JP4562244B2 - 高清浄度鋼の製造方法 - Google Patents

高清浄度鋼の製造方法 Download PDF

Info

Publication number
JP4562244B2
JP4562244B2 JP2000167086A JP2000167086A JP4562244B2 JP 4562244 B2 JP4562244 B2 JP 4562244B2 JP 2000167086 A JP2000167086 A JP 2000167086A JP 2000167086 A JP2000167086 A JP 2000167086A JP 4562244 B2 JP4562244 B2 JP 4562244B2
Authority
JP
Japan
Prior art keywords
steel
degassing
treatment
ladle
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000167086A
Other languages
English (en)
Other versions
JP2001342513A (ja
Inventor
和哉 児玉
知巳 森
潔 川上
修平 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000167086A priority Critical patent/JP4562244B2/ja
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to CNB018107303A priority patent/CN1210413C/zh
Priority to US10/297,313 priority patent/US7396378B2/en
Priority to GB0509772A priority patent/GB2410253B/en
Priority to PCT/JP2001/004742 priority patent/WO2001094648A2/en
Priority to DE10196303.3T priority patent/DE10196303B3/de
Priority to FR0107305A priority patent/FR2809745B1/fr
Priority to GB0509770A priority patent/GB2410252B/en
Priority to GB0500783A priority patent/GB2406580B/en
Priority to GB0509771A priority patent/GB2410503B/en
Priority to GB0228813A priority patent/GB2381537B/en
Priority to FR0112655A priority patent/FR2812662B1/fr
Priority to FR0112652A priority patent/FR2812660B1/fr
Priority to FR0112653A priority patent/FR2812661B1/fr
Priority to FR0112657A priority patent/FR2812663B1/fr
Publication of JP2001342513A publication Critical patent/JP2001342513A/ja
Priority to SE0203586A priority patent/SE527469C2/sv
Priority to SE0502558A priority patent/SE529629C2/sv
Priority to US11/894,737 priority patent/US20080025865A1/en
Priority to US12/136,096 priority patent/US20080257106A1/en
Publication of JP4562244B2 publication Critical patent/JP4562244B2/ja
Application granted granted Critical
Priority to US13/572,759 priority patent/US20120304820A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、疲労強度、疲労寿命や静粛性が求められる機械部品用鋼、特に転がり軸受用鋼、等速ジョイント用鋼、ギア用鋼、トロイダル型無段変速装置用鋼、冷間鍛造用機械構造用鋼、工具鋼、ばね鋼等として使用される高清浄度鋼の製造方法に関する。
