WO2007014868A1 - Verfahren zur herstellung von kornorientiertem elektroband - Google Patents

Verfahren zur herstellung von kornorientiertem elektroband Download PDF

Info

Publication number
WO2007014868A1
WO2007014868A1 PCT/EP2006/064480 EP2006064480W WO2007014868A1 WO 2007014868 A1 WO2007014868 A1 WO 2007014868A1 EP 2006064480 W EP2006064480 W EP 2006064480W WO 2007014868 A1 WO2007014868 A1 WO 2007014868A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
hot
cold
annealing
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2006/064480
Other languages
German (de)
English (en)
French (fr)
Inventor
Klaus Günther
Ludger Lahn
Andreas Ploch
Eberhard Sowka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35520090&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007014868(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to MX2008001475A priority Critical patent/MX2008001475A/es
Priority to US11/997,670 priority patent/US8088229B2/en
Priority to AU2006274901A priority patent/AU2006274901B2/en
Priority to BRPI0614379-2A priority patent/BRPI0614379B1/pt
Priority to KR1020087005312A priority patent/KR101365653B1/ko
Application filed by ThyssenKrupp Steel AG filed Critical ThyssenKrupp Steel AG
Priority to JP2008524481A priority patent/JP2009503265A/ja
Priority to CN2006800288008A priority patent/CN101238227B/zh
Priority to CA2615586A priority patent/CA2615586C/en
Publication of WO2007014868A1 publication Critical patent/WO2007014868A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling

Definitions

  • the invention relates to a method for the production of high-quality grain-oriented electrical steel, in particular for the production of so-called HGO material (Highly Grain O ⁇ ented - material) based on thin slab continuous casting.
  • HGO material Highly Grain O ⁇ ented - material
  • JP 2002212639 A describes a process for the production of grain-oriented electrical steel in which a melt which contains (in% by mass) in addition to 2.5-4.0% Si and 0.02-0.20% Mn significant inhibitor components 0.0010 - 0.0050% C, 0.002 - 0.010% Al and levels of S and Se and other optional alloying constituents, such as Cu, Sn, Sb, P, Cr, Ni, Mo and Cd, balance iron and unavoidable impurities, comprises, thin slabs having a thickness of 30 mm to 140 mm are produced.
  • the thin slabs are annealed prior to hot rolling at a temperature of 1000 0 C to 1250 0 C, in order to achieve optimum magnetic properties of the finished electrical steel.
  • the known method provides that the hot rolled 1.0 mm to 4.5 mm thick strip is annealed after hot rolling at temperatures of 950 0 C to 1150 0 C for 30 sec to 600 sec before it at degrees of deformation of 50% to 85% is rolled to cold strip.
  • CGO material Conventional Grain Oriented - material
  • JP 56-158816 A Another method for the production of grain-oriented electrical steel, which, however, relates only to the production of standard grades, so-called CGO material (Conventional Grain Oriented - material), is known from JP 56-158816 A.
  • the hot rolling of these thin slabs is started before their temperature drops below 700 0 C. In the course of the hot rolling, the thin slabs are rolled to a hot strip with a thickness of 1.5 - 3 mm.
  • the thin slabs are rolled to hot strip with a thickness of 1.5 - 3.5 mm.
  • This hot strip thickness has the disadvantage here that the commercial for grain-oriented electrical sheet standard end thicknesses below 0.35 mm only by Kaltwalzgrade above 76% in single-stage cold rolling or conventional multi-stage cold rolling can be produced with intermediate annealing, which is disadvantageous in this operation that the high degree of cold work is not matched to the relatively weak inhibition by MnS and MnSe. This leads to unstable and unsatisfactory magnetic properties of the finished product.
  • a complex and expensive multi-stage cold rolling process with intermediate annealing must be accepted.
  • the hot rolling parameters must be selected such that the material always remains enough ductile remains.
  • ductility for bulk material for grain-oriented electrical sheet the ductility is greatest when the strand is cooled after solidification to about 800 0 C, then only a relatively short time to compensation temperature, eg. B. 1150 0 C, dwells while being thoroughly heated through.
  • An optimal hot rollability of such a material is therefore given when the first forming pass at temperatures below 1150 0 C and with a degree of deformation of at least 20% and the rolling stock from an intermediate thickness of 40 mm to 8 mm by means of high-pressure inter-frame cooling devices within of not more than two successive Umststichen is brought to rolling temperatures of below 1000 0 C. This avoids that the rolling stock in the critical temperature range for ductility around 1000 0 C is formed.
  • the hot strip thus obtained is then cold rolled one or more stages with recrystallizing intermediate annealing to a final thickness in the range of 0.15 to 0.50 mm.
  • This cold strip is finally recrystallized and decarburizing annealed, provided with a predominantly MgO containing Glühseparator and then final annealing to the expression of a Gosstextur.
  • the tape is coated with electrical insulation and annealed stress-free.
  • the ladle furnace In this unit, the molten steel for the thin slab caster is provided and set by heating the desired dispensing temperature for potting. In addition, in the ladle furnace, the final adjustment of the chemical composition of the steel in question can be made by adding alloying elements. In addition, the slag is usually conditioned in the ladle furnace. In the processing of aluminum-killed steels, additional small amounts of Ca are added to the molten steel in the ladle furnace in order to ensure the castability of these steels.
  • the preparation of grain oriented electrical steel also requires a high accuracy adjustment of the chemical target analysis, i. the setting of the contents of the individual elements must be very closely matched, so that depending on the selected absolute content, the boundaries of some elements are very narrow.
  • the treatment in the ladle furnace reaches its limits.
  • the invention therefore an object of the invention to provide a method that allows the economical production of high-quality grain-oriented electrical steel sheet (especially HGO) using thin slab continuous casting plants.
  • m) optionally: coating the final annealed cold-rolled strip with electrical insulation and then stress-relieving the coated cold-rolled strip.
  • the predetermined by the invention sequence of operations is tuned so that, using conventional aggregates, an electrical sheet can be produced which has optimized electro-magnetic properties.
  • a molten steel is melted with known composition in the first step.
  • This melt is then treated by secondary metallurgy.
  • This treatment is preferably first carried out in a vacuum plant to adjust the chemical composition of the steel to the required narrow analytical margins and to achieve low hydrogen contents of at most 10 ppm in order to minimize the risk of strand breakage during casting of molten steel.
  • the use of a ladle furnace for slag conditioning would also first be followed by treatment in a vacuum system for adjusting the chemical composition of the molten steel within narrow analytical limits.
  • this combination has the disadvantage that, in the case of casting delays, the temperature of the melt drops to such an extent that the molten steel can no longer be cast.
  • this has the disadvantage that the analysis accuracy is not as good as in the treatment in a vacuum system and also high hydrogen contents in the casting melt can occur with the risk of strand breakthroughs.
  • the invention further, only use the vacuum system. On the one hand, however, this involves the risk that, in the case of casting delays, the temperature of the melt drops to such an extent that the molten steel can no longer be cast. On the other hand, there is a risk that the immersion spouts clog in the sequence and thus the sequence must be canceled.
  • both systems are thus used in combination with the availability of ladle furnace and vacuum system depending on the respective melting metallurgical and casting requirements.
  • a strand is then poured, which preferably has a thickness of 25 mm to 150 mm.
  • the molten steel is poured in a continuous casting mold, which is equipped with an electromagnetic brake, such errors can be largely avoided.
  • a brake causes a calming and homogenization of the flow in the mold, in particular in Badador Kunststoff by generating a magnetic field, which, in interaction with the casting molds entering the mold reduces their speed due to the effect of the so-called "Lorenzkraft".
  • the formation of a microstructure of the cast steel strand which is favorable with regard to the electromagnetic properties can also be assisted by casting at a low superheating temperature.
  • the latter are preferably at most 25 K above the liquidus temperature of the cast melt. If this advantageous variant of the invention is taken into account, a freezing of the molten steel cast at low superheat at the bath level and hence casting disturbances up to the casting break can likewise be avoided by using an electromagnetic brake on the casting mold.
  • the force exerted by the electromagnetic brake directs the hot melt to the bath level and there causes a temperature increase sufficient to ensure a smooth casting process.
  • the homogeneous and fine-grained solidification structure of the cast strand achieved in this way has a favorable effect on the magnetic properties of the grain-oriented electrical steel produced according to the invention.
  • the aim is to avoid the formation of nitridic precipitates prior to hot rolling and during hot rolling as much as possible in order to make extensive use of the possibility of a controlled production of such precipitates during the cooling of the hot strip.
  • it is provided according to an advantageous embodiment of the invention to make an inline thickness reduction of cast from the melt, but still core liquid strand.
  • LCR Liquid Core Reduction
  • SR Soft Reduction
  • the reduction in the number of stitches and the rolling forces in the rolling mills of the hot strip mill can be reduced with the result that the work roll wear of the rolling mills and the slumpiness of the hot strip can be reduced and the strip run can be improved.
  • the thickness reduction achieved by LCR according to the invention is preferably in the range of 5 mm to 30 mm.
  • SR Under SR is meant the targeted reduction in thickness of the strand in the swamp tip near Enderstarrung.
  • the SR aims to reduce mitigation and core porosity. This method has hitherto been used predominantly in billet and slab continuous casting plants.
