WO2009107779A1 - 水素発生装置 - Google Patents

水素発生装置 Download PDF

Info

Publication number
WO2009107779A1
WO2009107779A1 PCT/JP2009/053687 JP2009053687W WO2009107779A1 WO 2009107779 A1 WO2009107779 A1 WO 2009107779A1 JP 2009053687 W JP2009053687 W JP 2009053687W WO 2009107779 A1 WO2009107779 A1 WO 2009107779A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
water
container
water supply
generating material
Prior art date
Application number
PCT/JP2009/053687
Other languages
English (en)
French (fr)
Inventor
三木健
中井敏浩
西原昭二
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to JP2010500770A priority Critical patent/JPWO2009107779A1/ja
Priority to US12/919,713 priority patent/US20110008216A1/en
Priority to CN2009801063109A priority patent/CN101959791A/zh
Publication of WO2009107779A1 publication Critical patent/WO2009107779A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen generator using a metal material that generates hydrogen by reacting with water.
  • a polymer electrolyte fuel cell is an example of a battery that can meet the above-mentioned demand.
  • a polymer electrolyte fuel cell using a solid polymer electrolyte as an electrolyte, oxygen in the air as a positive electrode active material, and fuel (hydrogen, methanol, etc.) as a negative electrode active material can be expected to have a higher energy density than a lithium ion battery. It is attracting attention as.
  • Fuel cells can be used continuously as long as fuel and oxygen are supplied, but there are several candidates for the fuel to be used. Currently, the candidate fuels have various problems, and no final decision has been made.
  • Patent Document 2 also requires a large amount of additives to efficiently advance the hydrogen generation reaction, and cannot provide a method for producing hydrogen efficiently and stably. .
  • the present inventors have repeatedly studied to avoid the above-described problems of the methods described in Patent Documents 1 and 2, and supply water to the inside of a container containing a hydrogen generating material that generates hydrogen by an exothermic reaction with water. And a step of reacting the water and the hydrogen generating material in the container to generate hydrogen, wherein the water supply amount is determined in the step of supplying the water.
  • velocity was developed, and this is proposed in patent document 3.
  • hydrogen generation reaction can be stably maintained, and hydrogen can be produced easily, efficiently and stably.
  • the present inventors include a metal material that reacts with water to generate hydrogen, and a heat generating material that reacts with water to generate heat and is a material other than the metal material.
  • a hydrogen generating material, in which the heat generating material is unevenly distributed in the metal material, and a hydrogen generating apparatus using the hydrogen generating material have been developed and proposed in Patent Document 4. JP 2004-231466 A JP-T-2004-505879 JP 2007-45646 A International Publication No. 2007/018244 Pamphlet
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a hydrogen generator capable of generating hydrogen easily and efficiently.
  • a hydrogen generator according to the present invention is a hydrogen generator including a container for storing a hydrogen generating material containing a metal material that generates hydrogen by an exothermic reaction with water, and the container supplies water to the inside of the container.
  • a water supply port, which is a tip of the water supply pipe arranged inside the container, is arranged in the vicinity of the reference plane, and the water supply pipe is perpendicular to the reference plane from the vicinity of the center of the reference plane.
  • a water-absorbing material is disposed on an outer periphery of the vertical portion of the water supply pipe, and a portion having a length of 15% or more on the hydrogen outlet side of the effective length of the vertical portion. Is characterized in that the water absorbing material is not arranged.
  • FIG. 1 is a schematic cross-sectional view showing a fuel cartridge which is an example of the hydrogen generator of the present invention.
  • 2 is a cross-sectional view taken along the line II of FIG.
  • FIG. 3 is a schematic cross-sectional view in the middle of a hydrogen generation reaction of a fuel cartridge in which a hydrogen generation reaction was performed without arranging a water absorbing material on the outer periphery of the water supply pipe.
  • FIG. 4 is a schematic cross-sectional view of the fuel cartridge used in Example 1.
  • 5 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 6 is a schematic cross-sectional view of the fuel cartridge used in Example 4.
  • 7 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 8 is a schematic cross-sectional view of the fuel cartridge used in Comparative Example 1.
  • 9 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 10 is a schematic cross-sectional view of the fuel cartridge used in Comparative Example 3.
  • FIG. 11 is a diagram showing the relationship between the hydrogen generation rate and elapsed time in Example 1 and Comparative Example 1.
  • the metal material used in the hydrogen generator of the present invention is mainly composed of metals such as aluminum, silicon, zinc and magnesium and alloys mainly composed of these metal elements, and is used as particles having various shapes.
  • Such particles are generally composed of a particle containing the metal or alloy in a metal state and a surface film (oxide film) covering at least a part of the particle.
  • the amount of hydrogen generation can be reduced by improving the structure of a hydrogen generator that generates hydrogen using a hydrogen generating material and water in which the above phenomenon can occur. It has been found that it can be increased to enable efficient hydrogen generation, and the present invention has been completed.
  • the hydrogen generator of the present invention is a hydrogen generator including a container for storing a hydrogen generating material containing a metal material that generates hydrogen by an exothermic reaction with water, and the container is disposed inside the container.
  • the water supply port, which is the tip of the water supply pipe arranged inside the container, is arranged in the vicinity of the reference plane, and the water supply pipe is located near the center of the reference plane with respect to the reference plane.
  • a water-absorbing material is disposed on the outer periphery of the vertical portion of the water supply pipe, and the effective length of the vertical portion is 15% or more on the hydrogen outlet side. This area does not contain the water absorbing material.
  • the “effective length of the vertical portion” in the present specification refers to a vertical portion of the portion where the vertical portion is in contact with the hydrogen generating material when the water absorbing material is not disposed on the outer periphery of the vertical portion with respect to the reference plane. The total length of the direction.
  • FIG. 1 is a schematic cross-sectional view showing a fuel cartridge which is an example of the hydrogen generator of the present invention.
  • 2 is a cross-sectional view taken along the line II of FIG. 1 and 2 show an example of the hydrogen generator of the present invention, and the hydrogen generator of the present invention is not limited to the configuration shown in FIG. 1 and FIG.
  • a fuel cartridge 100 includes a container main body 1a capable of storing a hydrogen generating material and a lid 1b.
  • the lid 1b has a water supply pipe 3 for supplying water to the container main body 1a, and hydrogen for deriving hydrogen.
  • a lead-out pipe 5 is provided.
  • the water supply pipe 3 is arranged in the horizontal direction (left and right direction in FIG. 1), but may be arranged in the vertical direction (up and down direction in FIG. 1).
  • the water supply pipe 3 was formed in L shape, you may form the whole water supply pipe 3 in linear form.
  • the fuel cartridge 100 supplies water to the container 1 through the water supply port 4 of the water supply pipe 3 using a pump (not shown) such as a micropump, and the hydrogen generating material 2 and water are supplied in the container 1. React to generate hydrogen. Therefore, the container 1 also serves as a reaction container between the hydrogen generating material 2 and water. Hydrogen generated in the container 1 is supplied from a hydrogen outlet 6 through a hydrogen outlet pipe 5 to a device such as a fuel cell that requires hydrogen.
  • the container 1 is not particularly limited in its material and shape as long as it can store the hydrogen generating material 2.
  • the container 1 is used as a reaction container for performing a hydrogen generating reaction between the hydrogen generating material 2 and water.
  • a material or shape that does not allow water or hydrogen to leak from other than the hydrogen outlet 6 is preferable.
  • the specific material of the container 1 is preferably a material that hardly permeates water and hydrogen and that does not break even when heated to about 100 ° C., for example, metals such as aluminum, titanium, nickel, iron, polyethylene, Resins such as polypropylene and polycarbonate can be used.
  • a prismatic shape, a cylindrical shape, or the like can be adopted.
  • the hydrogen outlet 6 is not particularly limited as long as it is a structure capable of deriving hydrogen to the outside.
  • the hydrogen outlet 6 may be an opening formed in the lid 1b, or a pipe directly connected to the lid 1b (see FIG. 1). It corresponds to the hydrogen lead-out pipe 5).
  • a filter at the hydrogen outlet 6 because the contents of the container 1 do not leak outside.
  • This filter is not particularly limited as long as it has a structure that allows gas and liquid and solid to hardly pass through.
  • a porous polytetrafluoroethylene (PTFE) gas-liquid separation membrane, a polypropylene porous film, or the like is used. be able to.
  • PTFE polytetrafluoroethylene
  • the water supply port 4 that is the tip of the water supply pipe 3 disposed inside the container 1 is in the vicinity of the reference plane.
  • “in the vicinity of the reference plane” in the present specification refers to a range in which the distance in the vertical direction from the reference plane is not more than twice the maximum outer diameter of the water supply port 4.
  • the water supply pipe 3 includes a vertical portion extending in the direction perpendicular to the reference plane from the vicinity of the center of the reference plane.
  • “near the center of the reference surface” in this specification refers to a range in which the plane distance from the center point on the reference surface is a length of four times or less the maximum outer diameter of the water supply port 4. .
  • the water supply pipe 3 can control the amount of generated hydrogen by adjusting the water supply amount if it is connected to a pump that can control the water supply amount. It is more preferable.
  • a water absorbing material 7a is disposed on the outer periphery of the vertical portion of the water supply pipe 3, and the hydrogen outlet 6 side of the effective length of the vertical portion (hereinafter sometimes simply referred to as an effective length).
  • the water-absorbing material 7a is not disposed in the length portion of 15% or more. Moreover, it is more preferable that the water absorbing material 7a is not disposed in the effective length of 19% to 69% of the hydrogen outlet 6 side.
  • FIG. 3 is a schematic cross-sectional view showing a fuel cartridge having substantially the same configuration as the fuel cartridge 100 of FIG. 1 except that a water absorbing material is not disposed on the outer periphery of the water supply pipe 3. 3, the same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 3 is a schematic cross-sectional view in the middle of the hydrogen generation reaction (at the end of the steady state) of the fuel cartridge 100 in which the hydrogen generation reaction has been performed without arranging the water absorbing material on the outer periphery of the water supply pipe 3.
  • the right side of FIG. 3 is the reference plane side of the container 1, and the left side is the hydrogen outlet 6 side.
  • the schematic cross-sectional view shown in FIG. 3 illustrates the fuel cartridge 100 based on the result of observation by X-ray CT.
  • the “steady state” in this specification refers to a state in which the hydrogen generation rate becomes substantially constant after the hydrogen generation rate reaches the maximum value.
  • the hydrogen generation reaction proceeds from the water supply port 4 disposed in the vicinity of the reference surface of the container 1, but from the right side to the left side of the hydrogen generating material 2 in which the water supply port 4 is disposed.
  • the unreacted hydrogen generating material 2a is selectively deposited on the upper center of the container 1, and the hydrogen is generated after the reaction so as to surround the unreacted hydrogen generating material 2a. It was found that material 2b was present.