【0002】
【従来の技術】
疲労強度、疲労寿命が求められる機械部品に使用される鋼は、清浄度の高い(鋼中の非金属介在物量の少ない)鋼であることが重要である。これらの高清浄度鋼の製造プロセスは、(1)アーク溶解炉又は転炉による溶鋼の酸化精錬、(2)取鍋精錬炉(LF)による還元精錬、(3)環流式真空脱ガス装置(RH)による環流真空脱ガス(RH処理)、(4)連続鋳造又は一般造塊による鋼塊の鋳造、(5)鋼塊の圧鍛による加工及び熱処理による製品鋼材の工程で製造されるのが一般的である。このプロセスにおいて、(1)はスクラップをアークで加熱溶解しまたは溶銑を転炉に入れ酸化精錬を行い取鍋精錬炉に移注する。移注時の温度はその鋼の融点よりも概ね30℃以上100℃未満までの高温度に設定する。(2)は移注した取鍋精錬炉でAl、Mn、Si等の脱酸剤合金を投入して脱酸および脱硫剤による脱硫の還元精錬を行い合金成分の調整をする。一般には処理時間は長いほど効果が有るとされ60分を超す長時間であり、処理温度も一般に融点よりも50℃高い温度で処理する。(3)のRH処理は環流真空脱ガス槽で環流しながら真空脱ガスして脱酸素、脱水素を行い、この場合溶湯の環流量は全溶湯の5〜6倍程度で行われる。(4)はRH処理した溶湯をタンディシュに移注して連続鋳造してブルーム、ビレット、スラブなどに鋳造するか、または取鍋から溶湯を直接鋼塊鋳型に注いで鋼塊に鋳造する。(5)はブルーム、ビレット、スラブなどあるいは鋼塊を、圧延または鍛造して熱処理して鋼材とし出荷する。
【0003】
また、特に清浄度の高い鋼が要求される場合は、上記工程において、鋳造された鋼塊を原材料として、さらに真空再溶解法あるいはエレクトロスラグ再溶解法で製造されている。
【0004】
【発明が解決しようとする課題】
ところで、近年の機械部品使用環境の過酷化により、鋼材に対する要求特性はますます厳しくなり、より清浄度の高い鋼材が求められている。このような要求に対しては、通常上記の(1)(5)の製造工程による生産では対応が困難となっている。またこのような要求に応えるため、前述の真空再溶解法あるいはエレクトロスラグ再溶解法による鋼材が生産されているが、製造コストが極端に上昇するという問題がある。
【0005】
本発明は上記のような状況に鑑みてなされたものであり、極端なコスト上昇を回避するため、再溶解法によることなく、清浄度の高い鋼材の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的に対し、発明者らは高清浄度鋼の製造工程に関して鋭意検討を重ねた結果、以下の工程により、清浄度の大幅向上が可能であることを見いだしたものである。
【0007】
そこで上記の課題を解決するための本発明の手段について以下に説明する。従来アーク溶解炉又は転炉等の精錬炉を有する工程では、アーク溶解炉又は転炉等はもっぱら溶解及び酸化精錬が主体であり、還元期(脱酸)は取鍋精錬にて行われているが、請求項1の発明では、アーク溶解炉または転炉にて製造された溶鋼を、取鍋にて環流式真空脱ガス装置に環流させて予備的に脱ガスを行った後、該取鍋を取鍋精錬炉として取鍋精錬し、さらに精錬した溶鋼を環流式真空脱ガス装置に環流させて真空脱ガスを行うことを特徴とする機械部品用高清浄度鋼の製造方法である。
【0008】
請求項2の発明では、溶鋼を取鍋に移注する際に、溶鋼の出鋼温度を溶鋼の融点より100℃以上、望ましくは120℃以上、さらに望ましくは150℃以上の高い温度とすることを特徴とする請求項1記載の機械部品用高清浄度鋼の製造方法。
【0009】
請求項3の発明では、取鍋精錬炉における取鍋精錬を60分以下、望ましくは45分以下、さらに望ましくは25分以上45分以下とし、かつ、脱ガスを25分以上行い、特に通常は環流式真空脱ガス装置にて溶鋼の環流量を全溶鋼量の5倍以上として行っているが、本発明では環流式真空脱ガス装置にて脱ガスの際の溶鋼の環流量を全溶鋼の8倍以上、望ましくは10倍以上、特に望ましくは15倍以上とすることを特徴とする請求項1又は2に記載の機械部品用高清浄度鋼の製造方法である。
【0010】
すなわち請求項1〜3に記載のいずれか1項の手段における製造方法により製造の機械部品用高清浄度鋼を製造することができる。
【0011】
また、鋼中の含有酸素量は10ppm以下、望ましくは鋼成分のC含有量がC<0.6質量%では8ppm以下、特に望ましくはC≧0.6質量%では6ppm以下である機械部品用高清浄度鋼を製造することができる。