  • the invention now proposes to apply the SR also in the production of grain-oriented electrical steel on thin slab continuous casting or casting rolling.
  • the achievable in this way in particular the silicon Mitsenigerung in the subsequently hot-rolled precursors can be a homogenization of the chemical composition across the strip thickness reach, which is beneficial for the magnetic values.
  • Good SR results are obtained when the reduction in thickness achieved using SR is 0.5-5 mm.
  • the casting mold strand In thin slab continuous casting the usually emerging from the casting mold strand is bent at lower points and guided in a horizontal direction.
  • the casting cast from the melt strand at 700 0 C. Bending and directed at 1000 0 C temperature (preferably 850 to 950 0 C) can be avoided, cracks on the surface of the separated from the strand thin slabs can be avoided, which may otherwise occur, in particular, as a result of edge cracks of the strand.
  • the steel used according to the invention has a good ductility at the strand surface or in the edge region, so that it can follow well the deformations occurring during bending and straightening.
  • the cast strand thin slabs are divided in a conventional manner, which are then heated in an oven to the appropriate hot rolling start temperature and then fed to hot rolling.
  • the temperature at which the thin slab arriving in the furnace is preferably above 650 0 C.
  • the residence time in the oven should be below 60 minutes in order to avoid Klebzunder.
  • An aspect of the invention which is essential in view of the desired production of HGO material is that the hot rolling is carried out following the first forming pass in the two-phase region ( ⁇ / ⁇ ). Also, this measure has the goal of reducing the formation of nitridic precipitates in the course of hot rolling as far as possible in order to be able to control these precipitates specifically via the cooling conditions on the outlet roller table behind the last mill stand of the hot strip mill.
  • hot rolled at temperatures where mixed in the structure of the hot strip austenitic and ferritic shares are above about 800 ° C., in particular in the range from 850 ° C. to 1150 ° C.
  • the AIN In the ⁇ phase, the AIN is kept in solution at these temperatures.
  • Another positive aspect of hot rolling in the two-phase mixing area is the grain-separating effect.
  • austenite By converting the austenite into ferrite following the hot whale passes, a finer-grained and more homogeneous hot-band structure is achieved, which has a positive effect on the magnetic properties of the end product.
  • the prevention of nitridic precipitations during hot rolling is further supported by the fact that already in the first forming pass a degree of deformation of at least 40% is achieved in order to have only relatively small Stichab changes in the last frameworks for achieving the desired Endbanddicke necessary.
  • the use of high reduction rates (degrees of deformation) in the first two stands causes the required conversion of the coarse-grained solidification microstructure into a fine rolling structure, which is the prerequisite for good magnetic properties of the final product to be produced. Accordingly, the reduction in stitching in the last stand should be limited to a maximum of 30%, preferably less than 20%, and it is also favorable for an optimum in terms of the desired properties warm rolling result, if the reduction in the penultimate stand of the finishing mill is less than 25% , A pass plan tested in practice on a seven-stand finished hot rolling mill, which has led to optimum properties of the finished electrical sheet, provides that with a pre-strip thickness of 63 mm and a hot strip thickness of 2 mm, the degree of deformation achieved on the first stand is 62%, that on the second stand achieved 54%, the third scaffold 47%, the fourth scaffold 35%, the fifth scaffold 28%, the sixth scaffold 17% and the seventh scaffold 11%.
  • an early onset of cooling of the hot strip behind the last rolling stand of the finishing train is advantageous. According to a practical embodiment of the invention, it is therefore provided within a maximum of five seconds after leaving the last Rolling mill to start with the water cooling.
  • the aim is to have the shortest possible break times, for example, of one second and less.
  • the cooling of the hot strip can also be controlled so that it is cooled in two stages with water. For this purpose, first after the last rolling mill to a temperature close to the alpha / gamma transformation temperature can be cooled to then, preferably after to equalize the temperature over the tape thickness inserted cooling pause of one to five seconds, a further cooling by water until to perform the required reel temperature.
  • the first phase of the cooling can take place as a so-called "compact cooling", in which the hot strip is cooled rapidly over a short conveyor line with high intensity and cooling rate (at least 200 K / s) while discharging large amounts of water, while in the second phase of the Water cooling is cooled over a longer conveyor line with reduced intensity in order to achieve the most uniform possible cooling over the belt cross-section.
  • the reel temperature should preferably be in the temperature range of 500-780 0 C. Overlying temperatures would on the one hand lead to undesirably coarse precipitates and on the other hand worsen the treatability.
  • a so-called short distance reel is used, which is located directly after the compact cooling zone.
  • the inventive method in the production of the hot strip is preferably carried out so that the hot strip obtained sulfidic and / or nitridic precipitates having a mean particle diameter below 150 nm and an average density of at least 0.05 microns 2 is achieved .
  • This type of hot strip has optimal conditions for the effective control of grain growth during the subsequent process steps.
  • the hot strip thus produced can optionally be annealed after reeling or before cold rolling.
  • the strip obtained is annealed recrystallizing and decarburizing.
  • the cold rolled strip may be annealed during or after decarburization annealing in an NH 3 -containing atmosphere.
  • N-containing antacid additives such as manganese nitride or chromium nitride
  • a molten steel of composition 3, 15% Si, 0.047% C, 0.154% Mn, 0.006% S, 0.030% Al, 0.0080% N, 0.22% Cu and 0.06% Cr became after the secondary metallurgical treatment
  • a ladle furnace and a vacuum system continuously poured into a 63 mm thick strand Before entering the in-line equalization furnace, the strand was split into thin slabs. After a residence time of 20 minutes in the equalizing furnace at 1150 ° C., the thin slabs were then descaled and hot-rolled in various ways:
  • the first pass was made at 1090 0 C with a degree of deformation of 61% and the second pass at 1050 0 C with a degree of deformation of 50%.
  • the rolling temperatures in the Stitches 3 to 7 were 1010 ° C., 980 ° C., 950 ° C., 930 ° C. and 900 ° C.
  • the degrees of deformation were 17% and 11%, respectively.
  • the following austenite proportions were obtained in Stitches 1 to 7: 30% / 25% / 20% / 18% / 15% / 14% and 12%.
  • the cooling was identical for both hot rolling variants with the use of water spraying within 7 s after leaving the last mill stand and a coiler temperature of 650 0 C.
  • samples for metallographic examinations were also produced by hot rolling after the second pass was stopped by rapid cooling.
  • the strips were first annealed in a continuous furnace and then cold rolled in 1 step without intermediate annealing to a final thickness of 0.30 mm.
  • annealing 2 different variants were chosen:
  • the different magnetic results depending on the selected hot rolling conditions can be explained by the different microstructures.
  • the high austenite contents in the individual forming passes form a finer and, above all, significantly more homogeneous structure (FIG. 1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
PCT/EP2006/064480 2005-08-03 2006-07-20 Verfahren zur herstellung von kornorientiertem elektroband Ceased WO2007014868A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2615586A CA2615586C (en) 2005-08-03 2006-07-20 Method for producing grain oriented magnetic steel strip
US11/997,670 US8088229B2 (en) 2005-08-03 2006-07-20 Method for producing grain oriented magnetic steel strip
AU2006274901A AU2006274901B2 (en) 2005-08-03 2006-07-20 Method for producing a grain-oriented electrical steel strip
BRPI0614379-2A BRPI0614379B1 (pt) 2005-08-03 2006-07-20 Método para produção de tira de aço magnética de grãos orientados
KR1020087005312A KR101365653B1 (ko) 2005-08-03 2006-07-20 방향성 전자 강 스트립 제조 방법
MX2008001475A MX2008001475A (es) 2005-08-03 2006-07-20 Metodo para producir una cinta de acero electrica de grano orientado.
JP2008524481A JP2009503265A (ja) 2005-08-03 2006-07-20 方向性電磁鋼ストリップの製造方法
CN2006800288008A CN101238227B (zh) 2005-08-03 2006-07-20 生产晶粒取向的电工带钢的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05016835.0 2005-08-03
EP05016835.0A EP1752549B1 (de) 2005-08-03 2005-08-03 Verfahren zur Herstellung von kornorientiertem Elektroband

