WO2007026780A1 - 青銅系低鉛合金 - Google Patents

青銅系低鉛合金 Download PDF

Info

Publication number
WO2007026780A1
WO2007026780A1 PCT/JP2006/317132 JP2006317132W WO2007026780A1 WO 2007026780 A1 WO2007026780 A1 WO 2007026780A1 JP 2006317132 W JP2006317132 W JP 2006317132W WO 2007026780 A1 WO2007026780 A1 WO 2007026780A1
Authority
WO
WIPO (PCT)
Prior art keywords
tensile strength
mass
alloy
bronze
content
Prior art date
Application number
PCT/JP2006/317132
Other languages
English (en)
French (fr)
Inventor
Tomoyuki Ozasa
Hisanori Terui
Hidenobu Tameda
Teruhiko Horigome
Kazuhito Kurose
Original Assignee
Kitz Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitz Corporation filed Critical Kitz Corporation
Priority to CA2603811A priority Critical patent/CA2603811C/en
Priority to EP06797104A priority patent/EP1921173A4/en
Priority to JP2007533306A priority patent/JPWO2007026780A1/ja
Priority to US11/919,997 priority patent/US20090220375A1/en
Priority to BRPI0612956-0A priority patent/BRPI0612956A2/pt
Priority to CN2006800144567A priority patent/CN101166839B/zh
Publication of WO2007026780A1 publication Critical patent/WO2007026780A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent

Definitions

  • the present invention is a bronze low bell alloy suitable for piping equipment such as valves or joints for water supply and hot water supply and steam, pressure equipment such as cylinders and casings, and structural members.
  • bronze-based low lead alloys that have improved the tensile strength below and contributed to the soundness of the material.
  • Bronze ware CFIS H5120 CAC406 is usually excellent in forgeability, corrosion resistance, machinability, and pressure resistance, and can be used for water supply / hot water supply such as valves, cocks and joints, and piping equipment for steam. Many are used.
  • the bronze ⁇ (CAC406) is contained number 0/0 of Pb (lead), in particular, contributes to the improvement of the machinability and pressure resistance.
  • Pb leaching regulation into tap water, regulation of Pb-containing waste discharge to prevent soil contamination, and regulation of Pb content in materials used are also considered as having a negative effect on the human body even at low concentrations of Pb. Globally, various forces are being strictly regulated. Based on this situation, the development of new useful lead-free copper alloys has become an urgent task, and various materials such as Bi, Bi-Sb, and Bi-Se have been developed.
  • Patent Document 1 discloses a lead-less copper alloy in which Bi is added in place of lead in the copper alloy to improve machinability and prevent dezincing.
  • Patent Document 2 discloses the generation of porosity with Bi-added iron for improved machinability was suppressed by Sb-added to increase the mechanical strength.
  • Lead-free bronze is disclosed.
  • Patent Document 3 discloses that Zn—Se compounds are precipitated by adding Se and Bi, and that mechanical properties, machinability and forging properties are the same as CAC406.
  • a bronze alloy is disclosed.
  • Patent Document 1 Japanese Patent Publication No. 5-63536
  • Patent Document 2 Japanese Patent No. 2889829
  • Patent Document 3 US Patent No. 5614038 Disclosure of the invention
  • the leadless copper alloy is at present, has allowed the inclusion of Pb in even a leadless 0.25 mass 0/0 or less (leadless bronze valve as defined in JIS B 2011), production In terms of performance and cost, if the Pb content approaches 0, ultra-reduction technology is not practical.
  • the present invention has been developed as a result of diligent research in view of the above-mentioned problems.
  • the object of the present invention is to determine the tensile strength of a bronze-based low lead alloy at high temperatures.
  • the invention according to claim 1 includes, by mass ratio, Sn: 2.0 to 6.0%, Zn: 3.0 to L0.0%, Bi: 0.1 to 3.0%, A bronze-based material that contains P: 0.1 ⁇ P ⁇ 0.6%, the balance consists of Cu and inevitable impurities, and improves the tensile strength at high temperatures by increasing the grain boundary strength in the alloy by the inclusion of soot Low lead alloy.
  • the invention according to claim 2 is, by mass ratio, Sn: 2.0-6.0%, Zn: 3.0-: L0.0%, Bi
  • the invention according to claim 3 is, by mass ratio, Sn: 2.0 to 6.0%, Zn: 3.0 to: L0.0%, Bi
  • the invention according to claim 4 has a mass ratio of Sn: 2.0 to 6.0%, Zn: 3.0 to LO: 0%, Bi
  • the invention according to claim 5 or claim 6 allows the inclusion of Pb: 0.005 to 2.0 mass%, and is an alloy region having a secondary dendrite arm interval of 14 m or more, and at least 180%.
  • Bow at ° C I A bronze-based low lead alloy with a tensile strength of 152 MPa.
  • the invention according to claim 7 is a bronze-based low lead alloy using the alloy of the invention as a material for manufacturing a valve 'faucet fitting or a water meter.
  • the bronze-based low-lead compound improves the tensile strength at high temperatures, contributes to the promotion of environmental protection such as recycling, and is excellent in mass productivity and cost. Made it possible to provide gold.
  • the copper alloy of the present invention with improved tensile strength at high temperatures, which was limited mainly to application in water supply / hot water supply equipment with operating temperature of 100 ° C or less, It can be applied to all applications of conventional bronze alloys without limiting the usage.
  • the range of use as a recycled material has been expanded, and as well as environmental protection, it has excellent effects in terms of cost.
  • it is suitable for alloys that have a slow cooling rate during forging, such as forged sand products, and is ideal for alloys that require a tensile strength of 152 MPa at high temperatures (about 180 ° C).
  • a bronze-based low lead alloy that improves the decrease in tensile strength at high temperatures, contributes to the promotion of environmental protection such as recycling, and is excellent in mass productivity. Made it possible. It is also an alloy that contains Ni as the main component and has a tensile strength of 152 MPa at high temperatures (about 180 ° C) while suppressing the P content by obtaining the P-Ni interaction. The effect of improving tensile strength due to inclusion was obtained by inclusion of 0 ⁇ P ⁇ 0.6.
  • the basic allowable stress value at 200 ° C of CAC406 is the force specified as 38 MPa, which is four times the specified value.
  • 152 MPa can be secured even at high temperatures. Strength that tends to reduce the health of the pork if P is contained in excess P-Ni interaction can ensure the tensile strength at high temperatures at least even if the P content is low.
  • an alloy suitable for a pressure vessel such as a valve can be obtained.
  • an alloy having a tensile strength of 152 MPa at a high temperature (about 180 ° C) while containing Se as a main component and suppressing the Bi content can be provided.
  • Se exists as an intermetallic compound of Se-Zn and Cu-Se in the alloy, so that the tensile strength is effective in ensuring the soundness of the material while suppressing the Bi content.
  • An alloy suitable for a pressure-resistant container such as a valve can be obtained.
  • the alloy has a tensile strength of 152 MPa at a high temperature (about 180 ° C) while suppressing the content of P and Bi by containing Ni as a main component.
  • the inclusion of Se which is a main component, can further improve the soundness of the porridge, and an alloy suitable for a pressure-resistant container such as a valve can be obtained.
  • an excellent tensile strength can be ensured even at a high temperature that is not affected by the Pb content.
  • Pb contamination from the furnace ladle, etc.
  • the tensile strength at high temperatures is ensured without being affected by the inclusion of Pb as an inevitable impurity.
  • FIG. 1 is a graph showing the relationship between the P content and the tensile strength at 180 ° C. for the copper alloy of the present invention.
  • FIG. 2 is a schematic diagram of a dendrite.
  • FIG. 3 is a photomicrograph showing a representative microstructure of CAC406.
  • FIG. 6 A graph showing the relationship between secondary dendrite arm spacing and bow I tension at 180 ° C.
  • FIG. 7 A photograph showing the cut surface of the body of a small valve (nominal pressure 10K, nominal diameter 1mm2, general-purpose gate valve made of leadless bronze).
  • FIG. 8 is a photograph showing a state in which the cut surface of the body part in FIG. 7 is etched using nitric acid.
  • FIG. 9 is a graph showing the relationship between Pb content and bow I tensile strength at 180 ° C.
  • FIG. 11 is a graph showing the relationship between the P content, the Ni content, and the tensile strength at 180 ° C. for the copper alloy of the present invention.
  • FIG. 12 is a graph showing the effect of Sb content in a leadless copper alloy.
  • FIG. 13 is an explanatory view showing a method for producing a staircase-like specimen test piece.
  • FIG. 14 is an explanatory view showing an observation surface of a dye penetrant flaw test on a staircase specimen.
  • FIG. 15 is a conceptual diagram showing P—Ni interaction.
  • FIG. 16 is an SEM photograph of the alloy of the present invention.
  • FIG. 17 (a) is a SEM photograph of the alloy of the present invention, and (b) is a fracture structure photograph of the alloy.
  • FIG. 18 (a) is a SEM photograph of a comparative example, and (b) is a fracture surface structure photograph of the same example.
  • FIG. 19 is a microstructure diagram of the alloy of the present invention.
  • FIG. 20 (a) to (g) are photographs showing the component distribution by EDX analysis in FIG.
  • the bronze-based low lead alloy according to the present invention is characterized in that the tensile strength at high temperature is improved by containing P in the porcelain material at a high concentration, and in particular contains Bi.
  • the bow I tension strength at high temperatures exceeding 100 ° C is improved and the bow I tension strength at least 180 ° C is improved in the alloy region where the secondary dendrite arm spacing is 14 / zm or more. It is characterized by securing 152 MPa.
  • the basic composition of the “bronze” alloy in the present invention is Sn, Zn, Bi, Cu and inevitable impurities.
  • Preferred bronze low lead alloys include Cu—Sn—Zn—Bi (hereinafter “3 ⁇ 4”). Toi.) And 01-311-211-36 system (hereinafter referred to as “: Bi-Se system”).
  • the "low lead” alloy in the present invention means an alloy having a Pb content smaller than that of a bronze alloy containing Pb (such as CAC406), and is defined in JIS H5120, etc. It is not limited to the Pb content (less than 0.25% by mass) as a residual component in lead-free (lead-free) copper alloys.
  • high concentration P (phosphorus) in the present invention means P in an amount exceeding 0.1 mass%, which is larger than residual P in the known art.
  • the “P—Ni interaction” in the present invention refers to a synergistic effect in which the improvement rate of the effect (tensile strength) on the increase in the P content increases at higher temperatures due to the Ni content.
  • the “tensile strength” in the present invention is evaluated with an Amsler I tension tester using a No. 4 test piece defined in JIS Z2201 described later.
  • “soundness of the flaw” in the present invention is the evaluation of the presence or absence of flaws on the observation surface in the dye penetration test using a stepped flaw test piece, which will be described later. Or, if it can be judged that it can be improved to the same level as CAC406 by modifying the manufacturing method, it is evaluated as acceptable.
  • soot in a copper alloy is contained in a relatively low concentration within a range of 0.01 or more and 0.1% by mass or less.
  • the porcelain produced by sand mold forging contains 0.01 to less than 0.1% by mass as residual soot.
  • the soot content as a residual component in CAC406 is 0.05% by mass or less. It is below.
  • P30 of the 146th Annual Meeting of the Japan Society of Forging Engineering even if P is actively contained to prevent forging cracks, it is 200-30 Oppm (0. 02-0. 03 mass 0/0) content is.
  • P in these examples is added to the molten metal in the forging furnace and the molten metal in the ladle, and the residual P contained in the porridge is 0.1% by mass or less.
  • the content of P in the present invention contributes to the improvement of the tensile strength at high temperatures (about 180 ° C) and is in a high concentration range that greatly exceeds the amount added for preventing deoxidation and forge cracking.
  • P is actively contained in an amount of 0.1% by mass, while the content exceeding 0.1% by mass suppresses the formation of Bi—Pb binary eutectic, while increasing the grain boundary strength of the alloy Contributes to the improvement of tensile strength below.
  • the upper limit is set to 0.6% by mass within the range satisfying the tensile strength of 152 MPa, and the lower limit is set. Is preferably 0.2% by mass.
  • the upper limit value is preferably a peak value of tensile strength at 180 ° C, and the upper limit of 0.4% by mass is preferred from the viewpoint of cost during mass production.
  • the upper limit is 0.4% by mass. preferable.
  • the lower limit value of P can be lowered because the interaction between Ni and P can ensure a tensile strength of 152 MPa at 180 ° C. Is 0.12% by mass, more preferably 0.14% by mass, and in accordance with this, a tensile strength of 152 MPa at 180 ° C. can be obtained in a range where the upper limit is also suppressed to 0.33% by mass. It becomes possible.
  • the P content should be further suppressed.
  • the upper limit at that time is preferably 0.2% by mass.
  • Ni in copper alloys dissolves in the ⁇ phase, strengthens the matrix, and contributes to improving the mechanical properties of the alloy, especially the tensile strength.
  • Japanese Patent Laid-Open No. 2003-193157 proposes a technology that ensures the tensile strength equivalent to that of CAC406 at room temperature by containing 0.2 to 3.0% by weight of Ni.
  • the tensile strength changes with the increase in the tensile strength peak in the example alloy containing 0.01 to 0.02 wt% (130 to 200 ppm) of P.
  • the Ni content is 0.6 to 0.0. It exhibits a gentle mountain shape characteristic present at 8% by weight (see FIG. 1 in the above publication).
  • the content of Ni in the present invention is to contribute to the improvement of the tensile strength at high temperatures assuming containing a high concentration of P exceeding 0.1 mass 0/0, the tensile strength
  • the interaction of P—Ni can provide a parabolic characteristic (the X axis is an axis) in which the tensile strength is greatly improved by containing a small amount of Ni.
  • the tensile strength at high temperatures is improved while suppressing the P content within the high concentration range (0.1 ⁇ P ⁇ 0.6 mass%). It became possible. This is extremely useful in view of the fact that the molten metal also evaporates and it is difficult to control the concentration immediately.
  • Ni content a value exceeding at least 0 is acceptable.
  • 0.05% by mass or 0.08% by mass is also applicable, and preferably 0.1% by mass, While suppressing the amount, a tensile strength of 152 MPa at high temperature (about 180 ° C) can be obtained.
  • the upper limit is preferably 1.0% by mass. Further, it is preferable that the lower limit is 0.3% by mass and the upper limit is 0.6% by mass with respect to ensuring a minimum tensile strength of 152 MPa at high temperature (about 180 ° C.).
  • microporosity As a low melting point component that is an alternative component of Pb, by entering into a fine shrinkage nest called microporosity that occurs in the final solidification part of the dendrite gap in the alloy (ceramic) during the forging solidification process It is a component that contributes to ensuring machinability while improving the soundness (pressure resistance) of the alloy. Inclusion of 0.1% by mass or more is effective for improving machinability, but in order to reduce microporosity and ensure the soundness of the alloy, it is necessary to contain 0.25% by mass or more in addition to Se. is there.
  • the lower limit value should be 1.0% by mass.
  • the upper limit is 2.6% by mass. It is effective to do this, and when importance is attached to cost reduction in mass production, it is preferable to set the upper limit to 2.0 mass%.
  • the upper limit is set to 10% by mass.
  • the lower limit is preferably 4.0% by mass.
  • the upper limit value is preferably 9.0% by mass. Considering the optimum lower limit value of 2.8 mass% of Sn described later, it is preferable to set the lower limit value to 6.0 mass% as a range in which the ⁇ phase is not precipitated.
  • the upper limit is set to 6.0% by mass in consideration of the fact that hard fragile ⁇ phase precipitates as the content increases, which decreases workability and elongation, and costs.
  • a tensile strength equivalent to that of CAC406 is required, a content of 2.8% by mass or more is effective.
  • the upper limit should be 5.5% by mass.
  • the upper limit is preferably set to 4.5 mass%.
  • Se is an alternative component of Pb.
  • intermetallic compounds such as Se-Zn and Cu-Se in accordance with the Cu and Zn content ratio, the alloy's machinability is reduced while suppressing the Bi content. Secure.
  • the crystallization of these intermetallic compounds disperses the microporosity, improving the soundness of the alloy and stabilizing the tensile strength. If the content is excessive, the amount of crystallization of the brittle intermetallic compound increases, and the tensile strength decreases, so the upper limit is set to 1.3%.