【0012】
さらに、鋼材を酸溶解して検出される20μm以上である酸化物系介在物、例えばAl23の含有率が50%以上である酸化物系介在物、が鋼材100g当たり40個以下、望ましくは30個以下、さらに望ましくは20個以下である機械部品用高清浄度鋼を製造することができる。
【0013】
さらに、又、例えば試験条件として鋼材表面100mm2中の最大介在物径の測定を30箇所において行い、極値統計により算出される30000mm2における最大介在物径の予測値が60μm以下、望ましくは40μm以下、さらに望ましくは25μm以下である機械部品用高清浄度鋼を製造することができる。
【0014】
【発明の実施の形態】
本発明の実施の形態を以下に説明する。請求項1に係る高清浄度鋼の製造方法は次の(1)〜(6)の工程からなる。
【0015】
(1)アーク溶解炉または転炉により溶鋼を酸化精錬して予定の成分および温度の溶鋼を得る。
(2)上記で得られた溶鋼を予め脱ガスする。すなわち溶鋼を例えば環流式真空脱ガス装置にて環流して脱ガスを行う。この脱ガス工程が本発明において最も重要な工程であり、通常(1)で得られた溶鋼は直接取鍋精錬炉で還元精錬されるが、本発明では還元精錬の前に予備的に脱ガスするものである。この予備脱ガスを行うことにより、最終的に得られる鋼の清浄度の大幅向上が可能となる。
(3)脱ガス処理した(2)の溶鋼を取鍋精錬炉にて還元精錬および成分調整を行う。
(4)還元精錬および成分調整した(3)の溶鋼をさらに環流式真空脱ガス装置により環流させて脱ガスを行うとともに、成分の最終調整を行う。
(5)脱ガス及び成分の最終調整をした溶鋼を鋳造にて鋳塊とする。
(6)鋳塊に圧鍛を加えて製品形状とした後、必要な熱処理を加えて製品鋼材とする。
【0016】
請求項2に係る高清浄度鋼の製造方法は、上記(1)〜(6)の製造工程のうち、(2)を終了した溶鋼を(3)の工程のために取鍋精錬炉にて還元精錬する際に、上記の(2)に先立って、通常の溶鋼の融点より50℃程度高くして出鋼する溶鋼の温度を、本発明では溶鋼の融点より100℃以上、望ましくは120℃以上、さらに望ましくは150℃以上高くして出鋼して取鍋に移注した後、予備脱ガスし、この溶鋼を取鍋精錬炉にて取鍋精錬するものである。本明細書では、この出鋼温度を高くすることを高温出鋼という。これは出鋼時添加した脱酸剤及び前回処理時の地金やスラグを完全に溶解又は分離し、精錬中に地金及びスラグが剥がれ落ち、精錬の進んだ溶鋼に混入し、含有酸素量が上昇するのを防止し、同時に精錬炉において初期の造滓性と反応性の向上を図るためである。すなわち、前回の処理により付着した還元済の地金は、今回の処理までの間に酸化されており、今回の還元期操業時特に末期にこのような地金が溶解を始めると平衡条件が崩れ、一部に汚染された溶鋼が生じる。そこで還元前の出鋼中の溶鋼にこの付着した地金を溶かし込み、出鋼した溶鋼と共に脱酸する。
【0017】
請求項3に係る高清浄度鋼の製造方法は、請求項1または2の工程における上記(3)の取鍋精錬において、通常60分より長い方が効果が高いとされる取鍋精錬炉での精錬時間を、60分以下、望ましくは45分以下、さらに望ましくは25分以上45分以下とし、かつ取鍋精錬後の脱ガス時間が通常25分未満で良いとされる脱ガス工程において脱ガス時間を25分以上、特に全溶鋼の5倍程度で十分とされている環流式真空脱ガス装置における溶鋼の環流量を全溶鋼の8倍以上、望ましくは10倍以上、より望ましくは15倍以上として脱ガスするものである。これは、加熱を行いながら精錬を行う取鍋精錬の時間を必要最小限とし、加熱を行わない脱ガス工程で酸化物系介在物の浮上分離時間を十分確保することで、取鍋精錬炉内側の耐火物あるいはスラグからの汚染による、含有酸素量の上昇を防止するとともに、20μm程度以上の大型介在物の生成を防止する。環流式真空脱ガスは特に溶鋼内にノズルを浸漬させ溶鋼のみを環流させるため溶鋼上面のスラグは充分沈静化されている。このためスラグから溶鋼への酸化物の巻き込みは、取鍋精錬炉の還元期工程より少ない。従って予め脱酸した溶鋼は充分な脱ガス時間をかけることにより、比較的小さな脱酸生成物まで大きく低減させることが可能となる。本明細書では、この方法を短時間LF長時間RHまたはLF短RH長という。
【0018】
以上の様に、請求項1〜3のいずれか1項に記載の手段によって機械部品用高清浄度鋼を得ることができる。
【0019】
