WO2007018244A1 - 水素発生材料及び水素発生装置 - Google Patents

水素発生材料及び水素発生装置 Download PDF

Info

Publication number
WO2007018244A1
WO2007018244A1 PCT/JP2006/315767 JP2006315767W WO2007018244A1 WO 2007018244 A1 WO2007018244 A1 WO 2007018244A1 JP 2006315767 W JP2006315767 W JP 2006315767W WO 2007018244 A1 WO2007018244 A1 WO 2007018244A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
generating material
hydrogen generating
water
heat generating
Prior art date
Application number
PCT/JP2006/315767
Other languages
English (en)
French (fr)
Inventor
Takeshi Miki
Toshihiro Nakai
Ryo Nagai
Shoji Saibara
Original Assignee
Hitachi Maxell, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell, Ltd. filed Critical Hitachi Maxell, Ltd.
Priority to EP06782583A priority Critical patent/EP1908729A4/en
Priority to JP2007529611A priority patent/JP4947718B2/ja
Priority to US11/887,937 priority patent/US20090049749A1/en
Publication of WO2007018244A1 publication Critical patent/WO2007018244A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J16/00Chemical processes in general for reacting liquids with non- particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • B01J16/005Chemical processes in general for reacting liquids with non- particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00117Controlling the temperature by indirect heating or cooling employing heat exchange fluids with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/192Details relating to the geometry of the reactor polygonal
    • B01J2219/1923Details relating to the geometry of the reactor polygonal square or square-derived
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen generating material that reacts with water to generate hydrogen, and a hydrogen generating apparatus using the hydrogen generating material.
  • PEFC polymer electrolyte fuel cells
  • the direct methanol fuel cell which uses methanol as the fuel and reacts with methanol directly at the electrode, is a battery that can be easily reduced in size, and is expected as a portable power source in the future.
  • DMFC direct methanol fuel cell
  • the DMFC has a problem that the negative electrode methanol crosses the solid electrolyte and reaches the positive electrode, the voltage drops due to crossover, and a high energy density cannot be obtained.
  • a fuel cell using hydrogen as a fuel for example, a battery using a high-pressure tank storing hydrogen or a hydrogen storage alloy tank has been put into practical use.
  • a battery using such a tank is not suitable for a portable power source because its volume and weight increase and energy density decreases.
  • this fuel is reformed to remove hydrogen.
  • this type of battery is not suitable for a portable power source because it needs to supply heat to the reformer or insulate the reformer.
  • Patent Document 1 US Pat. No. 6,506,360
  • Patent Document 2 Japanese Patent No. 2566248
  • Patent Document 3 JP 2004-231466 A
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-317443
  • Patent Document 3 is a method in which the heat of reaction between calcium oxide and water is used for the reaction of the hydrogen generating material.
  • the content of calcium oxide is 15 wt% or more, although the hydrogen generation reaction proceeds satisfactorily, it has been clarified that hydrogen is not generated when the calcium oxide content is less than 15 wt%.
  • the hydrogen generating material of the present invention includes a metal material that reacts with water to generate hydrogen, and a heat generating material that generates heat by reacting with water and a material other than the metal material. It is characterized by being unevenly distributed with respect to the metal material.
  • the hydrogen generation device of the present invention includes a hydrogen generation material and a container containing the hydrogen generation material, the hydrogen generation material including a metal material that reacts with water to generate hydrogen, and water. And a material other than the metal material, and the heat-generating material is unevenly distributed with respect to the metal material.
  • the heat generating material of the present invention is unevenly distributed with respect to the metal material, that is, the content of the heat generating material is made higher than the others in a part of the hydrogen generating material.
  • the reaction heat generated by the reaction of the exothermic material with water can be effectively used for the reaction between the metal material and water, and the hydrogen generation reaction can be easily started in a short time. For this reason, the amount of heat generating material contained in the entire hydrogen generating material can be reduced.
  • the hydrogen generating material of the present invention can increase the content of the metal material that serves as a hydrogen generating source, so that hydrogen can be generated efficiently.
  • FIG. 1 is a schematic cross-sectional view showing an example of a hydrogen generator of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of a fuel cell combined with the hydrogen generator of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another example of the hydrogen generator of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing another example of the hydrogen generator of the present invention.
  • FIG. 5 is a graph showing time variation (a) of the surface temperature of the container and time variation (b) of the hydrogen generation rate in the hydrogen generator of Example 1.
  • FIG. 6 is a diagram showing a temporal change (a) in the surface temperature of the container and a temporal change (b) in the hydrogen generation rate in the hydrogen generator of Comparative Example 1.
  • FIG. 7 is a diagram showing a time change (a) of the surface temperature of the outer container and a time change (b) of the hydrogen generation rate in the hydrogen generator of Example 6.
  • An example of the hydrogen generating material of the present invention is a hydrogen generating material that reacts with water to generate hydrogen, a metal material that reacts with water to generate hydrogen, and a heat generating material that reacts with water to generate heat (however, And materials other than the above metal materials).
  • the heat generating material is unevenly distributed with respect to the metal material.
  • the hydrogen generating material of the present invention can generate hydrogen efficiently even if the amount of the heat generating material contained in the hydrogen generating material is reduced by adopting the above configuration.
  • the reaction between the hydrogen generating material and water is not particularly limited by the reaction mechanism or the like as long as it is a reaction that generates hydrogen.
  • this reaction first, an exothermic reaction between the exothermic material and water occurs in a region where a large amount of the exothermic material is unevenly distributed, and then, the region where the exothermic reaction is caused by the heat generated by the exothermic reaction or its region.
  • the reaction between the nearby metallic material and water is started. Since the reaction between the metal material and water is also exothermic, it reacts once.
  • the hydrogen generation reaction can be sustained even if the amount of heat supplied by the reaction between the heat generating material and water decreases, and hydrogen is gradually generated from the region where the heat generating material is unevenly distributed to other regions.
  • the reaction can proceed. Finally, a reaction can be caused in the entire hydrogen generating material.
  • the heat generating material may be reduced! / Or the heat generating material may not be included.
  • the heat generating material included in the entire hydrogen generating material The amount can be reduced.
  • a large amount of heat generating material is unevenly distributed in the hydrogen generating material, a large amount of heat is generated locally as soon as water is supplied to the region, thereby inducing a reaction between the metal material and water. Therefore, the time until hydrogen is generated and the time until the speed at which hydrogen is generated are maximized can be shortened.
  • the combination of the metal material and the heat generating material can take various forms.
  • a hydrogen-generating material that is a mixture of a metal material and a heat-generating material, and the content of the heat-generating material is higher in some areas than in other areas
  • the metal material and the heat-generating material And a part of the region is composed of a metal material or a heat generating material only
  • a region composed only of a metal material and a region composed only of a heat generating material can be displayed in column f.
  • the shape of the hydrogen generating material is not particularly limited.
  • the hydrogen generating material is in the form of pellets or granules because it is excellent in portability.
  • a hydrogen generating material formed into a pellet by compression molding is preferable because the packing density increases and the energy density increases.
  • the granulated and formed hydrogen generating material is easy to adjust the particle size.
  • a hydrogen generating material having a particle size of 5 ⁇ m to 300 ⁇ m hydrogen is generated. This is preferable because the time until generation can be shortened.
  • the content of the heat generating material present in any region selected from the group consisting of one end, the center, and the surface of the hydrogen generating material of the present invention is the content of the heat generating material present in the other region. Preferred, higher than rate.
  • one end portion of the hydrogen generating material is a portion in contact with or close to a part of the surface, and the surface of the hydrogen generating material A part is a part which contacts a part of the surface.
  • one end of the hydrogen generating material is a region that is in contact with or near a part of the inner surface of the container.
  • the surface portion of the hydrogen generating material is a region in contact with a part of the inner surface of the container.
  • the hydrogen generation reaction can be started in a short time.
  • the central part of the hydrogen generating material is, for example, in the case of a hydrogen generating material formed in the form of pellets or granules, the center or a part close to the center, the particulate metal material, and the heat generating material card.
  • the hydrogen generating material When the hydrogen generating material is placed in a container, it is the center or the area close to the center. If the content rate is high in the central part of the hydrogen generating material, it takes some time for water to reach the place when using the hydrogen production method described later. Compared to materials with a high content, the hydrogen generation reaction takes longer to start.
  • the heat generated in the center of the hydrogen generating material is accumulated inside the material that is difficult to dissipate to the outside, and the temperature of the metal material can be increased more efficiently, so that the reaction between the metal material and water occurs. Can be maintained more stably.
  • the hydrogen generating material in the form of pellets may be produced by dividing the process of introducing the hydrogen generating material into the mold into a plurality of steps so that the content of the heat generating material is high and the portion is formed.
  • the granular hydrogen generating material can be granulated by dividing the material charging process to change the ratio of the heat generating material at the surface and the center of the granule.
  • the content of the metal material in the hydrogen generating material of the present invention is preferably 85 wt% or more and 99 wt% or less, more preferably 90 wt% or more and 97 wt% or less. By setting the above range In other words, it can generate a lot of hydrogen.
  • This content is the ratio of the weight of the metal material when the total weight of the metal material and the heat generating material in the entire hydrogen generating material is 100.
  • the metal material in the present invention is not particularly limited as long as it is a substance capable of generating hydrogen by reacting with water at least at the time of heating, but aluminum, silicon, zinc and magnesium are not limited. Powerful group force At least one selected metal or an alloy thereof is preferably used.
  • the composition of the above alloy is not particularly limited. Force The alloy mainly composed of an element selected from the above group is preferred.
  • the content of the above element is preferably 8 Owt% or more, more preferably 85 wt%. That's it. This is because if the content is small, the amount of hydrogen generated decreases due to the reaction with water.
  • the metal material can generate hydrogen by reacting with water at least in a state of being heated to room temperature or higher.
  • a stable oxide film is formed on the surface, it is a substance that does not generate hydrogen or does not easily generate hydrogen at low temperatures, or in the shape of a plate such as a plate or block.
  • handling in air is easy due to the presence of the oxide film.
  • the metal material used in the present invention is not particularly limited by the particle size, but the smaller the particle size, the higher the reaction rate, so the particle size is 100 m or less, preferably It should be 50 ⁇ m or less. Further, in this particle size distribution, it is preferable that the metal material particles having a particle size of 0.1 m or more and 60 ⁇ m or less are contained in an amount of 80% by volume or more, more preferably 90% by volume or more of the metal material. It is best to make all of the material particles have the above particle size.
  • the average particle diameter of the metal material particles is preferably 0.1 m or more and 30 ⁇ m or less, more preferably 0.1 ⁇ m or more and 20 ⁇ m or less.
  • Metal materials having these particle sizes can be easily obtained by classification with a sieve.
  • the above metal material reduces the reaction suppressing action by the oxide film when the particle size is small (for example, 100 m or less). And the hydrogen generation reaction continues.
  • the average particle size of the metal material is less than 0 .: Lm, it becomes difficult to handle because it is highly ignitable in air.
  • the filling density is lowered and the energy density is likely to be lowered. For this reason, it is desirable that the average particle size of the metal material be 0.1 m or more. That is, as long as the metal material has the particle size distribution or the average particle size, hydrogen can be generated efficiently without being affected by the above-described acid-soluble film.
  • the average particle diameter in the present specification means a value of a diameter at a volume-based integrated fraction of 50%.
  • the particle size distribution and the average particle size as used in the present specification are values measured using a laser diffraction / scattering method. Specifically, this is a particle diameter distribution measurement method using a scattering intensity distribution detected by irradiating a measurement target substance dispersed in a liquid phase such as water with laser light.
  • a particle size distribution measuring apparatus by the laser diffraction / scattering method for example, “Microtrack HRA” manufactured by Nikkiso Co., Ltd. can be used.
  • the metal material preferably has a scaly particle shape.
  • the metal material has a length of several tens of ⁇ m and a thickness of 0.1 ⁇ m to 5 ⁇ m. More preferred. By reducing the thickness, the influence due to the formation of the acid film is reduced, and it is considered that the center of the particles reacts with water.
  • an aggregate having a size of lmm or more, which is a force only for the metal material is not formed.
  • the metal material and the heat generating material are mixed with stirring, or the metal material is coated with the heat generating material.
  • the exothermic material may be a substance that causes an exothermic reaction with water at room temperature!
  • a substance that reacts with water to form a hydroxide or a hydrate, a substance that reacts with water to generate hydrogen, and the like can be used.
  • the normal temperature is a temperature in the range of 20 to 30 ° C.
  • substances that react with water to form hydroxides or hydrates include alkali metal oxides (for example, lithium oxide) and alkaline earth metal oxides (for example, acid). ⁇ Calcium, acid magnesium etc. ), Alkaline earth metal salts (eg, calcium chloride, magnesium chloride, etc.), alkaline earth metal sulfates (eg, calcium sulfate), etc.
  • the substance that reacts with water to generate hydrogen examples include alkali metals (eg, lithium, sodium, etc.), alkali metal hydrides (eg, sodium borohydride, potassium borohydride, lithium hydride, etc.). ) Etc. can be used. These substances can be used alone or in combination.
  • the heat generating material is a basic substance, it dissolves in water and becomes a high-concentration alkaline aqueous solution. Therefore, the oxide film formed on the surface of the hydrogen generating substance is dissolved to increase the reactivity with water. This is preferable.
  • This reaction for dissolving the acid film may be the starting point for the reaction between the metal material and water.
  • the exothermic material is an alkaline earth metal oxide, it is more preferable because it is a basic substance and easy to handle!
  • a substance that generates an exothermic reaction with a substance other than water at room temperature for example, a substance that reacts with oxygen and generates heat, such as iron powder
  • the hydrogen generating material includes a substance that reacts with the oxygen and the metal material that is the hydrogen generating source
  • the oxygen required for the reaction is at the same time the purity of the hydrogen generated from the metal material. Problems such as lowering the amount of hydrogen generated or reducing the amount of hydrogen generated by oxidizing a metal material.
  • the exothermic material is preferably one that does not generate a gas other than hydrogen during the reaction.
  • the heat-generating material is not particularly limited by the particle size, but the particle size is 0.1 to 200 m, preferably 0 to 60 / zm, more preferably 0 to It should be in the range of 1 m or more and 20 / zm or less.
  • the particle size of the heat generating material is less than 0.1 m, it becomes difficult to handle, and the packing density of the hydrogen generating material is lowered, and the energy density is likely to be lowered. Therefore, the particle size of the heat generating material is preferably within the above range.
  • the hydrogen generating material may further contain at least one selected from the group consisting of a hydrophilic oxide, carbon, and a water-absorbing polymer (hereinafter referred to as an additive).
