であり、 R3及び R4は、同一である。
[0020] 式 (IV)中、 L, L'はそれぞれ置換もしくは無置換のフエ二レン基、置換もしくは無置 換のナフタレニレン基、置換もしくは無置換のフルォレニレン基、置換もしくは無置換 のジベンゾシロリレン基である。 A8, A9はそれぞれ置換もしくは無置換の核炭素数 6 〜50の芳香族基である。 p、 qは 0〜2の整数、 rは:!〜 4の整数、 sは 0〜4の整数であ る。
[0021] 本発明の有機エレクト口ルミネッセンス素子の発光層を作製するとき、ホスト材料とし て上述したアントラセン誘導体、ピレン誘導体及び/又はフルオレン誘導体を用いる こと力 Sできる。さらに、発光層に含まれるドーパントとして、スチリルァミン化合物及び /又はァリールァミン化合物を含有することが好ましい。
スチリルァミン化合物としては、下記式(1)で表されるものが好ましい。
[0022] [化 5]
Figure imgf000012_0001
(式中、 Ar1は、フエニル基、ビフエ二ル基、テルフエニル基、スチルベン基、ジスチリ ルァリール基から選ばれる基であり、 Ar2及び Ar3は、それぞれ水素原子又は炭素数 が 6〜20の芳香族基であり、八 〜八!"3は置換されてもよレ、。 pは、 1〜4の整数である 。さらに好ましくは Ar2又は Ar3の少なくとも一方はスチリル基で置換されている。 )
[0023] ここで、炭素数が 6〜20の芳香族基としては、フエニル基、ナフチル基、アントラニ ル基、フヱナントリル基、テルフヱニル基等が挙げられる。
[0024] ァリールアミンィ匕合物としては、下記式(2)で表されるものが好ましい。
[化 6]
Figure imgf000012_0002
( 2 )
(式中、 Ar4〜Ar6は、置換もしくは無置換の核原子数 5〜40のァリール基である。 q は、:!〜 4の整数である。 )
[0025] ここで、核原子数が 5〜40のァリール基としては、例えば、フエニル基、ナフチル基 、クリセ二ル基、ナフタセニル基、アントラニル基、フエナントリル基、ピレニル基、コロ 二ノレ基、ビフヱニル基、テルフエニル基、ピロ一リル基、フラニル基、チオフヱニル基、 ベンゾチォフエニル基、ォキサジァゾリル基、ジフエ二ルアントラニル基、インドリル基 、カルバゾリル基、ピリジノレ基、ベンゾキノリル基、フルオランテュル基、ァセナフトフ ルオランテュル基、スチルベン基等が挙げられる。尚、ァリール基の好ましい置換基 としては、炭素数 1〜6のアルキル基(ェチル基、メチル基、イソプロピル基、 n プロ ピル基、 s ブチル基、 t ブチル基、ペンチル基、へキシル基、シクロペンチル基、 シクロへキシル基等)、炭素数 1〜6のアルコキシ基(エトキシ基、メトキシ基、イソプロ ポキシ基、 n プロポキシ基、 s ブトキシ基、 t ブトキシ基、ペントキシ基、へキシル ォキシ基、シクロペントキシ基、シクロへキシノレオキシ基等)、核原子数 5〜40のァリ ール基、核原子数 5〜40のァリール基で置換されたァミノ基、核原子数 5〜40のァリ 一ル基を有するエステル基、炭素数 1〜6のアルキル基を有するエステル基、シァノ 基、ニトロ基、ハロゲン原子等が挙げられる。
[0026] 本発明の EL素子の発光層は上記発光材料を蒸着ばかりではなぐ湿式でも成膜 できる。この発光層の湿式成膜、及び前記正孔輸送材料及び正孔注入材料の湿式 成膜には、デイツビング法、スピンコーティング法、キャスティング法、バーコート法、口 ールコート法等の塗布法が適用できる。また、この湿式成膜に用いる溶媒例としては 、ジクロロメタン、ジクロロェタン、クロロホノレム、四塩化炭素、テトラクロロェタン、トリク ロロェタン、クロ口ベンゼン、ジクロロベンゼン、クロロトノレェンなどのハロゲン系炭化 水素系溶媒や、ジブチルエーテル、テトラヒドロフラン、ジォキサン、ァニソールなどの エーテノレ系溶媒、メタノーノレやエタノーノレ、プロパノーノレ、ブタノーノレ、ペンタノ一ノレ、 へキサノーノレ、シクロへキサノーノレ、メチノレセロソノレブ、ェチノレセロソノレブ、エチレング リコールなどのアルコール系溶媒、ベンゼン、トルエン、キシレン、ェチルベンゼン、 テトラリン、ドデシルベンゼン、へキサン、オクタン、デカンなどの炭化水素系溶媒、酢 酸ェチル、酢酸プチル、酢酸ァミルなどのエステル系溶媒等が挙げられる。なかでも 、ハロゲン系炭化水素系溶媒や炭化水素系溶媒、エーテル系溶媒が好ましい。また 、これらの溶媒は単独で使用しても複数混合して用いてもよい。なお、使用可能な溶 媒はこれらに限定されるものではない。
[0027] 有機 EL素子の素子構成は、以下の構成を例示できる。しかし、これらに限定される ものではない。
(1)陽極 Z発光層 Z陰極
(2)陽極 Z正孔注入層 Z発光層 Z陰極
(3)陽極 Z発光層 Z電子注入層 Z陰極
(4)陽極/正孔注入層/発光層/電子注入層/陰極
(5)陽極/有機半導体層/発光層/陰極
(6)陽極/有機半導体層/電子障壁層/発光層/陰極
(7)陽極/有機半導体層/発光層/付着改善層/陰極
(8)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
(9)陽極/絶縁層/発光層/絶縁層/陰極
(10)陽極/無機半導体層/絶縁層/発光層/絶縁層/陰極
(11)陽極/有機半導体層/絶縁層/発光層/絶縁層/陰極
(12)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/絶縁層/陰極
(13)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/電子注入層/陰極 これらの中で通常(8)の構成が好ましく用いられる。
[0028] 正孔注入、輸送層は、発光層への正孔注入を助け、発光領域まで輸送する層であ つて、正孔移動度が大きぐイオン化エネルギーが通常 5. 5eV以下と小さレ、。このよ うな正孔注入、輸送層としてはより低い電界強度で正孔を発光層に輸送する材料が 好ましぐさらに正孔の移動度力 例えば 104〜: !OV/cmの電界印加時に、少なくと も 10 4 cm2ZV.秒であれば好ましレ、。