  • Pb In order to ensure the tensile strength at high temperature (180 ° C), Pb should be controlled to 0.005% by mass or less. However, the use of recycled materials containing Pb is expected to be promoted because the tensile strength at high temperatures was ensured by the inclusion of P described later. Specifically, the tensile strength at high temperatures is improved in the range of 0.005 to 2.0% by mass, which is the low lead region in the present invention, and domestic lead levels are improved. It is possible to allow Pb content within the range of 0.25 mass% or less, which is the Pb content standard of stainless bronze valves.
  • Inevitable impurities in the copper alloy of the present invention include Pb described above, Fe: 0.3 mass% or less, A1: 0.01 mass% or less, Si: 0.01 mass% or less, Mn: 0.25 mass% or less, S: 0.3 mass%
  • Mg 0.01 mass% or less
  • Ti 0.01 mass% or less
  • Zr 0.1 mass% or less
  • Co 0.3 mass% or less
  • Cr 0.3 mass% or less
  • Sb l.1 mass% or less.
  • Tables 2 and 3 show the effects of Sb content in lead-free copper alloys with various chemical component values. As shown in the figure, it was confirmed that Sb is an inevitable impurity without affecting the tensile strength.
  • 152 MPa was set as a target value at 180 ° C. as a reference value of tensile strength.
  • the standard for 180 ° C is when the nominal pressure is 10K or a bronze valve of class 150 and the fluid is saturated steam.
  • the maximum allowable pressure is 1. OMPa, and the saturation temperature corresponding to this pressure is 180 ° C.
  • the standard for 152 MPa is based on JIS B 8270 “Pressure Vessel Structure”, and the target value of the tensile strength of the material body is basically allowed in consideration of the safety of products using this material.
  • the basic allowable stress value of CAC406 at 200 ° C is 4 times the value of 38 MPa, and the pressure vessel such as a valve which is the main application of the copper alloy of the present invention is used. It is suitable for use.
  • Table 4 shows the composition of each sample. The test results are shown in the same table and graphed in Fig. 1.
  • each sample in a present Example was extract
  • the test piece was made into a JIS A plan using a Co mold at a filling temperature of 1130 ° C.
  • Nos. 11 to 8 are Bi-Se alloys, and P is a characteristic component of the copper alloy of the present invention.
  • No. 1-9 to 16 shown in Table 4 are the main components of Sn, Zn, Bi, Se in Bi-Se 05 series alloys similar to No. 1-1 to 8. It is a test sample containing a high concentration of P, which is a characteristic component of the copper alloy of the present invention, by changing the content.
  • the contents of Sn, Zn, Bi, which are the main components, are changed in the copper alloy of the present invention (Bi series), and high concentration P It is a specimen containing
  • FIG. 2 is a schematic diagram of a dendrite.
  • the trunk is the primary dendrite arm (primary branch)
  • the branch that also generates this primary branch force is called the secondary dendrite arm (secondary branch).
  • Fig. 3 is a photomicrograph showing a typical microstructure of CAC406. When this microstructure is observed, it can be seen that secondary dendrite arms have been developed and aligned.
  • the secondary dendrite arm was measured using the secondary branch method, and the size of the microstructure was evaluated.
  • the quadratic branch method is a method for obtaining the average distance between aligned arms. That is, search for a dendrite arm having a plurality of secondary arms and growing substantially in parallel with the microstructure, and draw a straight line of an arbitrary length substantially perpendicular to the dendrite arm. Divide L by the number of arms crossing the dendrite arm (n-1) and let this be ds. In other words, the size of the secondary dendrite arm is expressed by 1 ⁇ 7 (11—1).
  • the microstructure of the specimen specimen varies depending on the location to be observed, and because it is polycrystalline, there is a difference in the manner of dendrite development in each crystal grain.
  • the measurement method of the secondary dendrite arm spacing of each test piece was unified as follows.
  • Figure 4 (c) shows an example of CAC406 measurement. If the number of measurements exceeds about 10, the average value of the secondary dendrite arm spacing converges, eliminating the effect of differences in measurement locations.
  • the “continuous forging” is formed by “continuous forging”, for example, in which a molten metal is poured from the upper side into a hollow vertical shape, while the downward force is also solidified. Yes, solidification of the molten metal is promoted by cooling equipment such as water cooling.
  • “sand mold fabrication” is formed by “sand mold fabrication”, in which a molten metal is poured into a cured mold with strong sand strength, left to cool in air, and then the solidified metal portion is taken out from the mold.
  • the “mold mold” is formed by “mold fabrication” in which a molten metal is poured into a metal mold, left to air-cool, and then the solidified metal portion is taken out from the mold. .
  • the cooling rate of the porcelain varies depending on the size of the porcelain and the forgery method in addition to the difference in the forging method described above. In this example, “sand mold porcelain” and “die mold porcelain” are “continuous forging”. Since the cooling rate is slower than that of “saddle”, the secondary dendrite arm spacing is further increased, and the tensile strength is considered to have decreased.
  • the copper alloy of the present invention has an improved reduction in tensile strength at high temperatures without being affected by the secondary dendrite arm spacing.
  • the copper alloy of the present invention has a tensile strength at high temperatures that is not affected by the difference in the forging method (cooling rate) described above.
  • the alloy is an improved alloy, in other words, an alloy having improved tensile strength at high temperatures while being manufacturable by a known forging method (cooling rate).
  • the copper alloy of the present invention shows the same tendency as CAC406 in FIGS. 5 and 6, as a substitute material for CAC406, the tensile strength is ensured up to a high temperature range.
  • the secondary dendrite arm spacing of the actual product is measured.
  • small valves withstand pressure of 10K, nominal diameter of 1-2 mm, general-purpose gate valves made of lead-free bronze, sand-type enclosures
  • FIG. 7 shows the cut surface of the body part
  • FIG. 8 shows the cut surface etched with nitric acid.
  • the secondary dendrite arm spacing of the parts (alloy regions) 1 to 3 of different wall thicknesses is 27.9 / ⁇ ⁇ , 24. ⁇ ⁇ ⁇ , 23., both of which have an arm spacing of 14 m or more. Therefore, it is possible to judge that normal sand-type glazed products are to be improved.
  • the part having an arm interval of 14 m or more may be a part of the porcelain (alloy region), and in this case, the entire porcelain part is the subject of the copper alloy of the present invention.
  • the secondary dendrite arm interval is measured using an electron microscope in an easy-to-understand state in which the metal structure is easily grasped.
  • the secondary dendrite arm spacing differs depending on the wall thickness, so the tensile strength of the local alloy region can be quantitatively grasped, and the product resulting from the tensile strength It is possible to make a pass / fail judgment.
  • the tensile strength gradually decreases as the Pb content increases, but the tensile strength decreases from 0.5% or more. It can be seen that the target value of 180 MPa at 180 ° C is almost secured.
  • the lead-less copper alloy used as a comparative example shows a significant decrease in tensile strength. If the Pb content exceeds 0.005% by mass, the target value of 152 MPa at 180 ° C cannot be satisfied.
  • the copper alloy of the present invention can ensure excellent tensile strength at high temperatures even when Pb is contained, and is extremely useful as a recycled material.
  • Table 8 shows the contents of No. 4-11 16 in the copper alloy of the present invention (Bi series), which changes the contents of Sn, Zn, Bi as main components and the contents of P and Ni as characteristic components.
  • This is a test sample with a changed Nos. 4-17 and 18 are specimens related to the copper alloy of the present invention in which the contents of Bi and Se, which are main components, are changed in the copper alloy of the present invention (Bi-Se series)
  • 4-19 and 20 are specimens with an increased content of Zn as a main component.
  • Ni is 0, The tensile strength at 180 ° C.
  • the Bi—Se alloy can be applied in a range containing Se: 0.1 to 1.3 in addition to the components of the Bi alloy.
  • FIG. 15 is a conceptual diagram showing the P—Ni interaction.
  • the copper alloy of the present invention containing high concentration (0.1 ⁇ P ⁇ 0.6) of soot is Strength increases (see ⁇ in Figure 15).
  • the comparative example alloy containing a low concentration of P has a slight improvement in tensile strength at high temperatures (see C in Fig. 15), but a high concentration.
  • the tensile strength at high temperature is greatly improved to near the tensile strength at room temperature (see B in Fig. 15).
  • the interaction of P—Ni is a synergistic effect in which the rate of improvement in the effect (tensile strength) on the increase in P content increases at higher temperatures due to the inclusion of Ni (see B—C in Figure 15). ).
  • FIG. 13 is an explanatory view showing a method for producing a staged fridge test piece
  • FIG. 14 is an explanatory view showing measurement points of each test piece.
  • the test pieces No. 5-1 to 17 shown in Table 10 were forged, and the test piece shown in Fig. 14 was cut from the obtained frit. After the cut surface of each test piece was polished, a dye penetration test was conducted. In the dye penetrant flaw detection test, the penetrant is sprayed on the cut surface of the test piece, left to stand for 10 minutes, and then the penetrant is wiped off. It is a test to judge.
  • the method of forging the stepped test piece is such that the molten metal is poured from the ⁇ 25mm spout through the 70mm x 160mm feeder, and the lateral force of 40mm thickness in the stepped part is 15kg for melting. The experiment was conducted in a high-frequency experimental furnace, the dissolution amount was 12 kg, the filling temperature was 1180 ° C, and the vertical type was a Co type.
  • Nos. 5-1 to 7 shown in Table 10 change the contents of Sn and Zn as main components and the contents of P as a characteristic component in the copper alloy of the present invention (Bi system). This is a sample. Nos. 5-8 to 17 changed the contents of Sn, Zn and Bi as main components and the contents of P and Ni as characteristic components in the copper alloy of the present invention (Bi series). It is a sample. Further, Nos. 5-18 to 20 differ in the contents of Sn, Zn, Bi as main components in the copper alloy of the present invention (Bi-Se series), and P, Ni which are characteristic components of the present invention. This is a specimen with a different content.
  • the Bi—Se alloy can be applied in a range containing Se: 0.1 to 1.3 in addition to the components of the Bi alloy.
  • machinability test piece For the machinability test piece, a cylindrical work piece was machined with a lathe, and the cutting resistance applied to the cutting tool was evaluated by a machinability index with a cutting resistance of 100% of the bronze frame CAC406.
  • the test conditions were as follows: Penetration temperature 1160 ° C (Co type), workpiece shape ⁇ 31 X 300mm, surface roughness R
  • Table 11 shows the results of the machinability test.
  • No. 6-14 shown in Table 11 are specimens of the copper alloy of the present invention (Bi series), No. 6-5: L1 is a specimen of the copper alloy of the present invention (Bi-Se series) It is a product.
  • Erosion 'corrosion is evaluated by a crevice jet corrosion test.
  • the test method is a mirror-polishing test piece with an exposed area of 64 mm 2 ( ⁇ 16 mm) against the corrosive liquid, and then a spray nozzle (nozzle diameter: 0.4 mm above the test piece surface). Spray the test solution (1% cupric chloride aqueous solution) at 0.4 liters Zmin. After spraying the test solution for 5 hours, the maximum corrosion depth on the corroded surface was measured.
  • No. 7-13 shown in Table 12 is a specimen of the copper alloy of the present invention (Bi series), and better results were obtained than CAC406 CAC401 shown in the comparative example.
  • the present invention 1 Remain 2.S a, a K3 0.0 0.05 y »0.00 34,1
  • Example 2 Tensile tests similar to those in Example 1 (relationship between P content and tensile strength at 180 ° C) were performed, and evaluation was performed by observing the fracture surface structure of the tensile test piece, observing the microstructure, and EDX analysis.
  • No. 8-1 is a specimen containing a high concentration of P in the copper alloy of the present invention (Bi series)
  • No. 8-2 is a copper alloy of the present invention (Bi series).
  • P is suppressed within a high concentration range (0.1 ⁇ P ⁇ 0.6 mass%) by containing Ni.
  • No. 8-3 is a comparative example, which is a test sample corresponding to JIS H5120 CAC911 (Bi-Se bronze porcelain), and the P content is 0.02% by mass, which is a low concentration.
  • Fig. 16 shows SEM and microstructure photographs of the fracture surface after a 180 ° C tensile test using each specimen.
  • the comparative alloy exhibits “cleavage cracks” along the crystal plane (crystal face), and no dimples are seen in the SEM photograph. Then, it is thought that “brittle fracture” occurred.
  • the strength of the crystal grain boundaries of the alloy at high temperatures has been improved by the inclusion of a high concentration of P, so that it has changed from “brittle fracture” to “ductile fracture”. The same applies when Ni is contained.
  • FIG. 19 is a microstructure of the copper alloy of the present invention (No. 8-2), and FIG. 20 is a component distribution by EDX analysis of FIG.
  • the primary crystal a grows in a dendrite shape, Bi phase is observed in the gap, and Cu—P compound (Cu3P) and Ni—P compound (Ni3P) exist adjacent to this Bi phase. P and Ni are also dissolved in the primary crystal oc, which is thought to improve the matrix strength.
  • the bronze-based low lead alloy of the present invention is a copper alloy suitable for various parts in a wide range of fields such as piping equipment (valves and joints) for water / hot water supply and steam, pressure equipment (casing), and the like. Since the alloy of the present invention is an alloy that improves the tensile strength, it is suitable not only for thin-walled parts such as piping equipment but also for structural parts. It is suitable for processing and molding electrical machinery products such as gas appliances, washing machines and air conditioners. In addition, the members suitable for the copper alloy according to the present invention are particularly water contact parts such as valves and faucets, that is, the empty ballores, butterfly banolebs, gate banolebs, grove banoles in ball valves and bonole levoles.
  • toilet articles, kitchen utensils, bathroom articles, toilet articles, furniture parts, living room articles, sprinkler parts, door parts, gate parts, vending machine parts, washing machine parts, air conditioner parts, gas welders Parts, heat exchanger parts, solar water heater parts, automotive parts, molds and parts, bearings, gears, construction machine parts, railway vehicle parts, transportation equipment parts, materials, intermediate products, final products And can be widely applied to assemblies and the like.
  • applications that can be used particularly at high temperatures include the following applications.
  • Structural parts such as burners, gas nos, nore, flare nuts, Bonore taps, thermostat parts, Bonoleto, nuts, spindles, sliding parts (bearings, gears, pushes, sleeves, worm gears).
  • the faucet fittings, faucet fittings, water supply and hot water supply parts, etc. are not used at 1 oo ° C or higher under normal use, but under conditions where cold / hot water is used alternately.
  • the copper alloy of the present invention is significant in situations where it is exposed to high temperatures exceeding 100 ° C, such as hot air drying in dishwashers and the like.