  • the water absorbing material 7 a is disposed on the outer periphery of the water supply pipe 3 even if the condensation phenomenon occurs in the boundary portion (the thick line portion in FIG. 3). 3, the water-absorbing material 7 a holding water is located in the central upper part of the container 1 and the water permeates into the unreacted metal material powder in which the condensation phenomenon has not occurred. It is inferred that the reaction proceeded efficiently also in the hydrogen generating material 2a.
  • the material of the water-absorbing material 7a is not particularly limited as long as it is a material that can absorb and retain water, and in general, absorbent cotton, nonwoven fabric, cotton cloth, gauze, sponge, or the like can be used.
  • the water-absorbing material 7a is preferably disposed from the reference surface side in a length portion of 30% to 70% of the effective length of the vertical portion, more preferably a length portion of 40% to 60%. Arranged from the reference plane side.
  • the water supplied from the water supply port 4 disposed in the vicinity of the reference surface of the container body 1a is disposed on the outer periphery of the water supply pipe 3. It can penetrate smoothly into the water absorbing material 7a.
  • the water absorbing material 7a is arrange
  • the water-absorbing material 7a is disposed in a length portion exceeding 70% of the effective length, the water-absorbing material 7a excessively penetrates water to the hydrogen outlet 6 side, so that the reference It becomes difficult for water to penetrate into the vicinity of the surface and the central portion of the container 1 (near the cross section of the line II in FIG. 1), and the hydrogen generating material 2 located in the vicinity of the reference surface and the central portion of the container 1 This reaction is less likely to occur.
  • the absorbent material 7b extends in the direction perpendicular to the water supply pipe 3 from the tip of the water absorbent material 7a located on the side opposite to the reference surface side. And the absorber 7b is arrange
  • the water absorbing material 7b is not necessarily required, the water retained in the water absorbing material 7b can permeate a wide range of the unreacted metal material powder that is located in the upper center portion and does not cause the condensation phenomenon. It is preferable to arrange.
  • the water-absorbing material 7b may be disposed in contact with the wall surface in the container 1, but in that case, the water held by the water-absorbing material 7b travels along the wall surface of the container 1 and enters the central upper portion.
  • the water absorbing material 7b it is more preferable to arrange the water absorbing material 7b so as not to contact the wall surface in the container 1.
  • the water absorbing material 7b when the reference surface of the container body 1a is installed in the vertical direction.
  • the material of the water absorbing material 7b is not particularly limited as long as it is a material that can absorb and hold water, and the same material as the water absorbing material 7a can be used.
  • water absorbing materials 7 c and 7 d are further disposed at the respective leading ends of the water supply port 4 and the hydrogen outlet port 6 inside the container 1.
  • the water absorbing material 7c or 7d is not necessarily required, the water held in the water absorbing material 7c or 7d is supplied to the hydrogen generating material 2 according to the consumption of water by the hydrogen generating reaction, and the time variation of the hydrogen generating speed is changed. Since it becomes possible to suppress to some extent, it is preferable to arrange them.
  • the water absorbing material 7d is a filter that prevents the hydrogen generating material 2 from flowing out from the hydrogen outlet 6 through the hydrogen outlet pipe 5 to a device such as a fuel cell that requires hydrogen during the hydrogen generation reaction. Therefore, it is preferable to arrange them.
  • the material of the water absorbing material 7c or 7d is not particularly limited as long as it is a material that can absorb and hold water, and the same material as the water absorbing material 7a can be used.
  • the metal material used in the hydrogen generator of the present invention is not particularly limited as long as it is a material that reacts with water to generate hydrogen, but from aluminum, silicon, zinc, magnesium, and alloys mainly composed of these elements. At least one selected from the group can be preferably used. Elements other than the element that is the main component of the alloy are not particularly limited.
  • the main body means 80% by mass or more, more preferably 90% by mass or more based on the whole alloy.
  • These metal materials are substances that do not easily react with water at room temperature, but can easily exothermic reaction with water when heated.
  • “normal temperature” in this specification is a temperature in the range of 20 to 30 ° C.
  • the metal material can generate hydrogen by reacting with water at least in a state of being heated to room temperature or higher.
  • a stable oxide film is formed on the surface, it is a material that does not generate hydrogen or hardly generates hydrogen at a low temperature or in a bulk shape such as a plate shape or a block shape.
  • a bulk shape such as a plate shape or a block shape.
  • the metal material is not particularly limited by the average particle diameter, but the average particle diameter is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 50 ⁇ m or less.
  • a stable oxide film is formed on the surface of the metal material. Therefore, a metal material such as a plate shape, a block shape, and a bulk shape having a particle diameter of 1 mm or more does not cause a reaction with water even when heated, and may not substantially generate hydrogen.
  • the average particle size of the metal material is 100 ⁇ m or less, the action of suppressing the reaction with water by the oxide film is reduced, and although it is difficult to react with water at room temperature, the reactivity with water increases when heated, and hydrogen is generated. The reaction can be sustained.
  • the average particle size of the metal material is 50 ⁇ m or less, hydrogen can be generated by reacting with water even under mild conditions of about 40 ° C.
  • the reaction efficiency can be further improved.
  • the average particle size of the metal material is less than 0.1 ⁇ m, or the thickness of the scaly metal material is less than 0.1 ⁇ m, the ignitability becomes high and handling becomes difficult. Decreases and the energy density tends to decrease.
  • the average particle diameter of the metal material is preferably 0.1 ⁇ m or more, and when the metal material is scaly, the thickness is preferably 0.1 ⁇ m or more.
  • the “average particle diameter” referred to in the present specification means D 50 which is a value of a particle diameter at a volume-based integrated fraction of 50%.
  • a method for measuring the average particle diameter for example, a laser diffraction / scattering method or the like can be used. Specifically, it is a particle diameter distribution measurement method using a scattering intensity distribution detected by irradiating a measurement target substance dispersed in a liquid phase such as water with laser light.
  • a particle size distribution measuring apparatus by the laser diffraction / scattering method for example, “Microtrac HRA” manufactured by Nikkiso Co., Ltd. can be used.
  • the thickness of the scaly metal material is observed with a scanning electron microscope (SEM).
  • the particle shape of the metal material is not particularly limited, and examples thereof include the above-mentioned scale-like ones in addition to a substantially spherical shape (including a true spherical shape) and a rugby ball shape.
  • a substantially spherical shape or a rugby ball shape those satisfying the above average particle diameter are preferred, and in the case of a scale shape, those satisfying the above thickness are preferred.
  • a scale-like metal material it is more preferable that the above average particle diameter is also satisfied.
  • a hydrophilic oxide alumina, silica, magnesia, zirconia, zeolite, zinc oxide and the like can be used.
  • the hydrogen generating material used includes a heat generating material that is a material other than the metal material and generates heat by reacting with water.
  • the exothermic material may be a material that reacts exothermically with water to form a hydroxide or a hydrate, a material that exothermicly reacts with water to generate hydrogen, or the like.
  • examples of materials that react with water to form hydroxides or hydrates include alkali metal oxides (for example, lithium oxide) and alkaline earth metal oxides (for example, oxidation). Calcium, magnesium oxide, etc.), alkaline earth metal chlorides (eg, calcium chloride, magnesium chloride, etc.), alkaline earth metal sulfate compounds (eg, calcium sulfate, etc.), and the like can be used.
  • Examples of the material that reacts with water to generate hydrogen include alkali metals (for example, lithium and sodium), alkali metal hydrides (for example, sodium borohydride, potassium borohydride, lithium hydride, and the like). ) Etc. can be used. These materials may be used alone or in combination of two or more.
  • alkali metals for example, lithium and sodium
  • alkali metal hydrides for example, sodium borohydride, potassium borohydride, lithium hydride, and the like.
  • Etc. can be used. These materials may be used alone or in combination of two or more.
  • the heat generating material is a basic material, it dissolves in water used for the hydrogen generation reaction to produce a high-concentration alkaline aqueous solution. Therefore, the oxide film formed on the surface of the metal material is dissolved and water is dissolved. The reactivity with can be increased, which is preferable.
  • the reaction for dissolving the oxide film may be the starting point for the reaction between the metal material and water.
  • the heat generating material is an alkaline earth metal oxide, it is more preferable because it is a basic material and easy to handle.
  • the heat generating material materials that generate an exothermic reaction with substances other than water at room temperature, for example, materials that react with oxygen and generate heat, such as iron powder, are also known.
  • the hydrogen generating material includes a material that reacts with the oxygen and the metal material that is the hydrogen generating source, the oxygen required for the reaction simultaneously reduces the purity of the hydrogen generated from the metal material.
  • the amount of hydrogen generation is decreased by reducing the amount of hydrogen generated by oxidizing the metal material. Therefore, in the present invention, as described above, it is preferable to use an alkaline earth metal oxide or the like that generates heat by reacting with water, as described above.
  • the exothermic material contained in the hydrogen generating material is preferably one that does not generate a gas other than hydrogen during the reaction.
  • the content of the metal material in the entire hydrogen generating material is preferably 85% by mass or more, more preferably 90% by mass or more from the viewpoint of generating more hydrogen, and the effect of the combined use of the heat generating material. From the viewpoint of ensuring more certainty, it is preferably 99% by mass or less, more preferably 97% by mass or less. Further, the content of the heat generating material in the whole hydrogen generating material is preferably 1% by mass or more, more preferably 3% by mass or more, and preferably 15% by mass or less, more preferably 10% by mass or less.
  • the hydrogen generating material containing the heat generating material can be obtained by mixing the metal material and the heat generating material.
  • mixing the metal material and the heat generating material it is preferable that only the metal material does not form an aggregate of 1 mm or more.
  • the hydrogen generating material can be produced while suppressing the aggregation of the metal material.
  • the surface of the metal material may be combined with a heat generating material to form a hydrogen generating material.
  • the temperature for heating at least one of the hydrogen generating material and the water is preferably 40 ° C. or higher and lower than 90 ° C., more preferably 40 ° C. or higher and 70 ° C. or lower.
  • the temperature at which this exothermic reaction can be maintained is usually 40 ° C. or higher as described above.
  • the heating may be performed only at the start of the reaction. This is because once the exothermic reaction between water and the hydrogen generating material is started, the subsequent reaction can be continued by the heat of the exothermic reaction.
  • the heating method is not particularly limited, and heating can be performed using heat generated by energizing the resistor.