[0029] 正孔注入、輸送層を形成する材料としては、本発明のポリアリールアミンを含有する ことが好ましい。しかし、前記の好ましい性質を有するものであれば特に制限はなぐ 従来、光導伝材料において正孔の電荷輸送材料として慣用されてレ、るものや、有機 EL素子の正孔注入層に使用される公知のものの中力 任意のものを選択して用い ることができる。例えば、芳香族第三級ァミン、ヒドラゾン誘導体、力ルバゾール誘導 体、トリァゾール誘導体、イミダゾール誘導体、さらにはポリビュルカルバゾール、ポリ エチレンジォキシチォフェン.ポリスルフォン酸(PEDOT' PSS)等が挙げられる。さら に、具体例としては、トリァゾール誘導体 (米国特許 3, 112, 197号明細書等参照)、 ォキサジァゾール誘導体 (米国特許 3, 189, 447号明細書等参照)、イミダゾール誘 導体(特公昭 37— 16096号公報等参照)、ポリアリールアルカン誘導体 (米国特許 3 , 615, 402 明糸田 、同 3, 820, 989 明糸田 、 3, 542, 544 明糸田 、 特公昭 45— 555号公報、同 51— 10983号公報、特開昭 51— 93224号公報、同 5 5— 17105号公報、同 56— 4148号公報、同 55— 108667号公報、同 55— 15695 3号公報、同 56— 36656号公報等参照)、ピラゾリン誘導体及びピラゾロン誘導体( 米国特許第 3, 180, 729号明細書、同第 4, 278, 746号明細書、特開昭 55— 880 64号公報、同 55— 88065号公報、同 49— 105537号公報、同 55— 51086号公報 、同 56— 80051号公報、同 56— 88141号公報、同 57— 45545号公報、同 54— 1 12637号公報、同 55— 74546号公報等参照)、フエ二レンジァミン誘導体(米国特 許第 3, 615, 404号明細書、特公昭 51— 10105号公報、同 46— 3712号公報、同 47— 25336号公報、特開昭 54— 53435号公報、同 54— 110536号公報、同 54— 119925号公報等参照)、ァリールァミン誘導体 (米国特許第 3, 567, 450号明細書 、同 ^3, 180, 703 明糸田 、同 ^3, 240, 597 明糸田 、同 ^3, 658, 520 明糸田 、同 4, 232, 103 明糸田 ·、同 4, 175, 961 明糸田 、同 4, 012, 3 76号明細書、特 昭 49一 35702号公報、同 39— 27577号 報、特開昭 55— 14 4250号公報、同 56— 119132号公報、同 56— 22437号公報、西独特許第 1 , 110 , 518号明細書等参照)、ァミノ置換カルコン誘導体 (米国特許第 3, 526, 501号明 細書等参照)、ォキサゾール誘導体 (米国特許第 3, 257, 203号明細書等に開示の もの)、スチリルアントラセン誘導体(特開昭 56— 46234号公報等参照)、フルォレノ ン誘導体 (特開昭 54— 110837号公報等参照)、ヒドラゾン誘導体 (米国特許第 3, 7 17, 462号明糸田書、特開昭 54— 59143号公報、同 55— 52063号公報、同 55— 52 064号公報、同 55— 46760号公報、同 55— 85495号公報、同 57— 11350号公報 、同 57— 148749号公報、特開平 2_ 311591号公報等参照)、スチルベン誘導体( 特開昭 61— 210363号公報、同第 61— 228451号公報、同 61— 14642号公報、 同 61— 72255号公報、同 62— 47646号公報、同 62— 36674号公報、同 62— 10 652号公報、同 62— 30255号公報、同 60— 93455号公報、同 60— 94462号公報 、同 60— 174749号公報、同 60— 175052号公報等参照)、シラザン誘導体(米国 特許第 4, 950, 950号明細書)、ポリシラン系(特開平 2— 204996号公報)、ァニリ ン系共重合体 (特開平 2— 282263号公報)、特開平 1— 211399号公報に開示され てレ、る導電性高分子オリゴマー(特にチォフェンオリゴマー)等を挙げること力 Sできる。
[0030] 正孔注入層の材料としては上記のものを使用することができる力 ポルフィリン化合 物、芳香族第三級アミンィ匕合物及びスチリルアミンィ匕合物(米国特許第 4, 127, 412 号明細書、特開昭 53— 27033号公報、同 54— 58445号公報、同 54— 149634号 公報、同 54— 64299号公報、同 55— 79450号公報、同 55— 144250号公報、同 5 6— 119132号公報、同 61— 295558号公報、同 61— 98353号公報、同 63— 295 695号公報等参照)、特に芳香族第三級ァミン化合物を用いることが好ましい。
[0031] また、米国特許第 5, 061, 569号に記載されている 2個の縮合芳香族環を分子内 に有する、例えば 4, 4,一ビス(N— (1—ナフチノレ) N—フエニノレアミノ)ビフエ二ノレ (以下 NPDと略記する)、また特開平 4— 308688号公報に記載されているトリフエ二 ルァミンユニットが 3つスターバースト型に連結された 4, 4,, 4"ートリス(N— (3—メ チルフエニル)—N—フエニルァミノ)トリフエニルァミン(以下 MTDATAと略記する) 等を挙げることができる。
また、芳香族ジメチリディン系化合物の他、 p型 Si、 p型 SiC等の無機化合物も正孔 注入層の材料として使用することができる。
[0032] 正孔注入、輸送層は上述した材料の一種又は二種以上からなる一層で構成されて もよレ、し、又は別種の化合物からなる正孔注入、輸送層を積層したものであってもよ レ、。
[0033] 有機半導体層は発光層への正孔注入又は電子注入を助ける層であって、 10— 1QS Zcm以上の導電率を有するものが好適である。このような有機半導体層の材料とし ては、含チォフェンオリゴマーゃ特開平 8— 193191号公報に開示してある含ァリー ルァミンオリゴマー等の導電性オリゴマー、含ァリールァミンデンドリマー等の導電性 デンドリマー等を用いることができる。 [0034] 電子注入層は発光層への電子の注入を補助する層であって、電子移動度が大きく 、また付着改善層は、この電子注入層の中で特に陰極との付着が良い材料からなる 層である。電子注入層に用いられる材料としては、 8—ヒドロキシキノリン、その誘導体 の金属錯体ゃォキサジァゾール誘導体が好適である。
[0035] この 8—ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、ォキシン( 一般に 8_キノリノール又は 8—ヒドロキシキノリン)のキレートを含む金属キレートォキ シノイド化合物が挙げられる。例えば、トリス(8—キノリノール)アルミニウム (Alq)を電 子注入層に用いることができる。
また、ォキサジァゾール誘導体としては、下記式で表される電子伝達化合物が挙げ られる。
[化 7]
Figure imgf000017_0001
[0036] (式中 Ar1', Ar2', A , Ar5', Ar6', Ar9はそれぞれ置換又は無置換のァリール基を 示し、それぞれ互いに同一であっても異なっていてもよい。また、 Ar4', Ar7', Ar8'は置 換又は無置換のァリーレン基を示し、それぞれ同一であっても異なっていてもよい) ここで、ァリール基としてはフエ二ル基、ビフヱニル基、アントラニル基、ペリレニル基 、ピレニル基等が挙げられる。また、ァリーレン基としてはフエ二レン基、ナフチレン基 、ビフエ二レン基、アントラニレン基、ペリレニレン基、ピレニレン基等が挙げられる。ま た、置換基としては炭素数 1〜: 10のアルキル基、炭素数 1〜: 10のアルコキシ基又は シァノ基等が挙げられる。この電子伝達ィ匕合物は薄膜形成性のものが好ましい。