Abstract

 第1に、青銅系低鉛合金の高温下における引張強さを改善することにあり、第2に、鉛低減による人体への悪影響を回避しつつ、リサイクルなどの環境保護の推進に寄与し、かつ量産性とコスト面に優れた青銅系低鉛合金を提供することにあり、更には、鋳物の健全性をも確保することにある。  質量比で、Sn:2.0~6.0%と、Zn:3.0~10.0%と、Bi:0.1~3.0%と、P:0.1<P≦0.6%とを含有し、残余がCu及び不可避不純物とから成り、高温下での引張強さを改善した青銅系低鉛合金である。

Description

明 細 書
青銅系低鉛合金
技術分野
[0001] 本発明は、給水'給湯用や蒸気用のバルブ或は継手などの配管器材、シリンダや ケーシング等の圧力器材或は構造部材等にも適する青銅系低鈴合金で、特に、高 温下における引張強さを改善し、铸物の健全性にも寄与した青銅系低鉛合金に関 する。
背景技術
[0002] 青銅铸物 CFIS H5120 CAC406)は、通常、铸造性、耐食性、被削性、耐圧性 に優れており、バルブ、コック、継手等の給水 ·給湯用や蒸気用の配管器材などにも 多く用いられている。この青銅铸物(CAC406)は、数0 /0の Pb (鉛)を含有しており、 特に、被削性や耐圧性の向上に寄与している。ところが、昨今、低濃度の Pbでも人 体に悪影響を及ぼすとして、水道水中への Pb浸出規制や、土壌汚染を防止すベぐ Pb含有廃棄物の排出規制、更には使用材料中の Pb含有規制など、世界的にも各 方面力 厳しく規制されつつある。このような状況に基づいて、新たに有用な鉛レス 銅合金の開発が急務となり、そのなかで、 Bi系、 Bi— Sb系、 Bi— Se系などの各種の 材料が開発されている。
[0003] 例えば、特公平 5— 63536号公報 (特許文献 1)には、銅合金中の鉛に代えて Biを 添加して切削性を上げ、脱亜鉛を防止した鉛レス銅合金が開示されており、特許第 2 889829号公報 (特許文献 2)には、切削性向上のための Bi添カ卩による铸造時のポロ シティ発生を Sbの添カ卩により抑制し、機械的強度を上げた無鉛青銅が開示されてい る。また、米国特許第 5614038号明細書 (特許文献 3)には、 Seと Biの添カ卩により、 特に Zn— Se化合物を析出させ、機械的性質及び切削性や铸造性を CAC406と実 質同等とした青銅合金が開示されている。
特許文献 1:特公平 5— 63536号公報
特許文献 2:特許第 2889829号公報
特許文献 3:米国特許第 5614038号明細書 発明の開示
発明が解決しょうとする課題
[0004] 上記特許文献のように、 Pbの代替成分として、 Biを添加した鉛レス青銅铸物にお いて、微量の Pbを含有している場合、铸物材料が 100°Cを超えるような高温下に曝 されると、機械的性質、とりわけ引張強さが低下するおそれがある。これは、 Cuに固 溶しない Bi及び Pbが低融点の Bi— Pb2元系共晶物として結晶粒界、及び結晶粒内 に存在し、ここが高温下において局部的に弱い部分となり、引張強さを低下させるこ とが一因と考えられている。これらの現象は Biが添加された材料であれば、 Bi系、 Bi Sb系、 Bi— Se系などの各種の材料で同様の傾向が見られる。
これに対し、本件出願人は、先に出願した PCTZJP2004Z4757のなかで、合金 中に Teを含有させて、高温下での機械的性質の向上を実現させる技術を提案して いる。しかし、蒸気用バルブ等に用いる青銅铸物では、 180°C程度の高温下におい ても所定の引張強さを必要とするため、高温下における引張強さの更なる改善と、汎 用的な成分をより多く用いるなど量産性の改善が求められていた。
[0005] また、上記 Bi— Pb2元系共晶物の生成を抑制し、高温ィ匕における引張強さを改善 する技術として、 Pbの含有量を 0に近づける超低減技術が考えられる。しかし、鉛レ ス銅合金は、その量産時において、従来の CAC406の製造と铸造設備を共用して 製造しているところが多ぐこのような場合、炉ゃ取鍋等からの Pbの混入が考えられる 。また、鉛レス銅合金は、コスト及び環境に配慮してスクラップ等のリサイクル材ゃ、リ サイクル材カもなるインゴットを用いて製造されている力 これらの材料には不可避不 純物としての Pbが混入していることから、例え鉛レス銅合金専用の铸造設備を用い たとしても、鉛レス銅合金への Pbの混入が避けられない。従って、上記鉛レス銅合金 は、鉛レスと言えども 0. 25質量0 /0以下 (JIS B 2011に規定の鉛レス青銅弁)の Pbの 含有を許容しているのが現状であり、量産性、コスト面力もも、 Pbの含有量を 0に近づ けると 、う超低減技術は現実的でな 、。
[0006] ここで、一般に青銅系合金の高温下における引張強さに関して、青銅系合金製の 砂型铸物では、高温下での引張強さに低下が見られるが、例えば、表 1に示す連続 铸造铸物(約 φ 28mm)は、 100°C〜200°C位までの高温下においても引張強さは 低下しないことが経験的に知られている(図 21参照:「鉛フリー銅合金铸物の生産技 術と適用事例」、財団法人素形材センター、平成 16年 10月 15日発行、 P35, 37より 引用)。しかし、これらの現象について、他の铸物径ゃ铸造方法 (例:金型铸造)にわ たって定量的に把握したものはない。
[0007] [表 1]
Figure imgf000005_0001
[0008] 本発明は、上記の課題点に鑑みて鋭意研究の結果開発に至ったものであり、その 目的とするところは、第 1に、青銅系低鉛合金の高温下における引張強さを改善する ことにあり、第 2に、鉛低減により人体への悪影響を回避しつつ、リサイクルなどの環 境保護の推進に寄与し、かつ量産性に優れた青銅系低鉛合金を提供することにあり 、更には、铸物の健全性をも確保することにある。
課題を解決するための手段
[0009] 上記の目的を達成するため、請求項 1に係る発明は、質量比で、 Sn:2.0〜6.0 %と、 Zn:3.0〜: L0.0%と、 Bi:0.1〜3.0%と、 P:0.1<P≤0.6%とを含有し、 残余が Cu及び不可避不純物とから成り、 Ρの含有により合金中の粒界強度を上げる ことにより、高温下での引張強さを改善した青銅系低鉛合金である。
[0010] 請求項 2に係る発明は、質量比で、 Sn:2.0〜6.0%と、 Zn:3.0〜: L0.0%と、 Bi
:0. 1〜3.0%と、 P:0. 1<P≤0.6%と、 Ni:0.0<Ni≤3.0%とを含有し、残余 が Cu及び不可避不純物とから成り、高温下での引張強さを改善し、铸物の健全性を も確保した青銅系低鉛合金である。
[0011] 請求項 3に係る発明は、質量比で、 Sn:2.0〜6.0%と、 Zn:3.0〜: L0.0%と、 Bi
:0. 1〜3.0%と、 P:0. 1<P≤0.6%と、 Se:0.0<Se≤l.3%とを含有し、残余 が Cu及び不可避不純物とから成り、高温下での引張強さを改善し、铸物の健全性を も確保した青銅系低鉛合金である。
[0012] 請求項 4に係る発明は、質量比で、 Sn: 2. 0〜6. 0%と、 Zn: 3. 0〜: LO. 0%と、 Bi
: 0. 1〜3. 0%と、 P : 0. 1 < P≤0. 6%と、 Ni: 0. 0<Ni≤3. 0%と、 Se : 0. 0< Se
≤1. 3%とを含有し、残余が Cu及び不可避不純物とから成り、高温下での引張強さ を改善し、铸物の健全性をも確保した青銅系低鉛合金である。
[0013] 請求項 5又は請求項 6に係る発明は、 Pb : 0. 005〜2. 0質量%の含有を許容し、 また、二次デンドライトアーム間隔が 14 m以上の合金領域で、少なくとも 180°Cに おける弓 I張強さ 152MPaを確保した青銅系低鉛合金である。
請求項 7に係る発明は、バルブ'水栓金具又は水道メータを製造する材料を発明の 合金を用いた青銅系低鉛合金である。
発明の効果
[0014] 請求項 1に係る発明によると、高温下における引張強さを改善すると共に、リサイク ルなどの環境保護の推進に寄与し、更には量産性とコスト面に優れた青銅系低鉛合 金の提供を可能にした。従来の鉛レス銅合金では、主に使用温度 100°C以下の給 水 ·給湯用器具での適用に限定されるものであった力 高温下における引張強さを 改善した本発明銅合金は、使用用途を限定することなぐ従来の青銅合金の適用用 途全般に展開できる。しかも、リサイクル材料としての使用範囲が拡大し、環境保護 は勿論のこと、コスト面にも優れた効果を発揮する。特に、砂型铸造品など、铸造時 における冷却速度が遅い合金に好適であり、高温下 (約 180°C)における引張強さ 1 52MPaを必要とする合金に最適である。
[0015] 請求項 2に係る発明によると、高温下における引張強さの低下を改善すると共に、リ サイクルなどの環境保護の推進に寄与し、更には量産性に優れた青銅系低鉛合金 の提供を可能にした。また、 Niを主要成分として含有し、 P— Ni交互作用を得ること により、 Pの含有量を抑制しつつ、高温下(約 180°C)における引張強さ 152MPaを 有する合金であり、 Niの含有による引張強さの向上作用を 0< P≤0. 6の含有により 得ることができた。例えば、 JIS B 8270「圧力容器の構造」において、 CAC406の 2 00°Cでの基本許容応力値は 38MPaと規定されている力 この規定値の 4倍にあた る、 152MPaを高温下においても確保することができる。 Pは過剰に含有すると、铸 物の健全性が低下する傾向にある力 P— Ni交互作用により、 Pの含有量が少なくと も高温下における引張強さが確保できるので、铸物の健全性も十分に確保すること ができ、バルブ等の耐圧容器に好適な合金を得ることができる。
[0016] 請求項 3に係る発明によると、 Seを主要成分として含有し、 Biの含有量を抑制しつ つ、高温下 (約 180°C)における引張強さ 152MPaを有する合金を提供できる。また 、 Seは、合金中に、 Se— Zn、 Cu— Seの金属間化合物として存在するから、 Biの含 有量を抑えつつ、引張強さゃ铸物の健全性の確保に有効であり、バルブ等の耐圧 容器に好適な合金を得ることができる。
[0017] 請求項 4における発明によると、主要成分として Niを含有することにより Pや Biの含 有量を抑制しつつ、高温下 (約 180°C)における引張強さ 152MPaを有する合金で あり、上述の効果のみならず、特に、主要成分である Seの含有が、より铸物の健全性 を向上させることができ、バルブ等の耐圧容器に好適な合金を得ることができる。
[0018] 請求項 5に係る発明によると、 Pbの含有量に影響されることなぐ高温下においても 、優れた引張強さを確保することができる。これにより、その量産時において、従来の CAC406の製造と铸造設備を共用して製造する場合において、その炉ゃ取鍋等か らの Pbの混入に影響されることはなぐまた、スクラップやスクラップを用いたインゴッ トなどのリサイクル材を用いて製造する場合にあっても、不可避不純物としての Pbの 混入に影響されることはなぐ高温下での引張強さは確保される。
[0019] 請求項 6に係る発明によると、二次デンドライトアーム間隔が 14 m以上の合金領 域で、铸造時における冷却速度が遅い合金に適用され、少なくとも 180°Cにおける 引張強さ 152MPaを確保することが可能である。
[0020] 請求項 7に係る発明によると、本発明合金を、特に、バルブ、水栓金具、水道メータ の材料に用いた場合、高温下においても、引張強さを有し、実用的価値が大きい。 図面の簡単な説明
[0021] [図 1]本発明銅合金に関して、 P含有量と 180°Cにおける引張強さの関係を示したグ ラフである。
[図 2]デンドライトの模式図である。 [図 3]CAC406の代表的なミクロ組織を示した顕微鏡写真である。
圆 4]2次枝法の説明図である。
圆 5]二次デンドライトアーム間隔と常温における引張強さの関係を示したグラフであ る。
[図 6]二次デンドライトアーム間隔と 180°Cにおける弓 I張強さの関係を示したグラフで ある。
[図 7]小型弁(呼び圧力 10K、呼び径 1Ζ2、鉛レス青銅製の汎用ゲートバルブ)にお ける胴体部の切断面を示す写真である。
[図 8]図 7における胴体部の切断面を、硝酸を用いてエッチング処理した状態を示す 写真である。
[図 9]Pb含有量と 180°Cにおける弓 I張強さの関係を示したグラフである。
圆 10]本発明銅合金に関して、 Ni含有量と 180°Cにおける引張強さの関係を示した グラフである。
[図 11]本発明銅合金に関して、 P含有量と Ni含有量、及び 180°Cにおける引張強さ の関係を示したグラフである。
[図 12]鉛レス銅合金の Sb含有の影響を示したグラフである。
圆 13]階段状铸物試験片の铸造方案を示した説明図である。
[図 14]階段状铸物試験片における染色浸透探傷試験の観察面を示した説明図であ る。
[図 15]P— Niの交互作用を示す概念図である。
[図 16]本発明合金の SEM写真である。
[図 17] (a)は本発明合金の SEM写真、(b)は同合金の破断面組織写真である。
[図 18] (a)は比較例の SEM写真、(b)は同例の破断面組織写真である。
[図 19]本発明合金のミクロ組織図である。
[図 20] (a)〜 (g)は図 19の EDX分析による成分分布を示した写真である。
圆 21]従来の連続铸造铸物に関する高温下での引張強さの変化を示したグラフであ る。
発明を実施するための最良の形態 [0022] 本発明に係る青銅系低鉛合金は、铸物材料中に Pを高濃度に含有させることにより 、高温下での引張強さを改善したことを特徴としており、特に、 Biを含有した通常の鉛 レス青銅合金において、二次デンドライトアーム間隔が 14 /z m以上の合金領域で、 1 00°Cを超える高温下での弓 I張強さを改善し、少なくとも 180°Cにおける弓 I張強さ 152 MPaを確保したことを特徴としている。本発明における「青銅系」合金の基本構成は 、 Sn, Zn, Biと Cu及び不可避不純物であり、好ましい青銅系低鉛合金としては、 Cu — Sn—Zn—Bi系(以下、「¾系」とぃぅ。)及び01—311—211—36系(以下、「: Bi—S e系」という。)である。
[0023] また、本発明における「低鉛」合金とは、 Pbの含有量が、 Pbを含有する青銅合金( CAC406等)に比して少ない合金であることをいい、 JIS H5120等に規定されてい る、鉛フリー (鉛レス)銅合金における残余成分としての Pb含有量 (0. 25質量%以下 )に限定されないことをいう。