  • the resistor 9 is attached to the outside of the container 1 to generate heat, and the container 1 is heated from the outside, whereby at least one of the hydrogen generating material 2 and water can be heated.
  • the type of the resistor is not particularly limited, and for example, a metal heating element such as a nichrome wire or a platinum wire, silicon carbide, a PTC thermistor, or the like can be used.
  • the heating can also be performed by heat generation due to a chemical reaction of the heat generating material.
  • the heat generating material By disposing the heat generating material outside the container to generate heat and heating the container from the outside, at least one of the hydrogen generating material and water can be heated.
  • the heat generating material the above-mentioned material that reacts exothermically with water can be used.
  • the heating can also be performed by heat generated by a material that exothermicly reacts with a substance other than water, for example, a material that reacts exothermically with oxygen such as iron powder. This material is used outside the container because oxygen must be introduced for the exothermic reaction.
  • the heat generating material When the hydrogen generating material containing the heat generating material is accommodated in the container body 1a and heated by supplying water to the container main body 1a, the heat generating material is used as a mixture that is uniformly or non-uniformly dispersed and mixed with the metal material.
  • the container main body 1a it is more preferable to provide an unevenly distributed portion having a higher content of the heat generating material than the average content of the heat generating material in the entire hydrogen generating material, and supply of water inside the container main body 1a. It is particularly preferable to arrange the unevenly distributed portion in the vicinity of the water supply port 4 of the pipe 3.
  • a unit composition of the material and the heat generating material is prepared, the unit composition having the highest content of the heat generating material is disposed in the vicinity of the water supply port 4, and the content of the heat generating material is low in the other portions.
  • a unit composition can also be arranged.
  • the hydrogen generator of the present invention includes a water supply unit that supplies water to the inside of the container 1 that stores the hydrogen generating material 2, and a water supply amount control unit that controls the supply amount of the water.
  • a water supply unit that supplies water to the inside of the container 1 that stores the hydrogen generating material 2
  • a water supply amount control unit that controls the supply amount of the water.
  • the inside of the container 1 can be maintained at a temperature at which an exothermic reaction can be maintained. Thereby, the exothermic reaction between water and the hydrogen generating material can be continued stably, and hydrogen can be produced easily, efficiently and stably. It is preferable to control the supply amount of water by controlling the supply rate of water.
  • the temperature at which the exothermic reaction can be maintained is usually 40 ° C. or higher. Once the exothermic reaction starts and hydrogen is generated, the internal pressure of the container 1 may increase and the boiling point of water may increase. Although the temperature may reach about 120 ° C., it is preferably 100 ° C. or less from the viewpoint of controlling the hydrogen generation rate.
  • the water supply unit is not particularly limited, and a water supply pipe, a water supply port, and the like may be provided in the container 1. Moreover, a pump etc. can also be connected to the said water supply part.
  • the water supply amount control unit is not particularly limited as long as the water supply amount (supply speed) can be accurately controlled, and for example, a tube pump, a diaphragm pump, a syringe pump, or the like is used. Further, by providing at least two water supply paths having different water supply speeds, the amount of water supply can be adjusted. For example, by appropriately adjusting the inner diameter of each path, at least two types of water supply paths can be adjusted. Supply speed can be realized.
  • a heat insulating material 8 is further disposed outside the container 1. This makes it easier to maintain a temperature at which the exothermic reaction between water and the metal material can be maintained, and makes it less susceptible to outside air temperatures.
  • the material of the heat insulating material 8 is not particularly limited as long as it has a high heat insulating property.
  • a porous heat insulating material such as foamed polystyrene, polyurethane foam, and foamed neoprene rubber, or a heat insulating material having a vacuum heat insulating structure may be used. it can.
  • the hydrogen generator of the present invention is preferably provided with a pressure relief valve.
  • a pressure relief valve For example, even when the hydrogen generation rate increases and the internal pressure of the apparatus rises, the apparatus can be prevented from being damaged by discharging hydrogen from the pressure relief valve to the outside of the apparatus.
  • the installation location of the pressure relief valve is not particularly limited as long as the hydrogen generated in the container 1 containing the hydrogen generating material 2 can be discharged.
  • a pressure relief valve may be provided at any location between the hydrogen lead-out pipe 5 and a device (not shown) that requires hydrogen.
  • the theoretical hydrogen generation amount when it is assumed that all metal materials have reacted Is approximately 1360 ml in terms of 25 ° C.
  • the actual hydrogen generation amount is approximately 60% or more, more preferably 80% or more, and hydrogen can be generated efficiently.
  • Example 1 Hydrogen was produced as follows using the fuel cartridge 100 showing an example of the hydrogen generator of the present invention shown in FIG. 5 is a cross-sectional view taken along line II-II in FIG. 4 and 5, the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted. The same applies to FIGS. 6 to 10 described later.
  • a hydrogen generating material A was prepared by mixing 1.0 g of aluminum powder having an average particle diameter of 6 ⁇ m as a metal material and 1.0 g of calcium oxide powder having an average particle diameter of 3 ⁇ m as a heat generating material in a mortar. Further, 98.5 g of the aluminum powder as a metal material and 12.5 g of the calcium oxide powder as a heat generating material were mixed in a mortar to prepare a hydrogen generating material B.
  • an aluminum water supply pipe 3 (inner diameter: 2 mm, outer diameter: 3 mm) for supplying water is provided on the outer periphery of the water supply pipe 3 to 50% of the above-mentioned effective length.
  • the absorbent cotton 7a having a thickness of 2 mm was disposed as the water absorbing material 7a. Further, 0.1 g of absorbent cotton is disposed as the water absorbent 7c at the tip of the water supply port 4 of the water supply pipe 3, and the water supply port 4 is disposed in the vicinity of the hydrogen generating material A so that hydrogen is led out.
  • a container 1 filled with hydrogen generating materials A and B was obtained by covering with a silicon stopper provided with a hydrogen lead-out tube 5 (inner diameter 3 mm, outer diameter 4 mm) made of aluminum. And the temperature sensor (not shown) for detecting the surface temperature of the container 1 was attached to the side surface of the container 1. Further, as shown in FIG. 4, a heat insulating material 8 made of styrene foam having a thickness of 5 mm was installed so as to wrap the outer periphery of the container 1.
  • a pump (not shown) for supplying water to the hydrogen generating materials A and B was installed at the tip of the water supply pipe 3 opposite to the container 1 side. That is, by supplying water from a water storage container (not shown) using the pump, first, water and the heat generating material (calcium oxide powder) contained in the hydrogen generating material A undergo an exothermic reaction, and then Water and the metal material (aluminum powder) contained in the hydrogen generating materials A and B start a hydrogen generating reaction.
  • pure water is sent out from the pump at a rate of 0.8 ml / min. After that, after the temperature of the container 1 exceeds 60 ° C., pure water is sent out at a rate of 2.5 ml / min.
  • hydrogen was generated by reacting the hydrogen generating material 2 with water. At 25 ° C., water was supplied until no more hydrogen was generated, and hydrogen was led out from the hydrogen lead-out pipe 5. The generated hydrogen was removed through a calcium chloride tube. Then, the reaction rate of aluminum at the end of the steady state and at the end of the test was determined using a mass flow meter (Coffrock). The test starts when the water supplied by the pump reaches the tip of the water supply pipe 3 (water supply port 4), and the instantaneous hydrogen generation rate measured by the mass flow meter is kept below 5 ml / min for 60 minutes or more. The test was completed.
  • the above reaction rate is actually the theoretical hydrogen generation amount when it is assumed that all the metal materials have reacted (for example, in the case of aluminum, the theoretical hydrogen generation amount per gram is about 1360 ml in terms of 25 ° C.). Was obtained as a ratio of the amount of hydrogen generated. Moreover, the said reaction rate was calculated
  • Examples 2 to 3 A hydrogen generator was produced in the same manner as in Example 1 except that absorbent cotton was disposed as the water absorbent material 7a on the outer periphery of the water supply pipe 3 under the arrangement conditions shown in Table 1. Subsequently, hydrogen was generated in the same manner as in Example 1, and the reaction rate was measured.
  • Example 4 As shown in FIG.6 and FIG.7, the hydrogen generator was produced like Example 1 except having arrange
  • FIG. 6 is a schematic cross-sectional view of the fuel cartridge used in this example
  • FIG. 7 is a cross-sectional view taken along the line III-III in FIG.
  • FIGS. 8 and 9 a hydrogen generator was manufactured in the same manner as in Example 1 except that the water absorbing material was not disposed on the outer periphery of the water supply pipe 3. Subsequently, hydrogen was generated in the same manner as in Example 1, and the reaction rate was measured.
  • FIG. 8 is a schematic cross-sectional view of the fuel cartridge used in this comparative example
  • FIG. 9 is a cross-sectional view taken along the line IV-IV in FIG.
  • Example 2 A hydrogen generator was produced in the same manner as in Example 1 except that absorbent cotton was disposed as the water absorbent material 7a on the outer periphery of the water supply pipe 3 under the arrangement conditions shown in Table 1. Subsequently, hydrogen was generated in the same manner as in Example 1, and the reaction rate was measured.
  • Example 3 As shown in FIG. 10, a hydrogen generator was produced in the same manner as in Example 1 except that absorbent cotton was disposed as the water absorbent material 7 a on the entire outer periphery of the vertical portion of the water supply pipe 3. Subsequently, hydrogen was generated in the same manner as in Example 1, and the reaction rate was measured.
  • Table 1 shows the arrangement conditions of the water absorbing material 7a in Examples 1 to 4 and Comparative Examples 1 to 3, and the reaction rate of aluminum at the end of the steady state and at the end of the test.
  • FIG. 11 shows a relationship between the hydrogen generation rate in Example 1 and Comparative Example 1 and the elapsed time.
  • the water absorbing material 7a is disposed in the length portion of less than 15% on the hydrogen outlet 6 side as compared with Comparative Examples 2 to 3.
  • both the reaction rate of aluminum at the end of the steady state and at the end of the test decreased.
  • Example 4 was higher in any reaction rate than Example 1. . This is considered to be because water was able to penetrate a wider range into the unreacted aluminum powder in the center upper portion of the container 1 where the above-mentioned condensation phenomenon did not occur by arranging the water absorbing material 7b. It is done. As a result, the hydrogen generation efficiency is considered to have improved.
  • the hydrogen generator of the present invention can easily and efficiently produce hydrogen at a low temperature of 100 ° C. or lower. Hydrogen produced by the hydrogen generator of the present invention can be supplied to a fuel cell, and can be widely used as a fuel source for a fuel cell especially for small portable devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 本発明の水素発生装置は、水との発熱反応により水素を発生させる金属材料を含む水素発生材料を収納する容器を備え、前記容器は、前記容器の内部に水を供給するための水供給管と、前記容器内で発生した水素を前記容器の外部に導出するための水素導出口とを備え、前記水素導出口に対向する前記容器の壁面を基準面とし、前記容器の内部に配置された前記水供給管の先端である水供給口は、前記基準面の近傍に配置され、前記水供給管は、前記基準面の中央近傍から、前記基準面に対して垂直方向に伸びる垂直部分を含み、前記水供給管の前記垂直部分の外周には、吸水材が配置され、前記垂直部分の有効長さのうち、前記水素導出口側の15%以上の長さ部分には、前記吸水材が配置されていないことを特徴とする。