  • the additive is By coexisting with the metal material, the reaction between the metal material and water is promoted, and hydrogen can be generated efficiently. This is to improve the contact between the hydrogen generating material and water, and to prevent the reaction product generated by the reaction between the hydrogen generating material and water from depositing on the surface of the unreacted metal material. it is conceivable that.
  • the hydrogen generating material is formed into pellets, it is expected that the water will easily penetrate into the hydrogen generating material due to the additive.
  • hydrophilic acid compound examples include alumina, boehmite, silica, magnesia, zirconia, zeolite, zinc oxide, and the like. It is good to contain.
  • carbon examples include carbon blacks such as acetylene black and ketjen black, graphite, graphitizable carbon, non-graphitizable carbon, activated carbon, and the like.
  • water-absorbing polymer examples include celluloses such as carboxymethyl cellulose, polybulurpyrrolidone, polybutyl alcohol, polyacrylic acid, and the like. These additives may be used alone or in combination of two or more.
  • the hydrogen generating material of the present invention it is more preferable that at least one selected from the group consisting of aluminum powder and aluminum alloy powder strength as the metal material. It is even more preferable to further include bemite.
  • Another example of the hydrogen generating material of the present invention is a hydrogen generating material that reacts with water to generate hydrogen, a metal material that reacts with water to generate hydrogen, and a heat generating material that reacts with water to generate heat.
  • a hydrogen generating material A containing a material (however, a material other than the above metal material) and a hydrogen generating material B in which the content of the heat generating material is lower than that of the hydrogen generating material A.
  • the reaction between the hydrogen generating material and water is not particularly limited by the reaction mechanism or the like as long as it is a reaction that generates hydrogen.
  • this reaction first, in the hydrogen generating material A, an exothermic reaction between the exothermic material and water occurs, and the reaction heat generated at this time causes a reaction between the metal material contained in the hydrogen generating material A and water. Is started. Next, the reaction heat generated in the hydrogen generating material A is transferred to the hydrogen generating material B adjacent to the hydrogen generating material A, and the hydrogen generating reaction in the hydrogen generating material B is started from this.
  • the hydrogen generating material B does not contain a heat generating material, or the content of the heat generating material is reduced. Since the amount of the heat generating material can be significantly reduced as compared with the case of the hydrogen generating material A, the amount of the heat generating material can be reduced as compared with the case where the heat generating material is uniformly contained as a whole. Thereby, the amount of hydrogen generation can be increased by increasing the proportion of the metal material. Alternatively, even if the amount of heat-generating material is not reduced, the time until hydrogen is generated and the time until the hydrogen generation rate is maximized can be shortened. The hydrogen generation efficiency can be improved.
  • the hydrogen generating material the same material and the same size as the metal material and the heat generating material used in Embodiment 1 can be used. Further, the additive used in Embodiment 1 can also be used.
  • the hydrogen generating material A of the present embodiment is such an arrangement that it is desirable to be arranged on the surface or corner of the entire hydrogen generating material
  • the hydrogen generating material A is first used. By supplying water to A and bringing the exothermic material contained in the water into contact with water quickly, the hydrogen generation reaction can be started in a short time. Further, if the hydrogen generating material A is arranged so as to be surrounded by the hydrogen generating material B, and more preferably arranged at the center of the entire hydrogen generating material, the reaction between the metal material and water becomes more stable. It is preferable because it can be maintained. When water is supplied to the hydrogen generating material, it takes some time for the water to reach the hydrogen generating material A. This is because the accumulated temperature can increase the temperature of the metal material more efficiently.
  • the content of the heat generating material in the region having the highest heat material content is 30 wt% or more and 8 Owt% or less. It is more preferable to set it to 35 wt% or more and 65 wt% or less.
  • the content of the heat generating material in the hydrogen generating material A is preferably in the above range. This is because the time until hydrogen is generated by the reaction of the exothermic material can be further shortened.
  • the content of the heat generating material is the highest !, and the region occupies the entire hydrogen generating material, that is, the hydrogen generating material of the hydrogen generating material contained in the region having the highest content of the heat generating material.
  • the proportion of the whole material is preferably 3wt% or more and 40wt% or less.
  • the content ratio of the hydrogen generating material A to the entire hydrogen generating material is preferably within the above range. This is because hydrogen can be generated efficiently.
  • the hydrogen generating material B may include only a metal material.
  • the hydrogen generating material B preferably contains a heat generating material in order to promote the reaction between the metal material and water.
  • the content of the heat generating material in the hydrogen generating material B is too high, the effect of reducing the amount of the heat generating material in the entire hydrogen generating material may not be achieved. Therefore, the content of the heat generating material in the hydrogen generating material B is lower than the content of the heat generating material of the hydrogen generating material A, and more preferably specifically at most l W t% more than the 15 wt%.
  • Hydrogen generating material A and hydrogen generating material B force The shape of at least one selected material is preferably granular.
  • Granular hydrogen generating material can be granulated and formed into granules, so the particle size can be easily adjusted.
  • a hydrogen generating material having a particle size of 5 ⁇ m to 300 ⁇ m is formed. As a result, the time until hydrogen is generated can be shortened.
  • the step of preparing the hydrogen generating material is not particularly limited.
  • a hydrogen generating material that is formed into a pellet and in which the heat generating material is unevenly distributed at one end may be disposed in the reaction vessel.
  • the powder of the metal material and the powder of the exothermic material are separately put into the reaction vessel and mixed as necessary, so that the content of the exothermic material is increased in a part of the hydrogen generating material in the reaction vessel.
  • the input amount and input timing should be adjusted so that a portion is provided.
  • the step of supplying water to the hydrogen generating material prepared in this way is not particularly limited as long as the hydrogen generating material can react with water. That is, the place where water is supplied in the reaction vessel, the supply speed, and the like can be appropriately selected.
  • the supplied water reacts with the heat generating material in the hydrogen generating material, and the reaction between the metal material and water is initiated by the heat released by the reaction.
  • reaction heat from the reaction of exothermic materials and metal materials Starting from the heat of reaction caused by the reaction with water, the reaction between the new metal material and water is started, and the hydrogen generation reaction continues.
  • FIG. 1 shows a hydrogen generating material that is a hydrogen material provided with a container containing a metal material that generates hydrogen by reacting with water and a heat generating material that generates heat by reacting with water and that is not the metal material.
  • FIG. 3 is a schematic cross-sectional view of a generator, in which the heat generating material and the metal material are arranged inside the container so that the heat generating material is unevenly distributed with respect to the metal material.
  • the hydrogen generator shown in FIG. 1 has a cartridge form.
  • the cartridge 1 has a container 6 including a supply port 7 for supplying water and a discharge port 8 for discharging hydrogen.
  • a hydrogen generating material 2a and a hydrogen generating material are provided inside the container 6, a hydrogen generating material 2a and a hydrogen generating material are provided.
  • a hydrogen generating material 2 consisting of 2b is arranged.
  • the hydrogen generating material 2a corresponds to the hydrogen generating material A of Embodiment 2 described above
  • the hydrogen generating material 2b corresponds to the hydrogen generating material B of Embodiment 2 described above.
  • the cartridge 1 is a device that can efficiently generate hydrogen even if the amount of heat generating material contained in the hydrogen generating material 2 is small by adopting the above-described configuration.
  • Cartridge 1 is particularly suitable for carrying out the method for producing hydrogen described in Embodiment 3.
  • the hydrogen generating material 2a and the hydrogen generating material 2b may be the same as the metal material and the heat generating material used in the second embodiment. Further, the partition material 5 may be disposed between the hydrogen generating material 2a and the hydrogen generating material 2b. Thereby, mixing of the hydrogen generating material 2a and the hydrogen generating material 2b can be prevented.
  • the material constituting the partition material 5 does not inhibit the reaction of the hydrogen generating material 2a and the hydrogen generating material 2b with water, and the heat generated in the hydrogen generating material 2a generates hydrogen.
  • aluminum foil, stainless steel foil, copper foil or the like can be used as long as the material does not hinder the transmission to the material 2b.
  • the container 6 is used as a reaction container for reacting the hydrogen generating material and water, so that the supplied water and the generated hydrogen do not leak to the outside.
  • a structure that can be sealed except for the supply port 7 and the hydrogen discharge port 8 is desirable.
  • the material used for the container 6 is preferably a material having heat resistance that prevents water and hydrogen from leaking (for example, a material that does not break even when heated to about 120 ° C.).
  • metals such as aluminum, titanium and nickel, resins such as polyethylene, polypropylene and polycarbonate, ceramics such as alumina, silica and titanium, and materials such as heat-resistant glass can be used.
  • the structure of the supply port 7 is not particularly limited as long as water can be supplied from an external force.
  • the supply port 7 may be an opening formed in the container 6, and a pipe connected to the container 6 is used as the supply port. It may be a thing. If the supply port 7 is connected to a pump capable of controlling the amount of water supplied, it is more preferable because the amount of hydrogen generated can be controlled by adjusting the amount of water supplied.
  • the discharge port 8 is not particularly limited as long as it can discharge hydrogen to the outside.
  • the discharge port 8 may be an opening formed in the container 6, or a pipe connected to the container 6 is discharged. It may be an exit.
  • a filter can be placed at the outlet 8 to prevent the contents of the container from leaking out.
  • the filter is not particularly limited as long as it has a structure that allows gas to pass and hardly allows liquid and solids to pass through.
  • a porous gas-liquid separation membrane made of polytetrafluoroethylene (PTFE), polypropylene, or the like can be used. Such porous film can be used.
  • a water absorbing material 9 may be disposed at the inner ends of the supply port 7 and the discharge port 8. A part of the supplied water is held by the water absorbing material 9, and the remainder wets the hydrogen generating material and starts the hydrogen generating reaction.
  • the generated hydrogen can be supplied to the negative electrode of the fuel cell through the discharge port 8.
  • the water-absorbing material 9 is not necessarily required, but water held in the water-absorbing material 9 is supplied to the hydrogen-generating material according to the consumption of water due to the hydrogen generation reaction, and the temporal fluctuation of the hydrogen generation rate is suppressed to some extent. Can be arranged Good.
  • the water-absorbing material 9 is not particularly limited as long as it is a material that can absorb and hold water, and in general, absorbent cotton or non-woven fabric can be used.
  • FIG. 2 is a schematic cross-sectional view showing an example of a fuel cell.
  • the fuel cell 10 includes a membrane electrode assembly including a positive electrode 12 that reduces oxygen, a negative electrode 11 that oxidizes hydrogen, and a solid electrolyte 13 disposed between the positive electrode 12 and the negative electrode 11, and
  • the fuel cell is provided with a hydrogen generator (not shown) for supplying the fuel.
  • the hydrogen generator for example, the hydrogen generator of Embodiment 4 can be used.
  • Each member used in the fuel cell 10 is not particularly limited as long as it can be generally used in a fuel cell.
  • a conductive material carrying a catalyst can be used.
  • the catalyst for example, platinum fine particles, alloy fine particles of platinum and at least one kind of metal selected from iron, nickel, cobalt, tin, ruthenium and gold can be used.
  • the conductive material a carbon material is mainly used. For example, carbon black, activated charcoal, carbon nanotube, carbon nanohorn and the like can be used. In general, catalyst-supporting carbon in which the catalyst is dispersed and supported on the surface of a conductive material is used.
  • the positive electrode 12 includes a positive electrode terminal 18.
  • a conductive material carrying a catalyst can be used.
  • the catalyst include platinum fine particles, ruthenium, indium, iridium, tin, iron, titanium, gold, silver, chromium, silicon, zinc, manganese, molybdenum, tungsten, rhenium, aluminum, lead, palladium, and the like. Osmium force It is possible to use alloy fine particles of at least one selected metal and platinum.
  • the conductive material the same material as the positive electrode conductive material described above can be used.
  • the negative electrode 11 includes a negative electrode terminal 17.
  • the solid electrolyte 13 is disposed between the positive electrode 12 and the negative electrode 11, and is formed of a material having no electron conductivity capable of transporting protons.
  • a material having no electron conductivity capable of transporting protons for example, polyperfluorosulfonic acid resin film, sulfone-polyether sulfonic acid resin film, sulfonated polyimide resin film, sulfuric acid-doped polybenzimidazole film, phosphoric acid-doped SiO which is a solid electrolyte, polymer and phosphorus Acid-doped SiO hybrid, gel electrolyte with polymer and oxide impregnated with acidic solution, etc.
  • the diffusion layer 14 is disposed on the outer surfaces of the positive electrode 12 and the negative electrode 11.
  • a porous carbon material can be used as the diffusion layer 14.
  • a positive electrode separator 16 for supplying air (oxygen) is disposed on the surface of the membrane electrode assembly on the positive electrode 12 side. Further, a negative electrode separator 15 for supplying hydrogen is disposed on the surface of the membrane electrode assembly on the negative electrode 11 side. The negative electrode separator 15 communicates with the hydrogen generator that supplies the hydrogen.
  • the fuel cell 10 When combined with the hydrogen generator of the present invention, the fuel cell 10 efficiently supplies hydrogen as a metal material that serves as a hydrogen source. Therefore, the fuel cell 10 can efficiently generate electricity using this hydrogen as fuel. Can do. Further, in the hydrogen generator of the present invention, since water is involved in the hydrogen generation reaction, hydrogen gas contains an appropriate amount of water and can be preferably used for a fuel cell using hydrogen as a fuel.
  • FIG. 3 is a schematic cross-sectional view showing another example of the hydrogen generator of the present invention.
  • the hydrogen generator shown in FIG. 3 has a cartridge form different from that of the fourth embodiment.
  • the cartridge 20 of the present embodiment includes an outer container 21, an inner container 22 and a hydrogen generating material 23 housed in the outer container 21, and a hydrogen generating material 24 housed in the inner container 22. Further, the inner container 22 is disposed so as to be surrounded by the hydrogen generating material 23.
  • the hydrogen generating material 23 corresponds to the hydrogen generating material B of Embodiment 2 described above, and the hydrogen generating material 24 corresponds to the hydrogen generating material A of Embodiment 2 described above.
  • the outer container 21 includes a first supply port 25 for supplying water to the inside and a first discharge port 27 for discharging hydrogen.
  • the inner container 22 includes a second supply port 26 for supplying water to the inside and a second discharge port 28 for discharging generated hydrogen.
  • a water absorbing material 29 is disposed at the inner ends of the first supply port 25 and the first discharge port 27, and a water absorbing material 30 is disposed at the inner ends of the second supply port 26 and the second discharge port 28.
  • the hydrogen generating material 24 can be replaced with a configuration only of a heat generating material, that is, a configuration not including a metal material. In this case, since hydrogen is not generated, the second outlet 28 Can be omitted. Further, the hydrogen generating material 23 can be composed of only a metal material.
  • the cartridge 20 of the present embodiment can efficiently generate hydrogen even if the amount of the heat generating material is reduced. The reason is explained below