Publications (1)

Publication Number Publication Date
WO2007014868A1 true WO2007014868A1 (de) 2007-02-08

Family

ID=35520090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/064480 Ceased WO2007014868A1 (de) 2005-08-03 2006-07-20 Verfahren zur herstellung von kornorientiertem elektroband

Country Status (15)

Country Link
US (1) US8088229B2 (enExample)
EP (1) EP1752549B1 (enExample)
JP (1) JP2009503265A (enExample)
KR (1) KR101365653B1 (enExample)
CN (1) CN101238227B (enExample)
AU (1) AU2006274901B2 (enExample)
BR (1) BRPI0614379B1 (enExample)
CA (1) CA2615586C (enExample)
MX (1) MX2008001475A (enExample)
PL (1) PL1752549T3 (enExample)
RU (1) RU2407807C2 (enExample)
SI (1) SI1752549T1 (enExample)
TW (1) TWI402353B (enExample)
WO (1) WO2007014868A1 (enExample)
ZA (1) ZA200800663B (enExample)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016756A1 (ru) * 2009-08-03 2011-02-10 Открытое Акционерное Общество "Hoвoлиneцкий Металлургический Кoмбинaт" Способ производства анизотропной электротехнической стали с высокими магнитными свойствами
US20120305212A1 (en) * 2008-10-17 2012-12-06 Gerald Eckerstorfer Process and device for producing hot-rolled strip from silicon steel
DE102011054004A1 (de) 2011-09-28 2013-03-28 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Herstellen eines kornorientierten, für elektrotechnische Anwendungen bestimmten Elektrobands oder -blechs
CN104805353A (zh) * 2015-05-07 2015-07-29 马钢(集团)控股有限公司 一种纵向磁性能优异电工钢及其生产方法
CZ306161B6 (cs) * 2009-08-03 2016-08-31 Open Joint Stock Company Novolipetsk Steel Způsob výroby za studena válcované anizotropní elektrotechnické oceli s nízkou specifickou magnetickou ztrátou pro změnu magnetizace
EP3715480A1 (en) 2019-03-26 2020-09-30 Thyssenkrupp Electrical Steel Gmbh Iron-silicon material suitable for medium frequency applications
EP3715479A1 (en) 2019-03-26 2020-09-30 Thyssenkrupp Electrical Steel Gmbh Lean method for secondary recrystallization of grain oriented electrical steel in a continuous processing line
EP4273280A1 (en) 2022-05-04 2023-11-08 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented electrical steel strip and grain-oriented electrical steel strip
EP4365319A1 (en) 2022-11-03 2024-05-08 Thyssenkrupp Electrical Steel Gmbh Grain-oriented electrical steel strip and method for its production
EP4570926A1 (de) 2023-12-13 2025-06-18 Thyssenkrupp Electrical Steel Gmbh Kornorientiertes stahlflachprodukt sowie verfahren zu seiner herstellung
EP4589028A1 (en) 2024-01-18 2025-07-23 Thyssenkrupp Electrical Steel Gmbh Grain-oriented electrical steel sheet coated with a resin and used for stacking
EP4589026A1 (en) 2024-01-18 2025-07-23 Thyssenkrupp Electrical Steel Gmbh Grain-oriented electrical steel sheet and method for its production
EP4589027A1 (en) 2024-01-18 2025-07-23 Thyssenkrupp Electrical Steel Gmbh Grain-oriented electrical steel sheet and method for its production