Description

水素発生装置
 本発明は、水と反応して水素を発生させる金属材料を用いる水素発生装置に関する。
 近年、パーソナルコンピューター、携帯電話等のコードレス機器の普及に伴い、その電源である二次電池は、ますます小型化、高容量化が要望されている。現在、エネルギー密度が高く、小型軽量化を図り得る二次電池としてリチウムイオン二次電池が実用化されており、ポータブル電源としての需要が増大している。しかし、使用されるコードレス機器の種類によっては、このリチウムイオン二次電池では未だ十分な連続使用時間を保証する程度までには至っていない。
 このような状況の中で、上記要望に応え得る電池の一例として、固体高分子型燃料電池が挙げられる。電解質に固体高分子電解質、正極活物質に空気中の酸素、負極活物質に燃料(水素、メタノール等)を用いる固体高分子型燃料電池は、リチウムイオン電池よりも高エネルギー密度化が期待できる電池として注目されている。
 燃料電池は、燃料及び酸素の供給さえ行えば連続的に使用することができるが、使用する燃料に関してはいくつかの候補が挙げられている。現在のところ候補となっている燃料には、それぞれ種々の問題点を有しており、最終的な決定が未だなされていない。
 燃料として水素を用いる燃料電池としては、例えば、高圧タンクあるいは水素吸蔵合金タンクに蓄えた水素を供給する方法が一部で実用化されているが、体積及び重量が大きくなりエネルギー密度が低下するため、ポータブル電源用途には適さないという欠点を有している。
 また、燃料電池の燃料として、炭化水素系燃料を用い、それを改質して水素を取り出す方法もあるが、改質装置が必要となり改質装置への熱の供給及び断熱等の問題があるため、やはりポータブル電源用途には不適である。この他、燃料としてメタノールを用い、直接電極でメタノールを燃料として反応させる直接メタノール型燃料電池もあり、これは小型化が容易で、将来のポータブル電源として期待されているが、負極のメタノールが固体電解質を透過して正極に達するクロスオーバーによる電圧の低下及びエネルギー密度の減少という問題がある。
 このような状況において、燃料電池の燃料源である水素を製造する方法として、水と、例えばアルミニウム、マグネシウム、ケイ素、亜鉛等の水素発生材料とを、100℃以下の低温で化学反応させて水素を発生させる方法が提案されている(例えば、特許文献1及び特許文献2参照。)。
 しかしながら、特許文献1に記載された方法によれば、酸化カルシウムをアルミニウムとの総量において15重量%以上添加しなければ、水素を発生させることができないばかりか、反応時間とともに水素発生速度が大きく変動し、水素発生反応の効率や安定性の点で大きな問題を生じることになる。
 また、特許文献2に記載された方法においても、水素発生反応を効率的に進行させるためには多量の添加剤を必要とし、効率的且つ安定的に水素を製造する方法を提供できるものではない。
 本発明者らは、特許文献1、2に記載の方法が抱える上記問題を回避すべく検討を重ね、水との発熱反応により水素を発生する水素発生材料を収容した容器の内部に水を供給する工程と、上記水と上記水素発生材料とを上記容器内で反応させて水素を発生させる工程とを含む水素の製造方法であって、上記水を供給する工程において、上記水の供給量を制御することにより、上記容器の内部を上記発熱反応が維持できる温度に保持し、水素発生速度の変動を抑制する技術を開発し、これを特許文献3で提案している。特許文献3に記載の技術であれば、水素発生反応を安定的に維持することができ、簡便で効率よく且つ安定的に水素を製造することができる。
 また、本発明者らは、さらに効率よく水素を発生させるため、水と反応して水素を発生させる金属材料と、水と反応して発熱する発熱材料であり上記金属材料以外の材料とを含む水素発生材料であって、上記発熱材料が、上記金属材料に偏在している水素発生材料と、その水素発生材料を用いた水素発生装置を開発し、これを特許文献4で提案している。
特開2004-231466号公報 特表2004-505879号公報 特開2007-45646号公報 国際公開第2007/018244号パンフレット
 しかしながら、特許文献3、4に開示の技術においても、水素発生効率の向上の上で、水素発生材料を収容した容器の構成について、未だ改良の余地があることが分った。
 本発明は上記事情に鑑みてなされたものであり、その目的は、簡便で効率よく水素を発生させ得る水素発生装置を提供するものである。
 本発明の水素発生装置は、水との発熱反応により水素を発生させる金属材料を含む水素発生材料を収納する容器を備えた水素発生装置であって、前記容器は、前記容器の内部に水を供給するための水供給管と、前記容器内で発生した水素を前記容器の外部に導出するための水素導出口とを備え、前記水素導出口に対向する前記容器の壁面を基準面とし、前記容器の内部に配置された前記水供給管の先端である水供給口は、前記基準面の近傍に配置され、前記水供給管は、前記基準面の中央近傍から、前記基準面に対して垂直方向に伸びる垂直部分を含み、前記水供給管の前記垂直部分の外周には、吸水材が配置され、前記垂直部分の有効長さのうち、前記水素導出口側の15%以上の長さ部分には、前記吸水材が配置されていないことを特徴とする。
 本発明によれば、簡便で効率よく水素を発生させ得る水素発生装置を提供することができる。
図1は、本発明の水素発生装置の一例である燃料カートリッジを示す模式断面図である。 図2は、図1のI-I線の矢視断面図である。 図3は、水供給管の外周に吸水材を配置せずに水素発生反応を行った燃料カートリッジの水素発生反応途中における模式断面図である。 図4は、実施例1で用いた燃料カートリッジの模式断面図である。 図5は、図4のII-II線の矢視断面図である。 図6は、実施例4で用いた燃料カートリッジの模式断面図である。 図7は、図6のIII-III線の矢視断面図である。 図8は、比較例1で用いた燃料カートリッジの模式断面図である。 図9は、図8のIV-IV線の矢視断面図である。 図10は、比較例3で用いた燃料カートリッジの模式断面図である。 図11は、実施例1及び比較例1における水素発生速度と、経過時間との関係を示す図である。
 本発明の水素発生装置で使用する金属材料は、主に、アルミニウム、ケイ素、亜鉛、マグネシウムといった金属やこれらの金属元素を主体とする合金で構成されており、各種の形状を有する粒子として用いるが、このような粒子は、一般に、上記金属や合金を金属状態で含有する粒子内部と、該粒子内部の少なくとも一部を被覆する表面皮膜(酸化皮膜)で構成されている。そして、このような金属材料と水との反応の際には、上記表面皮膜に水が浸透して、粒子内部の金属や合金にまで水が到達すると、水と金属材料とが反応して水素が発生する。
 例えば、上記金属材料の1つであるアルミニウムと水との反応は、下記式(1)~(3)のいずれかによって進行していると考えられる。下記式(1)による発熱量は、419kJ/molである。
      2Al+6HO→Al・3HO+3H  (1)
      2Al+4HO→Al・HO+3H   (2)
      2Al+3HO→Al+3H2        (3)
 このうち、100℃以下の低温で優先的に起こると考えられる上記式(1)及び(2)の反応では、反応生成物として水和物を生成する。この水和物も難水溶性であるので、そのまま金属材料の粒子表面に留まり、酸化皮膜が厚くなる。そして、粒子表面に留まった上記水和物と、未反応の金属材料とが凝結する現象が起こると考えられる。この現象によって、未反応の金属材料の粒子内部まで水が浸透しにくくなる。そのため、上記金属材料を含む水素発生材料を収容した容器内で前述の特許文献3及び特許文献4の技術を用いて水素を発生させる際、反応条件によっては、上記現象が起こりやすくなり、その結果、上記容器内で水素発生材料の不均一な反応が進行し、水素発生効率が悪くなるといった不都合が生じることがあった。
 ところが、本発明者らが鋭意検討を重ねた結果、上記のような現象が起こり得る水素発生材料と水とを用いて水素を発生させる水素発生装置の構造を改善することにより、水素発生量を増大させて、効率的な水素発生を可能とし得ることを見出し、本発明を完成させた。
 即ち、本発明の水素発生装置は、水との発熱反応により水素を発生させる金属材料を含む水素発生材料を収納する容器を備えた水素発生装置であって、上記容器は、上記容器の内部に水を供給するための水供給管と、上記容器内で発生した水素を上記容器の外部に導出するための水素導出口とを備え、上記水素導出口に対向する上記容器の壁面を基準面とし、上記容器の内部に配置された上記水供給管の先端である水供給口は、上記基準面の近傍に配置され、上記水供給管は、上記基準面の中央近傍から、上記基準面に対して垂直方向に伸びる垂直部分を含み、上記水供給管の上記垂直部分の外周には、吸水材が配置され、上記垂直部分の有効長さのうち、上記水素導出口側の15%以上の長さ部分には、上記吸水材が配置されていないことを特徴とする。
 上記本発明の水素発生装置を用いることにより、簡便で効率よく水素を発生させることができる。また、本明細書でいう「垂直部分の有効長さ」とは、上記垂直部分の外周に吸水材を配置しない場合における、上記垂直部分が上記水素発生材料と接する部分の、上記基準面に対する垂直方向の総長さをいう。
 以下、本発明の水素発生装置の一例を図面に基づき具体的に説明する。図1は、本発明の水素発生装置の一例である燃料カートリッジを示す模式断面図である。図2は、図1のI-I線の矢視断面図である。図1及び図2は、本発明の水素発生装置の一例を示すものであり、本発明の水素発生装置は、図1及び図2に示される構成のものに限定されるものではない。
 図1において、燃料カートリッジ100は、水素発生材料を収容可能な容器本体1aと、蓋1bとを備え、蓋1bには容器本体1aに水を供給する水供給管3と、水素を導出する水素導出管5とが設けられている。図1では水供給管3は、水平方向(図1の左右方向)に配置されているが、鉛直方向(図1の上下方向)に配置してもよい。また、図1では、水供給管3をL字状に形成したが、水供給管3の全体を直線状に形成してもよい。