  • reaction for generating hydrogen in the cartridge 20 of the present embodiment first, the exothermic reaction between water supplied from the outside and the exothermic material contained in the hydrogen generating material 24 is performed inside the content container 22. Then, the heat generated inside the inner container 22 is transferred to the hydrogen generating material 23 inside the outer container 21, and the water and the hydrogen generating material supplied to the inside of the outer container 21 are used as a starting point. Reaction with 23 begins and hydrogen can be generated.
  • the hydrogen generating material 23 can generate hydrogen even if it does not contain a heat generating material.
  • the amount of material can be reduced. Even if the amount of the heat generating material is not reduced, as described above, the content of the heat generating material in the hydrogen generating material 24 is set higher than the content of the heat generating material in the hydrogen generating material 23, so that the hydrogen can be reduced.
  • the time until generation and the time until hydrogen generation speed is maximized can be shortened.
  • the inner container 22 is arranged so as to be surrounded by the hydrogen generating material 23, the heat generated in the inner container 22 is transmitted to the hydrogen generating material 23 and immediately.
  • the temperature of the metal material can be increased more efficiently.
  • the inner container 22 is disposed almost in the center of the outer container 21, and the inner container 22 excluding the second supply port 26 and the second discharge port 28 where it is preferable that the hydrogen generating material 23 is disposed around the inner container 22. It is more preferable that the outer surface of each is in contact with the hydrogen generating material 23. This is because the heat generated in the inner container 22 can be more efficiently transferred from the content container 22 to the hydrogen generating material 23.
  • the cartridge 20 of the present embodiment has a ratio force of 3 wt% to 40 wt% of the weight of the hydrogen generating material 24 with respect to the total weight of the hydrogen generating material 23 and the hydrogen generating material 24. It is more preferable if it is 5 wt% or more and 15 wt% or less. By adjusting the ratio of the hydrogen generating material 24 to this range, the hydrogen generation efficiency and the hydrogen generation amount are balanced. Lance is good.
  • the outer container 21 is not particularly limited depending on the size, shape, and the like, and includes, for example, a lid part and a container main body part. Since the outer container 21 is a reaction container that performs a hydrogen generation reaction between the hydrogen generating material 23 and water, the water supplied to the container does not leak to the outside, and the generated hydrogen discharges power other than the first outlet 27. It is preferable that the structure has a high sealing property.
  • the material of the outer container 21 is preferably a material having heat resistance that prevents water and hydrogen from leaking to the outside (for example, a material that does not break even when heated to about 120 ° C.).
  • the material strength of the outer container 21 is preferably at least one material selected from the group strength consisting of polyethylene, polypropylene, and polycarbonate because it has high heat insulation and sufficient heat resistance.
  • the inner container 22 is not particularly limited depending on the size, shape, and the like, and includes, for example, a lid part and a container main body part. Since the inner container 22 is used as a reaction container for reacting the hydrogen generating material 24 with water, the water supplied into the container does not leak to the outside, and the hydrogen generated by the reaction is discharged as the second exhaust. It is preferable that the structure is highly sealed so that no force is discharged except the outlet 28.
  • the material of the inner container 22 is more preferably a material having high heat conductivity, preferably a heat-resistant material (for example, a material that does not break even when heated to about 120 ° C.).
  • materials such as polyethylene, polypropylene, polycarbonate and other resins, ceramics such as alumina, silica, and titer, heat resistant glass, and metals can be used.
  • at least one metal from which a group force consisting of aluminum, titanium, nickel, and iron force is selected is more preferable.
  • the first supply port 25, the first discharge port 27, the second supply port 26, and the second discharge port 28 are independent forces.
  • the first supply port 25 and the second supply port 26 are configured to be partially connected, it is preferable that water is not separately supplied to the outer container 21 and the inner container 22.
  • hydrogen when hydrogen is generated by the reaction of the hydrogen generating material 24, it is preferable that a part of the first outlet 27 and the second outlet 28 be connected so that hydrogen can be collected together. ,.
  • water supplied to the inner vessel 22 can be supplied.
  • the hydrogen generating material 23 of the outer container 21 can also be reached.
  • the outer container 21 with only the second supply port 26 and the first discharge port 27.
  • the water supplied from the second supply port 26 first reacts with the hydrogen generating material 24 in the inner container 22 to generate heat, so that the hydrogen generating material 23 has a hydrogen generating reaction. It can be.
  • the hydrogen generated in the inner container 22 can be moved toward the outer container 21 through the second discharge port 28 together with the water supplied to the inner container 22, and the hydrogen generated in the inner container 22 The hydrogen generated from the reaction of the hydrogen generating material 23 can be taken out from the first outlet 27 together with the hydrogen.
  • the first discharge port 27 and the second discharge port 28 are configured independently. It is desirable to prevent hydrogen generated in the vessel 22 from being mixed into hydrogen generated by the reaction of the hydrogen generating material 23. This is because when hydrogen containing the basic mist or the like is used as a fuel for a fuel cell, for example, it may cause deterioration of the solid electrolyte membrane.
  • the basic mist is a mist containing a base that accepts protons, and is generated, for example, when the exothermic material is a basic substance.
  • the cartridge shown in Fig. 3 of the present embodiment is used, hydrogen generated by the reaction of the hydrogen generating material 23 with a low exothermic material content with water, that is, hydrogen with little mixing of basic mist or the like is generated. Since it can be used as a fuel for a fuel cell, the problem of deterioration of the solid electrolyte membrane can be prevented.
  • the inner container 22 can be supplied with a reactant other than water, for example, oxygen. It is also possible to use metal powder that generates heat by reacting with oxygen, such as iron powder, as the heat generating material accommodated in 22.
  • FIG. 4 is a schematic cross-sectional view showing still another example of the hydrogen generator of the present invention.
  • the hydrogen generator shown in FIG. 4 shows a cartridge mode different from that of the sixth embodiment.
  • the cartridge 40 of this embodiment includes an outer container 21 and an inner container 22 accommodated in the outer container 21. And a hydrogen generating material 23, a hydrogen generating material 24 accommodated in the inner container 22, and a heat insulating material 41.
  • the inner container 22 is disposed such that the outer side of one side surface of the inner container 22 is in contact with the inner side of one side surface of the outer container 21, and the heat insulating material 41 is disposed on the outer peripheral surface of the outer container 21.
  • the heat insulating material 41 is not particularly limited depending on the material, shape, and the like.
  • the heat insulating material 41 is a porous heat insulating material such as foamed polystyrene or polyurethane foam, or a material such as a heat insulating material having a vacuum heat insulating structure. What is necessary is just to use the sheet
  • the other configuration is the same as that of the cartridge 20 of the sixth embodiment. In FIG. 4, the same parts as those in FIG.
  • the inner container 22 is disposed in contact with the outer container 21, so that heat generated from the inside of the inner container 22 is quickly transferred to the entire outer container 21, and the hydrogen generating material 23
  • the overall temperature can be increased more efficiently. It is more preferable that the area where the inner container 22 and the outer container 21 are in contact with each other is larger because heat can be transferred more efficiently.
  • the outer container 21 and the inner container 22 also have a high thermal conductivity material force such as metal.
  • the materials of the two containers may be the same material or different materials. Further, since the heat insulating material 41 is disposed on the outer peripheral surface of the outer container 21, the heat transmitted to the outer container 21 can be accumulated in the container which is difficult to dissipate to the outside.
  • Aluminum powder (average particle size 3 ⁇ m) 0.5g and calcium oxide powder (average particle size 40 ⁇ m) 0.5g were mixed in a mortar to produce hydrogen generating material A (heating material content: 50wt% ). Further, 3.8 g of the aluminum powder and 0.2 g of the calcium oxide powder were mixed in a mortar to prepare a hydrogen generating material B (content of heat generating material: 5 wt%).
  • the water supply pipe is covered with an aluminum plate provided with an aluminum water supply pipe for supplying water and an aluminum hydrogen discharge pipe for deriving hydrogen. 1 was placed in the vicinity of the hydrogen generating material A, to obtain a hydrogen generating apparatus shown in FIG.
  • the water supply pipe was connected to a pump for supplying water to the hydrogen generating materials A and B.
  • Pumping water at a rate of 0.17 mlZ and supplying water into the aluminum outer can first, the heat generating material (acidic acid contained in the water and the hydrogen generating material A) Then, the reaction between the aluminum powder contained in the hydrogen generating materials A and B and water was started by the heat of reaction to generate hydrogen.
  • the heat generating material acidic acid contained in the water and the hydrogen generating material A
  • the reaction between the aluminum powder contained in the hydrogen generating materials A and B and water was started by the heat of reaction to generate hydrogen.
  • water was supplied until no more hydrogen was generated, and the hydrogen discharged from the hydrogen discharge pipe force was collected while measuring the surface temperature of the aluminum outer can.
  • a water displacement method was used for collecting the hydrogen.
  • the volume of the collected hydrogen was measured and used as a hydrogen generation amount.
  • the ratio of the weight of aluminum used to the theoretical hydrogen generation amount was calculated as the aluminum reaction rate based on the theoretical hydrogen generation amount per 1 liter of aluminum (1360 ml) at 25 ° C and 1 atm.
  • the hydrogen generation rate was calculated from the time variation of the hydrogen generation amount, and the time until it was maximized was obtained.
  • the temperature of the aluminum outer can that is, the reaction temperature of the hydrogen generating material increased to 95 ° C at the maximum.
  • the reaction temperature of the hydrogen generating material increased to 95 ° C at the maximum.
  • hydrogen is generated continuously at an almost constant generation rate, and that hydrogen generation stops after a few minutes when the water supply is stopped.
  • Aluminum powder 0.65g and acid calcium carbonate powder 0.35g are mixed in a mortar to produce hydrogen generating material A (heating material content: 35wt%), and aluminum powder 3.65g and calcium oxide A hydrogen generating apparatus was manufactured in the same manner as in Example 1 except that 0.35 g of powder was mixed in a mortar to prepare hydrogen generating material B (content of heat generating material: 8.75 wt%).
  • the proportion of hydrogen generating material A was 20 wt% and the proportion of aluminum powder was 86 wt% with respect to the entire hydrogen generating material. Further, hydrogen was generated in the same manner as in Example 1.
  • Example 1 Aluminum powder 3.55g, calcium oxide powder 0.2g and alumina (average particle size 1 / ⁇ ⁇ ) 0.25g were mixed in a mortar and hydrogen generating material ⁇ (heating material content: 5wt%) A hydrogen generator was produced in the same manner as in Example 1 except that it was produced. The ratio of hydrogen generating material A to the entire hydrogen generating material was 20 wt%, and the ratio of aluminum powder was 81 wt%. Further, hydrogen was generated in the same manner as in Example 1.
  • Example 1 Mix hydrogen powder 4.3g and acid calcium carbonate powder 0.7g in a mortar to make hydrogen generating material (content of exothermic material: 14wt%), and evenly distribute this hydrogen generating material inside the aluminum outer can
  • a hydrogen generation apparatus was produced in the same manner as in Example 1 except that it was filled in. Further, hydrogen was generated in the same manner as in Example 1.
  • Table 1 shows the structures of the hydrogen generating materials in Examples 1 to 4 and Comparative Example 1.
  • Table 2 shows the reaction rate of aluminum in each hydrogen generation material and the measurement results of the time required to maximize the hydrogen generation rate.
  • FIGS. 5 and 6 show the time change (a) of the surface temperature of the aluminum outer can (container) and the time change (b) of the hydrogen generation rate in the hydrogen generators of Example 1 and Comparative Example 1. Shows a dull.
  • Example 4 since alumina was added, the proportion of the metal material in the hydrogen generating material was lower than in Example 1. However, since alumina accelerated the hydrogen generation reaction, the reaction rate was higher than that in Example 1, and the time until the generation rate reached the maximum was the same as in Example 1. This is presumably because the addition of alumina prevented the bonding (binding) between the metal material and its reaction product.
  • platinum-ruthenium alloy-supporting carbon in which 54 wt% of an alloy of platinum and ruthenium (Pt: Ru molar ratio 2: 3) was supported was used. Except for the above, a negative electrode was produced in the same manner as the positive electrode.
  • a polyperfluorosulfonic acid resin membrane (“Nafion 112” manufactured by DuPont) was prepared as a solid electrolyte.
  • the positive electrode and the PTFE film attached to the negative electrode were peeled off, and a bonbon paper was placed as a diffusion layer on the surface from which the film was peeled off to obtain a membrane electrode assembly.
  • the positive electrode was provided with a positive electrode terminal, and the negative electrode was provided with a negative electrode terminal.
  • a separator for supplying air (oxygen) is provided on the surface on the positive electrode side of the membrane electrode assembly, and a separator for supplying hydrogen is provided on the surface on the negative electrode side of the membrane electrode assembly.
  • oxygen oxygen
  • a separator for supplying hydrogen is provided on the surface on the negative electrode side of the membrane electrode assembly.
  • Example 1 Inside the aluminum outer can (inner container (length 5mm, width 18mm, height 20mm)) that is the inner container, put absorbent cotton as a water-absorbing material 0. Olg, and then the hydrogen generating material of Example 1 above. 0.8 g of the same hydrogen generating material as that of A was charged, and 0.0 Olg of absorbent cotton was added as a water absorbing material. Next, an aluminum water supply pipe (second supply port) for supplying water and an aluminum hydrogen discharge pipe (second discharge port) for extracting hydrogen are used. Sealed with a lid.
  • hydrogen powder B was prepared by mixing aluminum powder (average particle size 3 ⁇ m) 4. Og and calcium oxide powder (average particle size 40 m) 0.3 g in a mortar. 3 Thus, the hydrogen generating material B and the inner container were placed so that the inner container was surrounded by the hydrogen generating material B and placed in the center of the outer container. Furthermore, 0.05 g of absorbent cotton was added as a water-absorbing material. Finally, it is sealed with an aluminum lid provided with an aluminum water supply pipe (first supply port) for supplying water and an aluminum hydrogen discharge pipe (first discharge port) for extracting hydrogen. The hydrogen generator was used.
  • the temperature of the outer container (can surface temperature) rose to a maximum of 95 ° C.
  • hydrogen was generated continuously at an almost constant generation rate, and that hydrogen generation stopped after a few minutes when the water supply was stopped.
  • Table 3 shows the composition of the hydrogen generating material in Example 6 and Comparative Example 2. Also, for each hydrogen generating material, the reaction rate of aluminum in the hydrogen generating reaction, the time required to maximize the hydrogen generating rate, and the number of moles of basic mist (OH-ion) collected are shown in Table 4.
  • FIG. 7 shows the time change of the surface temperature of the outer container in the hydrogen generator of Example 6.
  • the hydrogen generator of Example 6 also generates hydrogen at a reaction rate exceeding 60%, as in the hydrogen generators of Examples 1 to 4 described above. At the same time, the reaction reached a steady state in a short time after supplying water, and hydrogen could be extracted stably.
  • the content of the exothermic material (acid calcium), which is a basic substance, is low! Only hydrogen generated from the hydrogen generating material (hydrogen generating material B) is captured. As a result, it was possible to obtain hydrogen gas having a lower basic mist content than the hydrogen gas produced by the hydrogen generator of Comparative Example 1.
  • the scattering of basic mist can be reduced by separating the hydrogen generating material having a high basic substance content into another container.
  • the hydrogen generating material of the present invention the content of the metal material that is a hydrogen generating source can be increased, so that hydrogen can be generated efficiently, and the fuel cell As a fuel source, it can be widely used especially for fuel cells for small portable devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 本発明の水素発生材料は、水と反応して水素を発生させる金属材料と、水と反応して発熱する発熱材料であり前記金属材料以外の材料とを含み、前記発熱材料は、前記金属材料に対して偏在し、前記発熱材料の含有率が異なる複数の領域を有している。前記発熱材料の含有率が最も高い領域における前記発熱材料の含有率は、30~80wt%であることが好ましい。また、本発明の水素発生装置は、前記水素発生材料と、前記水素発生材料を収容した容器とを含み、前記容器は、さらにその内部に内容器を含むことができる。

