JP2010212441A - 有機電界発光素子、有機elディスプレイおよび有機el照明 - Google Patents

有機電界発光素子、有機elディスプレイおよび有機el照明 Download PDF

Info

Publication number
JP2010212441A
JP2010212441A JP2009056715A JP2009056715A JP2010212441A JP 2010212441 A JP2010212441 A JP 2010212441A JP 2009056715 A JP2009056715 A JP 2009056715A JP 2009056715 A JP2009056715 A JP 2009056715A JP 2010212441 A JP2010212441 A JP 2010212441A
Authority
JP
Japan
Prior art keywords
group
ring
layer
light emitting
hole injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009056715A
Other languages
English (en)
Inventor
Tatsushi Baba
達志 馬場
Koichiro Iida
宏一朗 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2009056715A priority Critical patent/JP2010212441A/ja
Publication of JP2010212441A publication Critical patent/JP2010212441A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】 湿式成膜法で形成される、正孔注入層、正孔輸送層および発光層を有する有機電界発光素子において、発光効率が高く、駆動安定性が高い、有機電界発光素子及びこれを用いた有機ELディスプレイ、有機EL照明を提供することを課題とする。
【解決手段】 湿式成膜法で形成される、正孔注入層、正孔輸送層および発光層を有する有機電界発光素子において、該発光層が、発光材料としてアリーレンジアミン化合物を含有し、該正孔注入層および該正孔輸送層が、いずれもポリマー材料を用いて形成され、該正孔注入層を形成するポリマー材料の重量平均分子量をMwA、該正孔輸送層を形成するポリマー材料の重量平均分子量をMwBとした場合、MwA/MwBが0.5未満または1.5以上であることを特徴とする有機電界発光素子。
【選択図】 なし