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1752548B1 (de) * 2005-08-03 2016-02-03 ThyssenKrupp Steel Europe AG Verfahren zur Herstellung von kornorientiertem Elektroband
MX2012005962A (es) * 2009-11-25 2012-07-25 Tata Steel Ijmuiden Bv Proceso para fabricar tira de acero electrico de grano orientado y acero electrico de grano orientado producido por el mismo.
IT1402624B1 (it) * 2009-12-23 2013-09-13 Ct Sviluppo Materiali Spa Procedimento per la produzione di lamierini magnetici a grano orientato.
CN101963446B (zh) * 2010-11-04 2012-05-23 四川展祥特种合金科技有限公司 钒氮合金全自动立式中频感应加热炉
KR101286209B1 (ko) * 2010-12-24 2013-07-15 주식회사 포스코 자성이 우수한 방향성 전기강판 및 이의 제조방법
KR101286208B1 (ko) * 2010-12-24 2013-07-15 주식회사 포스코 자성이 우수한 방향성 전기강판 및 이의 제조방법
WO2012089696A1 (en) * 2011-01-01 2012-07-05 Tata Steel Nederland Technology Bv Process to manufacture grain-oriented electrical steel strip and grain-oriented electrical steel produced thereby
BR112013017778B1 (pt) * 2011-01-12 2019-05-14 Nippon Steel & Sumitomo Metal Corporation Chapa de aço elétrico com grão orientado
DE102011119395A1 (de) 2011-06-06 2012-12-06 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Herstellen eines kornorientierten, für elektrotechnische Anwendungen bestimmten Elektrostahlflachprodukts
DE102011107304A1 (de) 2011-07-06 2013-01-10 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Herstellen eines kornorientierten, für elektrotechnische Anwendungen bestimmten Elektrostahlflachprodukts
KR101351955B1 (ko) * 2011-08-01 2014-01-16 주식회사 포스코 자성이 우수한 방향성 전기강판 및 그 제조방법
KR101351956B1 (ko) * 2011-08-01 2014-01-16 주식회사 포스코 자성이 우수한 방향성 전기강판 및 그 제조방법
ITRM20110528A1 (it) 2011-10-05 2013-04-06 Ct Sviluppo Materiali Spa Procedimento per la produzione di lamierino magnetico a grano orientato con alto grado di riduzione a freddo.
JP5668893B2 (ja) * 2012-03-29 2015-02-12 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN102787276B (zh) * 2012-08-30 2014-04-30 宝山钢铁股份有限公司 一种高磁感取向硅钢及其制造方法
CN104870665B (zh) 2012-12-28 2018-09-21 杰富意钢铁株式会社 方向性电磁钢板的制造方法和方向性电磁钢板制造用的一次再结晶钢板
CN103071677B (zh) * 2012-12-29 2015-09-09 东北大学 一种异步轧制技术制备取向硅钢的方法
CN103525999A (zh) * 2013-09-13 2014-01-22 任振州 一种高磁感取向硅钢片的制备方法
CN103667602B (zh) * 2013-11-26 2015-04-08 山西太钢不锈钢股份有限公司 一种晶粒取向电工钢rh精炼钢水增氮方法
CN103668005B (zh) * 2013-12-12 2015-10-14 武汉钢铁(集团)公司 一种用中温板坯加热温度生产的HiB钢及其生产方法
CN104726670B (zh) * 2013-12-23 2017-07-21 鞍钢股份有限公司 一种短流程中薄板坯制备高磁感取向硅钢的方法
CN104726796A (zh) * 2013-12-23 2015-06-24 Posco公司 取向电工钢板及其制造方法
DE102014104106A1 (de) 2014-03-25 2015-10-01 Thyssenkrupp Electrical Steel Gmbh Verfahren zur Herstellung von hochpermeablem kornorientiertem Elektroband
US10604818B2 (en) 2014-09-01 2020-03-31 Nippon Steel Corporation Grain-oriented electrical steel sheet
JP6260513B2 (ja) * 2014-10-30 2018-01-17 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP6350398B2 (ja) * 2015-06-09 2018-07-04 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
DE102015114358B4 (de) * 2015-08-28 2017-04-13 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Herstellen eines kornorientierten Elektrobands und kornorientiertes Elektroband
KR101676630B1 (ko) * 2015-11-10 2016-11-16 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR102466499B1 (ko) * 2015-12-22 2022-11-10 주식회사 포스코 방향성 전기강판 및 그 제조방법
US20190256938A1 (en) * 2016-11-01 2019-08-22 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
WO2018084198A1 (ja) * 2016-11-01 2018-05-11 Jfeスチール株式会社 方向性電磁鋼板の製造方法
DE102017220718A1 (de) 2017-11-20 2019-05-23 Thyssenkrupp Ag Optimierung des Stickstofflevels während der Haubenglühung II
DE102017220721A1 (de) 2017-11-20 2019-05-23 Thyssenkrupp Ag Optimierung des Stickstofflevels während der Haubenglühung III
DE102017220714B3 (de) 2017-11-20 2019-01-24 Thyssenkrupp Ag Optimierung des Stickstofflevels während der Haubenglühung
KR102012319B1 (ko) * 2017-12-26 2019-08-20 주식회사 포스코 방향성 전기강판 및 그 제조방법
CN108456829A (zh) * 2018-02-26 2018-08-28 合肥尚强电气科技有限公司 一种变压器硅钢片及其制备方法
CN110899644A (zh) * 2018-09-14 2020-03-24 宝山钢铁股份有限公司 一种超薄热轧带钢的生产方法
EP3856938B1 (de) 2018-09-26 2024-05-22 Thyssenkrupp Electrical Steel Gmbh Verfahren zur herstellung eines mit einer isolationsschicht versehenen kornorientierten elektrobandes und kornorientiertes elektroband
KR102142511B1 (ko) * 2018-11-30 2020-08-07 주식회사 포스코 방향성 전기강판 및 그의 제조방법
CN111411265B (zh) * 2020-03-21 2021-11-26 交大材料科技(江苏)研究院有限公司 一种镍基合金超薄板材
DE102020209299A1 (de) * 2020-07-23 2022-01-27 Sms Group Gmbh Verfahren zum Herstellen von Stahlband
CN113042532B (zh) * 2021-03-12 2022-08-26 武汉钢铁有限公司 一种含Bi高磁感取向硅钢热轧带钢边部质量控制方法
CN113684387B (zh) * 2021-08-25 2022-11-01 中航上大高温合金材料股份有限公司 紧固件用gh6159合金锭及其制备方法
DE102023210083A1 (de) * 2023-10-13 2025-04-17 Sms Group Gmbh Herstellung von warmgewalzten Metallbändern als Vor- oder Zwischenprodukt für kornorientiertes Elektroband