また、本発明における「高濃度の P (燐)」とは、公知技術における残留 Pよりも多い、 0. 1質量%を超える量の Pをいう。
また、本発明における「P— Ni交互作用」とは、 P含有量の増加に対する効果(引張 強さ)の向上割合が、 Niの含有により高温下において増加する、相乗効果をいう。 ここで、本発明における「引張強さ」は、後述する JIS Z2201に規定の 4号試験片 を用い、ァムスラー I張試験機にて評価したものである。
また、本発明における「铸物の健全性」は、後述する階段状铸物試験片を用い、染 色浸透探傷試験にて観察面における铸造の欠陥有無を評価したものであり、 CAC4 06と同等、または铸造方案の修正により CAC406と同等まで改善可能な状態と判断 可能であれば合格と評価したものである。
次に、各成分範囲とその理由を具体的に詳述する。
[0024] Ρ : 0. 1 < Ρ≤0. 6質量%
一般に、銅合金における Ρは、 0. 01以上 0. 1質量%以下の範囲内で、比較的低 濃度の含有である。例えば、金属溶湯の脱酸の促進や湯流れ性を良好にするため、 砂型铸造により製造された铸物には、残留 Ρとして、 0. 01以上 0. 1質量%未満を含 有しており、例えば CAC406における残余成分としての Ρ含有量は、 0. 05質量%以 下である。また、日本铸造工学会第 146回全国講演大会講演概要集 P30に示され ているように、 Pを積極的に含有して铸造割れを防止する場合であっても、 200〜30 Oppm (0. 02-0. 03質量0 /0)の含有である。これらの例による Pは、铸造炉中の金 属溶湯や取鍋中の金属溶湯に添加され、铸物に含有される残留 Pは、 0. 1質量% 以下である。
また、前述の PCTZJP2004Z4757公報に提案されているように、 0. 01-0. 5質 量%、好ましくは 0. 05〜0. 1質量%を含有して、 100°Cにおける引張強さの改善を 図っている。
なお、一般に、銅合金の連続铸造では、金属溶湯の脱酸の促進を目的として、 0. 5質量%未満の Pが金属溶湯に対して添加される力 この Pは铸物に積極的に含有 するものではなぐ残留 Pとしての含有量は開示されて 、な 、。
一方、本発明における Pの含有は、高温下 (約 180°C)における引張強さの向上に 寄与し、脱酸目的ゃ铸造割れを防止するための添加量を大きく上回る、高濃度の範 囲に属する量の Pを積極的に含有させるものであり、 0. 1質量%を超える含有が Bi— Pb2元系共晶物の生成を抑制する一方、合金の粒界強度を上げることにより、高温 下における引張強さの向上に寄与する。
好ましくは、後述する実施例 1 (Pの含有量と 180°Cにおける引張強さとの関係)に おいて、引張強さ 152MPaを満足する範囲として、上限値を 0. 6質量%とし、下限値 を 0. 2質量%とするのが好ましい。なお、上限値は、 180°Cにおける引張強さのピー ク値が得られると共に、量産時におけるコストの観点から、 0. 4質量%を上限とするの 力 り好ましぐまた、後述する実施例 5において铸物の健全性が確認され、量産に おいて铸造方案の大幅な変更を伴うことなく铸物の健全性が確保できる値としても、 0. 4質量%を上限値とするのが好ましい。
また、後述する Niを含有する場合には、 Niと Pとの交互作用により、 180°Cにおける 引張強さ 152MPaを確実に得られる Pの下限値を下げることができることから、 Pの下 限値は、 0. 12質量%、より好ましくは、 0. 14質量%とし、これに伴い、上限値も 0. 3 3質量%に抑制した範囲で、 180°Cにおける引張強さ 152MPaを得ることが可能とな る。なお、より铸物の健全性を必要とする場合には、さらに P含有量を抑制することが 有効で、そのときの上限値は、 0. 2質量%が好ましい。
Ni: 0. 0<Ni≤3. 0質量0 /0
一般に銅合金における Niは、 α相に固溶し、マトリックスが強化され、合金の機械 的性質、とりわけ引張強さの向上に寄与する。例えば、特開 2003— 193157公報に は、 Niを 0. 2〜3. 0重量%含有することにより、 CAC406と同等の引張強さを常温 下において確保した技術が提案されており、 Ni含有量の増加に伴う引張強さの変化 は、 Pを 0. 01-0. 02重量%(130〜200ppm)含有する実施例合金にて、引張強 さのピークが Ni含有量 0. 6〜0. 8重量%に存在するなだらかな山形状の特性を呈 して 、る(上述の公報における図 1参照)。
また、高温化(180°C)においては、後述する実施例 4 (P及び Niの含有量と 180°C における引張強さとの関係)の比較例に示すように、残留 Pレベル (0. 1質量%以下) の Pを含有した鉛レス銅合金では、 Ni含有量の増加に伴う引張強さは、ほとんど変化 しない。
これに対し、本発明における Niの含有は、 0. 1質量0 /0を超える高濃度の Pの含有 を前提として高温下における引張強さの向上に寄与するものであり、この引張強さの 変化は、後述する実施例 4に示すように、 P— Niの交互作用により、微量の Ni含有で 引張強さが大きく向上する、放物線状 (軸は X軸)の特性を得ることができる。これによ り、 Niを微量でも含有させることで、 Pの含有量を高濃度範囲(0. 1 < P≤0. 6質量 %)内において抑制しつつ、高温下における引張強さを向上することが可能となった 。これは Ρが溶湯力も蒸発しやすぐ高濃度にコントロールすることが難しいことを考 慮すれば、極めて有用である。
具体的な Ni含有量として、少なくとも 0を超える値であればよぐ例えば 0. 05質量 %や 0. 08質量%も適用可能であり、好ましくは 0. 1質量%の含有により、 Pの含有 量を抑制しつつ、高温下 (約 180°C)における引張強さ 152MPaを得ることができる。 一方、 Niの過剰の含有は、引張強さの向上が飽和することから、上限値を 3. 0質 量%としている力 Pの好ましい上限値 (0. 4質量%)における引張強さの向上の飽 和状態を、図 10 (P = 0. 32質量%)から判断すると、 2. 0質量%を上限値とするの が良い。また、コスト低減を考慮して、少ない Ni含有量でも効果的に引張強さを得る ことができる範囲として、 1. 0質量%を上限とするのが良い。更に、高温下 (約 180°C )における引張強さ 152MPaを最低限確保する観点力もは、下限値を 0. 3質量%、 上限値を 0. 6質量%とするのが好ましい。
[0027] Bi: 0. 1〜3. 0質量0 /0
Pbの代替成分たる低融点成分として、铸造の凝固過程において、合金 (铸物)中 のデンドライト間隙の最終凝固部に生じる、ミクロポロシティと称される微細な収縮巣( 引け巣)に入り込むことにより、合金の健全性 (耐圧性)を向上しつつ、切削性の確保 に寄与する成分である。切削性向上には 0. 1質量%以上の含有が有効だが、ミクロ ポロシティを減少させ、合金の健全性を確保するためには、 Seの含有と共に、 0. 25 質量%以上の含有が必要である。一方、 Biが多量に含有されると、铸物の凝固過程 において、 Biが、 Snや高濃度に含有されている Pと共に铸物表面に集中する「逆偏 析」を生じ、この場合、铸物内部におけるミクロポロシティが増加するおそれがあること から、合金の健全性を確保するためには、上限値を 3. 0質量%とするのが有効であ る。
耐圧性が要求される用途など、より効果的にミクロポロシティを低減する必要がある 場合には、下限値を 0. 4質量%、上限値を 2. 5質量%とするのが有効である。また、 CAC406と略同等の切削条件による加工を可能とする場合には、下限値を 1. 0質 量%とするのがよい。
なお、 Biが多量に含有されると、引張強さが低下することから、高温下における引 張強さを量産レベルで確実に確保する必要がある場合には、上限値を 2. 6質量%と するのが有効であり、量産におけるコスト低減を重視する場合には、上限値を 2. 0質 量%とするのが好ましい。
[0028] Zn: 3. 0〜: LO. 0質量0 /0
切削性に影響を与えずに、硬さや機械的性質、特に伸びを向上させる成分であり、 3. 0質量%以上の含有で、効果的に溶湯の脱酸を促進し、铸物の健全性確保や湯 流れ性を向上させる。 Znは比較的安価であるため、可能な限り多く含有させたい成 分であるが、 Znの蒸気による铸造環境の悪ィ匕を考慮して、上限値を 10質量%とする また、 Znによる脱酸効果を確実に得る場合には、下限を 4. 0質量%とするのが好 ましい。更に、铸型への溶湯の充填性を重視して、 Znの蒸気圧を下げる必要がある 場合には、上限値は 9. 0質量%とするのが好ましい。なお、後述する Snの最適下限 値 2. 8質量%を考慮すると、 δ相を析出させない範囲として、下限値を 6. 0質量%と するのが好適である。
[0029] Sn: 2. 0〜6. 0質量0 /0
合金の機械的性質、とりわけ、伸びと耐食性の向上に寄与する成分であり、 2. 0質 量%以上の含有が有効である。一方、含有量の増加に伴い、硬く脆弱な δ相を析出 し、加工性と伸びを低下させてしまうこと、及びコストを考慮し、上限値を 6. 0質量%と する。 また、 CAC406と同等の引張強さを要求される場合には、 2. 8質量%以上の 含有が効果的である。さらに、量産時において铸造条件が相違しても、 Ρ, Bi, Snな どの溶質の逆偏析を抑制する必要がある場合には、上限値を 5. 5質量%とするのが よい。なお、より引張強さを重視して、引張強さのピーク値を得る場合には、上限値を 4. 5質量%とするのが好適である。
[0030] Se : 0. 0< Se≤l. 3
Seは Pbの代替成分として、 Cuと Znの含有比率に応じて、 Se— Zn、 Cu— Seなど の金属間化合物を形成することにより、 Biの含有量を抑制しつつ、合金の切削性を 確保する。また、これらの金属間化合物の晶出により、ミクロポロシティを分散して合 金の健全性が向上し、引張強さを安定させる。過剰の含有は、脆弱な上記金属間化 合物の晶出量が多くなり、引張強さが低下するため、上限値を 1. 3%とする。
さらに、 Seの含有量を抑制しつつ、 CAC406と同等の引張強さを要求される場合 には、上限値を 0. 35質量0 /0とするのがよい。
[0031] Pb : 0. 005〜2. 0質量%
高温(180°C)時の引張強さを確保するために、 Pbを 0. 005質量%以下に制御す ベぐ Pbを極力排除した材料の使用を余儀なくされていた。しかし、後述の Pの含有 により、高温下における引張強さが確保されたことから、 Pbを含有するリサイクル材料 の使用も促進されることが期待される。具体的には、本発明における低鉛の領域であ る、 0. 005-2. 0質量%の範囲で高温下における引張強さが改善され、国内の鉛レ ス青銅弁の Pb含有基準である 0.25質量%以下の範囲内で Pbの含有を許容するこ とが可能となる。
[0032] 不可避不純物:
本発明銅合金における不可避不純物としては、上述の Pbの他、 Fe:0.3質量%以 下、 A1:0.01質量%以下、 Si:0.01質量%以下、 Mn:0.25質量%以下、 S:0.3 質量%以下、 Mg:0.01質量%以下、 Ti:0.01質量%以下、 Zr:0.1質量%以下、 Co:0.3質量%以下、 Cr:0.3質量%以下、 Sb:l.1質量%以下が挙げられる。 特に、 Sbの含有量と常温下及び高温下における引張強さの関係について検証し た。表 2、表 3は、各化学成分値を有した鉛レス銅合金の Sb含有の影響を示したもの で、グラフ化したものを図 12に示す。同図からわ力るように、引張強さへの影響はなく 、 Sbが不可避不純物となることを確認した。
[0033] [表 2]
Figure imgf000014_0001
[0034] [表 3]
Figure imgf000014_0002
実施例 1
以下に、本発明銅合金の好ましい実施例を詳述する。本実施例では、引張強さの 基準値として、 152MPaを 180°Cにおける目標値とした。 180°Cを基準としたのは、 呼び圧力 10Kまたはクラス 150の青銅製バルブにぉ ヽて、流体を飽和蒸気とした場 合の最高許容圧力が 1. OMPaであり、この圧力に対応する飽和温度が 180°Cであ ることによる。また、 152MPaを基準としたのは、 JIS B 8270「圧力容器の構造」にお いて、材料本体の引張強さの目標数値を、この材料を用いた製品の安全等を考慮し て、基本許容圧力の 4倍とする基本的な考え方に準拠し、 CAC406の 200°Cでの基 本許容応力値 38MPaの 4倍の値とし、本発明銅合金の主な用途であるバルブなど の圧力容器の使用に適したものである。
先ず、本試験において、 Pの含有量と 180°Cにおける引張強さの関係について検 証した。各サンプルの組成を表 4に示す。試験結果を同表、並びにグラフ化したもの を図 1に示す。なお、本実施例における各サンプルは、砂型铸物から採取した。引張 試験は、試験片を Co铸型を用いて铸込み温度 1130°Cで JIS A号方案に铸造後、
2
切削加工により製作し IS Z2201に規定の 4号試験片とし、ァムスラー引張試験 機を用いて行った。この引張試験の条件は、供試品を砂型铸物から採取する他の実 施例においても同様である。
[表 4]
Figure imgf000015_0001
(表 4別表) No. C Z n B i P b P N r 本 ¾明 BHSe系 1 9 m 3,3 4.1 )Λ 0.5 o.os 0,3? O.D 1S4
1ΰ ¾ 3,1 4.0 2.1 0,4 0.22 0*0 168
11 5.4 4,1 2,2 0.5 0,07 O.S? 0.0 178
12 3.1 S.B 0,2 ΰ.ΰθ 0,0 164
13 残 3.2 e. 4 0.4 0.05 0.22 0,0 153
14 3,7 8.1 2,1 0.4 0.0B 0.37 0.0 1S7
15 5.3 1, 0.4 0.08 O.S? 0.0 1?S
16 5.3 e.o 2.1 0.4 0.24 0.0 158
17 ¾ 3.2 4.0 1, 0.0 0.06 0.22 0,0 168
18 残 3.2 4.1 2,1 0.0 0.08 o.as 0,0 184
19 残 S.FJ 4.0 1. & 0.0 0.0 m
20 残 4,0 2.2 o.o o.os 0.0
n 3.0 S.4 1,1 0.0 0,85 0.0 182
22 3.2 a.2 1, 0.0 0,0 m
23 残 2 e.o 2,0 0.0 0.08 0.23 0,0 153
24 m 5.S 8.1 2.1 0.0 0.81 0.^7 0.0
m