Description

本発明は、湿式成膜法で形成される正孔注入層、正孔輸送層および発光層を有する有機電界発光素子に関する。
有機電界発光素子における有機層の形成方法としては、真空蒸着法と湿式成膜法が挙げられる。真空蒸着法は積層化が容易であるため、陽極及び/又は陰極からの電荷注入の改善、励起子の発光層封じ込めが容易であるという利点を有する。一方で、湿式成膜法は真空プロセスが要らず、大面積化が容易で、様々な機能をもった複数の材料を混合した塗布液を用いることにより、容易に、様々な機能をもった複数の材料を含有する層を形成できる等の利点がある。
しかしながら、湿式成膜法は積層化が困難であるため、真空蒸着法による素子に比べて駆動安定性に劣り、一部を除いて実用レベルに至っていないのが現状である。
そこで、素子の特性を向上させるために、高い電荷輸送能を有するポリマー材料の開発が行われている。例えば、特許文献1および2には、湿式成膜法で形成される正孔輸送層および発光層を有し、正孔輸送層はポリマー材料を用いて形成され、発光層は発光材料としてアリールアミン化合物を含有する有機電界発光素子が開示されている。しかしながら、この素子は、発光効率等の駆動安定性が不十分であるという問題点があった。
特開2007−73814号公報 特開2008−166629号公報
本発明は、湿式成膜法で形成される、正孔注入層、正孔輸送層および発光層を有する有機電界発光素子において、発光効率が高く、駆動安定性が高い有機電界発光素子およびこれを用いた有機ELディスプレイ及び有機EL照明を提供することを課題とする。
本発明者らは、上記課題を解決するために鋭意検討した結果、湿式成膜法で形成される、正孔注入層、正孔輸送層および発光層を有し、発光層に発光材料としてアリーレンジアミン化合物を含有する有機電界発光素子は、正孔輸送層と発光層間の正孔注入が速やかに行われるため、正孔注入層/正孔輸送層界面の正孔注入がスムーズな場合、発光層において正孔過多となり、発光効率が低下するという知見を得た。これを解決するためには、正孔注入層を形成するポリマー材料と正孔輸送層を形成するポリマー材料間の重量平均分子量の差をある程度大きくすることが重要であることがわかり、本発明に到達した。
すなわち、本発明は、湿式成膜法で形成される、正孔注入層、正孔輸送層および発光層を有する有機電界発光素子において、該発光層が、発光材料としてアリーレンジアミン化合物を含有し、該正孔注入層および該正孔輸送層が、いずれもポリマー材料を用いて形成され、該正孔注入層を形成するポリマー材料の重量平均分子量をMwA、該正孔輸送層を形成するポリマー材料の重量平均分子量をMwBとした場合、MwA/MwBが0.5未満または1.5以上であることを特徴とする、有機電界発光素子に存する。本発明はまた、該有機電界発光素子を用いることを特徴とする、有機ELディスプレイおよび有機EL照明に存する。
本発明の有機電界発光素子は、高効率で発光し、駆動安定性に優れる。
本発明の有機電界発光素子は、フラットパネル・ディスプレイ(例えばOAコンピュータ用や壁掛けテレビ)、車載表示素子、携帯電話表示などの有機ELディスプレイや面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯などの有機EL照明への応用が考えられ、その技術的価値は大きいものである。
本発明の有機電界発光素子の実施の形態を示す断面の模式図である。
以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、これらの内容に特定はされない。
本発明の有機電界発光素子は、湿式成膜法で形成される、正孔注入層、正孔輸送層および発光層を有する有機電界発光素子において、該発光層が、発光材料としてアリーレンジアミン化合物を含有し、該正孔注入層および該正孔輸送層が、いずれもポリマー材料を用いて形成され、該正孔注入層を形成するポリマー材料の重量平均分子量をMwA、該正孔輸送層を形成するポリマー材料の重量平均分子量をMwBとした場合、MwA/MwBが0.5未満または1.5以上であることを特徴とする。
MwA/MwBは、0.5未満、好ましくは0.45未満、より好ましくは0.4未満である。また、MwA/MwBは、1.5以上、好ましくは1.6以上、より好ましくは1.7以上である。上限は特にないが、通常、10以下である。この範囲とすることにより、発光効率が高く、駆動安定性に優れた有機電界発光素子を得ることができる。
尚、本発明において、正孔注入層を形成するポリマー材料および正孔輸送層を形成するポリマー材料とは、単一の分子量で表されない化合物であり、通常は、1または2以上の繰り返し単位を含む化合物である。このポリマー材料、すなわち、正孔注入層を形成するポリマー材料の重量平均分子量MwAおよび正孔輸送層を形成するポリマー材料の重量平均分子量MwBは、それぞれ、通常15000以上、好ましくは20000以上、より好ましくは25000以上である。特に上限はないが、通常300000以下である。また、正孔注入層を形成するポリマー材料および正孔輸送層を形成するポリマー材料の分散度は、それぞれ、通常2.4以下、好ましくは2.1以下、より好ましくは2.0以下、通常1.0以上である。ここで、分散度とは、ポリマー材料の重量平均分子量/数平均分子量を意味する。
通常、重量平均分子量及び数平均分子量はSEC(サイズ排除クロマトグラフィー)測定により決定される。SEC測定では高分子量成分ほど溶出時間が短く、低分子量成分ほど溶出時間が長くなるが、分子量既知のポリスチレン(標準試料)の溶出時間から算出した校正曲線を用いて、サンプルの溶出時間を分子量に換算することによって、重量平均分子量及び数平均分子量が算出される。
SEC測定条件の具体例を示すと、カラムは、TSKgel GMHXL(東ソー社製)又はこれと同等以上の分離能を示すもの、すなわち、 粒子径:9mm、カラムサイズ:
7.8mm内径×30cm長さ、保証理論段数:14000TP/30cm程度のものを2本用い、カラム温度は40℃とする。 移動層はテトラヒドロフラン、クロロホルムの
うち充填材への吸着のないものを選択し、流量は1.0ml/分とする。インジェクション濃度は0.1重量%とし、インジェクション量は0.10mlとする。検出器としては
RIを用いる。分子量既知のポリスチレン(標準試料)の溶出時間から算出した校正曲線を用いて、サンプルの溶出時間を分子量に換算することによって、分子量分布が決定される。なお、SEC測定では高分子量成分ほど溶出時間が短く、低分子量成分ほど溶出時間が長くなる。
尚、上記測定に用いる測定機器は、上記と同等の測定が可能であれば、上記の測定機器に限定されるものではなく、その他の測定機器を用いてもよいが、上記の測定機器を用いることが好ましい。
また、正孔注入層を形成するポリマー材料および正孔輸送層を形成するポリマー材料は、該ポリマー材料を成膜後、各層を構成する際は、架橋等により他の構造に変化してもよく、上記MwAおよびMwBは、成膜前のポリマー材料の重量平均分子量を表す。
(ポリマー材料)
以下、正孔注入層および正孔輸送層を形成するポリマー材料について説明する。該ポリマー材料としては、従来、正孔注入層や正孔輸送層の構成材料として用いられている材料であればよく、通常は正孔輸送性の高分子化合物が用いられる。例えば、ポリアリールアミン誘導体、ポリアリーレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリビニルトリフェニルアミン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p−フェニレンビニレン)誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体などが挙げられる。これらは、交互共重合体、ランダム重合体、ブロック重合体又はグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子化合物や、所謂デンドリマーであってもよい。
尚、本発明において誘導体とは、例えば、ポリアリールアミン誘導体を例にするならば、アリールアミンそのもの及びアリールアミンを主骨格とする単位を含む化合物である。
上記の中でも、ポリアリールアミン誘導体やポリアリーレン誘導体が好ましい。
ポリアリールアミン誘導体としては、下記式(II)で表される繰り返し単位を含む重合体であることが好ましい。特に、下記式(II)で表される繰り返し単位からなる重合体であることが好ましく、この場合、繰り返し単位それぞれにおいて、ArまたはArが異なっているものであってもよい。
Figure 2010212441
(式(II)中、Ar及びArは、それぞれ独立して、置換基を有していてもよい、芳香族炭化水素基または芳香族複素環基を表す。)
置換基を有していてもよい芳香族炭化水素基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などの、6員環の単環または2〜5縮合環由来の基およびこれらの環が2環以上直接結合で連結してなる基が挙げられる。
置換基を有していてもよい芳香族複素環基としては、例えばフラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環などの、5または6員環の単環または2〜4縮合環由来の基およびこれらの環が2環以上直接結合で連結してなる基が挙げられる。
溶解性、耐熱性の点から、ArおよびArは、それぞれ独立に、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、ピレン環、チオフェン環、ピリジン環、フルオレン環からなる群より選ばれる環由来の基やベンゼン環が2環以上連結してなる基(例えば、ビフェニル基やターフェニル基)が好ましい。