 燃料カートリッジ100は、マイクロポンプ等のポンプ(図示せず。)を用いて、水供給管3の水供給口4を通じて容器1に水を供給し、容器1内において水素発生材料2と水とを反応させて水素を発生させる。よって、容器1は、水素発生材料2と水との反応容器としての役割も担っている。容器1で発生した水素は、水素導出口6から水素導出管5を経て、水素を必要とする燃料電池等の機器に供給される。
 容器1は、水素発生材料2を収納可能であれば、その材質や形状は特に限定されないが、水素発生材料2と水との水素発生反応を行う反応容器として用いられるので、水供給口4や水素導出口6以外から水や水素が漏れない材質や形状が好ましい。具体的な容器1の材質としては、水及び水素を透過しにくく、且つ100℃程度に加熱しても容器が破損しない材質が好ましく、例えば、アルミニウム、チタン、ニッケル、鉄等の金属、ポリエチレン、ポリプロピレン、ポリカーボネート等の樹脂を用いることができる。また、容器1の形状としては、角柱状、円柱状等が採用できる。
 水素導出口6は、水素を外部に導出できる構造であれば特に限定されず、例えば、蓋1bに形成された開口であってもよく、また、蓋1bに直接接続されたパイプ(図1の水素導出管5に該当する。)を水素導出口とするものであってもよい。水素導出口6には、フィルターを配置すれば、容器1の内容物が外に漏れ出さないのでより好ましい。このフィルターは、気体を通し液体及び固体を通しにくい構造であれば特に限定されず、例えば、多孔性のポリテトラフルオロエチレン(PTFE)製の気液分離膜、ポリプロピレン製の多孔質フィルム等を用いることができる。
 図1において、水素導出口6に対向する容器1の壁面を基準面とした場合、容器1の内部に配置された水供給管3の先端である水供給口4は、上記基準面の近傍に配置されている。ここで、本明細書でいう「基準面の近傍」とは、上記基準面からの垂直方向の距離が、水供給口4の最大外径の2倍以下の長さとなる範囲をいう。また、水供給管3は、上記基準面の中央近傍から、上記基準面に対して垂直方向に伸びる垂直部分を備えている。ここで、本明細書でいう「基準面の中央近傍」とは、上記基準面上の中心点からの平面距離が、水供給口4の最大外径の4倍以下の長さとなる範囲をいう。
 また、水供給管3は、後に詳述するが、水の供給量を制御できるポンプと接続されていれば、水の供給量を調節することによって、発生する水素の量を制御することができるのでより好ましい。
 また、水供給管3の上記垂直部分の外周には、吸水材7aが配置され、上記垂直部分の有効長さ(以下、単に有効長さという場合がある。)のうち、水素導出口6側の15%以上の長さ部分には、吸水材7aが配置されていない。また、上記有効長さのうち、水素導出口6側の19%以上69%以下の長さ部分には、吸水材7aが配置されていないことがより好ましい。
 吸収材7aを上記のように配置することによって、効率よく水素を発生させることができる。この理由の詳細は不明であるが、水供給管3の外周に吸水材7aを配置していない水素発生装置と比較して、考えられる理由を簡単に説明する。図3は、水供給管3の外周に吸水材を配置していない以外は、図1の燃料カートリッジ100と略同様の構成を有する燃料カートリッジを示す模式断面図である。図3において、図1と同一部分には同一の符号を付けてその詳しい説明は省略する。
 図3は、水供給管3の外周に吸水材を配置せずに水素発生反応を行った燃料カートリッジ100の水素発生反応の途中(定常状態終了時)における模式断面図を示す。図3の右側は容器1の基準面側、左側は水素導出口6側である。また、図3に示す模式断面図は、燃料カートリッジ100をX線CTで観察した結果に基づいて図示している。
 ここで、本明細書でいう「定常状態」とは、水素発生速度が最大値に達した後に、水素発生速度がほぼ一定となった状態をいう。
 図3から明らかなように、容器1の基準面の近傍に配置された水供給口4から水素発生反応が進行しているが、水供給口4が配置される水素発生材料2の右側から左側に向かって均一に反応が進行するのではなく、容器1の中央上部に未反応の水素発生材料2aが選択的に堆積し、この未反応の水素発生材料2aを取り囲むように反応後の水素発生材料2bが存在していることが分った。これは、前述したように、水素発生材料2に含まれる金属材料と水との反応の際に、金属材料の粒子表面に留まった反応生成物である水和物と、未反応の金属材料とが凝結する現象が、未反応の水素発生材料2aと反応後の水素発生材料2bとの境界部分(図3の太線部分)で起こり、その結果、未反応の水素発生材料2aに含まれる金属材料粉末の粒子内部への水の浸透が困難になったためではないかと推察される。
 一方、図1に示す本発明の水素発生装置では、上記凝結現象が、上記境界部分(図3の太線部分)で起こったとしても、水供給管3の外周に吸水材7aが配置されることによって、水が保持された吸水材7aが、容器1の中央上部内に位置し、且つその水が上記凝結現象が起こっていない未反応の金属材料粉末へ浸透するため、図3に示す未反応の水素発生材料2aにおいても効率よく反応が進行したものと推察される。
 吸水材7aの材質は、水を吸って保持することのできる材質であれば特に限定されるものではなく、一般には、脱脂綿、不織布、綿布、ガーゼ又はスポンジ等を用いることができる。
 吸水材7aは、上記垂直部分の有効長さの30%以上70%以下の長さ部分に、上記基準面側から配置されることが好ましく、より好ましくは40%以上60%以下の長さ部分に上記基準面側から配置される。吸水材7aが、上記基準面側から配置されることにより、容器本体1aの上記基準面の近傍に配置された水供給口4から供給される水が、水供給管3の外周に配置される吸水材7aへスムーズに浸透することができる。
 また、吸水材7aが、上記有効長さの30%未満の長さ部分に配置される場合、吸水材7aに保持された水が上記中央上部内に位置する上記凝結現象が起こっていない未反応の金属材料粉末へ浸透する効果が薄くなる。一方、吸水材7aが、上記有効長さの70%を超える長さ部分に配置される場合、吸水材7aによって、水素導出口6側への水の浸透が過度に進行することにより、上記基準面の近傍及び容器1の中央部分付近(図1のI-I線の断面付近)への水の浸透が困難となり、上記基準面の近傍及び容器1の中央部分付近に位置する水素発生材料2の反応が起こりにくくなる。
 図1に示した燃料カートリッジ100では、さらに、上記基準面側とは反対側に位置する吸水材7aの先端部から、水供給管3に対して垂直方向に、吸収材7bが伸びており、且つ吸収材7bは、容器1の壁面に接しないように配置されている。吸水材7bは、必ずしも必要ではないが、吸水材7bに保持された水が、上記中央上部内に位置する上記凝結現象が起こっていない未反応の金属材料粉末の広範囲に浸透することができるため、配置することが好ましい。ここで、吸水材7bは、容器1内の壁面に接して配置してもよいが、その場合、上記吸水材7bに保持された水が容器1の壁面を伝わってしまい、上記中央上部内に位置する上記凝結現象が起こっていない未反応の金属材料粉末に浸透する効果が薄れる可能性がある。そのため、吸水材7bは、容器1内の壁面に接しないように配置することがより好ましい。さらに、吸水材7bは、図1に示すように、容器本体1aの基準面が鉛直方向に設置される場合において配置することが好ましい。また、吸水材7bの材質は、水を吸って保持することのできる材質であれば特に限定されるものではなく、吸水材7aと同一の材料を用いることができる。
 図1に示した燃料カートリッジ100では、さらに、容器1の内部における水供給口4及び水素導出口6のそれぞれの先端部に、吸水材7c、7dが配置されている。吸水材7cあるいは7dは、必ずしも必要ではないが、水素発生反応による水の消費に応じて、吸水材7cあるいは7dに保持された水が水素発生材料2に供給され、水素発生速度の時間変動をある程度抑制することが可能となるので、配置するのが好ましい。さらには、吸水材7dは、水素発生反応の際に、水素発生材料2が水素導出口6から水素導出管5を経て、水素を必要とする燃料電池等の機器に流出することを防止するフィルターの役割も担うため、配置することが好ましい。吸水材7cあるいは7dの材質は、水を吸って保持することのできる材質であれば特に限定されるものではなく、吸水材7aと同一の材料を用いることができる。
 本発明の水素発生装置に使用される金属材料としては、水と反応して水素を発生させる材料であれば特に限定されないが、アルミニウム、ケイ素、亜鉛、マグネシウム及びこれらの元素を主体とする合金からなる群より選択される少なくとも1種が好適に使用できる。上記合金の主体となる元素以外の元素は特に限定されない。ここで、主体とは、合金全体に対して80質量%以上、より好ましくは90質量%以上含有されていることをいう。これらの金属材料は、常温では水と反応しにくいが、加熱することにより水との発熱反応が容易となる物質である。ここで、本明細書において「常温」とは、20~30℃の範囲の温度である。
 上記金属材料は、少なくとも常温以上に加温された状態において、水と反応して水素を発生させることができる。しかし、表面に安定な酸化皮膜が形成されるため、低温下、あるいは、板状、ブロック状等のバルクの形状では、水素を発生しない又は水素を発生し難い材料である。一方、上記酸化皮膜の存在により、空気中での取り扱いは容易である。
 上記金属材料は、その平均粒径によって特に限定されないが、その平均粒径が0.1μm以上100μm以下とすることが好ましく、0.1μm以上50μm以下がより好ましい。上記金属材料は、一般に、表面に安定な酸化皮膜が形成されている。そのため、板状、ブロック状及び粒径1mm以上のバルク状等の金属材料は、加熱しても水との反応が進行せず、実質的に水素を発生させない場合もある。しかし、上記金属材料の平均粒径を100μm以下とすると、酸化皮膜による水との反応抑制作用が減少し、常温では水と反応しにくいものの、加熱すれば水との反応性が高まり、水素発生反応が持続できるようになる。また、上記金属材料の平均粒径を50μm以下とすると、40℃程度の穏和な条件でも水と反応して水素を発生させることができる。