この様にして得られた高清浄度鋼は、そのうち、含有酸素量は10ppm以下、望ましくは鋼成分のC含有量がC<0.6質量%では8ppm以下、特に望ましくはC≧0.6質量%では6ppm以下である機械部品用高清浄度鋼である。特に転がり疲労寿命に優れた高清浄度鋼である。含有酸素量の低減により、転がり疲労寿命が向上することは一般に知られているが、本発明の方法で製造した鋼のうち、含有酸素量10ppm以下、望ましくは鋼成分のC含有量がC<0.6質量%では8ppm以下、特に望ましくはC≧0.6質量%では6ppm以下である高清浄度鋼は、特に優れた転がり疲労寿命が安定して得られる。
【0020】
さらに、この様にして得られた高清浄度鋼は、そのうち、鋼材を再溶解して検出される20μm以上の大きさである酸化物系介在物、例えばAl23の含有率が50%以上である酸化物系介在物が鋼材100g当たり40個以下、望ましくは30個以下、さらに望ましくは20個以下である転がり疲労寿命、疲労強度に優れた機械部品用高清浄度鋼である。この鋼材の評価方法は含有酸素量、所定堆積中の最大介在物径の両方を反映したものである。そして疲労強度、疲労寿命、静粛性に対しては、酸素含有量が同等の鋼においてはある程度の大きな酸化物系介在物が有害で、特に20μm以上の大きさである酸化物系介在物が有害である。そこで、本発明の方法で製造した鋼のうち、鉱滓を再溶解して検出される20μm以上の大きさである酸化物系介在物が鋼材100g当たり40個以下、望ましくは30個以下、特に望ましくは20個以下である鋼は、優れたる転がり疲労寿命と疲労強度を兼備し、さらに静粛性に優れた区清浄度鋼である。
【0021】
さらに、又、この様にして得られた高清浄度鋼は、そのうち、鋼材断面100mm2中の最大介在物径の測定を30箇所において行い、極値統計により算出される30000mm2における最大介在物径の予測値が60μm以下、望ましくは40μm以下、より望ましくは25μm以下である、特に回転曲げ疲労強度、繰返し応力による疲労に強い高清浄度鋼である。繰返し応力に対する強度あるいは疲労限度は所定体積中の最大介在物径に大きく依存することは知られており、本出願人の出願に係る特開平11−194121号公報に開示するところであるが、代表的試験例として鋼材断面100mm2中の最大介在物径の測定を30箇所において行い、極値統計により算出される30000mm2における最大介在物径の予測値が60μm以下、望ましくは40μm以下、より望ましくは25μm以下である高清浄度鋼は、特に優れた疲労強度が安定して得られる。なお、含有酸素量10ppm以下、望ましくは鋼成分のC含有量がC<0.6質量%では8ppm以下、特に望ましくはC≧0.6質量%では6ppm以下で、かつ、最大介在物径の予測値が60μm以下、望ましくは40μm以下、より望ましくは25μm以下である、本発明により製造される鋼は優れた転がり疲労寿命と疲労強度を兼備した高清浄度鋼である。ところで酸溶解は非常に時間、手間のかかる作業である、鋼材を溶かすことなく、ある程度の面積を顕微鏡観察し、統計的に介在物径の最大値を予測できるこの方法は簡便であり、また、特に引張圧縮の繰り返し応力による疲労では、破壊の危険性のある部位に存在する介在物の最大径が、強度決定の大きな因子であることが知られており、これを統計的に予測できる本方法は有利である。
【0022】
アーク溶解炉にて溶製された溶鋼を、取鍋に移注して環流式真空脱ガス装置により環流させて脱ガスを行った後、取鍋精錬炉として取鍋精錬し、さらに環流式真空脱ガス装置にて環流させて脱ガスを行った後、鋳造による鋳塊製造工程にて製造されたJIS SUJ2鋼、SCM435鋼の10チャージの製品に含有される酸素量、極値統計による最大介在物径予測値、スラスト型転がり寿命試験によるL10寿命を調査した。最大介在物径予測値はφ65鍛伸材から試験片を切り出し、100mm2の観察を30個行い、極値統計により30000mm2中の最大介在物径を予測した。スラスト型転がり寿命試験は浸炭焼入焼戻しを行ったφ60×φ20×8.3Tの試験片を使用し、最大ヘルツ応力Pmax:4900MPaの条件で試験を行い、L10寿命を算出した。
【0023】
表1にSUJ2鋼の10チャージの請求項1のW−RH処理のみの発明の操業例を示す。
【0024】
【表1】
Figure 0004562244
【0025】
表2にSCM435鋼の10チャージの請求項1のW−RH処理のみの発明の操業例を示す。
【0026】
【表2】
Figure 0004562244
【0027】
表3にSUJ2鋼の10チャージの請求項2のW−RH処理及び高温出鋼の発明の操業例を示す。
【0028】
【表3】
Figure 0004562244
【0029】
表4にSCM435鋼の10チャージの請求項2のW−RH処理及び高温出鋼の発明の操業例を示す。