[0037] この電子伝達性化合物の具体例としては下記のものを挙げることができる。
[化 8]
Figure imgf000018_0001
[0038] 有機 EL素子において、陰極と有機層の間に絶縁体や半導体で構成される電子注 入層をさらに設けてもよぐ電流のリークを有効に防止して、電子注入性を向上させる こと力 Sできる。
このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニ ド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群か ら選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこ れらのアルカリ金属カルコゲニド等で構成されていれば、電子注入性をさらに向上さ せることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲニドとしては 、例えば、 Li〇、 K 0、 Na S、 Na Se及び Na〇が挙げられ、好ましいアルカリ土類 金属カルコゲニドとしては、例えば、 CaO、 BaO、 Sr〇、 Be〇、 BaS及び CaSeが挙 げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、 LiF、 NaF、 KF、 LiCl、 KC1及び NaCl等が挙げられる。また、好ましいアルカリ土類金属のハロ ゲン化物としては、例えば、 CaF、 BaF、 SrF、 MgF及び BeF等のフッ化物や、フ ッ化物以外のハロゲン化物が挙げられる。
[0039] また、半導体としては、 Ba、 Ca、 Sr、 Yb、 Al、 Ga、 In、 Li、 Na、 Cd、 Mg、 Si、 Ta、
Sb及び Znの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物等の一種 単独又は二種以上の組み合わせが挙げられる。また、電子輸送層を構成する無機 化合物が、微結晶又は非晶質の絶縁性薄膜であることが好ましい。電子輸送層がこ れらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダーク スポット等の画素欠陥を減少させることができる。尚、このような無機化合物としては、 上述したアルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属の ハロゲン化物及びアルカリ土類金属のハロゲン化物等が挙げられる。
[0040] 有機 EL素子は、超薄膜に電界を印可するために、リークやショートによる画素欠陥 が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を揷入する ことが好ましい。
絶縁層に用いられる材料としては、例えば、酸化アルミニウム、弗化リチウム、酸化リ チウム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化力 ルシゥム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマ二 ゥム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が 挙げられる。また、これらの混合物や積層物を用いてもよい。
[0041] 本発明の有機 EL素子の有機薄膜層を形成する各有機層の膜厚は特に制限され ないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすぐ逆に厚すぎると 高い印加電圧が必要となり効率が悪くなるため、通常は数 nmから l x mの範囲が好 ましい。
[0042] 有機 EL素子の陽極は、正孔を正孔注入/輸送層又は発光層に注入する役割を 担うものであり、 4. 5eV以上の仕事関数を有することが効果的である。陽極材料の具 体例としては、錫ドープ酸化インジウム合金 (ITO)、酸化錫 (NESA)、金、銀、白金 、銅等が適用できる。
陽極は、これらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させ ることにより作製できる。
発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率が 10%よ り大きくすることが好ましい。また陽極のシート抵抗は、数百 Ω /口以下が好ましい。 陽極の膜厚は材料にもよる力 通常 10nm〜l x m、好ましくは 10〜200nmの範囲 で選択される。
[0043] 有機 EL素子の陰極は、電子を電子注入/輸送層又は発光層に注入する役割を 担うものであり、仕事関数の小さい (4eV以下)金属、合金、電気伝導性化合物及び これらの混合物を電極物質として用いることができる。このような電極物質の具体例と しては、ナトリウム、ナトリウム一カリウム合金、マグネシウム、リチウム、マグネシウム' 銀合金、アルミニウム/酸化アルミニウム、アルミニウム 'リチウム合金、インジウム、希 土類金属等が挙げられる。
陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させる ことにより、作製することができる。発光層からの発光を陰極から取り出す場合、陰極 の発光に対する透過率は 10%より大きくすることが好ましい。また、陰極としてのシー ト抵抗は数百 Ω /口以下が好まし 膜厚は通常 10nm〜l z m、好ましくは 50〜2 OOnmである。
[0044] 一般に有機 EL素子は透光性の基板上に作製する。ここでいう透光性基板は有機 EL素子を支持する基板であり、 400〜700nmの可視領域の光の透過率が 50%以 上で、平滑な基板が好ましい。
具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ 石灰ガラス、バリウム 'ストロンチウム含有ガラス、鉛ガラス、アルミノケィ酸ガラス、ホウ ケィ酸ガラス、バリウムホウケィ酸ガラス、石英等が挙げられる。またポリマー板として は、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルフアイ ド、ポリサルフォン等を挙げることができる。
実施例
[0045] 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によ つてなんら限定されるものではない。
[0046] 実施例 1