 また、上記金属材料の平均粒径が50μmを超える場合であっても、上記金属材料が鱗片状であり、且つその厚みが5μm以下である場合には、水との反応性を高めて、より効率よく水素を発生させることができ、特に上記金属材料の厚みが3μm以下の場合には、反応効率をより一層向上させることができる。
 一方、金属材料の平均粒径を0.1μm未満としたり、鱗片状の金属材料の厚みを0.1μm未満とすると、発火性が高くなって取り扱いが困難となったり、上記金属材料の充填密度が低下してエネルギー密度が低下しやすくなったりする。そのため、上記金属材料の平均粒径は、0.1μm以上とすることが好ましく、また、上記金属材料が鱗片状の場合には、その厚みは0.1μm以上であることが好ましい。
 ここで、本明細書でいう「平均粒径」は、体積基準の積算分率50%における粒子直径の値であるD50を意味する。平均粒径の測定方法としては、例えば、レーザー回折・散乱法等を用いることができる。具体的には、水等の液相に分散させた測定対象物質にレーザー光を照射することによって検出される散乱強度分布を利用した粒子径分布の測定方法である。レーザー回折・散乱法による粒子径分布測定装置としては、例えば、日機装(株)社製の“マイクロトラックHRA”等を用いることができる。
 また、本明細書において鱗片状の金属材料の厚みは、走査型電子顕微鏡(SEM)で観察することとする。
 また、上記金属材料の粒子形状も特に限定されないが、例えば、略球状(真球状を含む。)やラグビーボール状の他、前述の鱗片状のものなどが挙げられる。略球状やラグビーボール状等の場合には前述の平均粒径を満足するものが好ましく、鱗片状の場合には前述の厚みを満足するものが好ましい。また、鱗片状の金属材料の場合には、前述の平均粒径も満足していることがより好ましい。
 さらに、上記金属材料に、親水性酸化物、炭素及び吸水性高分子からなる群より選ばれる少なくとも1つの物質(以下、添加剤という。)を添加すれば、金属材料と水との反応を促進させることができるので好ましい。上記親水性酸化物としては、アルミナ、シリカ、マグネシア、ジルコニア、ゼオライト、酸化亜鉛等が使用できる。
 水と金属材料との発熱反応を容易に開始させるために、使用される水素発生材料は、上記金属材料以外の材料であって水と反応して発熱する発熱材料を含むことが好ましい。
 上記発熱材料は、水と発熱反応して水酸化物や水和物となる材料、水と発熱反応して水素を生成する材料等を用いることができる。上記発熱材料のうち、水と反応して水酸化物や水和物となる材料としては、例えばアルカリ金属の酸化物(例えば、酸化リチウム等。)、アルカリ土類金属の酸化物(例えば、酸化カルシウム、酸化マグネシウム等。)、アルカリ土類金属の塩化物(例えば、塩化カルシウム、塩化マグネシウム等。)、アルカリ土類金属の硫酸化合物(例えば、硫酸カルシウム等。)等を用いることができる。上記水と反応して水素を生成する材料としては、例えば、アルカリ金属(例えば、リチウム、ナトリウム等。)、アルカリ金属水素化物(例えば、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化リチウム等。)等を用いることができる。これらの材料は、単独で使用してもよく、2種以上を併用してもよい。
 また、発熱材料が塩基性材料であれば、水素発生反応に用いられる水に溶解して、高濃度のアルカリ水溶液を生成するので、上記金属材料の表面に形成された酸化皮膜を溶解させ、水との反応性を大きくすることができるので好ましい。この酸化皮膜を溶解する反応は、金属材料と水との反応の起点となることもある。特に、発熱材料がアルカリ土類金属の酸化物であれば、塩基性材料であり且つ取り扱いが容易であるのでより好ましい。
 上記発熱材料としては、水以外の物質と常温で発熱反応を生じる材料、例えば、鉄粉のように酸素と反応して発熱する材料も知られている。しかし、水素発生材料が、上記酸素と反応する材料と、上記水素発生源となる金属材料とを含む場合、反応のために必要とされる酸素は、同時に、金属材料から発生する水素の純度を低下させたり、金属材料を酸化させて水素発生量を低下させたりするなどの問題を生じることがある。このため、本発明においては、発熱材料としては、前述のとおり、水と反応して発熱するアルカリ土類金属の酸化物等を用いるのが好ましい。また、同様の理由から、水素発生材料に含まれる発熱材料は、反応時に水素以外の気体を生成しないものが好ましい。
 上記水素発生材料全体中における上記金属材料の含有率は、より多くの水素を発生させる観点から、好ましくは85質量%以上、より好ましくは90質量%以上であり、また、発熱材料の併用による効果をより確実にする観点から、好ましくは99質量%以下、より好ましくは97質量%以下である。また、水素発生材料全体中における発熱材料の含有率は、好ましくは1質量%以上、より好ましくは3質量%以上であって、好ましくは15質量%以下、より好ましくは10質量%以下である。
 上記発熱材料を含有する水素発生材料は、上記金属材料と上記発熱材料を混合することにより得ることができる。金属材料と発熱材料との混合の際には、金属材料のみが1mm以上の凝集体にならないようにすることが好ましい。例えば、金属材料と発熱材料を撹拌混合することにより、金属材料が凝集するのを抑制しつつ、水素発生材料を作製することができる。また、金属材料の表面に発熱材料をコーティングして複合化し、水素発生材料としてもよい。
 また、水素発生材料と水との反応を容易に開始させるために、水素発生材料及び水の少なくとも一方を加熱することが望ましく、容器1の内部への水の供給と加熱とを同時に行ってもよい。
 上記水素発生材料及び上記水の少なくとも一方を加熱する温度は、40℃以上90℃未満が好ましく、40℃以上70℃以下がより好ましい。この発熱反応を維持できる温度は、前述のとおり通常は40℃以上であり、一旦発熱反応が開始して水素が発生すると、容器の内圧が上昇して水の沸点が上昇することもあり、容器内温度が120℃程度に達することもあるが、水素発生速度の制御の点から上述の範囲の温度域において加熱することが好ましい。
 水素発生材料が上記発熱材料を含む場合、上記加熱は反応の開始時にのみ行えばよい。一旦、水と水素発生材料との発熱反応が開始されると、その発熱反応の熱によりその後の反応を継続できるからである。
 上記加熱の方法は特に限定されないが、抵抗体に通電することによる発熱を利用して加熱することができる。例えば図1に示すように、抵抗体9を容器1の外部に取り付けて発熱させ、容器1を外部から加熱することにより、水素発生材料2及び水の少なくとも一方を加熱することができる。上記抵抗体の種類については特に限定されず、例えば、ニクロム線、白金線等の金属発熱体、炭化ケイ素、PTCサーミスタ等が使用できる。
 また、上記加熱は、発熱材料の化学反応による発熱により行うこともできる。発熱材料を容器の外部に配置して発熱させ、容器を外部から加熱することにより、水素発生材料及び水の少なくとも一方を加熱することができる。この発熱材料としても、前述の水と発熱反応する材料を用いることができる。
 また、上記加熱は、水以外の物質と発熱反応する材料、例えば、鉄粉のように酸素と発熱反応する材料による発熱により行うこともできる。この材料は、発熱反応のために酸素を導入しなければならいため、容器の外部に配置して使用される。
 上記発熱材料を含有する水素発生材料を容器本体1aに収容し、これに水を供給して加熱する場合には、発熱材料は金属材料と均一又は不均一に分散・混合させた混合物として用いてもよいが、容器本体1a内において、上記水素発生材料全体中における上記発熱材料の平均含有率よりも上記発熱材料の含有率が高い偏在部を設けることがより好ましく、容器本体1a内部の水供給管3の水供給口4の近傍に上記偏在部を配置することが特に好ましい。容器本体1aの内部において、発熱材料をこのように偏在させることにより、水を供給し始めてから金属材料が加温されるまでの時間をより短くして、より迅速な水素発生を可能とすることができる。
 容器1の内部の水供給口4の近傍に上記偏在部を配置するには、水供給口4の近傍に発熱材料だけを配置する他、予め発熱材料の含有率の異なる2種以上の、金属材料と発熱材料との単位組成物を調製しておき、水供給口4の近傍には発熱材料の含有率の最も高い単位組成物を配置し、その他の部分には発熱材料の含有率の低い単位組成物を配置することもできる。
 また、本発明の水素発生装置では、水素発生材料2を収容する容器1の内部に水を供給する水供給部と、上記水の供給量を制御する水供給量制御部とを備えていることが好ましい。水の供給量を制御することにより、容器1の内部を発熱反応が維持できる温度に保持できる。これにより、水と水素発生材料との発熱反応を安定して継続でき、簡便で効率よく、且つ安定的に水素を製造できる。水の供給量の制御は、水の供給速度を制御することにより行うことが好ましい。
 上記発熱反応が維持できる温度は、通常は40℃以上であり、一旦発熱反応が開始して水素が発生すると、容器1の内圧が上昇して水の沸点が上昇することもあり、容器1内温度が120℃程度に達することもあるが、水素発生速度の制御の点から100℃以下とすることが好ましい。
 上記水供給部としては特に限定されず、水供給管、水供給口等を容器1に設ければよい。また、上記水供給部には、ポンプ等を接続することもできる。
 上記水供給量制御部としては、水の供給量(供給速度)を正確に制御できるものであれば特に限定されず、例えば、チューブポンプ、ダイヤフラムポンプあるいはシリンジポンプ等が用いられる。また、水の供給速度が異なる少なくとも2系統の水の供給経路を備えることにより、水の供給量を調整することもでき、例えば、それぞれの経路の内径を適宜調整することにより、少なくとも2種類の供給速度を実現することができる。