Description

明 細 書
水素発生材料及び水素発生装置
技術分野
[0001] 本発明は、水と反応して水素を発生させる水素発生材料、及びその水素発生材料 を用いた水素発生装置に関する。
背景技術
[0002] 近年、パソコン、携帯電話等のコードレス機器の普及に伴い、その電源である電池 は、ますます小型化、高容量ィ匕が要望されている。現在、リチウムイオン二次電池は 、エネルギー密度が高ぐ小型軽量ィ匕が図れる電池として実用化されており、ポータ ブル電源としての需要が増大している。しかし、このリチウムイオン二次電池は、一部 のコードレス機器に対して、十分な連続使用時間を保証することができないという問 題がある。
[0003] 上記問題の解決に向けて、例えば固体高分子型燃料電池 (PEFC)等の燃料電池 の開発が進められている。燃料電池は、燃料及び酸素の供給を行えば、連続的に使 用することが可能である。電解質に固体高分子電解質、正極活物質に空気中の酸 素、負極活物質に燃料を用いる PEFCは、リチウムイオン二次電池よりもエネルギー 密度がより高 、電池として注目されて 、る。
[0004] PEFCに用いる燃料に関しては、いくつかの候補が挙げられているが、それぞれの 燃料に技術的課題がある。燃料としてメタノールを用い、直接電極でメタノールを反 応させる直接メタノール型燃料電池 (DMFC)は、容易に小型化できる電池であり、 将来のポータブル電源として期待されている。し力し、 DMFCには、負極のメタノー ルが固体電解質を透過して正極に達するクロスオーバーによって電圧が低下し、高 いエネルギー密度が得られなくなるという問題がある。一方、燃料として水素を用いた 燃料電池としては、例えば、水素を蓄えた高圧タンク又は水素収蔵合金タンクを用い た電池が一部で実用化されている。しかし、このようなタンクを用いた電池はその体積 及び重量が大きくなり、エネルギー密度が低下するため、ポータブル電源に適さない 。また、燃料として炭化水素系燃料を用いた電池には、この燃料を改質して水素を取 り出す改質装置を用いた電池がある。しかし、この種の電池は改質装置へ熱を供給 したり、改質装置を断熱したりする等の必要があるため、ポータブル電源に適さない。
[0005] このような状況にぉ 、て、水と、例えばアルミニウム、マグネシウム、ケィ素、亜鉛等 の水素発生物質とを、 100°C以下の低温で化学反応させて水素を発生させ、発生し た水素を燃料として用いる燃料電池が提案されている (例えば、特許文献 1〜3参照 。;)。また、鉄の粉末を含む大容器の内部に、鉄の粉末を含む小容器を配置して、大 容器に空気を加えて熱を発生させ、小容器に水を加えて水素を発生させる装置が知 られている (例えば、特許文献 4参照。 )0
[0006] 特許文献 1:米国特許第 6506360号明細書
特許文献 2:特許第 2566248号公報
特許文献 3:特開 2004— 231466号公報
特許文献 4:特開 2005— 317443号公報
[0007] しかし、特許文献 1〜3に記載されている方法では、上記水素発生物質の量に見合 う当量の酸ィ匕カルシウム、水酸ィ匕ナトリウム等の塩基性物質を添加しなければならな い。水素発生物質以外の物質の比率が高くなると、エネルギー密度が減少するため 、結果的に水素発生量が少なくなる。特に、特許文献 3に開示されている方法は、酸 化カルシウムと水との反応熱を、水素発生物質の反応に利用した方法であるが、酸 化カルシウムの含有率が 15wt%以上の場合は水素発生反応が良好に進行するも のの、酸ィ匕カルシウムの含有率を 15wt%未満にすると、水素が発生しなくなることが 明らかにされている。
[0008] 一方、特許文献 4に記載されて ヽる方法では、特許文献 3に記載のような塩基性物 質を添加せずに水素を発生できるものの、反応熱が大きいため、系が 200°C〜400 °Cの高温になり、また、装置の軽量ィ匕が困難なため、ポータブル電源に適さないとい う課題がある。
[0009] 本発明者らが、酸化カルシウムのような発熱材料を水素発生物質と均一に混合して 得られる水素発生材料を用いて、水素を発生させることを検討した結果、水素発生 物質と発熱材料との重量比によって、水素が発生するまでの時間及び水素を発生さ せる速度が最大となるまでの時間に大きな差が生じることがわ力つた。具体的には、 水素発生物質と発熱材料との総量に対し、発熱材料の含有率を 30wt%以上とする 場合は、当該含有率を 30wt%未満とする場合に比べ、水素が発生するまでの時間 及び水素を発生させる速度が最大となるまでの時間を大幅に短縮できることがわ力つ た。これは、発熱材料と水との反応による発熱量が増加し、水素発生物質と水との反 応が促進されるためと考えられる。
[0010] しかし、水素発生材料中で発熱材料の含有率を大きくすれば、水素発生源である 水素発生物質の割合が減少し、エネルギー密度が減少するため、水素発生量が少 なくなる。一方、発熱材料の含有率を低減すると、水素発生に時間がかかるなどの問 題を生じる他、反応の進行に伴い水素発生物質の表面に堆積する反応生成物によ り、水素発生反応が阻害される場合があり、水素発生物質の割合が高くなつても、必 ずしも反応効率が向上するわけではないなど、解決すべき課題も存在していることが 明らかとなった。
発明の開示
[0011] 本発明の水素発生材料は、水と反応して水素を発生させる金属材料と、水と反応し て発熱する発熱材料であり前記金属材料以外の材料とを含み、前記発熱材料は、前 記金属材料に対して偏在して 、ることを特徴とする。
[0012] また、本発明の水素発生装置は、水素発生材料と、前記水素発生材料を収容した 容器とを含み、前記水素発生材料は、水と反応して水素を発生させる金属材料と、 水と反応して発熱する発熱材料であり前記金属材料以外の材料とを含み、前記発熱 材料は、前記金属材料に対して偏在して ヽることを特徴とする。
[0013] 本発明の水素発生材料は、発熱材料が金属材料に対して偏在して 、る、すなわち 、水素発生材料中で、一部の領域について、発熱材料の含有率を他より高くすること により、その部分の発熱材料が水と反応して生じる反応熱を、金属材料と水との反応 に有効に利用し、水素発生反応を短時間で容易に開始させることができる。このため 、水素発生材料全体で、その中に含まれる発熱材料の量を低減することができる。す なわち、本発明の水素発生材料は、水素発生源となる金属材料の含有率を大きくす ることができるので、水素を効率よく発生させることができる。
[0014] また、本発明の水素発生装置では、上記水素発生材料を用いて効率よく水素を製 造することができる。
図面の簡単な説明
[0015] [図 1]図 1は、本発明の水素発生装置の一例を示す模式断面図である。
[図 2]図 2は、本発明の水素発生装置と組み合わされる燃料電池の一例を示す模式 断面図である。
[図 3]図 3は、本発明の水素発生装置の他の例を示す模式断面図である。
[図 4]図 4は、本発明の水素発生装置のされに他の例を示す模式断面図である。
[図 5]図 5は、実施例 1の水素発生装置における容器の表面温度の時間変化 (a)及 び水素発生速度の時間変化 (b)を示す図である。
[図 6]図 6は、比較例 1の水素発生装置における容器の表面温度の時間変化 (a)及 び水素発生速度の時間変化 (b)を示す図である。
[図 7]図 7は、実施例 6の水素発生装置における外容器の表面温度の時間変化 (a) 及び水素発生速度の時間変化 (b)を示す図である。
発明を実施するための最良の形態
[0016] 以下、本発明の水素発生材料及びその水素発生材料を用いた水素発生装置につ いて説明する。
[0017] (実施形態 1)
本発明の水素発生材料の一例は、水と反応して水素を発生させる水素発生材料で あって、水と反応して水素を発生させる金属材料と、水と反応して発熱する発熱材料 (ただし、上記金属材料以外の材料)とを含む。また、本発明の水素発生材料は、上 記発熱材料が金属材料に対して偏在して!/ヽる。
[0018] 本発明の水素発生材料は、上記構成にすることによって、水素発生材料に含まれ る発熱材料の量を低減しても、水素を効率よく発生させることができる。
[0019] 上記水素発生材料と水との反応は、水素を発生させる反応であれば、反応機構等 によって特に限定されるものではない。この反応の一例は、まず、発熱材料が多く偏 在する領域で発熱材料と水との発熱反応が起こり、次に、この発熱反応によって発生 する熱により、上記発熱反応が生じている領域又はその近傍にある金属材料と水と の反応が開始される。この、金属材料と水との反応も発熱反応であるため、一度反応 が始まると、発熱材料と水との反応により供給される熱量が少なくなつても、水素発生 反応を持続させることができ、上記発熱材料が多く偏在する領域から他の領域に徐 々に水素発生反応を進行させることができる。そして、最終的に、水素発生材料全体 で反応を生じさせることができる。
[0020] そのため、上記発熱材料が多く偏在する領域以外では、発熱材料の少な!/、又は発 熱材料を含まない構成にすることができ、結果として、水素発生材料全体に含まれる 発熱材料の量を低減することができる。また、水素発生材料に発熱材料が多く偏在 する領域を含むことにより、上記領域に水が供給されてからすぐに、局所的に大きな 発熱を生じて、金属材料と水との反応を誘起することになるため、水素を発生させる までの時間及び水素を発生させる速度が最大となるまでの時間を短縮させることもで きる。
[0021] 本発明の水素発生材料では、発熱材料が部分的に偏在して!/、れば、金属材料と 発熱材料の組み合わせは様々な態様とすることができる。例えば、(1)金属材料と発 熱材料の混合体であり、一部の領域において、発熱材料の含有率が他の領域より高 くなつている水素発生材料、(2)金属材料と発熱材料の混合体を含み、さらに一部の 領域が金属材料のみ又は発熱材料のみで構成された水素発生材料、 (3)金属材料 のみで構成された領域と発熱材料のみで構成された領域とからなる水素発生材料等 を f列示することができる。
[0022] また、水素発生材料の形状も、特に限定されるものではなぐ(i)金属材料及び発 熱材料のそれぞれが、粒子状、顆粒状又はペレット状である水素発生材料、(ii)粒 子状の金属材料と粒子状の発熱材料からなる二次粒子で構成された水素発生材料 、(iii)金属材料及び発熱材料を含むペレット状、顆粒状等の形状に成形された水素 発生材料等を例示することができる。中でも、水素発生材料がペレット状又は顆粒状 であれば、携帯性に優れるのでより好ましい。また、圧縮成形されペレット状に形成さ れた水素発生材料は、充填密度が大きくなり、エネルギー密度が増加するので好ま しい。一方、造粒され顆粒状に形成された水素発生材料は、粒径の調節が容易であ り、例えば、粒径が 5 μ m〜300 μ mの水素発生材料を形成することによって、水素 を発生させるまでの時間を短縮できるので好ましい。 [0023] 本発明の水素発生材料の一端部、中心部及び表面部からなる群から選ばれるい ずれかの領域に存在する発熱材料の含有率は、他の領域に存在する発熱材料の含 有率よりも高 、ことが好ま 、。
[0024] 例えば、ペレット状又は顆粒状に形成された水素発生材料の場合、水素発生材料 の一端部とは、その表面の一部に接する又は近接する部分のことであり、水素発生 材料の表面部とは、その表面の一部に接する部分のことである。また、粒子状の金属 材料及び発熱材料からなる水素発生材料を容器に入れた場合、水素発生材料の一 端部とは、上記容器の内表面の一部に接する又は近傍する領域のことであり、水素 発生材料の表面部とは、上記容器の内表面の一部に接する領域のことである。水素 発生材料の一端部又は表面部において含有率が高ければ、後述する水素の製造 方法を用いる際、その場所に、最初に水を供給し、上記領域の発熱材料と水とを素 早く接触させることによって、短時間で水素発生反応を開始させることができる。
[0025] 一方、水素発生材料の中心部とは、例えば、ペレット状や顆粒状に形成された水素 発生材料の場合、その中心又は中心に近接する部分、粒子状の金属材料及び発熱 材料カゝらなる水素発生材料を容器に入れた場合、その中心又は中心に近接する領 域等である。上記水素発生材料の中心部において含有率が高ければ、後述する水 素の製造方法を用いる際、その場所に水が達するまでに多少の時間を要するため、 上記水素発生材料の一端部又は表面部において含有率が高い材料に比べて、水 素発生反応を開始させるまでに時間がかかる。しかし、水素発生材料の中心部で発 生した熱は、外部に放散されにくぐ材料内部に蓄積されて金属材料の温度をより効 率的に高めることができるので、金属材料と水との反応を、より安定的に維持すること ができる。
[0026] なお、ペレット状の水素発生材料は、発熱材料の含有率の高!、部分が形成される よう、金型の中に水素発生材料を投入する工程を複数に分けて作製すればよい。ま た、顆粒状の水素発生材料は、材料の投入工程を分けて造粒することにより、顆粒 の表面部と中心部の発熱材料の割合を変えることができる。
[0027] 本発明の水素発生材料における金属材料の含有率は、 85wt%以上 99wt%以下 が好ましぐより好ましくは 90wt%以上 97wt%以下である。上記範囲とすることによ り、多くの水素を発生させることができる力もである。この含有率は、水素発生材料全 体における金属材料と発熱材料との合計重量を 100とした場合の金属材料の重量 の割合である。
[0028] 本発明における金属材料としては、少なくとも加温時に水と反応して水素を発生さ せることが可能な物質であれば特に限定されるものではないが、アルミニウム、ケィ素 、亜鉛及びマグネシウム力 なる群力 選ばれる少なくとも 1種の金属又はその合金 が好ましく用いられる。上記合金は、その組成について特に限定されるものではない 力 上記群から選ばれる元素を主体とする合金が好ましぐ上記元素の含有率は、 8 Owt%以上が好ましぐより好ましくは 85wt%以上である。上記含有率が少ないと、 水との反応にぉ 、て水素発生量が低下するためである。
[0029] 上記金属材料は、少なくとも常温以上に加温された状態において、水と反応して水 素を発生させることができる。しかし、表面に安定な酸ィ匕皮膜が形成されるため、低 温下、あるいは、板状、ブロック状等のバルタの形状では、水素を発生しない又は水 素を発生し難い物質である。一方、上記酸化皮膜の存在により、空気中での取り扱 いは容易である。
[0030] 例えば、上記金属材料の 1つであるアルミニウムと水との反応は、下記式(1)〜(3) の!、ずれかによつて進行して 、ると考えられる。
[0031] 2A1+6H 0→A1 0 · 3Η 0 + 3Η (1)
2 2 3 2 2
2A1+4H 0→Α1 Ο ·Η 0 + 3Η (2)
2 2 3 2 2
2A1+ 3H 0→Α1 Ο + 3Η (3)
2 2 3 2