【0030】
【表4】
Figure 0004562244
【0031】
表5にSUJ2鋼の10チャージの請求項3のW−RH処理及び短時間LF長時間RHの発明の操業例を示す。
【0032】
【表5】
Figure 0004562244
【0033】
表6にSCM435鋼の10チャージの請求項3のW−RH処理及び短時間LF長時間RHの発明の操業例を示す。
【0034】
【表6】
Figure 0004562244
【0035】
表7にSUJ2鋼の10チャージの請求項3のW−RH処理、高温出鋼及び短時間LF長時間RHの発明の操業例を示す。
【0036】
【表7】
Figure 0004562244
【0037】
表8にSCM435鋼の10チャージの請求項3のW−RH処理、高温出鋼及び短時間LF長時間RHの発明の操業例を示す。
【0038】
【表8】
Figure 0004562244
【0039】
本発明と対比する従来例のSUJ2の操業例を表9に、従来例のSCM435の操業例を表10に示す。
【0040】
【表9】
Figure 0004562244
【0041】
【表10】
Figure 0004562244
【0042】
これらの表1〜表8に見られるとおり、本発明によるアーク溶解炉又は転炉にて製造された溶鋼を、取鍋に移注して予備的に脱ガスを行った後、取鍋精錬炉にて取鍋精錬を行い、さらに環流式真空脱ガス装置に環流させて脱ガスを行うW−RH処理を行ったものは、さらにW−RH処理に組み合わせて出鋼温度を通常操業より高温である融点+100℃以上の高温出鋼とし、或いはW−RH処理に組み合わせて取鍋精錬炉の操業時間を短くかつ環流脱ガスのRH回転量(即ち、環流量の全溶鋼量に対する倍数)を大きくして脱ガスを長時間かけて充分に行うLF短RH長とし、さらには以上の全てを組み合わせたW−RH処理と高温出鋼とLF短RH長とすることで、鋼種のSUJ2、SCM435共に、製品含有酸素量も少なく、かつ、介在物20μm以上の個数も大幅に少なくなる。そして清浄度を示す良否では、表1から表8に示すとおり、本発明の実施例では、○の良い、或いは◎の非常に良いであり、これらは共に優れた高清浄度鋼である。これに比して従来例では、表9および表10に示すとおり、全て×の良くないであり、清浄度鋼といえないものである。
【0043】
W−RH処理を実施した各チャージにおいて、(溶鋼の取鍋精錬炉への移注温度)−(溶鋼の融点)=TSHとするとき、酸素量、最大介在物径予測値はともにTSHを大きくすることで低減され、清浄度が向上する。W−RH処理を実施したチャージについて、取鍋精錬炉における精錬時間と酸素量、最大介在物径予測値の関係では、精錬時間が25分程度以上であれば酸素量、最大介在物径予測値は十分低下するが、最大介在物径予測値については精錬時間が長くなると、むしろ大きくなってくる。すなわち、時間が経過すると、取鍋精錬炉の耐火物の溶損が大きくなり、かつ大気との接触による酸化等でスラグ系の平衡が崩れ、溶存酸素のミニマムレベルを外れるからと思われる。さらに、環流式真空脱ガス装置における全溶鋼量に対する環流量と、酸素量、最大介在物径予測値の関係では、環流量は多いほど高清浄度化の効果が高く、15倍以上でほぼ飽和する。
【0044】
含有酸素量、最大介在物径予測値を小さくすることで、L10寿命が向上することが確認された。このことから、含有酸素量、最大介在物径予測値を低減することが可能となる本発明方法により製造された鋼は、転がり疲労寿命などの疲労強度に優れていることが明らかとなった。
【0045】
図1は、SUJ2鋼の溶鋼の処理において、取鍋精錬の前に予備脱ガスを行ないさらに取鍋精錬後に脱ガスするW−RH処理を行う本発明の方法と、予備脱ガスを行わない従来例の方法の場合のそれぞれ10チャージ例の製品中の含有酸素量を示す。なお、図1、図3、図5においてA1は請求項1の発明であるW−RH処理のみによるものを示し、A2は請求項2の発明であるW−RH及び高温出鋼によるものを示し、A3は請求項3の発明であるW−RH及び短時間LF長時間RHによるものを示し、A4は請求項3の発明であるW−RH+高温出鋼+短時間LF長時間RH処理によるものを示し、従は予備脱ガスを行わない従来例によるものを示す。
【0046】
図2は、SCM435鋼の溶鋼の処理において、取鍋精錬の前に予備脱ガスを行ないさらに取鍋精錬後に脱ガスするW−RHを行う本発明の方法と、予備脱ガスを行わない従来例の方法の場合のそれぞれ10チャージ例の製品中の含有酸素量を示す。なお、図2、図4、図6においてB1は請求項1の発明であるW−RH処理のみによるものを示し、B2は請求項2の発明であるW−RH及び高温出鋼によるものを示し、B3は請求項3の発明であるW−RH及び短時間LF長時間RHによるものを示し、B4は請求項3の発明であるW−RH+高温出鋼+短時間LF長時間RH処理によるものを示し、従は予備脱ガスを行わない従来例によるものを示す。