中でも、ベンゼン環由来の基(フェニル基)、ベンゼン環が2環連結してなる基(ビフェニル基)およびフルオレン環由来の基(フルオレニル基)が好ましい。
ArおよびArにおける芳香族炭化水素基及び芳香族複素環基が有していてもよい置換基としては、下記[置換基群Z]、[不溶化基]に記載の基などが挙げられる。
[置換基群Z]
メチル基、エチル基、t−ブチル基、シクロヘキシル基等の好ましくは炭素数1〜24、更に好ましくは炭素数1〜12のアルキル基;ビニル基等の好ましくは炭素数2〜24、更に好ましくは炭素数2〜12のアルケニル基;エチニル基等の好ましくは炭素数2〜24、更に好ましくは炭素数2〜12のアルキニル基;メトキシ基、エトキシ基等の好ましくは炭素数1〜24、更に好ましくは炭素数1〜12のアルコキシ基;フェノキシ基、ナフトキシ基、ピリジルオキシ基等の好ましくは炭素数4〜36、更に好ましくは炭素数5〜24のアリールオキシ基;メトキシカルボニル基、エトキシカルボニル基等の好ましくは炭素数2〜24、更に好ましくは炭素数2〜12のアルコキシカルボニル基;ジメチルアミノ基、ジエチルアミノ基等の好ましくは炭素数2〜24、更に好ましくは炭素数2〜12のジアルキルアミノ基;ジフェニルアミノ基、ジトリルアミノ基、N−カルバゾリル基等の好ましくは炭素数10〜36、更に好ましくは炭素数12〜24のジアリールアミノ基;フェニルメチルアミノ基等の好ましくは炭素数6〜36、更に好ましくは炭素数7〜24のアリールアルキルアミノ基;アセチル基、ベンゾイル基等の好ましくは炭素数2〜24、好ましくは炭素数2〜12のアシル基;フッ素原子、塩素原子等のハロゲン原子;トリフルオロメチル基等の好ましくは炭素数1〜12、更に好ましくは炭素数1〜6のハロアルキル基;メチルチオ基、エチルチオ基等の好ましくは炭素数1〜24、更に好ましくは炭素数1〜12のアルキルチオ基;フェニルチオ基、ナフチルチオ基、ピリジルチオ基等の好ましくは炭素数4〜36、更に好ましくは炭素数5〜24のアリールチオ基;トリメチルシリル基、トリフェニルシリル基等の好ましくは炭素数2〜36、更に好ましくは炭素数3〜24のシリル基;トリメチルシロキシ基、トリフェニルシロキシ基等の好ましくは炭素数2〜36、更に好ましくは炭素数3〜24のシロキシ基;シアノ基;フェニル基、ナフチル基等の好ましくは炭素数6〜36、更に好ましくは炭素数6〜24の芳香族炭化水素基;チエニル基、ピリジル基等の好ましくは炭素数3〜36、更に好ましくは炭素数4〜24の芳香族複素環基
上記各置換基は、さらに置換基を有していてもよく、その例としては置換基群Zに例示した基が挙げられる。
[不溶化基]
不溶化基とは、熱及び/又は活性エネルギー線の照射により反応する基であり、反応後
は反応前に比べて有機溶剤や水への溶解性を低下させる効果を有する基であり、解離基又は架橋性基などが挙げられる。
(解離基)
解離基とは、結合している芳香族炭化水素環から70℃以上で解離し、さらに溶剤に対して可溶性を示す基をいう。ここで、溶剤に対して可溶性を示すとは、化合物が熱及び/又は活性エネルギー線の照射によって反応する前の状態で、常温でトルエンに0.1重量%以上溶解することをいい、化合物のトルエンへの溶解性は、好ましくは0.5重量%以上、より好ましくは1重量%以上である。
このような解離基として好ましくは、芳香族炭化水素環側に極性基を形成せずに熱解離する基であり、逆ディールスアルダー反応により熱解離する基であることがより好ましい。またさらに、100℃以上で熱解離する基であることが好ましく、300℃以下で熱解離する基であることが好ましい。解離基の具体例は、以下の通りであるが、これらに限定されるものではない。尚、以下具体例は、ArまたはAr(式(I)におけるAr11〜Ar15)が芳香族炭化水素基である場合の芳香族炭化水素基を含む形である場合も含む。
Figure 2010212441
1つのポリマー材料鎖の中に含まれる解離基は、好ましくは平均5以上、より好ましくは平均10以上、さらに好ましくは平均50以上である。この下限を下回ると加熱前の材料の塗布溶剤に対する溶解性が低い場合があり、またさらに加熱後の材料の溶剤への溶解性の低下の効果も低くなる可能性がある。ポリマー材料が有する解離基の数は、分子量1000あたり、通常0.01個以上、好ましくは0.1個以上であり、さらに好ましくは0.2個以上であり、また、通常10個以下、好ましくは5個以下である。この範囲内であると、不溶化(解離反応)前後で、適度な溶解度差が得られるため好ましい。
(架橋性基)
架橋性基とは、熱及び/又は活性エネルギー線の照射により近傍に位置するほかの分子の同一又は異なる基と反応して、新規な化学結合を生成する基のことをいう。
架橋性基としては、不溶化がしやすいという点で、例えば、架橋性基群Tに示す基が挙げられる。
[架橋性基群T]
Figure 2010212441
(式中、R〜Rは、それぞれ独立に、水素原子又はアルキル基を表す。Ar31は置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。)
エポキシ基、オキセタン基などの環状エーテル基、ビニルエーテル基などのカチオン重合によって不溶化反応する基が、反応性が高く不溶化が容易な点で好ましい。中でも、カチオン重合の速度を制御しやすい点でオキセタン基が特に好ましく、カチオン重合の際に素子の劣化をまねくおそれのあるヒドロキシル基が生成しにくい点でビニルエーテル基が好ましい。
シンナモイル基などアリールビニルカルボニル基、ベンゾシクロブテン環由来の基などの環化付加反応する基が、電気化学的安定性をさらに向上させる点で好ましい。
また、架橋性基の中でも、不溶化後の構造が特に安定な点で、ベンゾシクロブテン環由来の基が特に好ましい。
架橋性基は分子内の芳香族炭化水素基又は芳香族複素環基に直接結合してもよいが、2価の基を介して結合してもよい。この2価の基としては、−O−基、−C(=O)−基又は(置換基を有していてもよい)−CH−基から選ばれる基を任意の順番で1〜30個連結してなる2価の基を介して、芳香族炭化水素基又は芳香族複素環基に結合することが好ましい。
さらに、ポリアリールアミン誘導体としては、下記式(I)で表される繰り返し単位を含むポリマーであることが好ましい。特に、下記式(I)で表される繰り返し単位からなるポリマーであることが好ましく、この場合、繰り返し単位それぞれにおいて、Ar11〜Ar15がそれぞれ異なっているものであってもよい。
Figure 2010212441
(式(I)中、qは0〜3の整数を表し、Ar11及びAr12は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい芳香族複素環基又は直接結合を表し、Ar13〜Ar15は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。但し、Ar11及びAr12のいずれもが、直接結合であることはない。)
置換基を有していてもよい芳香族炭化水素基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などの、6員環の単環又は2〜5縮合環由来の基が挙げられる。
置換基を有していてもよい芳香族複素環基としては、例えばフラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環などの、5又は6員環の単環又は2〜4縮合環由来の基が挙げられる。
溶剤に対する溶解性、及び耐熱性の点から、Ar11〜Ar15は、それぞれ独立に、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、ピレン環、チオフェン環、ピリジン環、フルオレン環からなる群より選ばれる環由来の基が好ましい。
また、Ar11〜Ar15としては、前記芳香族炭化水素基または芳香族複素環基の群から選ばれる1種又は2種以上の環を、直接結合又は―CH=CH―基により連結した2価の基も好ましく、ビフェニレン基及びターフェニレン基がさらに好ましい。
Ar11〜Ar15における芳香族炭化水素基及び芳香族複素環基が有していてもよい置換基としては、特に制限はないが、上記[置換基群Z]、[不溶化基]に記載の基などが挙げられる。溶解性の点から、Ar11〜Ar15における芳香族炭化水素基及び芳香族複素環基が有していてもよい置換基としては、それぞれ独立に、炭素数1〜12のアルキル基及び炭素数1〜12のアルコキシ基が好ましい。
なお、qが2以上である場合、前記式(I)で表される繰り返し単位は、2個以上のAr14及びAr15を有することになる。その場合、Ar14同士及びAr15同士は、各々、同じでもよく、異なっていてもよい。さらに、Ar14同士、Ar15同士は、各々互いに直接又は連結基を介して結合して環状構造を形成していてもよい。
前記式(I)においてqは、0〜3の整数を表す。qは、通常0以上であり、通常3以下、好ましくは2以下である。qが2以下である方が、原料となるモノマーの合成が容易である。
以下に式(I)で表される繰り返し単位を含むポリマー材料の具体例を挙げるが、以下に限定されるものではない。尚、本具体例は、末端基を芳香族炭化水素基としている。
Figure 2010212441
Figure 2010212441
Figure 2010212441
Figure 2010212441
Figure 2010212441
Figure 2010212441
Figure 2010212441
Figure 2010212441