25mm X 75mm X 1. 1mm厚の ITO透明電極付きガラス基板(ジォマティック社製 )をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 3 0分間行なった。その基板の上に、スピンコート法で正孔注入層に用いるポリエチレ ンジォキシチォフェン ·ポリスチレンスルホン酸(PEDOT · PS S)を 1 OOnmの膜厚で 成膜した。ついで、下記ポリマー 1 (分子量: 145000)のトルエン溶液(0. 6wt%)を スピンコート法で 20nmの膜厚で正孔輸送層を成膜し、 170°Cで 30分間乾燥した。 ついで、発光層として化合物 Aを蒸着により成膜した。なお、このときに化合物 Bを 化合物八に対し、八: 8 = 40 : 2 (^^/^^)で蒸着した。このときの発光層の膜厚は 50 nmであった。この膜上に膜厚 lOnmのトリス(8—キノリノール)アルミニウム膜 (以下「 Alq膜」と略記する。)を成膜した。この Alq膜は、電子輸送層として機能する。この後 還元性ドーパントである Li (Li源:サエスゲッタ一社製)と Alqを二元蒸着させ、電子 注入層(陰極)として Alq : Li膜を形成した。この Alq : Li膜上に金属 A1を蒸着させ金 属陰極を形成し有機 EL発光素子を形成した。この素子は青色発光し、 100cd/m2 における電圧と発光効率(cdZ A)、初期輝度 lOOOcdZm2における輝度半減時間 を表 1に示す。
[化 9]
Figure imgf000021_0001
化合物 A 化合物 B 実施例 2
ポリマー 1のかわりに、ポリマー 2 (分子量: 14000)を用いた以外は実施例 1と同様 に素子を作製した。結果を表 1に示す。
[化 10]
Figure imgf000021_0002
ポリマー 2
実施例 3
ポリマー 1のかわりに、ポリマー 3 (分子量: 50000)を用いた以外は実施例 1と同様 に素子作製した。結果を表 1に示す。 [化 11]
Figure imgf000022_0001
ポリマー 3
[0049] 比較例 1
ポリマー 1のかわりに、ポリマー 4 (分子量: 270000)を用いた以外は実施例 1と同 様に素子を作製した。結果を表 1に示す。
[化 12]
Figure imgf000022_0002
ポリマ一 4
比較例 2
ポリマー 1のかわりに、ポリマー 5 (分子量: 16000)を用いた以外は実施例 1と同様 に素子を作製した。結果を表 1に示す。
[化 13]
Figure imgf000022_0003
ポリマー 5
[0051] 比較例 3
ポリマー 1のかわりに、ポリマー 6 (分子量: 43000)を用いた以外は実施例 1と同様 に素子を作製した。結果を表 1に示す。
[化 14]
Figure imgf000023_0001
ポリマー 6
[表 1] 表 1
Figure imgf000023_0004
実施例 4
化合物 Aのかわりに、化合物 Cを用いた以外は実施例 1と同様に素子を作製した。 結果を表 2に示す。
[化 15]
Figure imgf000023_0002
化合物 c 実施例 5
化合物 Aのかわりに、化合物 Dを用いた以外は実施例 1と同様に素子を作製した。 結果を表 2に示す。
[化 16]
Figure imgf000023_0003
化合物 D [0055] 実施例 6
化合物 Aのかわりに、化合物 Eを用いた以外は実施例 1と同様に素子を作製した。 結果を表 2に示す。
[化 17]
Figure imgf000024_0001
化合物 E 実施例 7
化合物 Aのかわりに、化合物 Fを用いた以外は実施例 1と同様に素子を作製した。 結果を表 2に示す。
[化 18]
Figure imgf000024_0002
化合物 F
[0057] 実施例 8
化合物 Aのかわりに、化合物 Fを用いた以外は実施例 1と同様に素子を作製した。 結果を表 2に示す。
[化 19]
Figure imgf000024_0003
化合物 G
[0058] [表 2] 表 2
Figure imgf000025_0001
[0059] 実施例 9
25mm X 75mm X 1. 1mm厚の ITO透明電極付きガラス基板(ジォマティック社製 )をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 3 0分間行なった。その基板の上に、スピンコート法で正孔注入層に用いるポリエチレ ンジォキシチォフェン ·ポリスチレンスルホン酸(PEDOT · PS S)を 1 OOnmの膜厚で 成膜した。ついで、前記ポリマー 1 (分子量: 145000)のトルエン溶液(0. 6wt%)を スピンコート法で 20nmの膜厚で正孔輸送層を成膜し、 170°Cで 30分間乾燥した。 っレ、で化合物 A:ィ匕合物 B (A: B = 20:2 (wt/wt) )の lwt%トルエン溶液を用い て発光層をスピンコート法で成膜した。この時の膜厚は 50nmであった。この膜上に 膜厚 10nmのトリス(8—キノリノール)アルミニウム膜 (以下「Alq膜」と略記する。)を成 膜した。この Alq膜は、電子輸送層として機能する。この後還元性ドーパントである Li (Li源:サエスゲッタ一社製)と Alqを二元蒸着させ、電子注入層(陰極)として Alq: Li 膜を形成した。この Alq : Li膜上に金属 A1を蒸着させ金属陰極を形成し有機 EL発光 素子を形成した。この素子は青色発光し、 lOOcdZm2における電圧と発光効率(cd /A)、初期輝度 1000cd/m2における輝度半減時間を表 3に示す。
[0060] 実施例 10
ポリマー 1のかわりに、ポリマー 3 (分子量: 50000)を用いた以外は実施例 9と同様 に素子を作製した。結果を表 3に示す。
[0061] 比較例 4
ポリマー 1のかわりに、ポリマー 4 (分子量: 270000)を用いた以外は実施例 9と同 様に素子を作製した。結果を表 3に示す。 [0062] [表 3]
表 3
Figure imgf000026_0001
[0063] 実施例 11
化合物 Aのかわりに、化合物 Cを用いた以外は実施例 9と同様に素子を作製した。 このとき、素子は青色に発光し、 lOOcdZm2における電圧は 5. 5Vであり、発光効率 は 5. 8cd/Aであった。
[0064] 実施例 12
化合物 Aのかわりに、化合物 Eを用いた以外は実施例 9と同様に素子を作製した。 このとき、素子は青色に発光し、 lOOcdZm2における電圧は 5. 5Vであり、発光効率 は 5. 2cd/Aであった。
産業上の利用可能性
[0065] 以上詳細に説明したように、本発明の芳香族アミンィ匕合物は溶解性が高ぐウエット プロセス成膜が可能であり、それを用いた有機 EL素子は、種々の発光色相を呈し、 耐熱性が高ぐ特に本発明の芳香族ァミン化合物を正孔注入、輸送材料として用い ると、正孔注入、輸送性が高く高発光輝度及び高発光効率で、長寿命である。このた め、本発明の有機 EL素子は、実用性が高ぐ壁掛テレビの平面発光体やディスプレ ィのバックライト等の光源として有用である。