【0047】
図3は、SUJ2鋼の溶鋼の処理において取鍋精錬の前に予備脱ガスを行ないさらに取鍋精錬後に脱ガスするW−RH処理を行う本発明の方法と予備脱ガスを行わない従来例の方法の場合のそれぞれ10チャージ例の製品中の極値統計による最大予測介在物径を示す。
【0048】
図4は、SCM435鋼の溶鋼の処理において取鍋精錬の前に予備脱ガスを行ないさらに取鍋精錬後に脱ガスするW−RH処理を行う本発明の方法と予備脱ガスを行わない従来例の方法の場合のそれぞれ10チャージ例の製品中の極値統計による最大予測介在物径を示す。
【0049】
図5は、SUJ2鋼の溶鋼の処理において取鍋精錬の前に予備脱ガスを行ないさらに取鍋精錬後に脱ガスするW−RH処理を行う本発明の方法と予備脱ガスを行わない従来例の方法の場合それぞれ10チャージ例の製品のスラスト型転がり寿命試験によるL10寿命を示す。
【0050】
図6は、SCM435鋼の溶鋼の処理において取鍋精錬の前に予備脱ガスを行ないさらに取鍋精錬後に脱ガスするW−RH処理を行う本発明の方法と予備脱ガスを行わない従来例の方法のそれぞれ10チャージ例のスラスト型転がり寿命試験によるL10寿命を示す。
【0051】
以上の結果、SUJ2鋼、SCM435鋼共に取鍋精錬を行う前に予備脱ガスを行ない、取鍋精錬後にさらに脱ガスを行うW−RH処理により、製品含有酸素量、最大介在物径予測値とも大幅に低減され、本発明方法により清浄度が大きく向上し、スラスト型転がり寿命試験によるL10寿命が大幅に改善されていることが確認された。さらに、請求項1の発明であるW−RH処理のみから、順次に請求項2の発明であるW−RH+高温出鋼、請求項3の発明であるW−RH+短時間LF長時間RH処理あるいはW−RH+高温出鋼+短時間LF長時間RH処理と、それぞれの処理方法を加重するごとに、製品含有酸素量、最大介在物径予測値スラスト型転がり寿命試験によるL10寿命ともに、大幅に改善されることが判る。
【0052】
【発明の効果】
以上に説明したとおり、本発明の実施により、コストの非常に高い再溶解法を用いることなく、清浄度の非常に高い鋼材を大量に提供することが可能となり、疲労強度、疲労寿命が求められる機械部品用鋼、特に転がり軸受用鋼、等速ジョイント用鋼、ギア用鋼、トロイダル型無段変速装置用鋼、冷間鍛造用機械構造用鋼、工具鋼、ばね鋼等として使用される高清浄度鋼ならびにその製造方法が提供できるなど、従来にない優れた効果を奏する。
【図面の簡単な説明】
【図1】 SUJ2鋼のW−RH処理の有無と製品含有酸素量の関係を示す図で、(A1はW−RHのみの請求項1、A2はW−RH+高温出鋼の請求項2、A3はW−RH+短時間LF長時間RH処理の請求項3、A4はW−RH+高温出鋼+短時間LF長時間RH処理の請求項3の各発明のものと、従来例を示す。
【図2】 SCM435鋼のW−RH処理の有無と製品含有酸素量の関係を示す図で、(B1はW−RHのみの請求項1、B2はW−RH+高温出鋼の請求項2、B3はW−RH+短時間LF長時間RH処理の請求項3、B4はW−RH+高温出鋼+短時間LF長時間RH処理の請求項3の各発明のものと、従来例を示す。
【図3】 SUJ2鋼のW−RH処理の有無と最大予測介在物径の関係を示す図で、(A1はW−RHのみの請求項1、A2はW−RH+高温出鋼の請求項2、A3はW−RH+短時間LF長時間RH処理の請求項3、A4はW−RH+高温出鋼+短時間LF長時間RH処理の請求項3の各発明のものと、従来例を示す。
【図4】 SCM435鋼のW−RH処理の有無と最大予測介在物径の関係を示す図で、B1はW−RHのみの請求項1、B2はW−RH+高温出鋼の請求項2、B3はW−RH+短時間LF長時間RH処理の請求項3、B4はW−RH+高温出鋼+短時間LF長時間RH処理の請求項3の各発明のものと、従来例を示す。
【図5】 SUJ2鋼のW−RH処理の有無とL10寿命の関係を示す図で、A1はW−RHのみの請求項1、A2はW−RH+高温出鋼の請求項2、A4はW−RH+高温出鋼+短時間LF長時間RH処理の請求項3の各発明のものと、従来例を示す。
【図6】 SCM435鋼のW−RH処理の有無とL10寿命の関係を示す図で、B1はW−RHのみの請求項1、B2はW−RH+高温出鋼の請求項2、B4はW−RH+高温出鋼+短時間LF長時間RH処理の請求項3の各発明のものと、従来例を示す。