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158816A (en) * 1980-05-13 1981-12-07 Kawasaki Steel Corp Manufacture of anisotropic electrical steel strip
US4592789A (en) * 1981-12-11 1986-06-03 Nippon Steel Corporation Process for producing a grain-oriented electromagnetic steel sheet or strip
EP0484904A2 (en) * 1990-11-07 1992-05-13 Nippon Steel Corporation Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JPH06136448A (ja) * 1992-10-26 1994-05-17 Nippon Steel Corp 方向性珪素鋼板の製造方法
WO1999019521A1 (de) * 1997-10-15 1999-04-22 Thyssen Krupp Stahl Ag Verfahren zur herstellung von kornorientiertem elektroblech mit geringem ummagnetisierungsverlust und hoher polarisation
WO2002050315A2 (en) * 2000-12-18 2002-06-27 Thyssenkrupp Acciai Speciali Terni S.P.A. Process for the production of grain oriented electrical steel strips
JP2002212639A (ja) * 2001-01-12 2002-07-31 Nippon Steel Corp 磁気特性に優れた一方向性珪素鋼板の製造方法
EP1473371A2 (fr) * 1996-01-25 2004-11-03 Usinor Procédé de fabrication de tole d'acier magnétique à grains non orientés et tole obtenue par le procédé