Claims

請求の範囲 [1] 少なくとも発光層を含む一層以上の有機化合物層を陽極と陰極で構成された一対 の電極で挟持してなる有機 EL素子において、該有機化合物層が正孔輸送層及び /又は正孔注入層を有し、下記一般式(1)で示されるポリアリールァミンが該正孔輸 送層及び/又は正孔注入層に含有される有機エレクト口ルミネッセンス素子。 [化 1]
[一般式(1)中、 Arは、それぞれ独立に置換もしくは無置換の炭素数 6〜40のァリー ル基、又は置換もしくは無置換の炭素数 3〜40のへテロアリール基である。
Ar〜Arは、それぞれ独立に置換もしくは無置換の炭素数 6〜40の 2価のァリーレ
1 4
ン基である。
a、 b、 c、 dは、それぞれ独立に 1〜2の整数であり、 eは 0〜2の整数である。 nは 3以上の整数である。 ]
[2] 前記正孔輸送層及び Z又は正孔注入層が主として前記ポリアリールアミンを含有 する請求項 1に記載の有機エレクト口ルミネッセンス素子。
[3] 前記発光層が主としてアントラセン誘導体、ピレン誘導体及びフルオレン誘導体か ら選ばれる少なくとも一種を含む請求項 1〜2のいずれかに記載の有機エレクト口ルミ 素子。
[4] 前記発光層がスチリルアミン化合物及び/又はァリールァミン化合物を含む請求 項 3記載の有機エレクト口ルミネッセンス素子。
[5] 前記正孔輸送層及び Z又は正孔注入層を湿式成膜し、前記発光層を湿式成膜す る請求項 1〜4のいずれかに記載の有機エレクト口ルミネッセンス素子。
[6] 前記正孔輸送層及び/又は正孔注入層を湿式成膜し、前記発光層を蒸着により 成膜する請求項 1〜4のいずれかに記載の有機エレクト口ルミネッセンス素子。
PCT/JP2006/313427 2005-09-08 2006-07-05 ポリアリールアミンを用いた有機エレクトロルミネッセンス素子 WO2007029410A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06780803A EP1933396A1 (en) 2005-09-08 2006-07-05 Organic electroluminescent element using polyarylamine
US12/066,333 US20090230848A1 (en) 2005-09-08 2006-07-05 Organic electroluminescent element using polyarylamine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-260562 2005-09-08
JP2005260562A JP2007073814A (ja) 2005-09-08 2005-09-08 ポリアリールアミンを用いた有機エレクトロルミネッセンス素子