 容器1の外部には、さらに保温材8を配置することが好ましい。これにより、水と金属材料との発熱反応を維持できる温度を保持しやすくなり、また、外気温の影響も受けにくくなる。保温材8の材質は、断熱性が高い材質であれば特に限定されず、例えば、発泡スチロール、ポリウレタンフォーム、発泡ネオプレンゴム等の多孔性断熱材、あるいは真空断熱構造を有する断熱材等を用いることができる。
 さらに、本発明の水素発生装置には、圧力逃がし弁を設けることが好ましい。例えば、水素発生速度が増大して、装置の内圧が上昇した場合でも、圧力逃がし弁から水素を装置外に排出することにより、装置の破損を防止することができる。圧力逃がし弁の設置箇所は、水素発生材料2を収容した容器1内で発生した水素が排出できる箇所であれば特に限定されない。例えば図1に示す装置であれば、水素導出管5から、水素を必要とする機器(図示せず。)までの間のいずれかの箇所に圧力逃がし弁を設ければよい。
 以上に説明した本発明の水素発生装置によれば、条件により変化するものの、例えば、金属材料が全て反応したと仮定したときの理論水素発生量(アルミニウムの場合は、1gあたりの理論水素発生量は、25℃換算で約1360mlとなる。)に対し、実際に得られる水素発生量は、およそ60%以上、より好ましくは80%以上となり、効率的に水素を発生させることが可能となる。
 以下、実施例を用いて本発明をより具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。
 (実施例1)
 図4に示した本発明の水素発生装置の一例を示す燃料カートリッジ100を用いて以下の通り水素を製造した。図5は、図4のII-II線の矢視断面図である。図4及び図5では、図1及び図2と同一部分には同一の符号を付けてその詳細な説明は省略する。後述する図6~10も同様である。
 金属材料として平均粒径6μmのアルミニウム粉末1.0gと、発熱材料として平均粒径3μmの酸化カルシウム粉末1.0gとを乳鉢で混合して、水素発生材料Aを作製した。また、金属材料として上記アルミニウム粉末98.5gと、発熱材料として上記酸化カルシウム粉末12.5gとを乳鉢で混合して、水素発生材料Bを作製した。
 次に、ポリエチレン製の容器1(縦51mm、横51mm、高さ105mm、内容積165cm)の内部に、水素発生材料A(図4中、2c)2gと、水素発生材料B(図4中、2d)111.0gとを、図4に示したように傾斜させて充填した。さらに、水素発生材料Bの上に、吸水材7dとして脱脂綿を0.4g入れた。
 次に、水を供給するためのアルミニウム製の水供給管3(内径2mm、外径3mm)を図4に示したように、水供給管3の外周に、前述の有効長さの50%に渡って、吸水材7aとして厚さ2mmの脱脂綿を配置した。また、水供給管3の水供給口4の先端には吸水材7cとして脱脂綿を0.1g配置し、水供給口4を水素発生材料Aの近傍になるように配置して、水素を導出させるアルミニウム製の水素導出管5(内径3mm、外径4mm)を備えたシリコン栓で蓋をし、水素発生材料A、Bを内部に充填した容器1を得た。そして、容器1の側面に、容器1の表面温度を検出するための温度センサ(図示せず。)を取り付けた。また、図4に示したように、容器1の外周を包むように厚み5mmの発泡スチロール製の保温材8を設置した。
 次に、水供給管3の容器1側とは反対側の先端に、水素発生材料A及びBに水を供給するためのポンプ(図示せず。)を設置した。即ち、上記ポンプを用いて水収容容器(図示せず。)から水を供給することによって、先ず、水と水素発生材料Aに含まれる発熱材料(酸化カルシウム粉末)とが発熱反応し、続いて、水と水素発生材料A及びBに含まれる金属材料(アルミニウム粉末)とが水素発生反応を開始することとなる。
 続いて、上記ポンプから純水を0.8ml/minの速度で送り出し、その後、容器1の温度が60℃を超えた以降は2.5ml/minの速度で純水を送り出し、燃料カートリッジ100の内部に水を供給することによって、水素発生材料2と水とを反応させて水素を発生させた。25℃において、水素が発生しなくなるまで水を供給し、水素導出管5から水素を導出させた。生成した水素は塩化カルシウム管を経由させて含有水分を除去した。そして、マスフローメータ(コフロック製)によって、定常状態終了時及び試験終了時におけるアルミニウムの反応率を求めた。ポンプにより供給される水が、水供給管3の先端(水供給口4)に到達した時間を試験開始とし、マスフローメータにより計測される瞬間水素発生速度が、5ml/min未満を60分以上持続した時間を試験終了とした。
 上記反応率は、金属材料が全て反応したと仮定したときの理論水素発生量(例えば、アルミニウムの場合は、1gあたりの理論水素発生量は、25℃換算で約1360mlとなる。)に対する、実際に得られる水素発生量の比率として求めた。また、上記反応率は、マスフローメータで算出される積算水素発生量から求めた。
 (実施例2~3)
 表1に示す配置条件により、水供給管3の外周に、吸水材7aとして脱脂綿を配置させた以外は、実施例1と同様にして水素発生装置を作製した。続いて、実施例1と同様にして水素を発生させ、反応率を測定した。
 (実施例4)
 図6及び図7に示すように、吸水材7bとして脱脂綿を0.2g配置させた以外は、実施例1と同様にして水素発生装置を作製した。即ち、図6及び図7では、前述の基準面側とは反対側に位置する吸水材7aの先端部から上部に位置する容器1の壁面に向けて、吸収材7bがさらに伸びており、且つ吸収材7bは上記壁面に接していない。続いて、実施例1と同様にして水素を発生させ、反応率を測定した。なお、図6は、本実施例で用いた燃料カートリッジの模式断面図であり、図7は、図6のIII-III線の矢視断面図である。
 (比較例1)
 図8及び図9に示すように、水供給管3の外周に吸水材を配置させない以外は、実施例1と同様にして水素発生装置を作製した。続いて、実施例1と同様にして水素を発生させ、反応率を測定した。なお、図8は、本比較例で用いた燃料カートリッジの模式断面図であり、図9は、図8のIV-IV線の矢視断面図である。
 (比較例2)
 表1に示す配置条件により、水供給管3の外周に、吸水材7aとして脱脂綿を配置させた以外は、実施例1と同様にして水素発生装置を作製した。続いて、実施例1と同様にして水素を発生させ、反応率を測定した。
 (比較例3)
 図10に示すように、水供給管3の垂直部分の全外周に、吸水材7aとして脱脂綿を配置させた以外は、実施例1と同様にして水素発生装置を作製した。続いて、実施例1と同様にして水素を発生させ、反応率を測定した。
 実施例1~4及び比較例1~3における吸水材7aの配置条件、定常状態終了時及び試験終了時におけるアルミニウムの反応率を表1に示す。また、図11に、実施例1及び比較例1における水素発生速度と、経過時間との関係を示す図を示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~3の場合、最終的に約80%の反応率で、且つ、定常状態終了時においては約50%以上の反応率で水素を発生させることができた。特に、実施例1の場合には、最終的に81%の反応率で、且つ、定常状態終了時において56%の高い反応率が得られ、安定して効率よく水素を発生させることができた。一方、吸水材7aを配置しなかった比較例1の場合は、実施例1~3の場合に比べて、定常状態終了時及び試験終了時におけるアルミニウムの反応率がともに低下した。特に、図11から、定常状態終了後における反応率が顕著に低下したことが分かる。これは、水供給管3の外周に吸水材が配置されていないことによって、アルミニウム粉末と水との反応の際に粒子表面に留まった反応生成物であるアルミナ水和物と、未反応のアルミニウム粉末とが凝結する現象が、図3のように未反応の水素発生材料2aと反応後の水素発生材料2bとの境界部分で起こり、上記未反応のアルミニウム粉末の粒子内部への水の浸透が困難になったからと考えられる。その結果、水素発生効率が悪くなったと考えられる。
 また、容器1の基準面から垂直方向に伸びる水供給管3の有効長さのうち、水素導出口6側の15%未満の長さ部分においても吸水材7aを配置した比較例2~3の場合、実施例1~3の場合に比べて、定常状態終了時及び試験終了時におけるアルミニウムの反応率がともに低下した。特に、表1から、定常状態終了時における反応率が顕著に低下したことが分かる。これは、水供給管3の外周に配置される吸水材7aが、水供給管3の有効長さのうち、水素導出口6側の15%未満の水供給管3においても配置される場合、水素導出口6側への水の浸透が過度に進行することにより、基準面の近傍及び容器1の中央近傍への水の浸透が困難となり、上記基準面の近傍及び容器1の中央近傍に位置する水素発生材料2の反応が起こりにくくなったためと考えられる。
 実施例1及び実施例4について、定常状態終了時及び試験終了時におけるアルミニウムの反応率を比較すると、実施例1に比べて、実施例4の方がいずれの反応率においても高いことが分かった。これは、吸水材7bが配置されることによって、容器1の中央上部内に位置する前述の凝結現象が起こっていない未反応のアルミニウム粉末に、水がより広範囲に浸透することができたためと考えられる。その結果、水素発生効率が向上したと考えられる。
 本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、これらに限定はされない。本発明の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。
 以上のように本発明の水素発生装置は、100℃以下の低温において、簡便で効率よく水素を製造できる。本発明の水素発生装置により製造した水素は、燃料電池に供給でき、特に小型携帯機器用の燃料電池の燃料源として幅広く利用可能である。