[0037] No.1 1〜8は、 Bi— Se系合金において、本発明銅合金の特徴成分である Pの も、
含有量を変化させた供試品である。本試験結果から、 Pを 0.10質量%を超える高濃 度に含有させることで、 180°Cという高温下での引張強さが向上していることがわかる 。図 1のグラフより、特に、 152MPaという目標値を達成するためには、本実施例にお いて、 Pを 0.26-0.50質量%含有させることが必要である。
次に、表 4別表に示す No. 1— 9〜16は、 No.1—1〜8と同様の Bi—Se 05系合金に す おいて、主要成分である Sn, Zn, Bi, Seの含有量を変えて、本発明銅合金の特徴 成分である高濃度の Pを含有した供試品である。また、 No.1— 17〜24は、本発明 銅合金 (Bi系)において、主要成分である Sn, Zn, Biの含有量を変えて、本発明銅 合金の特徴成分である高濃度の Pを含有した供試品である。
[0038] これらの供試品について、 180°Cにおける引張強さを検証した。表 4別表を考察す ると、本試験結果から、以下の成分範囲における実施例について、高濃度の Pを含 有することにより、高温下(180°C)における引張強さ 152MPaという目標値を達成し ていることがわ力る。
<Bi Se系合金 >
質量0 /0で、 Sn:3.0〜6.0(好ましく ίま 3. 1〜5.9)、Ζη:4.0〜9.0(好ましく ίま 8 .3)、Bi:l.0〜3.0(好ましくは 1.3〜2.2)、Se:0.2〜0.5、P:0.20(好ましく は 0.22)〜0.50、残余: Cu及び不可避不純物 く Bi系合金〉
質量0 /0で、 Sn: 3. 0〜6. 0 (好ましく ίま 5. 8)、 Ζη:4. 0〜9. 0 (好ましく ίま 8. 4)、 Β i: l. 0〜3. 0 (好ましくは 1. 1〜2. 2)、P : 0. 20〜0. 40 (好ましくは 0. 22〜0. 27)
、残余: Cu及び不可避不純物
実施例 2
[0039] 次に、青銅系低鉛銅合金の高温下における引張強さを定量的に把握し、本発明の 好適な対象合金領域を示すと共に、本発明の効果を検証する。
一般に、合金の引張強さは、そのミクロ組織の大きさに関係することが知られている 。そこで、本試験は、合金のミクロ組織の大きさを示す尺度として、二次デンドライトァ ーム間隔を用いた。ここで、デンドライトとは、金属凝固における結晶の成長形態の 1 つである。図 2は、デンドライトの模式図であり、同図において、幹を一次デンドライト アーム(一次枝)とした場合、この一次枝力も生成している枝を二次デンドライトアーム (二次枝)と呼び、そのアーム間隔は铸物の機械的性質などに大きな影響をおよぼす ことが知られている。図 3は、 CAC406の代表的なミクロ組織を示した顕微鏡写真で あり、このミクロ組織を観察すると、二次デンドライトアームが発達し、整列していること がわカゝる。
[0040] そこで、二次枝法を用いて二次デンドライトアームを測定し、ミクロ組織の大きさを評 価した。二次枝法とは、図 4 (a)に示すように、整列したアーム群における平均間隔を 求める方法である。即ち、二次アームが複数本、実質的に平行に成長しているデンド ライトアームを顕微鏡組織にぉ 、て探し、そのデンドライトアームと略直交する任意の 長さの直線を引き、この直線の距離 Lをデンドライトアームを横切るアーム本数 (n—1 )で除し、これを dsとする。つまり、二次デンドライトアームの大きさは、 1^7 (11—1)で 表される。なお、試験片铸物のミクロ組織は、観察する箇所により組織の大きさが異 なり、多結晶であるために個々の結晶粒でデンドライトの発達の仕方に違いが見られ る。本試験では、各試験片の二次デンドライトアーム間隔の測定方法を以下のように 統一した。また、実際の製品铸物では明確な結晶粒界が観察されない場合があるが 、そのような場合には、下記 3項を適用する。
[0041] 1.観察箇所 JIS4号引張試験片 標点部 横断面
2.測定箇所
試験片の横断面中心付近を図 4 (b)に示すような各々の結晶粒について二次ァー ムが整列して 、る箇所を特定。計約 3つ以上の結晶粒にっ 、て測定した。
3.測定数
アーム 5本以上整列して 、るデンドライトを 30本
図 4 (c)は、 CAC406の測定例である。測定本数が約 10本を超えると、二次デンド ライトアーム間隔の平均値が集束するので、測定箇所の違いによる影響を排除するこ とがでさる。
[0042] 上記方法に基づいて、本試験では、砂型铸物、金型铸物、連続铸造铸物に分けて 、これら铸物の常温並びに高温における引張強さについて検証した。各サンプルの 組成を表 5 (常温)、表 6 (高温)に示す。試験結果を同表、並びにグラフ化したものを 図 5 (常温)、図 6 (高温)に示す。なお、本実施例における常温とは、約 23°Cであり、 他の実施例においても同様である。
[0043] [表 5]
Figure imgf000018_0001
[0044] [表 6]
Figure imgf000019_0001
[0045] 本試験結果から、 180°Cでの引張強さは、二次デンドライトアーム間隔が小さいほ ど、引張強さの低下は小さいことがわかる。ところで、連続铸造铸物の引張強さは低 下しないというのが従来の常識であった力 本試験結果から明らかであるように、径の 違いによって低下することが確認され、特に、径の太い铸物の引張強さが低下してい る。これは、径が太くなるほど铸物の冷却速度が遅くなることから、二次デンドライトァ ーム間隔が大きくなつたことに起因していると考えられる。
ここで「連続铸造铸物」は、例えば中空縦形の铸型に対して、上方から金属溶湯を 流し込む一方、下方力も凝固した铸物を連続的に引き抜く「連続铸造」により成形さ れたものであり、金属溶湯の凝固は、水冷等の冷却設備により促進される。
これに対し「砂型铸造」は、硬化させた铸砂力 なる铸型に金属溶湯を流し込み、こ れを空冷放置した後、凝固した金属部分を铸型から取り出す「砂型铸造」により成形 されたものであり、「金型铸物」は、金属製の铸型に金属溶湯を流し込み、これを空冷 放置した後、凝固した金属部分を铸型から取り出す「金型铸造」により成形されたもの である。铸物の冷却速度は、上述の铸造方法の相違のほか、铸物の大きさや铸造方 案によっても相違するが、本実施例における「砂型铸物」「金型铸物」は、「連続铸造 铸物」に比して冷却速度は遅いことから、二次デンドライトアーム間隔が更に大きいも のとなり、引張強さが低下したものと考えられる。
[0046] 一方、本発明銅合金は、二次デンドライトアーム間隔に影響されることなぐ高温域 での引張強さの低下が改善されていることがわかる。すなわち、本発明銅合金は、上 述の铸造方法 (冷却速度)の差異に影響されることなぐ高温下における引張強度を 向上した合金であり、換言すれば、公知の铸造方法 (冷却速度)により製造可能とし つつ、高温下における引張強度を向上した合金であることがわかる。また、本発明銅 合金は、図 5及び図 6の中で、 CAC406と同様な傾向を示していることから、 CAC40 6の代替材として、高温域まで引張強さを確保するものである。
[0047] なお、図 6に示されるように、鉛レス銅合金の高温(180°C)での引張強さの推移の 中で、目標値 152MPaにおける二次デンドライトアーム間隔が 14 μ m付近であること から、この 14 /z mを本発明銅合金に好適な合金領域の境界基準値とした。従って、 本発明銅合金によれば、二次デンドライトアーム間隔が 14 m以上の合金領域で、 少なくとも 180°Cにおける弓 I張強さ 152MPaを確保することができる。
[0048] ここで、実製品の二次デンドライトアーム間隔を測定する。特に、このアーム間隔が 小さい傾向にある小型弁 (耐圧 10K、呼び径 1Ζ2、鉛レス青銅製の汎用ゲートバル ブ、砂型铸物)を採用した。図 7は、胴体部の切断面を示しており、図 8は、硝酸を用 いて切断面をエッチング処理したものである。各々肉厚の異なる部位 (合金領域) 1 乃至 3の二次デンドライトアーム間隔は、 27. 9 /ζ πι、 24. Ί μ ι, 23. であり、 何れも 14 m以上のアーム間隔を有していることから、通常の砂型铸物製品は改善 対象として判断することができる。なお、 14 m以上のアーム間隔を有する部位は、 铸物の一部分 (合金領域)であればよぐこの場合、铸物部品全体が、本発明銅合金 の実施対象となる。
[0049] 測定方法としては、図 8のようにエッチング処理し、金属組織を把握し易 、状態で電 子顕微鏡を用い、二次デンドライトアーム間隔を測定している。このように、同じ铸物 であっても、肉厚の違いによって二次デンドライトアーム間隔が異なるため、局所的な 合金領域の引張強さを定量的に把握でき、引張強さに起因する製品としての合否判 定が可能となる。
実施例 3
[0050] 次に、本発明銅合金 (Bi— Se系)に関して、 Pbの含有量と 180°Cにおける引張強 さの関係について検証した。各サンプルの組成を表 7に示し、試験結果を同表、並び にグラフ化したものを図 9に示す。なお、各サンプルは砂型铸物から採取した。
[0051] [表 7] No. 引慕強き
C « S n Z n S ! S e P b P ) (MPa)
3 1 « S.3 8.1 1,8 0.2 o.eos 0.02 0.0 204
2 ?S 4,0 8.5 f .3 0*2 0.004 0.02 0,0 212
3 11 4, 1 8,5 t.3 0.2 o,eo5 0.02 0,0 ί?4 in 4 is 4, f 8,6 1,3 0,2 0.008 0.02 0,0 113
?i 4.0 8.5 1.3 0,2 0.01 0.02 0.0 !05
Λ
6 ?1 4,β 8,2 i,3 0.2 0.02 0.02 0,0 !03
? 4,0 8.2 1,8 0,2 0.03 0.02 0,0 87 t
8 4, 1 8.1 1.3 0..2 0.04 ΰ,02 0,0 94
9 n 8.1 1.3 0.2 0.05 0,02 0.0 81
10 4,0 e,t 1.3 0.2 0,20 0.02 0,0 88
3 - 11 確 4,1 8,2 !.4 0,2 0.00 0.38 ,ϋ 3
12 m 4. f S.l 1歸,4 0,2 0.01 0,38 0.0 186
13 4, 1 B.2 !.4 0.2 0.06 0.38 0,0 m m 14 3,3 8,2 i.4 0.2 0.10 CUSS 0,0 168
15 ? i 3,3 8.0 1.4 (1.2 0.30 O.SS 0,0 ie? s
16 5t 3,3 8.1 i.4 0.2 0.5iJ 0.35 0,0 IE? m 17 ?1 3.3 β. t 1.4 0.2 0.7!) 0.36 0.0 152
18 ?1 3, a 8,1 1.5 0.2 1,10 0.36 0.0 163
19 ?s 3,3 8,1 1,4 (t,2 1.30 0.38 0,0 154
20 ?1 4,! 8.1 1,4 0,2 2.00 0 « 86 0,0
[0052] 本試験結果から、 Pを高濃度に含有する本発明銅合金では、 Pbの含有量の増加 に伴って緩やかに引張強さが低下するものの、 0.5%以上から引張強さの低下が見 られなくなり、し力も、 180°Cにおける目標値 152MPaをほぼ確保していることがわか る。一方、比較例とした鉛レス銅合金では、引張強さの低下が顕著に表れており、 Pb の含有量が 0.005質量%を超えると、 180°Cにおける目標値 152MPaを満たすこと ができない。このように、本発明銅合金は、 Pbが含有されても高温下において優れた 引張強さを確保することが可能であり、リサイクル材として極めて有用である。
実施例 4
[0053] 次に、本発明銅合金 (Bi系)に関して、 Niの含有量と 180°Cにおける引張強さの関 係について検証した。各サンプルの組成を表 8に示し、試験結果を同表、並びにダラ フ化したものを図 10に示す。なお、本実施例 4における各サンプルは、砂型铸物から 採取した。
[0054] [表 8] No, (燹量%) ¾l張強さ
C u S n Z n B S e P b N t
4-1 3,e ?, 1 1.2 0.0 0.5 a,n 0,0 217 151
2 残 2,7 ?.1 1.2 0.0 D.B 0,32 0.1 233 1S1
3 3,8 ?,1 1.2 0.0 0.6 0.32 0.2 226 I8S
4 3,6 ?, 1 1.3 0.0 ¾.5 0,32 0,4 250 tsi
5 » 3,8 ? ,α 1,2 0,0 0.5 0.32 0.6 267 194
6 3,6 7,0 1.2 0.0 0.5 0,32 0,8 265 213
7 養 8, 7,0 1.2 0,0 0.8 0,31 f.O 28? 206
3 3,6 7, a i.a 0.0 0.5 0,32 1,2 208
9 1.2 0,0 0.5 0.32 1,9 303 289
R
10 JS S * B 1.2 0.0 0.8 0.32 8.0 綱 220
(表 8別表)
Figure imgf000022_0001
本試験結果から、 Pを高濃度に含有した本発明銅合金に Niを加えることで、常温ot ■下 及び高温下における引張強さを向上させることが判明した。特に、図 10のグラフより、 Niの含有量が 0.1 3.0質量0 /0において、 152MPaの目標値を確保していること が確認できる。
次に、以下の各サンプルにおいて、常温下及び 180°Cにおける引張強さを検証し た。
表 8別表に示す No.4— 11 16は、本発明銅合金(Bi系)において、主要成分であ る Sn, Zn, Biの含有量を変え、且つ特徴成分である Pと Niの含有量を変えた供試品 である。また、 No.4-17, 18は、本発明銅合金(Bi— Se系)において、主要成分で ある Bi, Seの含有量を変えた本発明銅合金に係る供試品であり、 No.4-19, 20は 、比較例として、主要成分である Znの含有量を増した供試品である。 [0056] 更にここで、 Pを 0. 14質量%、 0. 22質量%、 0. 28質量%、 0. 32質量%含有す る本発明銅合金(Bi系)中に、 Niを 0、 0. 20質量%、 0. 40質量%、 0. 60質量%含 有した場合の 180°Cにおける引張強さを検証した。比較例として、 Pを 0. 02質量%、 0. 10質量%とした場合についても測定した。各サンプルの組成を表 9に示し、試験 結果を同表、並びにグラフ化したものを図 11に示す。
[0057] [表 9]
Figure imgf000023_0001