Publications (1)

Publication Number Publication Date
WO2007029410A1 true WO2007029410A1 (ja) 2007-03-15

Family

ID=37835539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313427 WO2007029410A1 (ja) 2005-09-08 2006-07-05 ポリアリールアミンを用いた有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20090230848A1 (ja)
EP (1) EP1933396A1 (ja)
JP (1) JP2007073814A (ja)
KR (1) KR20080043815A (ja)
CN (1) CN101258623A (ja)
TW (1) TW200710199A (ja)
WO (1) WO2007029410A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073598A (ja) * 2008-09-22 2010-04-02 Mitsubishi Chemicals Corp 有機薄膜パターニング用基板、有機電界発光素子、有機el表示装置および有機el照明
JP2012528209A (ja) * 2009-05-29 2012-11-12 メルク パテント ゲーエムベーハー 少なくとも1つの発光体化合物および共役遮断ユニットを有する少なくとも1つのポリマーを含む組成物

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190759A (ja) * 2005-01-05 2006-07-20 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
US8436343B2 (en) 2007-07-07 2013-05-07 Idemitsu Kosan Co., Ltd. Organic EL device
WO2009008349A1 (ja) * 2007-07-07 2009-01-15 Idemitsu Kosan Co., Ltd. 有機el素子および有機el材料含有溶液
EP2166592A4 (en) 2007-07-07 2012-04-18 Idemitsu Kosan Co ORGANIC EL DEVICE
WO2009008344A1 (ja) 2007-07-07 2009-01-15 Idemitsu Kosan Co., Ltd. 有機el素子
EP2213639B1 (en) * 2007-11-19 2016-04-13 Idemitsu Kosan Co., Ltd. Monobenzochrysene derivatives and their use in materials for organic electroluminescent devices
JP2010212441A (ja) * 2009-03-10 2010-09-24 Mitsubishi Chemicals Corp 有機電界発光素子、有機elディスプレイおよび有機el照明
TWI538561B (zh) * 2009-10-22 2016-06-11 住友化學股份有限公司 有機電激發光元件
KR20130046435A (ko) * 2010-07-21 2013-05-07 도판 인사츠 가부시키가이샤 유기 일렉트로루미네센스 소자