ポリアリーレン誘導体としては、前記式(II)におけるArやArとして例示した置換基を有していてもよい、芳香族炭化水素基または芳香族複素環基などのアリーレン基をその繰り返し単位に有するポリマーが挙げられる。
ポリアリーレン誘導体としては、下記式(III−1)および/または下記式(III−2)からなる繰り返し単位を有する重合体が好ましい。
Figure 2010212441
(式(III−1)中、Ra、Rb、RおよびRは、それぞれ独立に、アルキル基、アルコキシ基、フェニルアルキル基、フェニルアルコキシ基、フェニル基、フェノキシ基、アルキルフェニル基、アルコキシフェニル基、アルキルカルボニル基、アルコキシカルボニル基、又はカルボキシ基を表す。tおよびsは、それぞれ独立に、0〜3の整数を表す。tまたはsが2以上の場合、一分子中に含まれる複数のRaまたはRbは同一であっても異なっていてもよく、隣接するRaまたはRbどうしで環を形成していてもよい。)
Figure 2010212441
(式(III−2)中、RおよびRは、それぞれ独立に、上記式(III−1)におけるRa、Rb、RまたはRと同義である。rおよびuは、それぞれ独立に、0〜3の整数を表す。rまたはuが2以上の場合、一分子中に含まれる複数のRおよびRは同一であっても異なっていてもよく、隣接するRまたはRどうしで環を形成していてもよい。Xは、5員環または6員環を構成する原子または原子群を表す。)
Xの具体例としては、酸素原子、置換基を有していてもよいホウ素原子、置換基を有していてもよい窒素原子、置換基を有していてもよいケイ素原子、置換基を有していてもよいリン原子、置換基を有していてもよいイオウ原子、置換基を有していてもよい炭素原子またはこれらが結合してなる基である。
また、ポリアリーレン誘導体としては、下記式(III−1)および/または下記式(III−2)からなる繰り返し単位に加えて、さらに下記式(III−3)で表される繰り返し単位を有することが好ましい。
Figure 2010212441
(式(III−3)中、Ar〜Arは、それぞれ独立に、置換基を有していてもよい、芳香族炭化水素基または芳香族複素環基を表す。vおよびwは、それぞれ独立に0または1を表す。)
Ar〜Arの具体例としては、前記式(II)における、Ar及びArと同様である。上記式(III−1)〜(III−3)の具体例およびポリアリーレン誘導体の具体例等は、特開2008-98619号公報に記載のものなどが挙げられる。
本発明において、正孔注入層を形成するポリマー材料および正孔輸送層を形成するポリマー材料は、それぞれ、上記式(I)で表される繰り返し単位を含むポリマーであることが好ましく、ポリマー中の繰り返し単位が、上記式(I)で表される繰り返し単位のみからなるポリマーであることがさらに好ましい。ポリマー中の繰り返し単位が、上記式(I)で表される繰り返し単位のみからなるポリマーである場合、ポリマー中において、複数の異なる上記式(I)で表される繰り返し単位を有するポリマーを有するものであってもよい。特に、不溶化基を置換基として有するものが好ましく、中でも架橋性基を置換基として有するものが好ましい。
(アリーレンジアミン化合物)
本発明は、発光層に発光材料としてアリーレンジアミン化合物を含有することを特徴とする。アリーレンジアミン化合物としては、下記式(1)で表される化合物であることが好ましい。
Figure 2010212441
式(1)中、Ar〜Arは、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基を表す。
置換基を有していてもよい芳香族炭化水素基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などの、6員環の単環または2〜5縮合環由来の基およびこれらの環が2環以上直接結合で連結してなる基が挙げられる。
また、この芳香族炭化水素基の置換基としては、上記の[置換基群Z]に記載の基が挙げられる。
式(1)で表される化合物の中でも、Arがクリセン環であることが好ましく、特に下記式(1−1)で表される化合物であることが好ましい。
Figure 2010212441
(式(1−1)中、Ar〜Arは、それぞれ上記式(1)におけるものと同義である。)
本発明におけるアリーレンジアミン化合物の分子量は、本発明の効果を著しく損なわない限り任意であるが、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。分子量が小さ過ぎると、耐熱性が著しく低下したり、ガス発生の原因となったり、膜を形成した際の膜質の低下を招いたり、或いはマイグレーションなどによる有機電界発光素子のモルフォロジー変化を来したりする場合がある。一方、分子量が大き過ぎると、化合物の精製が困難となってしまったり、溶剤に溶解させる際に時間を要したりする傾向がある。
以下に式(1−1)で表される化合物の具体例を挙げるが、以下に限定されるものではない。
Figure 2010212441
Figure 2010212441
<有機電界発光素子の構成>
以下に、本発明について、図1を参照して説明する。
図1は本発明にかかる有機電界発光素子の構造例を示す断面の模式図であり、図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は正孔阻止層、7は電子輸送層、8は電子注入層、9は陰極を各々表す。
尚、本発明において湿式成膜法とは、例えば、スピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法等湿式で成膜される方法をいう。これらの成膜方法の中でも、スピンコート法、スプレーコート法、インクジェット法が好ましい。これは、有機電界発光素子に用いられる塗布用組成物特有の液性に合うためである。
(基板)
基板1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシート等が用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の一つである。
(陽極)
陽極2は発光層側の層への正孔注入の役割を果たすものである。
この陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウムおよび/またはスズの酸化物等の金属酸化物、ヨウ化銅等のハロゲン化金属、カーボンブラック、或いは、ポリ(3−メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。
陽極2の形成は通常、スパッタリング法、真空蒸着法等により行われることが多い。また、銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極2を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板1上に塗布することにより陽極2を形成することもできる。さらに、導電性高分子の場合は、電解重合により直接基板1上に薄膜を形成したり、基板1上に導電性高分子を塗布して陽極2を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。
陽極2は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。
陽極2の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが好ましい。この場合、陽極2の厚みは通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは500nm以下程度である。不透明でよい場合は陽極2の厚みは任意であり、陽極2は基板1と同一でもよい。また、さらには、上記の陽極2の上に異なる導電材料を積層することも可能である。
陽極2に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的に、陽極2表面を紫外線(UV)/オゾン処理したり、酸素プラズマ、アルゴンプラズマ処理したりすることは好ましい。
(正孔注入層)
正孔注入層3は、陽極2から発光層5へ正孔を輸送する層であり、通常、陽極2上に形成される。本発明に係る正孔注入層3は湿式成膜法により形成される。通常は、上記説明した正孔注入層を形成するポリマー材料の1種または2種以上を適切な溶剤と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を適切な手法により、正孔注入層3の下層に該当する層(通常は、陽極)上に塗布して成膜し、乾燥することにより正孔注入層3を形成する。
正孔注入層形成用組成物中の、正孔注入層を形成するポリマー材料の濃度は本発明の効果を著しく損なわない限り任意であるが、膜厚の均一性の点で通常0.01重量%以上、好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上、また、通常70重量%以下、好ましくは60重量%以下、さらに好ましくは50重量%以下である。
(溶剤)
正孔注入層形成用組成物の溶剤のうち少なくとも1種は、上述の正孔注入層を形成するポリマー材料を溶解しうる化合物であることが好ましい。また、この溶剤の沸点は通常110℃以上、好ましくは140℃以上、中でも200℃以上、通常400℃以下、中でも300℃以下であることが好ましい。溶剤の沸点が低すぎると、乾燥速度が速すぎ、膜質が悪化する可能性がある。また、溶剤の沸点が高すぎると乾燥工程の温度を高くする必要があり、他の層や基板に悪影響を与える可能性がある。
溶剤として例えば、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤などが挙げられる。
エーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール−1−モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル;1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、アニソール、フェネトール、2−メトキシトルエン、3−メトキシトルエン、4−メトキシトルエン、2,3−ジメチルアニソール、2,4−ジメチルアニソール等の芳香族エーテル、等が挙げられる。
エステル系溶剤としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n−ブチル等の芳香族エステル、等が挙げられる。
芳香族炭化水素系溶剤としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3−イロプロピルビフェニル、1,2,3,4−テトラメチルベンゼン、1,4−ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレン等が挙げられる。
アミド系溶剤としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、等が挙げられる。
その他、ジメチルスルホキシド、等も用いることができる。
これらの溶剤は1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で用いてもよい。
(電子受容性化合物)
正孔注入層形成用組成物には、さらに電子受容性化合物が含まれていることが好ましい。
電子受容性化合物とは、酸化力を有し、上述の正孔輸送性化合物から一電子受容する能力を有する化合物が好ましく、具体的には、電子親和力が4eV以上である化合物が好ましく、5eV以上の化合物である化合物がさらに好ましい。
このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種または2種以上の化合物等が挙げられる。さらに具体的には、4−イソプロピル−4’−メチルジフェニルヨードニウムテトラキス(ペンダフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基の置換したオニウム塩(国際公開2005/089024号パンフレット);塩化鉄(III)(特開平11−251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物、トリス(ペンダフルオロフェニル)ボラン(特開2003−31365号公報)等の芳香族ホウ素化合物;フラーレン誘導体;ヨウ素;ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、ショウノウスルホン酸イオン等のスルホン酸イオン等が挙げられる。
これらの電子受容性化合物は、正孔輸送性化合物(ポリマー材料)を酸化することによ
り正孔注入層の導電率を向上させることができる。正孔注入層或いは正孔注入層形成用組成物中の電子受容性化合物の正孔輸送性化合物に対する含有量は、通常0.1モル%以上、好ましくは1モル%以上である。但し、通常100モル%以下、好ましくは40モル%以下である。