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942208B1 (enExample) * 1971-05-20 1974-11-13
FR2138867B1 (enExample) * 1971-05-20 1973-07-13 Nippon Steel Corp
JP2787776B2 (ja) * 1989-04-14 1998-08-20 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板の製造方法
JP2784687B2 (ja) * 1990-10-12 1998-08-06 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板の製造方法
JPH086139B2 (ja) * 1991-06-10 1996-01-24 新日本製鐵株式会社 磁気特性の優れた厚い板厚の一方向性電磁鋼板の製造方法
RU2041268C1 (ru) * 1991-10-25 1995-08-09 Армко Инк. Способ получения высококремнистой электротехнической стали
JPH05230534A (ja) * 1992-02-21 1993-09-07 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
JP3061491B2 (ja) * 1992-12-08 2000-07-10 新日本製鐵株式会社 磁気特性の優れた厚い板厚のグラス被膜の少ない一方向性電磁鋼板の製造方法
DE4311151C1 (de) * 1993-04-05 1994-07-28 Thyssen Stahl Ag Verfahren zur Herstellung von kornorientierten Elektroblechen mit verbesserten Ummagnetisierungsverlusten
US5472479A (en) * 1994-01-26 1995-12-05 Ltv Steel Company, Inc. Method of making ultra-low carbon and sulfur steel
DE19628136C1 (de) * 1996-07-12 1997-04-24 Thyssen Stahl Ag Verfahren zur Herstellung von kornorientiertem Elektroblech
IT1285153B1 (it) * 1996-09-05 1998-06-03 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, a partire da bramma sottile.
IT1290172B1 (it) * 1996-12-24 1998-10-19 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, con elevate caratteristiche magnetiche.
IT1299137B1 (it) * 1998-03-10 2000-02-29 Acciai Speciali Terni Spa Processo per il controllo e la regolazione della ricristallizzazione secondaria nella produzione di lamierini magnetici a grano orientato
JP2000301320A (ja) * 1999-04-19 2000-10-31 Sanyo Special Steel Co Ltd 取鍋精錬炉のポーラス詰まりの解消方法
JP4562244B2 (ja) * 2000-06-05 2010-10-13 山陽特殊製鋼株式会社 高清浄度鋼の製造方法
US6676771B2 (en) * 2001-08-02 2004-01-13 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
JP2003266152A (ja) * 2002-03-12 2003-09-24 Nippon Steel Corp 鋳型内電磁ブレーキ装置
EP1752548B1 (de) * 2005-08-03 2016-02-03 ThyssenKrupp Steel Europe AG Verfahren zur Herstellung von kornorientiertem Elektroband

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158816A (en) * 1980-05-13 1981-12-07 Kawasaki Steel Corp Manufacture of anisotropic electrical steel strip
US4592789A (en) * 1981-12-11 1986-06-03 Nippon Steel Corporation Process for producing a grain-oriented electromagnetic steel sheet or strip
EP0484904A2 (en) * 1990-11-07 1992-05-13 Nippon Steel Corporation Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JPH06136448A (ja) * 1992-10-26 1994-05-17 Nippon Steel Corp 方向性珪素鋼板の製造方法
EP1473371A2 (fr) * 1996-01-25 2004-11-03 Usinor Procédé de fabrication de tole d'acier magnétique à grains non orientés et tole obtenue par le procédé
WO1999019521A1 (de) * 1997-10-15 1999-04-22 Thyssen Krupp Stahl Ag Verfahren zur herstellung von kornorientiertem elektroblech mit geringem ummagnetisierungsverlust und hoher polarisation
WO2002050315A2 (en) * 2000-12-18 2002-06-27 Thyssenkrupp Acciai Speciali Terni S.P.A. Process for the production of grain oriented electrical steel strips
JP2002212639A (ja) * 2001-01-12 2002-07-31 Nippon Steel Corp 磁気特性に優れた一方向性珪素鋼板の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 006, no. 044 (C - 095) 19 March 1982 (1982-03-19) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 443 (C - 1239) 18 August 1994 (1994-08-18) *
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 11 6 November 2002 (2002-11-06) *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120305212A1 (en) * 2008-10-17 2012-12-06 Gerald Eckerstorfer Process and device for producing hot-rolled strip from silicon steel
WO2011016756A1 (ru) * 2009-08-03 2011-02-10 Открытое Акционерное Общество "Hoвoлиneцкий Металлургический Кoмбинaт" Способ производства анизотропной электротехнической стали с высокими магнитными свойствами
CZ306147B6 (cs) * 2009-08-03 2016-08-24 Open Joint Stock Company Novolipetsk Steel Způsob výroby za studena válcované anizotropní elektrotechnické oceli s vysokými magnetickými charakteristikami
CZ306161B6 (cs) * 2009-08-03 2016-08-31 Open Joint Stock Company Novolipetsk Steel Způsob výroby za studena válcované anizotropní elektrotechnické oceli s nízkou specifickou magnetickou ztrátou pro změnu magnetizace
DE102011054004A1 (de) 2011-09-28 2013-03-28 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Herstellen eines kornorientierten, für elektrotechnische Anwendungen bestimmten Elektrobands oder -blechs
WO2013045339A1 (de) 2011-09-28 2013-04-04 Thyssenkrupp Steel Europe Ag Verfahren zum herstellen eines kornorientierten, für elektrotechnische anwendungen bestimmten elektrobands oder -blechs
CN104805353A (zh) * 2015-05-07 2015-07-29 马钢(集团)控股有限公司 一种纵向磁性能优异电工钢及其生产方法
EP3715479A1 (en) 2019-03-26 2020-09-30 Thyssenkrupp Electrical Steel Gmbh Lean method for secondary recrystallization of grain oriented electrical steel in a continuous processing line
EP3715480A1 (en) 2019-03-26 2020-09-30 Thyssenkrupp Electrical Steel Gmbh Iron-silicon material suitable for medium frequency applications
WO2020193717A1 (en) 2019-03-26 2020-10-01 Thyssenkrupp Electrical Steel Gmbh Iron-silicon material suitable for medium frequency applications
WO2020193634A1 (en) 2019-03-26 2020-10-01 Thyssenkrupp Electrical Steel Gmbh Lean method for secondary recrystallization of grain oriented electrical steel in a continuous processing line
EP4273280A1 (en) 2022-05-04 2023-11-08 Thyssenkrupp Electrical Steel Gmbh Method for producing a grain-oriented electrical steel strip and grain-oriented electrical steel strip
EP4365319A1 (en) 2022-11-03 2024-05-08 Thyssenkrupp Electrical Steel Gmbh Grain-oriented electrical steel strip and method for its production
EP4570926A1 (de) 2023-12-13 2025-06-18 Thyssenkrupp Electrical Steel Gmbh Kornorientiertes stahlflachprodukt sowie verfahren zu seiner herstellung
EP4589028A1 (en) 2024-01-18 2025-07-23 Thyssenkrupp Electrical Steel Gmbh Grain-oriented electrical steel sheet coated with a resin and used for stacking
EP4589026A1 (en) 2024-01-18 2025-07-23 Thyssenkrupp Electrical Steel Gmbh Grain-oriented electrical steel sheet and method for its production
EP4589027A1 (en) 2024-01-18 2025-07-23 Thyssenkrupp Electrical Steel Gmbh Grain-oriented electrical steel sheet and method for its production