Claims (3)

  1. アーク溶解炉又は転炉にて製造された溶鋼を、取鍋に移注して環流式真空脱ガス装置で環流させて予備的に脱ガスを行った後、取鍋精錬炉として取鍋精錬を行い、さらに環流式真空脱ガス装置に環流させて脱ガスを行うことを特徴とする機械部品用高清浄度鋼の製造方法。
  2. 溶鋼を取鍋に移注する際に、溶鋼の出鋼温度を溶鋼の融点より100℃以上高い温度とすることを特徴とする請求項1記載の機械部品用高清浄度鋼の製造方法。
  3. 取鍋精錬炉における取鍋精錬を60分以下とし、かつ、該取鍋精錬に次ぐ脱ガスを25分以上行うことを特徴とする請求項1または2に記載の機械部品用高清浄度鋼の製造方法。
JP2000167086A 2000-06-05 2000-06-05 高清浄度鋼の製造方法 Expired - Lifetime JP4562244B2 (ja)

Priority Applications (20)

Application Number Priority Date Filing Date Title
JP2000167086A JP4562244B2 (ja) 2000-06-05 2000-06-05 高清浄度鋼の製造方法
GB0500783A GB2406580B (en) 2000-06-05 2001-06-05 High-cleanliness steel and process for producing the same
GB0509772A GB2410253B (en) 2000-06-05 2001-06-05 High-cleanliness steel and process for producing the same
PCT/JP2001/004742 WO2001094648A2 (en) 2000-06-05 2001-06-05 High-cleanliness steel and process for producing the same
DE10196303.3T DE10196303B3 (de) 2000-06-05 2001-06-05 Verfahren zur Herstellung eines hochreinen Stahls
FR0107305A FR2809745B1 (fr) 2000-06-05 2001-06-05 Acier haute proprete et son procede de production
GB0509770A GB2410252B (en) 2000-06-05 2001-06-05 High-cleanliness steel and process for producing the same
US10/297,313 US7396378B2 (en) 2000-06-05 2001-06-05 Process for producing a high cleanliness steel
GB0509771A GB2410503B (en) 2000-06-05 2001-06-05 High-cleanliness steel and process for producing the same
GB0228813A GB2381537B (en) 2000-06-05 2001-06-05 High-cleanliness steel and process for producing the same
CNB018107303A CN1210413C (zh) 2000-06-05 2001-06-05 高洁净度钢及其生产方法
FR0112655A FR2812662B1 (fr) 2000-06-05 2001-10-02 Acier haute proprete et son procede de production
FR0112657A FR2812663B1 (fr) 2000-06-05 2001-10-02 Acier haute proprete et son procede de fabrication
FR0112653A FR2812661B1 (fr) 2000-06-05 2001-10-02 Acier haute proprete et son procede de production
FR0112652A FR2812660B1 (fr) 2000-06-05 2001-10-02 Acier haute proprete et son procede de production
SE0203586A SE527469C2 (sv) 2000-06-05 2002-12-04 Förfarande för framställning av ett högrent stål
SE0502558A SE529629C2 (sv) 2000-06-05 2005-11-23 Förfarande för framställning av ett högrent stål
US11/894,737 US20080025865A1 (en) 2000-06-05 2007-08-21 Process for producing a high-cleanliness steel
US12/136,096 US20080257106A1 (en) 2000-06-05 2008-06-10 Process for Producing a High-Cleanliness Steel
US13/572,759 US20120304820A1 (en) 2000-06-05 2012-08-13 Process for Producing a High-Cleanliness Steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000167086A JP4562244B2 (ja) 2000-06-05 2000-06-05 高清浄度鋼の製造方法