(その他の構成材料)
正孔注入層の材料としては、本発明の効果を著しく損なわない限り、さらに、その他の成分を含有させてもよい。その他の成分の例としては、各種の発光材料、電子輸送性化合物、低分子の正孔輸送性化合物、バインダー樹脂、塗布性改良剤などが挙げられる。なお、その他の成分は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
(成膜方法)
正孔注入層形成用組成物を調製後、この組成物を湿式成膜法により、正孔注入層3の下層に該当する層(通常は、陽極2)上に塗布成膜し、乾燥することにより正孔注入層3を形成する。
成膜工程における温度は、組成物中に結晶が生じることによる膜の欠損を防ぐため、10℃以上が好ましく、50℃以下が好ましくい。
成膜工程における相対湿度は、本発明の効果を著しく損なわない限り限定されないが、通常0.01ppm以上、通常80%以下である。
成膜後、通常加熱等により正孔注入層形成用組成物の膜を乾燥させる。加熱工程において使用する加熱手段の例を挙げると、クリーンオーブン、ホットプレート、赤外線、ハロゲンヒーター、マイクロ波照射などが挙げられる。中でも、膜全体に均等に熱を与えるためには、クリーンオーブンおよびホットプレートが好ましい。
加熱工程における加熱温度は、本発明の効果を著しく損なわない限り、正孔注入層形成用組成物に用いた溶剤の沸点以上の温度で加熱することが好ましい。また、正孔注入層に用いた溶剤が2種類以上含まれている混合溶剤の場合、少なくとも1種類がその溶剤の沸点以上の温度で加熱されるのが好ましい。溶剤の沸点上昇を考慮すると、加熱工程においては、好ましくは120℃以上、好ましくは410℃以下で加熱することが好ましい。
加熱工程において、加熱温度が正孔注入層形成用組成物の溶剤の沸点以上であり、かつ塗布膜の十分な不溶化が起こらなければ、加熱時間は限定されないが、好ましくは10秒以上、通常180分以下である。加熱時間が長すぎると他の層の成分が拡散する傾向があり、短すぎると正孔注入層が不均質になる傾向がある。加熱は2回に分けて行ってもよい。
正孔注入層を形成するポリマー材料が、架橋性基などの不溶化基を有する場合、成膜後、加熱および/または光などの電磁エネルギー照射により、脱離や架橋をさせて形成する。
加熱の手法は上記加熱工程と同様である。光などの電磁エネルギー照射による場合には、超高圧水銀ランプ、高圧水銀ランプ、ハロゲンランプ、赤外ランプ等の紫外・可視・赤外光源を直接用いて照射する方法、あるいは前述の光源を内蔵するマスクアライナ、コンベア型光照射装置を用いて照射する方法などが挙げられる。光以外の電磁エネルギー照射では、例えばマグネトロンにより発生させたマイクロ波を照射する装置、いわゆる電子レンジを用いて照射する方法が挙げられる。照射時間としては、膜の溶解性を低下させるために必要な条件を設定することが好ましいが、通常、0.1秒以上、好ましくは10時間以下照射される。加熱および光などの電磁エネルギー照射は、それぞれ単独、あるいは組み合わせて行ってもよい。組み合わせる場合、実施する順序は特に限定されない。
正孔注入層3の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常100
0nm以下、好ましくは500nm以下の範囲である。
(正孔輸送層)
正孔輸送層4は、通常、正孔注入層3の上に形成される。本発明に係る正孔輸送層4は湿式成膜法により形成される。通常は、上記説明した正孔輸送層を形成するポリマー材料の1種または2種以上を適切な溶剤と混合して成膜用の組成物(正孔輸送層形成用組成物)を調製し、この正孔輸送層形成用組成物を適切な手法により、正孔輸送層3の下層に該当する正孔注入層上に塗布して成膜し、乾燥することにより正孔注入層3を形成する。
正孔輸送層形成用組成物中の、正孔輸送層を形成するポリマー材料の濃度は本発明の効果を著しく損なわない限り任意であるが、膜厚の均一性の点で通常0.01重量%以上、好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上、また、通常70重量%以下、好ましくは60重量%以下、さらに好ましくは50重量%以下である。
上記正孔注入層3の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜後、加熱乾燥や加熱および/または光などの電磁エネルギー照射により、脱離や架橋をさせる。
正孔輸送層形成用組成物に用いる溶剤は上記正孔注入層形成用組成物に用いる例として挙げたものと同様である。また、成膜条件、加熱乾燥条件等も正孔注入層3の形成の場合と同様である。また、正孔輸送層を形成するポリマー材料以外に、正孔輸送層形成用組成物に含有していてもよいものについても、正孔注入層形成用組成物と同様である。
このようにして形成される正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常300nm以下、好ましくは100nm以下である。
(発光層)
正孔輸送層4の上には、通常、発光層5が湿式成膜法で形成される。発光層5は、電界を与えられた電極間において、陽極2から注入された正孔と、陰極9から注入された電子との再結合により励起されて、主たる発光源となる層である。
発光層5は、上記詳述のアリーレンジアミン化合物を発光材料として少なくとも含有する。さらに、好ましくは、正孔輸送性や電子輸送性などの性質を有する電荷輸送性化合物を含有する。発光材料をドーパント材料として使用し、電荷輸送性化合物などをホスト材料として使用してもよい。更に、発光層5は、本発明の効果を著しく損なわない範囲で、その他の成分を含有していてもよい。なお、何れも低分子量の材料を使用することが好ましい。低分子量の材料の分子量は、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。
発光層5における発光材料の割合は、本発明の効果を著しく損なわない限り任意であるが、通常0.05重量%以上、通常35重量%以下である。発光材料が少なすぎると発光ムラを生じる可能性があり、多すぎると発光効率が低下する可能性がある。なお、2種以上の発光材料を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。
電荷輸送性化合物としては、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボン、オキサジアゾール誘導体、ピリジン
誘導体、フェナントロリン誘導体、カルバゾール誘導体、アントラセン誘導体、ピレン誘導体等が挙げられる。なお、発光層5において、電荷輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
発光層5における電荷輸送性化合物の割合は、本発明の効果を著しく損なわない限り任意であるが、通常0.1重量%以上、通常65重量%以下である。電荷輸送性化合物が少なすぎると短絡の影響を受けやすくなる可能性があり、多すぎると膜厚ムラを生じる可能性がある。なお、2種以上の電荷輸送性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。
発光層5は、上記材料を適切な溶剤に溶解させて発光層形成用組成物を調製し、それを用いて成膜することにより形成する。
発光層5を本発明に係る湿式成膜法で形成するための発光層形成用組成物に含有させる発光層用溶剤としては、発光層の形成が可能である限り任意のものを用いることができる。発光層用溶剤の好適な例は、上記正孔注入層形成用組成物で説明した溶剤と同様である。
発光層5を形成するための発光層形成用組成物に対する発光層用溶剤の比率は、本発明の効果を著しく損なわない限り任意であるが、通常0.01重量%以上、通常70重量%以下、である。なお、発光層用溶剤として2種以上の溶剤を混合して用いる場合には、これらの溶剤の合計がこの範囲を満たすようにする。
また、発光層形成用組成物中の発光材料、電荷輸送性化合物等の固形分濃度としては、通常0.01重量%以上、通常70重量%以下である。この濃度が大きすぎると膜厚ムラが生じる可能性があり、また、小さすぎると膜に欠陥が生じる可能性がある。
発光層形成用組成物を湿式成膜後、得られた塗膜を乾燥し、溶剤を除去することにより、発光層が形成される。具体的には、上記正孔注入層の形成において記載した方法と同様である。湿式成膜法の方式は、本発明の効果を著しく損なわない限り限定されず、前述のいかなる方式も用いることができる。
発光層5の膜厚は本発明の効果を著しく損なわない限り任意であるが、通常3nm以上、好ましくは5nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。発光層5の膜厚が、薄すぎると膜に欠陥が生じる可能性があり、厚すぎると駆動電圧が上昇する可能性がある。
(正孔阻止層)
発光層5と後述の電子注入層8との間に、正孔阻止層6を設けてもよい。正孔阻止層6は、発光層5の上に、発光層5の陰極9側の界面に接するように積層される層である。
この正孔阻止層6は、陽極2から移動してくる正孔を陰極9に到達するのを阻止する役割と、陰極9から注入された電子を効率よく発光層5の方向に輸送する役割とを有する。
正孔阻止層6を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。このような条件を満たす正孔阻止層の材料としては、例えば、ビス(2−メチル−8−キノリノラト)(フェノラト)アルミニウム、ビス(2−メチル−8−キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2−メチル−8−キノラト)アルミニウム−μ−オキソ−ビス−(2−メチル−8−キノリラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(特開平11−242996号公報)、3−(4−ビフェニルイル)−4−フェニル−5(4−tert−ブチルフェニル)−1,2,4−トリアゾール等のトリアゾール誘導体(特開平7−41759号公報)、バソクプロイン等のフェナントロリン誘導体(特開平10−79297号公報)などが挙げられる。更に、国際公開第2005−022962号公報に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層6の材料として好ましい。
なお、正孔阻止層6の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
正孔阻止層6の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成できる。
正孔阻止層6の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常0.3nm以上、好ましくは0.5nm以上、また、通常100nm以下、好ましくは50nm以下である。
(電子輸送層)
発光層5と後述の電子注入層8の間に、電子輸送層7を設けてもよい。
電子輸送層7は、素子の発光効率を更に向上させることを目的として設けられるもので、電界を与えられた電極間において陰極9から注入された電子を効率よく発光層5の方向に輸送することができる化合物より形成される。
電子輸送層7に用いられる電子輸送性化合物としては、通常、陰極9または電子注入層8からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物を用いる。このような条件を満たす化合物としては、例えば、8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体(特開昭59−194393号公報)、10−ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3−ヒドロキシフラボン金属錯体、5−ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(特開平6−207169号公報)、フェナントロリン誘導体(特開平5−331459号公報)、2−t−ブチル−9,10−N,N’−ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
なお、電子輸送層7の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
電子輸送層7の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
電子輸送層7の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常1nm以上、好ましくは5nm以上、また、通常300nm以下、好ましくは100nm以下の範囲である。
(電子注入層)
電子注入層8は、陰極9から注入された電子を効率良く発光層5へ注入する役割を果たす。電子注入を効率よく行なうには、電子注入層8を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属等が用いられ、その膜厚は通常0.1nm以上、5nm以下が好ましい。