Also Published As

Publication number Publication date
SI1752549T1 (sl) 2016-09-30
CN101238227A (zh) 2008-08-06
CA2615586C (en) 2015-04-21
BRPI0614379A2 (pt) 2011-03-22
KR101365653B1 (ko) 2014-02-19
KR20080042859A (ko) 2008-05-15
CN101238227B (zh) 2011-11-16
EP1752549B1 (de) 2016-01-20
ZA200800663B (en) 2009-04-29
BRPI0614379B1 (pt) 2014-04-29
RU2407807C2 (ru) 2010-12-27
TW200710226A (en) 2007-03-16
MX2008001475A (es) 2008-04-02
TWI402353B (zh) 2013-07-21
AU2006274901B2 (en) 2011-07-28
JP2009503265A (ja) 2009-01-29
US20080216985A1 (en) 2008-09-11
US8088229B2 (en) 2012-01-03
CA2615586A1 (en) 2007-02-08
AU2006274901A1 (en) 2007-02-08
PL1752549T3 (pl) 2017-08-31
RU2008107938A (ru) 2009-09-10
EP1752549A1 (de) 2007-02-14

Similar Documents

Publication Publication Date Title
EP1752549B1 (de) Verfahren zur Herstellung von kornorientiertem Elektroband
EP1752548B1 (de) Verfahren zur Herstellung von kornorientiertem Elektroband
DE19745445C1 (de) Verfahren zur Herstellung von kornorientiertem Elektroblech mit geringem Ummagnetisierungsverlust und hoher Polarisation
EP2690183B1 (de) Warmgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP2761041B1 (de) Verfahren zum herstellen eines kornorientierten, für elektrotechnische anwendungen bestimmten elektrobands oder -blechs
EP2729588B1 (de) Verfahren zum herstellen eines kornorientierten, für elektrotechnische anwendungen bestimmten elektrostahlflachprodukts
WO2008052919A1 (de) Verfahren zum herstellen von stahl-flachprodukten aus einem mit bor mikrolegierten mehrphasenstahl
EP1341937B1 (de) Verfahren zum erzeugen eines warmbandes aus einem einen hohen mangan-gehalt aufweisenden stahl
EP1918402B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem ein Komplexphasen-Gefüge bildenden Stahl
DE60203733T2 (de) In-line-verfahren zum rekristallisieren von erstarrten grobbändern in unlegiertem stahl und niedrig legiertem stahl
EP1444372B1 (de) Verfahren zur herstellung von nichtkornorientiertem elektroblech
DE19913498C1 (de) Verfahren zum Herstellen eines Warmbandes und Warmbandlinie zur Durchführung des Verfahrens
DE10062919A1 (de) Verfahren zum Herstellen von Warmband oder -blech aus einem mikrolegierten Stahl
EP1396549A1 (de) Verfahren zum Herstellen eines perlitfreien warmgewalzten Stahlbands und nach diesem Verfahren hergestelltes Warmband
EP1228255A1 (de) Verfahren zum herstellen eines warmbandes
WO2019096734A1 (de) Kornorientiertes elektroband und verfahren zur herstellung eines solchen elektrobands
DE102005063058B3 (de) Verfahren zum Herstellen eines Kaltbands mit ferritischem Gefüge
DE10060950C2 (de) Verfahren zum Erzeugen von kornorientiertem Elektroblech
EP3714072B1 (de) Kornorientiertes elektroband und verfahren zur herstellung eines solchen elektrobands
WO2019096735A1 (de) Kornorientiertes elektroband und verfahren zur herstellung eines solchen elektrobands
WO2023016965A1 (de) Verfahren und vorrichtung zur herstellung eines hoch- und höchstfesten mehrphasenstahls

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2615586

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/001475

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 445/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200680028800.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008524481

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006274901

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2008107938

Country of ref document: RU

Ref document number: 1020087005312

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006274901

Country of ref document: AU

Date of ref document: 20060720

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006274901

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 11997670

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06777874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0614379

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080206