本試験結果から、高温下における引張強さは、 Pを高濃度に含有するほど、 Ni含有 の特性向上効果をより促進させ、 Pと Niの交互作用があることが確認された。具体的 には、比較例に示した低濃度の Pの含有では、 Niを含有しても引張強さの向上は微 小なものに留まるが、 Pを 0. 10質量%を超えて含有させた場合に Niを含有すると、 引張強さが大きく向上した。特に、 Pを 0. 14質量%以上含有させた場合に、表 9、図 11の特性に応じて少なくとも 0. 16〜0. 61質量%の Niを含有させることで、引張強 さの目標値 152MPaを得ることができる。
[0059] 表 8、表 8別表 (Bi系)、表 9を考察すると、本試験結果から、以下の成分範囲にお ける実施例について、高濃度の Pを含有することにより、高温下(180°C)における引 張強さ 152MPaと、う目標値を達成して!/、ることがわ力る。
く Bi系合金〉
質量0 /0で、 Sn: 2. 0〜6. 0 (好ましく ίま 2. 3〜5. 7)、Ζη: 6. 0〜: LO. 0 (好ましく ίま 6. 5〜9. 5)、 Bi: 0. 1〜3. 0 (好ましく ίま 2. 6)、 Ρ : 0. 12〜0. 40 (好ましく ίま 0. 33 )、Ni: 0. 1〜3. 0、残余: Cu及び不可避不純物
なお、 Bi—Se系合金については、上記 Bi系合金の成分に加え、 Se : 0. 1〜1. 3を 含有する範囲で、適用可能である。
図 15は、 P—Niの交互作用を示す概念図である。低濃度 (0. 1≤P)の Pを含有し た比較例合金に対し、高濃度 (0. 1 < P≤0. 6)の Ρを含有した本発明銅合金は、高 温下における引張強さは向上する(図 15の Α参照)。これに対し、 Pに加えて Niを含 有した場合、低濃度の Pを含有した比較例合金において、高温下における引張強さ の向上は僅か(図 15の C参照)であるものの、高濃度の Pを含有した本発明銅合金で は、高温ィ匕における引張強さが常温下における引張強さ付近まで大きく向上する(図 15の B参照)。このように、 P— Niの交互作用とは、 P含有量の増加に対する効果(引 張強さ)の向上割合が、 Niの含有により高温下において増加する、相乗効果(図 15 の B— C参照)をいう。
実施例 5
[0060] 次に本発明銅合金の铸物健全性につ!ヽて試験を行!ヽ、その試験結果を説明する 。図 13は、段階状铸物試験片の铸造方案を示した説明図であり、図 14は、各試験 片の測定箇所を示した説明図である。
図 13に示す段階状铸物試験片の铸造方案により、表 10に示す No. 5— 1〜17の 供試品を铸造し、得られた铸物から図 14に示す試験片を切断して、それぞれの試験 片の切断面を研磨した上で、染色浸透探傷試験を行った。染色浸透探傷試験とは、 試験片の切断面に浸透液を吹き付け、これを 10分間放置した後に浸透液を拭き取り 、さらに、現像液を吹き付けて切断面に浮き出る赤色表示により、铸造欠陥の有無を 判定する試験である。段階状試験片の铸造方案は、 φ 25mmの湯口から、 70mm X 160mmの押し湯を介して、段階状部における肉厚 40mmの側方力も溶湯を流し 込むようにしており、铸造条件は、溶解は 15kg高周波実験炉で行い、溶解量は 12k gとし、铸込み温度 1180°C、铸型は Co铸型を用いた。
2
[0061] 表 10に示す No. 5— 1〜7は、本発明銅合金(Bi系)において、主要成分である Sn , Znの含有量を変え、且つ特徴成分である Pの含有量を変えた供試品である。 また、 No. 5— 8〜17は、本発明銅合金(Bi系)において、主要成分である Sn, Zn , Biの含有量を変え、且つ特徴成分である P, Niの含有量を変えた供試品である。 更に、 No. 5— 18〜20は、本発明銅合金(Bi— Se系)において、主要成分である S n, Zn, Biの含有量を変え、且つ本発明の特徴成分である P, Niの含有量を変えた 供試品である。
また、表 10を考察すると、 Pを約 0. 36質量%含有した供試品(No. 5— 1〜3, 18 , 19)では、段階状铸物試験片においてやや欠陥が見られたものの、バルブ等の量 産品の製造においては、铸造方案の修正により、改善可能な供試品である。
また、 Niを含有した供試品では、 Pを 0. 31質量%と高濃度に含有した供試品 (No . 5-8, 9)においても欠陥は見られず、良好な铸物が得られた。本試験結果から、 以下の成分範囲における実施例について、高濃度の Pを含有することにより、高温下 (180°C)における引張強さ 152MPaという目標値を達成しつつ、铸物の健全性も確 保されていることがわ力る。
く Bi系合金〉
質量0 /0で、 Sn: 2. 5 (好ましく ίま 2. 9)〜6. 0、Ζη:4. 0 (好ましく ίま 3. 9)〜8. 0、 Β i: 0. 5〜3. 0 (好ましく ίま 2. 5)、Ρ : 0. 15〜0. 40 (好ましく ίま 0. 36) , 0≤Ni≤2. 0 (好ましくは 1. 9)、残余: Cu及び不可避不純物
なお、 Bi—Se系合金については、上記 Bi系合金の成分に加え、 Se : 0. 1〜1. 3を 含有する範囲で、適用可能である。
[0062] [表 10] o:台格
Figure imgf000026_0001
実施例 6
[0063] (切削性試験)
切削性試験片は、円柱状の被削物を施盤にて施削加工し、バイトに掛カる切削抵 抗を青銅铸物 CAC406の切削抵抗を 100とした切削性指数で評価した。試験条件 は、铸込み温度 1160°C (Co铸型)、被切削物の形状 φ 31 X 300mm,表面粗さ R
2 A
3. 2、切り込み深さ片肉 3. Omm、施盤回転数 1800rpm、送り量 0. 2mm/rev,油 使用無しである。
切削性試験の試験結果を表 11に示す。
[0064] [表 11] 俗弒品 搢数 区分 C u S n Z n B i P b P n (3 切削〉 本 ¾明 Bi系 6~1 3,7 6,3 Κβ 0,32 0, 80
2 残 3,8 ?,0 1.5 0,06 0,33 9,0 83
3 残 2, し 3 o.o 0.00 0.17 0, 83 4 2,8 1.4 0.0 0.00 0,34 ΰ,8 83
5 3'S s 1.0 0.1 0.08 0,38 Q,0 §4
6 m 3,9 ι.ΰ 0.2 o.os 0,33 0,0 81
!i 3.3 ?' 1.5 0.1 0.33 Q,0 8? e 残 3,0 1, \ t.5 0.2 o.pa 0.33 ΰ,ο 8
9 3,0 1 1.1 0.2 o.os 0.33 β ei 10 残 3,0 8,2 1.4 0.2 COS 0.33
11 3.0 B , S ! .4 0.2 0.00 0, 17 β'4 87
[0065] 表 11に示す No.6— 1 4は本発明銅合金(Bi系)の供試品、 No.6— 5〜: L1は、 本発明銅合金 (Bi— Se系)の供試品である。
いずれの供試品も、 CAC406の加工に用いられる、加工設備、刃物、切削条件で 加工が可能である指数 80%以上を満たしており、 CAC406と略同等の切削条件で カロェすることがでさるちのと認められる。
実施例 7
[0066] (隙間噴流腐食試験)
エロージョン'コロージヨンは隙間噴流腐食試験により評価する。試験方法は腐食液 に対して暴露面積を 64mm2 ( φ 16mm)にカ卩ェした試験片を鏡面研磨し、次いで、 この試験片表面より 0.4mmの高さに配置した噴射ノズル(ノズル径: 1.6mm)から 試験溶液(1%塩化第二銅水溶液)を 0.4リットル Zminで噴射する。試験溶液を 5時 間噴射した後、腐食面における最大腐食深さを測定した。
表 12に示す No.7—1 3は、本発明銅合金 (Bi系)の供試品であり、比較例に示 した CAC406 CAC401よりも良好な結果が得られた。
[0067] [表 12]
«試 S 学威 ¾储 (贊鼉%) ¾¾ 魔食:^さ
No. C S n e i S e P b P N i
本発明 1 残 2.S a, a K3 0.0 0.05 y » 0.00 34,1
2 残 3,3 3 ,4 0,0 0, 5 ,33 ΰ,ΰΰ 52,2 3 8,7 2 0,0 ΰ.ϋ5 0JB 0,52 4 3 ttii例 C C406 4 4,? 5.1 ΰ,β 4.8S 0.83 ο,βΰ 84, 1
OAG401 2.? 3-3 ΰ.ϋ Ο.ί) 4.45 0.03 0.00 84,0 実施例 8
[0068] (引張試験 破断面'組織評価)
実施例 1 (Pの含有量と 180°Cにおける引張強さの関係)と同様の引張試験を行い、 引張試験片の破断面組織の観察、ミクロ組織の観察、 EDX分析により評価した。 表 13に示すように、 No. 8—1は本発明銅合金 (Bi系)において、高濃度の Pを含 有した供試品であり、 No. 8— 2は本発明銅合金 (Bi系)において、 Niを含有すること により、 Pを高濃度の範囲内(0. 1 < P≤0. 6質量%)において抑制した供試品であ る。 No. 8— 3は比較例であり、 JIS H5120 CAC911 (Bi—Se系青銅铸物)に該 当する供試品であり、 Pの含有量は低濃度である 0. 02質量%である。
[0069] [表 13]
Figure imgf000028_0001
[0070] 各供試品を用いた 180°C引張試験後の破断面 SEM写真及び組織写真を、図 16
18に示す。本発明銅合金では、図 17 (b)に示すように、破断面中央部に繊維状、 その周辺に放射状の破面組織が観察され、図 16及び図 17 (a)に示すように、 SEM 写真において微少なディンプル (くぼみ)が多数みられることから、 180°Cにおける引 張試験では「延性破壊」が生じたものと考えられる。
一方、比較例合金では、図 18に示すように、結晶面(晶へき面)に沿った「へき開割 れ」を呈し、 SEM写真においてディンプルはみられないことから、 180°Cにおける引 張試験では、「脆性破壊」が生じたものと考えられる。
このように、高濃度の Pの含有により、高温下(180°C)における合金の結晶粒界等 の強度が向上したことから、「脆性破壊」から「延性破壊」に転じている。また、 Niを含 有した場合も同様である。
[0071] 図 19は、本発明銅合金(No. 8— 2)のミクロ組織であり、図 20は、図 19の EDX分 析による成分分布である。本実施例においては、初晶 aがデンドライト状に成長し、 その間隙部に Bi相が観察され、この Bi相に隣接して Cu— P化合物(Cu3P)、 Ni— P 化合物 (Ni3P)が存在する。また、 P、 Niは、初晶 ocにも固溶しており、マトリクス強度 を向上させて 、るものと考えられる。
従って、上記評価の結果、高濃度の Pの含有により、高温下(180°C)に引張強さの 向上効果が、供試品の破断面'組織観察によっても裏付けることができ、また、 Niを 含有した場合には、 Pを高濃度の範囲内において抑制しつつ、高温下(180°C)に引 張強さの向上効果が、供試品の破断面'組織観察によって裏付けることができた。 産業上の利用可能性
本発明の青銅系低鉛合金は、給水 ·給湯用や蒸気用の配管器材 (バルブ'継手な ど)、圧力器材 (ケーシング)等々、幅広い分野における各種部品に適する銅合金で ある。本発明合金は、引張強さの向上を図る合金であるから薄肉形状の部品、例え ば配管器材のみならず、構造部品にも適する。ガス器具、洗濯機、空調機等の電気 '機械製品を加工成形したりするのに適している。その他、本発明の銅合金を材料と して好適な部材 '部品は、特に、バルブや水栓等の水接触部品、即ち、ボールバル ブ、ボーノレバノレブ中の空用ボーノレ、バタフライバノレブ、ゲートバノレブ、グローブバノレ ブ、チェックバルブ、給水栓、給湯器や温水洗浄便座等の取付金具、給水'給湯管 及び管継手、電気温水器部品(ケーシング、ガスノズル、ポンプ部品、パーナなど)、 ストレーナ、水道メータ用部品、水中下水道用部品、排水プラグ、エルボ管、ベロー ズ、便器用接続フランジ、スピンドル、ジョイント、ヘッダー、分岐栓、ホース-ップル、 水栓付属金具、止水栓、給排水配水栓用品、衛生陶器金具、シャワー用ホースの接 続金具、ガス器具、ドアやノブ等の建材、家電製品、サャ管ヘッダー用アダプタ、自 動車クーラー部品、釣り具部品、顕微鏡部品、水道メータ部品、計量器部品、鉄道パ ンタグラフ部品、その他の部材'部品に広く応用することができる。更には、トイレ用品 、台所用品、浴室品、洗面所用品、家具部品、居間用品、スプリンクラー用部品、ド ァ部品、門部品、自動販売機部品、洗濯機部品、空調機部品、ガス溶接機用部品、 熱交換器用部品、太陽熱温水器部品、自動車用部品、金型及びその部品、ベアリン グ、歯車、建設機械用部品、鉄道車両用部品、輸送機器用部品、素材、中間品、最 終製品及び組立体等にも広く適用できる。 特に高温下に使用され得る用途として、以下の用途が挙げられる。
1. < Bi系(Niなし)、 Bi— Se系(Niなし) > (耐圧性をさほど要求されない環境で使 用される合金)
バーナー、ガスノス、ノレ、フレアナット、ボーノレタップ、サーモスタット部品、ボノレト、ナツ ト、スピンドル、摺動部品(軸受、歯車、プッシュ、スリーヴ、ウォームギア)などの構造 部品。
2. < Bi系(Ni含有)、 Bi— Se系(Ni含有) > (強度'耐圧性を要求される用途) 熱交換器 (プレート、チューブ)、ガスタービン、原子炉部品、工業用炉部材 (配管、 バルブ、継手)、海水処理設備 (配管、バルブ、容器、継手)、減圧弁、電磁弁、蒸気 弁、安全弁、蒸気配管、給湯器具、蒸気発生装置、ボイラ部品 (配管、バルブ、容器 、継手)、ポンプ部品(ケーシング、カバー、インペラ一)、スチームトラップ、ドレン管、 蒸気用弁、フロート、空調機部品 (配管、バルブ、継手)、蒸気用ストレーナ、油圧ポ ンプ部品(ケーシング、インペラ一)、排気管、電気温水器部品(配管、バルブ、継手 )、貯湯容器、比例弁、ルームヒータ部品、気化器、サービスバルブ、ボールタップ、 食器洗浄器、バルブや水洗等の水接触部品(ボールバルブ、ボールバルブ用の中 空ボール、バタフライバルブ、ゲートバルブ、グローブバルブ、チヤツキバルブ、給水 管、接続管、管継手、ストレーナ)、ヘッダー、分岐栓、ホースニップル、水洗付属金 具、止水栓、給排水配水栓用品、サャ間ヘッダーアダプタなどの配管 ·圧力器材。 なお、水栓金具や水栓附属金具、給水'給湯部品などは、通常の使用にあっては 1 oo°c以上の使用はないものの、冷水-熱水を交番的に使用される状況下や、食器洗 い乾燥機などにおける熱風乾燥などの 100°Cを超える高温に曝される状況下にあつ ては、本発明銅合金は有意性がある。