更に、バソフェナントロリン等の含窒素複素環化合物や8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送化合物に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(特開平10−270171号公報、特開2002−100478号公報、特開2002−100482号公報などに記載)ことにより、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。この場合の膜厚は、通常、5nm以上、中でも10nm以上が好ましく、また、通常200nm以下、中でも100nm以下が好ましい。
なお、電子注入層8の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
電子注入層8の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
(陰極)
陰極9は、発光層5側の層(電子注入層8または発光層5など)に電子を注入する役割を果たすものである。
陰極9の材料としては、前記の陽極2に使用される材料を用いることが可能であるが、効率良く電子注入を行なうには、仕事関数の低い金属が好ましく、例えば、スズ、マグネ
シウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属またはそれらの合
金が用いられる。具体例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム−リチウム合金等の低仕事関数合金電極が挙げられる。
なお、陰極9の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
陰極9の膜厚は、通常、陽極2と同様である。
さらに、低仕事関数金属から成る陰極9を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層すると、素子の安定性が増すので好ましい。この目的のために、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。なお、これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
(その他の層)
本発明に係る有機電界発光素子は、その趣旨を逸脱しない範囲において、別の構成を有していてもよい。例えば、その性能を損なわない限り、陽極2と陰極9との間に、上記説明にある層の他に任意の層を有していてもよく、また、任意の層が省略されていてもよい。有していてもよい層としては、例えば、電子阻止層が挙げられる。
電子阻止層は、正孔注入層3または正孔輸送層4と発光層5との間に設けられ、発光層5から移動してくる電子が正孔注入層3に到達するのを阻止することで、発光層5内で正孔と電子との再結合確率を増やし、生成した励起子を発光層5内に閉じこめる役割と、正孔注入層3から注入された正孔を効率よく発光層5の方向に輸送する役割とがある。特に、発光材料として燐光材料を用いたり、青色発光材料を用いたりする場合は電子阻止層を設けることが効果的である。
電子阻止層に求められる特性としては、正孔輸送性が高く、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いこと等が挙げられる。更に、本発明においては、発光層5を本発明に係る有機層として湿式成膜法で作製する場合には、電子阻止層にも湿式成膜の適合性が求められる。このような電子阻止層に用いられる材料としては、F8−TFBに代表されるジオクチルフルオレンとトリフェニルアミンの共重合体(国際公開第2004/084260号パンフレット)等が挙げられる。
なお、電子阻止層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
電子阻止層の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
さらに陰極9と発光層5または電子輸送層7との界面に、例えばフッ化リチウム(LiF)、フッ化マグネシウム(MgF2)、酸化リチウム(Li2O)、炭酸セシウム(II)(CsCO3)等で形成された極薄絶縁膜(0.1〜5nm)を挿入することも、素子の効率を向上させる有効な方法である(Applied Physics Letters, 1997年, Vol.70, pp.152;特開平10−74586号公報;IEEE Transactions on Electron Devices, 1997年,Vol.44, pp.1245;SID 04 Digest, pp.154等参照)。
また、以上説明した層構成において、基板以外の構成要素を逆の順に積層することも可能である。例えば、図1の層構成であれば、基板1上に他の構成要素を陰極9、電子注入層8、電子輸送層7、正孔阻止層6、発光層5、正孔輸送層4、正孔注入層3、陽極2の順に設けてもよい。
更には、少なくとも一方が透明性を有する2枚の基板の間に、基板以外の構成要素を積層することにより、本発明に係る有機電界発光素子を構成することも可能である。
また、基板以外の構成要素(発光ユニット)を複数段重ねた構造(発光ユニットを複数積層させた構造)とすることも可能である。その場合には、各段間(発光ユニット間)の界面層(陽極がITO、陰極がAlの場合は、それら2層)の代わりに、例えば五酸化バナジウム(V25)等からなる電荷発生層(Carrier Generation Layer:CGL)を設けると、段間の障壁が少なくなり、発光効率・駆動電圧の観点からより好ましい。
更には、本発明に係る有機電界発光素子は、単一の有機電界発光素子として構成してもよく、複数の有機電界発光素子がアレイ状に配置された構成に適用してもよく、陽極と陰極がX−Yマトリックス状に配置された構成に適用してもよい。
また、上述した各層には、本発明の効果を著しく損なわない限り、材料として説明した以外の成分が含まれていてもよい。
本発明の有機電界発光素子は、有機ELディスプレイや有機EL照明に使用される。本発明により得られる有機電界発光素子は、例えば、「有機ELディスプレイ」(オーム社,平成16年8月20日発行,時任静士、安達千波矢、村田英幸著)に記載されているような方法で有機ELディスプレイや有機EL照明を形成することができる。
本発明を実施例によって更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。
(実施例1)
[有機電界発光素子の作製]
図1に従い、有機電界発光素子を作製した。
17.5mm×35mm(厚さ0.7mm)サイズのガラス基板を、界面活性剤水溶液による超音波洗浄、超純水による水洗、超純水による超音波洗浄、超純水による水洗の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行なった。
このガラス基板の上にインジウム・スズ酸化物(ITO)透明導電膜を150nm成膜したもの(スパッタ成膜品、シート抵抗15Ω)を通常のフォトリソグラフィ技術により2mm幅のストライプにパターニングして陽極を形成した。陽極を形成した基板を、アセトンによる超音波洗浄、純水による水洗、イソプロピルアルコールによる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
正孔注入層を形成するポリマー材料として、下記式に示す構造の高分子化合物P−1(重量平均分子量(MwA):93000、分散度:1.69)、電子受容性化合物兼重合反応開始剤として、下記式に示す構造の化合物A−1および溶剤として安息香酸エチルを含有する正孔注入層形成用組成物を調製した。組成物中、該高分子化合物P−1は2.0重量%、該化合物A−1は0.8重量%の濃度とした。この組成物を、スピナ回転数1500rpm、スピナ回転時間30秒、大気中にてスピンコート法により、上記陽極上に成膜し、230℃で3時間加熱することにより、該高分子化合物P−1を架橋させ、乾燥させることにより、膜厚45nmの均一な薄膜(正孔注入層)を形成した。
Figure 2010212441
引き続き、正孔輸送層を形成するポリマー材料として、下記式に示す構造の高分子化合物H1(重量平均分子量(MwB):53000、分散度:1.7)および溶剤としてシクロヘキシルベンゼンを含有する正孔輸送層形成用組成物を調製した。組成物中、高分子化合物H1は、1.4重量%の濃度とした。この組成物を、スピナ回転数1500rpm、スピナ回転時間30秒、窒素中にてスピンコート法により、上記正孔注入層上に成膜し、230℃で1時間、窒素中にて加熱することにより、該高分子化合物H1を架橋させ、乾燥させることにより、膜厚20nmの均一な薄膜(正孔輸送層)を形成した。
尚、MwA/MwB=1.75であった。
Figure 2010212441
次に、発光材料として、以下に示すアリーレンジアミン化合物D1および電荷輸送性化合物C1および溶剤としてシクロヘキシルベンゼンを含有する発光層形成用組成物を調製した。組成物中、該アリーレンジアミン化合物D1は0.4重量%、電荷輸送性化合物C1は4.4重量%の濃度とした。この組成物を、スピナ回転数1500rpm、スピナ回転時間30秒、窒素中にてスピンコート法により、上記正孔輸送層上に成膜し、減圧下(0.1MPa)、130℃で1時間加熱することにより、乾燥させ、膜厚50nmの均一な薄膜(発光層)を形成した。
Figure 2010212441
ここで、発光層5までを成膜した基板を、真空蒸着装置内に移し、装置内の真空度が1.3×10−4Pa以下になるまで排気した後、下記に示す構造を有する有機化合物(C2)を真空蒸着法によって発光層5の上に積層し、正孔阻止層6を得た。蒸着速度は1.4〜1.5Å/秒の範囲で制御し、膜厚は10nmとした。また、蒸着時の真空度は1.3×10−4Paであった。
Figure 2010212441
続いて、下記に示す構造を有する有機化合物(C3)を加熱して正孔阻止層6上に蒸着を行い、電子輸送層7を成膜した。蒸着時の真空度は1.3×10−4Pa、蒸着速度は
1.6〜1.8Å/秒の範囲で制御し、膜厚は30nmとした。
Figure 2010212441
ここで、電子輸送層7までの蒸着を行った素子を一度取り出し、別の蒸着装置に設置し、陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極2のITOストライプとは直交するように素子に密着させて、装置内の真空度が2.3×10−4Pa以下になるまで排気を行った。
電子注入層8として、先ずフッ化リチウム(LiF)を、モリブデンボートを用いて、蒸着速度0.1Å/秒、0.5nmの膜厚で電子輸送層7の上に成膜した。蒸着時の真空度は2.6×10−4Paであった。
次に、陰極9としてアルミニウムを同様にモリブデンボートにより加熱して、蒸着速度1.0〜4.9Å/秒の範囲で制御し、膜厚80nmのアルミニウム層を形成した。蒸着時の真空度は2.6×10−4Paであった。以上の2層の蒸着時の基板温度は室温に保持した。
引き続き、素子が保管中に大気中の水分等で劣化することを防ぐため、以下に記載の方法で封止処理を行った。
窒素グローブボックス中で、23mm×23mmサイズのガラス板の外周部に、約1mmの幅で光硬化性樹脂(株式会社スリーボンド製30Y−437)を塗布し、中央部に水分ゲッターシート(ダイニック株式会社製)を設置した。この上に、陰極形成を終了した基板を、蒸着された面が乾燥剤シートと対向するように貼り合わせた。その後、光硬化性樹脂が塗布された領域のみに紫外光を照射し、樹脂を硬化させた。
以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。この素子の発光特性は、1000cd/m時の電流効率が4.9cd/A、2500cd/m時の電流効率:4.9cd/A、100cd/m時の電力効率が2.5lm/Wであった。結果を表1に示す。
本発明の有機電界発光素子は、高い発光効率の素子であることがわかった。
(比較例1)
正孔輸送層を形成するポリマー材料として、下記式に示す構造の高分子化合物H2(重量平均分子量(MwB):70000、分散度:1.9)を用いた以外は、実施例1と同様にして、有機電界発光素子を作製した。
尚、MwA/MwB=1.32であった。
この素子の発光特性は、1000cd/m時の電流効率が4.4cd/A、2500cd/m時の電流効率:4.4cd/A、100cd/m時の電力効率が2.2lm/Wであった。結果を表1に示す。
Figure 2010212441
Figure 2010212441
1 基板
2 陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 正孔阻止層
7 電子輸送層
8 電子注入層
9 陰極
10 有機電界発光素子