Citations (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1110518B (de) 1959-04-09 1961-07-06 Kalle Ag Material fuer die elektrophotographische Bilderzeugung
JPS3716096B1 (ja) 1960-04-09 1962-10-09
JPS3927577B1 (ja) 1962-01-29 1964-12-01
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3180703A (en) 1963-01-15 1965-04-27 Kerr Mc Gee Oil Ind Inc Recovery process
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
JPS45555B1 (ja) 1966-03-24 1970-01-09
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
JPS463712B1 (ja) 1966-04-14 1971-01-29
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
JPS4725336B1 (ja) 1969-11-26 1972-07-11
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
JPS4935702A (ja) 1972-08-29 1974-04-02
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
JPS49105537A (ja) 1973-01-15 1974-10-05
JPS5110105A (ja) 1974-04-16 1976-01-27 Uddeholms Ab
JPS5110983B2 (ja) 1971-09-10 1976-04-08
JPS5193224A (ja) 1974-12-20 1976-08-16
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
JPS5327033A (en) 1976-08-23 1978-03-13 Xerox Corp Image forming member and image forming method
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5459143A (en) 1977-10-17 1979-05-12 Ibm Electronic photographic material
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54112637A (en) 1978-02-06 1979-09-03 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54119925A (en) 1978-03-10 1979-09-18 Ricoh Co Ltd Photosensitive material for electrophotography
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS5517105A (en) 1978-07-21 1980-02-06 Konishiroku Photo Ind Co Ltd Electrophotographic photoreceptor
JPS5546760A (en) 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5551086A (en) 1978-09-04 1980-04-14 Copyer Co Ltd Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it
JPS5552063A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5552064A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5574546A (en) 1978-11-30 1980-06-05 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5579450A (en) 1978-12-04 1980-06-14 Xerox Corp Image formation device
JPS5588065A (en) 1978-12-12 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5588064A (en) 1978-12-05 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS55108667A (en) 1979-02-13 1980-08-21 Ricoh Co Ltd Electrophotographic receptor
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
JPS55144250A (en) 1979-04-30 1980-11-11 Xerox Corp Image formation device
JPS55156953A (en) 1979-05-17 1980-12-06 Mitsubishi Paper Mills Ltd Organic semiconductor electrophotographic material
JPS564148A (en) 1979-06-21 1981-01-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5622437A (en) 1979-08-01 1981-03-03 Ricoh Co Ltd Electrophotographic receptor
JPS5636656A (en) 1979-09-03 1981-04-09 Mitsubishi Paper Mills Ltd Electrophotographic material
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
JPS5680051A (en) 1979-12-04 1981-07-01 Ricoh Co Ltd Electrophotographic receptor
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
JPS5688141A (en) 1979-12-20 1981-07-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS56119132A (en) 1979-11-23 1981-09-18 Xerox Corp Image forming element
JPS5711350A (en) 1980-06-24 1982-01-21 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS5745545A (en) 1980-09-03 1982-03-15 Mitsubishi Paper Mills Ltd Electrophotographic receptor
JPS57148749A (en) 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS6093455A (ja) 1983-10-28 1985-05-25 Fuji Xerox Co Ltd 電子写真用現像剤
JPS6094462A (ja) 1983-10-28 1985-05-27 Ricoh Co Ltd スチルベン誘導体及びその製造法
JPS60174749A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd スチリル化合物及びその製造法
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
JPS6114642A (ja) 1984-06-29 1986-01-22 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6172255A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6198353A (ja) 1984-10-19 1986-05-16 ゼロツクス コーポレーシヨン 芳香族エーテル正孔移送層を含む感光装置
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
JPS61228451A (ja) 1985-04-03 1986-10-11 Canon Inc 電子写真感光体
JPS61295558A (ja) 1985-06-24 1986-12-26 ゼロツクス コ−ポレ−シヨン アルコキシアミン電荷移送分子を含有する光導電性像形成部材
JPS6210652A (ja) 1985-07-08 1987-01-19 Minolta Camera Co Ltd 感光体
JPS6230255A (ja) 1985-07-31 1987-02-09 Minolta Camera Co Ltd 電子写真感光体
JPS6236674A (ja) 1985-08-05 1987-02-17 Fuji Photo Film Co Ltd 電子写真感光体
JPS6247646A (ja) 1985-08-27 1987-03-02 Konishiroku Photo Ind Co Ltd 感光体
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02311591A (ja) 1989-05-25 1990-12-27 Mitsubishi Kasei Corp 有機電界発光素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH05247459A (ja) * 1992-03-09 1993-09-24 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2003151774A (ja) * 2001-11-14 2003-05-23 Toray Ind Inc 発光素子
JP2004500468A (ja) * 2000-03-10 2004-01-08 ケンブリッジ ディスプレイ テクノロジー リミテッド コポリマー
WO2004018587A1 (ja) * 2002-08-23 2004-03-04 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子及びアントラセン誘導体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2774351B2 (ja) * 1990-03-26 1998-07-09 出光興産株式会社 有機薄膜エレクトロルミネッセンス素子及びその製造方法
US6107452A (en) * 1998-10-09 2000-08-22 International Business Machines Corporation Thermally and/or photochemically crosslinked electroactive polymers in the manufacture of opto-electronic devices
JP2006190759A (ja) * 2005-01-05 2006-07-20 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子