[0032] 本発明に用いる金属材料は、その粒径によって特に限定されるものではないが、粒 径が小さければ小さいほど反応速度は向上するので、その粒径を 100 m以下、好 ましくは 50 μ m以下とすればよい。また、この粒度分布において、粒径が 0. 1 m以 上 60 μ m以下の金属材料の粒子を、全金属材料の 80体積%以上含むのが好ましく 、 90体積%以上がより好ましぐ金属材料粒子の全てを上記粒径とするのが最もよい 。また、上記金属材料粒子の平均粒径は、 0. 1 m以上 30 μ m以下であるのが好ま しぐより好ましくは 0. 1 μ m以上 20 μ m以下である。これらの粒径を有する金属材 料は、篩により分級することで容易に得ることができる。 [0033] 上記金属材料は、バルタ状では水との反応が進行しにくいが、粒径を小さく(例え ば 100 m以下)すると、酸化皮膜による反応抑制作用が減少し、さらに加熱すれば 、水との反応性が高まり、水素発生反応が持続するようになる。一方、上記金属材料 の平均粒径を 0.: L m未満とすると、空気中で発火性が高くなるため取り扱いが困 難になる。また、水素発生材料の嵩密度が小さくなるため、充填密度が低下してエネ ルギー密度が低下しやすくなる。このため、金属材料の平均粒径は、 0. 1 m以上と することが望ましい。すなわち、上記金属材料は、上記粒度分布や上記平均粒径を 有していれば、上述した酸ィ匕皮膜の影響を受けにくぐ効率よく水素を発生させること ができる。
[0034] 本明細書でいう平均粒径は、体積基準の積算分率 50%における直径の値を意味 している。また、本明細書でいう粒度分布や平均粒径は、レーザ回折'散乱法を用い て測定した値である。具体的には、水等の液相に分散させた測定対象物質にレーザ 光を照射することによって検出される散乱強度分布を利用した粒子径分布の測定方 法である。レーザ回折 ·散乱法による粒子径分布測定装置としては、例えば、日機装 社製の"マイクロトラック HRA"等を用いることができる。
[0035] さらに、上記金属材料は、その粒子形状が鱗片状であることが好ましぐ例えば、長 径が数十 μ mで厚さが 0. 1 μ m以上 5 μ m以下であるものがより好ましい。厚みを小 さくすることにより、酸ィ匕皮膜の形成による影響力 、さくなり、粒子の中心まで水と反 応しゃすくなるためと考えられる。
[0036] また、金属材料が水と反応しやすくするためには、金属材料のみ力 なる lmm以 上の大きさの凝集体が形成されな 、ことが好ま ヽ。上記凝集体の形成を防ぐため には、例えば、水素発生材料を作製する際に、金属材料と発熱材料とを撹拌混合し たり、金属材料を発熱材料でコーティングしたりすればょ 、。
[0037] 上記発熱材料は、常温にお!、て水と発熱反応を生じる物質であればよ!、。例えば 、水と反応して水酸化物や水和物となる物質、水と反応して水素を生成する物質等 を用いることができる。なお、本明細書において常温とは、 20〜30°Cの範囲の温度 である。上記水と反応して水酸ィ匕物や水和物となる物質としては、例えばアルカリ金 属の酸化物(例えば、酸化リチウム等。)、アルカリ土類金属の酸ィ匕物(例えば、酸ィ匕 カルシウム、酸ィ匕マグネシウム等。)、アルカリ土類金属の塩ィ匕物(例えば、塩化カル シゥム、塩ィ匕マグネシウム等。)、アルカリ土類金属の硫酸ィ匕合物(例えば、硫酸カル シゥム等。)等を用いることができる。上記水と反応して水素を生成する物質としては 、例えば、アルカリ金属(例えば、リチウム、ナトリウム等。)、アルカリ金属水素化物( 例えば、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化リチウム等。)等を用 いることができる。これらの物質は、単独又は組み合わせて用いることができる。また 、上記発熱材料が塩基性物質であれば、水に溶解して、高濃度のアルカリ水溶液と なるので、水素発生物質の表面に形成された酸化皮膜を溶解させ、水との反応性を 大きくすることができるので好ましい。この酸ィ匕皮膜を溶解する反応は、金属材料と水 との反応の起点となることもある。特に、発熱材料がアルカリ土類金属の酸ィ匕物であ れば、塩基性物質でありかつ取り扱!/、が容易であるのでより好まし 、。
[0038] なお、水以外の物質と常温で発熱反応を生じる物質、例えば、鉄粉のように酸素と 反応して発熱する物質も知られている。しかし、水素発生材料が、上記酸素と反応す る物質と、上記水素発生源となる金属材料とを含む場合、反応のために必要とされる 酸素は、同時に、金属材料から発生する水素の純度を低下させたり、金属材料を酸 化させて水素発生量を低下させたりする等の問題を生じることがある。このため、本発 明においては、発熱材料としては、前述の、水と反応して発熱するアルカリ土類金属 の酸ィ匕物等を用いるのが好ましい。また、同様の理由から、発熱材料は、反応時に 水素以外の気体を生成しな 、ものが好まし 、。
[0039] 上記発熱材料は、粒径によって特に限定されるものではな 、が、粒径が 0. l ^ m 以上 200 m以下、好ましく ίま 0. 以上 60 /z m以下、より好ましく ίま 0. 1 m以 上 20 /z m以下の範囲のものを用いるのがよい。発熱材料の粒径は、小さければ小さ いほど反応速度は向上する。一方、発熱材料の粒径を 0. 1 m未満にすると、取り 扱いが困難になったり、上記水素発生材料の充填密度が低下してエネルギー密度 が低下しやすくなる。このため、上記発熱材料の粒径は上記範囲内とすることが好ま しい。
[0040] 水素発生材料には、親水性酸化物、炭素及び吸水性高分子からなる群から選ば れる少なくとも 1種 (以下、添加剤という。)をさらに含めることもできる。上記添加剤が 金属材料と共存することにより、金属材料と水との反応が促進され、効率よく水素を 発生させることができる。これは、水素発生材料と水との接触を良好にしたり、水素発 生材料と水との反応により生成した反応生成物が、未反応の金属材料の表面に堆積 するのを防止するためであると考えられる。また、水素発生材料がペレット状に形成さ れた場合は、添加剤によって水素発生材料の内部まで水が浸透しやすくなることも 期待される。上記親水性酸ィ匕物としては、アルミナ、ベーマイト、シリカ、マグネシア、 ジルコユア、ゼォライト及び酸ィ匕亜鉛等を例示することができ、これらの酸ィ匕物力もな る群力も選ばれる少なくとも 1種を含有させるのがよい。また、上記炭素としては、ァセ チレンブラック、ケッチェンブラック等のカーボンブラック類、黒鉛、易黒鉛化性炭素、 難黒鉛化性炭素、活性炭等を用いることができる。上記吸水性高分子としては、カル ボキシメチルセルロース等のセルロース類、ポリビュルピロリドン、ポリビュルアルコー ル、ポリアクリル酸等を用いることができる。これらの添加剤は 1種のみを用いても、 2 種以上を併用してもよい。
[0041] 本発明の水素発生材料では、上記金属材料としてアルミニウム粉末及びアルミ-ゥ ム合金粉末力 選ばれる少なくとも 1種であるのがより好ましぐ上記親水性酸ィ匕物と してアルミナ又はべ一マイトをさらに含めばより一層好ましい。
[0042] (実施形態 2)
本発明の水素発生材料の他の例は、水と反応して水素を発生させる水素発生材料 であって、水と反応して水素を発生させる金属材料と、水と反応して発熱する発熱材 料 (ただし、上記金属材料以外の材料)とを含む水素発生材料 Aと、水素発生材料 A よりも発熱材料の含有率を低減した水素発生材料 Bとを、それぞれ独立して含む。
[0043] 上記水素発生材料と水との反応は、水素を発生させる反応であれば、反応機構等 によって特に限定されるものではない。この反応の一例は、まず、水素発生材料 Aに おいて、発熱材料と水との発熱反応が起こり、このときに生じる反応熱により、水素発 生材料 Aに含まれる金属材料と水との反応が開始される。次に、水素発生材料 Aで 生じた反応熱が、水素発生材料 Aに隣接する水素発生材料 Bに伝わり、これを起点 として、水素発生材料 Bでの水素発生反応が開始される。
[0044] 上記水素発生材料 Bは、発熱材料を含まな ヽか、あるいは、発熱材料の含有量を 水素発生材料 Aよりも大幅に低減することができるため、水素発生材料全体として、 発熱材料を均一に含有する場合に比べ、発熱材料の量を低減することが可能となる 。これにより、金属材料の割合を増カロさせて水素発生量を大きくすることができる。あ るいは、発熱材料の量を低減しない場合であっても、水素を発生させるまでの時間及 び水素を発生させる速度が最大となるまでの時間を短縮させることができ、いずれの 場合も、水素発生効率の向上を図ることができる。
[0045] 上記水素発生材料は、実施形態 1で用いた金属材料及び発熱材料と同じ材質、同 じサイズのものを用いることができる。また、実施形態 1で用いた添加剤を用いることも できる。
[0046] 本実施形態の水素発生材料 Aは、水素発生材料全体の中で、その表面部又は隅 部に配置されているのが望ましぐそのような配置であれば、最初に水素発生材料 A に水を供給して、その中に含まれる発熱材料と水とを素早く接触させることによって、 短時間で水素発生反応を開始させることができる。また、水素発生材料 Aが、水素発 生材料 Bに全周を囲まれて配置され、より好ましくは水素発生材料全体の中心に配 置されていれば、金属材料と水との反応をより安定的に維持することができるので好 ましい。水素発生材料に水を供給する際、水素発生材料 Aに水が達するまでに多少 の時間を要するが、水素発生材料 Aで発生した熱は、外部に放散されにくぐ水素発 生材料の内部に蓄積されて金属材料の温度をより効率的に高めることができるから である。
[0047] 本発明の水素発生材料が、発熱材料の含有率が異なる複数の領域を有する場合 、発熱材料の含有率が最も高い領域における発熱材料の含有率は、 30wt%以上 8 Owt%以下とすることが好ましぐ 35wt%以上 65wt%以下とすることがより好ましい 。例えば、本実施形態においては、水素発生材料 Aにおける発熱材料の含有率が、 上記範囲であることが好ましい。これにより発熱材料の反応による水素を発生させる までの時間をより短縮させることができるからである。
[0048] また、上記発熱材料の含有率が最も高!、領域が、水素発生材料全体に占める割 合、すなわち、上記発熱材料の含有率が最も高い領域に含まれる水素発生材料の、 水素発生材料全体に対する割合は、 3wt%以上 40wt%以下とすることが好ま 、。 例えば、本実施形態においては、水素発生材料全体に対する水素発生材料 Aの含 有率が、上記範囲内であることが好ましい。これにより効率よく水素を発生させること ができるからである。
[0049] 水素発生材料 Bは、金属材料のみで構成することもできる力 金属材料と水との反 応を促進させるため、発熱材料を含むことが好ましい。但し、水素発生材料 Bにおけ る発熱材料の含有率が高すぎれば、水素発生材料全体における発熱材料の量を低 減するという効果を奏しない場合がある。そこで、水素発生材料 Bにおける発熱材料 の含有率は、水素発生材料 Aの発熱材料の含有率より低くし、具体的には lWt%以 上 15wt%以下であることがより好ましい。
[0050] 水素発生材料 A及び水素発生材料 B力 選ばれる少なくとも 1つの材料の形状は、 顆粒状であることが好ましい。顆粒状の水素発生材料は、造粒して顆粒状に形成す ればよいので、粒径の調節が容易であり、例えば、粒径が 5 μ m〜300 μ mの水素 発生材料を形成することによって、水素を発生させるまでの時間を短縮できる。
[0051] (実施形態 3)
本発明では、上記水素発生材料と水とを反応させることによって水素を発生させる 力 その水素の製造方法の一例を以下に示す。上記水素発生材料を準備する工程 は、特に限定されないが、例えば、ペレット状に形成され、発熱材料が一端部に偏在 している水素発生材料を反応容器内に配置すればよい。あるいは、金属材料の粉末 と発熱材料の粉末とを、別々に反応容器内に投入し、必要に応じて混合し、反応容 器内の水素発生材料の一部に発熱材料の含有率が高くなる部分が設けられるよう、 投入量や投入のタイミングを調整すればよい。あるいは、あらかじめ金属材料と発熱 材料とを混合して作製した、発熱材料の含有率の異なる複数種の水素発生材料を、 それぞれ別に反応容器内に投入する方法を用いてもょ ヽ。
[0052] このようにして準備された水素発生材料に水を供給する工程は、水素発生材料が 水と反応できるものであれば、特に限定されない。すなわち、反応容器内の水を供給 する場所や供給速度等を適宜選択することができる。この工程によって、供給された 水が水素発生材料中の発熱材料と反応し、その反応により放出される熱により、金属 材料と水との反応が開始される。また、発熱材料の反応による反応熱や、金属材料と 水との反応による反応熱を起点として、新たな金属材料と水との反応が開始され、水 素発生反応が継続することになる。
[0053] ただし、供給する水を発熱材料及び金属材料と効率よく反応させるためには、水素 発生材料における上記発熱材料の含有率が高くなつている部分に、先に水を供給 することが好ましい。これにより、最初に水素発生反応を開始させるのに必要な熱量 を生じさせることができれば、それ以降の反応を効率的に進行させることができるから である。例えば、前述の実施形態 2の場合には、反応容器内に配置された水素発生 材料 Aの部分に、先に水を供給すればよい。
[0054] (実施形態 4)
本発明の水素発生装置の一例を図面に基づき具体的に説明する。図 1は、水素発 生材料として、水と反応して水素を発生させる金属材料と、水と反応して発熱する発 熱材料であり上記金属材料以外の材料とを収容した容器を備えた水素発生装置の 模式断面図であり、上記発熱材料が上記金属材料に対して偏在するように、上記容 器の内部に上記発熱材料と上記金属材料とを配置させたものである。図 1で示される 水素発生装置は、カートリッジの形態を有している。図 1において、カートリッジ 1は、 水を供給するための供給口 7と水素を排出させるための排出口 8とを含む容器 6を備 え、容器 6の内部に、水素発生材料 2aと水素発生材料 2bとからなる水素発生材料 2 が配置されている。水素発生材料 2aは、前述した実施形態 2の水素発生材料 Aに相 当し、水素発生材料 2bは、前述した実施形態 2の水素発生材料 Bに相当する。
[0055] カートリッジ 1は、上述のような構成にすることによって、水素発生材料 2に含まれる 発熱材料の量が少なくても、水素を効率よく発生させることができる装置である。カー トリッジ 1は、特に、実施形態 3に記載した水素の製造方法の実施に適したものである
[0056] 水素発生材料 2a及び水素発生材料 2bは、実施形態 2で用いた金属材料及び発 熱材料と同じもの用いることができる。また、水素発生材料 2aと水素発生材料 2bとの 間に仕切り材 5を配置してもよい。これにより、水素発生材料 2aと水素発生材料 2bと の混合を防止できる。仕切り材 5を構成する材料は、水素発生材料 2a及び水素発生 材料 2bと、水との反応を阻害せず、また、水素発生材料 2aで発生した熱が水素発生 材料 2bに伝わるのを阻害しない材料であればよぐ例えば、アルミニウム箔、ステンレ ススチール箔、銅箔等を用いることができる。
[0057] 容器 6の大きさ、形状等は特に限定されないが、水素発生材料と水とを反応させる 反応容器として用いられるので、供給される水及び発生する水素が外部に漏れない よう、水の供給口 7と水素の排出口 8を除き、密閉できる構造であることが望ましい。ま た、容器 6に用いる材質は、水及び水素が漏れにくぐ耐熱性を有する材質 (例えば 、 120°C程度に加熱しても破損しない材質。)が好ましい。例えば、アルミニウム、チタ ン、ニッケル等の金属、ポリエチレン、ポリプロピレン、ポリカーボネート等の榭脂、ァ ルミナ、シリカ、チタ-ァ等のセラミックス、及び耐熱ガラス等の材料を用いることがで きる。