Claims (7)

  1. 湿式成膜法で形成される、正孔注入層、正孔輸送層および発光層を有する有機電界発光素子において、
    該発光層が、発光材料としてアリーレンジアミン化合物を含有し、
    該正孔注入層および該正孔輸送層が、いずれもポリマー材料を用いて形成され、
    該正孔注入層を形成するポリマー材料の重量平均分子量をMwA、
    該正孔輸送層を形成するポリマー材料の重量平均分子量をMwBとした場合、
    MwA/MwBが0.5未満または1.5以上であることを特徴とする、有機電界発光素子。
  2. 該アリーレンジアミン化合物が、下記式(1−1)で表される化合物であることを特徴とする、請求項1に記載の有機電界発光素子。
    Figure 2010212441
    (式(1−1)中、Ar〜Arは、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基を表す。)
  3. 該重量平均分子量MwAおよび該重量平均分子量MwBが、それぞれ、15000以上であることを特徴とする、請求項1または2に記載の有機電界発光素子。
  4. 該正孔注入層を形成するポリマー材料および該正孔輸送層を形成するポリマー材料の分散度が、それぞれ、2.4以下であることを特徴とする、請求項1〜3のいずれか一項に記載の有機電界発光素子。
  5. 該正孔注入層を形成するポリマー材料および該正孔輸送層を形成するポリマー材料が、それぞれ、下記式(I)で表される繰り返し単位を含むポリマーであることを特徴とする、請求項1〜4のいずれか一項に記載の有機電界発光素子。
    Figure 2010212441
    (式(I)中、qは0〜3の整数を表し、Ar11及びAr12は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい芳香族複素環基又は直接結合を表し、Ar13〜Ar15は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。但し、Ar11及びAr12のいずれもが、直接結合であることはない。)
  6. 請求項1〜5のいずれか一項に記載の有機電界発光素子を用いることを特徴とする、有機ELディスプレイ。
  7. 請求項1〜5のいずれか一項に記載の有機電界発光素子を用いることを特徴とする、有機EL照明。
JP2009056715A 2009-03-10 2009-03-10 有機電界発光素子、有機elディスプレイおよび有機el照明 Pending JP2010212441A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009056715A JP2010212441A (ja) 2009-03-10 2009-03-10 有機電界発光素子、有機elディスプレイおよび有機el照明