Claims (14)

  1.  水との発熱反応により水素を発生させる金属材料を含む水素発生材料を収納する容器を備えた水素発生装置であって、
     前記容器は、前記容器の内部に水を供給するための水供給管と、前記容器内で発生した水素を前記容器の外部に導出するための水素導出口とを備え、
     前記水素導出口に対向する前記容器の壁面を基準面とし、
     前記容器の内部に配置された前記水供給管の先端である水供給口は、前記基準面の近傍に配置され、
     前記水供給管は、前記基準面の中央近傍から、前記基準面に対して垂直方向に伸びる垂直部分を含み、
     前記水供給管の前記垂直部分の外周には、吸水材が配置され、
     前記垂直部分の有効長さのうち、前記水素導出口側の15%以上の長さ部分には、前記吸水材が配置されていないことを特徴とする水素発生装置。
  2.  前記吸水材は、前記垂直部分の有効長さの30%以上70%以下の長さ部分に、前記基準面側から配置されている請求項1に記載の水素発生装置。
  3.  前記基準面側とは反対側に位置する前記吸水材の先端部から、前記水供給管に対して垂直方向に、前記吸収材がさらに伸びており、且つ前記吸収材は、前記容器の壁面に接していない請求項1に記載の水素発生装置。
  4.  前記水供給口及び前記水素導出口のそれぞれの先端部に、前記吸水材がさらに配置されている請求項1に記載の水素発生装置。
  5.  前記吸水材は、脱脂綿、不織布、綿布、ガーゼ及びスポンジからなる群より選択されたいずれか1種である請求項1に記載の水素発生装置。
  6.  前記金属材料は、アルミニウム、ケイ素、亜鉛、マグネシウム及びこれらの元素を主体とする合金からなる群より選択された少なくとも1種である請求項1に記載の水素発生装置。
  7.  前記水素発生材料は、前記金属材料以外の材料であって水と反応して発熱する発熱材料をさらに含む請求項1に記載の水素発生装置。
  8.  前記発熱材料は、酸化カルシウム、酸化マグネシウム、塩化カルシウム、塩化マグネシウム及び硫酸カルシウムからなる群より選択された少なくとも1種である請求項7に記載の水素発生装置。
  9.  前記水素発生材料は、前記水素発生材料全体中における前記発熱材料の平均含有率よりも前記発熱材料の含有率が高い偏在部を有する請求項7に記載の水素発生装置。
  10.  前記容器内に水が供給される際に、前記偏在部に最初に水が供給されるように、前記水素発生材料を配置している請求項9に記載の水素発生装置。
  11.  前記水素発生材料は、前記発熱材料の含有率の異なる2種以上の単位組成物を含む請求項7に記載の水素発生装置。
  12.  前記容器内に水が供給される際に、前記単位組成物のうち前記発熱材料の含有率が最も高い単位組成物に最初に水が供給されるように、前記水素発生材料を配置している請求項11に記載の水素発生装置。
  13.  前記容器の内部に水を供給する水供給部と、前記水の供給量を制御する水供給量制御部とをさらに備える請求項1に記載の水素発生装置。
  14.  前記容器の外部に保温材をさらに配置した請求項1に記載の水素発生装置。
PCT/JP2009/053687 2008-02-27 2009-02-27 水素発生装置 WO2009107779A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010500770A JPWO2009107779A1 (ja) 2008-02-27 2009-02-27 水素発生装置
US12/919,713 US20110008216A1 (en) 2008-02-27 2009-02-27 Hydrogen generator
CN2009801063109A CN101959791A (zh) 2008-02-27 2009-02-27 氢产生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008046309 2008-02-27
JP2008-046309 2008-02-27

Publications (1)

Publication Number Publication Date
WO2009107779A1 true WO2009107779A1 (ja) 2009-09-03

Family

ID=41016164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053687 WO2009107779A1 (ja) 2008-02-27 2009-02-27 水素発生装置

Country Status (5)

Country Link
US (1) US20110008216A1 (ja)
JP (1) JPWO2009107779A1 (ja)
KR (1) KR20100126419A (ja)
CN (1) CN101959791A (ja)
WO (1) WO2009107779A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120189929A1 (en) * 2011-01-21 2012-07-26 Semiconductor Energy Laboratory Co., Ltd. Hydrogen generating element, hydrogen generation device, power generation device, and driving device
JP2017047347A (ja) * 2015-08-31 2017-03-09 幸信 森 水素水の生成方法及び水素水を生成するペットボトル

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE540499C2 (en) * 2016-01-05 2018-09-25 Myfc Ab Distribution of reactant solution in a fuel cartridge
US11383975B2 (en) 2020-05-25 2022-07-12 Silican Inc. Composite for generating hydrogen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280890A (ja) * 1991-03-06 1992-10-06 Japan Steel Works Ltd:The 水素発生火薬
JPH08109003A (ja) * 1994-10-11 1996-04-30 Japan Steel Works Ltd:The 高純度水素発生方法及び薬莢
WO2007018244A1 (ja) * 2005-08-11 2007-02-15 Hitachi Maxell, Ltd. 水素発生材料及び水素発生装置
JP2007045646A (ja) * 2005-08-08 2007-02-22 Hitachi Maxell Ltd 水素の製造方法及び水素の製造装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2235644A (en) * 1937-03-09 1941-03-18 Richardson Edward Adams Process and apparatus for effecting chemical reactions involving a melt and a gaslike body
US5688611A (en) * 1994-06-27 1997-11-18 Ergenics, Inc. Segmented hydride battery including an improved hydrogen storage means
US6582676B2 (en) * 2000-08-14 2003-06-24 The University Of British Columbia Hydrogen generation from water split reaction
US6440385B1 (en) * 2000-08-14 2002-08-27 The University Of British Columbia Hydrogen generation from water split reaction
JP4276854B2 (ja) * 2003-01-30 2009-06-10 ウチヤ・サーモスタット株式会社 水素発生材料、水素発生方法及び水素発生装置
JP2007501178A (ja) * 2003-07-23 2007-01-25 ハイラディックス,インク. 水素発生装置操作方法
US7481858B2 (en) * 2005-02-25 2009-01-27 Societe Bic Hydrogen generating fuel cell cartridges
US20070020174A1 (en) * 2005-07-25 2007-01-25 Jianguo Xu Method for generating hydrogen gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280890A (ja) * 1991-03-06 1992-10-06 Japan Steel Works Ltd:The 水素発生火薬
JPH08109003A (ja) * 1994-10-11 1996-04-30 Japan Steel Works Ltd:The 高純度水素発生方法及び薬莢
JP2007045646A (ja) * 2005-08-08 2007-02-22 Hitachi Maxell Ltd 水素の製造方法及び水素の製造装置
WO2007018244A1 (ja) * 2005-08-11 2007-02-15 Hitachi Maxell, Ltd. 水素発生材料及び水素発生装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120189929A1 (en) * 2011-01-21 2012-07-26 Semiconductor Energy Laboratory Co., Ltd. Hydrogen generating element, hydrogen generation device, power generation device, and driving device
KR20120085190A (ko) * 2011-01-21 2012-07-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 수소 발생체, 수소 발생 장치, 발전 장치 및 구동 장치
US8821601B2 (en) * 2011-01-21 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Hydrogen generating element, hydrogen generation device, power generation device, and driving device
JP2017047347A (ja) * 2015-08-31 2017-03-09 幸信 森 水素水の生成方法及び水素水を生成するペットボトル

Also Published As

Publication number Publication date
KR20100126419A (ko) 2010-12-01
JPWO2009107779A1 (ja) 2011-07-07
US20110008216A1 (en) 2011-01-13
CN101959791A (zh) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4947718B2 (ja) 水素発生材料及び水素発生装置
JP5791585B2 (ja) 水素発生燃料電池カートリッジ
US8021793B2 (en) Hydrogen producing apparatus and fuel cell system using the same
JP5781940B2 (ja) エアロゲル触媒を伴う水素発生装置
JP4761248B2 (ja) 水素発生材料および水素発生材料の製造方法
JPWO2009031578A1 (ja) 水素発生材料組成物、水素発生材料成形体及び水素の製造方法
JP2004231466A (ja) 水素発生材料、水素発生方法及び水素発生装置
WO2009107779A1 (ja) 水素発生装置
JP2007326742A (ja) 水素製造方法
JP2007326731A (ja) 水素製造方法
JP4574487B2 (ja) 水素の製造方法及び水素の製造装置並びに電源
JP2011121826A (ja) 水素の製造方法及び水素の製造装置、並びに燃料電池システム
US20080090116A1 (en) Hydrogen producing apparatus, fuel cell system and electronic equipment
JP2006273609A (ja) 水素発生装置およびそれを用いた燃料電池
WO2008047632A1 (fr) Système de batterie de piles à combustible de type à méthanol direct et équipement électronique portable
JP2009203103A (ja) 水素発生装置
JP2010265137A (ja) 水素製造方法および水素製造装置
JP2007290888A (ja) 水素の製造方法
JP2012017219A (ja) 水素製造装置
JP2010058992A (ja) 水素製造装置および燃料電池システム
JP2007317496A (ja) 燃料電池発電システム
JP2010001188A (ja) 水素製造装置及び燃料電池
JP2009298607A (ja) 水素製造方法および水素製造装置、ならびに燃料電池システム
JP2009190935A (ja) 水素の製造方法及び水素の製造装置
JP2010235391A (ja) 水素の製造方法及び水素の製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106310.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713963

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010500770

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107021077

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12919713

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09713963

Country of ref document: EP

Kind code of ref document: A1