[0058] 供給口 7の構造は、水を外部力 供給できれば特に限定されず、例えば、容器 6に 形成された開口であってもよぐまた、容器 6に接続されたパイプを供給口とするもの であってもよい。供給口 7は、水の供給量を制御できるポンプと接続されていれば、 水の供給量を調節することによって、発生する水素の量を制御することができるので より好まし 、。
[0059] 排出口 8は、水素を外部に排出できる構造であれば特に限定されず、例えば、容 器 6に形成された開口であってもよぐまた、容器 6に接続されたパイプを排出口とす るものであってもよい。容器の内容物が外に漏れ出すのを防ぐため、排出口 8にフィ ルターを配置することもできる。このフィルタ一は、気体を通し、かつ液体及び固体を 通しにくい構造であれば特に限定されず、例えば、多孔性のポリテトラフルォロェチ レン (PTFE)製の気液分離膜や、ポリプロピレン製の多孔質フィルム等を用いること ができる。
[0060] また、図 1に示すように、供給口 7及び排出口 8の内側の先端部に吸水材 9を配置 してもよい。供給された水の一部は吸水材 9により保持され、残部は水素発生材料を 濡らし、水素発生反応を開始させる。発生した水素は、排出口 8を通じて燃料電池の 負極に供給することができる。吸水材 9は、必ずしも必要ではないが、水素発生反応 による水の消費に応じて、吸水材 9に保持された水が水素発生材料に供給され、水 素発生速度の時間変動をある程度抑制することが可能となるので、配置するのが望 ましい。吸水材 9は、水を吸って保持することのできる材料であれば特に限定されるも のではなぐ一般には、脱脂綿ゃ不織布等を用いることができる。
[0061] (実施形態 5)
本発明の水素発生装置と組み合わされる燃料電池の一例を図面に基づき説明す る。図 2は、燃料電池の一例を示す模式断面図である。燃料電池 10は、酸素を還元 する正極 12と、水素を酸化する負極 11と、正極 12と負極 11との間に配置された固 体電解質 13とを含む膜電極接合体と、負極 11に水素を供給する水素発生装置(図 示せず。)とを備えた燃料電池である。上記水素発生装置としては、例えば実施形態 4の水素発生装置を用いることができる。
[0062] 燃料電池 10に使用する各部材は、一般的に燃料電池に用いることができるもので あれば、特に限定されない。
[0063] 正極 12には、例えば、触媒を担持した導電性材料を用いることができる。上記触媒 としては、例えば、白金微粒子や、鉄、ニッケル、コバルト、錫、ルテニウム及び金から 選ばれた少なくとも一種類の金属と白金との合金微粒子等を用いることができる。上 記導電性材料としては、主として炭素材料が用いられ、例えば、カーボンブラック、活 性炭、カーボンナノチューブ、カーボンナノホーン等を用いることができる。一般的に は、導電性材料の表面に上記触媒を分散させて担持させた触媒担持カーボンを用 いる。また、正極 12は、正極端子 18を備える。
[0064] 負極 11には、例えば、触媒を担持した導電性材料を用いることができる。上記触媒 としては、例えば、白金微粒子や、ルテニウム、インジウム、イリジウム、スズ、鉄、チタ ン、金、銀、クロム、ケィ素、亜鉛、マンガン、モリブデン、タングステン、レニウム、アル ミニゥム、鉛、パラジウム及びオスミウム力 選ばれた少なくとも一種類の金属と白金と の合金微粒子等を用いることができる。上記導電性材料としては、上述した正極の導 電性材料と同じ材料を用いることができる。また、負極 11は、負極端子 17を備える。
[0065] 固体電解質 13は、正極 12と負極 11との間に配置され、プロトンを輸送することがで きる、電子伝導性のない材料で形成される。例えば、ポリパーフルォロスルホン酸榭 脂膜、スルホンィ匕ポリエーテルスルホン酸榭脂膜、スルホン化ポリイミド榭脂膜、硫酸 ドープポリベンズイミダゾール膜、固体電解質であるリン酸ドープ SiO、高分子とリン 酸ドープ SiOのハイブリッド、高分子と酸化物に酸性溶液を含浸したゲル電解質等
2
を用いることができる。
[0066] 上記膜電極接合体は、正極 12及び負極 11の外面に、拡散層 14が配置されている 。拡散層 14としては、例えば、多孔性の炭素材料を用いることができる。
[0067] 上記膜電極接合体の正極 12側の面に、空気 (酸素)を供給するための正極セパレ 一ター 16が配置されている。また、上記膜電極接合体の負極 11側の面に、水素を 供給するための負極セパレーター 15が配置されている。また、負極セパレーター 15 は、前述の水素を供給する水素発生装置と連通している。
[0068] 燃料電池 10は、本発明の水素発生装置と組み合わされることによって、水素源とな る金属材料力も効率よく水素が供給されるため、この水素を燃料として、効率的に発 電することができる。また、本発明の水素発生装置では、水素発生反応に水が関与 するため、水素ガス中に適度な水分を含んでおり、水素を燃料とする燃料電池に好 ましく用いることができる。
[0069] (実施形態 6)
図 3は、本発明の水素発生装置の他の例を示す模式断面図であり、図 3で示される 水素発生装置は、前述の実施形態 4とは異なるカートリッジの形態を有して 、る。
[0070] 本実施形態のカートリッジ 20は、外容器 21と、外容器 21内に収容された内容器 22 及び水素発生材料 23と、内容器 22内に収容された水素発生材料 24とを備える。ま た、内容器 22は、水素発生材料 23に全周を囲まれて配置されている。
[0071] 水素発生材料 23は、前述した実施形態 2の水素発生材料 Bに相当し、水素発生材 料 24は、前述した実施形態 2の水素発生材料 Aに相当する。外容器 21は、内部に 水を供給するための第 1供給口 25と、水素を排出するための第 1排出口 27とを含む 。内容器 22は、内部に水を供給するための第 2供給口 26と、生成した水素を排出す るための第 2排出口 28とを含む。また、第 1供給口 25及び第 1排出口 27の内側の先 端部には吸水材 29が配置され、第 2供給口 26及び第 2排出口 28の内側の先端部 には吸水材 30が配置されて!、る。
[0072] ここで、水素発生材料 24を、発熱材料のみの構成、すなわち、金属材料を含まな い構成に置き換えることもでき、その場合は、水素が発生しないため、第 2排出口 28 を省略することができる。また、水素発生材料 23を金属材料のみの構成とすることも 可能である。
[0073] 本実施形態のカートリッジ 20は、上述のような構成にすることによって、発熱材料の 量を低減しても、水素を効率よく発生させることができる。その理由を以下に説明する
[0074] 本実施形態のカートリッジ 20における水素を発生させる反応の一例は、まず、内容 器 22の内部において、外部から供給された水と、水素発生材料 24に含まれる発熱 材料との発熱反応が起こり、次に、内容器 22の内部で発生した熱が、外容器 21の内 部にある水素発生材料 23に伝わり、これを起点として、外容器 21の内部に供給され た水と水素発生材料 23との反応が開始され、水素を発生させることができる。
[0075] ここで、内容器 22の内部で発生する熱量が十分に大きければ、水素発生材料 23 は発熱材料を含まなくても、水素を発生させることができるので、カートリッジ 20全体 に用いられる発熱材料の量を低減することができる。また、発熱材料の量を低減しな い場合でも、上記のように、水素発生材料 24における発熱材料の含有率を、水素発 生材料 23における発熱材料の含有率より高くすることにより、水素を発生させるまで の時間及び水素を発生させる速度が最大となるまでの時間を短縮させることができる
[0076] 本実施形態のカートリッジ 20は、内容器 22が、水素発生材料 23に全周を囲まれて 配置されているので、内容器 22の内部で発生した熱力 水素発生材料 23に伝わり やすぐ金属材料の温度をより効率的に高めることができる。内容器 22は、外容器 21 の内部のほぼ中央に配置され、その周囲に水素発生材料 23が配置されていること が好ましぐ第 2供給口 26及び第 2排出口 28を除く内容器 22の外面が、全て水素発 生材料 23に接していることがより好ましい。内容器 22の内部で発生した熱を、内容 器 22から水素発生材料 23に、より効率よく伝えることができるからである。
[0077] また、本実施形態のカートリッジ 20は、水素発生材料 23と水素発生材料 24とを合 計した総重量に対して、水素発生材料 24の重量の割合力 3wt%以上 40wt%以 下であるのが好ましぐ 5wt%以上 15wt%以下であればより好ましい。水素発生材 料 24の割合をこの範囲に調整することにより、水素の発生効率と水素発生量とのバ ランスが良好となる。
[0078] 外容器 21は、大きさ、形状等によって、特に限定されないが、例えば、蓋部と容器 本体部とから構成される。外容器 21は、水素発生材料 23と水とによる水素発生反応 を行う反応容器となるので、この容器に供給された水が外部に漏れず、発生させる水 素が第 1排出口 27以外力も排出されない、密閉性の高い構造であることが好ましい。 また、外容器 21の材料は、水及び水素が外部に漏れにくぐ耐熱性を有する材質( 例えば、 120°C程度に加熱しても破損しない材質等。)が好ましい。例えば、アルミ- ゥム、チタン、ニッケル等の金属、ポリエチレン、ポリプロピレン、ポリカーボネート等の 榭脂、アルミナ、シリカ、チタ-ァ等のセラミックス、及び耐熱ガラス等の材料を用いる ことができる。特に、外容器 21の材料力 ポリエチレン、ポリプロピレン、ポリカーボネ ートからなる群力 選ばれる少なくとも 1つの材料であれば、高い断熱性と十分な耐 熱性とを有するので、より好ましい。
[0079] 内容器 22は、大きさ、形状等によって特に限定されないが、例えば、蓋部と容器本 体部とから構成される。内容器 22は、水素発生材料 24と水との反応を行う反応容器 として用いられるので、この容器内部に供給された水が外部に漏れず、かつ、上記反 応によって生成した水素が第 2排出口 28以外力 排出されな 、、密閉性の高 、構造 であることが好ましい。また、内容器 22の材料は、耐熱性を有する材質 (例えば、 12 0°C程度に加熱しても破損しない材質等。)が好ましぐ熱伝導性の高い材料であるこ とがより好ましい。例えば、ポリエチレン、ポリプロピレン、ポリカーボネート等の榭脂、 アルミナ、シリカ、チタ-ァ等のセラミックス、耐熱ガラス及び金属等の材料を用いるこ とができる。特に、アルミニウム、チタン、ニッケル、鉄力もなる群力も選ばれる少なくと も 1つの金属がより好ましい。
[0080] 本実施形態において、第 1供給口 25、第 1排出口 27、第 2供給口 26及び第 2排出 口 28は、それぞれ独立している力 この形態に特に限定されるものではない。例えば 、第 1供給口 25と第 2供給口 26とは、その一部分が接続した構成であれば、外容器 21と内容器 22とに、別々に水を供給しなくてよいので好ましい。また、水素発生材料 24の反応により水素が発生する場合には、第 1排出口 27と第 2排出口 28の一部分 を接続した構成とすれば、水素をまとめて回収することができるので好まし 、。 [0081] また、第 1供給口 25を省略し、第 2排出口 28を通じて内容器 22の内部と外容器 21 の内部とを連通させるようにすることにより、内容器 22に供給される水が、さらに外容 器 21の水素発生材料 23にも到達するようにすることもできる。この場合、外容器 21 には、第 2供給口 26と第 1排出口 27のみ設ければよぐ構造を簡略ィ匕することができ る。この構成において、第 2供給口 26から供給される水は、先ず内容器 22の内の水 素発生材料 24と反応して発熱を生じるので、水素発生材料 23に水素発生反応を生 じさせる契機とすることができる。また、内容器 22の中で発生する水素も、内容器 22 に供給される水と共に第 2排出口 28を通じて外容器 21の方に移動させることができ 、内容器 22の中で発生する水素と、水素発生材料 23の反応により生じる水素とを併 せて、第 1排出口 27から取り出すことができる。
[0082] しかし、第 2排出口 28から排出される水素に不純物、例えば塩基性ミスト等が多く 混入する場合には、第 1排出口 27と第 2排出口 28とは独立した構成とし、内容器 22 の中で発生する水素が、水素発生材料 23の反応により生じる水素に混入しないよう にするのが望ましい。これは、上記塩基性ミスト等を含む水素を、例えば燃料電池の 燃料として用いた場合、固体電解質膜の劣化の原因になり得るためである。ここで、 上記塩基性ミストとは、プロトンを受容する塩基を含むミストであり、例えば発熱材料 が塩基性物質であるときに生成される。
[0083] 本実施形態の図 3に示されるカートリッジを用いれば、発熱材料の含有率の少ない 水素発生材料 23が水と反応して生じる水素、すなわち、塩基性ミスト等の混入が少 ない水素を燃料電池の燃料として用いることができるので、上記固体電解質膜の劣 化の問題を防ぐことができる。また、外容器 21と内容器 22のそれぞれの供給口 25及 び 26を別々に設ける場合には、内容器 22には水以外の反応物質、例えば酸素を供 給することもできるため、内容器 22に収容する発熱材料として、鉄粉等のように酸素 と反応して発熱する金属粉を用いることも可能である。
[0084] (実施形態 7)
図 4は、本発明の水素発生装置のさらに他の例を示す模式断面図であり、図 4で示 される水素発生装置は、実施形態 6とは異なるカートリッジの態様を示す。
[0085] 本実施形態のカートリッジ 40は、外容器 21と、外容器 21内に収容された内容器 22 及び水素発生材料 23と、内容器 22内に収容された水素発生材料 24と、断熱材 41 とを備える。内容器 22は、内容器 22の一側面の外側が外容器 21の一側面の内側 に接して配置され、断熱材 41は、外容器 21の外周面に配置されている。
[0086] 断熱材 41は、材料、形状等によって、特に限定されるものではないが、例えば、発 泡スチロール、ポリウレタンフォーム等の多孔性断熱材、あるいは真空断熱構造を有 する断熱材等の材料力もなるシート等を適宜用いればよい。他の構成については、 実施形態 6のカートリッジ 20と同様であり、図 4では図 3と同様の部分には同一の符 号を付してその説明は省略する。
[0087] 本実施形態のカートリッジ 40は、内容器 22が、外容器 21と接して配置されている ので、内容器 22内部から発生した熱が、外容器 21全体へ素早く伝わり、水素発生材 料 23全体の温度をより効率的に高めることができる。内容器 22と外容器 21との接す る面積が大きい程、より効率よく熱を伝えることができるので、より好ましい。このとき、 外容器 21及び内容器 22は、金属等の熱伝導性の高い材料力もなることが好ましぐ 二つの容器の材料は、同じ材料であっても、異なる材料であってもよい。また、外容 器 21の外周面に、断熱材 41が配置されているので、外容器 21に伝わった熱が外部 に放散されにくぐ容器内に熱を蓄積させることができる。
[0088] 以下、実施例を用いて本発明をより具体的に説明する。なお、本発明は以下の実 施例に限定されるものではない。