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009056715A JP2010212441A (ja) 2009-03-10 2009-03-10 有機電界発光素子、有機elディスプレイおよび有機el照明

Publications (1)

Publication Number Publication Date
JP2010212441A true JP2010212441A (ja) 2010-09-24

Family

ID=42972322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056715A Pending JP2010212441A (ja) 2009-03-10 2009-03-10 有機電界発光素子、有機elディスプレイおよび有機el照明

Country Status (1)

Country Link
JP (1) JP2010212441A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105790A (ja) * 2009-11-12 2011-06-02 Mitsubishi Chemicals Corp アリールアミンポリマー、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
CN112778140A (zh) * 2020-12-29 2021-05-11 宁波博雅聚力新材料科技有限公司 一种含芴二胺单体、聚酰亚胺薄膜及其制备方法和用途

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276749A (ja) * 2004-03-26 2005-10-06 Sanyo Electric Co Ltd 有機電界発光素子
JP2007073814A (ja) * 2005-09-08 2007-03-22 Idemitsu Kosan Co Ltd ポリアリールアミンを用いた有機エレクトロルミネッセンス素子
JP2007087848A (ja) * 2005-09-26 2007-04-05 Seiko Epson Corp 有機半導体素子の製造方法、有機半導体素子、有機半導体装置および電子機器
JP2007197587A (ja) * 2006-01-27 2007-08-09 Seiko Epson Corp 導電性材料用組成物、導電性材料、導電層、電子デバイスおよび電子機器
WO2008063466A2 (en) * 2006-11-13 2008-05-29 E. I. Du Pont De Nemours And Company Organic electronic device
JP2008130972A (ja) * 2006-11-24 2008-06-05 Sanyo Electric Co Ltd 有機薄膜素子及びその製造方法
JP2008166629A (ja) * 2006-12-29 2008-07-17 Idemitsu Kosan Co Ltd 有機el材料含有溶液、有機el材料の合成法、この合成法による合成された化合物、有機el材料の薄膜形成方法、有機el材料の薄膜、有機el素子
JP2008248241A (ja) * 2007-03-07 2008-10-16 Mitsubishi Chemicals Corp 有機デバイス用組成物、高分子膜および有機電界発光素子
JP2009004327A (ja) * 2007-06-25 2009-01-08 Nissan Motor Co Ltd 有機薄膜素子、およびイオンドープ処理方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276749A (ja) * 2004-03-26 2005-10-06 Sanyo Electric Co Ltd 有機電界発光素子
JP2007073814A (ja) * 2005-09-08 2007-03-22 Idemitsu Kosan Co Ltd ポリアリールアミンを用いた有機エレクトロルミネッセンス素子
JP2007087848A (ja) * 2005-09-26 2007-04-05 Seiko Epson Corp 有機半導体素子の製造方法、有機半導体素子、有機半導体装置および電子機器
JP2007197587A (ja) * 2006-01-27 2007-08-09 Seiko Epson Corp 導電性材料用組成物、導電性材料、導電層、電子デバイスおよび電子機器
WO2008063466A2 (en) * 2006-11-13 2008-05-29 E. I. Du Pont De Nemours And Company Organic electronic device
JP2010509775A (ja) * 2006-11-13 2010-03-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 有機電子デバイス
JP2008130972A (ja) * 2006-11-24 2008-06-05 Sanyo Electric Co Ltd 有機薄膜素子及びその製造方法
JP2008166629A (ja) * 2006-12-29 2008-07-17 Idemitsu Kosan Co Ltd 有機el材料含有溶液、有機el材料の合成法、この合成法による合成された化合物、有機el材料の薄膜形成方法、有機el材料の薄膜、有機el素子
JP2008248241A (ja) * 2007-03-07 2008-10-16 Mitsubishi Chemicals Corp 有機デバイス用組成物、高分子膜および有機電界発光素子
JP2009004327A (ja) * 2007-06-25 2009-01-08 Nissan Motor Co Ltd 有機薄膜素子、およびイオンドープ処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105790A (ja) * 2009-11-12 2011-06-02 Mitsubishi Chemicals Corp アリールアミンポリマー、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
CN112778140A (zh) * 2020-12-29 2021-05-11 宁波博雅聚力新材料科技有限公司 一种含芴二胺单体、聚酰亚胺薄膜及其制备方法和用途

Similar Documents

Publication Publication Date Title
JP6531796B2 (ja) 導電性薄膜積層体の製造方法
JP5757244B2 (ja) 有機電界発光素子の製造方法、有機電界発光素子、表示装置及び照明装置
JP5598591B2 (ja) 有機電界発光素子の製造装置
JP5577685B2 (ja) 有機電界発光素子の製造方法、有機電界発光素子、有機el表示装置及び有機el照明
JP5672858B2 (ja) 電荷輸送材料、電荷輸送膜用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5884213B2 (ja) 有機電界発光素子の製造方法、有機電界発光素子、有機elディスプレイ及び有機el照明
WO2012005329A1 (ja) 有機電界発光素子、有機電界発光デバイス、有機el表示装置及び有機el照明
WO2011126095A1 (ja) 有機電界発光素子用組成物の製造方法、有機電界発光素子用組成物、有機電界発光素子の製造方法、有機電界発光素子、有機el表示装置および有機el照明
JP2011105676A (ja) 有機金属錯体、発光材料、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP5717333B2 (ja) 有機電界発光素子の製造方法、有機電界発光素子、有機el表示装置及び有機el照明
JP2010239125A (ja) 有機電界発光素子、有機elディスプレイおよび有機el照明
JP2010209320A (ja) 有機電界発光素子用組成物、有機電界発光素子の製造方法、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5423064B2 (ja) 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5332690B2 (ja) 有機金属錯体組成物、有機金属錯体含有組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP2010229121A (ja) 有機金属錯体、有機電界発光素子用組成物および有機電界発光素子
JP2010239134A (ja) 有機電界発光素子、有機elディスプレイ及び有機el照明
JP2010212441A (ja) 有機電界発光素子、有機elディスプレイおよび有機el照明
JP5304301B2 (ja) 有機電界発光素子、有機elディスプレイ及び有機el照明
JP2010239127A (ja) 有機電界発光素子、有機elディスプレイ及び有機el照明。
JP2010192474A (ja) 有機電界発光素子、有機elディスプレイ及び有機el照明
JP2010239008A (ja) 有機電界発光素子、有機elディスプレイ及び有機el照明
JP5463701B2 (ja) 有機電界発光素子用組成物の製造方法、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP2021147325A (ja) 芳香族化合物
JP2022136017A (ja) 芳香族化合物
JP2010192476A (ja) 有機電界発光素子、有機elディスプレイ、有機el照明及び有機el信号装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304