Claims

請求の範囲
[1] 質量比で、 Sn:2.0〜6.0%と、 Zn:3.0〜: L0.0%と、 Bi:0.1〜3.0%と、 P:0 . 1<P≤0.6%とを含有し、残余が Cu及び不可避不純物と力 成り、高温下での引 張強さを改善したことを特徴とする青銅系低鉛合金。
[2] 質量比で、 Sn:2.0〜6.0%と、 Zn:3.0〜: LO.0%と、 Bi:0.1〜3.0%と、 P:0
. 1<P≤0.6%と、 Ni:0.0<Ni≤3.0%とを含有し、残余が Cu及び不可避不純 物とから成り、高温下での引張強さを改善し、铸物の健全性をも確保したことを特徴と する青銅系低鉛合金。
[3] 質量比で、 Sn:2.0〜6.0%と、 Zn:3.0〜: L0.0%と、 Bi:0.1〜3.0%と、 P:0
. 1<P≤0.6%と、 Se:0.0<Se≤l.3%とを含有し、残余が Cu及び不可避不純 物とから成り、高温下での引張強さを改善し、铸物の健全性をも確保したことを特徴と する青銅系低鉛合金。
[4] 質量比で、 Sn:2.0〜6.0%と、 Zn:3.0〜: L0.0%と、 Bi:0.1〜3.0%と、 P:0
. 1<P≤0.6%と、 Ni:0.0<Ni≤3.0%と、 Se:0.0<Se≤l.3%とを含有し、残 余が Cu及び不可避不純物とから成り、高温下での引張強さを改善し、铸物の健全性 をも確保したことを特徴とする青銅系低鉛合金。
[5] Pb:0.005-2.0質量0 /0の含有を許容し、少なくとも 180°Cにおける引張強さ 152
MPaを確保した請求項 1乃至 4の何れか 1項に記載の青銅系低鉛合金。
[6] 二次デンドライトアーム間隔が 14 μ m以上の合金領域で、少なくとも 180°Cにおけ る弓 I張強さ 152MPaを確保した請求項 1乃至 4の何れか 1項に記載の青銅系低鉛合 金。
[7] バルブ'水栓金具又は水道メータを製造する材料を請求項 1乃至 6の何れか 1項に 記載の合金を用いた青銅系低鉛合金。
PCT/JP2006/317132 2005-08-30 2006-08-30 青銅系低鉛合金 WO2007026780A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2603811A CA2603811C (en) 2005-08-30 2006-08-30 Bronze-based alloy of low lead content
EP06797104A EP1921173A4 (en) 2005-08-30 2006-08-30 BRONZE ALLOY WITH LOWER HEAD
JP2007533306A JPWO2007026780A1 (ja) 2005-08-30 2006-08-30 青銅系低鉛合金
US11/919,997 US20090220375A1 (en) 2005-08-30 2006-08-30 Bronze-based alloy of low lead content
BRPI0612956-0A BRPI0612956A2 (pt) 2005-08-30 2006-08-30 liga com base em bronze de teor baixo de chumbo
CN2006800144567A CN101166839B (zh) 2005-08-30 2006-08-30 青铜类低铅合金

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-249624 2005-08-30
JP2005249624 2005-08-30

Publications (1)

Publication Number Publication Date
WO2007026780A1 true WO2007026780A1 (ja) 2007-03-08

Family

ID=37808865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317132 WO2007026780A1 (ja) 2005-08-30 2006-08-30 青銅系低鉛合金

Country Status (8)

Country Link
US (1) US20090220375A1 (ja)
EP (1) EP1921173A4 (ja)
JP (1) JPWO2007026780A1 (ja)
KR (1) KR100976741B1 (ja)
CN (1) CN101166839B (ja)
BR (1) BRPI0612956A2 (ja)
CA (1) CA2603811C (ja)
WO (1) WO2007026780A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156670A (ja) * 2006-12-20 2008-07-10 Kurimoto Ltd 銅合金

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181606B2 (en) 2010-10-29 2015-11-10 Sloan Valve Company Low lead alloy
WO2012058628A2 (en) * 2010-10-29 2012-05-03 Sloan Valve Company Low lead ingot
CN102816946B (zh) * 2011-06-09 2016-06-22 浙江万得凯铜业有限公司 一种铜棒的制作工艺
CN109783869B (zh) * 2018-12-17 2020-08-21 中国原子能科学研究院 一种预测反应堆压力容器焊缝热老化晶界p偏析的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563536B2 (ja) 1987-10-16 1993-09-10 Imi Yorkshire Fittings
JPH05279771A (ja) * 1992-03-31 1993-10-26 Hitachi Alloy Kk 耐蝕性銅合金
US5614038A (en) 1995-06-21 1997-03-25 Asarco Incorporated Method for making machinable lead-free copper alloys with additive
JP2889829B2 (ja) 1994-10-20 1999-05-10 株式会社タブチ 無鉛快削青銅合金
JP2000129375A (ja) * 1998-08-18 2000-05-09 Kitz Corp 青銅合金
JP2000336442A (ja) * 1999-05-28 2000-12-05 Joetsu Material Kk 無鉛快削青銅合金並びに連続鋳造用無鉛快削青銅合金又は連続鋳造鋳物
JP2002060868A (ja) * 2000-08-08 2002-02-28 Kyowa Bronze Kk 無鉛青銅合金
JP2003193157A (ja) 2001-12-28 2003-07-09 Kitz Corp 銅基合金等の合金とその製造方法並びにその合金を用いた鋳塊・接液部品
WO2004022804A1 (ja) * 2002-09-09 2004-03-18 Kitz Corporation 銅基合金とその合金を用いた鋳塊・接液部品
JP2004174525A (ja) * 2002-11-25 2004-06-24 Nagoya Valve Kogyo Kk 水栓等の上水道用金具の製造方法
WO2004090181A1 (ja) 2003-04-10 2004-10-21 Kitz Corporation 銅基合金
WO2005054527A1 (ja) * 2003-12-03 2005-06-16 Kitz Corporation 銅基合金とその合金を用いた鋳塊・接液部品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994004712A1 (en) * 1992-08-14 1994-03-03 Nielsen Thomas D Lead-free copper base alloys
ATE178362T1 (de) * 1993-04-22 1999-04-15 Federalloy Inc Sanitaereinrichtungen
US6419766B1 (en) * 1996-04-02 2002-07-16 Tabuchi Corp. Cutting-free bronze alloys
US6413330B1 (en) * 1998-10-12 2002-07-02 Sambo Copper Alloy Co., Ltd. Lead-free free-cutting copper alloys

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563536B2 (ja) 1987-10-16 1993-09-10 Imi Yorkshire Fittings
JPH05279771A (ja) * 1992-03-31 1993-10-26 Hitachi Alloy Kk 耐蝕性銅合金
JP2889829B2 (ja) 1994-10-20 1999-05-10 株式会社タブチ 無鉛快削青銅合金
US5614038A (en) 1995-06-21 1997-03-25 Asarco Incorporated Method for making machinable lead-free copper alloys with additive
JP2000129375A (ja) * 1998-08-18 2000-05-09 Kitz Corp 青銅合金
JP2000336442A (ja) * 1999-05-28 2000-12-05 Joetsu Material Kk 無鉛快削青銅合金並びに連続鋳造用無鉛快削青銅合金又は連続鋳造鋳物
JP2002060868A (ja) * 2000-08-08 2002-02-28 Kyowa Bronze Kk 無鉛青銅合金
JP2003193157A (ja) 2001-12-28 2003-07-09 Kitz Corp 銅基合金等の合金とその製造方法並びにその合金を用いた鋳塊・接液部品
WO2004022804A1 (ja) * 2002-09-09 2004-03-18 Kitz Corporation 銅基合金とその合金を用いた鋳塊・接液部品
JP2004174525A (ja) * 2002-11-25 2004-06-24 Nagoya Valve Kogyo Kk 水栓等の上水道用金具の製造方法
WO2004090181A1 (ja) 2003-04-10 2004-10-21 Kitz Corporation 銅基合金
WO2005054527A1 (ja) * 2003-12-03 2005-06-16 Kitz Corporation 銅基合金とその合金を用いた鋳塊・接液部品

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Industrial Technology of Leadless Copper Alloy Castings and Their Applied Instances", THE MATERIALS PROCESS TECHNOLOGY CENTER, 15 October 2004 (2004-10-15), pages 35 - 37
OZASA T. ET AL.: "Bi-Se-Kei Namari Resu Seido no Kosei Genso ga Hipparizuyosa ni Ataeru Eikyo", COPPER AND COPPER ALLOY, vol. 43, no. 1, 2004, pages 89 - 93, XP008125543 *
See also references of EP1921173A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156670A (ja) * 2006-12-20 2008-07-10 Kurimoto Ltd 銅合金

Also Published As

Publication number Publication date
CA2603811C (en) 2011-08-23
CN101166839A (zh) 2008-04-23
CA2603811A1 (en) 2007-03-08
KR100976741B1 (ko) 2010-08-19
EP1921173A1 (en) 2008-05-14
BRPI0612956A2 (pt) 2011-03-15
JPWO2007026780A1 (ja) 2009-03-26
US20090220375A1 (en) 2009-09-03
EP1921173A4 (en) 2012-08-08
CN101166839B (zh) 2011-05-18
KR20070119039A (ko) 2007-12-18

Similar Documents

Publication Publication Date Title
AU2005272376B2 (en) Copper alloy
KR101133704B1 (ko) 내응력부식균열성이 우수한 무연 황동합금
US7718118B2 (en) Creep resistant magnesium alloy with improved ductility and fracture toughness for gravity casting applications
AU2013340034B2 (en) Brass alloy and processed part and wetted part
JP4838859B2 (ja) 低マイグレーション銅合金
JP2016511792A (ja) 良好な熱成形性を有する、無鉛の、切断が容易な、耐腐食性真鍮合金
WO2007026780A1 (ja) 青銅系低鉛合金
JP4522736B2 (ja) 金型鋳造用銅基合金とこの合金を用いた鋳塊・製品
JP4489701B2 (ja) 銅基合金
JP5259102B2 (ja) 低鉛青銅鋳物合金
JP5566622B2 (ja) 鋳造合金とその合金を用いた接液部品
CA2687452C (en) Brass alloy
JP3375883B2 (ja) 黄銅製鍛造弁・栓類と弁・栓類の黄銅製鍛造部品
JP2013194277A (ja) 切削加工用銅基合金及びその合金を用いた水道用器具
TWI485271B (zh) Low shrinkage corrosion resistant brass alloy
JP2006111925A (ja) 銅基合金

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680014456.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007533306

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2603811

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 3776/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020077023869

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11919997

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006797104

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0612956

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071025