[0089] (実施例 1)
アルミニウム粉末(平均粒径 3 μ m) 0. 5gと、酸化カルシウム粉末(平均粒径 40 μ m) 0. 5gとを乳鉢で混合して、水素発生材料 A (発熱材料の含有率: 50wt%)を作 製した。また、上記アルミニウム粉末 3. 8gと、上記酸化カルシウム粉末 0. 2gとを乳 鉢で混合して、水素発生材料 B (発熱材料の含有率: 5wt%)を作製した。
[0090] 次に、アルミニウム外装缶(縦 8mm、横 34mm、高さ 50mm)の内部に、吸水材とし て脱脂綿を 0. 05g入れてから、上記水素発生材料 Aを lgと、上記水素発生材料 Bを 4gとを、図 1に示したように傾斜させて充填した。上記水素発生材料 Aと上記水素発 生材料 Bとの間には、仕切り材としてアルミニウム箔を配置した。さらに、上記水素発 生材料 Bの上に、吸水材として脱脂綿を 0. 05g入れた。水素発生材料全体に対し、 水素発生材料 Aの割合は 20wt%であり、アルミニウム粉末の割合は 86wt%であつ た。
[0091] 次に、水を供給するためのアルミニウム製の水供給パイプと、水素を導出させるァ ルミ-ゥム製の水素排出パイプとを備えたアルミニウム板で蓋をし、上記水供給パイ プの先端を上記水素発生材料 Aの近傍に配置することにより、図 1に示される水素発 生装置を得た。
[0092] 次に、上記水供給パイプを、上記水素発生材料 A及び Bに水を供給するためのポ ンプと接続した。上記ポンプ力 水を 0. 17mlZ分の速度で送り出し、上記アルミ- ゥム外装缶の内部に水を供給することによって、まず、水と上記水素発生材料 Aに含 まれる発熱材料 (酸ィ匕カルシウム粉末)とを反応させ、続いて、その反応熱により、上 記水素発生材料 A及び Bに含まれるアルミニウム粉末と水との反応を開始させ、水素 を発生させた。 25°Cにおいて、水素が発生しなくなるまで水を供給し、上記アルミ- ゥム外装缶の表面温度を測定しながら、上記水素排出パイプ力 出る水素を捕集し た。なお、上記水素の捕集には、水上置換法を用いた。
[0093] 上記捕集した水素の体積を測定して水素発生量とした。また、 25°C、 1気圧でのァ ルミ-ゥム lg当りの理論水素発生量( 1360ml)を基準として、使用したアルミニウム 重量の上記理論水素発生量に対する割合を、アルミニウムの反応率として求めた。さ らに、水素発生量の時間変化から水素発生速度を計算し、それが最大になるまでの 時間を求めた。
[0094] 試験中、上記アルミニウム外装缶の温度 (缶表面温度)、すなわち水素発生材料の 反応温度は、最高で 95°Cまで上昇した。一方、水素はほぼ一定の発生速度で連続 的に発生し、水の供給を停止すると、水素の発生は数分後に止まることも確認された
[0095] (実施例 2)
アルミニウム粉末 0. 65gと酸ィ匕カルシウム粉末 0. 35gとを乳鉢で混合して水素発 生材料 A (発熱材料の含有率: 35wt%)を作製し、また、アルミニウム粉末 3. 65gと 酸化カルシウム粉末 0. 35gとを乳鉢で混合して水素発生材料 B (発熱材料の含有率 : 8. 75wt%)を作製した以外は、実施例 1と同様にして水素発生装置を作製した。 水素発生材料全体に対し、水素発生材料 Aの割合は 20wt%であり、アルミニウム粉 末の割合は 86wt%であった。さらに、実施例 1と同様にして水素を発生させた。
[0096] (実施例 3)
アルミニウム粉末 0. 7gと酸ィ匕カルシウム粉末 0. 3gとを乳鉢で混合して水素発生材 料 A (発熱材料の含有率: 30wt%)を作製し、また、アルミニウム粉末 3. 6gと酸化力 ルシゥム粉末 0. 4gとを乳鉢で混合して水素発生材料 B (発熱材料の含有率: lOwt %)を作製した以外は、実施例 1と同様にして水素発生装置を作製した。水素発生材 料全体に対し、水素発生材料 Aの割合は 20wt%であり、アルミニウム粉末の割合は 86wt%であった。さら〖こ、実施例 1と同様にして水素を発生させた。
[0097] (実施例 4)
アルミニウム粉末 3. 55gと酸ィ匕カルシウム粉末 0. 2gとアルミナ(平均粒径 1 /ζ πι) 0 . 25gとを乳鉢で混合して水素発生材料 Β (発熱材料の含有率: 5wt%)を作製した 以外は、実施例 1と同様にして水素発生装置を作製した。水素発生材料全体に対し 、水素発生材料 Aの割合は 20wt%であり、アルミニウム粉末の割合は 81 wt%であ つた。さらに、実施例 1と同様にして水素を発生させた。
[0098] (比較例 1)
アルミニウム粉末 4. 3gと酸ィ匕カルシウム粉末 0. 7gとを乳鉢で混合して水素発生材 料 (発熱材料の含有率: 14wt%)を作製し、この水素発生材料をアルミニウム外装缶 内部に均一に充填した以外は、実施例 1と同様にして水素発生装置を作製した。さら に、実施例 1と同様にして水素を発生させた。
[0099] 実施例 1〜4及び比較例 1における、水素発生材料の構成を表 1に示す。また、そ れぞれの水素発生材料につ!、て、水素発生反応におけるアルミニウムの反応率と、 水素発生速度が最大となるまでに要する時間の測定結果を表 2に示す。さらに、図 5 及び図 6に、実施例 1及び比較例 1の水素発生装置における、上記アルミニウム外装 缶 (容器)の表面温度の時間変化 (a)及び水素発生速度の時間変化 (b)を表すダラ フを示す。
[0100] [表 1] 発熱材料の含有率 水素発生材料 粒径 6 0 m
水素発生材料 A 1粉末の
( w t % ) 全体での A 1 以 ドの A i 粒
Aの割合 甲-均粒径
水素発生 水素発生 の割合
( w t % ) 子の割合
C W m )
村料 A 材料 B ( w t % ) C w t % ) 実施例 1 5 0 5 2 0 8 6 3 I 0 0 実施例 2 3 5 8 . 7 5 2 0 8 6 3 1 0 0 実施例 3 3 0 1 0 2 0 S 6 3 1 0 0 実施例 4 5 0 5 2 0 8 1 3 1 0 0 比較例 1 ― 8 6 3 1 0 0
[0101] [表 2]
Figure imgf000025_0001
[0102] 実施例 1〜4の場合、いずれも 60%を超える反応率で水素を発生させることができ 、かつ、水素発生速度が最大に達するまでの時間がいずれも 3分以内と短時間であ つた。このため、水を供給し始めて力 短時間で、反応が定常状態に達し、安定して 水素を取り出すことができた。一方、アルミニウム粉末と発熱材料を均一に混合した 比較例 1の場合は、実施例 1〜4と同様に水素の発生は認められたが、水素発生速 度が最大に達するまでの時間が 40分と長ぐ反応が定常状態に達し、安定して水素 を取り出すことができるまでに長時間を要した。
[0103] また、図 5及び図 6より、実施例 1の方が比較例 1に比べて短時間に缶表面温度が 上昇していることがわかるが、これは、最初に、発熱材料の含有率が高い水素発生 材料 Aに水を供給することにより、金属材料 (アルミニウム粉末)と水との反応の開始 に十分な熱量が、アルミニウム粉末に与えられ、水素発生反応が促進されたためと考 えられる。
[0104] 実施例 1〜3について、水素発生速度が最大となるまでに要する時間を比較すると 、水素発生材料 Aにおける発熱材料の含有率に依存していることが確認された。これ は、発熱材料の増加により、反応熱が増加してアルミニウム粉末と水との反応がより 一層促進されたためと考えられる。一方、アルミニウムの反応率は、水素発生材料 A の発熱材料の含有率に依存せずほぼ同等であったことから、発熱材料の含有率より も、アルミニウム粉末の粒径や形状の方が、反応率に及ぼす影響が大きいものと思 われる。
[0105] 実施例 4は、アルミナを添加したので、水素発生材料中の金属材料の割合が実施 例 1よりも少ない。しかし、アルミナが水素発生反応を促進させたため、反応率は実施 例 1よりも高ぐ発生速度が最大に達するまでの時間は実施例 1と同等であった。これ は、アルミナを添加することによって、金属材料とその反応生成物との結合 (結着)が 防止されたためと考えられる。
[0106] (実施例 5)
白金を 50wt%担持させた白金担持カーボン 10重量部と、ポリパーフルォロスルホ ン酸榭脂溶液 (アルドリッチ (Aldrich)社製の"ナフイオン (Nafion) ") 80重量部と、 水 10重量部とを充分に攪拌して、均一に分散させた電極ペーストを調製した。 PTF Eフィルムの上に、上記電極ペーストを塗布して乾燥し、正極を得た。
[0107] 次に、上記正極の白金担持カーボンの代わりに、白金とルテニウムとの合金(Pt:R uのモル比 2 : 3)を 54wt%担持させた白金 'ルテニウム合金担持カーボンを用いたこ と以外は、上記正極と同様の方法で負極を作製した。
[0108] また、固体電解質として、ポリパーフルォロスルホン酸榭脂膜 (デュポン(DuPont) 社製の"ナフイオン (Nafion) 112")を準備した。
[0109] 次に、上記正極の電極ペースト塗布面と上記負極の電極ペースト塗布面との間に 、上記固体電解質を配置した後、ホットプレスして接合した。上記正極及び上記負極 に付随した PTFEフィルムを剥がし、このフィルムが剥がされた面に、拡散層として力 一ボンペーパーを配置し、膜電極接合体を得た。また、上記正極には正極端子を設 け、上記負極には負極端子を設けた。
[0110] 上記膜電極接合体の正極側の面に、空気 (酸素)を供給するためのセパレーター を設け、上記膜電極接合体の負極側の面に、水素を供給するためのセパレーターを 設けることにより、図 2に示す燃料電池を得た。この燃料電池を、前述の記実施例 1の 水素発生装置と組み合わせ、この水素発生装置で発生した水素を、水素排出パイプ を通じて燃料電池の負極に供給したところ、 25°Cにおいて 200mWZcm2の高い出 力が得られた。本発明の水素発生材料を用いて構成される水素発生装置は、小型 で、携帯に適しており、燃料電池の燃料供給源として有用であった。
[0111] (実施例 6)
内容器となるアルミニウム製の外装缶〔内容器 (縦 5mm、横 18mm、高さ 20mm)〕 の内部に、吸水材として脱脂綿を 0. Olg入れてから、前述の実施例 1の水素発生材 料 Aと同じ水素発生材料を 0. 8g充填し、その上に、吸水材として脱脂綿を 0. Olg入 れた。次に、水を供給するためのアルミニウム製の水供給パイプ (第 2供給口)と、水 素を導出させるアルミニウム製の水素排出パイプ (第 2排出口)とを備えたアルミ-ゥ ム製の蓋で密閉した。
[0112] また、アルミニウム粉末 (平均粒径 3 μ m) 4. Ogと、酸化カルシウム粉末 (平均粒径 40 m) 0. 3gとを乳鉢で混合して、水素発生材料 Bを作製した。次に、図 3に示した ように、外容器となるアルミニウム製の外装缶〔外容器 (縦 8mm、横 34mm、高さ 50 mm)〕の内部に、吸水材として脱脂綿を 0. 05g入れてから、上記水素発生材料 Bと 上記内容器とを、内容器が上記水素発生材料 Bに囲まれて上記外容器の中央に配 置されるように入れた。さらに、その上に、吸水材として脱脂綿を 0. 05g入れた。最後 に、水を供給するためのアルミニウム製の水供給パイプ (第 1供給口)と、水素を導出 させるアルミニウム製の水素排出パイプ (第 1排出口)とを備えたアルミニウム製の蓋 で密閉し、水素発生装置とした。
[0113] 次に、注射器を用い、上記第 2供給口から上記内容器内に水を lml供給し、水と上 記水素発生材料 Aに含まれる発熱材料 (酸化カルシウム粉末)とを反応させて発熱さ せた。また、ポンプを用い、上記第 1供給口から上記外容器内に水を 0. 17mlZ分の 速度で供給し、上記内容器で発生した熱により、水と上記水素発生材料 Bに含まれ る金属材料 (アルミニウム粉末)とを反応させ、水素を発生させた。発生した水素は、 上記第 1排出口を通じて外部に取り出し、水上置換装置を用いて捕集した。以下、実 施例 1と同様にして、アルミニウムの反応率及び水素発生速度が最大になるまでの時 間を求めた。また、試験中、外容器の温度 (缶表面温度)は、最高で 95°Cまで上昇し た。一方、水素はほぼ一定の発生速度で連続的に発生し、水の供給を停止すると、 水素の発生は数分後に止まることも確認された。
[0114] また、上記第 1排出口となる外容器の水素排出パイプと、水上置換装置との間に冷 却トラップを設けることにより、塩基性ミストの捕集も行った。すなわち、冷却トラップに より、発生したミストを冷却し液体として回収し、これを中和滴定することにより、発生し た塩基性ミスト、すなわち、 OH—イオンを含む水蒸気中の OH—のモル数を算出した。 この中和滴定には、酸として塩酸の標準溶液 (濃度 1. 0 X 10— 3mol/l)を用い、指示 薬としてフエノールフタレインを用いた。
[0115] (比較例 2)
比較例 1の水素発生装置における水素発生試験の際に、実施例 6と同様にして、 水素ガスに含まれる塩基性ミストを捕集してその量を測定した。
[0116] 実施例 6及び比較例 2における、水素発生材料の構成を表 3に示す。また、それぞ れの水素発生材料について、水素発生反応におけるアルミニウムの反応率と、水素 発生速度が最大となるまでに要する時間、及び、捕集された塩基性ミスト (OH—イオン )のモル数を表 4に示す。
[0117] [表 3]
Figure imgf000028_0001
[0118] [表 4]
Figure imgf000028_0002
[0119] さらに、図 7に、実施例 6の水素発生装置における、外容器の表面温度の時間変化
(a)及び水素発生速度の時間変化 (b)を表すグラフを示す。
[0120] 表 4及び図 7に示されるように、実施例 6の水素発生装置でも、前述の実施例 1〜4 の水素発生装置と同様に、 60%を超える反応率で水素を発生させることができ、 つ、水を供給し始めて力 短時間で反応が定常状態に達し、安定して水素を取り出 すことができた。 [0121] また、実施例 6の水素発生装置では、塩基性物質である発熱材料 (酸ィ匕カルシウム )の含有率が低!、水素発生材料 (水素発生材料 B)から生成する水素のみを捕集す ることができるため、比較例 1の水素発生装置で生成した水素ガスに比べ、塩基性ミ ストの含有量の少な 、水素ガスを得ることができた。実施例 6の水素発生装置のよう に、塩基性物質の含有量の多い水素発生材料を別の容器に分けることにより、塩基 性ミストの飛散を低減することができる。
[0122] 本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能で ある。本出願に開示された実施形態は一例であって、これらに限定はされない。本発 明の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先 して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれ るものである。
産業上の利用可能性
[0123] 以上説明したように、本発明の水素発生材料では、水素発生源となる金属材料の 含有率を大きくすることができるので、水素を効率よく発生させることができ、燃料電 池用の燃料源として、特に小型携帯機器用の燃料電池等に幅広く利用可能である。