Patent Citations (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
DE1110518B (de) 1959-04-09 1961-07-06 Kalle Ag Material fuer die elektrophotographische Bilderzeugung
JPS3716096B1 (ja) 1960-04-09 1962-10-09
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
JPS3927577B1 (ja) 1962-01-29 1964-12-01
US3180703A (en) 1963-01-15 1965-04-27 Kerr Mc Gee Oil Ind Inc Recovery process
JPS45555B1 (ja) 1966-03-24 1970-01-09
JPS463712B1 (ja) 1966-04-14 1971-01-29
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
JPS4725336B1 (ja) 1969-11-26 1972-07-11
JPS5110983B2 (ja) 1971-09-10 1976-04-08
JPS4935702A (ja) 1972-08-29 1974-04-02
JPS49105537A (ja) 1973-01-15 1974-10-05
JPS5110105A (ja) 1974-04-16 1976-01-27 Uddeholms Ab
JPS5193224A (ja) 1974-12-20 1976-08-16
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
JPS5327033A (en) 1976-08-23 1978-03-13 Xerox Corp Image forming member and image forming method
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5459143A (en) 1977-10-17 1979-05-12 Ibm Electronic photographic material
JPS54112637A (en) 1978-02-06 1979-09-03 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54119925A (en) 1978-03-10 1979-09-18 Ricoh Co Ltd Photosensitive material for electrophotography
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
JPS5517105A (en) 1978-07-21 1980-02-06 Konishiroku Photo Ind Co Ltd Electrophotographic photoreceptor
JPS5551086A (en) 1978-09-04 1980-04-14 Copyer Co Ltd Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it
JPS5546760A (en) 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5552063A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5552064A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5574546A (en) 1978-11-30 1980-06-05 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5579450A (en) 1978-12-04 1980-06-14 Xerox Corp Image formation device
JPS5588064A (en) 1978-12-05 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5588065A (en) 1978-12-12 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS55108667A (en) 1979-02-13 1980-08-21 Ricoh Co Ltd Electrophotographic receptor
JPS55144250A (en) 1979-04-30 1980-11-11 Xerox Corp Image formation device
JPS55156953A (en) 1979-05-17 1980-12-06 Mitsubishi Paper Mills Ltd Organic semiconductor electrophotographic material
JPS564148A (en) 1979-06-21 1981-01-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5622437A (en) 1979-08-01 1981-03-03 Ricoh Co Ltd Electrophotographic receptor
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
JPS5636656A (en) 1979-09-03 1981-04-09 Mitsubishi Paper Mills Ltd Electrophotographic material
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
JPS56119132A (en) 1979-11-23 1981-09-18 Xerox Corp Image forming element
JPS5680051A (en) 1979-12-04 1981-07-01 Ricoh Co Ltd Electrophotographic receptor
JPS5688141A (en) 1979-12-20 1981-07-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5711350A (en) 1980-06-24 1982-01-21 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS5745545A (en) 1980-09-03 1982-03-15 Mitsubishi Paper Mills Ltd Electrophotographic receptor
JPS57148749A (en) 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS6093455A (ja) 1983-10-28 1985-05-25 Fuji Xerox Co Ltd 電子写真用現像剤
JPS6094462A (ja) 1983-10-28 1985-05-27 Ricoh Co Ltd スチルベン誘導体及びその製造法
JPS60174749A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd スチリル化合物及びその製造法
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
JPS6114642A (ja) 1984-06-29 1986-01-22 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6172255A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6198353A (ja) 1984-10-19 1986-05-16 ゼロツクス コーポレーシヨン 芳香族エーテル正孔移送層を含む感光装置
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
JPS61228451A (ja) 1985-04-03 1986-10-11 Canon Inc 電子写真感光体
JPS61295558A (ja) 1985-06-24 1986-12-26 ゼロツクス コ−ポレ−シヨン アルコキシアミン電荷移送分子を含有する光導電性像形成部材
JPS6210652A (ja) 1985-07-08 1987-01-19 Minolta Camera Co Ltd 感光体
JPS6230255A (ja) 1985-07-31 1987-02-09 Minolta Camera Co Ltd 電子写真感光体
JPS6236674A (ja) 1985-08-05 1987-02-17 Fuji Photo Film Co Ltd 電子写真感光体
JPS6247646A (ja) 1985-08-27 1987-03-02 Konishiroku Photo Ind Co Ltd 感光体
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02311591A (ja) 1989-05-25 1990-12-27 Mitsubishi Kasei Corp 有機電界発光素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH05247459A (ja) * 1992-03-09 1993-09-24 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2004500468A (ja) * 2000-03-10 2004-01-08 ケンブリッジ ディスプレイ テクノロジー リミテッド コポリマー
JP2003151774A (ja) * 2001-11-14 2003-05-23 Toray Ind Inc 発光素子
WO2004018587A1 (ja) * 2002-08-23 2004-03-04 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子及びアントラセン誘導体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073598A (ja) * 2008-09-22 2010-04-02 Mitsubishi Chemicals Corp 有機薄膜パターニング用基板、有機電界発光素子、有機el表示装置および有機el照明
JP2012528209A (ja) * 2009-05-29 2012-11-12 メルク パテント ゲーエムベーハー 少なくとも1つの発光体化合物および共役遮断ユニットを有する少なくとも1つのポリマーを含む組成物
US9099655B2 (en) 2009-05-29 2015-08-04 Merck Patent Gmbh Composition comprising at least one emitter compound and at least one polymer having conjugation-interrupting units

Also Published As

Publication number Publication date
JP2007073814A (ja) 2007-03-22
US20090230848A1 (en) 2009-09-17
CN101258623A (zh) 2008-09-03
EP1933396A1 (en) 2008-06-18
KR20080043815A (ko) 2008-05-19
TW200710199A (en) 2007-03-16

Similar Documents

Publication Publication Date Title
JP4848152B2 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
TWI439172B (zh) Organic electroluminescent elements
JP5133259B2 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
EP1850405A1 (en) Ink for forming organic el coating film and method for production thereof
WO2006070712A1 (ja) 有機エレクトロルミネッセンス素子用発光性インク組成物
WO2007029410A1 (ja) ポリアリールアミンを用いた有機エレクトロルミネッセンス素子
US20080100206A1 (en) Organic Electroluminescent Device
WO2008056722A1 (fr) Solution contenant un matériau électroluminescent organique, procédé permettant de former un film mince de matériau électroluminescent organique, film mince de matériau électroluminescent organique et dispositif électroluminescent organique
JP5362999B2 (ja) 有機el素子およびジベンゾホスホールオキシド誘導体
EP1841291A1 (en) Organic electroluminescent device and method for manufacturing same
WO2007111262A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006062078A1 (ja) 有機エレクトロルミネッセンス素子
WO2007100010A1 (ja) 有機エレクトロルミネッセンス素子
JP4308317B2 (ja) 有機エレクトロルミネッセンス素子
WO2007063993A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008072586A1 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
WO2007132678A1 (ja) 有機エレクトロルミネッセンス素子
CN101238122A (zh) 含氮杂环衍生物以及应用该衍生物的有机电致发光元件
WO2006001333A1 (ja) 多環芳香族系化合物、発光性塗膜形成用材料及びそれを用いた有機エレクトロルミネッセンス素子
JPWO2007032162A1 (ja) ピレン系誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2007099983A1 (ja) フルオランテン誘導体及びインデノペリレン誘導体を用いた有機エレクトロルミネッセンス素子
WO2006120859A1 (ja) 新規有機エレクトロルミネッセンス材料、それを用いた有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用薄膜形成溶液
JP2010245060A (ja) 有機el素子
JP2008166629A (ja) 有機el材料含有溶液、有機el材料の合成法、この合成法による合成された化合物、有機el材料の薄膜形成方法、有機el材料の薄膜、有機el素子
JP2008258641A (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680033004.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087005551

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006780803

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1737/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12066333

Country of ref document: US