Publications (2)

Publication Number Publication Date
JP2001342513A JP2001342513A (ja) 2001-12-14
JP4562244B2 true JP4562244B2 (ja) 2010-10-13

Family

ID=18670294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000167086A Expired - Lifetime JP4562244B2 (ja) 2000-06-05 2000-06-05 高清浄度鋼の製造方法

Country Status (1)

Country Link
JP (1) JP4562244B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE027079T2 (en) * 2005-08-03 2016-10-28 Thyssenkrupp Steel Europe Ag A method for producing magnetizable, grain oriented steel strip
PL1752549T3 (pl) * 2005-08-03 2017-08-31 Thyssenkrupp Steel Europe Ag Sposób wytwarzania taśmy elektrotechnicznej o zorientowanych ziarnach
JP5713529B2 (ja) * 2007-12-11 2015-05-07 株式会社神戸製鋼所 転動疲労寿命の優れた鋼材
JP6330707B2 (ja) * 2015-03-26 2018-05-30 Jfeスチール株式会社 低窒素鋼の溶製方法

Also Published As

Publication number Publication date
JP2001342513A (ja) 2001-12-14

Similar Documents

Publication Publication Date Title
US20080025865A1 (en) Process for producing a high-cleanliness steel
JP6038026B2 (ja) 高炭素クロム軸受鋼及びその製造方法
JP2018525520A (ja) マイクロアロイング乗用車カーボンハブベアリング用鋼及びその製造方法
JP5266686B2 (ja) 軸受鋼鋼材及びその製造方法
CN101519710A (zh) 一种合金结构钢非金属夹杂物控制方法
JP5277556B2 (ja) 含Ti極低炭素鋼の溶製方法及び含Ti極低炭素鋼鋳片の製造方法
JP2001342512A (ja) 高清浄度鋼及びその製造方法
CN115011871A (zh) 一种含Cu超低钛轴承钢的制备方法
CN109280743A (zh) 一种轧辊用高强度耐磨钢及其生产方法
CN112795720A (zh) 一种双联转炉法生产工业纯铁的方法
JP4562244B2 (ja) 高清浄度鋼の製造方法
CN107530769B (zh) 使用结晶器保护渣的连铸方法,及使用该方法制造的板坯
JP2001342514A (ja) 高清浄度鋼およびその製造方法
RU2571665C1 (ru) Литейный антифрикционный сплав на основе алюминия для монометаллических подшипников скольжения и способ его изготовления
JP2001342516A (ja) 高清浄度鋼およびその製造方法
JP2001342515A (ja) 高清浄度鋼及びその製造方法
RU2373297C1 (ru) Способ производства заготовок из аустенитных, стабилизированных титаном сталей
GB2410503A (en) High-cleanliness steel and process for producing the same
JP3124469B2 (ja) 介在物欠陥の少ない鋳片の製造方法
JP6984803B1 (ja) 高疲労強度鋼の素材となる鋳片の製造方法
CN113953452B (zh) 一种熔炼精密铸造工艺
WO2021256159A1 (ja) 高疲労強度鋼の素材となる鋳片の製造方法
JP2003183722A (ja) 高清浄度鋼の溶製方法
RU2690084C1 (ru) Способ производства поковок из штамповых сталей типа 5ХНМ
JP5241185B2 (ja) 転がり疲労寿命に優れた鋼の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4562244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140806

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term