Claims

請求の範囲
[I] 水と反応して水素を発生させる金属材料と、水と反応して発熱する発熱材料であり 前記金属材料以外の材料とを含む水素発生材料であって、
前記発熱材料は、前記金属材料に対して偏在して!/ヽることを特徴とする水素発生 材料。
[2] 前記発熱材料の含有率が異なる複数の領域を有する請求項 1に記載の水素発生 材料。
[3] 前記発熱材料の含有率が最も高!、領域における前記発熱材料の含有率が、 30〜
80wt%である請求項 2に記載の水素発生材料。
[4] 前記発熱材料の含有率が最も高!ヽ領域の割合が、前記水素発生材料全体の 3〜
40wt%である請求項 3に記載の水素発生材料。
[5] 前記発熱材料の含有率が、 15wt%以下である領域を有する請求項 3に記載の水 素発生材料。
[6] 前記水素発生材料の形状が、ペレット状又は顆粒状である請求項 1又は 2に記載 の水素発生材料。
[7] 前記水素発生材料の一端部、中心部及び表面部からなる群から選ばれるいずれ かの領域に存在する前記発熱材料の含有率が、他の領域に存在する前記発熱材料 の含有率よりも高い請求項 1又は 2に記載の水素発生材料。
[8] 前記水素発生材料全体における前記金属材料の含有率力 85〜99wt%である 請求項 1又は 2に記載の水素発生材料。
[9] 前記金属材料は、アルミニウム、ケィ素、亜鉛及びマグネシウム力もなる群力も選ば れる少なくとも 1種の金属又は前記金属を主体とする合金である請求項 1又は 2に記 載の水素発生材料。
[10] 前記金属材料は、粒径が 0. 1〜60 μ mの粒子を 80体積%以上含む請求項 1又は 2に記載の水素発生材料。
[II] 前記金属材料は、平均粒径が 0. 1〜30 μ mの粒子力 なる請求項 1又は 2に記載 の水素発生材料。
[12] 前記金属材料の形状が、鱗片状である請求項 1又は 2に記載の水素発生材料。
[13] 前記金属材料の厚みが、 0. 1〜5 μ mである請求項 12に記載の水素発生材料。
[14] 前記発熱材料は、酸ィ匕カルシウム、酸化マグネシウム、塩ィ匕カルシウム、塩化マグ ネシゥム及び硫酸カルシウム力 なる群力 選ばれる少なくとも 1種である請求項 1又 は 2に記載の水素発生材料。
[15] 前記水素発生材料は、親水性酸化物、炭素及び吸水性高分子からなる群から選 ばれる少なくとも 1種をさらに含む請求項 1又は 2に記載の水素発生材料。
[16] 前記親水性酸化物は、アルミナ、ベーマイト、シリカ、マグネシア、ジルコユア、ゼォ ライト及び酸ィ匕亜鉛力もなる群力も選ばれる少なくとも 1つの酸ィ匕物を含む請求項 15 に記載の水素発生材料。
[17] 水素発生材料と、前記水素発生材料を収容した容器とを含む水素発生装置であつ て、
前記水素発生材料は、水と反応して水素を発生させる金属材料と、水と反応して発 熱する発熱材料であり前記金属材料以外の材料とを含み、
前記発熱材料は、前記金属材料に対して偏在して!/ヽることを特徴とする水素発生 装置。
[18] 前記水素発生材料は、前記発熱材料の含有率が異なる複数の領域を有する請求 項 17に記載の水素発生装置。
[19] 前記発熱材料の含有率が最も高い領域における前記発熱材料の含有率が、 30〜
80wt%である請求項 18に記載の水素発生装置。
[20] 前記発熱材料の含有率が最も高!、領域の割合が、前記水素発生材料全体の 3〜
40wt%である請求項 19に記載の水素発生装置。
[21] 前記発熱材料の含有率が、 15wt%以下である領域を有する請求項 19に記載の 水素発生装置。
[22] 前記水素発生材料の形状が、ペレット状又は顆粒状である請求項 17又は 18に記 載の水素発生装置。
[23] 前記水素発生材料の一端部、中心部及び表面部からなる群から選ばれるいずれ かの領域に存在する前記発熱材料の含有率が、他の領域に存在する前記発熱材料 の含有率よりも高い請求項 17又は 18に記載の水素発生装置。
[24] 前記水素発生材料全体における前記金属材料の含有率力 85〜99wt%である 請求項 17又は 18に記載の水素発生装置。
[25] 前記金属材料は、アルミニウム、ケィ素、亜鉛及びマグネシウム力もなる群力 選ば れる少なくとも 1種の金属又は前記金属を主体とする合金である請求項 17又は 18に 記載の水素発生装置。
[26] 前記金属材料は、粒径が 0. 1〜60 μ mの粒子を 80体積%以上含む請求項 17又 は 18に記載の水素発生装置。
[27] 前記金属材料は、平均粒径が 0. 1〜30 mの粒子力もなる請求項 17又は 18に 記載の水素発生装置。
[28] 前記金属材料の形状が、鱗片状である請求項 17又は 18に記載の水素発生装置。
[29] 前記金属材料の厚みが、 0. 1〜5 μ mである請求項 28に記載の水素発生装置。
[30] 前記発熱材料は、酸ィ匕カルシウム、酸化マグネシウム、塩ィ匕カルシウム、塩化マグ ネシゥム及び硫酸カルシウム力 なる群力 選ばれる少なくとも 1種である請求項 17 又は 18に記載の水素発生装置。
[31] 前記水素発生材料は、親水性酸化物、炭素及び吸水性高分子からなる群から選 ばれる少なくとも 1種をさらに含む請求項 17又は 18に記載の水素発生装置。
[32] 前記親水性酸化物は、アルミナ、ベーマイト、シリカ、マグネシア、ジルコユア、ゼォ ライト及び酸ィ匕亜鉛力もなる群力も選ばれる少なくとも 1つの酸ィ匕物を含む請求項 31 に記載の水素発生装置。
[33] 前記容器は、その中に水を供給するための供給口 Aと、その中から水素を排出させ るための排出口 Bとを含む請求項 17又は 18に記載の水素発生装置。
[34] 前記容器内に水が供給される時、前記発熱材料の含有率が最も高い領域に、最 初に水が供給されるよう前記発熱材料を配置した請求項 17又は 18に記載の水素発 生装置。
[35] 前記容器は、その内部にさらに内容器を含み、前記内容器は、前記発熱材料を収 容し、かつその中に水を供給するための供給口 Cを含む請求項 17に記載の水素発 生装置。
[36] 前記内容器は、さらに前記金属材料を収容した請求項 35に記載の水素発生装置
[37] 前記内容器内に収容した前記発熱材料と前記金属材料との全体における前記発 熱材料の含有率が、前記内容器の外に存在する前記水素発生材料全体における前 記発熱材料の含有率よりも高い請求項 36に記載の水素発生装置。
[38] 前記内容器の外に存在する前記水素発生材料全体における前記発熱材料の含有 率が、 1〜 15wt%である請求項 37に記載の水素発生装置。
PCT/JP2006/315767 2005-08-11 2006-08-09 水素発生材料及び水素発生装置 WO2007018244A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06782583A EP1908729A4 (en) 2005-08-11 2006-08-09 HYDROGEN-PRODUCING MATERIAL AND DEVICE FOR PRODUCING HYDROGEN
JP2007529611A JP4947718B2 (ja) 2005-08-11 2006-08-09 水素発生材料及び水素発生装置
US11/887,937 US20090049749A1 (en) 2005-08-11 2006-08-09 Hydrogen-Generating Material and Hydrogen Generator

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-233648 2005-08-11
JP2005233648 2005-08-11
JP2005-318881 2005-11-01
JP2005318881 2005-11-01
JP2006140690 2006-05-19
JP2006-140690 2006-05-19

Publications (1)

Publication Number Publication Date
WO2007018244A1 true WO2007018244A1 (ja) 2007-02-15

Family

ID=37727426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315767 WO2007018244A1 (ja) 2005-08-11 2006-08-09 水素発生材料及び水素発生装置

Country Status (5)

Country Link
US (1) US20090049749A1 (ja)
EP (1) EP1908729A4 (ja)
JP (1) JP4947718B2 (ja)
KR (1) KR100956669B1 (ja)
WO (1) WO2007018244A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273758A (ja) * 2007-04-26 2008-11-13 Hitachi Maxell Ltd 水素発生材料組成物および水素発生装置
WO2009028722A1 (ja) * 2007-08-29 2009-03-05 Rubycon Corporation 携帯型水素発生ユニット
JP2009120441A (ja) * 2007-11-14 2009-06-04 Aquafairy Kk 発電装置及び発電方法
JP2009523299A (ja) * 2006-01-06 2009-06-18 ソシエテ ビック 水素発生燃料電池カートリッジ
JP2009179526A (ja) * 2008-01-31 2009-08-13 Toho Gas Co Ltd 金属酸化物の還元方法,水素製造方法および水素貯蔵装置
WO2009107779A1 (ja) * 2008-02-27 2009-09-03 日立マクセル株式会社 水素発生装置
JP2009259770A (ja) * 2008-04-14 2009-11-05 Samsung Electro-Mechanics Co Ltd 燃料カートリッジ及びこれを備えた燃料電池発電システム
JP2010110753A (ja) * 2008-10-07 2010-05-20 Akira Haneda セラミックス触媒の製造方法及びセラミックス触媒を用いた水素生成装置並びに水素の使用装置
JP2011225416A (ja) * 2009-05-25 2011-11-10 National Institute For Materials Science 水素発生材料、その製造方法、水素の製造方法および水素製造装置
JP2019081170A (ja) * 2017-10-30 2019-05-30 友達晶材股▲ふん▼有限公司AUO Crystal Corporation フィルターの製造方法及びそのフィルター

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080248358A1 (en) * 2007-01-23 2008-10-09 Canon Kabushiki Kaisha Polymer electrolyte fuel cell and production method thereof
TWI552951B (zh) * 2007-04-24 2016-10-11 黑光能源公司 氫-觸媒反應器
US8697300B2 (en) * 2008-03-31 2014-04-15 Rohm Co., Ltd. Fuel cell, and method for manufacturing the same
WO2011040942A1 (en) * 2009-09-29 2011-04-07 Alumifuel Power, Inc. Methods and apparatus for controlled production of hydrogen using aluminum-based water-split reactions
US20120103456A1 (en) * 2010-08-25 2012-05-03 Massachusetts Institute Of Technology Articles and methods for reducing hydrate adhesion
JP4744641B1 (ja) * 2010-10-18 2011-08-10 ミズ株式会社 生体適用液への水素添加器具
US20210276865A1 (en) * 2020-03-03 2021-09-09 Massachusetts Institute Of Technology Hydrogen reactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280890A (ja) * 1991-03-06 1992-10-06 Japan Steel Works Ltd:The 水素発生火薬
JPH08109003A (ja) * 1994-10-11 1996-04-30 Japan Steel Works Ltd:The 高純度水素発生方法及び薬莢
JP2004505879A (ja) * 2000-08-14 2004-02-26 ザ ユニバーシティ オブ ブリティッシュ コロンビア 水分解反応による水素の発生
JP2006056753A (ja) * 2004-08-20 2006-03-02 Materials & Energy Research Institute Tokyo Ltd 水素発生方法、水素発生装置及び燃料電池システム
JP2006069875A (ja) * 2004-09-06 2006-03-16 Nitto Denko Corp 水素ガス発生装置及び水素ガス発生システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072514A (en) * 1971-04-20 1978-02-07 Suzuki Masahiro Magnesium composites and mixtures for hydrogen generation and method for manufacture thereof
US6506360B1 (en) * 1999-07-28 2003-01-14 Erling Reidar Andersen Method for producing hydrogen
US6800258B2 (en) * 2000-07-20 2004-10-05 Erling Reidar Andersen Apparatus for producing hydrogen
US6440385B1 (en) * 2000-08-14 2002-08-27 The University Of British Columbia Hydrogen generation from water split reaction
JP2004168583A (ja) * 2002-11-19 2004-06-17 Uchiya Thermostat Kk 水素発生装置
JP4276854B2 (ja) * 2003-01-30 2009-06-10 ウチヤ・サーモスタット株式会社 水素発生材料、水素発生方法及び水素発生装置
JP4054877B2 (ja) * 2003-12-04 2008-03-05 独立行政法人物質・材料研究機構 水素発生用複合材とその製造方法
US7883805B2 (en) * 2005-01-07 2011-02-08 Hitachi Maxell, Ltd. Hydrogen generating material, hydrogen generator and fuel cell
JP4104016B2 (ja) * 2005-01-07 2008-06-18 日立マクセル株式会社 水素発生材料、水素製造用カートリッジ、水素製造装置、水素の製造方法および燃料電池システム
US20070020174A1 (en) * 2005-07-25 2007-01-25 Jianguo Xu Method for generating hydrogen gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280890A (ja) * 1991-03-06 1992-10-06 Japan Steel Works Ltd:The 水素発生火薬
JPH08109003A (ja) * 1994-10-11 1996-04-30 Japan Steel Works Ltd:The 高純度水素発生方法及び薬莢
JP2004505879A (ja) * 2000-08-14 2004-02-26 ザ ユニバーシティ オブ ブリティッシュ コロンビア 水分解反応による水素の発生
JP2006056753A (ja) * 2004-08-20 2006-03-02 Materials & Energy Research Institute Tokyo Ltd 水素発生方法、水素発生装置及び燃料電池システム
JP2006069875A (ja) * 2004-09-06 2006-03-16 Nitto Denko Corp 水素ガス発生装置及び水素ガス発生システム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009523299A (ja) * 2006-01-06 2009-06-18 ソシエテ ビック 水素発生燃料電池カートリッジ
JP2008273758A (ja) * 2007-04-26 2008-11-13 Hitachi Maxell Ltd 水素発生材料組成物および水素発生装置
WO2009028722A1 (ja) * 2007-08-29 2009-03-05 Rubycon Corporation 携帯型水素発生ユニット
JP5409367B2 (ja) * 2007-08-29 2014-02-05 ルビコン株式会社 携帯型水素発生ユニット
JP2009120441A (ja) * 2007-11-14 2009-06-04 Aquafairy Kk 発電装置及び発電方法
JP2009179526A (ja) * 2008-01-31 2009-08-13 Toho Gas Co Ltd 金属酸化物の還元方法,水素製造方法および水素貯蔵装置
WO2009107779A1 (ja) * 2008-02-27 2009-09-03 日立マクセル株式会社 水素発生装置
JPWO2009107779A1 (ja) * 2008-02-27 2011-07-07 日立マクセル株式会社 水素発生装置
JP2009259770A (ja) * 2008-04-14 2009-11-05 Samsung Electro-Mechanics Co Ltd 燃料カートリッジ及びこれを備えた燃料電池発電システム
JP2010110753A (ja) * 2008-10-07 2010-05-20 Akira Haneda セラミックス触媒の製造方法及びセラミックス触媒を用いた水素生成装置並びに水素の使用装置
JP2011225416A (ja) * 2009-05-25 2011-11-10 National Institute For Materials Science 水素発生材料、その製造方法、水素の製造方法および水素製造装置
JP2019081170A (ja) * 2017-10-30 2019-05-30 友達晶材股▲ふん▼有限公司AUO Crystal Corporation フィルターの製造方法及びそのフィルター

Also Published As

Publication number Publication date
JP4947718B2 (ja) 2012-06-06
KR100956669B1 (ko) 2010-05-10
EP1908729A4 (en) 2008-09-10
US20090049749A1 (en) 2009-02-26
EP1908729A1 (en) 2008-04-09
KR20080003454A (ko) 2008-01-07
JPWO2007018244A1 (ja) 2009-02-19

Similar Documents

Publication Publication Date Title
WO2007018244A1 (ja) 水素発生材料及び水素発生装置
EP2048110A1 (en) Power generating apparatus
JP4800319B2 (ja) 水素製造装置およびそれを用いた燃料電池システム
KR100790688B1 (ko) 수소저장탱크를 갖는 연료전지
WO2006073113A1 (ja) 水素発生材料、水素の製造装置および燃料電池
JPWO2009031578A1 (ja) 水素発生材料組成物、水素発生材料成形体及び水素の製造方法
JP2006298670A (ja) 水素発生方法及びその装置、並びに電気化学エネルギー生成方法及びそのシステム
US9079144B2 (en) Hydrogen generator and fuel cell system
JP2007326731A (ja) 水素製造方法
JP2007326742A (ja) 水素製造方法
JP2011121826A (ja) 水素の製造方法及び水素の製造装置、並びに燃料電池システム
CN101175688A (zh) 氢产生材料及氢产生装置
JP2005200266A (ja) 改質方法、改質器、発電装置及び燃料容器
JP2008273758A (ja) 水素発生材料組成物および水素発生装置
JP2006273609A (ja) 水素発生装置およびそれを用いた燃料電池
WO2013018993A2 (ko) 화학수소화물 수소발생용 금속폼 촉매 및 그 제조방법
JP3746047B2 (ja) 液体燃料電池およびそれを用いた発電装置
JP2007317496A (ja) 燃料電池発電システム
JP3846727B2 (ja) 液体燃料電池およびそれを用いた発電装置
JP2010001188A (ja) 水素製造装置及び燃料電池
KR100835857B1 (ko) 수소저장화합물과 다공성 지지체를 이용한 수소화물복합체와 그 제조 방법
US20160285118A1 (en) Hydrogen generator
JP2008519418A (ja) 燃料電池用固形燃料
JP2004192879A (ja) 燃料電池
JP2021125386A (ja) 電解質材料及びアルカリ形燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680017080.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007529611

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11887937

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077027887

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006782583

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE